

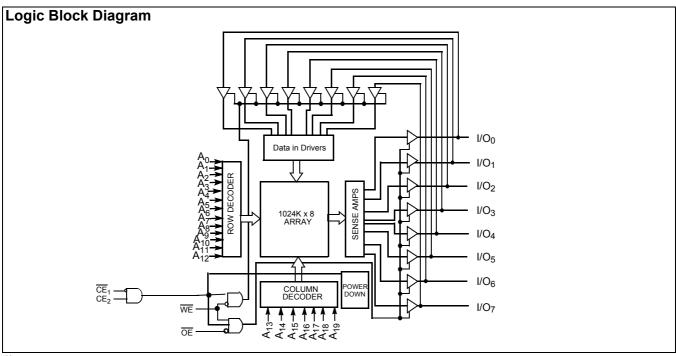
CY62158DV30 MoBL[®]

8-Mbit (1024K x 8) MoBL[®] Static RAM

Features

- Very high speed: 45 ns, 55 ns and 70 ns
 Wide voltage range: 2.20V 3.60V
- Ultra-low active power
 - Typical active current:1.5 mA @ f = 1 MHz
- Typical active current: 12 mA @ f = fmax
- Ultra-low standby power
- Easy memory expansion with $\overline{\text{CE}}_1$, CE_2 , and $\overline{\text{OE}}$ features
- Automatic power-down when deselected
- CMOS for optimum speed/power
- Packages offered in a 48-ball BGA, 48-pin TSOPI, and 44-pin TSOPII

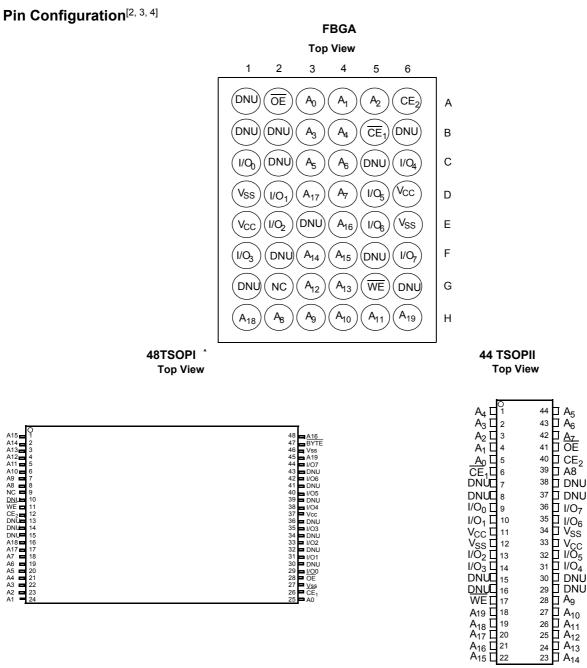
Functional Description^[1]


The CY62158DV30 is a high-performance CMOS static RAMs organized as 1024K words by 8 bits. This device features advanced circuit design to provide ultra-low active current.

This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption. The device can be put into standby mo<u>de</u> reducing power consumption by 85% when deselected (CE₁ HIGH or CE₂ LOW).

<u>Writing</u> to the device is accomplished by taking Chip Enable 1 (CE₁) and Write Enable (WE) inputs LOW and Chip Enable 2 (CE₂) HIGH. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₉).

Reading from the device is accomplished by taking Chip Enable 1 (\overline{CE}_1) and Output Enable (\overline{OE}) LOW and Chip Enable 2 (\overline{CE}_2) HIGH while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.


The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is des<u>elected</u> (CE₁ LOW and CE₂ HIGH), the <u>outputs</u> are disabled (OE HIGH), or during a write operation (CE₁ LOW and CE₂ HIGH and WE LOW). See the truth table for a complete description of read and write modes.

Note:

1. For best practice recommendations, please refer to the Cypress application note entitled System Design Guidelines, available at http://www.cypress.com.

