

Actron GmbH- Posthalterring 18 - 85599 Parsdorf service@actron.de

### Specification for Approval

<u>Actron</u> GmbH Tel- 089-991509-0 Customer

Model Type LCD Module

Model Number : PG12864ERS-INN-H

Edit

| Customer Sign | Sales Sign | Approved By | Prepared By    |
|---------------|------------|-------------|----------------|
|               |            |             | "N' colu       |
|               |            | Mun Data    | NO. PT-R-003-1 |

# **CONTENTS**

# 1.SPECIFICATIONS

- 1.1 Features
- 1.2 Mechanical Specifications
- 1.3 Absolute Maximum Ratings
- 1.4 DC Electrical Characteristics
- 1.5 Optical Characteristics
- 1.6 Backlight Characteristics

# 2.MODULE STRUCTURE

- 2.1 Counter Drawing
- 2.2 Interface Pin Description
- 2.3 Timing Characteristics
- 2.4 Display Command
- 2.5 Display Pattern

#### 3.RELIABILITY

3.1 Content of Reliability Test

#### 1. SPECIFICATIONS

#### 1.1 Features

- Dot-matrix structure with 128 dots \*64 dots + 4 Icons
- 1/64 Duty, 1/6.2 bias
- STN LCD, positive
- Transflective LCD, gray
- 6 o'clock viewing angle
- 8 bits parallel data input
- EL Backlight

# 1.2 Mechanical Specifications

• Outline dimension : 54.0mm(L)\*50.0mm(W)\*7.5mm max.(H)

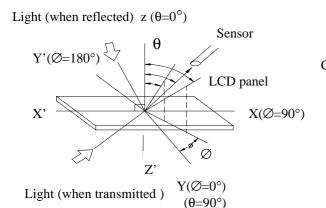
Viewing area : 43.5mm \*29.0mm
 Active area : 40.92mm \*26.92mm
 Dot size : 0.28mm \* 0.35mm
 Dot pitch : 0.32mm \* 0.39mm

# 1.3 Absolute Maximum Ratings

| Item                     | Symbol  | Conditions | Min. | Max. | Unit |
|--------------------------|---------|------------|------|------|------|
| Power supply Voltage     | VDD     | -          | 0    | 6.7  | V    |
| LCD drive Supply voltage | VDD-VLC | -          | 0    | 17   | V    |
| Input voltage            | VIN     | -          | -0.3 | VDD  | V    |
| Operating temperature    | TOPR    | -          | -20  | 50   | °C   |
| Storage temperature      | TSTG    | -          | -30  | 70   | °C   |
| Humidity*1               | HD      | -          | -    | 90   | %RH  |

#### 1.4 DC Electrical Characteristics

| Item                 | Symbol          | Condition                            | Min.   | Тур. | Max.   | Unit |
|----------------------|-----------------|--------------------------------------|--------|------|--------|------|
| Logic Supply voltage | VDD             | -                                    | 2.8    | 5    | 5.5    | V    |
| "H" input voltage    | VIH             | -                                    | 0.7VDD | -    | Vdd    | V    |
| "L" input voltage    | VIL             | -                                    | 0      | -    | 0.3VDD | V    |
| LCD driving voltage  | VLCD            | VDD-VLC                              | -      | 8.5  | -      | V    |
|                      | IDD<br>(EL OFF) | FLM=71 Hz<br>VDD=5.0V                |        | 3.0  |        |      |
| Power Supply Current | IDD<br>(EL ON)  | VDD-VO=8.5V<br>BL+= 5.0 V (EL<br>ON) | -      | 20   | -      | mA   |


# 1.5 Optical Characteristics

1/64 duty, 1/6.2 bias, Vopr=8.5V, Ta=25°C

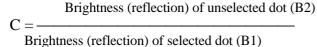
| Item                | Symbol | Conditions  | Min. | Тур.  | Max   | Reference   |
|---------------------|--------|-------------|------|-------|-------|-------------|
| Viewing angle       | θ      | C≥2.0,Ø=0°C | 30°  | -     | -     | Notes 1 & 2 |
| Contrast            | С      | θ=5°, Ø=0°  | 2    | 3     | -     | Note 3      |
| Response time(rise) | ton    | θ=5°, Ø=0°  | -    | 135ms | 270ms | Note 4      |
| Response time(fall) | toff   | θ=5°, Ø=0°  | -    | 265ms | 400ms | Note 4      |

