Preferred Device

Schottky Barrier Diodes

These Schottky barrier diodes are designed for high speed switching applications, circuit protection, and voltage clamping. Extremely low forward voltage reduces conduction loss. Miniature surface mount package is excellent for hand held and portable applications where space is limited.

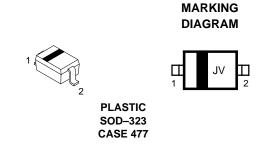
- Extremely Fast Switching Speed
- Low Forward Voltage 0.35 Volts (Typ) @ $I_F = 10 \text{ mAdc}$
- Device Marking: JV

ON Semiconductor[™]

http://onsemi.com

30 VOLT SILICON HOT-CARRIER DETECTOR AND SWITCHING DIODES

1 • • 2 CATHODE ANODE

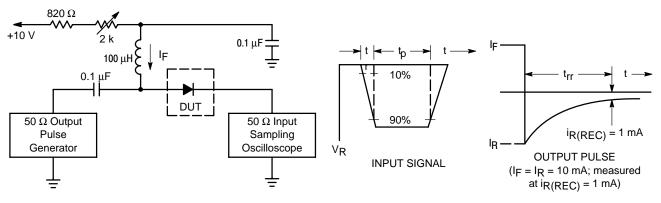

MAXIMUM RATINGS (T_J = $125^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Reverse Voltage	V _R	30	V

THERMAL CHARACTERISTICS

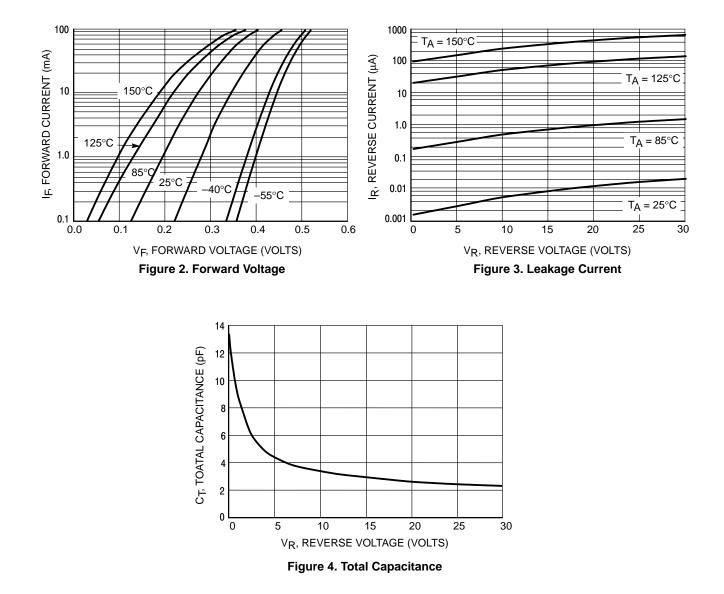
Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board, (Note 1.) $T_A = 25^{\circ}C$ Derate above 25°C	PD	200 1.57	mW mW/°C
Thermal Resistance Junction to Ambient	R _{θJA}	635	°C/W
Junction and Storage Temperature	TJ, Tstg	150	°C

1. FR-4 Minimum Pad

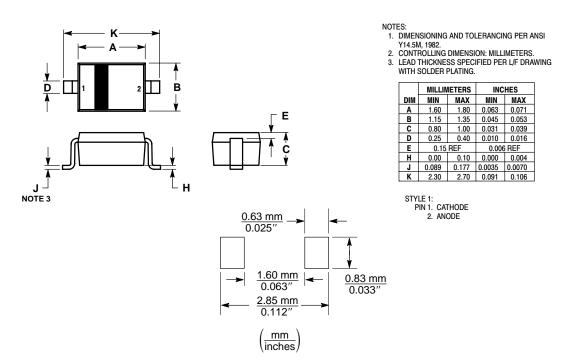

ORDERING INFORMATION

Device	Package	Shipping	
BAT54HT1	SOD-323	3000/Tape & Reel	

Preferred devices are recommended choices for future use and best overall value.


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage (I _R = 10 μ A)	V _{(BR)R}	30	—	—	Volts
Total Capacitance (V _R = 1.0 V, f = 1.0 MHz)	CT	—	7.6	10	pF
Reverse Leakage (V _R = 25 V)	I _R	—	0.5	2.0	μAdc
Forward Voltage (I _F = 0.1 mAdc)	VF	—	0.22	0.24	Vdc
Forward Voltage (I _F = 30 mAdc)	VF	—	0.41	0.5	Vdc
Forward Voltage (I _F = 100 mAdc)	VF	—	0.52	0.8	Vdc
Reverse Recovery Time (I _F = I _R = 10 mAdc, I _{R(REC)} = 1.0 mAdc) Figure 1	t _{rr}	—	_	5.0	ns
Forward Voltage (I _F = 1.0 mAdc)	VF	—	0.29	0.32	Vdc
Forward Voltage (I _F = 10 mAdc)	VF	—	0.35	0.40	Vdc
Forward Current (DC)	١F	—	_	200	mAdc
Repetitive Peak Forward Current	IFRM	—	_	300	mAdc
Non–Repetitive Peak Forward Current (t < 1.0 s)	IFSM	—	—	600	mAdc


Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (IF) of 10 mA. 2. Input pulse is adjusted so I_{R(peak)} is equal to 10 mA. 3. t_p » t_{rr}

PACKAGE DIMENSIONS

SOD-323 PLASTIC PACKAGE CASE 477-02 ISSUE B

SOD-323 Soldering Footprint

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.