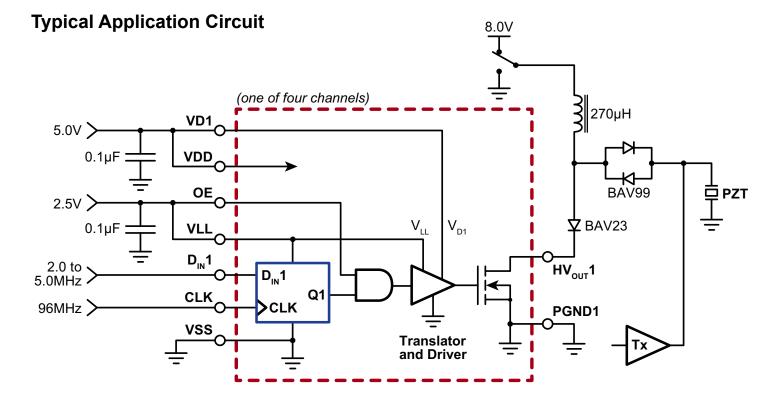
Four-Channel, Low Phase Noise, Low Power, Continuous Wave Transmitter

Features

- Low phase noise
- 100V open drain N-channel
- High speed D flip-flop
- High speed MOSFET gate driver
- Up to 200MHz clock input
- V_{DD} and V_{LL} undervoltage lockout

Applications


- Diagnostic medical ultrasound
- Fluid flow measurement

General Description

The Supertex CW01 is a four-channel, low phase noise, continuous wave transmit IC. A high speed D flip-flop is provided to allow the $D_{\rm IN}$ frequency to be aligned to a high frequency clock. The output N-channel is turned on when a logic high is clocked into the D flip-flop. Data are clocked in during the low to high transition.

VD1, VD2, VD3 and VD4 are four individual input supply voltages for the N-channel output MOSFET gate drivers. High peak currents are drawn from these gate drives when the output MOSFETs are switching. To minimize jitter caused by voltage ripples, each channel has its own gate drive voltage pin; VD1, VD2, VD3 and VD4. A series ferrite bead and a decoupling capacitor are recommended on each VDX pin to minimize output jitter and channel to channel crosstalk.

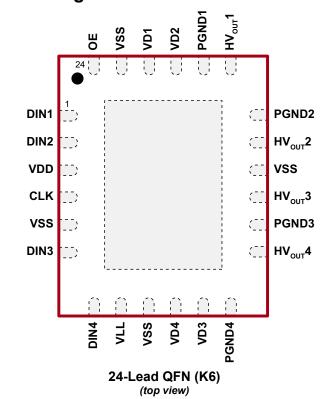
Both $V_{\rm DD}$ and $V_{\rm LL}$ have undervoltage lockout to prevent spurious turn-on.

Ordering Information

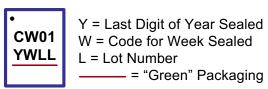
Device	Package Option
	24-Lead QFN 4.00x5.00mm body 1.00mm height (max) 0.50mm pitch
CW01	CW01K6-G

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings


Parameter	Value			
V _{LL} , logic supply	-0.3 to +6.0V			
V _{DD} , level translator voltage	-0.5 to +6.0V			
V _{DX} , gate drive voltage	-0.5 to +6.0V			
HV _{OUT} , high voltage output drain voltage	-0.5 to 120V			
Maximum junction temperature	+125°C			
Storage temperature range	-65°C to +150°C			
Power dissipation, T _A = 25°C	3.0W ¹			
θ_{ja}	26.9°C/W			

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.


