CMOS 8-Bit Microcontroller

TMPA8700PSN, TMPA8700PSF

The A8700PS is a One-Time PROM microcontroller with low-power 498 Kbits (a 60 Kbytes program memory and a 256 characters OSD font memory) electrically programmable read only memory for the A8700CH / CK / CM / CP / CS and A8701CH / CK / CM system evaluation. The A8700PS is pin compatible with the A8700CH / CK / CM / CP / CS and A8701CH / CK / CM. The operations possible with the A8700CH / CK / CM / CP / CS and A8701CH / CK / CM can be performed by writing programs and OSD font data to PROM. The A8700PS can write and verify in the same way as the TC571000 using an adaptor socket BMA1101 / BMA1102 and an EPROM programmer.

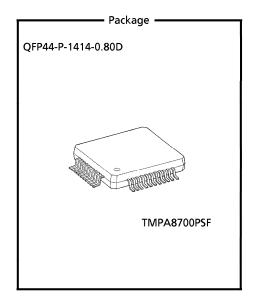
Part No.	OTP	RAM	Package	Adaptor Socket
TMPA8700PSN	60 Kh. daa . 99256 hita	2 Khutaa	SDIP42-P-600-1.78	BMA1101
TMPA8700PSF	60 Kbytes + $8 \times 9 \times 256$ bits	2 Kbytes	QFP44-P-1414-0.80D	BMA1102

980910FRP1

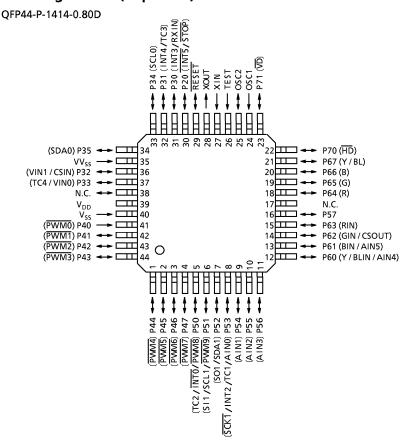
● For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled

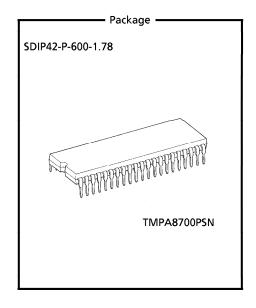
Ouality and Reliability Assurance / Handling Precautions.

■ TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, places ensure that TOSHIBA products are used within specified operating ranges as set forth in the developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

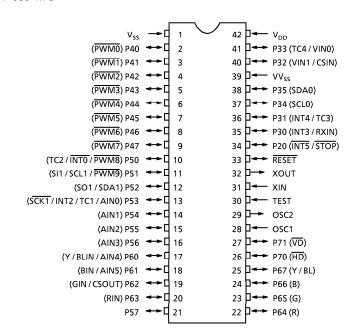

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOŚHIBA CORPORATION or others.


The information contained herein is subject to change without notice.



Purchase of TOSHIBA I² C components conveys a license under the Philips I² C Patent Rights to use these components in an I² C system, provided that the system conforms to the I² C Standard Specification as defined by Philips.


Pin Assignments (Top View)

Pin Assignments (Top View)

SDIP42-P-600-1.78

Pin Function

The A8700PS has two modes: MCU and PROM.

(1) MCU mode

In this mode, the A8700PS is pin compatible with the A8700CH / CK / CM / CP / CS and A8701CH / CK / CM (fix the TEST pin at low level).

