Document Title

256Kx16 Low Voltage & Low Power SRAM Datasheets for 48-CSP

Revision History

Revision No	<u>History</u>	<u>Draft Data</u>	Remark
0.0	Initial draft	February 4,1997	Preliminary
0.1	Revised - Change datasheet format - Remove commercial part from product - Power dissipation improved 0.7 to 1.0W - VIL(MAX) improved 0.4 to 0.6V Icc2 decreased 90 to 60mA Icc1(Read/Write) change 20/40 to 10/45mA - Icc Read change 20 to 10mA, and remove write value.	February 12, 1998	Preliminary
0.11	Errata correction	August 17, 1998	

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

256Kx16 Low Power and Low Voltage CMOS Static RAM with 48-CSP(Chip Scale Package)

FEATURES

• Process Technology : CMOS

Organization :256Kx16

Power Supply Voltage

KM616V4000BZ Family : 3.0 ~ 3.6V KM616U4000BZ Family : 2.7 ~ 3.3V

• Low Data Retention Voltage: 2V(Min)

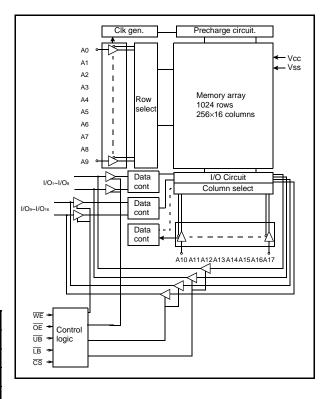
• Three state output and TTL Compatible

• Package Type: 48-CSP with 0.75 pitch

GENERAL DESCRIPTION

The KM616V4000BZ and KM616U4000BZ families are fabricated by SAMSUNG's advanced CMOS process technology. The families support industrial operating temperature ranges and have very small size with 0.75 ball pitch and 6x8 ball array. The families also supports low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY


				Power D	issipation	
Product Family	Operating Temperature	Vcc Range	Speed(ns)	Standby (ISB1, Max)	Operating (Icc2, Max)	PKG Type
KM616V4000BLZI-L	Industrial (-40~85°C)	3.0~3.6V	85	20uA	60mA	48-CSP(6x8 ball area
KM616U4000BLZI-L	madstrial (=+0=00 O)	2.7~3.3V	100	20μΑ	OOMA	with 0.75mm ball pitch)

48-CSP PIN TOP VIEW

	1	2	3	4	5	6
Α	(IB)	OE	(A0)	(A1)	A2	N.C
В	1/09	\overline{UB}	(A3)	A4	$\overline{\overline{\text{CS}}}$	1/01
С	(I/O10	(I/O11)	(A5)	(A6)	I/O2	I/O3
D	Vss	(I/O12)	(A17)	(A7)	1/04	Vcc
Е	Vcc	(I/O13)	(N.C)	(A16)	[/O5]	Vss
F	(I/O15)	(I/O14)	(A14)	(A15)	(I/O6)	1/07
G	(I/O16)	(N.C)	(A12)	(A13)	$\overline{\overline{\rm WE}}$	I/O8
Н	N.C	(A8)	(A9)	(A10)	A11	N.C

Name	Function	Name	Function
CS	Chip Select Input	LB	Lower Byte (I/O1~8)
ŌĒ	Output Enable Input	UB	Upper Byte(I/O9~16)
WE	Write Enable Input	Vcc	Power
A0~A17	Address Inputs	Vss	Ground
I/O1~I/O16	Data Inputs/Outputs	N.C	No Connection

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Industrial Temperature Products(-40~85°C)							
Part Name	Function						
KM616V4000BLZI-8L	48-CSP, 85ns, 3.3V, LL						
KM616U4000BLZI-10L	48-CSP, 100ns, 3.0V, LL						

FUNCTIONAL DESCRIPTION

CS	ŌĒ	WE	LB	UB	I/O1~8	I/O9~16	Mode	Power
Н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
L	Н	Н	X ¹⁾	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	X ¹⁾	X ¹⁾	Н	Н	High-Z	High-Z	Output Disabled	Active
L	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	L	Н	L	L	Dout	Dout	Word Read	Active
L	X ¹⁾	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	X ¹⁾	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	X ¹⁾	L	L	L	Din	Din	Word Write	Active

^{1.} X means don't care. (Must be in low or high state)

ABSOLUTE MAXIMUM RATINGS1)

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	Vin,Vout	-0.5 to Vcc+0.5	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.3 to 4.6	V	-
Power Dissipation	Pb	1.0	W	-
Storage temperature	Тѕтс	-65 to 150	°C	-
Operating Temperature	TA	-40 to 85	°C	KM616V4000BLZI, KM616U4000BLZI
Soldering temperature and time	TSOLDER	260°C, 10sec (Lead Only)	-	-

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

KM616V4000BZ, KM616U4000BZ Family

RECOMMENDED DC OPERATING CONDITIONS(1)

Item	Symbol	Product	Min	Тур	Max	Unit
Supply voltage	Vcc	KM616V4000BZ Family KM616U4000BZ Family	3.0 2.7	3.3 3.0	3.6 3.3	V
Ground	Vss	All Family	0	0	0	V
Input high voltage	Vin	KM616V4000BZ, KM616U4000BZ Family	2.2	-	Vcc+0.3 ²⁾	V
Input low voltage	VIL	KM616V4000BZ, KM616U4000BZ Family	-0.3 ³⁾	-	0.6	V

Note:

- 1. Industrial Product : T_A=-40 to 85°C, otherwise specified
- 2. Overshoot : V_{CC} +3.0V in case of pulse width \leq 30ns
- 3. Undershoot : -3.0V in case of pulse width ≤ 30ns
- 4. Overshoot and undershoot is sampled, not 100% tested.

