Power LDMOS transistor

Rev. 2 — 3 November 2010

Product data sheet

1. Product profile

1.1 General description

250 W LDMOS power transistor for base station applications at frequencies from 1450 MHz to 1550 MHz.

Table 1. Typical performance

Typical RF performance at $T_{case} = 25 \ ^{\circ}C$ in a class-AB production test circuit.

Mode of operation	f	V_{DS}	P _{L(AV)}	G _p	ηр	ACPR
	(MHz)	(V)	(W)	(dB)	(%)	(dBc)
2C-WCDMA	1476 to 1511	28	60	18.5	33.0	-32 <mark>[1]</mark>

 Test signal: 3GPP; test model 1; 64 DPCH; PAR = 7.5 dB at 0.01 % probability on CCDF per carrier. Carrier spacing 5 MHz.

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Therefore care should be taken during transport and handling.

1.2 Features and benefits

- Typical 2C-WCDMA performance at frequencies of 1476 MHz and 1511 MHz, a supply voltage of 28 V and an I_{Dq} of 1410 mA:
 - Average output power = 60 W
 - Power gain = 18.5 dB
 - Efficiency = 33.0 %
 - ♦ ACPR = -32 dBc
- Easy power control
- Integrated ESD protection
- Enhanced ruggedness
- High efficiency
- Excellent thermal stability
- Designed for broadband operation (1450 MHz to 1550 MHz)
- Internally matched for ease of use
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC
- Integrated current sense

1.3 Applications

RF power amplifiers for GSM, GSM EDGE, CDMA and W-CDMA and multi carrier applications in the 1450 MHz to 1550 MHz frequency range

2. Pinning information

Pin	Description		Simplified outline	Graphic symbol
1	drain1			
2	drain2			
3	gate1			
4	gate2			
5	source	<u>[1]</u>		
6, 7	sense drain			٣
8, 9	sense gate			2 sym12

3. Ordering information

Table 3. Ordering information			
Type number Package			
	Name	Description	Version
BLF6G15L-250PBRN	-	flanged LDMOST ceramic package; 2 mounting holes; 8 leads	SOT1110A

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage		-	65	V
V _{GS}	gate-source voltage		-0.5	+11	V
I _D	drain current		-	64	А
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	200	°C

5. Thermal characteristics

Table 5.	Thermal characteristics			
Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-case)}	thermal resistance from junction to case	$T_{case} = 80 \ ^{\circ}C; P_{L} = 60 \ W \ (CW)$	0.29	K/W

BLF6G15L-250PBRN

6. Characteristics

Table 6. $T_j = 25 \ ^{\circ}C$	Characteristics per section; unless otherwise spec	cified				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{(BR)DSS}	drain-source breakdown voltage	V_{GS} = 0 V; I_D = 1.8 mA	65	75	-	V
V _{GS(th)}	gate-source threshold voltage	V_{DS} = 10 V; I_{D} = 180 mA	1.4	1.9	2.4	V
I _{Dq}	quiescent drain current	sense transistor: I_{DS} = 20.1 mA; V_{DS} = 12 V main transistor: V_{DS} = 28 V	1.31	1.41	1.51	A
I _{DSS}	drain leakage current	V_{GS} = 0 V; V_{DS} = 28 V	-	-	2.8	μA
I _{DSX}	drain cut-off current	$\label{eq:VGS} \begin{array}{l} V_{\mathrm{GS}} = V_{\mathrm{GS}(\mathrm{th})} + 3.75 \ V; \\ V_{\mathrm{DS}} = 10 \ V \end{array}$	25.3	29	-	A
I _{GSS}	gate leakage current	V_{GS} = 11 V; V_{DS} = 0 V	-	-	280	nA
g fs	forward transconductance	$V_{DS} = 10 \text{ V}; I_{D} = 9 \text{ A}$	8.1	11.3	-	S
R _{DS(on)}	drain-source on-state resistance	$V_{GS} = V_{GS(th)} + 3.75 V;$ I _D = 6.3 A	0.03	0.1	0.16	Ω