Notes:

NC pins are not internally connected to the die.
 DNU pins have to be left floating.
 The BYTE pin in the TSOPI package has to be tied LOW to use the device as 1M x 8 SRAM. The 48-TSOPI package can also be used as a 512K × 16 SRAM by tying the BYTE signal HIGH. For 512K x 16 functionality, please refer to the CY62157DV30 data sheet.

23 A₁₄

CY62158DV30 **MoBL**[®]

Maximum Ratings

(Above which the useful life may be impaired. For user guide- lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential .–0.3V to $V_{cc(max)}$ + 0.3V
DC Voltage Applied to Outputs in High-Z State ^[5, 6] 0.3V to $V_{CC(max)}$ + 0.3V DC Input Voltage ^[5, 6] 0.3V to $V_{CC(max)}$ + 0.3V
Product Portfolio

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-up Current	.>200 mA

Operating Range

Product	Range	Ambient Temperature (T _A)	V_{cc} ^[7]
CY62158DV30L	Industrial	–40°C to +85°C	2.2V-3.6V
CY62158DV30LL			

Product Portfolio

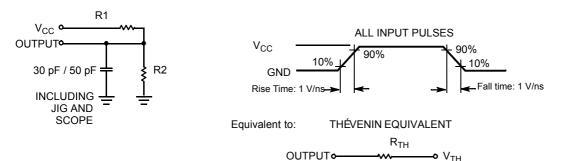
					Power Dissipation					
						Operating I _{CC} (mA)				
	V _{CC} Range (V)		Speed	f = 1 MHz		f = f _{max}		Standby I _{SB2} (µA)		
Product	Min.	Typ. ^[8]	Max.	(ns)	Typ . ^[8]	Max.	Typ. ^[8]	Max.	Typ . ^[8]	Max.
CY62158DV30L	2.2	3.0	3.6	45,55,70	1.5	3	12	20	2	20
CY62158DV30LL	2.2	3.0	3.6	45,55,70	1.5	3	12	15	2	8

Electrical Characteristics Over the Operating Range

					(CY62158	BDV30	
Parameter	Description	Test Condi	Test Conditions				Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = –0.1 mA	V _{CC} = 2.20V		2.0			V
		I _{OH} = –1.0 mA	V _{CC} = 2.70V		2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	V _{CC} = 2.20V				0.4	V
		I _{OL} = 2.1mA	V _{CC} = 2.70V				0.4	V
V _{IH}	Input HIGH Voltage	V _{CC} = 2.2V to 2.7V			1.8		V _{CC} + 0.3V	V
		V _{CC} = 2.7V to 3.6V			2.2		V _{CC} + 0.3V	V
V _{IIL}	Input LOW Voltage	V _{CC} = 2.2V to 2.7V					0.6	V
		V _{CC} = 2.7V to 3.6V			-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_1 \leq V_{CC}$		-1		+1	μΑ	
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output Disa	bled		-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply					12	20	mA
	Current		I _{OUT} = 0 mA CMOS levels	LL			15	mA
		f = 1 MHz		L		1.5	3	mA
				LL			3	mA
I _{SB1}	Automatic CE	$\overline{CE}_1 \ge V_{CC} = 0.2V, CE_2 \le 0.2V$		L		2	20	μΑ
	Power-down Current — CMOS Inputs	$ \begin{array}{l} V_{\text{IN}} \geq V_{\text{CC}} - 0.2 \text{V}, V_{\text{IN}} \leq 0.2 \text{V}) \\ \text{f} = f_{\text{MAX}} (\text{Address and Data Only}), \\ \text{f} = 0 (\text{OE}, \text{ and WE}), V_{\text{CC}} = 3.60 \text{V} \end{array} $				2	8	
I _{SB2}	Automatic CE	$\overline{CE}_1 \ge V_{CC} - 0.2V \text{ or } CE_2 \le 0$		L		2	20	μA
	Power-down Current — CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2$ f = 0, V_{CC} = 3.60V	2V,	LL		2	8	

Notes:

5. V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
6. V_{IH(max)} = V_{CC}+0.75V for pulse duration less than 20ns.
7. Full device AC operation assumes a 100 μs ramp time from 0 to V_{cc}(min) and 200 μs wait time after V_{cc} stabilization.
8. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.


