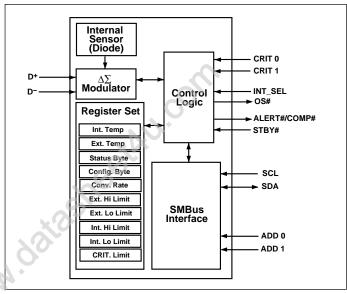


TC1066

*Patent Pending

ACPI-Compliant SMBus Thermal Sensor with External Diode Input


FEATURES

- Specifically ACPI-Compliant
- Backward Compliant to Older APM Systems
- Includes Internal and External Sensing Capability
- Outputs Temperature As 8-Bit Digital Word
- Solid State Temperature Sensing; 1°C Resolution
- 3.0 5.5V Operating Range
- Independent Internal and External Threshold Set-Points With ALERT#/COMP# Interrupt Output
- SMBus 2-Wire Serial Interface
- Optional CRITICAL Set-Point for Full ACPI Compliant Implementation
- Up To Nine TC1066s May Share the Same Bus
- Standby Mode for Low Standby Power
- 16-Pin Plastic QSOP Package

TYPICAL APPLICATIONS

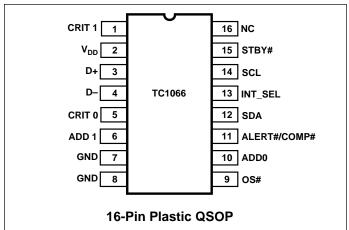
- Thermal Protection For Intel "Deschutes" Pentium™ II and Other High Performance CPUs with Integrated On-Board Diode — No Sensor Mounting Problems!
- Accurate Thermal Sensing From Any Si Junction Diode
- Thermal Management in Electronic Systems: Computers, Network Equipment, Power Supplies

BLOCK DIAGRAM

GENERAL DESCRIPTION

The TC1066 is a serially programmable temperature sensor optimized for monitoring modern high performance CPUs with on-board integrated thermal diodes. Temperature data is converted from the CPU's thermal diode outputs and made available as an 8-bit digital word.

Communication with the TC1066 is accomplished via the standard System Management Bus (SMBus) commonly used in modern computer systems. This permits reading the current internal/external temperature, programming the threshold setpoints, and configuring the device. Additionally, an interrupt is generated on the ALERT#/COMP# pin when temperature moves outside the preset threshold windows in either direction. A separate CRITICAL setpoint is provided through external hardwiring for "fail safe" operation per ACPI guidelines.


A Standby command may be sent via the SMBus or by signaling the STBY# input pin to activate the low-power Standby mode. Registers can be accessed while in Standby mode. Address selection inputs allow up to nine TC1066s to share the same 2-wire SMBus for multi-zone monitoring.

All registers can be read by the host, and both polled and interrupt driven systems are easily accommodated. Small size, low installed cost, and ease of use make the TC1066 an ideal choice for implementing sophisticated system management schemes, such as ACPI.

ORDERING INFORMATION

Part No.	Package	Temp. Range
TC1066MQR	16-Pin QSOP	-55°C to +125°C
TCM1617EV	Evaluation Kit	

PIN CONFIGURATION

TC1066

ABSOLUTE MAXIMUM RATINGS*

Power Supply Voltage (V _{DD})	6V
Voltage On Any Pin (GND - 0.3	$(3V)$ to $(V_{DD} + 0.3V)$
Operating Temperature (T _A)	–55°C to +125°C
Storage Temperature (T _{STG})	–65°C to +150°C
SMBus Input/Output Current	1 mA to +50 mA
D- Input Current	±1 mA
Max. Power Dissipation (P _D)	330 mW

*Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS: $V_{DD} = 3.3V$, $-55^{\circ}C \le T_{A} \le 125^{\circ}C$, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Power Supp	oly					
V_{DD}	Power Supply Voltage	-55 ≤ T _A ≤ +125°C	3.0	_	5.5	V
V _{UV-LOCK}	V _{DD} Undervoltage Lockout Threshold		2.4	2.80	2.95	V
V _{POR}	Power-On Reset Threshold	V _{DD} Falling Edge	1.0	1.7	2.3	V
I _{DD}	Operating Current	0.25 Conv./Sec Rate SMBus Inactive (Note 1)	_	_	70	μΑ
I _{DD}	Operating Current	2 Conv./Sec Rate SMBus Inactive (Note 1)	_	_	180	μΑ
I _{DD-STANDBY}	Standby Supply Current	V _{DD} = 3.3V SMBus Active	_	_	100	μΑ
I _{DD-STANDBY}	Standby Supply Current	V _{DD} = 3.3V, SMBus Inactive	_	_	10	μΑ
I _{CRIT-BIAS}	CRIT[1:0] Bias Current	Power-Up Only	_	160	_	μΑ
I _{ADD-BIAS}	ADD[1:0] Bias Current	Power-Up Only	_	160	_	μΑ
ALERT#/CC	MP# Output					
V _{OL}	Output Low Voltage	I _{OL} = 1.0 mA (Note 3)	_	_	0.4	V
OS# Output	t					
V _{OL}	Output Low Voltage	I _{OL} = 1.0 mA (Note 3)	_	_	0.4	V
ADD[1:0], C	RIT [1:0] Inputs		'		1	
V _{IL}	Logic Input Low		_	_	V _{DD} x .3	V
V _{IH}	Logic Input High		V _{DD} x .7	_	_	V
STBY# Inpu	ıt				'	
V _{IL}	Logic Input Low			_	V _{DD} x .3	V
V _{IH}	Logic Input High		V _{DD} x .7	_	_	V
INT_SEL					1	
V _{IL}	Logic Input Low		_	_	V _{DD} x .3	V
V _{IH}	Logic Input High		V _{DD} x .7	_	 	V
R _P	Internal Pull-up Resistance		_	500	_	ΚΩ
Temp-to-Bit	ts Converter					
T _{RES}	Basic Temperature Resolution			1	T _	°C
T _{IERR}	Internal Diode Temperature	+60°C ≤ T _A ≤ +100°C	-2	_	+2	°C
	·	$0^{\circ}C \leq T_{A} \leq +125^{\circ}C$	-3	_	+3	°C
		$-55^{\circ}C \le T_A \le 0^{\circ}C$	_	±3		°C
T_{EERR}	External Diode Temperature	$+60^{\circ}C \le T_{A} \le +100^{\circ}C$	-3	_	+3	°C
	(Note 4)	$0^{\circ}C \le T_{A} \le +125^{\circ}C$	- 5		+5	°C
		$-55^{\circ}\text{C} \le \text{T}_{\text{A}} \le 0^{\circ}\text{C}$	_	±5		_ ~C

TC1066-1 12/7/99

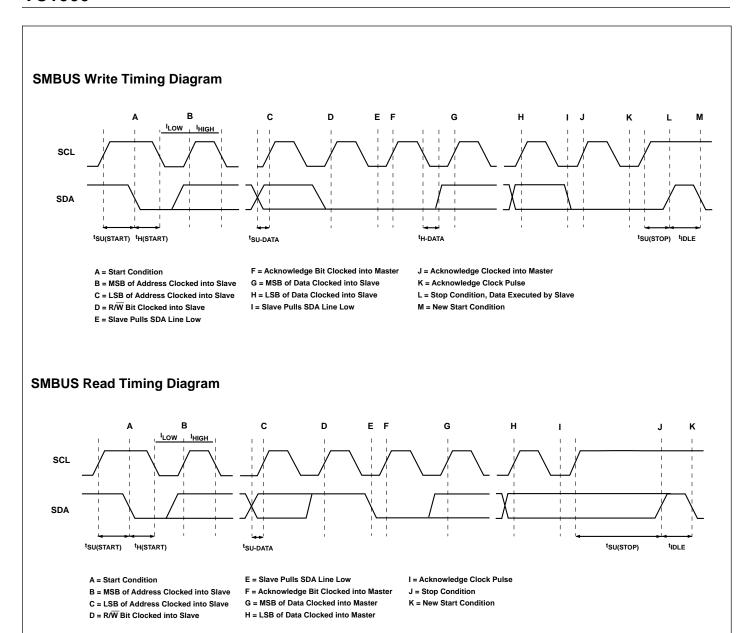
TC1066

ELECTRICAL CHARACTERISTICS (CONT): $V_{DD} = 3.3V, -55^{\circ}C \le T_{A} \le 125^{\circ}C,$ unless otherwise noted.

Symbol	(D \ (D \ 0.05)/		Min	Тур	Max	Unit
I _{DIODE-HIGH}			_	100	_	μΑ
I _{DIODE-LOW}	External Diode Low Source Current	(D+) - (D-) ~ 0.65V	_	10	_	μА
V _{D-SOURCE}	D- Source Voltage		_	0.7	_	V
t _{CONV}	Conversion Time	From CHIP STOP to Conv. Complete (Note 2)	54	83	112	msec
ΔCR	Conversion Rate Accuracy	See Conversion Rate Register Desc.	-35	_	+35	%
2-Wire SMBu	ıs Interface					
V _{IH}	Logic Input High		2.2	_	_	V
V _{IL}	Logic Input Low		_	_	.8	V
V _{OL}	SDA Output Low	I _{OL} = 2 mA (Note 3) I _{OL} = 4 mA (Note 3)	_	_	0.4 0.6	V V
C _{IN}	Input Capacitance SDA, SCL		_	5	_	pF
I _{LEAK}	I/O Leakage		-1	0.1	1	μΑ

