

2.5V 20-Bit Bus Interface D-Type Latch with 3-State Outputs

Product Features

- PI74ALVTC16841 is designed for low voltage operation, V_{DD}=1.65V to 3.6V
- Supports Live Insertion
- 3.6V I/O Tolerant Inputs and Outputs
- · Bus Hold
- High Drive, -32/64mA @ 3.3V
- Uses patented noise reduction circuitry
- · Power-off high impedance inputs and outputs
- Industrial operation at -40°C to +85°C
- · Packages available:
 - -56-pin 240-mil wide plastic TSSOP (A56)
 - -56-pin 173-mil wide plastic TVSOP (K56)

Logic Block Diagram

Product Description

Pericom Semiconductor's PI74ALVTC series of logic circuits are produced using the Company's advanced 0.35 micron CMOS technology, achieving industry leading speed.

The PI74ALVTC16841 features 3-State outputs designed specifically for driving highly capacitive or relatively low-impedence loads. This device is particularly suitable for implementing buffer registers, unidirectional bus drivers, and working registers.

The device can be used as two 10-bit latches, or one 20-bit latch. The 20 latches are transparent D-type latches. The device has non-inverting data (D) inputs and provides true data at its outputs. While the latch-enable (1LE or 2LE) input is high, the Q outputs of the corresponding 10-bit latch follows the D inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

A buffered output-enable $(1\overline{OE} \text{ or } 2\overline{OE})$ input can be used to place the outputs of the corresponding 10-bit latch in either a normal logic state (high or low logic levels) or a high-impedence state. In the high-impedence state, the outputs neither load nor drive the bus lines significantly.

The output enable (\overline{OE}) input does not affect the internal operation of the latches. Old data can be retained or new data or new data can be entered while the outputs are in the high-impedence state.

 $\overline{\text{OE}}$ should be tied to V_{DD} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The family offers both I/O Tolerant, which allows it to operate in mixed 1.65/3.6V systems, and "Bus Hold," which retains the data input's last state preventing "floating" inputs and eliminating the need for pullup/down resistors.

P0.2 04/09/02

1

Product Pin Description

Pin Name	Description			
nOE	Output Enable Inputs (Active LOW)			
nLE	Latch Enable Inputs (Active HIGH)			
nDx	Data Inputs			
nQx	3-State Outputs			
GND	Ground			
V _{DD}	Power			

Product Pin Configuration

10E [1	\bigcup	56 1LE
1Q0 [2		55 D 1D0
1Q1 [3		54 🛘 1D1
GND [4		53 GND
1Q2 [5		52 D 1D2
1Q3 [6		51 D3
V _{DD} [7		50 D VDD
1Q4 [8		49 🛘 1D4
1Q5 🗆	9		48 🛘 1D5
1Q6 🗆	10	56-Pin	47 🛘 1D6
GND [11	A, K	46 GND
1Q7 [12		45 1D7
1Q8 [13		44 🗎 1D8
1Q9 [14		43 D9
2Q0 [15		42 D 2D0
2Q1 [16		41 2D1
2Q2 [17		40 2D2
GND [18		39 GND
2Q3 [19		38 🛘 2D3
2Q4 [20		37 D 2D4
2Q5 [21		36 2D5
VDD [22		35 D VDD
2Q6 🗆	23		34 2D6
2Q7 🗆	24		33 🛘 2D7
GND [25		32 GND
2Q8 🗆			31 D 2D8
2Q9 [27		30 2D9
20E [28		29 2LE
			_

Truth Table

	Inputs					
ŌE	LE	D	Q			
L	Н	Н	Н			
L	Н	L	L			
L	L	X	Q_0			
Н	X	X	Z			

Notes:

2

H = High Voltage Level

L = Low Voltage Level

X = Don't Care

Z = High-Impedance "OFF" state

P0.2 04/09/02

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

$\label{eq:supply Voltage Range, VDD} $	-0.5V to 4.6V
DC Input Diode Current (I _{IK}) V _I < 0VDC Output Diode Current (I _{OK})	
$V_O < 0V \dots V_O > V_{DD} \dots V_O > V_{DD} \dots V_O > V_{DD} \dots V_O > V_{DD} \text{ or GND Current per Supply Pin (I}_{CC} \text{ or C}_{CC} \text{ Storage Temperature Range, T_{stg}} \dots V_O > V_O = V_O $	±50mA -64/128mA 5ND)±100mA

