
1

®

The DDC112’s Test Mode
By Jim Todsen

©1998 Burr-Brown Corporation AB-135 Printed in U.S.A. July, 1998

This application bulletin covers the DDC112’s test mode. It
elaborates on the explanation given in the data sheet and is
written with the purpose of helping you use the test mode to
its fullest capability. It does assume a basic understanding of
the DDC112’s operation. For a good introduction to the
DDC112, see the DDC112’s data sheet.

The organization of this application bulletin is as follows:
First, an overview presents the basic operation of the test
mode. Next are explanations of single packet and multiple
packet test signals. Noise and linearity performance of the
test mode are then covered followed by some special consid-
erations for using the test mode. Finally, a program for
investigating test mode performance is discussed with the
listing for the program given afterwards.

OVERVIEW
During normal operation, a sensor connected to each DDC112
input supplies signal current which is measured by DDC112
and converted to a 20-bit digital word. To help with debug
during system development and to provide a good system-
level diagnostic check, the DDC112 has a test mode which
is enabled by the TEST pin. While in test mode, the inputs
are disconnected and a test signal is measured instead.
Figure 1 shows a simplified block diagram of the front end
of the DDC112 including test mode circuitry.

You enter test mode by holding TEST HIGH while CONV
toggles. Likewise, you exit test mode by holding TEST
LOW while CONV toggles. The integration timing control
for test mode is identical to that of normal operation: CONV
still sets the side (A or B) and length of integration. As in
normal operation, there is a continuous and non-continuous
mode in test mode determined by the length of TINT (see
Application Bulletin AB-131 for more information on the
continuous and non-continuous modes).

CTEST in Figure 1 supplies the test signal to the front-end
integrators. Switches SA and SB, which in normal operation
steer the sensor’s current to the A or B integrator, are opened
and SAT, SBT and SVT are used instead (these switches are
only used in test mode). CTEST, previously charged to VREF
by SVT, is dumped to the appropriate side by either SAT or
SBT depending on CONV. After the dumped charge from
CTEST is integrated by CINT, SAT (or SBT) opens and CTEST
recharges to VREF via SVT. CTEST is now ready for another
charge dump. When the integration period is over, the ADC
measures the signal integrated onto CINT (the total test signal
dumped by CTEST) just as in normal operation. SGND shorts

the DDC112’s inputs to ground during test mode to prevent
any current from the sensor building a charge on the DDC’s
inputs.

CTEST can be dumped once or multiple times onto the
integrator during an integration period. The next two sec-
tions explain the timing necessary to control the number of
dumps. Note that the magnitude of the test signal is not a
direct function of the integration time TINT, but rather the
number of charge packet dumps. If the number of charge
packets dumped remains constant, changing TINT will not
affect the test mode data.

FIGURE 1. Simplified Block Diagram of the DDC112’s
Front End.

1B

1A

SAT

SVT

CTEST

CTEST

SA

SGND

SB SBT

CINT

CINT

IN1

2B

2A

SAT

SVT

VREF

SA

SGND

SB SBT

CINT

CINT

IN2

VREF

To
ADC

2

SINGLE PACKET

When TEST is held HIGH, a single packet of charge from
CTEST is dumped onto the integrator at the beginning of
every test mode integration. Figure 2 shows the timing
diagram and specifications for this case. The Integrator
Status trace highlights the fact that the test mode functions
the same as normal operation with respect to integration,
measurement, auto-zero, reset, etc. The bottom trace of
Figure 2 shows the output voltage on the side A integrator.

CONV triggers the sequence that controls SAT, SBT and SVT.
A short time after CONV toggles, SVT opens and switch SAT
(or SBT) dumps CTEST’s charge onto the appropriate integra-
tor side. After the charge transfers from CTEST to CINT,
switch SAT (or SBT) opens and CTEST recharges to VREF using
SVT. The test circuitry then waits until the next integration
begins before dumping CTEST to the other side. This cycle

continues until TEST is held LOW while CONV toggles. At
that point, the test mode is over and normal operation
resumes.

The size of each charge packet is (VREF)(CTEST), approxi-
mately 13pC. If, for example, the range is set to 250pC, a
single packet test signal equals approximately 5.2% of full
scale. The absolute value of the charge packet can vary by
20% or more due to fabrication process variations. As
previously mentioned, the readings during single packet test
mode are independent of TINT since the test mode supplies
a fixed amount of charge (≈13pC) each integration.

