

The revision list can be viewed directly by clicking the title page. The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.

H8S/2639, H8S/2638, H8S/2636, H8S/2630, H8S/2635 Group

Hardware Manual

Renesas 16-Bit Single-Chip Microcomputer H8S Family/H8S/2600 Series

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is
 subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
 confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
 additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
 document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions may occur due to the false recognition of the pin state as an input signal. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

Prohibition of Access to Reserved Addresses.

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

Preface

This LSI has the internal 32-bit H8S/2600 CPU and includes a variety of peripheral functions necessary for a system configuration. It serves as a high-performance microcomputer.

The on-chip peripheral devices include a 16-bit timer pulse unit (TPU), a programmable pulse generator (PPG), a watchdog timer unit (WDT), a serial communication interface (SCI), an A/D converter, a motor control PWM timer (PWM), a PC brake controller and I/O ports. It also has an internal data transfer controller (DTC), which performs high-speed data transfer without using the CPU, thus enabling the use of the LSI as an embedded microcomputer in various advanced control systems. Two types of internal ROM are available: flash memory (F-ZTAT^{TM*}) and mask ROM. The LSI can be used flexibly in a wide range of applications from applied equipment with varied specifications and early production models to full-scale mass-produced products.

Notes: The H8S/2635 and H8S/2634 are not equipped with a PPG, a PC brake controller, a DTC, or a D/A converter.

* F-ZTAT is a trademark of Renesas Electronics Corp.

Target users: This manual was written for users who will be using the H8S/2636, H8S/2638, H8S/2639, H8S/2630, H8S/2635, and H8S/2634 in the design of application

systems. Members of this audience are expected to understand the fundamentals of

electrical circuits, logical circuits, and microcomputers.

Objective: This manual was written to explain the hardware functions and electrical

characteristics of the H8S/2636, H8S/2638, H8S/2639, H8S/2630, H8S/2635, and H8S/2634 to the above audience. Refer to the H8S/2600 Series, H8S/2000 Series

Software Manual for a detailed description of the instruction set.

Notes on reading this manual:

• In order to understand the overall functions of the chip
Read the manual according to the contents. This manual can be roughly categorized into parts
on the CPU, system control functions, peripheral functions and electrical characteristics.

- In order to understand the details of the CPU's functions Read the H8S/2600 Series, H8S/2000 Series Software Manual.
- In order to understand the details of a register when its name is known

 The addresses, bits, and initial values of the registers are summarized in Appendix B, Internal I/O Registers.

Example: Bit order: The MSB is on the left and the LSB is on the right.

Related manuals: The latest versions of all related manuals are available from our web site.

Please ensure you have the latest versions of all documents you require.

http://www.renesas.com/

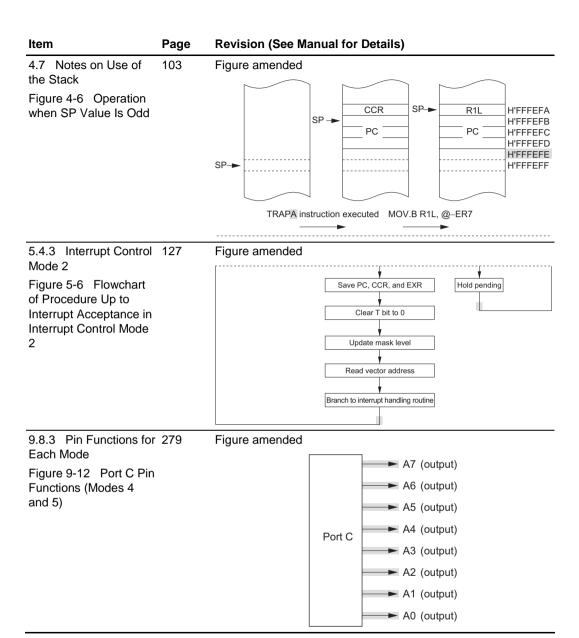
H8S/2636, H8S/2638, H8S/2639, H8S/2630, H8S/2635 Group Manuals:

Document Title	Document No.
H8S/2636, H8S/2638, H8S/2639, H8S/2630, H8S/2635 Hardware Manual	This manual
H8S/2600 Series, H8S/2000 Series Software Manual	REJ09B0139

User's Manuals for Development Tools:

Document Title	Document No.
H8S, H8/300 Series C/C++ Compiler, Assembler, Optimized Linkage Editor User's Manual	REJ10J2039
H8S, H8/300 Series Simulator/Debugger User's Manual	REJ10B0211
High-performance Embedded Workshop User's Manual	REJ10J2037