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions⁽²⁾

			Min.	Max.	Units
V	Cumphy voltage	Operating	1.65	3.6	
V_{DD}	Supply voltage	Data Retention Only	1.2	3.6	
V_{IH}	High-level input voltage	$V_{DD} = 2.7V \text{ to } 3.6V$	2.0		
$V_{\rm IL}$	Low-level input voltage	$V_{DD} = 2.7V \text{ to } 3.6V$		0.8	V
VI	Input voltage		-0.3	3.6	
V.	Output voltage	Active State	0	V_{DD}	
$V_{\rm O}$	Output voltage	Off State	0	3.6	
	Output current in I _{OH} /I _{OL}	$V_{DD} = 3.0 \text{V to } 3.6 \text{V}$ $V_{DD} = 3.0 \text{V to } 3.6 \text{V}$ $V_{DD} = 2.3 \text{V to } 2.7 \text{V}$ $V_{DD} = 1.65 \text{V to } 1.95 \text{V}$		-32/64 ±24 ±18 ±6	mA
$\Delta t/\Delta v$	Δv Input transistion rise or fall rate ⁽³⁾			10	ns/V
TA	Operating free-air temperature			85	С

3

Notes:

- 1. Absolute maximum of I_O must be observed.
- 2. Unused control inputs must be held HIGH or LOW to prevent them from floating.
- 3 As measured between 0.8V and 2.0V, V_{DD} =3.0V.

Electrical Characteristics over Recommended Operating Free-Air Temperature Range (unless otherwise noted)

DC Characteristics (2.7V<V_{DD}≤3.6V)

	Parameter	Conditions	V _{DD}	Min.	Тур.	Max.	Units
V _{IK}	Input Clamp Diode	$I_{IK} = -18\text{mA}$	3.0			-1.2	
		$I_{OH} = -100 \mu A$	2.7 - 3.6	$V_{\rm DD} - 0.2$			
		$I_{OH} = -12mA$	2.7	2.2			
V_{OH}	HIGH Level Output Voltage	$I_{OH} = -18$ mA		2.4			
		$I_{OH} = -24$ mA	3.0	2.2			
		$I_{OH} = -32 \text{mA}$		2.0			3 .7
		$I_{OL} = 100 \mu A$	2.7 - 3.6			0.2	V
		$I_{OL} = 12$ mA	2.7			0.4	
* 7		$I_{\rm OL} = 18 \text{mA}$				0.4	
V_{OL}	LOW Level Output Voltage	$I_{OL} = 24 \text{mA}$	3.0			0.45	
		$I_{OL} = 32 \text{mA}$				0.5	
		$I_{\rm OL} = 64 {\rm mA}$				0.55	
II	Input Leakage Current	$V_I = V_{DD}$, or GND	3.6			±5.0	
I_{OZ}	3-State Output Leakage	$V_{\rm O} = 3.6 V$	2.7			±10	
I _{OFF}	Power-OFF Leakage Current	$V_{\rm I}$ or $V_{\rm O} \le 3.6 \rm V$	0			10	
		$V_I = 0.8V$	2.0	75			
I _{HOLD}	Bus Hold Current A or B Outputs	$V_I = 2.0V$	3.0	-75			μΑ
	Troi B o unpuno	$V_{\rm I} = 0 \text{ to } 3.6 \text{V}$	3.6			±500	P42.2
т	Onit and Complete Company	$V_{I} = V_{DD}$ or GND				50	
I_{DD}	Quiescent Supply Current	$V_{DD} \le (V_{I}, V_{O}) \le 3.6V$	2.7 - 3.6			±50	
$\Delta I_{ m DD}$	Increase in I _{DD} per input	$V_{IH} = V_{DD} - 0.6V, \label{eq:VIH}$ Other inputs at V_{DD} or Gnd				400	