SMBus PORT AC TIMING: 3.3V, $-55 \le (T_A = T_J) \le 125$ °C; $C_L = 80$ pF, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
f _{SMB}	SMBus Clock Frequency		10	_	100	KHz
t _{LOW}	Low Clock Period	10% to 10%	4.7	_	_	μsec
t _{HIGH}	High Clock Period	90% to 90%	4	_	_	μsec
t _R	SMBus Rise Time	10% to 90%	_	_	1,000	nsec
t _F	SMBus Fall Time	90% to 10%	_	_	300	nsec
t _{SU(START)}	Start Condition Setup Time (for Repeated Start Condition)	90% SCL to 10% SDA	4	_	_	μsec
t _{H(START)}	Start Condition Hold Time		4	_	_	μsec
t _{SU-DATA}	Data in Setup Time		1000	_	_	nsec
t _{H-DATA}	Data in Hold Time		1250	_	_	nsec
t _{SU(STOP)}	Stop Condition Setup Time		4	_	_	μsec
t _{IDLE}	Bus Free Time Prior to New Transition		4.7	_	_	μsec


NOTES: 1. Operating current is an average value (including external diode injection pulse current) integrated over multiple conversion cycles. Transient current may exceed this specification.

^{2.} For true reccurring conversion time see Conversion Rate register description.

^{3.} Output current should be minimized for best temperature accuracy. Power dissipation within the TC1066 will cause self-heating and temperature drift error.

^{4.} Refer to Application Note 64.

TC1066

PIN DESCRIPTION

Pin Number	Symbol	Туре	Description
2	V _{DD}	Power	Power Supply Input
3	D+	Bi-Directional	Current Source and A/D Positive Input
4	D-	Bi-Directional	Current Sink and A/D Negative Input
6,10	ADD[1:0]	Input	Address Select Pins (See Address Decode Table)
7,8	GND	Power	System Ground
11	ALERT#/COMP#	Output	SMBus Interrupt (SMBALERT#) or Comparator Output
12	SDA	Bi-Directional	SMBus Serial Data
14	SCL	Input	SMBus Serial Clock
15	STBY#	Input	Standby Enable
1,5	CRIT[1:0]	Input	CRITICAL Setpoint Bits (See CRITICAL Setpoint Decode Table)
9	OS#	Output	Open Collector, Low-True "Over-Temperature" Warning Output
13	INT_SEL	Input	Selects ALERT# or COMP# Output on Pin 11
16	NC	_	Not Connected

PIN DESCRIPTION SCL

Input. SMBus serial clock. Clocks data into and out of the TC1066. See System Management Bus Specification, rev. 1.0, for timing diagrams.

SDA

Bidirectional. Serial data is transferred on the SMBus in both directions using this pin. See System Management Bus Specification, rev. 1.0, for timing diagrams.

ADD1, ADD0

Inputs. Sets the 7-bit SMBus address. These pins are "tri-state," and the SMBus addresses are specified in the Address Decode Table.

(NOTE: The tri-state scheme allows up to nine TC1066s on a single bus. A match between the TC1066's address and the address specified in the serial bit stream must be made to initiate communication. Many SMBus-compatible devices with other addresses may share the same 2-wire bus (see System Management Bus Specification, rev. 1.0, for address allocations). These pins are only active at power-on reset, and will latch into the appropriate states.

ALERT#/COMP#*

Output, Open Collector, Active Low. The ALERT# output corresponds to the general SMBALERT# signal and indicates an interrupt event. The TC1066 will respond to the standard SMBus Alert Response Address (see SMBus Specification 1.0) and associated protocol when ALERT# is asserted. Normally, the ALERT# output will be asserted and latched when any of the following occurs:

- 1. INT_TEMP equal to or exceeds INT_HLIM
- 2. INT TEMP below INT LLIM
- 3. EXT_TEMP equal to or exceeds EXT_HLIM
- 4. EXT TEMP below EXT LLIM
- 5. External Diode "Open"

The operation of the ALERT# output is controlled by the MASK1 bit in the CONFIG register. If the MASK1 bit is set to "1," no interrupts will be generated on ALERT#. The ALERT# output is cleared and re-armed by the Alert Response Address (ARA). This output may be WIRE-ORed with similar outputs from other SMBus devices. If the alarm condition persists after the ARA, the ALERT# output will be immediately re-asserted.

(**NOTE:** A pull-up resistor is necessary on ALERT# since it is an open-drain output. Current sourced from the pull-up resistor causes power dissipation and may cause internal heating of the TC1066. To avoid affecting the accuracy of internal temperature readings, the pull-up resistors should be made as large as possible.)

Normally the COMP# output will be asserted upon the following events:

- 1. EXT TEMP equal to or exceeds EXT HLIM
- 2. External Diode "Open"

COMP# will be de-asserted upon the following event: EXT_TEMP below EXT_LLIM.