Capacitance^[9, 10.]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	10	pF

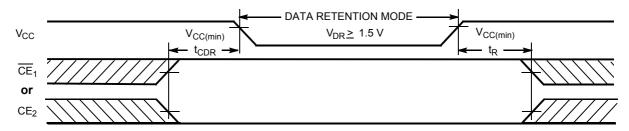
Thermal Resistance

Parameter	Description Test Conditions		BGA	TSOP II	TSOP I	Unit
Θ_{JA}	Thermal Resistance ^[9] (Junction to Ambient)	Still Air, soldered on a 3 x 4.5 inch, four-layer printed circuit board	72	75.13	74.88	°C/W
Θ^{JC}	Thermal Resistance ^[9] (Junction to Case)		8.86	8.95	8.6	°C/W

AC Test Loads and Waveforms [11]

Parameters	2.50V	3.0V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)


Parameter	Description	Conditions	Min.	Typ . ^[8]	Max.	Unit	
V _{DR}	V _{CC} for Data Retention			1.5			V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.5V$	L			10	μA
		$\label{eq:linear_constraint} \begin{array}{ c c } \hline V_{CC} = 1.5V \\ \hline CE_1 \geq V_{CC} - 0.2V \text{ or } CE_2 \leq \!\! 0.2V \\ \hline V_{IN} \geq V_{CC} - 0.2V \text{ or } V_{IN} \leq \!\! 0.2V \end{array}$	LL			4	μA
t _{CDR} ^[9]	Chip Deselect to Data Retention Time			0			ns
t _R ^[12]	Operation Recovery Time			t _{RC}			ns

Notes:

9. Tested initially and after any design or process changes that may affect these parameters.
10. The input capacitance on the CE₂ pin is 15 pF.
11. Test condition for the 45 ns part is a load capacitance of 30 pF.
12. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 100 µs or stable at V_{CC(min.)} ≥ 100 µs.

Data Retention Waveform

Switching Characteristics Over the Operating Range ^[13]

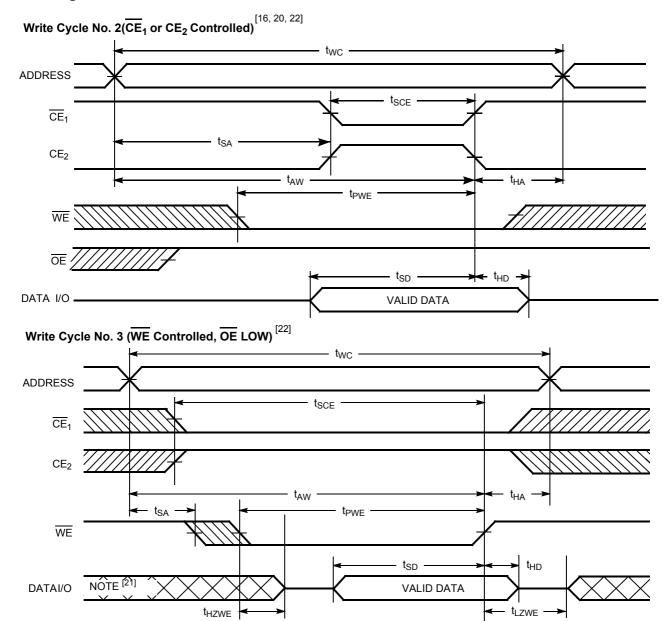
		45 n	s ^[11]	55 ns		70 ns		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle								
t _{RC}	Read Cycle Time	45		55		70		ns
t _{AA}	Address to Data Valid		45		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		10		ns
t _{ACE}	\overline{CE}_1 LOW and CE_2 HIGH to Data Valid		45		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[14]	5		5		5		ns
t _{HZOE}	OE HIGH to High Z ^[14, 15]		15		20		25	ns
t _{LZCE}	\overline{CE}_1 LOW and CE_2 HIGH to Low Z ^[14]	10		10		10		ns
t _{HZCE}	\overline{CE}_1 HIGH or CE_2 LOW to High $Z^{[14, 15]}$		20		20		25	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power-Up	0		0		10		ns
t _{PD}	\overline{CE}_1 HIGH or CE_2 LOW to Power-Down		45		55		25	ns
Write Cycle ^[16]							•	
t _{WC}	Write Cycle Time	45		55		70		ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	40		40		60		ns
t _{AW}	Address Set-Up to Write End	40		40		60		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	35		40		45		ns
t _{SD}	Data Set-Up to Write End	25		25		30		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[14, 15]		15		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[14]	10		10	1	10		ns