The A and B sides of a channel use the same CTEST. Due to
the nature of the switching arrangement, there is a small
imbalance in the charge injection between sides A and B
during test mode. This imbalance results in slightly different
effective sizes for the side A and B test packets. Typical
mismatch between side A and B charge packets is ≈0.2pC.

SYMBOL DESCRIPTION MIN TYP MAX UNITS

t1 Setup Time for Test Mode Enable 100 ns

t2 Setup Time for Test Mode Disable 100 ns

FIGURE 2. Single Packet Test Mode Timing.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant
any BURR-BROWN product for use in life support devices and/or systems.

Normal OperationTest Mode

Int B
m/r/az A

Int A
m/r/az B

Int B
m/r/az A

Int A
m/r/az B

Int B
m/r/az A

Int A
m/r/az B

Normal Operation

CONV

TEST

Test Mode
Status

Integrator
Status

STA

STB

SVT

SGND

VOUT

VREF

“A” Side
Integrator

t1 t2

dv
dt

ISENSOR

CINT
=

1 Packet1 Packet

∆V = ≈
CTEST VREF

CINT

13pC
CINT

3

MULTIPLE PACKET

As described above, a packet of charge is dumped onto the
integrator at the beginning of every integration during the
test mode. Additional packets can be dumped creating a
larger test signal. Multiple packets are dumped onto the
integrator by toggling TEST during the integration as illus-
trated in Figure 3. The rising edge of TEST during a test
mode integration triggers the dumping of an additional
packet. Multiple toggles on TEST result in multiple packets
being dumped. In order to stay in test mode, TEST must be
HIGH when CONV toggles at the end of the integration.

Figure 3 shows the relevant timing specifications for mul-
tiple packet dumps. The specifications limit the maximum
number of multiple packet dumps for a given TINT. Since the
rising edges of TEST must be at least 5.4µs apart, the
maximum number of dumps is TINT/5.4µs (round down
when this number is a non-integer). This limitation is not a
concern during the continuous mode. Even for TINT = 500µs,
over 90 dumps are allowed which corresponds to more than
1200pC of test signal—easily enough to reach full scale on
any range. It is only for the short TINT’s of the noncontinous
mode where you need to watch the limit.

NOISE

The noise of the test mode signal is very low. In fact, the
noise performance in the test mode is usually better than
what can be achieved in normal operation, even with very
low sensor capacitance. Since the DDC112’s inputs are
disconnected during test mode, any coupling or interference
on them (e.g., 60Hz pickup) will not affect the readings. This
feature can be helpful in isolating the source of interference
during system evaluation. Table I lists typical noise perfor-
mance for the different internal ranges while in test mode
with a single packet dump. The noise increases slightly for
multiple packet dumps, particularly at the lower ranges.

FIGURE 3. Multiple Packet Test Mode Timing.

RANGE (Full-Scale Charge) TYPICAL NOISE (rms)

1 (50pC) 4.7ppm

2 (100pC) 3.6ppm

3 (150pC) 3.2ppm

4 (200pC) 3.1ppm

5 (250pC) 3.0ppm

6 (300pC) 3.0ppm

7 (350pC) 2.9ppm

TABLE I. Typical Noise Performance in Test Mode.

SYMBOL DESCRIPTION MIN TYP MAX UNITS

t1 Setup Time for Test Mode Enable 100 ns

t2 Setup Time for Test Mode Disable 100 ns

t3 Hold Time for Test Mode Enable 100 ns

t4 From Rising Edge of Test to the 5.4 µs
Edge of CONV while Test Mode Enabled

t5 Rising Edge to Rising Edge of TEST 5.4 µs

Normal OperationTest Mode

Int B
m/r/az A

Int B
m/r/az A

Int A
m/r/az B

Int B
m/r/az A

Int A
m/r/az B

Normal Operation

CONV

TEST

Test Mode
Status

Integrator
Status

STA

STB

SVT

SGND

VOUT

VREF

“A” Side
Integrator

t1 t5 t4 t4

t3 t2

dv
dt

ISENSOR

CINT
=

2 Packets3 Packets

∆V = ≈
CTEST VREF

CINT

13pC
CINT

4

LINEARITY

As with the noise performance, the linearity of the test signal
is very good. Measurements made in the test mode show that
the linearity of the test mode is usually limited by the
performance of the DDC112 itself. That is, the linearity of
the test mode is typically only slightly worse than the
linearity measured in normal operation with a linear input
signal. Figure 4 shows a comparison of integral non-linear-
ity (INL) for normal operation of the DDC112 with a very
linear input signal and for the test mode. INL is defined here
as the deviation of the data from a line connected between
the data’s end points. Notice in Figure 4 how the test mode
INL is only slightly worse than that of the DDC112 in
normal operation. This indicates that the test mode signal is
very linear and the linearity of the test mode is limited by the
DDC112’s inherent linearity.