The operation of the COMP# output is controlled by the MASK1 bit in the CONFIG register. If the MASK1 bit is set to "1," no interrupts will be generated on COMP#. This output may be WIRE-ORed with similar outputs from other SMBus devices. Note: A pull-up resistor is necessary on COMP# since it is an open-drain output. Current sourced from the

TC1066

pull-up resistor causes power dissipation and may cause internal heating of the TC1066. To avoid affecting the accuracy of internal temperature readings, the pull-up resistors should be made as large as possible. *Pin 11's function is selected with pin 13 (INT_SEL) — see INT_SEL.

INT SEL

Input. The operation of Pin 11 is defined by the state of this pin. There is an internal pull-up to V_{DD} . If INT_SEL is high, Pin 11 will function as ALERT#. If INT_SEL is grounded, Pin 11 will function as COMP#.

STBY#

Input. The activation of Standby mode may be achieved using either the STBY# pin or the CHIP STOP bit (CONFIG register). If STBY# is pulled low, the TC1066 unconditionally enters its low-power Standby mode (I_DD = 10 μA , max). The temperature-to-digital conversion process is halted, but ALERT# and OS# remain functional. The TC1066's bus interface remains active, and all registers may be read from and written to normally. The INT_TEMP and EXT_TEMP registers will contain whatever data was valid at the time of Standby. (Transitions on SDA or SCL due to external bus activity may increase the Standby power consumption.)

CRIT [1:0]

Inputs. These digital pins determine the temperature threshold for the CRITICAL setpoint when the 1066 is first powered up. They must be tied either to Ground or to V_{DD} , or they must be left floating. See the CRITICAL setpoint decode table for details.

OS#

Output. Open Collector, low-true digital output which asserts when *either* INT_TEMP or EXT_TEMP trips the CRITICAL setpoint. This interrupt *cannot be masked.*

D+

Bi-directional. This pin connects to the anode of the external diode and is the positive A/D input. Current is injected into the external diode from the TC1066, and the temperature proportional V_{BE} is measured and converted to digital temperature data.

D-

Bi-directional. This pin connects to the cathode of the external diode. Current is sunk from the external diode into the TC1066 through this pin. It also is the negative input terminal to the TC1066's A/D converter. This node is kept at approximately 0.7V above GROUND.

V_{DD}

Input. Power supply input. See electrical specifications.

GND

Input. Ground return for all TC1066 functions.

FUNCTIONAL DESCRIPTION

The TC1066 acquires and converts temperature information from two separate sources, both silicon junction diodes, with a basic accuracy of $\pm 1^{\circ} C$. One is located on the TC1066 die; the other is connected externally. This external diode may be located on another IC die. The analog-to-digital converter on the TC1066 alternately converts temperature data from the two sensors and stores them separately in internal registers.

The system interface is a slave SMBus port with an ALERT# (SMBALERT#) and COMP# interrupt outputs. The ALERT# interrupt is triggered when one or more of four preset temperature thresholds are tripped (see Figure 1).

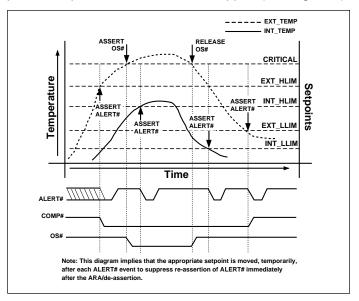


Figure 1. Temperature-vs-Setpoint Event Generation

These four thresholds are user-programmable via the SMBus port. The COMP# interrupt is triggered when EXT_TEMP equals or exceeds EXT_HLIM. Also, there is a fifth independent, hardware programmable threshold (CRITICAL) that trips its own interrupt (OS#) for an unconditional warning. Additionally, the temperature data can be read at any time through the SMBus port. Nine SMBus addresses are programmable for the TC1066, which allows for a multi-sensor configuration. Also, there is low-power Standby mode where temperature acquisition is suspended.

