Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

General Description

The MAX16025-MAX16030 are dual-/triple-/quad-voltage monitors and sequencers that are offered in a small TQFN package. These devices offer enormous design flexibility as they allow fixed and adjustable thresholds to be selected through logic inputs and provide sequence timing through small external capacitors. These versatile devices are ideal for use in a wide variety of multivoltage applications.
As the voltage at each monitored input exceeds its respective threshold, its corresponding output goes high after a propagation delay or a capacitor-set time delay. When a voltage falls below its threshold, its respective output goes low after a propagation delay. Each detector circuit also includes its own enable input, allowing the power-good outputs to be shut off independently. The independent output for each detector is available with push-pull or open-drain configuration with the open-drain version capable of supporting voltages up to 28 V , thereby allowing them to interface to shutdown and enable inputs of various DC-DC regulators. Each detector can operate independently as four separate supervisory circuits or can be daisy-chained to provide controlled power-supply sequencing
The MAX16025-MAX16030 also include a reset function that deasserts only after all of the independently monitored voltages exceed their threshold. The reset timeout is internally fixed or can be adjusted externally. These devices are offered in a $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ TQFN package and are fully specified from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Applications

Multivoltage Systems
DC-DC Supplies
Servers/Workstations
Storage Systems
Networking/Telecommunication Equipment
Selector Guide

PART	MONITORED VOLTAGES	INDEPENDENT OUTPUTS	RESET OUTPUT
MAX16025	2	2 (Open-drain)	Open-drain
MAX16026	2	2 (Push-pull)	Push-pull
MAX16027	3	3 (Open-drain)	Open-drain
MAX16028	3	3 (Push-pull)	Push-pull
MAX16029	4	4 (Open-drain)	Open-drain
MAX16030	4	4 (Push-pull)	Push-pull

Features

- 2.2V to 28 V Operating Voltage Range
- Fixed Thresholds for 3.3V, 2.5V, 1.8V, 1.5V, and 1.2V Systems
- 1.5\% Accurate Adjustable Threshold Monitors Voltages Down to 0.5V
- 2.7\% Accurate Fixed Thresholds Over Temperature
- Fixed (140ms min)/Capacitor-Adjustable Delay Timing
- Independent Open-Drain/Push-Pull Outputs
- Enable Inputs for Each Monitored Voltage
- 9 Logic-Selectable Threshold Options
- Manual Reset and Tolerance Select (5\%/10\%) Inputs
- Small, 4mm x 4mm TQFN Package
- Fully Specified from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Ordering Information

PART*	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX16025TE +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TQFN	T1644-4
MAX16026TE +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TQFN	T1644-4
MAX16027TP +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TQFN	T2044-3
MAX16028TP +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TQFN	T2044-3
MAX16029TG +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 TQFN	T2444-4
MAX16030TG +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 TQFN	T2444-4

+Denotes lead-free package.
*For tape and reel, add a "T" after the "+." All tape and reel orders are available in 2.5 k increments.

Pin Configurations

Pin Configurations continued at end of data sheet

Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)	
Vcc	-0.3V to +30V
EN1-EN4 ...-0.3V to (VCC +0.3 V)	
OUT1-OUT4 (push-pull).........................-0.3V to (VCC + 0.3V)	
OUT1-OUT4 (open-drain)-0.3V to +30V	
RESET (push-pull)-0.3V to (VCC + 0.3V)	
RESET (open-drain) ..-0.3V to 30V	
IN1-IN4..-0.3V to (VCC +0.3 V)	
$\overline{\mathrm{MR}}$, TOL, TH1, THO-0.3V to (VCC +0.3 V)	

