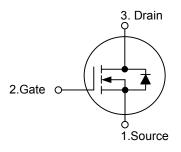
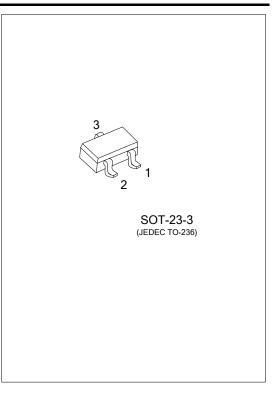


UNISONIC TECHNOLOGIES CO., LTD

2N7002LL Preliminary Power MOSFET

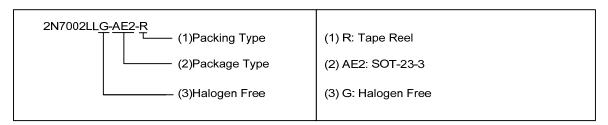
60V, 115mA, N-CHANNEL MOSFET


■ DESCRIPTION


The UTC **2N7002LL** uses advanced technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with low gate voltages. This device is suitable for use as a load switch or in PWM applications.

■ FEATURES

- * $R_{DS(ON)} = 7.5\Omega @V_{GS} = 10 V$
- * Low Reverse Transfer Capacitance (C_{RSS} = typical 5 pF)
- * Fast Switching Capability
- * Avalanche Energy Specified
- * Improved dv/dt Capability, High Ruggedness


■ SYMBOL

ORDERING INFORMATION

Ordering Number	Package	Pin Assignment			Dooking	
		1	2	3	Packing	
2N7002LLG-AE2-R	SOT-23-3	S	G	D	Tape Reel	

MARKING

■ ABSOLUTE MAXIMUM RATINGS (T_a =25°C)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	60	V	
Drain-Gate Voltage (R _G =1.0MΩ)		V_{DGR}	60	V	
Gate-Source Voltage	Continuous	V_{GSS}	±20	V	
	Non-repetitive (t _P ≦50μs)	V_{GSM}	±40	V	
Drain Current	Continuous(T _C =25°C)	I_	±115	mΛ	
Dialii Guilelli	Pulse(Note 2)	I _D	±40 V ±115 mA ±800 TW 225 mW 1.8 mW/°C	IIIA	
Power Dissipation (T _a = 2	25°C)	P _D 225		mW	
Derate above 25°C	pove 25°C		1.8	mW /°C	
Junction Temperature		T_J	+150 °C		
Storage Temperature		T _{STG}	-55 ~ + 150	°C	

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	556	°C/W

■ ELECTRICAL CHARACTERISTICS (T_a=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0 V , I_D =10 μ A	60			V		
Drain-Source Leakage Current	I_{DSS}	V _{DS} =60V, V _{GS} =0V (T _J =25°C)			1.0	μA		
Gate-Source Leakage Current	I_{GSS}	V _{GS} =±20V, V _{DS} =0V			±100	nA		
ON CHARACTERISTICS(Note)								
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250 \mu A$	1.0		2.5	V		
Drain-Source On-State Voltage	V _{DS(ON)}	V _{GS} =10V, I _D =500 mA			3.75	V		
		V_{GS} =5V, I_D =50mA			0.375			
On-State Drain Current	$I_{D(ON)}$	$V_{DS} \ge 2.0 V_{DS(ON)}, V_{GS} = 10 V$	500			mA		
Static Drain-Source On-Resistance	D	V_{GS} =10V, I_{D} =500mA(T_{C} =25°C)			7.5	0		
Static Dialii-Source Off-Resistance	R _{DS(ON)}	V_{GS} =5V, I_D =50mA(T_C =25°C)	7		7.5	22		
Forward Transconductance	g FS	$V_{DS} \ge 2.0 V_{DS(ON)}$, $I_D = 200 \text{mA}$				mS		
DYNAMIC PARAMETERS					-			
Input Capacitance	C _{ISS}				50	pF		
Output Capacitance	Coss	V _{DS} =25V, V _{GS} =0V, f=1.0MHz			25	pF		
Reverse Transfer Capacitance	C_{RSS}]			5.0	pF		
SWITCHING PARAMETERS					-			
Turn-ON Delay Time	$t_{D(ON)}$	V _{DD} =25V, I _D =500mA,			20	ns		
Turn-OFF Delay Time	t _{D(OFF)}	V_{GEN} =10V, R_G =25 Ω , R_L =50 Ω			40	ns		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Diode Forward Voltage	V_{SD}	I _S =115mA, V _{GS} =0V			1.5	٧		
Maximum Body-Diode Continuous Current	Is				115	mA		
Source Current Pulsed	I _{SM}				800	mA		

Note: Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2.0%.

^{2.} Pulse width ≤ 300 µs, Duty cycle ≤ 2%

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

