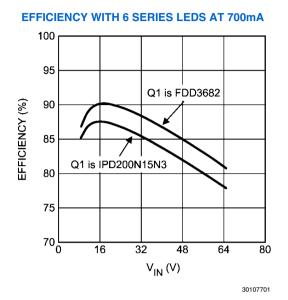
LM3423 Buck-Boost 2 Layer Evaluation Board


Introduction

This wide range evaluation board showcases the LM3423 NFET controller used with a buck-boost current regulator. It is designed to drive 4 to 8 LEDs at a maximum average LED current of 700mA from a DC input voltage of 10 to 70V.

The evaluation board showcases most features of the LM3423 including PWM dimming, fault and LED status flags, output overvoltage protection and input under-voltage lockout. Note that there are two revisions of this PCB. The documentation for the latest revision (551600305-002 RevA) is shown first. The schematic, layout and bill of materials for the first revision (551600305-001 Rev1) can be found at the end of this document.

The buck-boost circuit can be easily redesigned for different specifications by changing only a few components (see the *Alternate Designs* section found at the end of this application note). Note that design modifications can change the system efficiency. See the LM3423 datasheet for a comprehensive explanation of the device and application information.

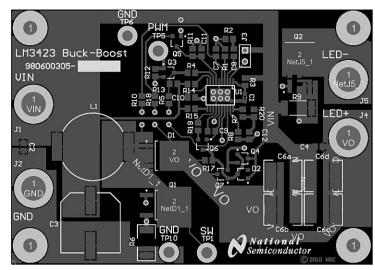
Schematic for 551600305-002 REVA

National Semiconductor Application Note 2010

James Patterson March 7, 2011

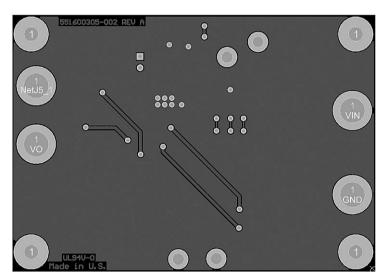
TP LED+ 6 D1 0 m v_{IN}⊚ LM3423 HSN /IN C2, C3 **FP10** HSF ENI 0 R10 > C8 R2 GND O COMF RPD RPD LED- 🧿 C4 IS DIM 02 SF C6_(a-d) v_{cc} C12 RCT VCC C7 VIN R20 GATE AGND R17 07 OVP PGND R13 🗲 R18 DIM OF Q4 nDIM DDRV D2 R19 05 R5 **≶** FLT DPOL w ٦ DAP RPD R1 C11 R15 C10 10 TIMR LRDY PWM 03 O GND О