SPECIAL CONSIDERATIONS
For the very best performance in test mode, TINT might need
to be an integer multiple of 3 CLK periods, depending on
your PC board layout. For example, if CLK = 10MHz, TINT
might need to be a integer multiple of 300ns. If TINT is not
an integer multiple of 3 CLK periods, there can be excessive
noise in the test mode. The reason for this is explained in
Application Bulletin, AB-131. Basically, the internal slow
clock (discussed in AB-131) is always left running while in
test mode, even when TINT > 4794 CLK periods.

To prevent requiring TINT to be an integer multiple of 3 CLK
periods, pay close attention to the PC board layout. Place the
bypass capacitors for VREF and the power supplies as close
to the pins as possible. Use a good analog ground plane with
the analog pins on the DDC112 connecting directly to it. See
the Evaluation Fixture layout for an example. In this layout,
the test mode noise shows no need for TINT to be an integer
multiple of 3 CLK periods. That is, the same noise perfor-
mance is achieved with TINT = 500µs, 501µs, 502µs, etc.

EXAMPLE PROGRAM
To help investigate the test mode, a Pascal program similar
to the one in Application Bulletin, AB-125 is given in
Listing 1. This program runs under DOS and controls the
Evaluation Fixture hardware. Using the program, you can
change the number of data points averaged per reading, full-
scale range, TINT, and the number of test mode packets. With
these variables set, you can then retrieve a reading. The
displayed average for the retrieved reading is normalized to
full scale = 1.0 and the rms noise is given in ppm.

A routine to measure the linearity of the test mode signal is
also included in the program. The program determines the
size of each packet by making an initial measurement with
a single packet test signal. It then calculates the number of
packets needed to reach full scale. A loop increments the
packets up to this number while taking data at each step.
Afterwards, an end-point line is connected between the first
point and the final point. The program stores the linearity
data in a file and reports the maximum difference between
the data points and the end-point line as the INL.

FIGURE 4. Normal Mode and Test Mode INL (end-point
line fit).

Output Reading (% of Full Scale)

IN
L

(p
pm

)

0

_5

–10

–15

–20

–25

–30
10 200 30 40 50 60 70 80 90 100

Normal
Mode

Test
Mode

5

Listing 1
(***)
(* *)
(* BURR-BROWN CORPORATION *)
(* *)
(* Application Bulletin AB-135 *)
(* *)
(***)
(* *)
(* DDC112 Test Mode Program *)
(* Written in Turbo Pascal 7.0 *)
(* *)
(* This program is designed to illustrate use of the DDC112’s *)
(* test mode. This program requires the DDC112 to be connected to the *)
(* DDC112 Evaluation Fixture DEM-DDC112U-C. See AB-125 for more info *)
(* on the Evaluation Fixture. *)
(* *)
(* The user can program the # of averages/reading, range, *)
(* tint and # of test packets from the menu. A single reading can be *)
(* retrieved or a complete measurement of the DDC112’s linearity can be *)
(* taken. The results of the linearity measurement are saved to a file *)
(* *)
(* Created by Jim Todsen 5/20/98 *)
(* *)
(***)
(*{$R-,S-} *)
{$A+,B-,E+,F+,G-,I+,L-,N+,O+,R+,S+,V-,X+}

program DDC112TestMode;

uses Dos,CRT,Strings;

type
Real4by1 = array[1..4] of real; {used to store 1a,1b,2a,2b data}

{1—>1a, 2—>2a, 3—>1b, 4—>2b}
var

Range : longint;
Tint : real;
Nt : longint;
Tpck : longint;
PCPort : longint;
pPrintPort : ^word;
readdr, wraddr, strbaddr : word;
DataCkCode : word;
SysCkCode : word;
Ctrl1Code, Ctrl2Code : word;
DXmitDelayCode : word;
UserDDCCode : word;
Yave, Yrms : Real4by1;

{***}
procedure badBeep;
{***}
begin

sound(100);
delay(200);
nosound;

end;

{***}
procedure goodBeep;
{***}
begin

sound(300);
delay(50);
nosound;

end;

6

{***}
procedure xilinxWrite(XilinxAddr, XilinxData : Byte);
{***}
{Write data to a specified address on the DDC112 Evaluation Fixture}
begin

