

MICROCIRCUIT DATA SHEET

MNCLC414A-X REV 1A0

Original Creation Date: 06/24/98 Last Update Date: 04/20/01 Last Major Revision Date: 06/07/99

QUAD, LOW-POWER MONOLITHIC OP AMP

General Description

The CLC414 is a low-power, quad, monolithic operational amplifier designed for intermediate-gain applications where power and cost per channel are of primary concern. Benefiting from Comlinear's current feedback architecture, the CLC414 offers a gain range of ± 1 to ± 10 while providing stable, oscillation-free operation without external compensation, even at unity gain.

Operating from $\pm 5V$ supplies, the CLC414 consumes only 25mV of power per channel, yet maintains a 90MHz small-signal bandwidth and a 1000V/uS slew rate. The CLC414 also provides wide channel isolation with its 70dB crosstalk (input referred at 5MHz). Applications requiring a high-density solution to high-speed amplification such as active filters and instumenation differential amplifiers will benefit from the CLC414's four integrated, wideband operational amplifiers in one 14-pin package.

Commercial remote-sensing applications and battery-powered radio transceivers requiring high-performance, low-power amplifiers will find the CLC414 to be an attractive, cost-effective solution. In composite video switching and distribution applications, the CLC414 offers differential gain and phase performance of 0.1%, 0.12 degrees at 3.58MHz.

The lower power CLC414 and the wideband CLC415 are quad versions of the CLC406. Both of these quads afford the designer lower power consumption and lower cost per channel with the additional benefit of requiring less board space per amplifier.

Industry Part Number

NS Part Numbers

CLC414AE-QML** CLC414AJ-OML*

CLC414A

Prime Die

UB1563A

Controlling Document

5962-9169301MCA*, M2A**

Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

~~J_F			/
1 2 3 4 5 6 7 8A 8B 9 10 11	Static tests at Static tests at Static tests at Dynamic tests at Dynamic tests at Functional tests at Functional tests at Functional tests at Switching tests at Switching tests at	+25 +125 -55 +25 +125 +25 +125 -55 +25 +125 +125 -55	

Features

- 90MHz small signal bandwidth
- 2mA quiescent current per amplifier
- 70dB channel isolation @ 5MHz
- 0.1%/0.12 degrees differential gain/phase
- 16ns settling to 0.1%
- 100V/uS slew rate
- 3.3ns rise and fall time (2 Vpp)
- 70mA output current

Applications

- Composite video distribution amplifiers
- HDTV amplifiers
- RGB-video amplifiers
- CCD signal processing
- Active filters
- Instumentation diff. amplifiers
- General purpose high density requirements

(Absolute Maximum Ratings)

(Note 1)

Supply Voltage (Vs)		<u>+</u> 7V dc
Output Current (Iout)		70mA
Common Mode Input Volta	age (Vcm)	+Vs
Differential Input Volt	tage (Vid)	- +10V
Power Dissipation (Pd) (Note 2)		1.2W
Lead Temperature (sold	ering, 10 seconds)	+300 C
Junction Temperature (Γj)	+175 C
Storage Temperature Ra	nge	-65 C to +150 C
Thermal Resistance Junction-to-ambient Ceramic DIP LCC Junction-to case (Ceramic DIP LCC	t (ThetaJA) (Still Air) (500 LFPM) (Still Air) (500 LFPM) ThetaJC)	94 C/W 57 C/W TBD TBD 17 C/W TBD
Package Weight (typical) Ceramic DIP LCC		2190mg TBD
ESD Tolerance (Note 3)		500V

- Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions for which the device is functional, but do not guarantee specific perfomance limits. For guaranteed specifications and test conditions see the Electrical Characterisitics. The guaranteed specifications apply only for the test conditions listed. Some performance charateristics may degrade when the device is not operated under the listed test conditions.
- Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax - TA) /ThetaJA or the number given in the absolute Maximum Ratings, whichever is lower.
- Note 3: Human body model, 100pF discharged through 1.5k Ohms.