(2) PROM mode

Pin Name (PROM Mode)	Input / Output	Functions	Pin Name (MCU Mode)			
A ₁₆			OSC1			
A ₁₅ to A ₁₂	Imm*	DDOM addrage in muite	P35, P34, P31, P30			
A ₁₁ to A ₈	Input	PROM address inputs	P67 to P64			
A ₇ to A ₀			P57 to P50			
D ₇ to D ₀	1/0	PROM data input / outputs	P47 to P40			
CE	la a cot	Chip enable signal input (active low)	P33			
ŌĒ	Input	Output enable signal input (active low)	P32			
PGM	Input	Program mode signal input (active low)	OSC2			
V _{PP}		+ 12.75 V / 5 V (Program supply voltage)	TEST			
Vcc	Power supply	+ 6.25 V / 5 V	V _{DD}			
GND		0 V	V _{SS} , VVSS			
P61		DDOM made setting him De fived at high level				
P70		PROM mode setting pin. Be fixed at high level.				
P20						
P63, P62, P60	Input	DDOM was do sotting win Do fined at level and				
P71		PROM mode setting pin. Be fixed at low level.				
RESET						
XIN	Input	Connect on S.M. In assillator to stability the sixty	armal state			
XOUT	Output	Connect an 8 MHz oscillator to stabilize the internal state.				

Operational Description

The following explains the A8700PS hardware configuration and operation. The configuration and functions of the A8700PS are the same as those of the A8700CS, except in that a one-time PROM is used instead of an on-chip mask ROM.

1. Operating Mode

The A8700PS has two modes: MCU and PROM.

1.1 MCU Mode

The MCU mode is activated by fixing the TEST / VPP pin at low level.

In the MCU mode, operation is the same as with the A8700CH / CK / CM / CP / CS (the TEST / V_{PP} pin cannot be used open because it has no built-in pull-down resistance).

Also, without the program corrective function, D / A converted (pulse width modulation) output, remote control signal processor, and RAM addresses $340_{\rm H}$ to $83F_{\rm H}$, the chip operates in the same way as the A8701CH / CK / CM.

Moreover, when using the chip to evaluate the A8701CH / CK / CM, do not set the registers used for these functions.

1.1.1 Program Memory and OSD Character Font Memory

The A8700PS has a 60 Kbytes (addresses 1100_H to FFFF_H in the MCU mode, address 11100_H to 1FFFF_H in the PROM mode) of program memory and a $8 \times 9 \times 256$ bits (addresses 4000_H to 4FFF_H in the PROM mode) of OSD character font memory.

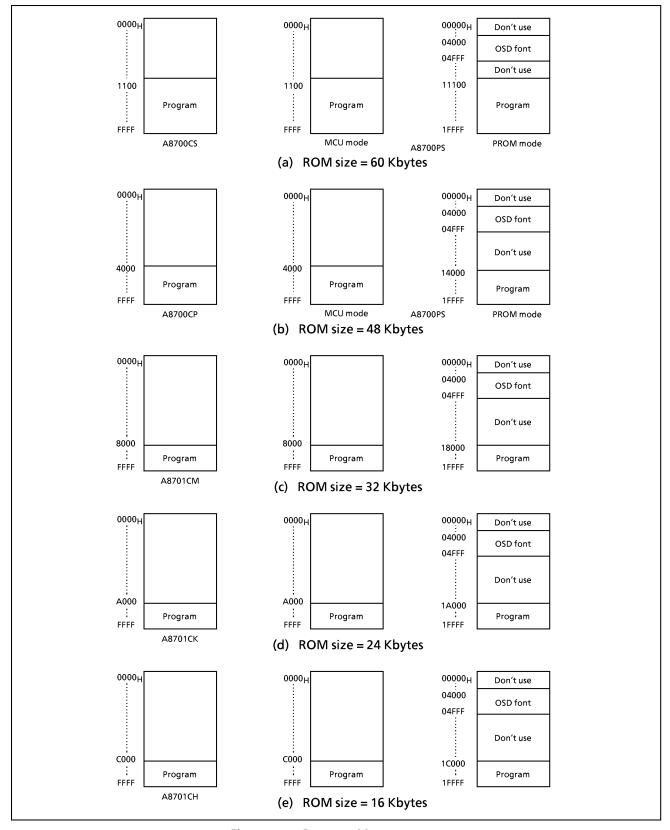


Figure 1-1. Program Memory Area

Note: Set the PROM programmer to access only the program strage area or OSD character font.