© 2011 National Semiconductor Corporation 301077


Pin Descriptions

LM3423	LM3421	Name	Description	Function	
1	1	V _{IN}	Input Voltage	Bypass with 100 nF capacitor to AGND as close to the device as possible in the circuit board layout.	
2	2	EN	Enable	Connect to AGND for zero current shutdown or apply 2.4V to enable device.	
3	3	COMP	Compensation	Connect a capacitor to AGND to set the compensatio	
4	4	CSH	Current Sense High	Connect a resistor to AGND to set the signal currer For analog dimming, connect a controlled current source or a potentiometer to AGND as detailed in <i>Analog Dimming</i> section.	
5	5	RCT	Resistor Capacitor Timing	External RC network sets the predictive "off-time" an thus the switching frequency.	
6	6	AGND	Analog Ground	Connect to PGND through the DAP copper pad to provide ground return for CSH, COMP, RCT, and TIM	
7	7	OVP	Over-Voltage Protection	Connect to a resistor divider from V_O to program outp over-voltage lockout (OVLO). Turn-off threshold is 1.24V and hysteresis for turn-on is provided by 23 μ A current source.	
8	8	nDIM	Dimming Input / Under-Voltage Protection	Connect a PWM signal for dimming as detailed in the <i>PWM Dimming</i> section and/or a resistor divider from V_{IN} to program input under-voltage lockout (UVLO). Turn-on threshold is 1.24V and hysteresis for turn-off provided by 23 μ A current source.	
9	-	FLT	Fault Flag	Connect to pull-up resistor from VIN and N-channel MosFET open drain output is high when a fault condition is latched by the timer.	
10	-	TIMR	Fault Timer	Connect a capacitor to AGND to set the time delay before a sensed fault condition is latched.	
11	-	LRDY	LED Ready Flag	Connect to pull-up resistor from VIN and N-channel MosFET open drain output pulls down when the LED current is not in regulation.	
12	-	DPOL	Dim Polarity	Connect to AGND if dimming with a series P-channe MosFET or leave open when dimming with series N- channel MosFET.	
13	9	DDRV	Dim Gate Drive Output	Connect to the gate of the dimming MosFET.	
14	10	PGND	Power Ground	Connect to AGND through the DAP copper pad to provide ground return for GATE and DDRV.	
15	11	GATE	Main Gate Drive Output	Connect to the gate of the main switching MosFET.	
16	12	V _{CC}	Internal Regulator Output	Bypass with 2.2 µF–3.3 µF ceramic capacitor to PGN	
17	13	IS	Main Switch Current Sense	Connect to the drain of the main N-channel MosFET switch for R_{DS-ON} sensing or to a sense resistor install in the source of the same device.	
18	14	RPD	Resistor Pull Down	Connect the low side of all external resistor dividers (V _{IN} UVLO, OVP) to implement "zero-current" shutdown.	
19	15	HSP	LED Current Sense Positive	Connect through a series resistor to the positive side the LED current sense resistor.	
20	16	HSN	LED Current Sense Negative	Connect through a series resistor to the negative sid of the LED current sense resistor.	
DAP (21)	DAP (17)	DAP	Thermal PAD on bottom of IC	Star ground, connecting AGND and PGND.	

Bill of Materials for 551600305-002 REVA


Qty	Part ID	Part Value	Manufacturer	Part Number	
2	C1, C12	0.1 μF X7R 10% 50V	TDK	C1608X5R1H104K	
2	C2, C8	1.0 μF X7R 10% 50V	MURATA	GRM21BR71H105KA12L KA01L	
1	C3	68 μF 20% 100V	UCC	EMVY101ARA680MKE	
1	C4	0.1 μF X7R 10% 100V	TDK	C2012X7R2A104M	
4	C6(a-d)	10 μ F X7R 10% 50V (4 installed for a total of 40 μ F)	TDK	C5750X7R1H106	
1	C7	1000 pF X5R 5% 100V	MURATA	C2012X5R2E102K	
1	C9	2.2 μF X7R 10% 16V	MURATA	GRM21BR71C225KA01L	
1	C10	10 nF X7R 10% 50V	PANASONIC	ECJ2VB1H103 KA12L	
1	C11	47 pF COG/NPO 5% 50V	PANASONIC	ECJ2VG1H470 KA01L	
1	D1	Schottky 100V 12A (or 6A)	VISHAY	12CWQ10FNPBF (or 6CWQ10FNPBF)	
1	D2	Zener 10V	ON-SEMI	BZX84C10-V	
4	J1, J2, J4, J5	banana jack	KEYSTONE	575-8	
1	J3	1x2 male header (with shunt tab)	SAMTEC	TSW-102-07-T-S	
1	L1	47 μH 20% 6.3A	COILCRAFT	MSS1260-473MLB	
2	Q1, Q2	NMOS 150V 50A (or 100V 32A)	INFINEON (or FAIRCHILD)	IPD200N15N3 (or FDD3682)	
2	Q3, Q7	NMOS 60V 260 mA	ON-SEMI	2N7002ET1G	
1	Q4	PNP 40V 200 mA	FAIRCHILD	MMBT3906	
1	Q5	PNP 150V 600 mA	FAIRCHILD	MMBT5401	
1	Q6	NPN 300V 500 mA	FAIRCHILD	MMBTA42	
2	R1, R11	12.4 kΩ 1%	VISHAY	CRCW080512k4FKEA	
1	R2	0Ω 1%	VISHAY	CRCW08050000Z0EA	
2	R3, R20	10Ω 1%	VISHAY	CRCW080510R0FKEA	
1	R4	16.9 kΩ 1%	VISHAY	CRCW080516k9FKEA	
3	R5, R7, R8	1.40 kΩ 1%	VISHAY	CRCW08051k40FKEA	
1	R6	0.06Ω 1% 1W	VISHAY	WSL2512R0600FEA	
1	R9	0.2Ω 1% 1W	PANASONIC	ERJ12RSFR20U	
1	R10	35.7 kΩ 1%	VISHAY	CRCW080535k7FKEA	
3	R12, R13, R19	10.0 kΩ 1%	VISHAY	CRCW080510k0FKEA	
3	R14, R15, R17	100 kΩ 1%	VISHAY	CRCW0805100kFKEA	
1	R18	432 kΩ 1%	VISHAY	CRCW0805432kFKEA	
5	TP1, TP5, TP6, TP10	turret	KEYSTONE	1502-2	
1	U1	Buck-boost controller	NSC	LM3423MH	