PORT[wraddr] := $7F AND XilinxAddr;
Delay(2);
PORT[strbaddr] := 1;
Delay(1);
PORT[strbaddr] := 0;
Delay(1);
PORT[wraddr] := $80 OR XilinxData;
Delay(2);
PORT[strbaddr] := 1;
Delay(1);
PORT[strbaddr] := 0;
Delay(1);

end;

{***}
procedure setRange(newRange: word);
{***}
{Set the DDC112 range}
begin

writeln(‘ setting Range = ‘,newRange);
Ctrl1Code := Ctrl1Code AND $78;
Ctrl1Code := Ctrl1Code OR newRange;
xilinxWrite(6,Ctrl1Code);
delay(1000); {wait for settling after change}

end;

{***}
procedure setTint(var newTint: real) ;
{***}
{Set the DDC112 Integration Time}
var

IntCountCode: longint;
begin

if newTint > 1500000 then newTint:= 1500000;
IntCountCode := round(newTint*10)-1; {10 MHz CLK}
writeln(‘ setting Tint = ‘,newTint:7:1);
xilinxWrite(7,(Ctrl2Code AND $7E)); {hold conv}
Delay(1000); {wait to insure CONV is stopped}
xilinxWrite(5,(IntCountCode AND $7F));
xilinxWrite(4,((IntCountCode SHR 7) AND $7F));
xilinxWrite(3,((IntCountCode SHR 14) AND $7F));
xilinxWrite(2,((IntCountCode SHR 21) AND $07));
xilinxWrite(7,(Ctrl2Code OR $1)); {release conv}

end;

{***}
procedure setTstPckts(NumPckt: longint);
{***}
{Set the # of Test Packets dumped to the DDC112 each integration}
begin

if NumPckt > 0 then
begin

Ctrl1Code := Ctrl1Code OR $8; {Test ON}
xilinxWrite(6,Ctrl1Code);
if NumPckt = 1 then xilinxWrite(11,127) {all 1’s = 1 packet}
else xilinxWrite(11,(NumPckt-2));

end
else
begin

Ctrl1Code:= Ctrl1Code AND $F7; {Test OFF}
xilinxWrite(6, (Ctrl1Code));

end;
Delay(1000) ;{settling time after change}

end;

7

{***}
procedure setPCport(PCport: word);
{***}
{Set the address of the PC’s parallel port used for the Evaluation Fixture}
begin

if PCPort = 1 then pPrintPort := Ptr($40,$08)
else pPrintPort := Ptr($40,$0A);
wraddr:= pPrintPort^;
readdr:= wraddr + 1;
strbaddr:= wraddr + 2;
PORT[strbaddr]:= 0; p{init Strobe at 0 (really, 1 out)}

end;

{***}
procedure xilinxRefresh;
{***}
{Refresh the Xilinx FPGAs on the Evaluation Fixture}
begin

PORT[strbaddr] := 0; {init port strobe high}
Delay(1);
xilinxWrite(0, DataCkCode);
xilinxWrite(1, SysCkCode);
xilinxWrite(6, Ctrl1Code);
xilinxWrite(7, Ctrl2Code);
xilinxWrite(8, ((DXmitDelayCode AND $180) SHR 7));
xilinxWrite(9, ((DXmitDelayCode AND $7F)));
xilinxWrite(10, (UserDDCCode SHL 1));
setRange(Range);
setTint(Tint);
setTstPckts(TPck);
goodBeep;

end;

{***}
procedure getInt(descrip: string; Min, Max: longint;

 var Value: longint; var Err: boolean);
{***}
{Get an INTEGER value from the user}
var

userinput : string[25];
check : integer;
temp : longint;

begin
Err:= true;
ClrScr;
writeln;
writeln(‘ The current ‘,descrip,’ is: ‘,Value);
writeln;
writeln(‘ Enter the new ‘,descrip,’:’);
readln(userinput);
if userinput = ‘x’ then exit;
if userinput = ‘X’ then exit;
if userinput = ‘’ then exit;
val(userinput,temp,check);
if check <> 0 then
begin

badBeep;
writeln(‘ *** Invalid ‘,descrip);
writeln;
delay(1000);
exit;

end
else
begin

if (temp < min) or (temp > max) then
begin

badBeep;
writeln;
writeln(‘ *** Invalid ‘,descrip);
writeln;
delay(500);
exit;

end
else
begin

Value := temp;
Err := false;

end;
end;

end;