1.1.2 Data Memory

The A8700PS has an on-chip 2 Kbytes data memory (static RAM).

When using the chip to evaluate the A8700CH / CK / CM, do not use the data memory of address 440_{H} to $83F_{H}$.

When using the chip to evaluate the A8701CH / CK / CM, do not use the data memory of address $340_{\rm H}$ to $83F_{\rm H}$.

1.1.3 Input / Output Circuitry

(1) Control pins

The control pins of the A8700PS are the same as those of the A8700CH / CK / CM / CP / CS and A8701CH / CK / CM except that the TEST pin has no built-in pull-down resistance.

(2) 1/O ports

The I / O circuitries of A8700PS are the same as those of the A8700CH / CK / CM / CP / CS and A8701CH / CK / CM.

1.2 PROM Mode

The PROM mode is activated by setting the $\overline{\text{RESET}}$ pin and the ports P71 to P70, P63 to P60 and P20 as shown in Figure 1-2. The PROM mode is used to write and verify programs with a general-purpose PROM programmer. The high-speed programming mode can be used for program operation.

<u>The A8700PS is not supported an electric signature mode</u>, so the ROM type must be set to TC571000. Set the adaptor socket swich to "N".

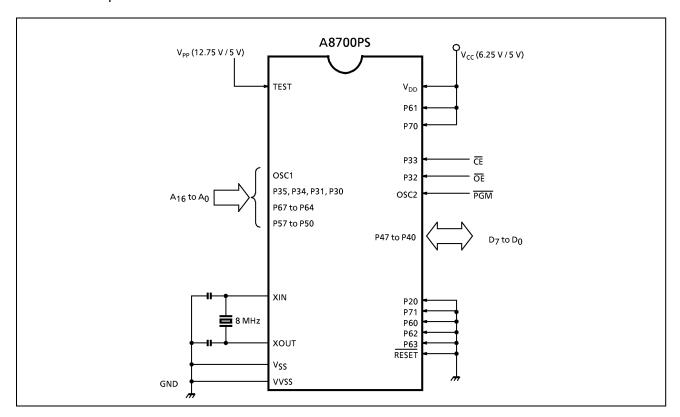


Figure 1-2. Setting for PROM Mode

Note: PROM programmer connection adaptor socket: BMA1101 / BMA1102

1.2.1 Programming Flowchart (High-Speed Programming Mode)

The high-speed programming mode is achieved by applying the program voltage (\pm 12.75 V) to the V_{PP} pin when V_{CC} = 6.25 V. After the address and input data are stable, the data is programmed by applying a single 0.1ms program pulse to the \overline{PGM} input. The programmed data is verified. If incorrect, another 0.1ms program pulse is applied. This process should be repeated (up to 25 times) until the program operates correctly. After that, change the address and input data, and program as before. When programming has been completed, the data in all addresses should be verified with V_{CC} = V_{PP} = 5 V.

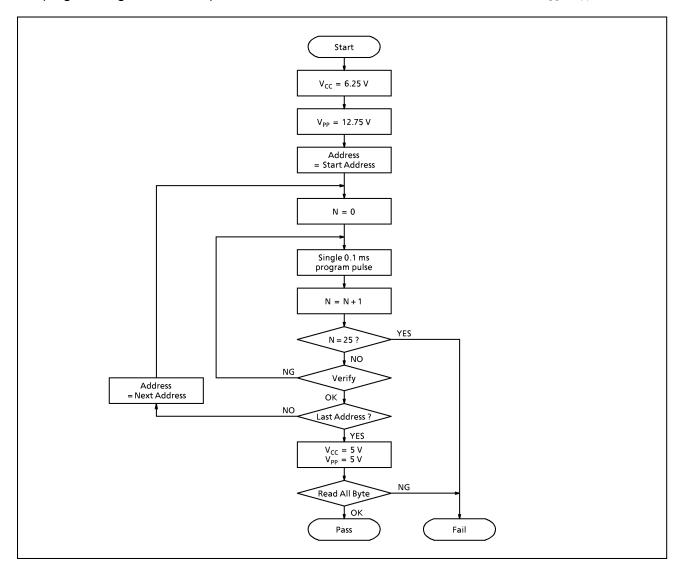


Figure 1-3. Flow Chart of High-Speed Programming

1.2.2 Writing Method for General-Purpose PROM Program

(1) Adapters

BMA1101 : TMPA8700PSN BMA1102 : TMPA8700PSF

(2) Adapter setting Switch (SW₁) is set to side N.