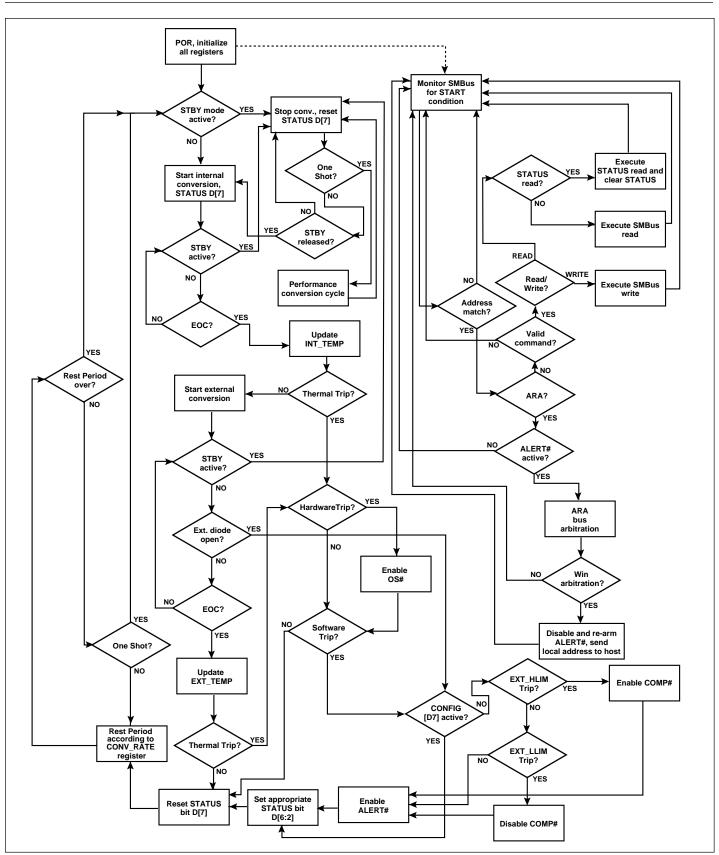


Figure 2. TC1066 Functional Description Flowchart

TC1066

STANDBY MODE

The TC1066 allows the host to put it into a low power mode ($I_{DD} = 10~\mu A$, max) Standby mode. In this mode, the A/D converter is halted, and the temperature data registers are frozen. The SMBus port operates normally. Standby mode can be enabled with either the STBY# input pin or the CHIP STOP bit in the CONFIG register. The following table summarizes this operation.

	Standby Mode Operation									
STBY#	Chip Stop Bit	One Shot?	Operating Mode							
0	Don't Care	Don't Care	Standby							
1	0	Don't Care	Normal							
1	1	No	Standby							
1	1	Yes	Normal (1 Conversion Only, then Standby)							

SMBus SLAVE ADDRESS

The two pins ADD1 and ADD0 are tri-state input pins which determine the 7-bit SMBus slave address of the TC1066. The address is latched during POR. The allowable addresses are summarized in the table below.

Address Decode Table							
ADD0	ADD1	SMBus Address					
0	0	0011 000					
0	open (3-state)	0011 001					
0	1	0011 010					
open (3-state)	0	0101 001					
open (3-state)	open (3-state)	0101 010					
open (3-state)	1	0101 011					
1	0	1001 100					
1	open (3-state)	1001 101					
1	1	1001 110					

SERIAL PORT OPERATION

The Serial Clock input (SCL) and bi-directional data port (SDA) form a 2-wire bi-directional serial port for programming and interrogating the TC1066. The following conventions are used in the bus architecture in the followingtable.

All transfers take place under control of a host, usually a CPU or microcontroller, acting as the Master, which provides the clock signal for all transfers. The TC1066 always operates as a slave. The serial protocol is illustrated in Figure 3. All data transfers have two phases; all bytes are transferred MSB first. Accesses are initiated by a start condition (START), followed by a device address byte and one or more data bytes. The device address byte includes a Read/Write selection bit. Each access must be terminated

by a Stop Condition (STOP). A convention called *Acknowledge* (ACK) confirms receipt of each byte. Note that SDA can change only during periods when SCL is LOW (SDA changes while SCL is High are reserved for Start and Stop conditions.)

TC1066 Serial Bus Conventions						
Term	Explanation					
Transmitter	The device sending data to the bus.					
Receiver	The device receiving data from the bus.					
Master	The device which controls the bus: initiating transfers (START), generating the clock, and terminating transfers (STOP).					
Slave	The device addressed by the master.					
Start	A unique condition signaling the beginning of a transfer indicated by SDA falling (High – Low) while SCL is high.					
Stop	A unique condition signaling the end of a transfer indicated by SDA rising (Low – High) while SCL is high.					
ACK	A receiver acknowledges the receipt of each byte with this unique condition. The receiver drives SDA low during SCL high of the ACK clock-pulse. The Master provides the clock pulse for the ACK cycle.					
Busy	Communication is not possible because the bus is in use.					
NOT Busy	When the bus is idle, both SDA and SCL will remain high.					
Data Valid	The state of SDA must remain stable during the High period of SCL in order for a data bit to be considered valid. SDA only changes state while SCL is low during normal data transfers (see Start and Stop conditions).					

Start Condition (START)

The TC1066 continuously monitors the SDA and SCL lines for a start condition (a High to Low transition of SDA while SCL is High), and will not respond until this condition is met.

Address Byte

Immediately following the Start Condition, the host must transmit the address byte to the TC1066. The states of ADD1 and ADD0 during power-up determine the 7-bit SMBus address for the TC1066. The 7-bit address transmitted in the serial bit stream must match for the TC1066 to respond with an Acknowledge (indicating the TC1066 is on the bus and ready to accept data). The eighth bit in the Address Byte is a Read-Write Bit. This bit is 1 for a read operation or 0 for a write operation.

TC1066

Write Byte Format

S	ADDRESS	WR	ACK	COMMAND	ACK	DATA	ACK	Р
	7 Bits			8 Bits		8 Bits		

Slave Address

Command Byte: selects which register you are writing to.

flow direction.

Data Byte: data goes into the register set by the command byte.