7. Application information

Table 7. RF performance

Mode of operation: 2-carrier W-CDMA; PAR 7.5 dB at 0.01 % probability on CCDF; 3GPP test model 1; 64 DPCH; $f_1 = 1473.4$ MHz; $f_2 = 1478.4$ MHz; $f_3 = 1508.4$ MHz; $f_4 = 1513.4$ MHz; RF performance at $V_{DS} = 28$ V; $I_{Dq} = 1410$ mA; $T_{case} = 25$ °C; unless otherwise specified in a class-AB production test circuit.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
P _{L(AV)}	average output power		-	60	-	W
G _p	power gain	$P_{L(AV)} = 60 \text{ W}$	16.5	18.5	-	dB
RL _{in}	input return loss	$P_{L(AV)} = 60 \text{ W}$	8	12	-	dB
η_D	drain efficiency	$P_{L(AV)} = 60 \text{ W}$	30	33	-	%
ACPR	adjacent channel power ratio	$P_{L(AV)} = 60 \text{ W}$	-	-32	-27	dBc

Table 8. PAR performance

Mode of operation; 1-carrier W-CDMA; PAR 7.5 dB at 0.01 % probability on CCDF; 3GPP test model 1; 64 DPCH; $f_1 = 1510.9$ MHz; RF performance at $V_{DS} = 28$ V; $I_{Dq} = 1410$ mA; $T_{case} = 25$ °C; unless otherwise specified in a class-AB production test circuit.

cuco		•				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PARO	output peak-to-average ratio	P _{L(AV)} = 120 W at 0.01 % probability on CCDF	3.4	4.2	-	dB

BLF6G15L-250PBRN

1.93

1.97

Table 9.Phase binningOff state S_{11} measurement; V_{DS} =	$= 28 V; V_{GS} = 0 V$	
Marking code	Input Resonance Frequency (C	GHz)
	Min	Мах
1	1.85	1.89

1.89

1.93

Table 10.	Gain binning	

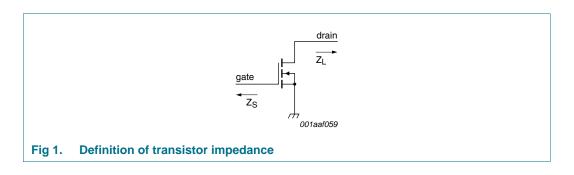
2

3

Mode of operation: 2-carrier W-CDMA; PAR 7.5 dB at 0.01 % probability on CCDF; 3GPP test model 1; 64 DPCH; $f_1 = 1473.4$ MHz, $f_2 = 1478.4$ MHz; $P_{L(AV)} = 60$ W; $V_{DS} = 28$ V; $I_{Dq} = 1410 \ mA$

Marking code	Gain at a center frequency of 1475.9 MHz in dB		
	Min	Мах	
BT	17.0	17.5	
BU	17.5	18.0	
BW	18.0	18.5	
BX	18.5	19.0	

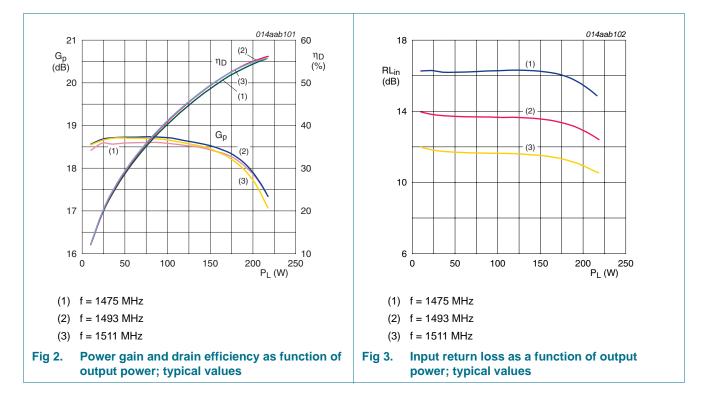
7.1 Ruggedness in class-AB operation


The BLF6G15L-250PBRN is capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: $V_{DS} = 28 V$; I_{Dg} = 1410 mA; P_L = 200 W; f = 1475 MHz.