PCB Layout for 551600305-002 REVA

Top Layer

30107765

Bottom Layer

30107764

Design Procedure

Refer to LM3423 datasheet for design considerations.

SPECIFICATIONS

$$\begin{split} N &= 6 \\ V_{LED} &= 3.5V \\ r_{LED} &= 325 \ m\Omega \\ V_{IN} &= 24V \\ V_{IN-MIN} &= 10V; \ V_{IN-MAX} &= 70V \\ f_{SW} &= 700 \ kHz \\ V_{SNS} &= 150 \ mV \\ I_{LED} &= 700 \ mA \\ \Delta i_{L-PP} &= 350 \ mA \\ \Delta i_{LED-PP} &= 50 \ mA \\ \Delta v_{IN-PP} &= 100 \ mV \\ I_{LIM} &= 4A \\ V_{TURN-ON} &= 10V; \ V_{HYS} &= 3.4V \\ V_{TURN-OFF} &= 44V; \ V_{HYSO} &= 10V \end{split}$$

1. OPERATING POINT

Solve for V_O and r_D :

$$V_{O} = N \times V_{LED} = 6 \times 3.5V = 21V$$

$$r_{D} = N \times r_{IFD} = 6 \times 325 \text{ m}\Omega = 1.95\Omega$$

Solve for D, D', D_{MAX} , and D_{MIN} :

$$D = \frac{V_0}{V_0 + V_{IN}} = \frac{21V}{21V + 24V} = 0.467$$

$$D_{MIN} = \frac{V_O}{V_O + V_{IN-MAX}} = \frac{21V}{21V + 70V} = 0.231$$

$$D_{MAX} = \frac{V_O}{V_O + V_{IN-MIN}} = \frac{21V}{21V + 10V} = 0.677$$

2. SWITCHING FREQUENCY

Assume C7 = 1 nF and solve for R10:

R10 =
$$\frac{25}{f_{SW} \times C7}$$
 = $\frac{25}{700 \text{ kHz x 1 nF}}$ = 35.7 k Ω

The closest standard resistor is actually 35.7 k Ω therefore the f_{SW} is:

$$f_{SW} = \frac{25}{R10 \times C7} = \frac{25}{35.7 \text{ k}\Omega \times 1 \text{ nF}} = 700 \text{ kHz}$$

The chosen components from step 2 are:

3. AVERAGE LED CURRENT

Solve for R9:

$$R9 = \frac{V_{SNS}}{I_{LED}} = \frac{150 \text{ mV}}{700 \text{ mA}} = 0.214\Omega$$

Assume R1 = 12.4 k Ω and solve for R8:

$$R8 = \frac{I_{LED} \times R1 \times R9}{1.24V} = \frac{700 \text{ mA } \times 12.4 \text{ k}\Omega \times 0.2\Omega}{1.24V} = 1.4 \text{ k}\Omega$$

The closest standard resistor for R9 is 0.2 Ω and the closest for R8 (and R7) is actually 1.4 k Ω therefore I_{LED} is:

$$I_{LED} = \frac{1.24V \text{ x } \text{R8}}{\text{R9 x R1}} = \frac{1.24V \text{ x } 1.4 \text{ k}\Omega}{0.2\Omega \text{ x } 12.4 \text{ k}\Omega} = 700 \text{ mA}$$

The chosen components from step 3 are:

R9 = 0.2Ω
R1 = 12.4 kΩ
R8 = R7 = 1.4 kΩ

4. INDUCTOR RIPPLE CURRENT

Solve for L1:

L1 =
$$\frac{V_{IN} \times D}{\Delta i_{L-PP} \times f_{SW}}$$
 = $\frac{24V \times 0.467}{350 \text{ mA } \times 700 \text{ kHz}}$ = 46 µH

The closest standard inductor is 47 μH therefore the actual $\Delta i_{L\text{-PP}}$ is:

$$\Delta i_{L-PP} = \frac{V_{IN} \times D}{L1 \times f_{SW}} = \frac{24V \times 0.467}{47 \ \mu H \times 700 \ kHz} = 340 \ mA$$

Determine minimum allowable RMS current rating:

$$I_{L-RMS} = \frac{I_{LED}}{D'} x \sqrt{1 + \frac{1}{12} x \left(\frac{\Delta I_{L-PP} x D'}{I_{LED}}\right)^2}$$
$$I_{L-RMS} = \frac{700 \text{ mA}}{0.533} x \sqrt{1 + \frac{1}{12} x \left(\frac{340 \text{ mA} x 0.533}{700 \text{ mA}}\right)^2}$$
$$I_{L-RMS} = 1.32\text{A}$$

The chosen component from step 4 is:

5. OUTPUT CAPACITANCE Solve for C_0 :

$$C_{O} = \frac{I_{LED} \times D}{r_{D} \times \Delta i_{LED-PP} \times f_{SW}}$$

$$C_{O} = \frac{700 \text{ mA x } 0.467}{1.95\Omega \text{ x } 50 \text{ mA x } 700 \text{ kHz}} = 4.79 \text{ }\mu\text{F}$$

A total value of 40 μF (using 4 10 μF X7R ceramic capacitors) is chosen therefore the actual Δi_{LED-PP} is:

$$\Delta i_{\text{LED-PP}} = \frac{I_{\text{LED}} \times D}{r_{\text{D}} \times C_{\text{O}} \times f_{\text{SW}}}$$
$$\Delta i_{\text{LED-PP}} = \frac{700 \text{ mA x } 0.467}{1.95\Omega \times 40 \text{ }\mu\text{F x } 700 \text{ }\text{kHz}} = 6 \text{ mA}$$

Determine minimum allowable RMS current rating:

$$I_{CO-RMS} = I_{LED} \times \sqrt{\frac{D_{MAX}}{1 - D_{MAX}}} = 700 \text{ mA } \times \sqrt{\frac{0.677}{1 - 0.677}} = 1.01 \text{ A}$$

The chosen components from step 5 are:

6. PEAK CURRENT LIMIT

Solve for R6:

$$R6 = \frac{245 \text{ mV}}{I_{LIM}} = \frac{245 \text{ mV}}{4A} = 0.061\Omega$$

The closest standard resistor is 0.06 Ω therefore ${\rm I}_{\rm LIM}$ is:

$$I_{\text{LIM}} = \frac{245 \text{ mV}}{\text{R6}} = \frac{245 \text{ mV}}{0.06\Omega} = 4.1\text{A}$$

The chosen component from step 6 is:

7. LOOP COMPENSATION

 ω_{P1} is approximated:

$$ω_{P1} = \frac{1+D}{r_D \times C_O} = \frac{1.467}{1.95\Omega \times 40 \ \mu F} = 19k \frac{rad}{sec}$$

 ω_{Z1} is approximated:

$$\omega_{Z1} = \frac{r_D \times D'^2}{D \times L1} = \frac{1.95\Omega \times 0.533^2}{0.467 \times 47 \ \mu H} = 25k \frac{rad}{sec}$$

T_{U0} is approximated:

$$T_{U0} = \frac{D' \times 620V}{(1 + D) \times I_{LED} \times R6} = \frac{0.533 \times 620V}{1.467 \times 700 \text{ mA } \times 0.06\Omega} = 5360$$

To ensure stability, calculate ω_{P2} :

$$\omega_{P2} = \frac{\min(\omega_{P1}, \omega_{Z1})}{5 \text{ x } T_{U0}} = \frac{\omega_{P1}}{5 \text{ x } 5360} = \frac{19 \text{k} \frac{\text{rad}}{\text{sec}}}{5 \text{ x } 5360} = 0.709 \frac{\text{rad}}{\text{sec}}$$