Read Byte Format

s	ADDRESS	WR	ACK	COMMAND	ACK	S	ADDRESS	RD	ACK	DATA	NACK	Р
	7 Bits			8 Bits			7 Bits			8 Bits		
	Slave Address			Command Byte which register y			Slave Address due to change	•		,	e: reads for	

Send Byte Format

S	ADDRESS	WR	ACK	COMMAND	ACK	Р
	7 Bits			8 Bits		

Command Byte: sends command with no data, usually used for one-shot command.

reading from.

Receive Byte Format

S	ADDRESS	RD	ACK	DATA	NACK	Р
	7 Bits			8 Bits		

command byte.

Data Byte: reads data from the register commanded by the last Read Byte.

S = Start Condition

P = Stop Condition

Shaded = Slave Transmission

Figure 3. SMBus Protocols

TC1066

Acknowledge (ACK)

Acknowledge (ACK) provides a positive handshake between the host and the TC1066. The host releases SDA after transmitting eight bits, then generates a ninth clock cycle to allow the TC1066 to pull the SDA line Low to acknowledge that it successfully received the previous eight bits of data or address.

Data Byte

After a successful ACK of the address byte, the host must transmit the data byte to be written or clock out the data to be read. (See the appropriate timing diagrams.) ACK will be generated after a successful write of a data byte into the TC1066.

Stop Condition (STOP)

Communications must be terminated by a stop condition (a Low to High transition of SDA while SCL is High). The Stop Condition must be communicated by the transmitter to the TC1066. (See TCN75 data sheet for serial bus timing diagrams.)

	Command Byte Description					
Command	Code	Function				
RIT	00h	Read Internal Temp (INT_TEMP)				
RET	01h	Read External Temp (EXT_TEMP)				
RS	02h	Read Status Byte (STATUS)				
RC	03h	Read Configuration Byte (CONFIG)				
RCR	04h	Read Conversion Rate Byte (CONV_RATE)				
RIHL	05h	Read Internal High Limit (INT_HLIM)				
RILL	06h	Read Internal Low Limit (INT_LLIM)				
REHL	07h	Read External High Limit (EXT_HLIM)				
RELL	08h	Read External Low Limit (EXT_LLIM)				
WC	09h	Write Configuration Byte (CONFIG)				
WCR	0Ah	Write Conversion Rate Byte (CONV_RATE)				
WIHL	0Bh	Write Internal High Limit (INT_HLIM)				
WILL	0Ch	Write Internal Low Limit (INT_LLIM)				
WEHL	0Dh	Write External High Limit (EXT_HLIM)				
WELL	0Eh	Write External Low Limit (EXT_LLIM)				
OSHT	0Fh	One Shot Temp Measurement				
RMID	FEh	Read Manufacturer ID (MFR_ID)				
RMREV	FFh	Read Manufacturer Revision Number (MFR_REV)				

NOTE: Proper device operation is NOT guaranteed if undefined locations (10h to FDh) are addressed. In case of erroneous SMBus operation (RECEIVE_BYTE command issued immediately after WRITE_BYTE command) the TC1066 will ACKnowledge the address and return 1111 1111b to signify an error. Under no condition will it implement an SMBus "timeout."

REGISTER SET AND PROGRAMMER'S MODEL TC1066 Command Set

The TC1066 supports four SMBus command protocols. These are READ_BYTE, WRITE_BYTE, SEND_BYTE, and RECEIVE_BYTE. See System Management Bus Specification Rev. 1.0 for details.

Configuration Register (Config), 8-Bits, Read/Write

	Configuration Register (Config)							
	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
Ī	Mask1	Chip Stop	Chip Stop Reserved					

Bit	POR State	Function	Operation
D[7]	0	Interrupt Mask (see text)	1 = mask ALERT#/ COMP# 0 = don't mask ALERT #/COMP#
D[6]	0	Standby switch	1 = standby, 0 = normal
D[5] – D[0]	0	Reserved – Always returns zero when read.	N/A

A/D Conversion Rate Register (CONV_RATE), 8-Bits, Read/Write

A/D Conversion Rate Register (CONV_RATE) D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0] Reserved MSB X LSB

Bit	POR State	Function	Operation
D[7:3]	0	Reserved – Always returns zero when read.	N/A
D[2:0]	010b	Conversion rate bits.	See below.

A/D Conversion Rate Selection

D2 D1 D0 **Conversion Rate** Sa/sec 0.0625 0 0 0 0 0 1 0.125 0 1 0 0.25 0 1 0.5 1 1 0 0 1.0 1 0 1 2.0 1 1 0 4.0

NOTE: Conversion rate denotes actual sampling of both internal *and* external sensors.

8.0

1

1

1

TC1066

Temperature Registers, 8-Bits, Read-Only (INT_TEMP, EXT_TEMP)

The binary value (2's complement format) in these two registers represents temperature of the internal and external sensors following a conversion cycle. The registers are automatically updated in an alternating manner.