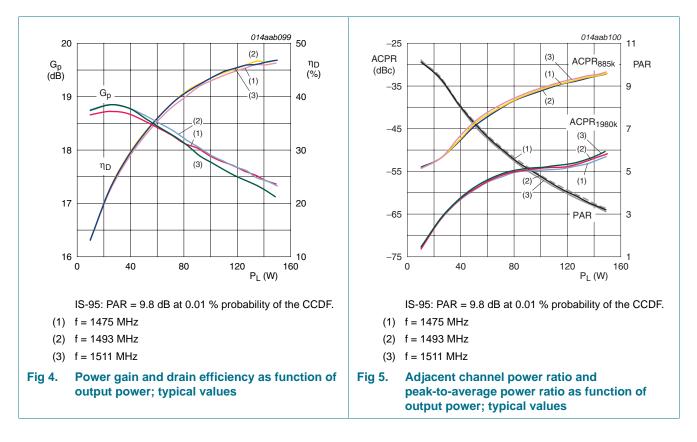
7.2 Impedance information

Table 11. Typical impedance per section

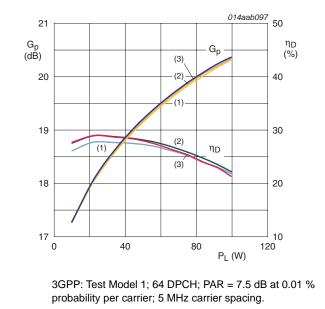
$I_{Dq} = 950 \text{ mA}$; main transistor $V_{DS} = 28 \text{ V}$		
f	Z _S ^[1]	ZL ^[1]
(MHz)	(Ω)	(Ω)
1480	1.1 – j2.8	2.3 – j3.2
1510	1.3 – j2.8	2.1 – j2.8


[1] Z_S and Z_L defined in Figure 1.

Power LDMOS transistor

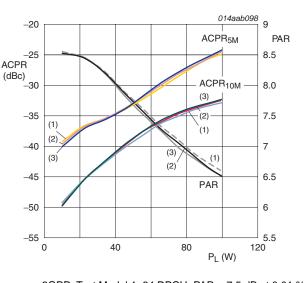

7.3 Graphs

7.3.1 CW



Power LDMOS transistor

7.3.2 IS-95



Power LDMOS transistor

7.3.3 2C-WCDMA (5 MHz spacing)

- (1) f = 1475 MHz
- (2) f = 1493 MHz
- (3) f = 1511 MHz
- Fig 6. Power gain and drain efficiency as function of output power; typical values

3GPP: Test Model 1; 64 DPCH; PAR = 7.5 dB at 0.01 % probability per carrier; 5 MHz carrier spacing.

- (1) f = 1475 MHz
- (2) f = 1493 MHz
- (3) f = 1511 MHz
- Fig 7. Adjacent channel power ratio and peak-to-average power ratio as function of output power; typical values

8. Test information

Table 12. List of components

See Figure 8 for component layout.

Component	Description	Value	Remarks
C1, C2, C3, C4	multi layer ceramic chip capacitor	100 pF	<u>[1]</u>
C5, C6	multi layer ceramic chip capacitor	10 μF	[2]
C7	multi layer ceramic chip capacitor	10 nF	2 on input gate line as shown
C8	multi layer ceramic chip capacitor	100 nF	[2]
C10	multi layer ceramic chip capacitor	2.4 pF	[1]
C11	multi layer ceramic chip capacitor	3.6 pF	[3]
C12	electrolytic capacitor	470 μF; 63 V	
C13, C14, C15, C16	multi layer ceramic chip capacitor	33 pF	[3]
R1	chip resistor	3.9 kΩ	Philips 0603
R2	chip resistor	2.2 kΩ	Philips 0603
R3	chip resistor	10 Ω	Philips 0603
R4	chip resistor	0 Ω	Philips 0603

[1] American Technical Ceramics type 800B or capacitor of same quality.

[2] TDK or capacitor of same quality.

[3] American Technical Ceramics type 100B or capacitor of same quality.

All information provided in this document is subject to legal disclaimers.