- (3) PROM programmer specifying
 - i) PROM type is specified to TC571000D.
 Writing voltage: 12.75 V (high-speed program mode)
 - ii) Data transfer (copy) (Note1)

In the A8700PS, EPROM is within the addresses $04000_{\rm H}$ to $04FFF_{\rm H}$ and $11100_{\rm H}$ to $1FFFF_{\rm H}$. Data is required to be transferred (copied) to the addresses where it is possible to write. The program area in MCU mode and PROM mode is referred to "Program memory area" in Figure 1-1.

Example: The following is executed in block transfer (copy) mode, with a ROM capacity of 60KB. 01100_{H} to $0FFFF_{H} \rightarrow 11100_{H}$ to $1FFFF_{H}$

iii) Writing address is specified. (Note 1)

Start address : 04000_H End address : 1FFFF_H

(4) Writing

Writing / Verifying is required to be executed in accordance with PROM programmer operating procedure.

- Note 1: The specifying method is referred to the PROM programmer description. Either write the data FF_H to the unused area or set the PROM programmer to access only the program storage area.
- Note 2: When MCU is set to an adapter or the adapter is set to PROM programmer, a position of pin 1 must be adjusted. If the setting is reversed, MCU, the adapter and PROM program is damaged.
- Note 3:The A8700PS does not support the electric signature mode (hereinafter referred to as "signature"). If the signature is used in PROM program, a device is damaged due to applying $12 \text{ V} \pm 0.5 \text{ V}$ to the address pin 9 (A₉). The signature must not be used.
- Note 4: Character code 00_H is fixed as blank data and character codes 01_H to 05_H cannot be used by users. Write "00" for all the data of address 04000_H to 04008_H , 04010_H to 04018_H , 04020_H to 04028_H , 04030_H to 04038_H , 04040_H to 04048_H and 04050_H to 04058_H in character ROM.

Electrical Characteristics

Absolute Maximum Ratings $(V_{SS} = 0 V)$

Characteristic	Symbol	Pins	Rating	Unit	
Supply Voltage	V_{DD}	_	– 0.3 to 6.5	V	
Programmable Voltage	V _{PP}	TEST / V _{PP} pin	- 0.3 to 13.0	V	
Input Voltage	V _{IN}	_	-0.3 to V _{DD} + 0.3	V	
Output Voltage	V _{OUT1}	_	-0.3 to V _{DD} + 0.3	٧	
Output Comment (Dendaria)	I _{OUT1}	Ports P2, P3, P4, P5, P64 to P67, P7	3.2	A	
Output Current (Per 1pin)	I _{OUT2}	Ports P60 to P63		mA	
Output Current (Total)	Σl _{OUT1}	Ports P2, P3, P4, P5, P64 to P67, P7	120	A	
Output Current (Total)	Σl _{OUT2}	Ports P60 to P63	120	mA	
Power Dissipation	P _D	_	600	mW	
Soldering Temperature (time)	T _{sld}	_	260 (10 s)	°C	
Storage Temperature	T _{stg}	_	– 55 to 125	°C	
Operating Temperature	T _{opr}	_	– 30 to 70	°C	