Internal Temperature Register (INT_TEMP)							
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
MSB x x x x x x LSB							

External Temperature Register (EXT_TEMP)							
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
MSB	х	х	х	х	х	х	LSB

Temperature Threshold Setpoint Registers, 8-Bits, Read-Write (INT_HLIM, INT_LLIM, EXT_HLIM, EXT_LLIM)

These registers store the values of the upper and lower temperature setpoints for event detection. The value is in 2's-complement binary. INT_HLIM and INT_LLIM are compared with the INT_TEMP value, and EXT_HLIM and EXT_LLIM are compared with EXT_TEMP. These registers may be written at any time.

Internal High Limit Setpoint Register (INT_HLIM)

D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
MSB	Х	Х	Х	Х	Х	Х	LSB

Internal Low Limit Setpoint Register (INT_LLIM)							
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
MSB	х	х	х	х	х	х	LSB

External High Limit Setpoint Register (EXT_HLIM)

D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
MSB	х	х	х	х	х	Х	LSB
					•		

External Low Limit Setpoint Register (EXT_LLIM)

D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
MSB	х	х	х	х	Х	х	LSB

NOTE: POR states:

IN I_HLIM	01111111b	+127°C
INT_LLIM	11001001b	−55°C
EXT_HLIM	01111111b	+127°C
EXT_LLIM	11001001b	–55°C

Critical Setpoint Register, 8-Bits (Reserved)

This register stores the value of the CRITICAL setpoint. It is not accessible through the SMBus port and only can be set with the CRIT[1:0] pins. The value in this register determines the OS# event threshold.

	Critical Limit Setpoint Register (Critical)								
D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]									
MSB	х	х	х	х	х	Х	LSB		

Critical Setpoint Decode Table

CRIT1	CRIT0	Binary	Critical Setpoint °C
0	0	01010101	85
0	open	01011010	90
0	1	01011111	95
open	0	01100100	100
open	open	01101001	105
open	1	01101110	110
1	0	01110011	115
1	open	01111000	120
1 1		01111101	125

In the two temperature data and four threshold setpoint registers, each unit value represents one degree (Celsius). The value is in 2's-complement binary format such that a reading of 00000000b corresponds to 0° C. Examples of this temperature-to-binary value relationship are shown in the following table.

Temperature-to-Digital Value Conversion (INT_TEMP, EXT_TEMP, INT_HLIM, INT_LLIM, EXT_HLIM, EXT_LLIM)

Actual Temperature	Rounded Temperature	Binary Value	Hex Value				
+130.00°C	+127°C	01111111	7F				
+127.00°C	+127°C	01111111	7F				
+126.50°C	+127°C	01111111	7F				
+25.25°C	+25°C	00011001	19				
+0.50°C	+1°C	00000001	01				
+0.25°C	0°C	00000000	00				
0.00°C	0°C	00000000	00				
_0.25°C	0°C	00000000	00				
_0.50°C	0°C	00000000	00				
_0.75°C	−1°C	11111111	FF				
−1.00°C	−1°C	11111111	FF				
−25.00°C	−25°C	11100111	E7				
−25.25°C	–25°C	11100110	E7				
−54.75°C	–55°C	11001001	C9				
−55.00°C	–55°C	11001001	C9				
−65.00°C	–65°C	10111111	BF				

TC1066

Status Register (Status), 8-Bits, Read Only:

Status Register (Status) D[7] D[6] D[3] D[2] D[1] D[0] D[5] D[4] Busy Flag1 Flag2 Flag3 Flag4 Flag5 Flag6 Reserved

Bit(s)	POR State	Function	Operation*		
D[7]	0	Signal A/D converter is busy.	1 = A/D busy, 0 = A/D idle		
D[6]	0	Interrupt flag for INT_HLIM event	1 = interrupt occurred, 0 = none		
D[5]	0 Interrupt flag for INT_LLIM event		1 = interrupt occurred, 0 = none		
D[4]	0	Interrupt flag for EXT_HLIM event	1 = interrupt occurred, 0 = none		
D[3]	0 Interrupt flag for EXT_LLIM event		1 = interrupt occurred, 0 = none		
D[2]	0	External diode "fault" flag	1 = external diode fault 0 = external diode OK		
D[1:0]	0	Reserved – Always returns zero.	N/A		

NOTE: All status bits are cleared after a read operation is performed on STATUS. The EXT_TEMP register will read +127°C if an external diode "open" is detected.