8

{***}
procedure getReal(descrip: string; Min, Max: longint;

 var Value: real; var Err: boolean);
{***}
{Get a REAL value from the user}
var

userinput : string[25];
check : integer;
temp : real;

begin
Err := true;
ClrScr;
writeln;
writeln(‘ The current ‘,descrip,’ is: ‘,Value:9:3);
writeln;
writeln(‘ Enter the new ‘,descrip,’:’);
readln(userinput);
if userinput = ‘x’ then exit;
if userinput = ‘X’ then exit;
if userinput = ‘’ then exit;
val(userinput,temp,check);
if check <> 0 then
begin

badBeep;
writeln(‘ *** Invalid ‘,descrip);
writeln;
delay(500);
exit;

end
else
begin

if (temp < min) or (temp > max) then
begin

badBeep;
writeln;
writeln(‘ *** Invalid ‘,descrip);
writeln;
delay(1000);
exit;

end
else
begin

Value := temp;
Err := false;

end;
end;

end;

{***}
procedure readData(var DRdError: Boolean);
{***}
{Readback “Nt” points from Evaluation Fixture; find Yave, Yrms, return status}
Var

FNum, N : longint; { final number }
BusyBit3, Loop : integer; { data ready bit }
Nib, D, SideRd : byte;
PortDataRd : byte;
Ysum, Ysumsq : array[1..4] of Extended;
temp : extended;
iRd, TRd, K, Count, DataTime, I, J : word;
FScale,DelTime : real;
FirstTime : boolean;
timereq, SampleTime : real;
numTints : word;

begin
write(‘ filling Demo Board memory... ‘);
FirstTime := true; {flag to check for side A or B on first data point}

if Tint < 479.4 then {ncont mode}
begin

timereq := 1501*6*1/10 - Tint; {1501=min # of slowclks to finish ncont meas}
numTints := trunc(timereq / Tint)+1; {# of tints skipped}
if ((numTints MOD 2) <> 0) then numTints := numTints+1; {numTints must be even}
SampleTime := Tint*(2+numTints);

end {cont}
else SampleTime := Tint*2;

9

I := 0;
while I < round(Nt*1.4 + 50) do {extra margin for safety}
begin

delay(round(sampleTime/1e3));
if KeyPressed AND (ReadKey = Chr(27)) then
begin

goodBeep;
I := round(Nt*1.4 + 50);

end;
I := I + 1;

end;

xilinxWrite(6, Ctrl1Code AND $5F); {enable readback}

{wait for PC Interface Board Data Valid}
K := 0;
DRdError := false;
BusyBit3 := (PORT[readdr] AND $08) SHR 3; {initialize bit 3}
While (BusyBit3 <> 1) AND (K <= 20000) do
begin

BusyBit3 := (PORT[readdr] AND $08) SHR 3;
inc(K);
if (K mod 40) = 0 then delay(1);
if K = 20000 then DRdError := true;

end;
if DRdError = true then
begin

badBeep;
clrscr;
writeln;
writeln(‘ **** Data Retrieval Error ****’);
writeln;
writeln(‘ Check the following:’);
writeln;
writeln(‘ DDC112 securely in socket’);
writeln(‘ power supplies at 5V’);
writeln(‘ cables properly connected’);
writeln(‘ demo board “refreshed”’);
writeln(‘ PC port set correctly’);
writeln;
writeln(‘ ******************************’);
writeln;
writeln(‘ Hit ENTER to continue ‘);
readln;
exit;

end
else
begin

FScale := $FFFFF-$1000; {fullscale range = all ones - offset}
for D := 1 to 4 do
begin

Ysum[D] := 0;
Ysumsq[D] := 0;

end;
writeln(‘retrieving data...’);
for N := Nt-1 downto 0 do
begin

for D := 1 to 4 do
begin

TRd := N + Nt*(D-1);
Fnum := 0;
PortDataRd := $6F; {decrement Xilinx RAM memory address}
PORT[wraddr] := PortDataRd;
PORT[strbaddr] := 1;
PORT[strbaddr] := 0;
PORT[strbaddr] := 1;
PORT[strbaddr] := 0;
{prepare for RAM memory address (PortDataRd := $6F;)}
for iRd := 1 to 6 do {get 6 nibbles}
begin

PortDataRd := PortDataRd - $10; {MSB, MSB-1,...,LSB nibble}
PORT[wraddr] := PortDataRd;
PORT[strbaddr] := 1;
PORT[strbaddr] := 0;
{wait for PC Interface Board Data Valid}
K := 0;
BusyBit3 := (PORT[readdr] AND $08) SHR 3; {init bit 3}

10

While (BusyBit3 <> 1) AND (K <= 20000) do
begin

BusyBit3 := (PORT[readdr] AND $08) SHR 3;
inc(K);
if (K mod 40) = 0 then delay(1);
if K = 20000 then
begin