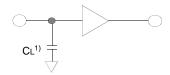
CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	10	pF

^{1.} Capacitance is sampled not, 100% tested

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions		Min	Тур	Max	Unit
Input leakage current	lu	VIL=Vss to Vcc		-1	-	1	μΑ
Output leakage current	llo	CS=VIH or OE=VIH or WE=VIL VIO=Vss to Vcc	S=VIH or OE=VIH or WE=VIL VIO=Vss to Vcc				μΑ
Operating power supply current	Icc	Iio=0mA, CS=ViL, ViN=ViL or ViH, Read		-	-	10	mA
	Icc1	Cycle time=1μs, 100% duty, Iιο=0mA Read CS≤0.2V, VIN≤0.2V or VIN≥Vcc-0.2V Write		-	-	10	mA
Average operating current	ICC1			-	-	45	IIIA
	ICC2	Cycle time=Min, 100% duty, Iio=0mA, CS=VIL, VIN=VIH of	or VIL	-	-	60	mA
Output low voltage	Vol	IoL=2.1mA		-	-	0.4	V
Output high voltage	Voн	IOH=-1.0mA	IOH=-1.0mA				V
Standby Current(TTL)	IsB	CS=Vih	-	-	0.5	mA	
Standby Current(CMOS)	ISB1	CS≥Vcc-0.2V, Others inputs = 0~Vcc		-	-	20	μΑ



KM616V4000BZ, KM616U4000BZ Family

AC OPERATING CONDITIONS

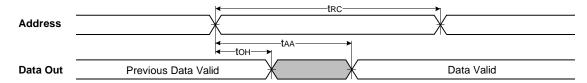
TEST CONDITIONS(Test Load and Input/Output Reference)

Input pulse level: 0.4 to 2.2V Input rising and faling time: 5ns Input and output reference voltage:1.5V Outpuy load(see right): CL=100pF+1TTL

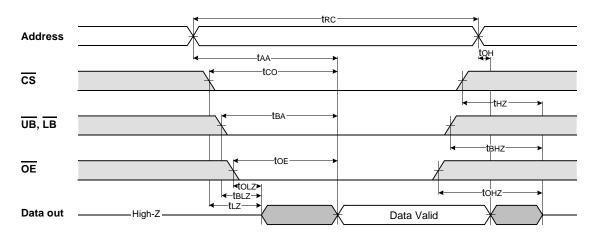
1. Including scope and jig capacitance

AC CHARACTERISTICS (KM616V4000BZ :Vcc=3.0~3.6V, KM616U4000BZ :Vcc=2.7~3.3V, Industrial product : Ta=-40 to 85°C)

				Spee	d Bins		
	Parameter List	Symbol	8	5ns	10	0ns	Units
			Min	Max	Min	Max	
	Read cycle time	trc	85	-	100	-	ns
	Address access time	tAA	-	85	-	100	ns
	Chip select to output	tco	-	85	-	100	ns
	Output enable to valid output	toE	-	40	-	50	ns
	Chip select to low-Z output	tLZ	10	-	10	-	ns
Read	Output enable to low-Z output	toLz	5	-	5	-	ns
INEau	LB, UB enable to low-Z output	tBLZ	5	-	5	-	ns
	LB, UB valid to data output	tва	-	40	-	50	ns
	Chip disable to high-Z output	tHZ	0	25	0	30	ns
	OE disable to high-Z output	tonz	0	25	0	30	ns
	UB, LB disable to high-Z output	tBHZ	0	25	0	30	ns
	Output hold from address change	toн	10	-	15	-	ns
	Write cycle time	twc	85	-	100	-	ns
	Chip select to end of write	tcw	70	-	80	-	ns
	Address set-up time	tas	0	-	0	-	ns
	Address valid to end of write	taw	70	-	80	-	ns
	Write pulse width	twp	55	-	70	-	ns
Write	Write recovery time	twr	0	-	0	-	ns
	Write to output high-Z	twnz	0	25	0	30	ns
	Data to write time overlap	tow	35	-	40	-	ns
	Data hold from write time	tDH	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	ns
	LB, UB valid to end of write	tsw	70	-	80	-	ns


