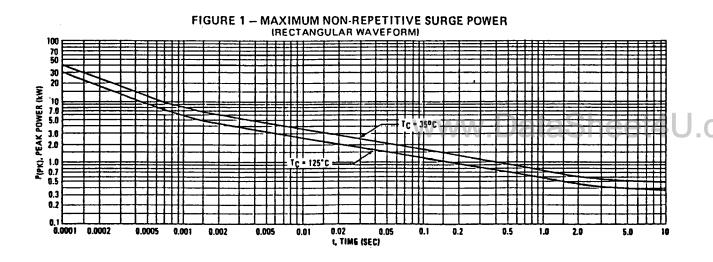
MPZ5-16 - MPZ5-32 - MPZ5-180 Series

Silicon power transient suppressor designed for applications requiring protection of voltage sensitive electronic devices in danger of destruction by high energy voltage transients. Individual cells are matched to insure current-sharing under high current pulse conditions.

MAXIMUM RATINGS

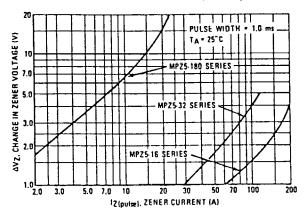
Transient Power Dissipation: 40 kW
Pulse Width: 0.1 ms, (See Figure 1)

DC Power Dissipation: 350 Watts @ Tc = 25°C (Derate 2.33 W/° C above 25° C)


Operating Junction & Storage Temperature Range: - 65° C to +175° C

Polarity:

Anode-to-Case is Standard Cathode-to-Case Available Upon Request


ELECTRICAL CHARACTERISTICS (TA = 25°C) (VF = 1.5 V max @ 10 A for all types)

Type	Nominal Operating Voltage (Note 1)		Maximum Device Clamping Factor CF= VZ @ IZ (pulse)			Maximum Zener Voltage Pulse Width = 1.0 ms		Maximum Reverse Current IR(max)	Typical Capacitance C (typ)
	VOP (PK) Vdc	VOP(RMS) V rms	VZ @ IZT (Note 2)	VZ(min) @ Vdc	② IZT Adc	Vz(max) @ Vdc	Iz (pulse) Adc	@VR = VOP(PK) uAdc	@VR = VOP(PK) uF
MPZ5-16A	14	10	1.25	16	0.4	24	200	50	0.025
-16B	14	10	1.25	16	0 4	20	200	50	0.025
-32A	28	20	1.25	32	0.2	50	100	50	0.011
-32B	28	20	1.25	32	0.2	45	100	50	0.011
-32C	28	20	1.25	32	0.2	40	100	50	0.011
-180A	165	117	1.14	180	003	250	20	50	0.0012
-180B -180C	165 165	117 117	1.14 1.14	180 180	0.03 0.03	225 205	20 20	50 50	0.0012 0.0012

www.DataSheet4U.com

FIGURE 2 - TYPICAL DYNAMIC ZENER VOLTAGE CHARACTERISTICS (Note 2)

- NOTE t: Nominal operating voltage is defined as normal input voltage to device for non-operating condition. If non-sinusoidal wave or dc input is present, peak voltage input values VOP(PK) should be used to select device type.
- NOTE 2: The maximum device clamping factor CF is a ratio of VZ measured at 1Z (pulse) given in the Electrical Characteristics Table divided by VZ measured at 1ZT under steady state conditions. This value guarantees the sharpness of the voltage breakdown of individual devices. Figure 2 demonstrates the typical sharpness of the breakdown, and indicates the voltage regulation over a wide range of currents.

 $\ddot{A}VZ = VZ @ IZ(pulse) - VZ @ IZT$