Features

- All-in-one Design
 - MIDI Control Processor
 - Synthesis
 - Compatible Effects: Reverb + Chorus
 - Programmable Spatial Effects for Four-channel Surround⁽¹⁾
 - Four-band Stereo Equalizer
- State-of-the-art Synthesis Supplies Best Quality for Price
 - 34-voice Polyphony + Effects
 - Up to 1 MB Wavetable/Firmware Support
- Synthesizer Chipset: ATSAM9713 + 8-Mbit ROM + 32K x 8 SRAM + DAC
- Hardware-programmable DAC Mode
 - I2S 16 to 20 bits
 - Japanese 16 bits
- Firmware/Sample Set Available for Turnkey Designs
 - 8-Mbit GS® GMS960800B(2)
 - 8-Mbit CleanWave® GMS970800B
- Typical Applications: Cost-sensitive Portable Karaoke/VCD Karaoke
- 80-lead TQFP Package: Small Footprint, Easy Mounting
- Ideal for Battery Operation
 - Low Power
 - Power-down Mode
 - Wide Supply Voltage Range: 3V to 4.5V Core, 3V to 5.5V Periphery

Notes:

- 1. Four-channel surround requires additional DAC.
- 2. GMS960800B with express permission of Roland Corporation. Special licensing conditions apply. Refer to warning on last page of this datasheet.

Description

The highly integrated architecture of the ATSAM9713 combines a specialized high-performance RISC digital signal processor and a general-purpose 16-bit CISC control processor on a single chip. An on-chip memory management unit allows the digital signal processor and the control processor to share external ROM and RAM devices. The ROM bus width should be 16 bits while the SRAM can be selected to be 8 or 16 bits wide. When using an 8-bit SRAM, fast type (static cache) should be selected because two SRAM cycles will be completed in one ROM cycle duration.

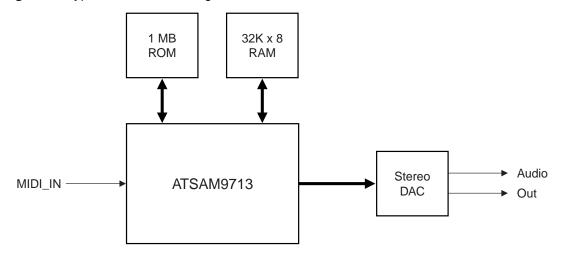
Running at 300 million operations per second (MOPS), the digital signal processor supports high-quality PCM synthesis as well as most important functions like reverb, chorus, surround effect and equalizer. By adding an additional stereo DAC, four-channel audio surround can also be obtained.

The ATSAM9713 operates from a low-frequency 9.6 MHz typical crystal. A built-in PLL raises this frequency to a 38.4 MHz internal clock that controls the two processors. Care has been taken that output pin signals change only when necessary. This minimizes RFI (radio frequency interferences) and power consumption. Minimizing RFI is mostly important in order to comply with standards such as FCC, CSA and CE.

The core power supply for the ATSAM9713 should range from 3V to 4.5V; the periphery supports supply from 3V to 5.5V. Therefore, by selecting 3.3V ROM, SRAM and DAC, it is possible to develop low-power/low-voltage portable applications.

Sound Synthesis

ATSAM9713 Low-cost Integrated Synthesizer with Effects



Rev. 1712B-DRMSD-11/02

Figure 1. Typical Hardware Configuration

Pin Description

Pins by Function

Table 1. Power Supply Group

Pin Name	Pin Number	Туре	Function
GND	5, 14, 21, 23, 36, 38, 57, 61, 62, 65, 74	PWR	Digital Ground All pins should be connected to a ground plane.
V _{CC}	1, 6, 13, 18, 22, 32, 56, 6480	PWR	Power Supply, 3V to 5.5V All pins should be connected to a VCC plane
V _{C3}	7, 17, 63	PWR	Core Power Supply, 3V to 4.5V All pins should be connected to nominal 3.3V. If 3.3V is not available, then $V_{\rm C3}$ can be derived from 5V by two 1N4148 diodes in series.

Table 2. Serial MIDI

Pin Name	Pin Number	Туре	Function
MIDI_IN	15	IN	Serial TTL MIDI IN. All controls are received by this pin.