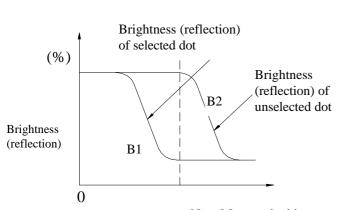
Note 1: Definition of angles  $\theta$  and  $\emptyset$ 

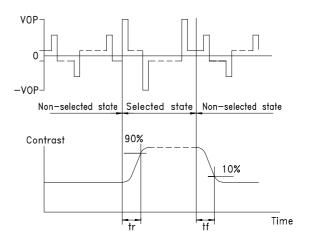
Note 2: Definition of viewing angles  $\theta 1$  and  $\theta 2$ 



Contrast
C
2.0


01


02


viewing angle  $\theta$  ( $\varnothing$  fixed) Note: Optimum viewing angle with the naked eye and viewing angle  $\theta$  at Cmax. Above are not always the same.

Note 3: Definition of contrast C

Note 4: Definition of response time







Note:Measured with a transmissive LCD operating voltage (v) panel which is displayed 1 cm<sup>2</sup>

Vopr : Operating voltgae fFRM : Frame frequency ton : Response time (rise) toff : Response time(fall)



# 1.6 Backlight Characteristic

The LCD Module is backlight using a EL backlight

# •. Maximum Ratings

| Item               | Symbol | Maximum | Unit |
|--------------------|--------|---------|------|
| Supply voltage     | Vmax   | 120     | Vrms |
| Supply frequency   | Fmax   | 1000    | Hz   |
| Operating humidity | Hopr   | 90      | %RH. |
| Storage humidity   | Hstg   | 70      | %RH. |

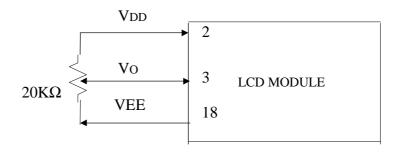
# •. Using specification

| Item              | Specification | Unit |  |  |
|-------------------|---------------|------|--|--|
| Operating voltage | 75~85         | Vrms |  |  |
| Frequency         | 300~400       | Hz   |  |  |

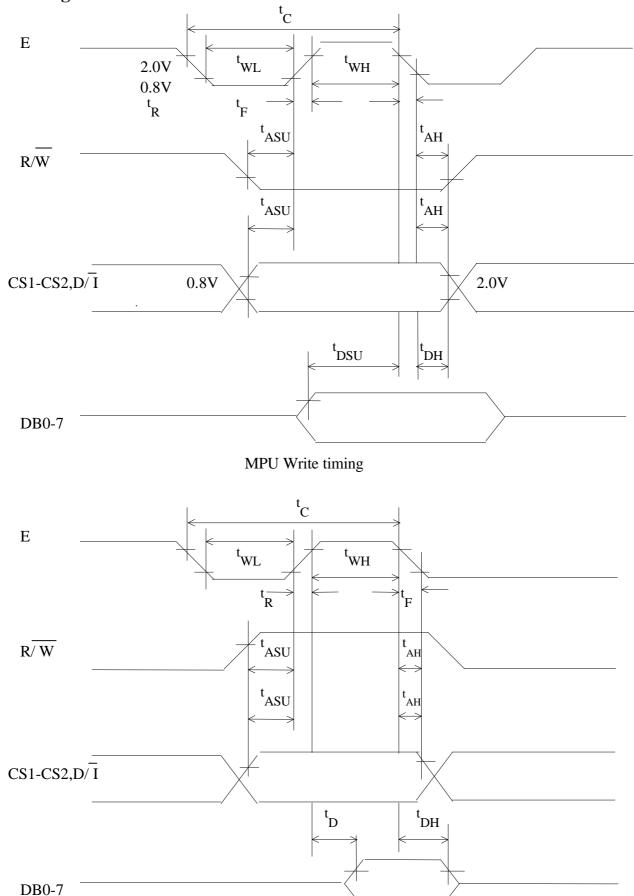
#### •. Electrical characteristics

| Item                 | Condition | Unit               | Min                | Тур   | Max            |   |
|----------------------|-----------|--------------------|--------------------|-------|----------------|---|
| Initiate intensity   |           | (inverter)         | Cd/m <sup>2</sup>  | 16    | 20             | - |
| CIE color coordinate | X<br>Y    | VAC 75~85<br>Vrms  |                    |       | 0.290<br>0.360 |   |
| Current density      |           | Freq 300~400<br>HZ | mA/cm <sup>2</sup> |       | 0.045          | í |
| Power density        |           |                    | mW/cm <sup>2</sup> |       |                |   |
| Color                | No.Sp4422 |                    |                    | White | )              |   |