Solve for C8:

$$C8 = \frac{1}{\omega_{P2} \times 5e^{6}\Omega} = \frac{1}{0.709 \frac{\text{rad}}{\text{sec}} \times 5e^{6}\Omega} = 0.28 \ \mu\text{F}$$

To attenuate switching noise, calculate ω_{P3} :

$$\omega_{P3} = \max(\omega_{P1}, \omega_{Z1}) \times 10 = \omega_{Z1} \times 10$$

$$\omega_{P3} = 25k \frac{rad}{sec} \times 10 = 250k \frac{rad}{sec}$$

Assume R20 = 10Ω and solve for C12:

$$C12 = \frac{1}{10\Omega \times \omega_{P3}} = \frac{1}{10\Omega \times 250k \frac{rad}{sec}} = 0.4 \ \mu F$$

Since PWM dimming can be evaluated with this board, a much larger compensation capacitor C8 = $1.0 \ \mu$ F is chosen and a smaller high frequency capacitor C12 = $0.1 \ \mu$ F is chosen.

The chosen components from step 7 are:

8. INPUT CAPACITANCE

Solve for the minimum C_{IN}:

$$C_{IN} = \frac{I_{LED} \times D}{\Delta V_{IN-PP} \times f_{SW}} = \frac{700 \text{ mA } \times 0.467}{100 \text{ mV} \times 700 \text{ kHz}} = 4.67 \text{ }\mu\text{F}$$

To minimize power supply interaction a much larger capacitance of 68 μF is used, therefore the actual $\Delta v_{\text{IN-PP}}$ is much lower.

Determine minimum allowable RMS current rating:

$$I_{\text{CO-RMS}} = I_{\text{LED}} x \sqrt{\frac{D_{\text{MAX}}}{1 - D_{\text{MAX}}}} = 700 \text{ mA } x \sqrt{\frac{0.677}{1 - 0.677}} = 1.01 \text{ A}$$

The chosen components from step 8 are:

9. NFET

Determine minimum Q1 voltage rating and current rating:

$$V_{T-MAX} = V_{IN-MAX} + V_{O} = 70V + 21V = 91V$$

$$I_{T-MAX} = \frac{0.677}{1 - 0.677} \times 700 \text{ mA} = 1.46\text{A}$$

A 100V NFET is chosen with a current rating of 40A due to the low R_{DS-ON} = 50 m Ω . Determine I_{T-RMS} and P_T :

$$I_{T-RMS} = \frac{I_{LED}}{D'} \times \sqrt{D} = \frac{700 \text{ mA}}{0.533} \times \sqrt{0.467} = 897 \text{ mA}$$

$$P_{T} = I_{T-RMS}^{2} x R_{DSON} = 897 \text{ mA}^{2} x 50 \text{ m}\Omega = 40 \text{ mW}$$

The chosen component from step 9 is:

$$Q1 \rightarrow 40A$$
, 100V, DPAK

10. DIODE

Determine minimum D1 voltage rating and current rating:

$$V_{RD-MAX} = V_{IN-MAX} + V_{O} = 70V + 21V = 91V$$

 $I_{D-MAX} = I_{LED} = 700 \text{ mA}$

A 100V diode is chosen with a current rating of 12A and $V_D = 600 \text{ mV}$. Determine P_D :

The chosen component from step 10 is:

$$D1 \rightarrow 12A$$
, 100V, DPAK

11. INPUT UVLO

Since PWM dimming will be evaluated, a three resistor network will be used. Assume R13 = 10 k Ω and solve for R5:

$$R5 = \frac{1.24V \text{ x } \text{R13}}{V_{\text{TURN-ON}} - 1.24V} = \frac{1.24V \text{ x } 10 \text{ k}\Omega}{10V - 1.24V} = 1.42 \text{ k}\Omega$$

The closest standard resistor is 1.4 k Ω therefore V_{TURN-ON} is:

$$V_{\text{TURN-ON}} = \frac{1.24\text{V x (R5 + R13)}}{\text{R5}}$$
$$V_{\text{TURN-ON}} = \frac{1.24\text{V x (1.4 k}\Omega + 10 k\Omega)}{1.4 \text{k}\Omega} = 10.1\text{V}$$

