SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER

Features

- · Metal silicon junction, majority carrier conduction
- · Low power loss, high efficiency
- Guard ring for overvoltage protection
- · High current capability, low forward voltage drop
- · High surge capability
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications

Solderable Ends D_2 $D_1 = \frac{1.7}{1.5}$ $D_2 = D_{0.203}^{+0}$

Dimensions in millimeters MiniMELF (DO-213AA)

Mechanical Data

- · Case: MiniMELF (DO-213AA), molded plastic body
- Terminals: Solder plated, solderable per MIL-STD-750, method 2026
- · Polarity: Color band denotes cathode end
- Mounting Position: Any

Absolute Maximum Ratings and Characteristics

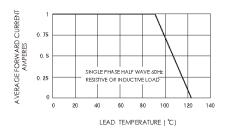
Ratings at 25 $^{\circ}$ C ambient temperature unless otherwise specified, single phase, half wave, resistive or inductive load. For capacitive load, derate by 20%

Parameter	Symbols	LM5817	LM5818	LM5819	Units
Maximum Repetitive Peak Reverse Voltage	V_{RRM}	20	30	40	V
Maximum RMS Voltage	V_{RMS}	14	21	28	V
Maximum DC Blocking Voltage	V_{DC}	20	30	40	V
Maximum Average Forward Rectified Current	I _{F(AV)}	1			Α
Peak Forward Surge Current 8.3 ms Single Half Sine Wave Superimposed on Rated Load(JEDEC methode)	I _{FSM}		25		Α
Maximum Instantaneous Forward Voltage at $I_F = 1 A$ at $I_F = 3 A$	V _F	0.45 0.75	0.55 0.875	0.6 0.9	V
Maximum Instantaneous Reverse Current at $T_A = 25 ^{\circ}\text{C}$ Rated DC Blocking Voltage ¹⁾ $T_A = 100 ^{\circ}\text{C}$	I _R	0.5 10			mA
Typical Junction Capacitance ²⁾	CJ	110			pF
Typical Thermal Resistance, Junction to Ambient ³⁾ Typical Thermal Resistance, Junction to Terminal ⁴⁾	$R_{ heta JA} \ R_{ heta JL}$	75 30			°C/W
Operating Junction Temperature Range	Tj	- 55 to + 125			°C
Storage Temperature Range	T _{stg}	- 55 to + 150			°C

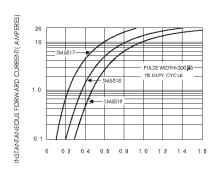
 $^{^{1)}\,\}text{Pulse}$ test: 300 μs pulse width, 1% duty cycle

⁴⁾ Thermal resistance junction to terminal 0.24" X 0.24"(6 X 6 mm) copper pads to each terminals

SEMTECH ELECTRONICS LTD.



 $^{^{\}rm 2)}$ Mearsured at 1 MHz and reverse voltage of 4 V


³⁾ Thermal resistance junction to ambient 0.24" X 0.24"(6 X 6 mm) copper pads to each terminals

LM5817 THRU LM5819

FIG.1-FORWARD CURRENT DERATING CURVE

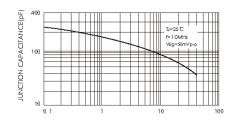
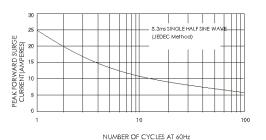


FIG.3-TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS



INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

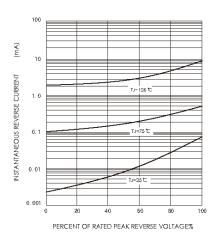

FIG.5-TYPICAL JUNCTION CAPACITANCE

FIG.2-MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

FIG.4-TYPICAL REVERSE CHARACTERISTICS

SEMTECH ELECTRONICS LTD.