CRESET	
Input/Output Current (all pins).	
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
16-Pin TQFN (derate $25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	
20-Pin TQFN (derate $25.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	
24-Pin TQFN (derate $27.8 \mathrm{~mW} / /^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)...... .2222 mW	
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Junction Temp	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=2.2 \mathrm{~V}$ to $28 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SUPPLY							
Operating Voltage Range	VCC	(Note 2)		2.2		28.0	V
Undervoltage Lockout	UVLO	(Note 2)		1.8	1.9	2.0	V
Undervoltage-Lockout Hysteresis	UVLOhYST	Vcc falling		50			mV
VCC Supply Current	IcC	All OUT_ and $\overline{\text { RESET }}$ at logic-high (IN_ current excluded)	$\mathrm{V}_{C C}=3.3 \mathrm{~V}$		40	75	$\mu \mathrm{A}$
			$V_{C C}=12 \mathrm{~V}$		47	75	
			$\mathrm{V}_{C C}=28 \mathrm{~V}$		52	80	
INPUTS (IN_)							
IN_ Thresholds (IN_ Falling)	$\mathrm{V}_{\text {TH }}$	3.3V threshold, TOL = GND		2.970	3.052	3.135	V
		3.3V threshold, $\mathrm{TOL}=\mathrm{V}_{\text {CC }}$		2.805	2.888	2.970	
		2.5V threshold, $\mathrm{TOL}=$ GND		2.250	2.313	2.375	
		2.5 V threshold, $\mathrm{TOL}=\mathrm{V}_{\mathrm{CC}}$		2.125	2.187	2.250	
		1.8 V threshold, $\mathrm{TOL}=$ GND		1.620	1.665	1.710	
		1.8 V threshold, $\mathrm{TOL}=\mathrm{VCC}$		1.530	1.575	1.620	
		1.5 V threshold, $\mathrm{TOL}=\mathrm{GND}$		1.350	1.387	1.425	
		1.5 V threshold, $\mathrm{TOL}=\mathrm{VCC}$		1.275	1.312	1.350	
		1.2 V threshold, $\mathrm{TOL}=\mathrm{GND}$		1.080	1.110	1.140	
		1.2 V threshold, $\mathrm{TOL}=\mathrm{VCC}$		1.020	1.050	1.080	
Adjustable Threshold (IN_ Falling)	$\mathrm{V}_{\text {TH }}$	TOL = GND		0.492	0.5	0.508	V
		TOL $=$ VCC		0.463	0.472	0.481	
IN_Hysteresis (IN_ Rising)	$V_{\text {HYST }}$				0.5		\%
IN_ Input Resistance		Fixed threshold		500	918		k Ω
IN_ Input Current	IL	Adjustable threshold only	$\left(\mathrm{V}_{1 \mathrm{~N}_{-}}=1 \mathrm{~V}\right)$	-100		+100	nA

Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=2.2 \mathrm{~V}\right.$ to $28 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CRESET AND CDLY_						
CRESET Threshold	$V_{\text {TH-RESET }}$	CRESET rising, $\mathrm{V}_{C C}=3.3 \mathrm{~V}$	0.465	0.5	0.535	V
CRESET Charge Current	ICH-RESET	$V_{C C}=3.3 \mathrm{~V}$	380	500	620	nA
CDLY_ Threshold	$V_{\text {TH-CDLY }}$	CDLY_ rising, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	0.95	1	1.05	V
CDLY_ Charge Current	ICH-CDLY	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}$	200	250	300	nA
DIGITAL LOGIC INPUTS (EN_, $\overline{\text { MR, }}$, TOL, TH1, TH0)						
Input Low Voltage	VIL				0.4	V
Input High Voltage	V_{IH}		1.4			V
TH1, TH0 Logic-Input Floating				0.6		V
TOL, TH1, TH0 Logic-Input Current		VTOL, $\mathrm{V}_{\text {TH1 } 1, ~}^{\text {V }}$ TH0 $=$ GND or $\mathrm{V}_{\text {cc }}$	-1		+1	$\mu \mathrm{A}$
EN_ Input Leakage Current		$\mathrm{V}_{\text {EN_ }}=\mathrm{V}_{\text {CC }}$ or GND	-100		+100	nA
$\overline{\mathrm{MR}}$ Internal Pullup Current		$\mathrm{VCC}=3.3 \mathrm{~V}$	250	535	820	nA
OUTPUTS (OUT_, $\overline{\text { RESET }}$)						
Output Low Voltage (Open-Drain or Push-Pull)	VoL	$\mathrm{V}_{\mathrm{CC}} \geq 1.2 \mathrm{~V}, \mathrm{ISINK}=90 \mu \mathrm{~A}$			0.3	V
		$\mathrm{V}_{\mathrm{CC}} \geq 2.25 \mathrm{~V}$, $\mathrm{ISINK}=0.5 \mathrm{~mA}$			0.3	
		$\mathrm{V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}$, $\mathrm{ISINK}=1 \mathrm{~mA}$			0.35	
Output High Voltage (Push-Pull)	VOH	$V_{C C} \geq 3 \mathrm{~V}$, ISOURCE $=500 \mu \mathrm{~A}$	$0.8 \times \mathrm{V}$			V
		$V_{C C} \geq 4.5 \mathrm{~V}$, ISOURCE $=800 \mu \mathrm{~A}$	$0.8 \times \mathrm{V}$			
Output Leakage Current (OpenDrain)	ILKG	Output not asserted low, VOUT $=28 \mathrm{~V}$			1	$\mu \mathrm{A}$
Reset Timeout Period	trP	CRESET $=\mathrm{V}_{C C}, \mathrm{~V}$ CC $=3.3 \mathrm{~V}$	140	190	260	ms
		CRESET open		0.030		
TIMING						
IN_ to OUT_ Propagation Delay	tDELAY+	IN_ rising, CDLY_ open		35		$\mu \mathrm{s}$
	tdelay-	IN_ falling, CDLY_ open		20		
IN_ to $\overline{\text { RESET }}$ Propagation Delay	trst-delay	CRESET open, IN_ falling		35		$\mu \mathrm{s}$
$\overline{\mathrm{MR}}$ Minimum Input Pulse Width		(Note 3)	2			$\mu \mathrm{S}$
EN_ or $\overline{\mathrm{MR}}$ Glitch Rejection				280		ns
EN_ to OUT_ Delay	tofF	From device enabled to device disabled		3		$\mu \mathrm{s}$
	ton	From device disabled to device enabled (CDLY_ open)		30		
$\overline{\mathrm{MR}}$ to $\overline{\mathrm{RESET}}$ Delay		$\overline{\mathrm{MR}}$ falling		3		$\mu \mathrm{s}$