Solve for R4:

$$R4 = \frac{R5 x (V_{HYS} - 23 \mu A x R13)}{23 \mu A x (R5 + R13)}$$

$$\mathsf{R4} = \frac{1.4 \text{ } \text{k}\Omega \text{ } \text{x} (3.4 \text{V} - 23 \text{ } \mu\text{A} \text{ x} 10 \text{ } \text{k}\Omega)}{23 \text{ } \mu\text{A} \text{ x} (1.4 \text{ } \text{k}\Omega + 10 \text{ } \text{k}\Omega)} = 16.9 \text{ } \text{k}\Omega$$

The closest standard resistor is 16.9 k Ω making V_{HYS}:

$$V_{HYS} = \frac{23 \ \mu A \ x \ R4 \ x \ (R5 + R13)}{R5} + 23 \ \mu A \ x \ R13$$
$$V_{HYS} = \frac{23 \ \mu A \ x \ 16.9 \ k\Omega \ x \ (1.4 \ k\Omega + 10 \ k\Omega)}{1.4 \ k\Omega} + 23 \ \mu A \ x \ 10 \ k\Omega = 3.4V$$

The chosen components from step 11 are:

R5 = 1.4 kΩ	
R13 = 10 kΩ	
R4 = 16.9 kΩ	

12. OUTPUT OVLO

Solve for R18:

$$R18 = \frac{V_{HYSO}}{23 \ \mu A} = \frac{10V}{23 \ \mu A} = 435 \ k\Omega$$

The closest standard resistor is 432 k Ω therefore V_{HYSO} is:

Solve for R11:

$$R11 = \frac{1.24V \text{ x } R18}{V_{\text{TURN-OFF}} - 620 \text{ mV}} = \frac{1.24V \text{ x } 432 \text{ k}\Omega}{44V - 620 \text{ mV}} = 12.3 \text{ k}\Omega$$

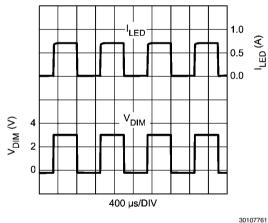
The closest standard resistor is 12.4 k Ω making V_{TURN-OFF}:

$$V_{\text{TURN-OFF}} = \frac{1.24\text{V} \times (\text{R11} + \text{R18})}{\text{R11}}$$
$$V_{\text{TURN-OFF}} = \frac{1.24\text{V} \times (0.5 \times 12.4 \text{ k}\Omega + 432 \text{ k}\Omega)}{12.4 \text{ k}\Omega} = 44\text{V}$$

The chosen components from step 12 are:

R11 = 12.4 kΩ
R18 = 432 k Ω

13. PWM DIMMING

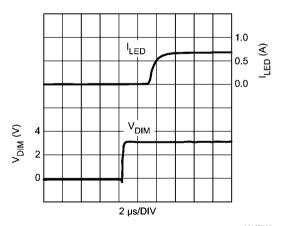

The LM3423 Buck-boost Evaluation board is configured to demonstrate PWM dimming of the LEDs. For best operation, use a PWM signal that has greater than 3V amplitude at a frequency between 120Hz and 5kHz. Apply the PWM signal to the BNC connector (J6) and the inverted signal (seen by the nDIM pin) can be monitored at TP5.

The output PWM drive signal (DDRV) is level shifted to the floating LED stack using several components (R19, R17, Q4, Q6, Q7, and D2) and ultimately controls the series dimming FET (Q2). This level shift adds a several microsecond delay from input to output as seen in the *Typical Waveforms* section. This delay, along with the time it takes to slew the LED current from zero to its nominal value, limits the contrast ratio for a given dimming frequency.

