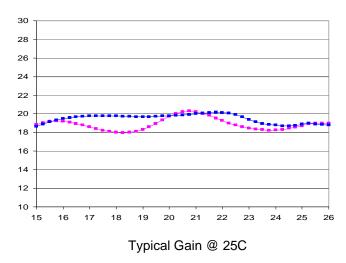

# **Ka Band Low Noise Amplifier**

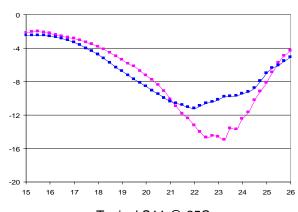

### **TGA1319A-EPU**



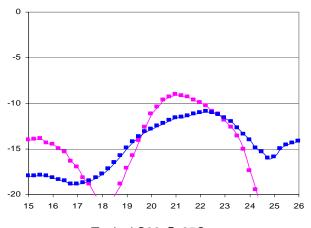
Chip Dimensions 1.984 mm x .923 mm

#### Preliminary Data, 2 Fixtured samples @ 25C






### **Key Features and Performance**


- 0.15um pHEMT Technology
- 21-27 GHz Frequency Range
- 2 dB Nominal Noise Figure
- 19 dB Nominal Gain
- 12 dBm Pout
- 3V, 45 mA with -0.5V < Vg < +0.5V</li>

### **Primary Applications**

- Point-to-Point Radio
- Point-to-Multipoint Communications



Typical S11 @ 25C



Typical S22 @ 25C

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications subject to change without notice



### **Advance Product Information**

**November 5, 2001** 

### **TGA1319A-EPU**

#### **MAXIMUM RATINGS**

| SYMBOL           | PARAMETER <u>4</u> /                 | VALUE         | NOTES                 |
|------------------|--------------------------------------|---------------|-----------------------|
| V <sup>+</sup>   | POSITIVE SUPPLY VOLTAGE              | 5 V           |                       |
| $\mathbf{I}^{+}$ | POSITIVE SUPPLY CURRENT              | 60 mA         | 1/                    |
| I-               | NEGATIVE GATE CURRENT                | 5.28 mA       |                       |
| $P_{IN}$         | INPUT CONTINUOUS WAVE POWER          | 15 dBm        |                       |
| $P_{D}$          | POWER DISSIPATION                    | .3 W          |                       |
| $T_{CH}$         | OPERATING CHANNEL TEMPERATURE        | 150 °C        | <u>2</u> / <u>3</u> / |
| $T_{\mathrm{M}}$ | MOUNTING TEMPERATURE<br>(30 SECONDS) | 320 °C        |                       |
| $T_{STG}$        | STORAGE TEMPERATURE                  | -65 to 150 °C |                       |

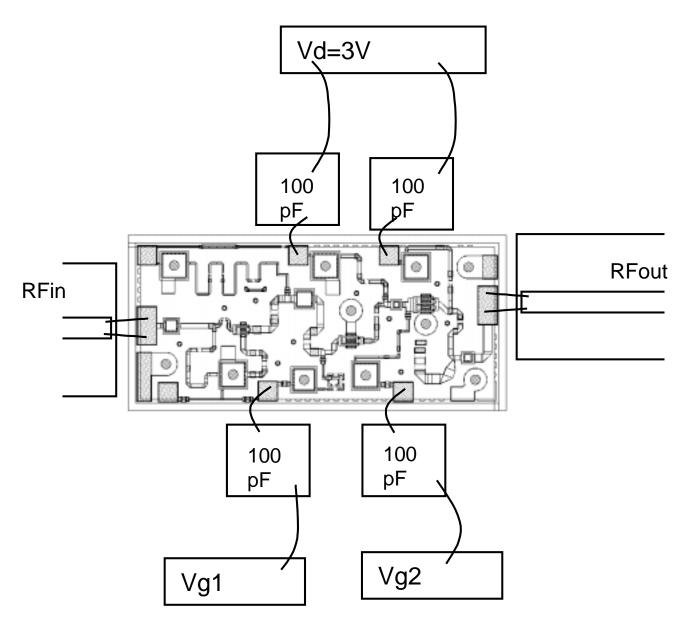
- 1/ Total current for all stages.
- 2/ These ratings apply to each individual FET.
- $\underline{3}$ / Junction operating temperature will directly affect the device median time to failure ( $T_M$ ). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- 4/ These ratings represent the maximum operable values for the device.

