
Features

- ♦ Glass passivated chip junction
- ♦ High efficiency, Low VF
- ♦ High current capability
- ♦ High reliability
- High surge current capability
- Low power loss
- Green compound with suffix "G" on packing code & prefix "G" on datecode

Mechanical Data

- ♦ Epoxy: UL 94V-0 rate flame retardant
- Lead: Pure tin plated, lead free, solderable per MIL-STD-202, Method 208 guaranteed
- ♦ Polarity: As marked
- ♦ High temperature soldering guaranteed: 260°C/10 seconds at terminals
- ♦ Weight: 1.7 grams

GPAS1001 - GPAS1007 10.0 AMPS. Glass Passivated Rectifiers <u>D²PAK</u>

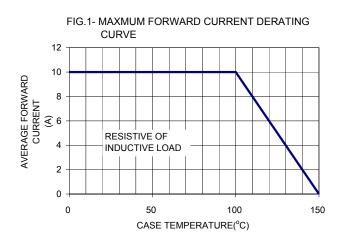
Dimensions in inches and (millimeters)

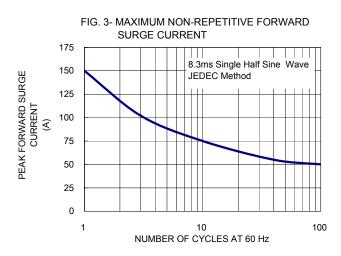
Marking Diagram GPAS100X = Specific Device Code G = Green Compound Y = Year WW = Work Week

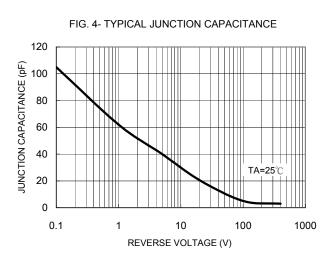
Maximum Ratings and Electrical Characteristics

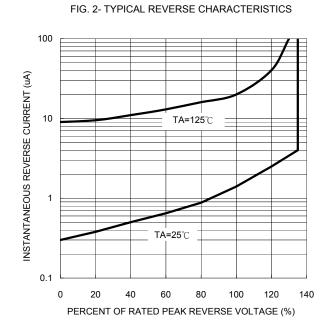
Single phase, half wave, 60 Hz, resistive or inductive load.

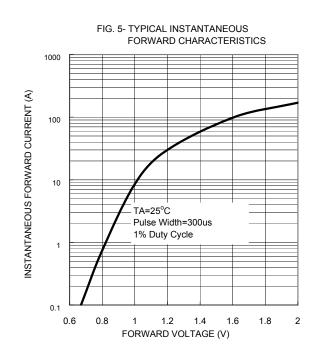
For capacitive load, derate current by 20%


V _{RRM}	50	100	200	400				
V_{RMS}	25		200	400	600	800	1000	V
	35	70	140	280	420	560	700	V
V_{DC}	50	100	200	400	600	800	1000	V
I _{F(AV)}	10						Α	
ve I _{FSM}	150						Α	
V _F	1.1						V	
I _R	5 100						uA	
Cj	50						pF	
$R_{\theta JA}$	2.5						°C/W	
T_J	- 65 to + 150						οС	
T _{STG}	- 65 to + 150						оС	
•	$\begin{array}{c} V_{DC} \\ I_{F(AV)} \\ \\ Ve \\ I_{FSM} \\ \\ V_{F} \\ \\ I_{R} \\ \\ Cj \\ \\ R_{\theta JA} \\ \\ T_{J} \\ \end{array}$	$\begin{array}{c c} V_{DC} & 50 \\ \hline I_{F(AV)} \\ \hline Ve & I_{FSM} \\ \hline V_F \\ \hline & I_R \\ \hline & Cj \\ \hline & R_{\theta JA} \\ \hline & T_J \\ \end{array}$	$\begin{array}{c cccc} V_{DC} & 50 & 100 \\ \hline & I_{F(AV)} & \\ \\ ve & I_{FSM} & \\ \hline & V_F & \\ \hline & I_R & \\ \hline & Cj & \\ \hline & R_{\theta JA} & \\ \hline & T_J & \\ \end{array}$	V _{DC} 50 100 200 I _{F(AV)} ve I _{FSM} V _F I _R Cj R _{θJA} T _J - 6	V _{DC} 50 100 200 400 I _{F(AV)} 10 Ve I _{FSM} 150 V _F 1.1 I _R 5 100 Cj 50 R _{θJA} 2.5 T _J -65 to + 1	V _{DC} 50 100 200 400 600 I _{F(AV)} 10 Ve I _{FSM} 150 V _F 1.1 I _R 5 100 Cj 50 R _{θJA} 2.5 T _J -65 to + 150	V _{DC} 50 100 200 400 600 800 I _{F(AV)} 10 Ve I _{FSM} 150 V _F 1.1 I _R 5 100 Cj 50 R _{6JA} 2.5 T _J -65 to + 150	V _{DC} 50 100 200 400 600 800 1000 I _{F(AV)} 10 Ve I _{FSM} 150 V _F 1.1 I _R 5 100 Cj 50 R _{θJA} 2.5 T _J -65 to + 150


Note1: Pulse Test with PW=300 usec, 1% Duty Cycle


Note2: Measured at 1 MHz and Applied Reverse Voltage of 4.0V D.C.




RATINGS AND CHARACTERISTIC CURVES (GPAS1001 THRU GPAS1007)