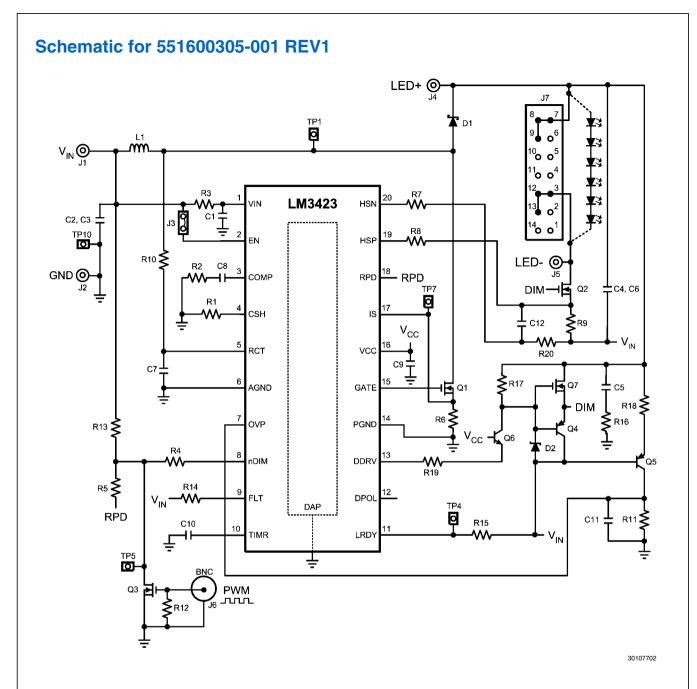
Using the evaluation board (24V input, 21V output), at 5kHz dimming frequency the best case contrast ratio is approximately 40:1, but at 200Hz the same system is more like 1000:1 ratio. In general, contrast ratios much above 2000:1 are not possible for any operating point using the LM3423 buck-boost evaluation board.

Typical Waveforms

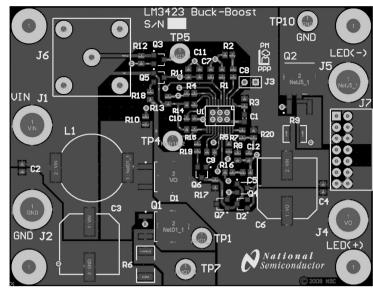
 $T_A = +25^{\circ}C$, $V_{IN} = 24V$ and $V_O = 21V$.


¹kHz 50% PWM DIMMING TP5 dim voltage (V_{DIM}) LED current (I_{LED})

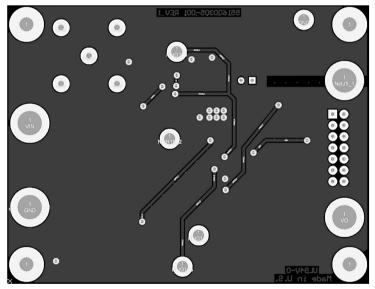
13. FAULT AND LED CURRENT MONITORING


The LM3423 has a fault detection flag in the form of an opendrain NFET at the FLT pin. Using the external pull-up resistor (R14) to VIN, the fault status can be monitored at the FLT pin (high = fault). The fault timer interval is set with the capacitor (C10) from TIMR to GND (10nF yields roughly 1ms). If a fault is detected that exceeds the programmed timer interval, such as an output over-voltage condition, the FLT pin transitions from high to low and internally GATE and DDRV are latched off. To reset the device once the fault is removed, either the input power must be cycled or the EN pin must be toggled.

This can be tested directly with the evaluation board by opening the LED load. An OVP fault will occur which disables GATE and DDRV. Then if the LEDs are reconnected, the EN pin jumper (J3) can be removed and reinserted to restart normal operation of the LM3423.


The LED status flag (LRDY) can be seen by monitoring TP4. LRDY is also an open-drain NFET connection which has an external pull-up resistor (R15) to $V_{\rm IN}$. If the LED current is in regulation the voltage at TP4 will be high, but when it falls out of regulation the NFET turns on and pulls TP4 low. The LM3423 datasheet lists all of the conditions that affect LRDY, FLT, and TIMR.