# 2. MODULE STRUCTURE


# 2.1 Counter Drawing

\*See Appendix


# 2.2 Interface Pin Description

| Pin No. | Symbol  | Function                                                                                                                |  |  |  |
|---------|---------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1       | Vss     | Power supply for logic GND                                                                                              |  |  |  |
| 2       | VDD     | Power supply for logic (+2.8~5.5V)                                                                                      |  |  |  |
| 3       | VO      | Operating voltage for LCD driving                                                                                       |  |  |  |
| 4       | D/ I    | Register selection input High =Data register Low =Instruction register (for write) Busy flag address counter (for read) |  |  |  |
| 5       | R/W     | R/W signal input is used to select the read/write mode<br>High =Read mode, Low =Write mode                              |  |  |  |
| 6       | Е       | Start enable signal to read or write the data                                                                           |  |  |  |
| 7~14    | DB0~DB7 | Data bus                                                                                                                |  |  |  |
| 15      | CS1     | Chip enable for D2 (segment 1 to segment 64)                                                                            |  |  |  |
| 16      | CS2     | Chip enable for D3 (segment 65 to segment 128)                                                                          |  |  |  |
| 17      | RST     | Reset signal                                                                                                            |  |  |  |
| 18      | VEE     | Power supply for LCD driving                                                                                            |  |  |  |
| 19      | BL+     | Enable (on/off) for EL B/L                                                                                              |  |  |  |
| 20      | BL-     | No connection                                                                                                           |  |  |  |

# Contrast Adjust



# 2.3 Timing Characteristics

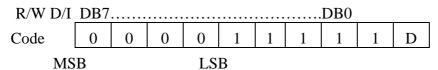


MPU Read timing



# AC Characteristics

#### (VDD=5V±10%, Ta=25)


| Characteristic         | Symbol | Min. | Тур | Max | Unit |
|------------------------|--------|------|-----|-----|------|
| E Cycle                | tC     | 1000 | -   | -   | ns   |
| E High Level Width     | tWH    | 450  | -   | -   | ns   |
| E Low Level Width      | tWL    | 450  | -   | -   | ns   |
| E Rise Time            | tR     | _    | -   | 25  | ns   |
| E Fall Time            | tF     | _    | -   | 25  | ns   |
| Address Set-Up time    | tASU   | 140  | -   | -   | ns   |
| Address Hold Time      | tAH    | 10   | -   | -   | ns   |
| Data Set-Up Time       | tSU    | 200  |     | -   | ns   |
| Data Delay Time        | tD     | _    | -   | 320 | ns   |
| Data Hold Time (Write) | tDHW   | 10   | -   | -   | ns   |
| Data Hold Time (Read)  | tDHR   | 20   | -   | -   | ns   |