Note 1: Devices are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over temperature are guaranteed by design.
Note 2: Operating below the UVLO causes all outputs to go low. The outputs are guaranteed to be in the correct state for $V_{C C}$ down to 1.2 V .
Note 3: In order to guarantee an assertion, the minimum input pulse width must be greater than $2 \mu \mathrm{~s}$.

Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

FIXED RESET TIMEOUT PERIOD vs. TEMPERATURE

Typical Operating Characteristics

SUPPLY CURRENT
vs. TEMPERATURE

OUT_DELAY vs. CcDLY_

Ccdly_(nF)
OUT_ LOW VOLTAGE
vs. SINK CURRENT

NORMALIZED ADJUSTABLE THRESHOLD vs. TEMPERATURE

RESET TIMEOUT PERIOD
vs. Ccreset

OUT_HIGH VOLTAGE vs. SOURCE CURRENT

Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

Typical Operating Characteristics (continued)
($\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

Pin Description

PIN			NAME	FUNCTION
MAX16025/ MAX16026	MAX16027/ MAX16028	MAX16029/ MAX16030		
1	1	1	VCC	Supply Voltage Input. Connect a 2.2 V to 28 V supply voltage to power the device. All outputs are low when V_{C} is below the UVLO. For noisy systems, bypass $V_{C C}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
2	2	2	IN1	Monitored Input 1. When the voltage at IN1 exceeds its threshold, OUT1 goes high after the capacitor-adjustable delay period. When the voltage at IN1 falls below its threshold, OUT1 goes low after a propagation delay.
3	3	3	IN2	Monitored Input 2. When the voltage at IN2 exceeds its threshold, OUT2 goes high after the capacitor-adjustable delay period. When the voltage at IN2 falls below its threshold, OUT2 goes low after a propagation delay.
-	4	4	IN3	Monitored Input 3. When the voltage at IN3 exceeds its threshold, OUT3 goes high after the capacitor-adjustable delay period. When the voltage at IN3 falls below its threshold, OUT3 goes low after a propagation delay.
-	-	5	IN4	Monitored Input 4. When the voltage at IN4 exceeds its threshold, OUT4 goes high after the capacitor-adjustable delay period. When the voltage at IN4 falls below its threshold, OUT4 goes low after a propagation delay.
4	5	6	TOL	Threshold Tolerance Input. Connect TOL to GND to select thresholds 5\% below nominal. Connect TOL to VCC to select thresholds 10% below nominal.
5	6	7	GND	Ground
6	7	8	EN1	Active-High Logic-Enable Input 1. Driving EN1 low causes OUT1 to go low regardless of the input voltage. Drive EN1 high to enable the monitoring comparator.
7	8	9	EN2	Active-High Logic-Enable Input 2. Driving EN2 low causes OUT2 to go low regardless of the input voltage. Drive EN2 high to enable the monitoring comparator.
-	9	10	EN3	Active-High Logic-Enable Input 3. Driving EN3 low causes OUT3 to go low regardless of the input voltage. Drive EN3 high to enable the monitoring comparator.
-	-	11	EN4	Active-High Logic-Enable Input 4. Driving EN4 low causes OUT4 to go low regardless of the input voltage. Drive EN4 high to enable the monitoring comparator.
8	10	12	TH1	Threshold Select Input 1. Connect TH1 to VCC or GND, or leave it open to select the input-voltage threshold option in conjunction with THO (see Table 2).
9	11	13	THO	Threshold Select Input 0. Connect THO to VCC or GND, or leave it open to select the input-voltage threshold option in conjunction with TH1 (see Table 2).
-	-	14	OUT4	Output 4. When the voltage at IN4 is below its threshold or EN4 goes low, OUT4 goes low.
-	12	15	OUT3	Output 3. When the voltage at IN3 is below its threshold or EN3 goes low, OUT3 goes low.
10	13	16	OUT2	Output 2. When the voltage at IN2 is below its threshold or EN2 goes low, OUT2 goes low.

Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

Pin Description (continued)

PIN			NAME	FUNCTION
MAX16025/ MAX16026	MAX16027 MAX16028	MAX16029/ MAX16030		
11	14	17	OUT1	Output 1. When the voltage at IN1 is below its threshold or EN1 goes low, OUT1 goes low.
Par 12	com 15	18	$\overline{\text { RESET }}$	Active-Low Reset Output. $\overline{\text { RESET }}$ asserts low when any of the monitored voltages (IN_) falls below its respective threshold, any EN_ goes low, or $\overline{\mathrm{MR}}$ is asserted. $\overline{R E S E T}$ remains asserted for the reset timeout period after all of the monitored voltages exceed their respective threshold, all EN_ are high, all OUT_ are high, and $\overline{M R}$ is deasserted.
13	16	19	$\overline{\mathrm{MR}}$	Active-Low Manual Reset Input. Pull $\overline{\mathrm{MR}}$ low to assert $\overline{\mathrm{RESET}}$ low. $\overline{\mathrm{RESET}}$ remains low for the reset timeout period after $\overline{\mathrm{MR}}$ is deasserted (as long as all OUT_ are high).
14	17	20	CRESET	Capacitor-Adjustable Reset Delay Input. Connect an external capacitor from CRESET to GND to set the reset timeout period or connect to V_{CC} for the default 140 ms minimum reset timeout period. Leave CRESET open for internal propagation delay.
-	-	21	CDLY4	Capacitor-Adjustable Delay Input 4. Connect an external capacitor from CDLY4 to GND to set the IN4 to OUT4 (and EN4 to OUT4) delay period. Leave CDLY4 open for internal propagation delay.
-	18	22	CDLY3	Capacitor-Adjustable Delay Input 3. Connect an external capacitor from CDLY3 to GND to set the IN3 to OUT3 (and EN3 to OUT3) delay period. Leave CDLY3 open for internal propagation delay.
15	19	23	CDLY2	Capacitor-Adjustable Delay Input 2. Connect an external capacitor from CDLY2 to GND to set the IN2 to OUT2 (and EN2 to OUT2) delay period. Leave CDLY2 open for internal propagation delay.
16	20	24	CDLY1	Capacitor-Adjustable Delay Input 1. Connect an external capacitor from CDLY1 to GND to set the IN1 to OUT1 (and EN1 to OUT1) delay period. Leave CDLY1 open for internal propagation delay.
-	-	-	EP	Exposed Pad. EP is internally connected to GND. Connect EP to the ground plane.

Table 1. Output State*

EN_	IN_	OUT_
Low	$\mathrm{V}_{\text {IN_ }}<\mathrm{V}_{\text {TH }}$	Low
High	$\mathrm{V}_{\text {IN_ }}<\mathrm{V}_{\text {TH }}$	Low
Low	$\mathrm{V}_{\text {IN_ }}>\mathrm{V}_{\text {TH }}$	Low
High	VIN_ > VTH	OUT_ = high (MAX16026/MAX16028/ MAX16030)
		OUT_ = high impedance (MAX16025/MAX16027/ MAX16029)

*When VCC falls below the UVLO, all outputs go low regardless of the state of $E N_{-}$and $V_{I N_{-}}$. The outputs are guaranteed to be in the correct state for VCC down to 1.2 V .