Application Notes:


Document Title	Document No.
H8S Family Technical Q & A	REJ05B0397

Main Revisions in This Edition

Item Page Revision (See Manual for Details) 1.3.1 Pin Arrangement 10 Figure amended Figure 1-3 Pin Notes: 1. Connect a 0.1 µF capacitor between VCL and VSS (close to the pins). 2. Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask Arrangement of and W-mask versions. These functions cannot be used with the other versions. H8S/2638 Group and See section 22A.7, Subclock Oscillator, for the method of fixing pins OSC1 and OSC2. H8S/2630 Group These pins are used for the I²C bus interface. The I²C bus interface is available as an option. The product equipped with the I²C bus interface is the W-mask version. (FP-128B: Top View) 4. The FWE pin is for compatibility with the flash memory version. The FWE pin is a NC pin in the mask ROM versions In the mask ROM version, the FWE pin must be left open or be connected to Vss. (U-Mask Version) (W-Mask Version) 64F2638F20 64F2638F20 64F2638F20 H8S/2638 W H8S/2638 H8S/2638 (W-Mask Version) (U-Mask Version) 64F2630F20 64F2630 H8S/2630 U 64F2630F20 64F2630F20 H8S/2630 H8S/2630 W INDEX ---INDEX ---1.4 Differences 23 to 24 Table amended between H8S/2636. H8S/2638, H8S/2639, H8S/2630, H8S/2635, Part No. Model and H8S/2634 ROM RAM Table 1-4 Comparison of Product **Specifications** 24 Note amended Note: * For details of the H8S/2639, H8S/2635, and H8S/2634 clock pulse generator, see section 22B, Clock Pulse Generator (H8S/2639 Group, H8S/2635 Group). 2.4.3 Control 38 Description amended Registers Some instructions leave some or all of the flag bits unchanged. For the action of each instruction on the flag bits, refer to (3) Condition-Code Register (CCR) appendix A.1, Instruction List. Bit 0—Carry Flag (C): 2.5.2 Memory Data 41 Figure replaced **Formats** Figure 2-11 Memory **Data Formats**

Item	Page	Revision	(See Mar	nual fo	r Details)	
2.6.3 Table of	50	Table am	ended			
Instructions Classified		Туре	Instruction	Size*1	Function	
by Function Table 2-3 Instructions Classified by Function		Bit- manipulation instructions	BOR	В	C ∨ (<bit-no.> of <ead>) → C ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.</ead></bit-no.>	
ŕ			BIOR	В	C ∨ [¬ (<bit-no.> of <ead>)] → C ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>	
2.8.1 Overview	63	Figure an	nended			
Figure 2-14 Processing States			Reset	state		
-					Il on-chip supporting modules have been re stopped.	
			Exception		ng	
				ing flow	e in which the CPU changes the normal in response to a reset, trace, interrupt, on.	
2.8.3 Exception-	65	65 Description amended				
Handling State		when the trace, into	CPU alter errupt, or t vector) fro	s the r	rate is a transient state that occurs normal processing flow due to a reset, struction. The CPU fetches a start exception vector table and branches	
3.4 Pin Functions in	86	Table am	ended			
Each Operating Mode		Port		Mode 4	Mode 5 Mode 6 Mode 7	
Table 3-3 Pin Functions in Each		_	PF7 PF6 to PF4	P/C*	P/C* P/C* P*/C C C P	
Mode		-	PF3	P/C*	P*/C P*/C	
4.1.1 Exception	93	Description	on amende	ed		
Handling Types and Priority		reset, trad	ce, direct t	ransitio	ception handling may be caused by a on*, trap instruction, or interrupt. ritized as shown in table 4-1.	
4.2.2 Reset Sequence	97	Figure an	nended			
Figure 4-2 Reset Sequence (Modes 6 and 7)					Vector Prefetch of first program instruction	
		ф				

Item	Page	Revision (See Manual for Details)					
9.8.3 Pin Functions for	279	Figure amended					
Each Mode Figure 9-13 Port C Pin		PCDDR = 1 PCDDR = 0					
Functions (Mode 6)		A7 (output) PC7 (input)					
		A6 (output) PC6 (input)					
		A5 (output) PC5 (input)					
		Port C A4 (output) PC4 (input)					
		A3 (output) PC3 (input)					
		A2 (output) PC2 (input)					
		A1 (output) PC1 (input)					
		A0 (output) PC0 (input)					
Figure 9-14 Port C Pin Functions (Mode 7)		Figure amended PC7 (I/O) PC6 (I/O) PC5 (I/O) PC4 (I/O) PC3 (I/O) PC2 (I/O) PC1 (I/O) PC1 (I/O) PC1 (I/O)					
10.6.2 Interrupt Signal Timing	387	Note amended					
Status Flag Clearing Timing:		Note: * The DTC is not implemented in the H8S/2635 Group.					
10.7 Usage Notes	397	Note amended					
Interrupts and Module Stop Mode:		Note: * The DTC is not implemented in the H8S/2635 Group.					
13.2.6 Serial Control	458	Description amended					
Register (SCR)		For details of clock source selection, see table 13.9 .					