# 2.4 Display command

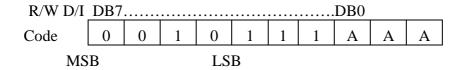
|                    |     |     |      |        | C    | ode    |         |        |        |            |                                    |                    |  |
|--------------------|-----|-----|------|--------|------|--------|---------|--------|--------|------------|------------------------------------|--------------------|--|
| Instructions       | R/W | D/I | DB7  | DB6    | DB5  | DB4    | DB3     | DB2    | DB1    | DB0        | Functions                          |                    |  |
| Display on/off     | 0   | 0   | 0    | 0      | 1    | 1      | 1       | 1      | 1      | 1/0        | Controls display on/of             | f. RAM data and    |  |
|                    |     |     |      |        |      |        |         |        |        |            | internal status are not            | affected.          |  |
|                    |     |     |      |        |      |        |         |        |        |            | (0:OFF,1:ON)                       |                    |  |
| Display start line | 0   | 0   | 1    | 1      | Disp | olay s | tart li | ine (0 | -63)   |            | Specifies the RAM line             | e displayed at the |  |
|                    |     |     |      |        |      | 1      | 1       | 1      |        |            | top of the screen.                 |                    |  |
| Set Page (x        | 0   | 0   | 1    | 0      | 1    | 1      | 1       | Page   | e (0-7 | <b>'</b> ) | Sets the page (X addre             | ess) of RAM at     |  |
| address)           |     |     |      |        |      |        |         |        |        |            | the page (X address)               | register.          |  |
| Set Y address      | 0   | 0   | 0    | 1      | Y ac | ddres  | s (0-6  | 53)    |        |            | Sets the Y address in t            | he Y address       |  |
|                    |     |     |      |        |      |        | ı       | 1      |        | 1          | counter.                           |                    |  |
| Status read        | 1   | 0   | Busy | 0      | ON   | Reset  | 0       | 0      | 0      | 0          | Reads the status.                  |                    |  |
|                    |     |     |      |        | /    |        |         |        |        |            | Reset 1: Reset                     |                    |  |
|                    |     |     |      |        | Off  |        |         |        |        |            | 0: Normal                          |                    |  |
|                    |     |     |      |        |      |        |         |        |        |            | ON/OFF 1: Display                  | off                |  |
|                    |     |     |      |        |      |        |         |        |        |            | 0: Display on                      |                    |  |
|                    |     |     |      |        |      |        |         |        |        |            | Busy 1: Internal of                | peration           |  |
|                    |     |     |      |        |      |        |         |        |        |            | 0: Ready                           |                    |  |
| Write display data | 0   | 1   | Writ | e dat  | a    |        |         |        |        |            | Writes data DB0                    | Has access to      |  |
|                    |     |     |      |        |      |        |         |        |        |            | (LSB) to DB7 (MSB)                 | the address        |  |
|                    |     |     |      |        |      |        |         |        |        |            | on the data bus into               | of the display     |  |
|                    |     |     |      |        |      |        |         |        |        |            | display RAM specified              |                    |  |
|                    |     |     |      |        |      |        |         |        |        |            | RAM. in advance.                   |                    |  |
| Read display data  | 1   | 1   | Read | d data | a    |        |         |        |        |            | Reads data DB0                     | After the          |  |
|                    |     |     |      |        |      |        |         |        |        |            | (LSB)                              | access, Y          |  |
|                    |     |     |      |        |      |        |         |        |        |            | to DB7 (MSB) from                  | address is         |  |
|                    |     |     |      |        |      |        |         |        |        |            | the display RAM to increased by 1. |                    |  |
|                    |     |     |      |        |      |        |         |        |        |            | the data bus.                      |                    |  |

#### **Detailed Explanation**

#### Display On/Off

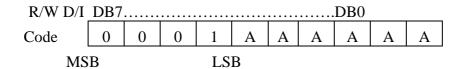


The display data appears when D is 1 and disappears when D is 0. Though the data is not on the screen with D=0, it remains in the display data RAM. Therefore, you can make it appear by changing D=0 into D=1.




#### **Display Start Line**

| R/W D/I | DB7    |   |  |   |  | <br>DB0 |   |   |   |
|---------|--------|---|--|---|--|---------|---|---|---|
| Code    | 0      | 0 |  | 1 |  | A       | A | A | A |
| MS      | MSR IS |   |  |   |  |         |   |   |   |


Z address AAAAAA (binary) of the display data RAM is set in the display start line register and displayed at the top of the screen. Figure 1 shows examples of display (1/64 duty cycle) when the start line=0-3. When the display duty cycle is 1/64 or more (ex. 1/32, 1/24 etc.), the data of total line number of LCD screen, from the line specified by display start line instruction, is displayed. See figure 1.

#### Set page (X address)



X address AAA (binary) of the display data RAM is set in the X address register. After that, writing or reading to or from MPU is executed in this specified page until the next page is set. See figure 2.

#### Set Y Address



Y address AAAAAA (binary) of the display data RAM is set in the Y address Counter. After that, Y address counter is increased by 1 every time the data is written or read to or from MPU.

#### **Status Read**



#### • Busy

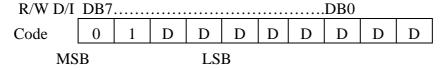
When busy is 1, the LSI is executing internal operations. No instructions are accepted while busy is 1, so you should make sure that busy is 0 before writing the next instruction.



#### • ON/OFF

Shows the liquid crystal display conditions: on condition or off condition.

When on/off is 1, the display is in off condition.


When on/off is 0, the display is in on condition.