DRdError := true;
N := 0;

end;
end;
nib := ((PORT[readdr] XOR $80) AND $F0) SHR 4;

{XOR inverts bit 7 (-busy), AND F0 gets rid of 4 lower bits,
shift right puts the data bits in lower nibble}

if iRd = 1 then
SideRd := ((nib AND $4) Xor $4) SHR 2; {bit3 lo ==> sideA}

Fnum := Fnum SHL 4;
FNum := Fnum OR nib; {Add nibble to final number}

end;

if FirstTime then
begin

if SideRd = 0 then FirstTime := false {first point is correct side}
else
begin

FirstTime := false;
for count := 1 to ((UserDDCCode-1)*2 + 1) do {read & throw away pts}
begin

PortDataRd := $6F; {decrement Xilinx RAM Memory Address}
PORT[wraddr] := PortDataRd;
PORT[strbaddr] := 1;
PORT[strbaddr] := 0;
PORT[strbaddr] := 1;
PORT[strbaddr] := 0;
{prepare for RAM memory address (PortDataRd := $6F;)}
for iRd := 1 to 6 do {get 6 nibbles}
begin

PortDataRd := PortDataRd - $10; {MSB, MSB-1,...,LSB nibble}
PORT[wraddr] := PortDataRd;
PORT[strbaddr] := 1;
PORT[strbaddr] := 0;
{wait For PC Interface Board DValid}
K := 0;
BusyBit3 := (PORT[readdr] AND $08) SHR 3; {init bit 3}
While (BusyBit3 <> 1) AND (K <= 20000) do
begin

BusyBit3 := (PORT[readdr] AND $08) SHR 3;
inc(K);
if (K mod 40) = 0 then delay(1);
if K = 20000 then
begin

DRdError := true;
N := 0;

end;
end;

end;
end;
Fnum := 0;
PortDataRd := $6F; {decrement Xilinx RAM Memory Address}
PORT[wraddr] := PortDataRd;
PORT[strbaddr] := 1;
PORT[strbaddr] := 0;
PORT[strbaddr] := 1;
PORT[strbaddr] := 0;
{prepare for RAM memory address (PortDataRd := $6F;)}
for iRd := 1 to 6 do {get 6 nibbles}
begin

PortDataRd := PortDataRd - $10; {MSB, MSB-1,...,LSB nibble}
PORT[wraddr] := PortDataRd;
PORT[strbaddr] := 1;
PORT[strbaddr] := 0;
{wait for PC Interface Board Data Valid}
K := 0;
BusyBit3 := (PORT[readdr] AND $08) SHR 3; {init bit 3}

11

While (BusyBit3 <> 1) AND (K <= 20000) do
begin

BusyBit3 := (PORT[readdr] AND $08) SHR 3;
inc(K);
if (K mod 40) = 0 then delay(1);
if K = 20000 then
begin

DRdError := true;
N := 0;

end;
end;
nib := ((PORT[readdr] XOR $80) AND $F0) SHR 4;

{XOR inverts bit 7 (-busy), AND F0 gets rid of 4 lower bits,
shift right puts the data bits in lower nibble}

if iRd = 1 then
SideRd := ((nib AND $4) Xor $4) SHR 2; {bit3 lo ==> sideA}

Fnum := Fnum SHL 4;
FNum := Fnum OR nib; {add nibble to final number}

end;
end;

end;

Fnum := (FNum AND $000FFFFF); {set bits 31-21 := 0}
Fnum := Fnum - $1000; {subtract offset}
Ysum[D] := Ysum[D] + Fnum;
temp := Fnum;
temp := temp * Fnum;
Ysumsq[D] := Ysumsq[D] + Temp;

end;
end;

for D := 1 to 4 do
begin

Yave[D] := Ysum[D]/(Nt*FScale);
temp := Nt*Ysumsq[D]-(Ysum[D]*Ysum[D]);
Yrms[D] := Sqrt(abs(temp)/(Nt*(Nt-1)))/Fscale;
Yrms[D] := Yrms[D] * 1e6; {convert to ppm}

end;
end;

xilinxWrite(6,Ctrl1Code OR $20); {enable write to RAM}
end;