Note:

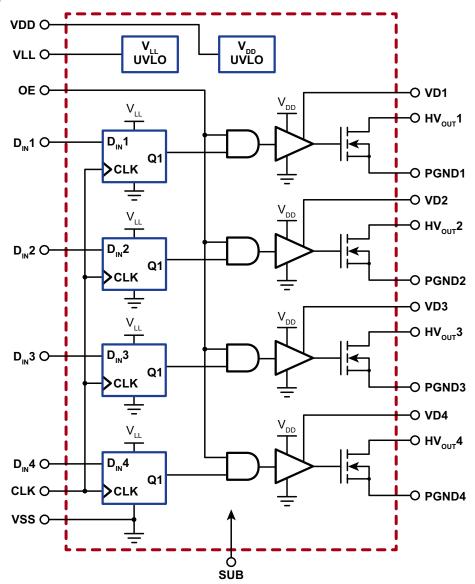
1. Device mounted on a 4 layer 3" by 4" board.

Pin Configuration

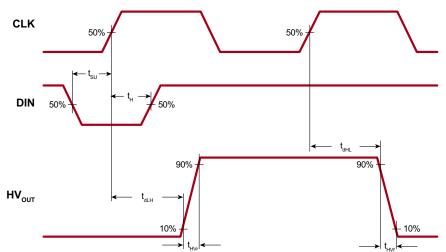
Product Marking

Package may or may not include the following marks: Si or 🌎

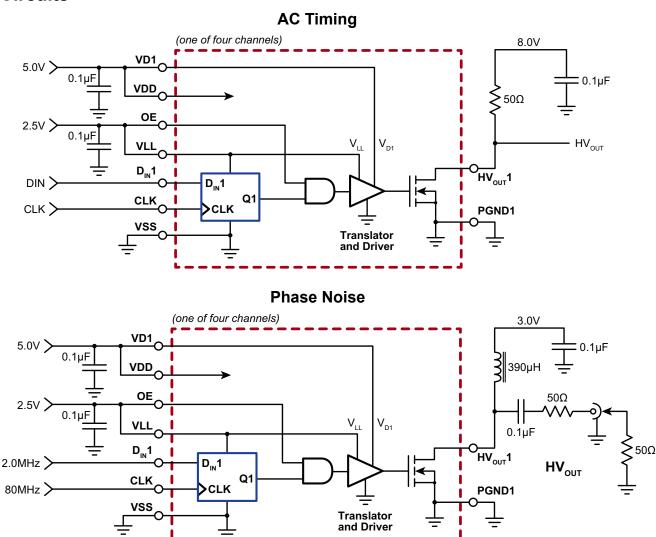
24-Lead QFN (K6)

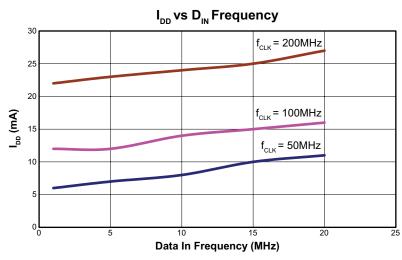

DC Electrical Characteristics $(V_{DD} = V_{DX} = 5.0V, V_{LL} = 2.5V, T_J = 25^{\circ}C \text{ unless otherwise specified})$