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded

Recommended Operating Conditions

 $(V_{SS} = 0 \text{ V}, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

Characteristic	Symbol	Pins	Test Condition	Min	Max	Unit
			NORMAL mode	4.5		
Supply Voltage	V _{DD}	_	IDLE mode	4.5	5.5	V
			STOP mode	2.0		
Input High Voltage	V _{IH1}	Except hysteresis input		V _{DD} × 0.70	V	<
Input High Voltage	V _{IH2}	Hysteresis input	_	V _{DD} × 0.75	V _{DD}	
	V _{IL1}	Except hysteresis input		V _{DD} × 0.30	\ \	
Input Low Voltage	V _{IL2}	Hysteresis input	_	U	V _{DD} ×0.25	
	fc (Note)	XIN, XOUT	_	1	8.0	
Clock Frequency	f	0561 0563	Normal freguency mode (FORS = 0)	2	12	MHz
	fosc	OSC1, OSC2	Double frequency mode (FORS = 1)	2	6	

Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Note 2: Clock frequency fc: Supply voltage range is specified in NORMAL1/2 mode and IDLE1/2 mode.

Furthermore, since the CPU clock serves dual purposes as a clock for the CCD slicer, always be sure to use an 8 MHz oscillator.

D.C. Characteristics

 $(V_{SS} = 0 \text{ V}, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

Characteristic	Symbol	Pins	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis inputs	_	_	_	0.9	_	V
I _{IN}		TEST	_					
Input Current	I _{IN2}	Open drain ports, Tristate ports	_	V _{DD} = 5.5 V, V _{IN} = 5.5 V / 0V	_	_	± 2	μ A
	I _{IN3}	RESET, STOP	_					
Input Resistance	R _{IN2}	RESET	_	_	100	220	450	k Ω
Output Leakage		Sink open drain ports	_	V _{DD} = 5.5 V, V _{OUT} = 5.5 V / 0 V			± 2	
Current	I _{LO2}	Tri-state ports	_	V _{DD} = 5.5 V, V _{OUT} = 5.5 V / 0 V]	_	12	μ Α
Output High Voltage	V _{OH2}	Tri-state ports	_	$V_{DD} = 4.5 \text{ V},$ $I_{OH} = -0.7 \text{ mA}$	4.1	_	_	V
Output Low Voltage	V _{OL}	Except XOUT, OSC2 and P63 to 60	_	V _{DD} = 4.5 V, I _{OL} = 1.6 mA	_	_	0.4	٧
Output Low Current	I _{OL3}	P63 to P60	_	V _{DD} = 4.5 V, V _{OL} = 1.0 V	_	20	_	mA
Supply Current in NORMAL Mode				$V_{DD} = 5.5 \text{ V}$	_	15	25	
Supply Current in IDLE Mode	I _{DD}	_	_	fc = 8 MHz (Note 3) V _{IN} = 5.3 V / 0.2 V	_	10	18	mA
Supply Current in STOP Mode				V _{DD} = 5.5 V V _{IN} = 5.3 V / 0.2 V	_	0.5	10	μA

Note 1: Typ. values show those at $T_{opr} = 25$ °C, $V_{DD} = 5$ V.

Note 2: Input Current I_{IN3} ; The current through resistor is not included.

Note 3: Supply Current I_{DD}; The current (Typ. 0.5 mA) through ladder resistors of ADC is included in NORMAL mode and IDLE mode.

A/D Conversion Characteristics

 $(T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

Characteristic	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Analog Reference Voltage	VAREF	_	Supplied from V _{DD} pin	_	V_{DD}	_	
Analog Reference Voltage Range	V _{ASS}	_	0 V, supplied from V _{SS} pin	_	0	_] ,,
	ΔV_{AREF}	_	$=V_{DD}-V_{SS}$	_	V_{DD}	_	_
Analog Input Voltage	VAIN	_	_	Vss	_	V_{DD}	
Nonlinearity Error	_			_	_	±1	
Zero Point Error	_		\	_	_	±2	LCD
Full Scale Error	_	_	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	_	_	±2	LSB
Total Error	_			_	_	±3	

A.C. Chracteristics

($V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, T_{opr} = -30 \text{ to } 70^{\circ}\text{C}$)