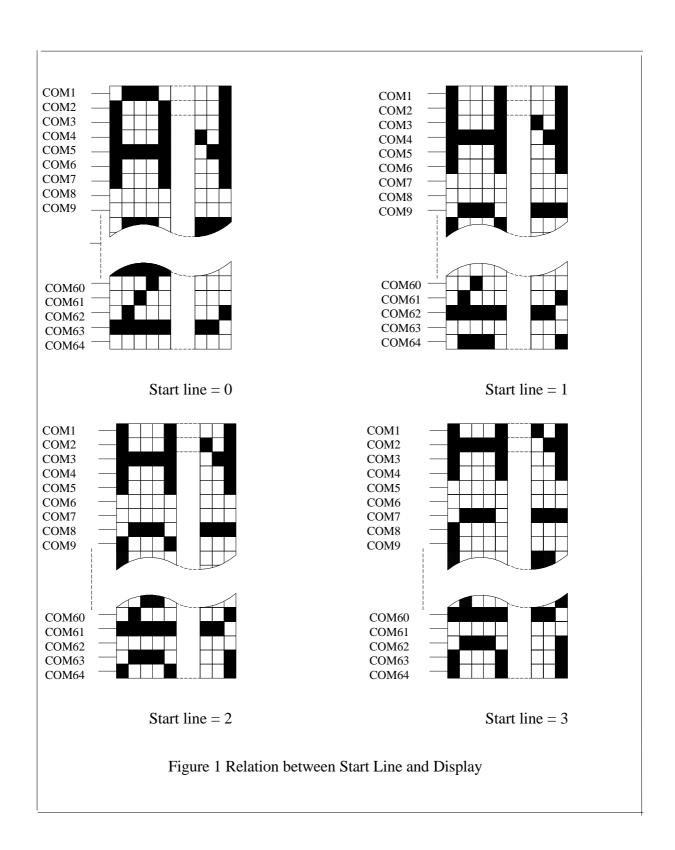
#### • RESET

RESET=1 shows that the system is being initialized. In this condition, no instructions except status read can be accepted.


RESET=0 shows that initializing has finished and the system is in the usual operation condition.

#### Write Display Data




Write 8-bit data DDDDDDD (binary) into the display data RAM. Then Y address is increased by 1 automatically.

#### **Read Display Data**



Reads out 8-bit data DDDDDDD (binary) from the display data RAM. Then Y address is increased by 1 automatically.

One dummy read is necessary right after the address setting. For details, refer to the explanation of output register in "Function of Each Block".