Table 2. Input-Voltage Threshold Selector

TH1/TH0 LOGIC	IN1 (ALL VERSIONS) (V)	IN2 (ALL VERSIONS) (V)	IN3 (MAX16027I MAX16028) (V)	IN4 (MAX16029/ MAX16030) (V)
Low/Low	3.3	2.5	1.8	1.5
Low/High	3.3	1.8	Adj	Adj
Low/Open	3.3	1.5	Adj	Adj
High/Low	3.3	1.2	1.8	2.5
High/High	2.5	1.8	Adj	Adj
High/Open	3.3	Adj	2.5	Adj
Open/Low	3.3	Adj	Adj	Adj
Open/High	2.5	Adj	Adj	Adj
Open/Open	Adj	Adj	Adj	Adj

Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

MAX16025-MAX16030

Figure 1. MAX16029/MAX16030 Simplified Functional Diagram
\qquad

Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

Figure 2. Timing Diagram (CDLY_ Open)

Detailed Description

The MAX16025-MAX16030 are low-voltage, accurate, dual-/triple-/quad-voltage microprocessor ($\mu \mathrm{P}$) supervisors in a small TQFN package. These devices provide supervisory and sequencing functions for complex multivoltage systems. The MAX16025/MAX16026 monitor two voltages, the MAX16027/MAX16028 monitor three voltages, and the MAX16029/MAX16030 monitor four voltages

The MAX16025-MAX16030 offer independent outputs and enable functions for each monitored voltage. This configuration allows the device to operate as four separate supervisory circuits or be daisy-chained together to allow controlled sequencing of power supplies during
power-up initialization. When all of the monitored voltages exceed their respective thresholds, an independent reset output deasserts to allow the system processor to operate.
These devices offer enormous flexibility as there are nine threshold options that are selected through two threshold-select logic inputs. Each monitor circuit also offers an independent enable input to allow both digital and analog control of each monitor output. A tolerance select input allows these devices to be used in systems requiring 5% or 10% power-supply tolerances. In addition, the time delays and reset timeout can be adjusted using small capacitors. There is also a fixed 140 ms minimum reset timeout feature.

Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

Applications Information

Tolerance

The MAX16025-MAX16030 feature a pin-selectable threshold tolerance. Connect TOL to GND to select the thresholds 5\% below the nominal value. Connect TOL to $V_{\text {CC }}$ to select the threshold tolerance 10% below the nominal voltage. Do not leave TOL unconnected.

Adjustable Input

These devices offer several monitoring options with both fixed and/or adjustable reset thresholds (see Table 2). For the adjustable threshold inputs, the threshold voltage (V_{TH}) at each adjustable IN _ input is typically $0.5 \mathrm{~V}(\mathrm{TOL}=\mathrm{GND})$ or $0.472 \mathrm{~V}\left(\mathrm{TOL}=\mathrm{V}_{\mathrm{CC}}\right)$. To monitor a voltage VINTH, connect a resistive divider network to the circuit as shown in Figure 3 and use the following equation to calculate the threshold voltage:

$$
\mathrm{V}_{\mathrm{INTH}}=\mathrm{V}_{\mathrm{TH}} \times\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

Choosing the proper external resistors is a balance between accuracy and power use. The input to the voltage monitor is a high-impedance input with a small 100nA leakage current. This leakage current contributes to the overall error of the threshold voltage where the output is asserted. This induced error is proportional to the value of the resistors used to set the threshold. With lower value resistors, this error is reduced, but the amount of power consumed in the resistors increases.

Figure 3. Setting the Adjustable Input

The following equation is provided to help estimate the value of the resistors based on the amount of acceptable error:

$$
R_{1}=\frac{e_{A} \times V_{I N T H}}{l_{L}}
$$

where ea is the fraction of the maximum acceptable absolute resistive divider error attributable to the input leakage current (use 0.01 for $\pm 1 \%$), VINTH is the voltage at which the output (OUT_) should assert, and I_{L} is the worst-case IN_ leakage current (see the Electrical Characteristics). Calculate R2 as follows:

$$
R_{2}=\frac{V_{T H} \times R 1}{V_{I N T H}-V_{T H}}
$$

Unused Inputs

Connect any unused IN_ and EN_ inputs to VCC.