Recommended Operating Conditions

Supply Voltage (Vs)	
	<u>+</u> 5V dc
Gain Range (Av)	
	<u>+</u> 1 to <u>+</u> 10
Ambient Operating Temperature Range (Ta)	
	-55 C to +125 C

AC/DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: Vs = ±5V dc, Av = +6, load resistance (Rl) = 100 Ohms, feedback resistance (Rf) = 500 Ohms, and gain
resistance (Rg) = 100 Ohms. -55 C ≤ Ta ≤ +125 C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
+Iin	Input Bias Current				-5	+5	uA	1, 2
	(noninverting)				-10	+10	uA	3
-Iin	Input Bias				-6	+6	uA	1
	(inverting)				-10	+10	uA	2
					-20	+20	uA	3
Vio	Input Offset	Rs = 50 Ohms			-6.0	+6.0	mV	1
	Voitage				-14.0	+14.0	mV	2
					-10.5	+10.5	mV	3
Tc (+Iin)	Average +Input		1		-30	+30	nA/C	2
	Drift		1		-75	+75	nA/C	3
Tc (-Iin)	Average -Input		1		-75	+75	nA/C	2
	Drift		1		-175	+175	nA/C	3
Tc (Vio)	Average Input Offset Voltage Drift		1		-80	+80	uV/C	2, 3
Is	Supply Current (all channels)	No Load				+11.5	mA	1, 2, 3
+Rin	Input Resistance		1		1000		KOhms	s1, 2
	(nonimiver cring)		1		500		KOhms	3
Iout	Output Current		1		50		mA	1, 2
			1		30		mA	3
PSRR	Power Supply	+Vs = +4.5V to $+5.0V$, $-Vs = -4.5V$ to $-5.0V$	2		46		dB	1, 3
	Rejection Ratio	-5.00	2		44		dB	2
CMRR	Common Mode	$Vcm = \pm 1V$	1		45		dB	4, б
	Rejection Ratio		1		43		dB	5
SSBW	Small Signal	-3dB bandwidth, Vout < 2.0 Vpp			60		MHz	4
	Balluwiuth		2		41		MHz	5
			2		60		MHz	б
LSBW	Large Signal	-3dB bandwidth, Vout < 5.0 Vpp	1		40		MHz	4
	Dandwidth		1		35		MHz	5,6

AC/DC PARAMETERS(Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: Vs = ±5V dc, Av = +6, load resistance (Rl) = 100 Ohms, feedback resistance (Rf) = 500 Ohms, and gain
resistance (Rg) = 100 Ohms. -55 C ≤ Ta ≤ +125 C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
GFPL	Gain Flatness	At 0.1MHz to 15MHz, Vout < 2.0 Vpp				0.15	dB	4
	Peaking Low					0.15	dB	5,б
GFPH	Gain Flatness Reaking High	At > 15MHz, Vout < 2.0 Vpp				0.3	dB	4, б
	reaking migh					0.3	dB	5,б
GFR	Gain Flatness	At 0.1MHz to 30MHz, Vout < 2.0 Vpp				1.0	dB	4
	ROTTOTT		2			1.6	dB	5
			2			1.0	dB	6
HD2	Second Harmonic Distortion	2 Vpp at 5MHz				-41	dBc	4
	21000101011					-37	dBc	5
						-41	dBc	6
HD3	Third Harmonic Distortion	2 Vpp at 5MHz				-47	dBc	4
	Discorcion					-45	dBc	5
						-47	dBc	6
SNF	Total Noise Floor	At > 1MHz	1			-153	dBm	4, б
			-			150	1Hz	_
			Ţ			-152	dBm 1Hz	5
INV	Total Integrated	At 1MHz to 75MHz	1			44	uV	1, 3
	NOISE		1			48	uV	2
VN	Input Noise	At > 1MHz	1			5.0	nV/Sc	11, 3
	Voltage						RtHz	
			1			5.5	nV/So	12
	Terret Noise		1			11 0	RtHz	- 1 2
ICN	Inverting Current	AL > IMHZ	T			11.8	Rt.Hz	<u>1</u> 1, 3
			1			13	pA/Sc	12
							RtHz	
INN	Input Noise	At > 1MHz	1			1.6	pA/So	11, 3
	Current						RtHz	
			1			1.8	pA/So	12
							RtHz	
LPD	Linear Phase Deviation	At 0.1MHz to 30MHz	1			1.2	Degre	e 4, 6
			1			1.5	Degre	2 5
							es	