Manufacturer's Identification Register (MFR_ID), 8-Bits, Read Only:

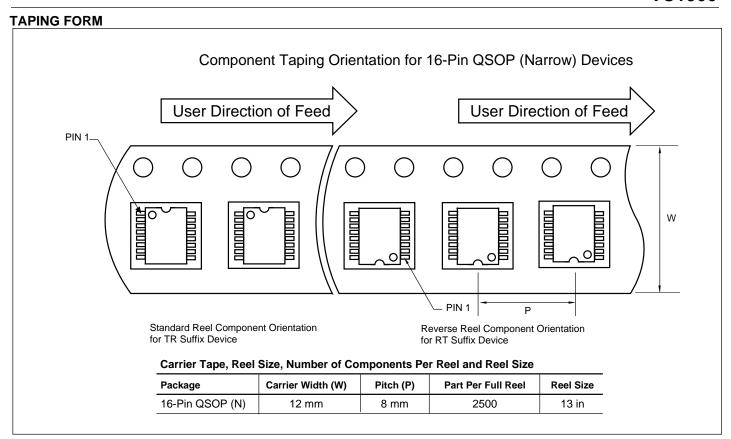
Ма	Manufacturer's Identification Register (MFR_ID)							
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	
MSB	Х	Х	Х	Х	Х	Х	LSB	

Manufacturer's Revision Register (MFR_REV), 8-Bits, Read Only:

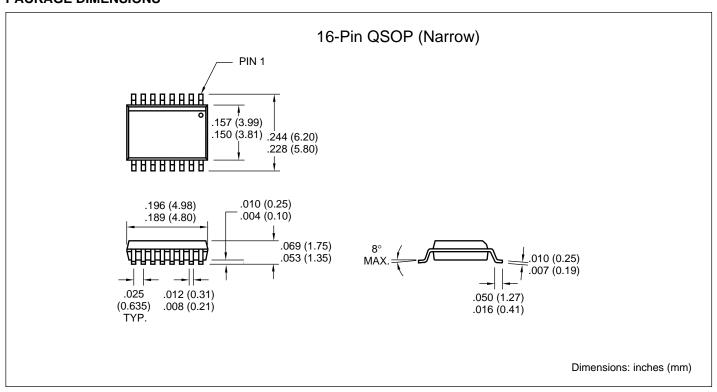
Manufacturer's Revision Register (MFR_REV)								
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	
MSB	Х	Х	Х	Х	Х	Х	LSB	

Register Set Summary:

The TC1066's register set is summarized in the following table. All registers are 8-bits wide.


Name	Description	POR State	Read	Write	
INT_TEMP	Internal sensor temperature (2's complement)	0000 0000b*	1		
EXT_TEMP	External sensor temperature (2's complement)	0000 0000b*	1		
STATUS	STATUS register	0000 0000b	1		
CONFIG	CONFIG register	0000 0000b	1	1	
CONV_RATE	A/D conversion rate register	0000 0010b	1	✓	
INT_HLIM	Internal high limit (2's complement)	0111 1111b	1	1	
INT_LLIM	Internal low limit (2's complement)	1100 1001b	1	1	
EXT_HLIM	External high limit (2's complement)	0111 1111b	1	1	
EXT_LLIM	External low limit (2's complement)	1100 1001b	✓	1	
MFR_ID	ASCII for letter "T" (Microchip)	0101 0100b	1		
MFR_REV	Serial device revision #	**	1		
CRITICAL	CRITICAL limit (2's complement)	N/A		√ ***	

*NOTE: The INT_TEMP and EXT_TEMP register immediately will be updated by the A/D converter after POR. If STBY# is low at power-up, INT_TEMP and EXT_TEMP will remain in POR state (0000 0000b).


^{**}MFR_REV will sequence 01h, 02h, 03h, etc. by mask changes.

^{***}CRITICAL only can be written via the CRIT[1:0] pins. It cannot be accessed through the SMBus port.

TC1066

PACKAGE DIMENSIONS

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Austin

Analog Product Sales 8303 MoPac Expressway North Suite A-201 Austin, TX 78759 Tel: 512-345-2030 Fax: 512-345-6085

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Boston

Analog Product Sales Unit A-8-1 Millbrook Tarry Condominium 97 Lowell Road Concord, MA 01742 Tel: 978-371-6400 Fax: 978-371-0050

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Two Prestige Place, Suite 130 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

Mountain View

Analog Product Sales 1300 Terra Bella Avenue Mountain View, CA 94043-1836 Tel: 650-968-9241 Fax: 650-967-1590

New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131

Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

China - Beijing Microchip Technology Beijing Office

Unit 915 New China Hong Kong Manhattan Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Shanghai

Microchip Technology Shanghai Office Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

Hong Kong

Microchip Asia Pacific RM 2101, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office Divyasree Chambers Divyasiee Chambers
1 Floor, Wing A (A3/A4)
No. 11, OiShaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934

ASIA/PACIFIC (continued)

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850

Taiwan

Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

Denmark

Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Arizona Microchip Technology SARL Parc díActivite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Germany

Analog Product Sales Lochhamer Strasse 13 D-82152 Martinsried, Germany Tel: 49-89-895650-0 Fax: 49-89-895650-22

Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy

Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU

Tel: 44 118 921 5869 Fax: 44-118 921-5820

All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 1/01 Printed on recycled paper.

01/09/01

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchipis products as critical components in life support systems is not authorized except withen approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.