JFET Voltage-Controlled Resistors

Product Summary

Part Number	V _{GS(off)} Max (V)	V _{(BR)GSS} Min (V)	$\mathbf{r}_{\mathbf{DS(on)}} \mathbf{Max} \left(\Omega \right)$		
VCR2N	-7	-25	60		
VCR4N	-7	-25	600		
VCR7N	-5	-25	8000		

Features

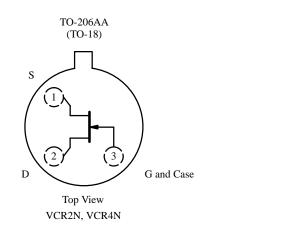
- Continuous Voltage-Controlled Resistance
- High Off-Isolation
- High Input Impedance

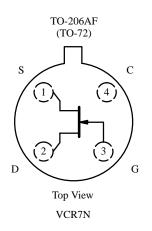
Benefits

- Gain Ranging Capability/Wide Range Signal Attenuation
- No Circuit Interaction
- Simplified Drive

Applications

- Variable Gain Amplifiers
- Voltage Controlled Oscillator
- AGC


Description


The VCR2N/4N/7N JFET voltage controlled resistors have an ac drain-source resistance that is controlled by a dc bias voltage (V_{GS}) applied to their high impedance gate terminal. Minimum r_{DS} occurs when $V_{GS} = 0$ V. As V_{GS} approaches the pinch-off voltage, r_{DS} rapidly increases. This series of junction FETs is intended for applications where the drain-source voltage is a low-level ac signal with no dc component.

Key to device performance is the predictable r_{DS} change versus V_{GS} bias where:

$$r_{DS} bias \approx \frac{r_{DS} (@V_{GS} = 0)}{1 - \left| \frac{V_{GS}}{V_{GS(off)}} \right|}$$

These n-channel devices feature $r_{DS(on)}$ ranging from 20 to 8000 Ω . All packages are hermetically sealed and may be processed per MIL-S-19500 (see Military Information).

Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70293. Applications information may also be obtained via FaxBack, request document #70598.

VCR2N/4N/7N

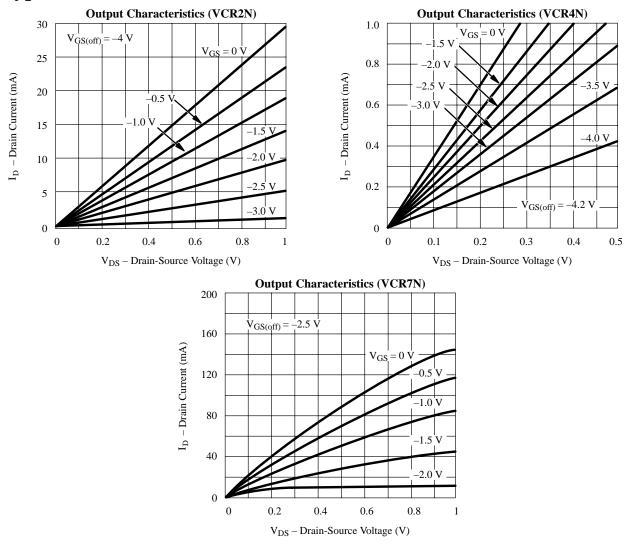
Absolute Maximum Ratings^a

Gate-Source, Gate-Drain Voltage
Gate Current 10 mA
Power Dissipation ^b 300 mW
Operating Junction Temperature Range $\ldots \ldots \ldots \ldots -55$ to $175^\circ C$
Storage Temperature $\hdots65$ to $200^\circ C$

Notes: a. $T_A = 25^{\circ}C$ unless otherwise noted. b. Derate 2 mW/°C above 25°C.

Specifications^a

				Limits						
Parameter	Symbol	Test Conditions	Typ ^b	VCR2N		VCR4N		VCR7N		
				Min	Max	Min	Max	Min	Max	Unit
Static										-
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = -1 \ \mu A, \ V_{DS} = 0 \ V$	-55	-25		-25		-25		v
Gate-Source Cutoff Voltage	V _{GS(off)}	V_{DS} = 10 V, I_{D} = 1 μA		-3.5	_7	-3.5	_7	-2.5	-5	
Gate Reverse Current	I _{GSS}	$V_{GS} = -15 \text{ V}, V_{DS} = 0 \text{ V}$			-5		-0.2		-0.1	nA
Drain-Source On-Resistance	r _{DS(on)}	V_{GS} = 0 V, I_D = 10 mA		20	60					Ω
		$V_{GS}=0 \text{ V}, I_D=1 \text{ mA}$				200	600			
		V_{GS} = 0 V, I_D = 0.1 mA						4000	8000	
Gate-Source Forward Voltage	V _{GS(F)}	$V_{DS}=0 \text{ V}, I_G=1 \text{ mA}$	0.7							V
Dynamic				_		_	_		_	
Drain-Source On-Resistance	r _{ds(on)}	$\label{eq:VGS} \begin{split} V_{GS} = 0 \ V, \ I_D = 0 \ mA \\ f = 1 \ kHz \end{split}$		20	60	200	600	4000	8000	Ω
Drain-Gate Capacitance	C _{dg}	$V_{GD} = -10 \text{ V}, I_S = 0 \text{ mA}$ f = 1 MHz			7.5		3		1.5	pF
Source-Gate Capacitance	C _{sg}	$\label{eq:VGS} \begin{split} V_{GS} = -10 \ V, \ I_D = 0 \ mA \\ f = 1 \ kHz \end{split}$			7.5		3		1.5	


Notes:

a. T_A = 25°C unless otherwise noted.
b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

NPA

NT

NCB

Typical Characteristics

Applications

A simple application of a FET VCR is shown in Figure 1, the circuit for a voltage divider attenuator.

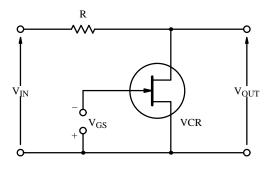


Figure 1. Simple Attenuator Circuit

The output voltage is:

$$V_{OUT} = \frac{V_{IN} r_{DS}}{R + r_{DS}}$$

It is assumed that the output voltage is not so large as to push the VCR out of the linear resistance region, and that the r_{DS} is not shunted by the load.

The lowest value which V_{OUT} can assume is:

$$V_{OUT(min)} = \frac{V_{IN} r_{DS(on)}}{R + r_{DS(on)}}$$

Since r_{DS} can be extremely large, the highest value is:

 $V_{OUT(max)} = V_{IN}$