{***}
procedure retrieveData(var err: boolean);
{***}
{Call readData then display results}
begin

readData(err);
if err = false then
begin

ClrScr;
writeln;
writeln(‘ # of pts = ‘,Nt,’ Range = ‘,Range,’ Tint = ‘,Tint:8:1, ‘ Test pkts = ‘,TPck);
writeln;
writeln(‘ average rms noise’);
writeln(‘ 1A: ‘,Yave[1]:11:7,’ ‘,Yrms[1]:6:2,’ ppm’);
writeln(‘ 2A: ‘,Yave[2]:11:7,’ ‘,Yrms[2]:6:2,’ ppm’);
writeln(‘ 1B: ‘,Yave[3]:11:7,’ ‘,Yrms[3]:6:2,’ ppm’);
writeln(‘ 2B: ‘,Yave[4]:11:7,’ ‘,Yrms[4]:6:2,’ ppm’);

end;
end;

{***}
procedure TestModeLinearity;
{***}
{Measure linearity of the DDC112’s Test Mode}
{1st take 1 reading. Use results to determine # of steps to fullscale.}
{Fit data with endpoint line and report max deviation from that line.}
var

n,i : integer;
err : boolean;
userName : string[8];
fileName : string[12];
F1 : text;
tpacket : real;
steps : word;
Tdat : array[1..4,0..100] of real; {holds data for lin fit}
m,b : real;
INLpt, INLmax : real;
INL : array[1..4] of real;

12

begin
ClrScr;
if Nt < 10 then
begin

writeln;
writeln(‘*** The number of points / reading is low ***’);
writeln;
writeln(‘ Increase the number for better results ‘);
badBeep;
getInt(‘# of points’,1,10000,Nt,err);

end;

writeln;
writeln(‘Enter a file name for Test Mode Linearity data (max 8 characters)’);
readln(userName);
writeln;
fileName := userName + ‘.DAT’;
assign(F1,fileName);
delay(1);
{$I-} rewrite(F1); {$I+}
if ioresult <> 0 then
begin

writeln(‘’);
writeln(‘ *** File I/O Problem, try a new name...’);
delay(400);
badBeep;
exit;

end;

setTstPckts(1); {set test pckts = 1 & collect 1st data}
writeln(‘ collecting test data 1’);
readData(err);
if err = false then
begin {use 1st data pt to calc # steps required}

for n := 1 to 4 do Tdat[n,1] := Yave[n];
tpacket := (Yave[1])*100; {calc packet size}
writeln;
writeln(‘*** Each test packet is ‘,tpacket:4:1,’ % of full scale ***’);
steps := trunc(1/Yave[1]); {calc # of steps for fullscale}
if steps > (trunc(Tint/5.4)) then
begin

steps := trunc(Tint/5.4);
writeln;
writeln(‘***’);
writeln(‘Test Mode will not be able to reach full scale’);
writeln(‘with current Tint. Increasing Tint will allow’);
writeln(‘more test packets dumps during the integration.’);
writeln(‘***’);
badBeep;

end;
end
else exit;

for i := 2 to steps do {collect rest of data}
begin

writeln;
writeln(‘ collecting test data ‘,i,’ out of ‘,steps);
setTstPckts(i);
readData(err);
if err = true then exit;
for n := 1 to 4 do Tdat[n,i] := Yave[n];

end;
setTstPckts(Tpck); {restore user Test Package setting}

ClrScr;
writeln;
writeln(‘ Linearity Results: Endpoint Fit’);
writeln(‘ (max deviation from endpoint line)’);
writeln;

13

for n := 1 to 4 do {fit linearity}
begin

b := Tdat[n,1]; {y = mx + b}
m := (Tdat[n,steps] - Tdat[n,1])/(steps-1);
INLmax := 0;
for i := 2 to (steps-1) do {INL for i=1 & steps =0 for endpoint fit}
begin

INLpt := Abs(Tdat[n,i] - (m*(i-1) + b));
if INLpt > INLmax then INLmax := INLpt;

end;
INL[n] := 1e6* INLmax ; {convert to ppm}
case n of

1: writeln(‘ INL for 1a = ‘,INL[1]:6:1,’ ppm’);
2: writeln(‘ INL for 2a = ‘,INL[2]:6:1,’ ppm’);
3: writeln(‘ INL for 1b = ‘,INL[3]:6:1,’ ppm’);
4: writeln(‘ INL for 2b = ‘,INL[4]:6:1,’ ppm’);

end;
end;

writeln(F1,’ Burr-Brown Corporation ‘);
writeln(F1,’ Application Bulletin AB-135 ‘);
writeln(F1,’DDC112 Test Mode linearity measurement’);
writeln(F1);
writeln(F1,’# of averages/readings = ‘,Nt);
writeln(F1,’Range = ‘,Range);
writeln(F1,’Tint = ‘,Tint:7:1);
writeln(F1);
writeln(F1,’# Test’);
writeln(F1,’Packets 1a ave 2a ave 1b ave 2b ave’);
for i := 1 to steps do
writeln(F1,i:3,’ ‘,Tdat[1,i]:11:6,’ ‘,Tdat[2,i]:11:6,’ ‘,Tdat[3,i]:11:6,’ ‘,Tdat[4,i]:11:6);
writeln(F1);
writeln(F1,’ Endpoint Fit’);
writeln(F1,’ INL(ppm): ‘,INL[1]:8:1, INL[2]:12:1, INL[3]:12:1, INL[4]:12:1);
close(F1);

goodBeep;
writeln;
writeln(‘ Hit ENTER to continue...’);
readln;

end;