Notes:

Notes:
13. Test conditions for all parameters other than tri-state parameters assume signal transition time of 3ns or less (1V/ns), timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.
14. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} for any given device.
15. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
16. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

CY62158DV30 <u>MoB</u>L[®] CYPRESS **Switching Waveforms** Read Cycle No. 1 (Address Transition Controlled)^[17, 18] t_{RC} ADDRESS t_{AA} t_{OHA} DATA OUT PREVIOUS DATA VALID DATA VALID Read Cycle No. 2 (OE Controlled)^[18, 19] ADDRESS t_{RC} CE₁ CE_2 **t**ACE OE t_{HZOE} t_{DOE} ← t_{HZCE} HIGH IMPEDANCE t_{LZOE} HIGH IMPEDANCE DATA OUT DATA VALID t_{LZCE} t_{PD} t_{PU} I_{CC} 50% 50% SUPPLY CURRENT I_{SB} Write Cycle No. 1(WE Controlled) [16, 20, 22] t_{WC} ADDRESS t_{SCE} CE₁ CE₂ t_{HA} **t**AW t_PWE t_{SA} WE OE t_{SD} t_{HD} DATA I/O NOTE [20] VALID DATA

Notes:


17. Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{|L}$, $CE_2 = V_{|H}$. 18. WE is HIGH for read cycle.

19. Address valid prior to or coincident with \overline{CE}_1 transition LOW and CE_2 transition HIGH.

t_{HZOE}

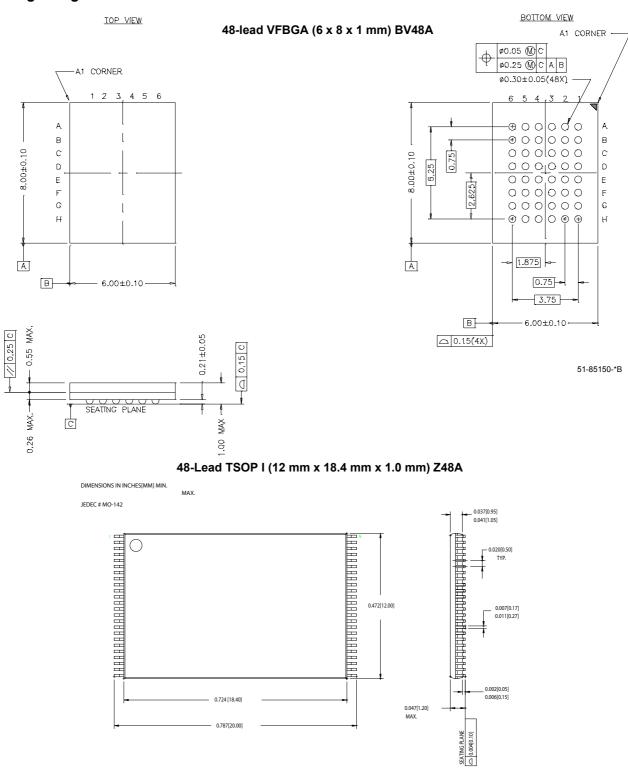
Switching Waveforms (continued)

Truth Table

CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
Х	L	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	Data Out (I/O ₀ -I/O ₇)	Read	Active (I _{CC})
L	Н	Н	Н	High Z	Output Disabled	Active (Icc)
L	Н	L	Х	Data in (I/O ₀ -I/O ₇)	Write	Active (Icc)

Notes:

20. Data I/O is high impedance if $\overline{OE} = V_{\text{IH}}$. 21. During this period, the I/Os are in output state and input signals should not be applied. 22. If \overline{CE}_1 goes HIGH or CE_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in high-impedance state.