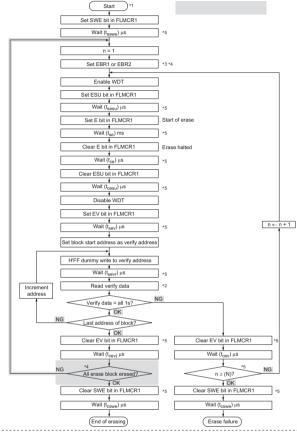
Bits 1 and 0

		Revision (See Manual for Details)
13.5 Usage Notes	507	Note amended
Restrictions on Use of DTC*		Note: * The DTC is not implemented in the H8S/2635 Group.
Operation in Case of Mode Transition		Note amended
Transmission		Note: * The DTC is not implemented in the H8S/2635 Group.
14.1.1 Features	513	Note amended
		Note: * The DTC is not implemented in the H8S/2635 $\overline{\text{Group}}$.
14.2.2 Serial Status	520	Table amended
Register (SSR)		Bit 2 TEND Description
		0 Transmission is in progress
		[Clearing conditions]
		 When 0 is written to TDRE after reading TDRE = 1 When the DTC is activated by a TXI interrupt and write data to TDR
		1 Transmission has ended [Initial value] [Setting conditions]
		 Upon reset, and in standby mode or module stop mode When the TE bit in SCR is 0 and the ERS bit is also 0
		When TDRE = 1 and ERS = 0 (normal transmission) 2.5 etu after transmission of a
		1-byte serial character when GM = 0 and BLK = 0
		 When TDRE = 1 and ERS = 0 (normal transmission) 1.5 etu after transmission of a 1-byte serial character when GM = 0 and BLK = 1
		When TDRE = 1 and ERS = 0 (normal transmission) 1.0 etu after transmission of a
		1-byte serial character when GM = 1 and BLK = 0
		When TDRE = 1 and ERS = 0 (normal transmission) 1.0 etu after transmission of a 1-byte serial character when GM = 1 and BLK = 1
14.3.6 Data Transfer	533	Notes amended
Operations		Notes: * The DTC is not implemented in the H8S/2635 Group.
Serial Data		
Transmission (Except Block Transfer Mode):		
Serial Data Reception	537	Notes amended
(Except Block Transfer Mode):		Notes: * The DTC is not implemented in the H8S/2635 Group.
Data Transfer	539	Notes amended
Operation by DTC*:		Notes: * The DTC is not implemented in the H8S/2635 Group.
14.4 Usage Notes	543	Note amended
Retransfer Operations (Except Block Transfer Mode):		Note: * The DTC is not implemented in the H8S/2635 Group.
 Retransfer operation 		
when SCI is in receive mode		

Item	Page	Revision (See Manual for Details)			
14.4 Usage Notes	544	Note amended			
Retransfer Operations (Except Block Transfer Mode):		Note: * The DTC is not implemented in the H8S/2635 Group.			
• Retransfer operation when SCI is transmit mode					
15.2.9 Module Stop	575	Description amended			
Control Register B (MSTPCRB)		MSTPCRB is initialized to H'FF by a power-on reset and in hardware standby mode. It is not initialized in software standby mode.			
15.3.6 Slave Transmit	594	Figure amended			
Operation		/			
Figure 15-18 Example of Slave Transmit Mode		ICDRS Data 1 Data 2			
Operation Timing		/			
(MLS = 0)		clearance write write clearance write			
16.1.3 Pin	614	Note amended			
Configuration		Note: * The HCAN1 is not supported by the H8S/2635 Group.			
Table 16-1 HCAN Pins	i				
16.1.4 Register	618	Notes amended			
Configuration		Notes: 2. The HCAN1 is not supported by the H8S/2635			
Table 16-2 HCAN Registers		Group.			
16.2.4 Mailbox	624	Table amended			
Configuration Register		Bit y: MBCRx Description			
(MBCR)		O Corresponding mailbox is set for transmission (Initial value)			
		Corresponding mailbox is set for reception (x = 15 to 1, y = 15 to 9 and 7 to 0)			
16.2.5 Transmit Wait	625	Table amended			
Register (TXPR)		Bit y: TXPRx Description			
		0 Transmit message idle state in corresponding mailbox (Initial value) [Clearing condition]			
		Message transmission completion and cancellation completion			
		1 Transmit message transmit wait in corresponding mailbox (CAN bus arbitration)			
		(x = 15 to 1, y = 15 to 9 and 7 to 0)			