Table 3. External ROM/RAM Group

Pin Name	Pin Number	Туре	Function	
WA[18:0]	37, 39, 41 - 55, 58, 59	OUT	External ROM/RAM address for up to 512K words (8M bits) of memory. ROM memory holds firmware and PCM data. RAM memory holds working variables and effects delay lines.	
WD[15:0]	66 - 73, 75 - 79, 2 - 4	I/O	External ROM/RAM data. Holds read data from ROM or RAM when $\overline{\text{WO}}$ low, writes data to RAM when $\overline{\text{WWE}}$ is low.	
WCS0	29	OUT	External ROM chip select, active low.	
WCS1	30	OUT	External RAM chip select, active low.	
WOE	31	OUT	External ROM/RAM output enable, active low.	
WWE	28	OUT	External RAM write, active low.	
RBS	20	OUT	RAM byte select. Used as lower address from RAM when an 8-bit wide RAM is connected.	

Note: Pin names exhibiting an overbar (WOE for example) indicate that the signal is active low.

Table 4. Digital Audio Group

Pin Name	Pin Number	Туре	Function	
CLBD	19	OUT	Digital audio bit clock	
WSBD	27	OUT	Digital audio left/right select	
DABD0	25	OUT	Digital audio main stereo output	
DABD1	26	OUT	Auxiliary digital stereo output. Reserved for surround effects.	
DAC/DAAD	24	IN	DAC type: 0 = I2S 16 to 20 bits, 1 = Japanese 16 bits Can also be used as digital audio input if 32K x 16 RAM is connected.	

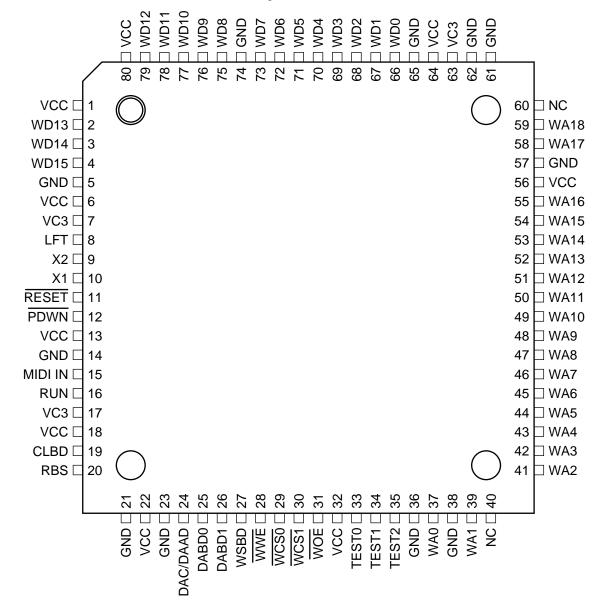


Table 5. Miscellaneous Group

Pin Name	Pin Number	Туре	Function	
X1 X2	10, 9		9.6 MHz crystal connection. An external 9.6 MHz clock can also be used on X1 (3.3V input). X2 cannot be used to drive external circuits.	
LFT	8		PLL external RC network	
RESET	11	IN	Reset input, active low. This is a Schmitt trigger input, allowing direct connection of an RC network.	
PDWN	12	IN	Power-down, active low. When power-down is active, then all output pins will be floated. The crystal oscillator will be stopped. To exit from power-down, PDWN should be high and RESET applied.	
TEST[2:0]	33, 34, 35	IN	Test pins. Should be grounded.	
RUN	16	OUT	When high, indicates that the synthesizer is up and running.	

Pinout

Figure 2. ATSAM9713 Pinout in 80-lead TQFP Package

Absolute Maximum Ratings

Table 6. Absolute Maximum Ratings

Ambient Temperature (Power Applied)40°C to + 85°C	*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent dam-
Storage Temperature65°C to + 150°C	age to the device. This is a stress rating only and functional operation of the device at these or any
Voltage on any pin (except X1)0.5V to V _{CC} + 0.5V	other conditions beyond those indicated in the
V _{CC} Supply Voltage0.5V to + 6.5V.	operational sections of this specification is not implied. Exposure to absolute maximum rating
V _{C3} Supply Voltage0.5V t0 + 4.5V	condtions for extended periods may affect device reliability.
Maximum I _{OL} per I/O pin10mA	

Recommended Operating Conditions

Table 7. Recommended Operating Conditions

Symbol	Parameter/Condition	Min	Тур	Max	Unit
V _{CC}	Supply Voltage ⁽¹⁾	3	3.3/5.0	5.5	V
V _{C3}	Supply Voltage	3	3.3	4.5	V
T _A	Operating Ambient Temperature	0		70	°C

Note: 1. When using 3.3V supply in a 5V environment, care must be taken that any pin voltage does not exceed V_{CC} + 0.5V. Pin X1 is powered by V_{C3} input. If X1 is driven by a 5V device, then a minimum series resistor is required (typ 330 Ω).