DC PROBE TESTS 
$$(T_A = 25 \text{ °C} \pm 5 \text{ °C})$$

| Symbol  | Parameter                     | Minimum | Maximum | Value |
|---------|-------------------------------|---------|---------|-------|
| Idss    | Saturated Drain Current       |         |         | mA    |
| $V_{P}$ | Pinch-off Voltage             | -1.5    | -0.5    | V     |
| BVGS    | Breakdown Voltage gate-source |         |         | V     |
| BVGD    | Breakdown Voltage gate-drain  |         |         | V     |

#### ON-WAFER RF PROBE CHARACTERISTICS

$$(T_A = 25 \text{ °C} \pm 5 \text{ °C})$$
  
 $V_d = 3 \text{ V}, I_{d1} = 15 \text{ mA}, I_{d2} = 30 \text{ mA}$ 


| Symbol | Parameter              | Test Condition     | Limit |     |     | Units |
|--------|------------------------|--------------------|-------|-----|-----|-------|
|        |                        |                    | Min   | Тур | Max |       |
| Gain   | Small Signal<br>Gain   | F = 21 - 27  GHz   | 18    |     |     | dB    |
| NF     | Noise Figure           | F = 21 - 26.5  GHz |       |     | 2   | dB    |
| PWR    | Output Power<br>@ P1dB | F = 21 - 27  GHz   | 10    |     |     | dBm   |





**November 5, 2001** 

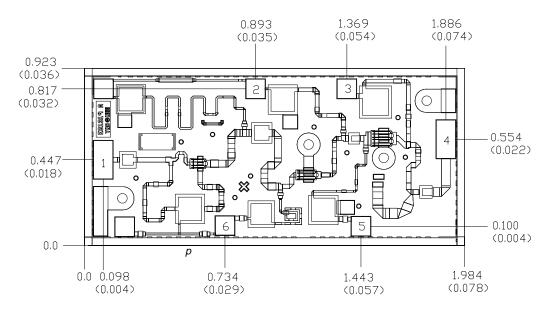
**TGA1319A-EPU** 



Notes: 1. Vg1 and Vg2 may be sourced from the same supply.

2. Positive or negative gate bias may be required to achieve recommended operating point.

TGA1319A - Recommended Assembly Drawing


Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications subject to change without notice



### **Advance Product Information**

**November 5, 2001** 

#### **TGA1319A-EPU**



Units: millimeters (inches) Thickness: 0.1016 (0.004)

Chip edge to bond pad dimensions are shown to center of bond pad Chip size tolerance: +/- 0.051 (0.002)

| Bond | Pad | #1 | (RF Input)  | 0.100 | × | 0.200 | (0.004 | × | 0.008) |
|------|-----|----|-------------|-------|---|-------|--------|---|--------|
| Bond | Pad | #2 | (Vd1)       | 0.100 | × | 0.100 | (0.004 | × | 0.004) |
| Bond | Pad | #3 | (Vd2)       | 0.100 | × | 0.100 | (0.004 | × | 0.004) |
| Bond | Pad | #4 | (RF Dutput) | 0.100 | × | 0.200 | (0.004 | × | 0.008) |
| Bond | Pad | #5 | (Vg2)       | 0.100 | × | 0.100 | (0.004 | × | 0.004) |
| Bond | Pad | #6 | (Vg1)       | 0.100 | × | 0.100 | (0.004 | × | 0.004) |

#### Mechanical Drawing



## **Advance Product Information**

**November 5, 2001** 

**TGA1319A-EPU** 

### **Assembly Process Notes**

### Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 °C.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

### Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

#### Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire.
- Maximum stage temperature is 200 °C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.