Item	Page	Revision (S	ee Manual for Details)			
16.2.6 Transmit Wait	626	Table amended				
Cancel Register		Bit y: TXCRx	Description			
(TXCR)		0	Transmit message cancellation idle state in corresponding mailbox (Initial value)			
			[Clearing condition] Completion of TXPR clearing (when transmit message is canceled			
		1	normally) TXPR cleared for corresponding mailbox (transmit message cancellation)			
		·	(x = 15 to 1, y = 15 to 9 and 7 to 0)			
16.2.7 Transmit	627	Table amen	ded			
Acknowledge Register		Bit y: TXACKx	Description			
(TXACK)		0	[Clearing condition]			
		1	Writing 1 (Initial value) Completion of message transmission for corresponding mailbox			
		· ·	(x = 15 to 1, y = 15 to 9 and 7 to 0)			
16.2.8 Abort	628	Table amen	ded			
Acknowledge Register		Bit y: ABACKx	Description			
(ABACK)		0	[Clearing condition]			
		4	Writing 1 (Initial value)			
		1	Completion of transmit message cancellation for corresponding mailbox (x = 15 to 1, y = 15 to 9 and 7 to 0)			
16.2.16 Unread Message Status	641	Table amended				
	041					
Register (UMSR)		Bit x: UMSRx	Description [Clearing condition]			
- g (J -)		Ü	Writing 1 (Initial value)			
		1	Unread receive message is overwritten by a new message			
			[Setting condition]When a new message is received before RXPR is cleared			
			(x = 15 to 0)			
16.2.17 Local	643	Table amen	ded			
Acceptance Filter		Bit x: LAFMHx	Description			
Masks (LAFML, LAFMH)		0	Stored in MC0 and MD0 (receive-only mailbox) depending on bit match between MC0 message identifier and receive message identifier			
LAFMH Bits 7 to 0 and		1	(Initial value) Stored in MC0 and MD0 (receive-only mailbox) regardless of bit match			
15 to 13			between MC0 message identifier and receive message identifier			
LAFMH Bits 9 and 8,		Table amen	(x = 15 to 5)			
LAFML Bits 15 to 0		Bit y: LAFMHx	ueu			
		LAFMLy	Description			
		0	Stored in MC0 (receive-only mailbox) depending on bit match between MC0 message identifier and receive message identifier (Initial value)			
		1	Stored in MC0 (receive-only mailbox) regardless of bit match between MC0 message identifier and receive message identifier			
			(x = 1 and 0, y = 15 to 0)			
16.2.20 Module Stop	650	Note amend	led			
Control Register C (MSTPCRC)			e MSTPC2 is not available and is reserved in the S/2635 Group.			

Item	Page	Revision (See Manual for Details)
16.2.20 Module Stop Control Register C (MSTPCRC) Bit 2—Module Stop (MSTPC2)*:	650	Note amended Note: * The MSTPC2 is not available and is reserved in the H8S/2635 Group.
16.3.2 Initialization after Hardware Reset Table 16-3 BCR Register Value Setting Ranges Table 16-4 Setting Range for TSEG1 and	657	Table amended Name Abbreviation Min. Value Max. Value Time segment 1 TSEG1 B'0011 B'1111 Time segment 2 TSEG2 B'001 B'111 Baud rate prescaler BRP B'0000000 B'1111111 Sample point SAM B'0 B'1 Synchronization jump width SJW B'00 B'11 Note amended Notes: The time quanta value for TSEG1 and TSEG2 is the
TSEG2 in BCR		TSEG value + 1. * Only a value other than BRP[13:8] = B'000000 can be set.
16.3.8 DTC Interface*	675	Note amended Note: * The DTC is not implemented in the H8S/2635 Group.
17.6 Usage Notes Figure 17-7 Example of Analog Input Protection Circuit	700	Figure amended AVCC Vref AN0 to AN11 AVSS
18.3 Operation Figure 18-2 D/A Conversion (Example)	711	Figure amended DADRO Write cycle write cycle write cycle Address DADRO Write cycle Conversion data (1) Conversion data (2)