DC Characteristics

Table 8. DC Characteristics ($T_A = 25$ °C, $V_{C3} = 3.3$ V ± 10%)

Symbol	Parameter/Condition	V _{cc}	Min	Тур	Max	Unit
V _{IL}	Low-level Input Voltage	3.3 5.0	-0.5 -0.5		1.0 1.7	V V
V _{IH}	High-level Input Voltage	3.3 5.0	2.3 3.3		V _{CC} + 0.5 V _{CC} + 0.5	V V
V _{OL}	Low-level Output Voltage I _{OL} = -3.2mA	3.3 5.0			0.45 0.45	V
V _{OH}	High-level Output Voltage I _{OH} = 0.8mA	3.3 5.0	2.8 4.5			V
I _{cc}	Power Supply Current (crystal freq. = 9.6 MHz)	3.3 5.0		70 25	90 35	mA mA
	Power-down Supply Current			70	100	μΑ

Timings

All timing conditions: T_A = 25°C, V_{CC} = 5V, V_{C3} = 3.3V, all outputs except X2 and LFT load capacitance = 30pF, crystal frequency or external clock at X1 = 9.6 MHz.

External ROM Timing

Figure 3. ROM Read Cycle

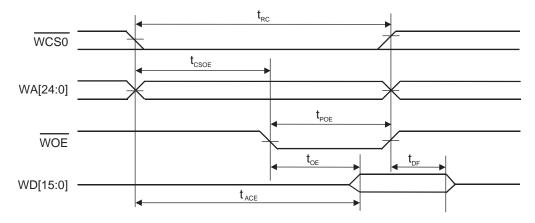


Table 9. Timing Parameters

Symbol	Parameter	Min	Тур	Max	Unit
t _{RC}	Read Cycle Time	130			ns
t _{CSOE}	Chip Select Low/Address Valid to WOE Low	45		80	ns
t _{POE}	Output Enable Pulse Width		78		ns
t _{ACE}	Chip Select/Address Access Time	125			ns
t _{OE}	Output Enable Access Time	70			ns
t _{DF}	Chip Select or WOE High to Input Data High-Z	0		50	ns

External RAM Timing

Figure 4. 16-bit SRAM Read Cycle

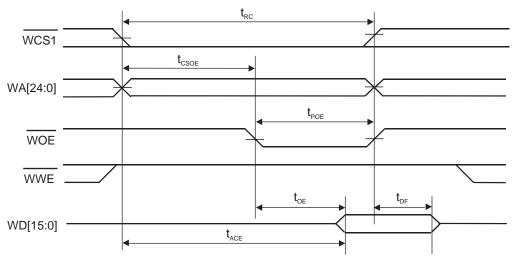


Figure 5. 16-bit SRAM Write Cycle

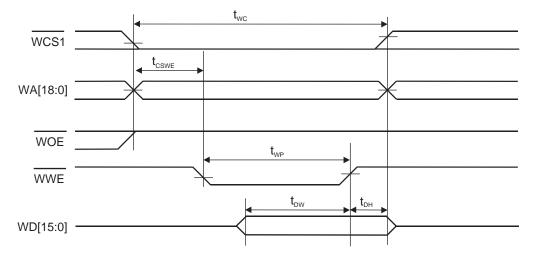


Table 10. Timing Parameters

Symbol	Parameter	Min	Тур	Max	Unit
t _{RC}	Read Cycle Time	130			ns
t _{CSOE}	Chip Select Low/Address Valid to WOE Low	45		80	ns
t _{POE}	Output Enable Pulse Width		78		ns
t _{ACE}	Chip Select/Address Access Time	125			ns
t _{OE}	Output Enable Access Time	70			ns
t _{DF}	Chip Select or WOE High to Input Data High-Z	0		50	ns
t _{WC}	Write Cycle Time	130			ns
t _{CSWE}	Write Enable Low from $\overline{\text{CS}}$ or Address or $\overline{\text{WOE}}$	40			ns
t _{WP}	Write Pulse Width		104		ns
t _{DW}	Data Out Setup Time	95			ns
t _{DH}	Data Out Hold Time	10			ns