DATA RETENTION CHARACTERISTICS

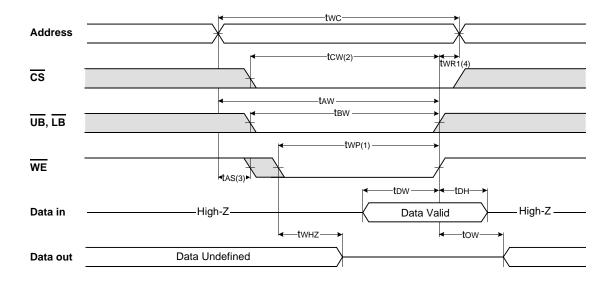
Item	Symbol	Test Condition	Min	Тур	Max	Unit
Vcc for data retention	Vdr	CS ≥Vcc-0.2V	2.0	-	3.6	V
Data retention current	IDR	Vcc=3.0V, CS≥Vcc-0.2V	-	0.5	20	μΑ
Data retention set-up time	tsdr	See data retention waveform	0	-	-	ms
Recovery time	trdr	See data retention wavelonii	5	-	-	1115



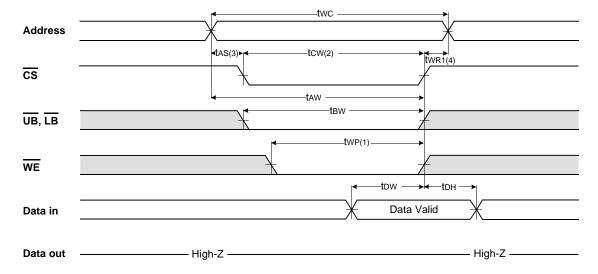
TIMMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS} = \overline{OE} = Vil$, $\overline{WE} = Vih$, \overline{UB} or and $\overline{LB} = Vil$)

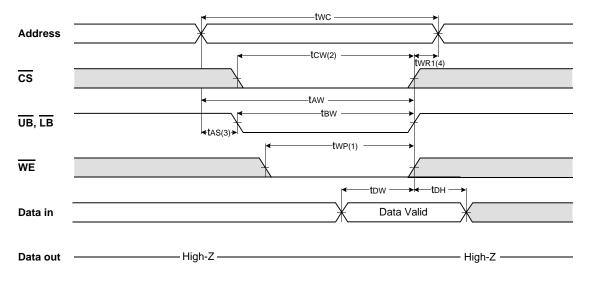
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)



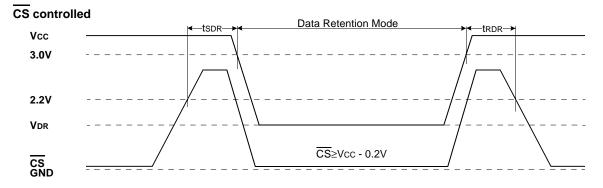
NOTES (READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

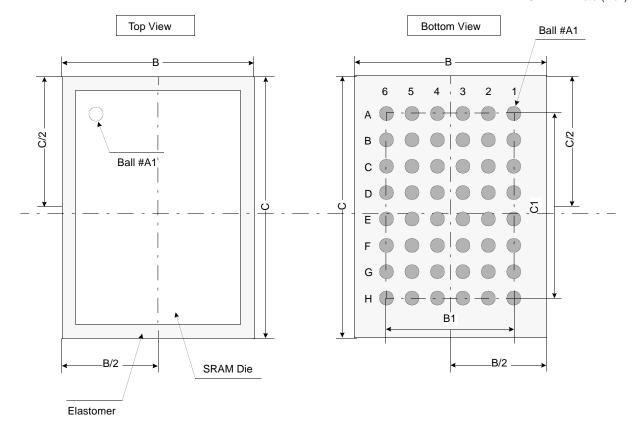


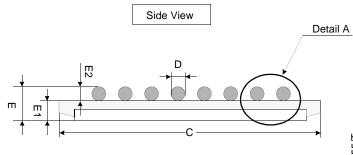
TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

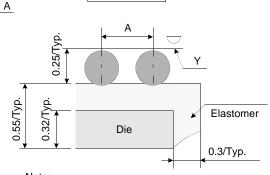

TIMING WAVEFORM OF WRITE CYCLE(3) (UB, LB Controlled)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(twr) of low \overline{CS} and low \overline{WE} . A write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} for double byte operation. A write ends at the earliest transition when \overline{CS} goes high and \overline{WE} goes high. The twr is measured from the beginning of write to the end of write.
- 2. tcw is measured from the $\overline{\text{CS}}$ going low to end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. twn is measured from the end or write to the address change. twn applied in case a write ends as $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.


DATA RETENTION WAVE FORM




PACKAGE DIMENSIONS

Unit: millimeter(inch)

	Min	Тур	Max
Α	-	0.75	-
В	7.10	7.20	7.30
B1	-	3.75	-
С	11.55	11.65	11.75
C1	-	5.25	-
D	0.30	0.35	0.40
Е	-	0.80	0.81
E1	-	0.55	-
E2	-	0.25	-
Υ	-	-	0.08

Detail A

Notes.

- 1. Bump counts: 48(8row x 6column)
- 2. Bump pitch : $(x,y)=(0.75 \times 0.75)(typ.)$
- 3. All tolerence are +/-0.050 unless otherwise specified.
- 4. Typ: Typical
- 5. Y is coplanarity: 0.08(Max)