1kHz 50% PWM DIMMING (Rising Edge) TP5 dim voltage (V_{DIM}) LED current (I_{LED})



PCB Layout for 551600305-001 REV1

Top Layer

Bottom Layer

30107704

Bill of Materials for 551600305-001 REV1

Qty	Part ID	Part Value	Manufacturer	Part Number	
2	C1, C12	0.1 µF X7R 10% 50V	TDK	C1608X5R1H104K	
2	C2, C8	1.0 µF X7R 10% 50V	MURATA	GRM21BR71H105KA12L KA01L	
1	C3	68 μF 20% 100V	UCC	EMVY101ARA680MKE	
1	C4	0.1 µF X7R 10% 100V	TDK	C2012X7R2A104M	
1	C5	DNP			
4	C6	10 μ F X7R 10% 50V (4 installed for a total of 40 μ F)	ТDК	C5750X7R1H106	
1	C7	1000 pF X5R 5% 100V	MURATA	C2012X5R2E102K	
1	C9	2.2 μF X7R 10% 16V	MURATA	GRM21BR71C225KA01L	
1	C10	10 nF X7R 10% 50V	PANASONIC	ECJ2VB1H103 KA12L	
1	C11	47 pF COG/NPO 5% 50V	PANASONIC	ECJ2VG1H470 KA01L	
1	D1	Schottky 100V 7A	VISHAY	6CWQ10FNPBF	
1	D2	Zener 10V	ON-SEMI	BZX84C10-V	
4	J1, J2, J4, J5	banana jack	KEYSTONE	575-8	
1	J3	1x2 male header (with shunt tab)	SAMTEC	TSW-102-07-T-S	
1	J6	BNC connector	AMPHENOL	112536	
1	J7	DNP			
1	L1	47 μH 20% 6.3A	COILCRAFT	MSS1260-473MLB	
2	Q1, Q2	NMOS 100V 40A	VISHAY	SUD40N10-25	
2	Q3, Q7	NMOS 60V 260 mA	ON-SEMI	2N7002ET1G	
1	Q4	PNP 40V 200 mA	FAIRCHILD	MMBT3906	
1	Q5	PNP 150V 600 mA	FAIRCHILD	MMBT5401	
1	Q6	NPN 300V 500 mA	FAIRCHILD	MMBTA42	
2	R1, R11	12.4 kΩ 1%	VISHAY	CRCW080512k4FKEA	
1	R2	0Ω 1%	VISHAY	CRCW08050000Z0EA	
2	R3, R20	10Ω 1%	VISHAY	CRCW080510R0FKEA	
1	R4	16.9 kΩ 1%	VISHAY	CRCW080516k9FKEA	
3	R5, R7, R8	1.40 kΩ 1%	VISHAY	CRCW08051k40FKEA	
1	R6	0.06Ω 1% 1W	VISHAY	WSL2512R0600FEA	
1	R9	0.2Ω 1% 1W	PANASONIC	ERJ12RSFR20U	
1	R10	35.7 kΩ 1%	VISHAY	CRCW080535k7FKEA	
3	R12, R13, R19	10.0 kΩ 1%	VISHAY	CRCW080510k0FKEA	
3	R14, R15, R17	100 kΩ 1%	VISHAY	CRCW0805100kFKEA	
<u> </u>	R16	DNP			
1	R18	432 kΩ 1%	VISHAY	CRCW0805432kFKEA	
5	TP1, TP4, TP5, TP7, TP10	turret	KEYSTONE	1502-2	
1	U1	Buck-boost controller	NSC	LM3423MH	

Alternate Designs

Alternate designs with the LM3423 evaluation board are possible with very few changes to the existing hardware. The evaluation board FETs and diodes are already rated higher than necessary for design flexibility. The input UVLO, output OVP, input and output capacitance can remain the same for the designs shown below. These alternate designs can be evaluated by changing only R9, R10, and L1.

The table below gives the main specifications for four different designs and the corresponding values for R9, R10, and L1. PWM dimming can be evaluated with any of these designs.

Specification / Component	Design 1	Design 2	Design 3	Design 4
•			00)/ 55)/	
V _{IN}	10V - 45V	15V - 50V	20V - 55V	25V - 60V
Vo	14V	21V	28V	35V
f _{SW}	600kHz	700kHz	500kHz	700kHz
I _{LED}	2A	500mA	2.5A	1.25A
R9	0.05Ω	0.2Ω	0.04Ω	0.08Ω
R10	41.2 kΩ	35.7 kΩ	49.9 kΩ	35.7 kΩ
L1	22µH	68µH	15µH	33µH

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com