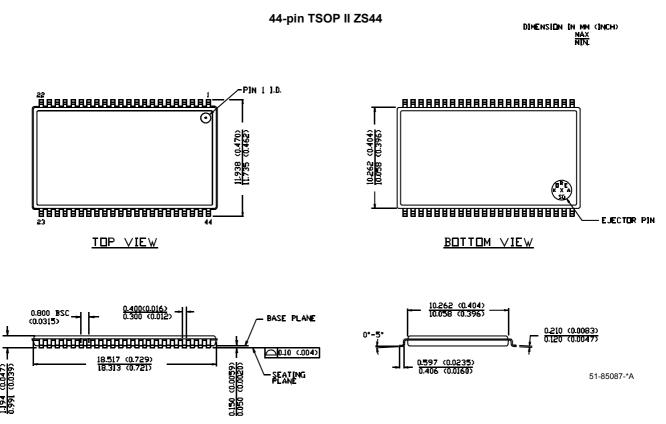

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
45	CY62158DV30L-45BVI	BV48A	48-ball Fine Pitch BGA (6 mm × 8mm × 1 mm)	Industrial
	CY62158DV30LL-45BVI			
45	CY62158DV30L-45ZXI	Z-48	48 Pin TSOP I (Pb-free)	Industrial
	CY62158DV30LL-45ZXI			
45	CY62158DV30L-45ZSXI	ZS-44	44 Pin TSOP II (Pb-free)	Industrial
	CY62158DV30LL-45ZSXI			
55	CY62158DV30L-55BVI	BV48A	48-ball Fine Pitch BGA (6 mm × 8mm × 1 mm)	Industrial
	CY62158DV30LL-55BVI			
55	CY62158DV30L-55ZXI	Z-48	48 Pin TSOP I (Pb-free)	Industrial
	CY62158DV30LL-55ZXI			
55	CY62158DV30L-55ZSXI	ZS-44	44 Pin TSOP II (Pb-free)	Industrial
	CY62158DV30LL-55ZSXI			
70	CY62158DV30L-70BVI	BV48A	48-ball Fine Pitch BGA (6 mm × 8mm × 1 mm)	Industrial
	CY62158DV30LL-70BVI			
70	CY62158DV30L-70ZXI	Z-48	48 Pin TSOP I (Pb-free)	Industrial
	CY62158DV30LL-70ZXI			
70	CY62158DV30L-70ZSXI	ZS-44	44 Pin TSOP II (Pb-free)	Industrial
	CY62158DV30LL-70ZSXI	1		

CY62158DV30 MoBL[®]

Package Diagrams

0.020[0.50] 0.028[0.70]


51-85183-*A

0.010[0.25] GAUGE PLANE

0.004[0.10] 0.008[0.21]

Package Diagrams (continued)

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are trademarks of their respective holders.

Page 10 of 11

© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	126293	05/22/03	HRT	New Data Sheet
*A	131014	11/25/03	CBD	Change from Advance to Preliminary
*В	133114	01/24/04	CBD	Minor Change: MPN change and upload
*C	211602	See ECN	AJU	Change from Preliminary to Final Changed Marketing part # from CY62158DV to CY62158DV30 in the "Title" and in the "Ordering Information" table Added footnote 4 and 10 Modified footnote 7 to include ramp time and wait time Removed MAX value for V_{DR} on "Data Retention Characteristics" table Changed ordering code for Pb-free parts Modified voltage limits in Maximum Ratings section
*D	239450	See ECN	SYT/AJU	Added footnote #11 Added 45 ns and 70 ns Speed Bins