Item	Page	Revision (See	Manual for	Detail	s)
21A.4.3 Mode	749	Notes amended	d t		
Transitions		Notes: 2. This	LSI transits	to pro	grammer mode by using the
Figure 21A-3 Flash Memory State Transitions		dedi	cated PRON	/l progr	ammer.
21A.5 Pin	755	Table amended	I		
Configuration		Pin Name	Abbreviation	I/O	Function
Table 21A-5 Pin		Reset	RES	Input	Reset
Configuration		Flash write enable	FWE	Input	Flash program/erase protection by hardware
Comigaration		Mode 2	MD2	Input	Sets MCU operating mode
		Mode 1	MD1	Input	Sets MCU operating mode
		Mode 0	MD0	Input	Sets MCU operating mode
		Port F0	PF0	Input	Sets MCU operating mode in programmer mode
		Port 16	P16	Input	Sets MCU operating mode in programmer mode
		Port 14	P14	Input	Sets MCU operating mode in programmer mode
		Transmit data	TxD1	Output	Serial transmit data output
		Receive data	RxD1	Input	Serial receive data input
21A.9.2 Program- Verify Mode Figure 21A-12 Program/Program- Verify Flowchart	777	Figure amende	d m = 0? Yes Clear SWE bit in FLMCR: Wait (t _{cswe}) jrs End of programming	No	"7 No "7 No "7 No "7 No Clear SWE bit in FLMCR1 Wait (t _{cswe}) µs † Programming failure
21A.9.3 Erase Mode	778	Description am	ended		
		control register erase operation Memory Charac Next, the watch	1 (FLMCR1 as (N) are shoteristics.) and to nown in NDT) is	r cleared in the flash memory he maximum number of section 24.1.7, Flash s set to prevent overerasing a value of about 19.8 ms as

Item **Revision (See Manual for Details) Page**

21A.9.4 Erase-Verify 780 Figure amended

Mode

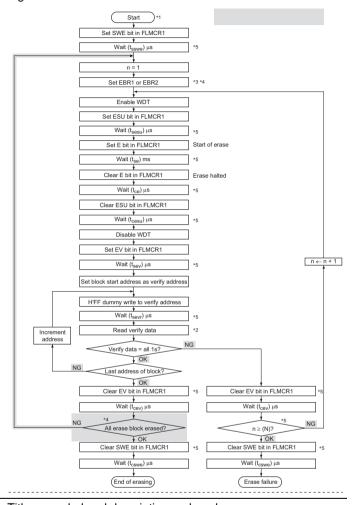
Figure 21A-13 Erase/Erase-Verify Flowchart

21A.13 Programmer 78 Mode	87	Title amended and description replaced
21B.4.3 Mode 80 Transitions Figure 21B-3 Flash Memory State Transitions	01	Notes amended Notes: 2. This LSI transits to programmer mode by using the dedicated PROM programmer.
21B 7.6 Flash Memory 8:	16	Note amended

21B.7.6 Flash Memory 816

Power Control Register (FLPWCR)

Note amended


Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions only. These functions cannot be used with the other versions.

Item	Page	Revision (See Manual for Details)
21B.9.1 Program Mode 826		Description amended
		The wait times after bits are set or cleared in the flash memory control register 1 (FLMCR1) and the maximum number of programming operations (N) are shown in section 24.2.7, 24.3.7, and 24.4.7, Flash Memory Characteristics.
21B.9.2 Program-	830	Figure amended
Verify Mode		No No No
Figure 21B-12		m = 0?
Program/Program- Verify Flowchart		Wait (t _{CSWe}) μs *7 Wait (t _{CSWe}) μs *7
voiny riowonait		End of programming Programming failure
21B.9.3 Erase Mode	831	Description amended
		The wait times after bits are set or cleared in the flash memory control register 1 (FLMCR1) and the maximum number of erase operations (N) are shown in section 24.2.7 and 24.3.7, Flash Memory Characteristics.
		•••
		Next, the watchdog timer (WDT) is set to prevent overerasing due to program runaway, etc. Set a value of about 19.8 ms as the WDT overflow period.