Characteristic	Symbol	Test Condition		Min	Тур.	Max	Unit
Machine Cycle Time	101		In NORMAL mode	0.5		4	
Iwachine Cycle Time	tcy	_	In IDLE mode	0.5	-		μ S
High Level Clock Pulse Width	t _{WCH}		For external clock operation	62.5			25
Low Level Clock Pulse Width	twcL		(XIN input), $fc = 8 MHz$	02.5		_	ns

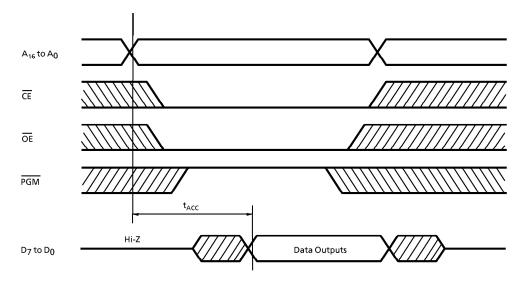
Recommended Oscillating Conditions $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter Oscillator		Frequency	Recomm	Recommended Constant		
		, ,		C ₁	C ₂	
Inight frequency	Ceramic Resonator	8 MHz	KYOCERA	KBR8.0M	30 pF	30 pF
	Crystal Oscillator	8 MHz	TOYOCOM	210B 8.0000	20 pF	20 pF
OSD LC Re	LC Resonator	6 MHz	токо	A285HCIS-13319		
	LC Resonator	12 MHz	токо	TBEHCIS-13306	_	_

(1) High-frequency Oscillation

(2) LC Resonator for OSD

Note: To keep reliable operation, shield the device electrically with the metal plate on its package mold surface against the high electric field, for example, by CRT (Cathode Ray Tube).

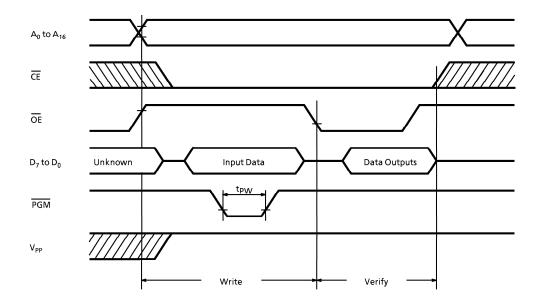

DC / AC Characteristics (PROM Mode)

 $(V_{SS} = 0 \text{ V}, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

(1) Read operation

Characteristic	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Input High Voltage	V _{IH4}	_	_	$V_{CC} \times 0.7$	_	V _{CC}	\
Input Low Voltage	V _{IL4}	_	_	0	_	V _{CC} × 0.12	>
Power Supply Voltage	Vcc	_					
Program Power Supply Voltage	V _{PP}	_	_	4.75	5.0	5.25	V
Address Access Time	t _{ACC}	_	$V_{CC} = 5.0 \pm 0.25 \text{ V}$	_	1.5 tcyc + 300	_	ns

Note: tcyc = 500 ns at 8 MHz



(2) High-speed programming operation ($T_{opr} = 25 \pm 5^{\circ}C$)

Characteristic	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Input High Voltage	V _{IH4}	_	_	$V_{CC} \times 0.7$	_	V _{CC}	V
Input Low Voltage	V _{IL4}	_	_	0	_	V _{CC} × 0.12	V
Power Supply Voltage	V _{CC}	_	_	6.0	6.25	6.5	V
Program Power Supply Voltage	V _{PP}	_	_	12.5	12.75	13.0	V
Initial Program Pulse Width	t _{PW}	_	V _{CC} = 6.0 V	0.095	0.1	0.105	ms

TOSHIBA

High-Speed Programing Timing

Note 1: When V_{CC} power supply is turned on or after, VPP must be increased. When V_{CC} power supply is turned off or before, VPP must be increased

Note 2: The device must not be set to the EPROM programmer or picked op from it under applying the program voltage (12.75 V \pm 0.25 V = V) to the VPP pin as the device is damaged.

Note 3:Be sure to execute the recommended programing mode with the recommended programing adaptor. If a mode or an adaptor except the above, the misoperation sometimes occurs.