OUT_Output

An OUT_ goes low when its respective IN_ input voltage drops below its specified threshold or when its EN_ goes low (see Table 1). OUT_ goes high when EN_ is high and $V_{I N}$ is above its threshold after a time delay. The MAX $16025 /$ MAX16027/MAX16029 feature open-drain, outputs while the MAX16026/MAX16028/MAX16030 have push-pull outputs. Open-drain outputs require an external pullup resistor to any voltage from 0 to 28 V .

RESET Output
 $\overline{\text { RESET }}$ asserts low when any of the monitored voltages

 (IN_) falls below its respective threshold, any EN_ goes low, or $\overline{M R}$ is asserted. $\overline{R E S E T}$ remains asserted for the reset timeout period after all of the monitored voltages exceed their respective threshold, all EN_ are high, all OUT_ are high, and $\overline{M R}$ is deasserted. The MAX16025/ MAX16027/MAX16029 have an open-drain, active-low reset output, while the MAX16026/MAX16028/ MAX16030 have a push-pull, active-low reset output. Open-drain $\overline{\text { RESET }}$ requires an external pullup resistor to any voltage from 0 to 28 V .
Adjustable Reset Timeout Period

 (CRESET)All of these parts offer an internally fixed reset timeout (140 ms min) by connecting CRESET to VCc. The reset timeout can also be adjusted by connecting a capacitor from CRESET to GND. When the voltage at CRESET reaches 0.5 V , RESET goes high. When RESET goes high, CRESET is immediately held low.

Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

Calculate the reset timeout period as follows:

$$
t_{\text {RP }}=\frac{V_{\text {TH_RESET }}}{I_{\text {CH-RESET }}} \times C_{\text {CRESET }}+30 \times 10^{-6}
$$

where $\mathrm{V}_{\text {TH-RESET }}$ is 0.5 V , I CH-RESET is $0.5 \mu \mathrm{~A}$, tRP is in seconds, and CCRESET is in Farads. To ensure timing accuracy and proper operation, minimize leakage at CCRESET.

Adjustable Delay (CDLY_)
When VIN rises above V_{TH} with EN_ high, the internal 250nA current source begins charging an external capacitor connected from CDLY_ to GND. When the voltage at CDLY_ reaches 1V, OUT_ goes high. When OUT_ goes high, CDLY_ is immediately held low. Adjust the delay (tDELAY) from when VIN rises above $V_{T H}$ (with EN_ high) to OUT_ going high according to the equation:

$$
t_{\text {DELAY }}=\frac{V_{\text {TH_CDLY }}}{I_{\mathrm{CH}-\mathrm{CDLY}}} \times \mathrm{C}_{\mathrm{CDLY}}+35 \times 10^{-6}
$$

where $\mathrm{V}_{\mathrm{TH}-\mathrm{CDLY}}$ is 1 V , I_{CH}-CDLY is $0.25 \mu \mathrm{~A}$, $\mathrm{C}_{\text {CDLY }}$ is in Farads, tDELAY is in seconds, and tDELAY+ is the internal propagation delay of the device. To ensure timing accuracy and proper operation, minimize leakage at CDLY.

Manual-Reset Input ($\overline{\mathbf{M R})}$ Many $\mu \mathrm{P}$-based products require manual-reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic-low on $\overline{M R}$ asserts $\overline{\text { RESET }}$ low. $\overline{\text { RESET }}$ remains asserted while $\overline{M R}$ is low and during the reset timeout period (140 ms fixed or capacitor adjustable) after $\overline{\mathrm{MR}}$ returns high. The $\overline{\mathrm{MR}}$ input has a 500nA internal pullup, so it can be left unconnected, if not used. MR can be driven with TTL or CMOS logic levels, or with open-drain/collector outputs. Connect a normally open momentary switch from $\overline{\mathrm{MR}}$ to GND to create a manual-reset function. External
debounce circuitry is not required. If $\overline{\mathrm{MR}}$ is driven from long cables or if the device is used in a noisy environment, connect a $0.1 \mu \mathrm{~F}$ capacitor from $\overline{\mathrm{MR}}$ to GND to provide additional noise immunity.

Pullup Resistor Values
The exact value of the pullup resistors for the opendrain outputs is not critical, but some consideration should be made to ensure the proper logic levels when the device is sinking current. For example, if $\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V}$ and the pullup voltage is 28 V , keep the sink current less than 0.5 mA as shown in the Electrical Characteristics table. As a result, the pullup resistor should be greater than $56 \mathrm{k} \Omega$. For a 12 V pullup, the resistor should be larger than $24 \mathrm{k} \Omega$. Note that the ability to sink current is dependent on the VCC supply voltage.