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
HV _{out}	High voltage output	0	-	100	V	
V_{DD}	V _{DD} voltage range	4.5	5.0	5.5	V	
t _{vdd-on}	V _{DD} rise time	50	-	-	μs	
V _{LL}	V _{LL} voltage range	1.65	2.5	5.5	V	
t _{vll-on}	V _{LL} rise time	50	-	-	μs	
V _{DIN}	Logic input voltage range	0	-	V _{LL}	V	
V_{DX}	Gate drive voltage	4.5	5.0	5.5	V	
t _{vdx-on}	V _{DX} rise time	50	-	-	μs	
I _{DDQ}	V _{DD} quiescent current	-	63	100	μA	
I _{DD}	V _{DD} average current	-	23.5	30	mA	f_{CLK} = 200MHz, f_{OUT} = 5.0MHz, all 4-ch active
I _{LLQ}	V _{LL} quiescent current	-	8.1	20	μA	
I _{LL}	V _{LL} average current	-	380	600	μA	f_{CLK} = 200MHz, f_{OUT} = 5.0MHz, all 4-ch active
I _{DXQ}	V _{DX} quiescent current	-	0	1.0	μA	
I _{DX}	V _{DX} average current	-	11.3	30	mA	f_{CLK} = 200MHz, f_{OUT} = 5.0MHz, all 4-ch active
V _{IH}	Input logic high voltage	0.8V _{LL}	-	V _{LL}	V	
V _{IL}	Input logic low voltage	0	-	0.2V _{LL}	V	
I _{IH}	Input logic high current	-	-	1.0	μA	
I	Input logic high current	-1.0	-	-	μA	
R _{on}	Output on resistance	-	4.7	7.0	Ω	I _{IN} = 100mA
I _{SAT}	Output saturation current	-	0.8	-	Α	$V_{DD} = HV_{OUT} = 5.0V$
 HVleak	High voltage output leakage	-	-	10	μA	HV _{OUT} = 100V
UVLO_V _{LL}	UVLO trip point for V _{LL}	-	1.5	-	V	
UVLO_V _{DD}	UVLO trip point for V _{DD}	-	4.0	-	V	
T _J	Operating junction temperature	-40	-	+125	°C	


AC Electrical Characteristics $(V_{DD} = V_{DX} = 5.0V, V_{LL} = 2.5V, T_J = 25^{\circ}C$ unless otherwise specified)

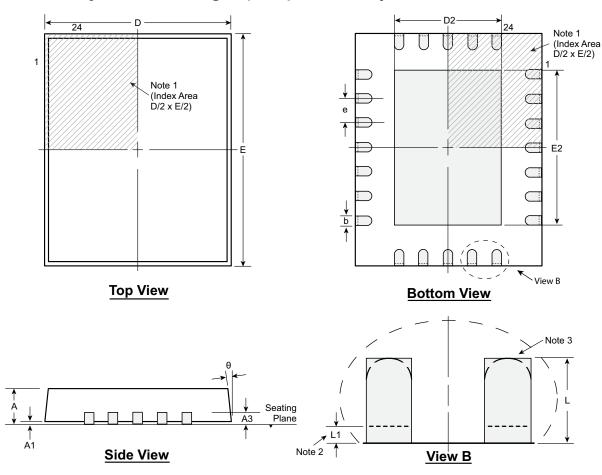
Symbol	Parameter		Тур	Max Unit		Test Conditions			
f _{CLK}	Clock frequency	0	-	200	MHz	-			
t _r , t _f	Clock rise and fall times	-	0.5	5.0	ns	-			
t _{su}	Set-up time, DIN to CLK	2.0	-	-	ns	-			
t _H	Hold time, DIN from CLK	1.0	-	-	ns	-			
t _{HVf}	HV _{OUT} fall time	-	0.8	-	ns	Load = 50Ω to 8.0V. See timing diagram			
t _{HVr}	HV _{OUT} rise time	-	3.3	-	ns	Load = 50Ω to 8.0V. See timing diagram			
t _{dLH}	Delay time from CLK to HV _{OUT} from low to high	-	5.1	-	ns	Load = 50Ω to 8.0V. See timing diagram			
t _{dHL}	Delay time from CLK to HV _{OUT} from high to low	-	2.6	-	ns	Load = 50Ω to 8.0V. See timing diagram			
$\Delta t_{\scriptscriptstyle dLHdelay}$	Delay time matching for t _{dLH}	-	0.5	1.0	ns	-			
$\Delta t_{dHLdelay}$	Delay time matching for t _{dHL}	-	0.5	1.0	ns	-			
t _{OE(ON)}	Output enable turn-on time	-	-	10	μs				
t _{OE(OFF)}	Output enable turn-off time	-	-	0.1	μs	-			
	Output capacitance	-	8.0	-	pF	At 8.0V			
C _{OUT}	Output capacitance	-	4.0	-	pF	At 100V			
Phase noise	Phase noise	-	-171	-160	dBC	dB below carrier CLK = 80MHz , $D_{\text{IN}} = 2.0\text{MHz}$ freq offset = 1.0kHz noise bandwidth = 140Hz See test circuit.			