Power LDMOS transistor

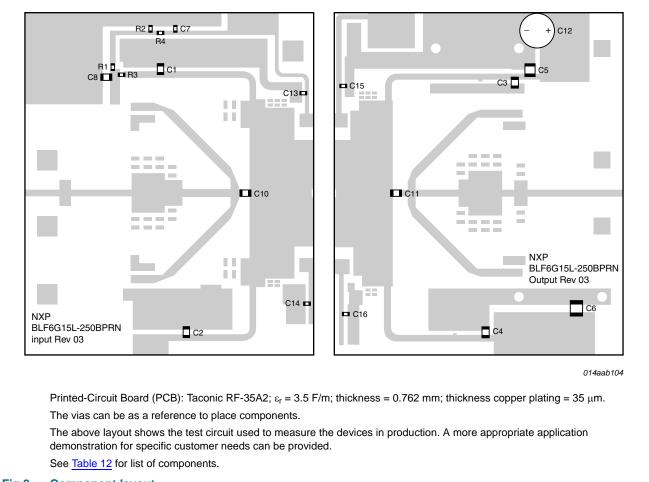
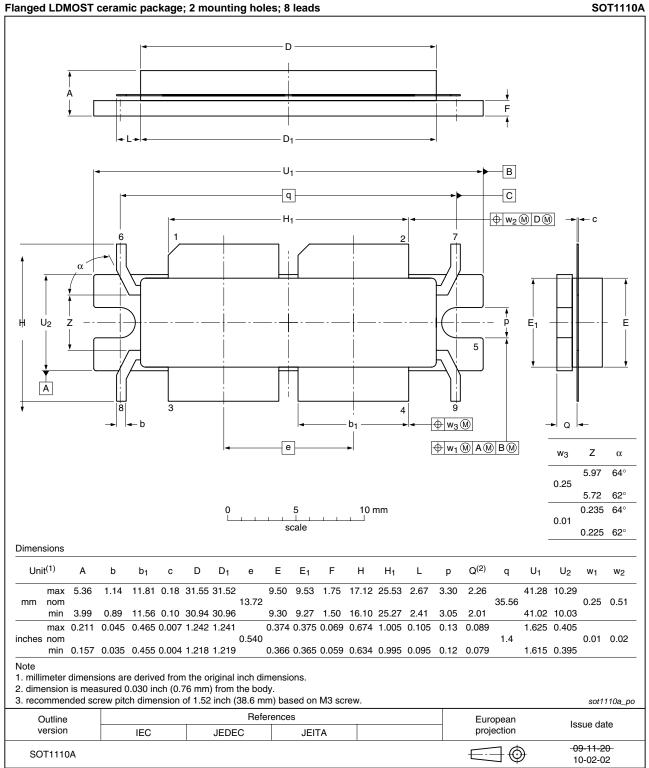



Fig 8. Component layout

Power LDMOS transistor

Package outline 9.

Flanged LDMOST ceramic package; 2 mounting holes; 8 leads

Package outline SOT1110A Fig 9.

Power LDMOS transistor

10. Abbreviations

Table 13.	Abbreviations
Acronym	Description
CCDF	Complementary Cumulative Distribution Function
CDMA	Code Division Multiple Access
CW	Continuous Wave
EDGE	Enhanced Data rates for GSM Evolution
DPCH	Dedicated Physical CHannel
GSM	Global System for Mobile communications
IS-95	Interim Standard 95
LDMOS	Laterally Diffused Metal-Oxide Semiconductor
LDMOST	Laterally Diffused Metal-Oxide Semiconductor Transistor
PAR	Peak-to-Average power Ratio
RF	Radio Frequency
VSWR	Voltage Standing-Wave Ratio
W-CDMA	Wideband Code Division Multiple Access

11. Revision history

Table 14. Revision history				
Document ID	Release date	Data sheet status	Change notice	Supersedes
BLF6G15L-250PBRN v.2	20101103	Product data sheet	-	BLF6G15L-250PBRN v.1
BLF6G15L-250PBRN v.1	20100914	Preliminary data sheet	-	-

Product data sheet

12. Legal information

12.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

12.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

BLF6G15L-250PBRN

11 of 13

Power LDMOS transistor

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any

13. Contact information

liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

Power LDMOS transistor

14. Contents

1	Product profile 1
1.1	General description 1
1.2	Features and benefits 1
1.3	Applications 2
2	Pinning information 2
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 2
6	Characteristics 3
7	Application information
7.1	Ruggedness in class-AB operation 4
7.2	Impedance information
7.3	Graphs 5
7.3.1	CW
7.3.2	IS-956
7.3.3	2C-WCDMA (5 MHz spacing) 7
8	Test information 7
9	Package outline 9
10	Abbreviations 10
11	Revision history 10
12	Legal information 11
12.1	Data sheet status 11
12.2	Definitions 11
12.3	Disclaimers 11
12.4	Trademarks 12
13	Contact information 12
14	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 3 November 2010 Document identifier: BLF6G15L-250PBRN