Figure 6. 8-bit SRAM Read Cycle

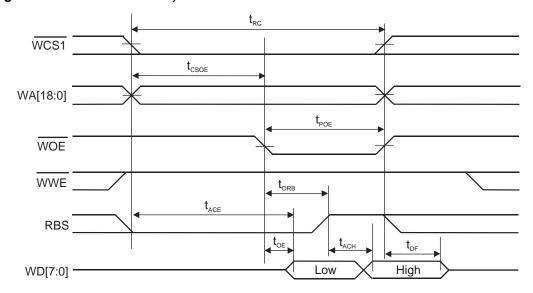
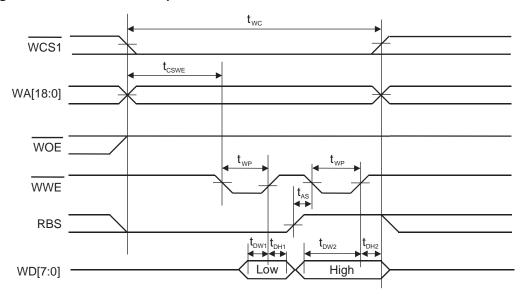


Figure 7. 8-bit SRAM Write Cycle



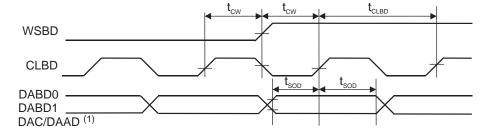


Table 11. Timing Parameters

Symbol	Parameter	Min	Тур	Max	Unit
t _{RC}	Word Read Cycle Time	130			ns
t _{CSOE}	Chip Select Low/Address Valid to WOE Low	45		80	ns
t _{POE}	Output Enable Pulse Width		78		ns
t _{ACE}	Chip Select/Address Low Byte Access Time	70			ns
t _{OE}	Output Enable Low Byte Access Time	20			ns
t _{ORB}	Output Enable Low to Byte Select High		26		ns
t _{ACH}	Byte Select High Byte Access Time	45			ns
t _{DF}	Chip Select or WOE High to Input Data High-Z	0		50	ns
t _{WC}	Word Write Cycle Time	130			ns
t _{CSWE}	1st WWE Low from CS or Address or WOE	40			ns
t _{WP}	Write (Low and High Byte) Pulse Width	20			ns
t _{DW1}	Data Out Low Byte Setup Time	25			ns
t _{DH1}	Data Out Low Byte Hold Time	20			ns
t _{AS}	RBS High to Second Write Pulse	8			ns
t _{DW2}	Data Out High Byte Setup Time	40			ns
t _{DH2}	Data Out High Byte Hold Time	10			ns

Digital Audio

Figure 8. Digital Audio Timing

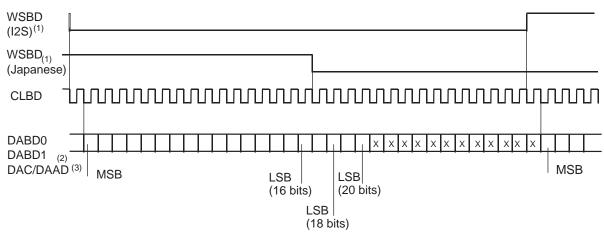

Note: 1. When used as audio in.

Table 12. Timing Parameters

Symbol	Parameter	Min	Тур	Max	Unit
t _{CW}	CLBD Rising to WSBD Change	200			ns
t _{SOD}	DABD Valid before/after CLBD Rising	200			ns
t _{CLBD}	CLBD Cycle Time		416.67		ns

Digital Audio Frame

Figure 9. Digital Audio Frame Format

Notes:

- 1. Selection between I2S and Japanese format is through pin DAC/DAAD in case of 32K x 8 SRAM.
- 2. Digital audio in is available only in case of 32K x 16 SRAM. In this case, DAAD is 16 bits only.
- 3. When used as audio in.

Reset and Power-down

During power-up, the RESET input should be held low until the crystal oscillator and PLL are stabilized, which can take about 20 ms. A typical RC/diode power-up network can be used.