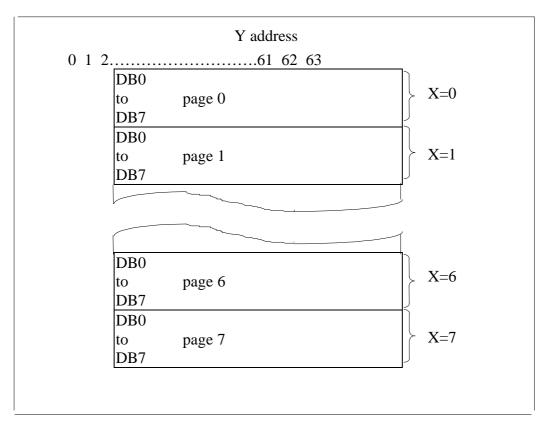
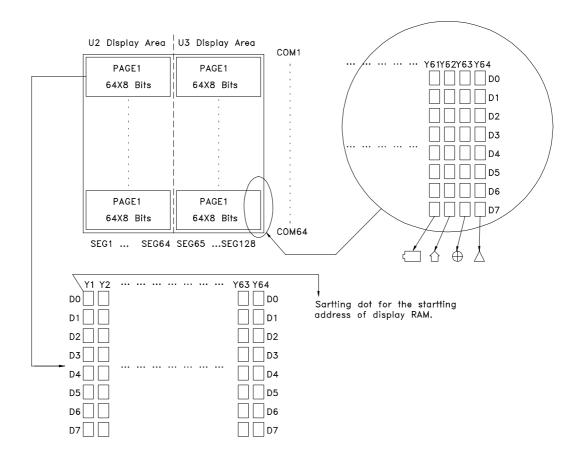
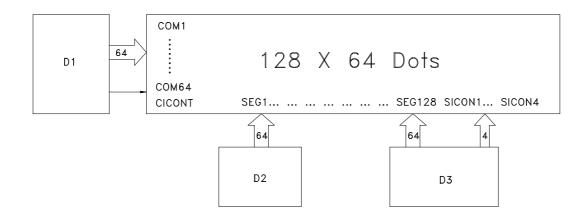
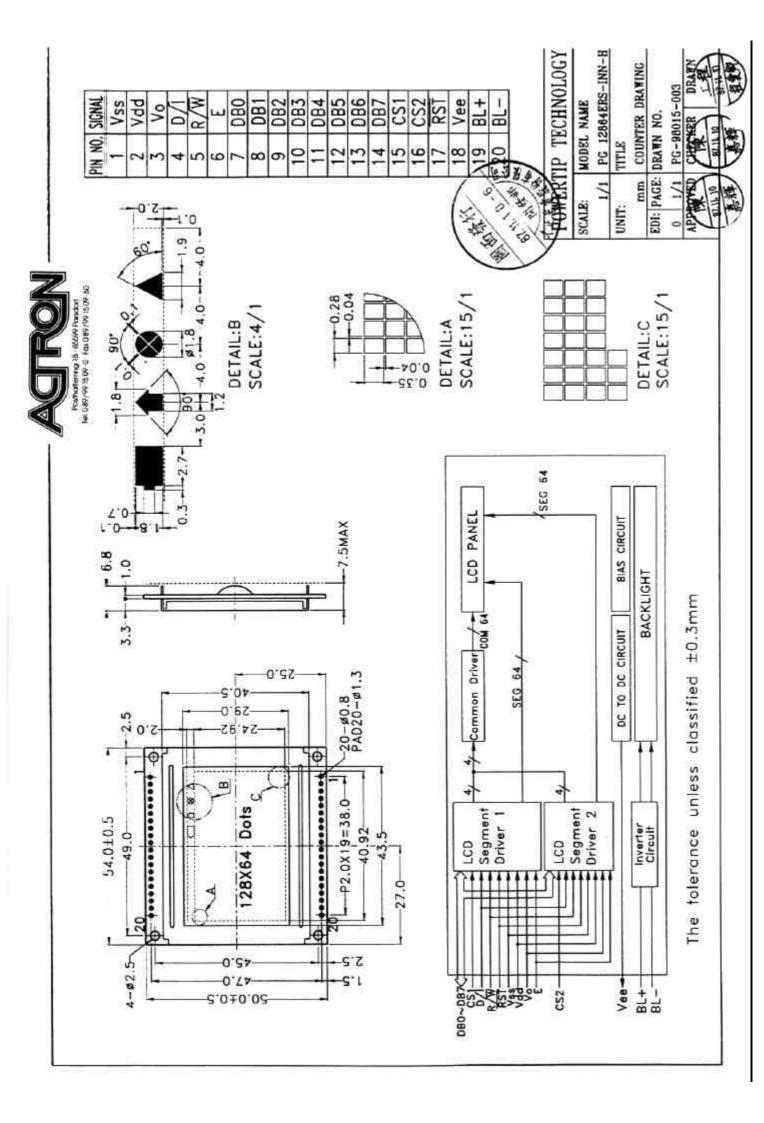





Figure 2 Address Configuration of Display Data RAM

# 2.5 Display Pattern



Each segment driver has 8 pages RAM, and each page has 64 X 8 bits RAM. D0~D7 are 8 bits transmitted data, write D0 is LSB and D7 is MSB.






# 3. RELIABILITY

# 3.1 Content of Reliability Test

|    | Environmental Test                         |                                                                                                                                   |                      |  |  |  |  |  |  |  |
|----|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|--|--|
| NO | Test Item                                  | Content of Test                                                                                                                   | Test Condition       |  |  |  |  |  |  |  |
| 1  | High temperature storage                   | Endurance test applying the high storage temperature for a long time.                                                             | 70<br>100 hrs        |  |  |  |  |  |  |  |
| 2  | Low temperature storage                    | Endurance test applying the high storage temperature for a long time.                                                             | -30<br>100 hrs       |  |  |  |  |  |  |  |
| 3  | High temperature operation                 | Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.            | 70<br>100 hrs        |  |  |  |  |  |  |  |
| 4  | Low temperature operation                  | Endurance test applying the electric stress under low temperature for a long time.                                                | -20<br>100 hrs       |  |  |  |  |  |  |  |
| 5  | High temperature /Humidity Storage         | Endurance test applying the high humidity storage for a long time.                                                                | 70 ,90%RH<br>50 hrs  |  |  |  |  |  |  |  |
| 6  | High temperature<br>/Humidity<br>Operation | Endurance test applying the electric stress (Voltage & Current) and temperature / humidity stress to the element for a long time. | 70 ,90%RH<br>50 hrs  |  |  |  |  |  |  |  |
| 7  | Temperature Cycle                          | Endurance test applying the low and high temperature cycle.  -25 25 75 30min 5min 30min  1 cycle                                  | -25 / 75<br>10 cycle |  |  |  |  |  |  |  |