Item Page Revision (See Manual for Details)

21B.9.4 Erase-Verify 832 Mode

Figure 21B-13 Erase/Erase-Verify Flowchart Figure amended

21B.13	Programmer	840
Mode		

Title amended and description replaced

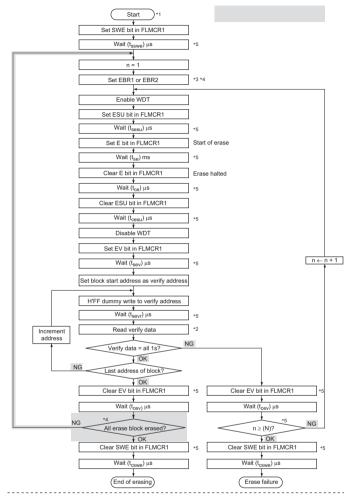
21B.14 Flash Memory 841 and Power-Down States

States
Table 21B-14 Flash
Memory Operating

Notes amended

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions only. These functions cannot be used with other versions.

States


Item	Page	Revision (See Manual for Details)
21C.4.3 Mode Transitions Figure 21C-3 Flash Memory State Transitions	855	Notes amended Notes: 2. This LSI transits to programmer mode by using the dedicated PROM programmer.
21C.9.1 Program	880	Description amended
Mode		The wait times after bits are set or cleared in the flash memory control register 1 (FLMCR1) and the maximum number of programming operations (N) are shown in section 24.2.7, 24.3.7, and 24.4.7, Flash Memory Characteristics.
21C.9.2 Program- Verify Mode	884	Figure amended
Figure 21C-12 Program/Program- Verify Flowchart		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
21C.9.3 Erase Mode	885	Description amended
		The wait times after bits are set or cleared in the flash memory control register 1 (FLMCR1) and the maximum number of erase operations (N) are shown in section 24.2.7 and 24.3.7, Flash Memory Characteristics.
		Next, the watchdog timer (WDT) is set to prevent overerasing due to program runaway, etc. Set a value of about 19.8 ms as the WDT overflow period.

Item Page Revision (See Manual for Details)

21C.9.4 Erase-Verify 886

Mode

Figure 21C-13 Erase/Erase-Verify Flowchart Figure amended

21C.13	Programmer	894	Title amended and description replaced
Mode			

23A.1 Overview 925 Notes amended

Notes: 1. Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group.

These functions cannot be used with the other versions.

Item	Page	Revision (See Manual for Details)
Section 23B Power- Down Modes [HD64F2636UF, HD6432636UF, HD64F2638UF, HD6432638UF, HD6432638WF, HD6432639UF, HD6432639UF,	947	Note amended Note: The DTC, PBC, PPB, and D/A converter are not implemented in the H8S/2635 Group.
HD64F2639WF, HD6432639WF, HD64F2630UF, HD6432630UF, HD64F2630WF, HD6432630WF, HD6432635F, HD64F2635F, HD6432634F]		
23B.1 Overview Table 23B-2 LSI Internal States in Each Mode (H8S/2639 Group, H8S/2635 Group)	950	Notes amended Notes: 3. The DTC, PBC, PPG, DA0, and DA1 are not implemented in the H8S/2635 Group.
23B.6.5 Usage Notes	970	Description amended Write Data Buffer Function: The write data buffer function and software standby mode cannot be used at the same time. When the write data buffer function is used, the WDBE bit in BCRL should be cleared to 0 to cancel the write data buffer function before entering software standby mode. Also check that external writes have finished, by reading external addresses, etc., before executing a SLEEP instruction to enter software standby mode. See section 7.7, Write Data Buffer Function, for details of the write data buffer function.
24.1.3 DC Characteristics Table 24-2 DC Characteristics	981	Table amended Item Symbol Min. Typ. Max. Unit Test Conditions Schmitt trigger input voltage IRQ0 to IRQ5 V₁⁻ 1.0 — — — V V₁⁺ — — — Vcc × 0.7 <

Item	Page	Revision	(See Mai	nual fo	r Deta	ails)						
24.1.3 DC	982	Table am	nended									
Characteristics		Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions			
Table 24-2 DC		Input leakage	RES	I _{in}	_		1.0	μА	V _{in} = 0.5 V to			
Characteristics		current	STBY, NMI, MD2 to MD0	-	_	_	1.0		V _{CC} – 0.5 V			
			HRxD0, HRxD1, FWE		_	_	1.0					
			Ports 4, 9		_	_	1.0		$V_{in} = 0.5 \text{ V to}$ $AV_{CC} - 0.5 \text{ V}$			
24.1.4 AC	985	Figure ar	nended									
Characteristics						5	V					
Figure 24-2 Output						Ç)					
Load Circuit						Į						
						\$	R _L					
		LSI outp	ut pin —			-						
			C =	- ≥	R_{H}	*	<u>7</u>					
				1		*	<u>'</u>					
						•	,					
			77	, h		7	-					