4

$\label{lem:continued} \textbf{Electrical Characteristics over Recommended Operating Free-Air Temperature Range} \ (\textbf{unless otherwise noted}) \ (\textbf{continued from previous page})$

DC Characteristics $(2.3V \le V_{DD} \le 2.7V)$

Description	Parameters	Conditions	V_{DD}	Min.	Тур.	Max.	Units
V_{IK}	Input Clamp Diode	$I_{IK} = -18mA$	2.3			-1.2	
		$I_{OH} = -100 \mu A$	2.3 -2.7	V _{DD} - 0.2			
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -12mA$	2.3	1.8			
		$I_{OH} = -18\text{mA}$	2.3	1.7			V
		$I_{\rm OL} = 100 \mu A$	2.3 - 2.7			0.2	V
W	LOW Lovel Output Voltage	$I_{\rm OL} = 12$ mA				0.4	
$V_{ m OL}$	LOW Level Output Voltage	$I_{\rm OL} = 18 \text{mA}$	2.3			0.5	
		$I_{\rm OL} = 24 \text{mA}$				0.55	
I _I	Input Leakage Current	$V_{I} = V_{DD}$ or GND	2.7			±5.0	
I_{OZ}	3-State Output Leakage	$V_{\rm O} = 3.6 V$	2.3			±10	μΑ
I _{OFF}	Power-OFF Leakage Current	$V_{\rm I}$ or $V_{\rm O} \le 3.6 \rm V$	0			10	
I _{HOLD} ⁽¹⁾	Bus Hold Current	$V_I = 0.7V$	2.5		90		
1HOLD,	A or B Outputs	$V_I = 1.7V$	2.5		-90		
т	Oviese ant Comple Compart	$V_I = V_{DD}$ or GND				40	μΑ
I _{DD}	Quiescent Supply Current	$V_{DD} \le (V_I, V_O) \le 3.6V$	2.3 - 2.7			±40	bor -
$\Delta I_{ m DD}$	Increase in I _{DD} per input	$V_{IH} = V_{DD} - 0.6V,$ Inputs at V_{DD} or Gnd	_,,			400	

5

Note:

1. Not Guaranteed

Electrical Characteristics over Recommended Operating Free-Air Temperature Range (unless otherwise noted) (continued from previous page)

DC Characteristics $(1.65V \le V_{DD} \le 1.95V)$

Description	Parameters	Conditions	V _{DD}	Min.	Тур.	Max.	Units
V _{IK}	Input Clamp Diode	$I_{IK} = -18mA$	1.65			-1.2	
V	IIICII I aval Output Valtaca	$I_{OH} = -100 \mu A$	1.65-1.95	V _{DD} -0.2			
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -6mA$		1.4			V
V	LOW Lavel Output Valtage	$I_{OL} = 100 \mu A$	1.65			0.2	
V_{OL}	LOW Level Output Voltage	$I_{OL} = 6mA$				0.3	
II	Input Leakage Current	$V_I = V_{DD}$ or GND	1.95			±5.0	
I _{OZ}	3-State Output Leakage	$V_O = 3.6V$	1.65			±10	
I _{OFF}	Power-OFF Leakage Current	$V_I = V_O \le 3.6V$	0			10	
I _{HOLD} ⁽¹⁾	Bus Hold Current	$V_{I} = 0.4$	1.65		50		
IHOLD	A or B Outputs	$V_{\rm I} = 1.3$	1.65		-50		μΑ
т	O i a sur a Command	$V_I = V_{DD}$ or GND				20	
I _{DD}	Quiescent Supply Current	$V_{DD} \le (V_I, V_O) \le 3.6V$	1.65-1.95			±20	
$\Delta I_{ m DD}$	Increase in I _{DD} per input	$V_I = V_{DD}$ –06V, Other inputs at V_{DD} or Gnd	1.00 1.90			400	

6

Note:

1. Not Guaranteed

AC Electrical Characteristics

		$T_A = -40$ °C to +85°C, $C_L = 50$ pF, $R_L = 500\Omega$						
Symbol	Parameter	$V_{DD} = 1.8V$ $\pm 0.15V$		$V_{DD} = 2.5V$ $\pm 0.2V$		$V_{DD} = 3.3V$ $\pm 0.3V$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
t _{PLH} , t _{PHL}	Prop Delay, D to Q	1.5	4.0	1.0	3.2	0.5	2.7	
t _{PLH} , t _{PHL}	Prop Delay, LE to Q	2.0	5.0	1.5	4.2	1	3.1	
t _{PZH} , t _{PZL}	Output Enable Time	2.0	5.0	1.5	4.7	1.0	3.1	ns
t _{PHZ} , t _{PLZ}	Output Disable Time	2.0	5.0	1.5	4.0	1.5	3.7	
t _{OSHL} t _{OSLH}	Output to Output Skew ⁽¹⁾		0.5		0.5		0.5	

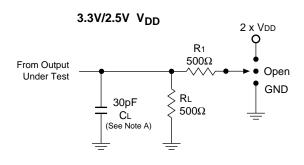
Note

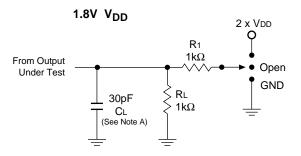
1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH or LOW (toshl) or LOW to HIGH (toslh).

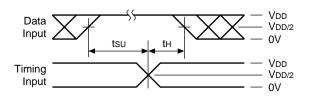
AC Setup Requirements

		T _A	= -40°	C to +85°C	C, C _L =	50pF, R	L = 5009	Ω
Symbol	Parameter	V _{DD} = ±0.15		$V_{DD} = \pm 0.2$		l	= 3.3V .3V	Units
		Min.	Тур.	Min.	Тур.	Min.	Тур.	
$t_{ m SU}$	Setup Time, D to LE	1.0		0.5		0.5		
t _H	Hold Time, D to LE	1.0		0.5		0.8		ns
$t_{ m W}$	LE Pulse Width, High	1.5		1.5		1.5		

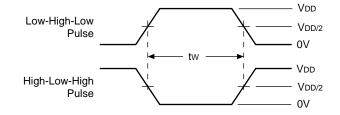
Capacitance

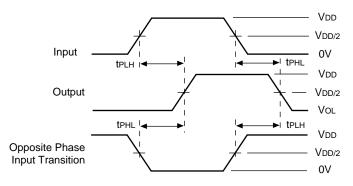

Symbol	Parameter	Conditions	T _A = +25°C Typical	Units
C_{IN}	Input Capacitance	$V_{DD} = 1.8, 2.5 V \text{ or } 3.3 V, V_{I} = 0 V \text{ or } V_{DD}$	6	
C _{OUT}	Output Capacitance	$V_I = 0V$ or V_{DD} , $V_{DD} = 1.8V$, 2.5V or 3.3V	7	pF
C_{PD}	Power Dissipation Capacitance	$V_{I} = 0V \text{ or } V_{DD}, F = 10 \text{ MHz}$ $V_{DD} = 1.8V, 2.5V \text{ or } 3.3V$	20	


7


Test Circuits and Switching Waveforms

Parameter Measurement Information (VDD=1.65V-3.6V)


Setup, Hold, and Release Timing


Switch Position

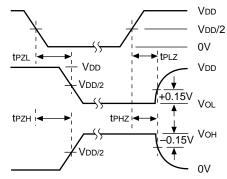
Test	S1
t_{PD}	Open
t _{PLZ} /t _{PZL}	$2 \times V_{DD}$
t _{PHZ} /t _{PZH}	GND

Pulse Width

Propagation Delay

Enable Disable Timing

Notes:


- $A. \quad C_L \ includes \ probe \ and \ jig \ capacitance.$
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50\Omega$, $t_r \leq 2$ ns, $t_f \leq 2$ ns, measured from 10% to 90%, unless otherwise specified.
- The outputs are measured one at a time with one transition per measurement.

Output
Control
(Active LOW)

Output
Waveform 1
S1 at 2xVDD
(see Note B)

Output

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com