{***}
{***}
{Main}
{***}
{***}
var

userinput : string[10];
goodbye,done : boolean;
err : boolean;
choice : word;
check : integer;
minTint : real;

begin
Range := 5;
Tint := 500;
Nt := 500;
TPck := 1;
PCPort := 1;
DataCkCode := 2;
SysCkCode := 0;
DXmitDelayCode := 0;
UserDDCCode := 1;
Ctrl1Code := $20; {initially Read, internal DCLk}
Ctrl2Code := 1; {demo bd CONV}
pPrintPort := Ptr($40,$08); {default: PC port=1}
wraddr := pPrintPort^;
readdr := wraddr + 1;
strbaddr := wraddr + 2;
PORT[strbaddr] := 0; {init Strobe at 0 (really, 1 out)}

14

xilinxRefresh;
ClrScr;
goodbye := false;
while (goodbye <> true) do
begin

ClrScr;
writeln;
writeln(‘--- - ’);
writeln(‘ | Burr-Brown Corporation |’);
writeln(‘ | Application Bulletin AB1XX |’);
writeln(‘ | |’);
writeln(‘ | DDC112 Test Mode Evaluation Program |’);
writeln(‘ ———————————————————’);
writeln;
writeln(‘ # points/reading = ‘,Nt);
writeln(‘ Range = ‘,Range);
writeln(‘ Tint = ‘,Tint:7:1);
writeln(‘ # test packets = ‘,TPck);
writeln;
writeln;
writeln(‘ =========================== ‘);
writeln(‘ Choose one of the following ‘);
writeln(‘ =========================== ‘);
writeln;
writeln(‘ 1) Refresh Demo Board’);
writeln;
writeln(‘ 2) Set # points averaged/reading’);
writeln(‘ 3) Set Range’);
writeln(‘ 4) Set Tint’);
writeln(‘ 5) Set # of Test Mode packets’);
writeln(‘ 6) Set PC port’);
writeln;
writeln(‘ 7) Take single reading’);
writeln(‘ 8) Measure Linearity of Test Mode’);
writeln;
writeln(‘ 9) exit program’);
writeln;
readln(userinput);
val(userinput,choice,check);
if check <> 0 then badBeep
else
begin

if (choice < 0) or (choice > 9) then badBeep
else

case choice of
1: begin

writeln;
writeln(‘Refreshing Demo Board...’);
xilinxRefresh;

end;

2: getInt(‘# of points’,1,10000,Nt,err);

3: begin
getInt(‘Range’,0,7,Range,err);
if err = false then setRange(Range);

end;

4: begin
getReal(‘Tint’,0,1500000,Tint,err);
if err = false then setTint(Tint);

end;

15

5: begin
getInt(‘Test Mode Packets’,0,128,TPck,err);
if err = false then
begin

if TPck > Trunc(Tint/5.4) then {allow 5.4us per packet}
begin

writeln;
writeln(‘***’);
writeln(‘ # of Test Packets is too high for current Tint . ’);
minTint := TPck*5.4;
writeln(‘ Tint must be > ‘,minTint:7:1,’ us for ‘,TPck,’ packets.’);
TPck := Trunc(Tint/5.4);
writeln(‘ Setting # of Test Packets to ‘,TPck);
writeln(‘***’);
writeln;
writeln(‘ Hit ENTER to continue...’);
BadBeep;
readln;

end;
setTstPckts(TPck);

end;
end;

6: begin
getInt(‘PC port’,1,2,PCport,err);
setPCport(PCport);

end;

7: begin
done := false;
while done = false do
begin

retrieveData(err);
if err = true then done := true
else
begin

writeln;
writeln(‘ enter “r” to repeat measurement’);
readln(userinput);
if (userinput <> ‘r’) AND (userinput <> ‘R’)
then done := true;

end;
end;

end;

8: TestModeLinearity;

9: goodbye := true;
end;

end;
end;

end.