Block Diagram


Timing Diagram

Test Circuits

Typical Performance Curve (Test conditions: $V_{LL} = 2.5V$, $V_{DD} = 5.0V$, $V_{D1} = V_{D2} = V_{D3} = V_{D4} = 5.0V$, no load)



Pin Configuration and Description

Pin#	Function	Description
1	D _{IN} 1	D flip-flop logic input for HV _{OUT} 1. Logic high will turn on output N-channel.
2	D _{IN} 2	D flip-flop logic input for HV _{OUT} 2. Logic high will turn on output N-channel.
3	VDD	Level translator supply. Should be at the same potential as $V_{\rm DX}$.
4	CLK	Logic clock input.
5	VSS	Ground. Should be externally shorted to all PGND and VSS pins.
6	D _{IN} 3	D flip-flop logic input for HV _{OUT} 3. Logic high will turn on output N-channel.
7	D _{IN} 4	D flip-flop logic input for HV _{OUT} 4. Logic high will turn on output N-channel.
8	VLL	Logic input supply voltage.
9	VSS	Ground. Should be externally shorted to all PGND and VSS pins.
10	VD4	Gate drive supply voltage for $HV_{OUT}4$. Should be at the same potential as V_{DD} .
11	VD3	Gate drive supply voltage for $HV_{OUT}3$. Should be at the same potential as V_{DD} .
12	PGND4	Power ground for HV _{OUT} 4. Should be externally shorted to all PGND and VSS pins.
13	HV _{OUT} 4	Drain output for HV _{OUT} 4.
14	PGND3	Power ground for HV _{OUT} 3. Should be externally shorted to all PGND and VSS pins.
15	HV _{OUT} 3	Drain output for HV _{OUT} 3.
16	VSS	Ground. Should be externally shorted to all PGND and VSS pins.
17	HV _{OUT} 2	Drain output for HV _{OUT} 2.
18	PGND2	Power ground for HV _{OUT} 2. Should be externally shorted to all PGND and VSS pins.
19	HV _{out} 1	Drain output for HV _{OUT} 1.
20	PGND1	Power ground for HV _{OUT} 1. Should be externally shorted to all PGND and VSS pins.
21	VD2	Gate drive supply voltage for $HV_{OUT}2$. Should be at the same potential as V_{DD} .
22	VD1	Gate drive supply voltage for $HV_{OUT}1$. Should be at the same potential as V_{DD} .
23	VSS	Ground. Should be externally shorted to all PGND and VSS pins.
24	OE	Output enable logic input. Logic low will turn all HV _{OUT} off.
Center Pad		Should be externally shorted to all PGND and VSS pins.

24-Lead QFN Package Outline (K6)

4.00x5.00mm body, 1.00mm height (max), 0.50mm pitch

Notes:

- A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
- 2. Depending on the method of manufacturing, a maximum of 0.15mm pullback (L1) may be present.
- 3. The inner tip of the lead may be either rounded or square.

Symb	ol	Α	A1	А3	b	D	D2	E	E2	е	L	L1	θ
	MIN	0.80	0.00		0.18	3.85*	2.50	4.85*	3.50		<i>†</i> 0.30	0.00	0 °
Dimension (mm)	NOM	0.90	0.02	0.20 REF	0.25	4.00	2.65	5.00	3.65	0.50 BSC	0.40	-	-
()	MAX	1.00	0.05	1 ()	0.30	4.15*	2.80	5.15*	3.80		<i>†</i> 0.50	0.15	14°

JEDEC Registration MO-220, Variation VGHD-1, Issue K, June 2006

Drawings not to scale.

Supertex Doc.#: DSPD-24QFNK64X5P050, Version A101111.

(The package drawings in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2011 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.

^{*} This dimension is not specified in the JEDEC drawing.

[†] This dimension differs from the JEDEC drawing.