		C = 50 pF	Dorto 10	- 12 A	to C							
		C – 50 pr	: Ports 10 t			uo oonti	ol cianal	outo	ut nin cotting)			
		(In case of expansion bus control signal output pin setting)										
		C = 30 pF: All ports except ports 10 to 13, A to F $R_{\rm I}$ = 2.4 k Ω										
		_										
		$R_{H} = 12 \text{ k}\Omega$										
		Input/output timing measurement levels • Low level: 0.8 V										
		High lev										
24.2.3 DC	996	Table am										
Characteristics	330	Item	icriaca	Symbol	Min.	Тур.	Max.	Unit	Test Conditions			
Table 24-12 DC		Schmitt	IRQ0 to IRQ5		1.0	_	_	V				
Characteristics		trigger input voltage		V _T ⁺	_	_	$V_{\text{CC}} \times 0.7$	_				
		voltage		$V_T^+ - V_T^-$	0.4	<u>-</u>		_ 				
	997	Table am	nended									
		Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions			
		Input leakage	RES	I _{in}	_		1.0	μА	V _{in} = 0.5 V to			
		current	STBY, NMI, MD2 to MD0	-	_	_	1.0	_	V _{CC} – 0.5 V			
			HRxD0, HRxD1, FWE	-		_	1.0	_				
			Ports 4, 9	-	_	_	1.0	_	V _{in} = 0.5 V to			

AV_{CC} – 0.5 V

Item	Page	Revision	(See Mai	nual fo	r Deta	ils)			
24.2.4 AC Characteristics Figure 24-4 Output Load Circuit	1002	Figure ar			R _H	5	V) R _L		
			π	т ш		777	<u>.</u>		
		C = 30 pF R _L = 2.4 k R _H = 12 ks	: All ports Θ Ω aut timing mate: 0.8 V	of expar except p	nsion bo orts 10) to 13,		outp	ut pin setting)
24.3.3 DC	1014	Table am	nended						
Characteristics		Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Table 24-24 DC		Schmitt trigger input	IRQ0 to IRQ5		1.0		_	V	
Characteristics		voltage		V _T ⁺			V _{CC} × 0.7	_	
				$V_T^+ - V_T^-$	0.4				
	1015	Table am	nended						
		Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
		Input leakage	RES	I _{in}	_	_	1.0	μА	V _{in} = 0.5 V to
		current	STBY, NMI, MD2 to MD0	_		_	1.0		V _{CC} – 0.5 V
			HRxD0, HRxD1* ⁷ , FWE	_			1.0	_	
			Ports 4, 9		_	_	1.0		$V_{in} = 0.5 \text{ V to}$ $AV_{CC} - 0.5 \text{ V}$

Item	Page	Revision	(See Mar	nual fo	r Deta	ils)			
24.3.4 AC Characteristics Figure 24-6 Output Load Circuit	1020	Figure an	nended			5	V) R _L		
		LSI outpu	ut pin C		R _H		, ,		
		C = 30 pF: R _L = 2.4 ks R _H = 12 ks	: All ports ε Ω Ω ut timing mel: 0.8 V	f expar except p	ision bu orts 10) to 13,		outp	ut pin setting)
24.4.3 DC	1032	Table am	ended						
Characteristics		Item		Symbol	Min.	Тур.	Max.		Test Conditions
Table 24-36 DC		Schmitt trigger input	IRQ0 to IRQ5	V _T ⁺	1.0			_V	
Characteristics		voltage		V _T ⁺ – V _T ⁻	0.4		— VCC × 0.7	_	
	1033	Table am	ended						
	1000		Crided			_			T 10 III
		Item Input leakage	RES	Symbol I _{in}	Min.	Тур.	Max. 1.0	Unit μΑ	Test Conditions V _{in} = 0.5 V to
		current	STBY, NMI,	in			1.0	_ µA	V _{in} = 0.5 V to V _{CC} = 0.5 V
			MD2 to MD0					_	
			HRxD0, HRxD1, FWE		_	_	1.0		
			Ports 4, 9		_	_	1.0	_	V _{in} = 0.5 V to AV _{CC} - 0.5 V