AC/DC PARAMETERS(Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: Vs = ±5V dc, Av = +6, load resistance (Rl) = 100 Ohms, feedback resistance (Rf) = 500 Ohms, and gain
resistance (Rg) = 100 Ohms. -55 C ≤ Ta ≤ +125 C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
DG1	Differential Gain	At 3.58MHz, Rl = 1500hms, Av = +2	1			0.20	olo	4
			1			0.25	00	5
			1			0.15	0/0	6
DG2	Differential Gain	At 4.43MHz, Rl = 1500hms, Av = +2	1			0.25	00	4
			1			0.30	8	5
			1			0.20	00	6
DP1	Differential	At 3.58MHz, Rl = 1500hms, Av = +2	1			0.20	Degre	e 4
	Fllase						es	
			1			0.50	Degre	2 5
			1			0.15	Deare	6
			-			0.15	es	
DP2	Differential	At 4.43MHz, Rl = 1500hms, Av = +2	1			0.25	Degre	e 4
	Thase						es	
			1			0.60	Degre	2 5
			1			0.20	es Degre	e 6
							es	
XT	Crosstalk	At 5MHz	1, 4			58	dB	4,6
			1, 4			56	dB	5
CXT	Crosstalk	At 5MHz	1, 5			63	dB	4, 6
			1, 5			61	dB	5
+Vout	Output Voltage Swing	Rl = 1000hms	2		+2.6		V	4
	0.1119		2		+2.7		V	5
			2		+2.5		V	6
-Vout	Output Voltage Swing	Rl = 1000hms	2			-2.6	V	4
	0.1119		2			-2.7	V	5
			2			-2.5	V	6
Cin	Input Capacitance (noninverting)		1			2.0	pF	4, 5, 6
Ro	Output Impedance	At DC	1			0.3	Ohms	4
			1			0.2	Ohms	5
			1			0.6	Ohms	б

AC/DC PARAMETERS(Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: Vs = ±5V dc, Av = +6, load resistance (Rl) = 100 Ohms, feedback resistance (Rf) = 500 Ohms, and gain
 resistance (Rg) = 100 Ohms. -55 C ≤ Ta ≤ +125 C (Note 3)

SYMBOL	PARAMETER	ARAMETER CONDITIONS		PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
CMIR	Common Input Voltage Range		1		-2.0	+2.0	V	4, 5
			1		-1.4	+1.4	V	6
SR	Slew Rate	Measured $\pm 1V$ with $\pm 3V$ Step	1		650		V/uS	4, б
			1		490		V/uS	5
TRS	Rise and Fall Time	all 2V Step	1			5.0	nS	9, 11
			1			6.5	nS	10
TRL	Rise and Fall 5V Time	e and Fall 5V Step	1			6.0	nS	9
			1			7.0	nS	10, 11
Ts	Settling Time	2V Step at 0.1 percent of the fixed	1			24	nS	9, 11
			1			30	nS	10
		2V Step at 0.02 percent of the fixed value	1			80	nS	9, 11
			1			100	nS	10
OS	Overshoot	2V Step	1			10	00	9, 10, 11

Note 1: If not tested, shall be guaranteed to the limits specified in table

Note 2: Group A testing only.

Note 3: The algebraic convention, whereby the most negative value is a minimum and the most positive is a maximum, is used in this table. Negative current shall be defined as conventional current flow out of a device terminal.

Note 4: Three channels are driven simultaneously while observing the output of the undriven fourth channel.

Note 5: One channel is driven with a 2 Vpp pulse while the output of the most affected channel is observed.

Graphics and Diagrams

GRAPHICS#	DESCRIPTION
07066HRA2	CERDIP (J), 14 LEAD (B/I CKT)
07072HRA2	LCC (E), TYPE C, 20 TERMINAL (B/I CKT)
E20ARE	LCC (E), TYPE C, 20 TERMINAL(P/P DWG)
J14ARH	CERDIP (J), 14 LEAD (P/P DWG)
P000424A	CERDIP (J), 14 LEAD (PINOUT)
P000455A	LCC (E), TYPE C, 20 TERMINAL (PIN OUT)

See attached graphics following this page.

CLC414J 14 - LEAD DIP CONNECTION DIAGRAM TOP VIEW P000424A

National Semiconductor MIL/AEROSPACE OPERATIONS 2900 SEMICONDUCTOR DRIVE

SANTA CLARA, CA 95050

CLC414E 20 - LEAD LCC CONNECTION DIAGRAM TOP VIEW P000455A

Mational Semiconductor⁻⁻ MIL/AEROSPACE OPERATIONS 2900 SEMICONDUCTOR DRIVE

SANTA CLARA, CA 95050

Revision History

Rev	ECN #	Rel Date	Originator	Changes
0A0	M0002940	04/20/01	Shaw Mead	Initial MDS Release
1A0	M0003800	04/20/01	Shaw Mead	Changed SSBW limit from 45MHz to 41MHz at 125'C Changed GRF limit from 1.5dB to 1.6dB at 125'C