After the low-to-high transition of RESET, the following occurs:

- · Synthesis enters an idle state
- · The RUN output is set to zero
- Firmware execution starts from address 0100H in ROM space (WCSO low)

If PDWN is asserted low, then all I/Os and outputs will be floated and the crystal oscillator and PLL will be stopped. The chip enters a deep power-down sleep mode. To exit power-down, PDWN has to be asserted high, then RESET applied.

Recommended Board Layout

As for all HCMOS high-integration ICs, some rules of board layout should be followed for reliable device operation:

• GND, V_{CC}, V_{C3} distribution, decouplings

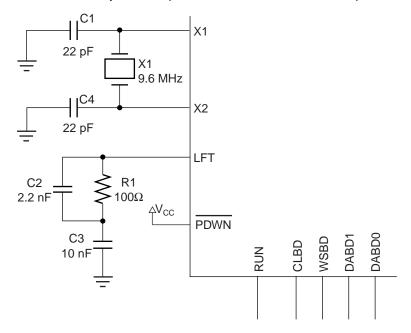
All GND, V_{CC} , V_{C3} pins should be connected. GND and V_{CC} planes are strongly recommended below the ATSAM9713. The board GND and V_{CC} distribution should be in grid form. For 5V V_{CC} operation, if 3.3V is not available, V_{C3} can be connected to V_{CC} by two 1N4148 diodes in series. This guarantees a minimum voltage drop of 1.2V.

Recommended V_{CC} decoupling is 0.1 μF at each corner of the IC with an additional 10 μF decoupling close to the crystal. V_{C3} requires a single 0.1 μF decoupling close to the IC.

Crystal, LFT

The paths between the crystal, the crystal compensation capacitors, the LFT filter R-C-R and the ATSAM9713 should be short and shielded. The ground return from the compensation capacitors and LFT filter should be the GND plane from ATSAM9713.

· Analog section


A specific AGND ground plane should be provided, which connects by a single trace to the GND ground. No digital signals should cross the AGND plane. Refer to the codec vendor recommended layout for correct implementation of the analog section.

· Unused inputs

Unused inputs should always be connected. A floating input can cause internal oscillation inside the IC, which can destroy the IC by dramatically increasing the power consumption. If you plan to use the power-down feature, care should be taken that no pin is left floating during power- down. Usually, a 1 M Ω ground return is sufficient.

Recommended Crystal Compensation and LFT Filter

Figure 10. Recommended Crystal Compensation and LFT Filter Description

Note: The X2 output cannot be used to drive another circuit.

Mechanical Dimensions

Figure 11. 80-lead Thin Plastic Quad Flat Pack

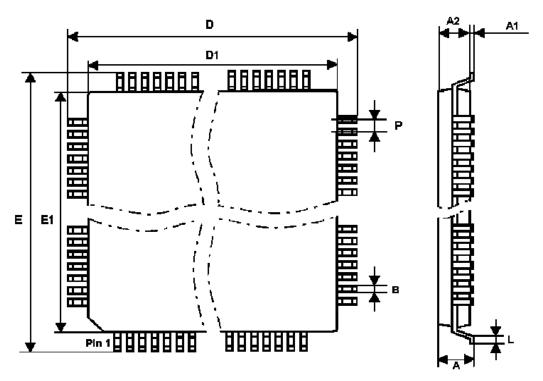


Table 13. Package Dimensions (in mm)

Dimension	Min	Тур	Max
А	1.40	1.50	1.60
A1	0.05	0.10	0.15
A2	1.35	1.40	1.45
D	15.90	16.00	16.10
D1	13.90	14.00	14.10
Е	15.90	16.00	16.10
E1	13.90	14.00	14.10
L	0.45	0.60	0.75
Р	_	0.65	_
В	0.22	0.32	0.38

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

Warning: GMS960800B may not be installed in any musical instrument except electronic keyboards and synthesizers that have a sale price of less than \$75 FOB. Using this product in the manufacture of musical instruments or selling this product for use in a musical instrument (other than the exceptions noted above) is a violation of the intellectual property rights of Roland Corporation and will result in liability for infringement.

e-mail literature@atmel.com

Web Site http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL®, Dream® and CleanWave® are the registered trademarks of Atmel.

GS® is the registered trademark of the Roland Company. Other terms and product names may be the trademarks of others.