Power-Supply Bypassing The device operates with a VCC supply voltage from 2.2 V to 28 V . When V_{Cc} falls below the UVLO threshold, all the outputs go low and stay low until V_{CC} falls below 1.2 V . For noisy systems or fast rising transients on V_{CC}, connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor from VCC to GND as close to the device as possible to provide better noise and transient immunity.

Ensuring Valid Output with Vcc Down to OV (MAX16026/MAX16028/MAX16030 Only) When V_{C} falls below 1.2 V , the ability for the output to sink current decreases. In order to ensure a valid output as VCC falls to OV, connect a $100 \mathrm{k} \Omega$ resistor from OUT/RESET to GND.

Typical Application Circuits

Figures 4 and 5 show typical applications for the MAX16025-MAX16030. In high-power applications, using an n-channel device reduces the loss across the MOSFETs as it offers a lower drain-to-source on-resistance. However, an n-channel MOSFET requires a sufficient VGS voltage to fully enhance it for a low RDS_ON. The application in Figure 4 shows the MAX16027 configured in a multiple-output sequencing application. Figure 5 shows the MAX16029 in a power-supply sequencing application using n-channel MOSFETs.

Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

Figure 4. Sequencing Multiple-Voltage System

Figure 5. Multiple-Voltage Sequencing Using n-Channel FETs

Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

Pin Configurations (continued)

Chip Information
PROCESS: BICMOS
TRANSISTOR COUNT: 3642

Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Dual-/Triple-/Quad-Voltage, CapacitorAdjustable, Sequencing/Supervisory Circuits

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

CDMMDN DIMENSIDNS															
PKG	12L 4×4			16L 4x4			20L 4×4			24L 4×4			28L 4×4		
REF.	MIN.	NOM.	MAX.	MIN.	NDM.	MAX.									
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
Al	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05
A2	0.20 REF														
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
E	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
e	0.80 BSC.			0.65 BSC.			0.50 BSC .			0.50 BSC .			0.40 BSC .		
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	0.30	0.40	0.50
N	12			16			20			24			28		
ND	3			4			5			6			7		
NE	3			4			5			6			7		
Jedec	VGGB			WGGC			WGGD-1			WGGD-2			WGGE		

EXPISED PAD VARIATIDNS							
$\begin{aligned} & \text { PKG } \\ & \text { CDDES } \end{aligned}$	D2			E2			DOWN BONDS ALLDWED
	MIN.	NOM.	MAX.	MIN.	NDM.	MAX.	
T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	ND
T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	YES
T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	ND
T2844-1	2.50	2.60	2.70	2.50	2.60	2.70	ND

NOTES:

1. DIMENSIONNG \& TOLERANCING CONFORM TO ASME Y14.5N-1994.
2. ALL DIMENSIONS ARE IN MLLUMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL *1 IDENTIFER AND TERMNAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETALS OF TERMNAL $\boldsymbol{\text { P1 }}$ I IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN the zone mdicated. The terminal $/ 1$ IDENTIFIER MaY be emther a mold or marked feature.
A. DIMENSION b APPLIES TO METALUZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FRON TERMMNAL TIP.
5. nd and ne refer to the number of terminas on each d and e side respectively.
6. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
7. coplanarity apples to the exposed heat sink slug as well as the terminals.
8. DRAWING CONFORMS TO JEDEC NO220, EXCEPT FOR T2444-3, T2444-4 AND T2844-1.

4d MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
11. COPLANARTY SHALL NOT EXCEED 0.08 mm
12. WARPAGE SHALL NOT EXCEEND 0.10 mm
4. LEAD CENTERLINES TO BE AT TRUE POSTION AS DEFINED BY BASIC DIMENSION "e", ± 0.05. 14. number of leads shown are for reference only

TTTL PACKAGE OUTLINE,
$12,16,20,24,28 \mathrm{~L}$ THIN QFN, $4 \times 4 \times 0.8 \mathrm{~mm}$
-DRAWING NDT TI SCALE-

APPoVML	$\begin{gathered} \text { Documpl contra no. } \\ 21-0139 \end{gathered}$	$\stackrel{\text { REV. }}{E}$	2/2

[^0]
[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