Item	Page	Revision (See Manual for Details)
24.4.4 AC Characteristics Figure 24-8 Output Load Circuit	1038	Figure amended 5 V RL
		LSI output pin C RH
		C = 50 pF: Ports 10 to 13, A to F (In case of expansion bus control signal output pin setting) C = 30 pF: All ports except ports 10 to 13, A to F $R_L = 2.4 \ k\Omega$ $R_H = 12 \ k\Omega$ Input/output timing measurement levels • Low level: 0.8 V • High level: 2.0 V
24.5.4 On-Chip Supporting Module Timing	1055	Note amended Note: * The PPG output is not implemented in the H8S/2635 Group.
Figure 24-27 HCAN Input/Output Timing	1057	Figure amended CK thinxD
		HTxD0, HTxD1 (transmit data) HRxD0, HRxD1 (receive data)

Itam	Dogo	Davisian	(Coo Mo	nual	٠.	1	D .			۰,						
A.1 Instruction List	Page 1065	Revision Table ame	-	nuai	IC)[]		eta		s)						
Table A-1 Instruction Set (2) Arithmetic Instructions													lo o	of States	*1	
				Mne	mc	nic	;					-		anced		
			MULXU	MUL	ΧL	J.B	Rs	,Rd						12		
				MUL	ΧL	J.W	Rs	s,EF	Rd			-		20		
			MULXS	MUL	.XS	8.B I	Rs	,Rd						13		
				MUL	.XS	S.W	Rs	s,ER	₹d					21		
(6) Branch Instructions	1078	Table ame	ended													
						Ins	A	ddre	ss n L	ing _eng	Mod	de/ Byte	es)			
		Ma	emonic		perand Size	*x#	r.	@ERn	g(a,EKn)	@_ERn/@ERn+	@dd PC)	@(c,i, c) @@aa			Operatior	Branching Condition
			S d:8		-	#	~	0	9)	0 0	2		i	condition	is true the	
			S d:16		_			1	1		4	-	Q.	PC←PC+	+d	
			_ d:8 _ d:16		l-					1.	4	_	-	else next;		N=0
(7) System Control Instructions	1080	Table ame	ended									i				
												N	lo. c	of States	k1	
				Mne	_	_	_					1	Adva	anced	_	
			TRAPA	TRA	PA	#x>	k:2							8 [9]		
			RTE	RTE										5 [9]		
A.4 Number of States	1109	Table ame	ended													
Required for Instruction Execution						struc	ctio	n A		nch dres	s s	Stac	k atior	Byte Data Access	Word Data Access	Internal Operation
Table A-5 Number of					ī			J		-		(L	M	N
Cycles in Instruction			P @ERn P @aa:24		2				-							1
Execution			@@aa.24 P @@aa:8		2			2								1

JMP @@aa:8 2 2 1

Item	Page	Revisio	on (See Manua		unoj							
A.4 Number of States Required for Instruction	1110	Table a	mended									
Execution				Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation			
Table A-5 Number of				I	J	K	L	M	N			
Cycles in Instruction		MOV	MOV.B Rs,@(d:32,ERd)	4			1		1			
-			MOV.B Rs,@-ERd	1			1					
Execution			MOV.B Rs,@aa:8	1			1					
			MOV.B Rs,@aa:16	2			1					
			MOV.B Rs,@aa:32	3			1					
			MOV.W #xx:16,Rd	2								
			MOV.W Rs,Rd	1				1				
			MOV.W @ERs,Rd	1				1				
			MOV.W @(d:16,ERs),Rd	2				1	1			
			MOV.W @(d:32,ERs),Rd	4				1				
			MOV.W @ERs+,Rd	1				1				
			MOV.W @aa:16,Rd	2				1				
			MOV.W @aa:32,Rd	3				1				
			MOV.W Rs,@ERd	1				1	1			
	1111	Table amended										
				Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation			
				I	J	K	L	M	N			
		MOV	MOV.W Rs,@(d:16,ERd)	2				1				
			MOV.W Rs,@(d:32,ERd)	4				1				
			MOV.W Rs,@-ERd	1				1				
			MOV.W Rs,@aa:16	2				1				
			MOV.W Rs,@aa:32	3								
Appendix B Internal	11201-	Note or										
	1136 to	NOLE al	mended									
I/O Register	1421		nended 35 and H8S/26	34 → H8	3S/263	5 Grou	р					
		H8S/26		34 → H8	3S/263	5 Grou	р					
I/O Register	1421	H8S/26	35 and H8S/26		3S/263		p	1	0			
I/O Register B.2 Functions GSR0—General Status	1421	H8S/26	335 and H8S/263 amended	$ \begin{array}{c} 34 \to H8 \\ \hline $	4	3	2		0 3SR0			
I/O Register B.2 Functions GSR0—General Status Register	1421	H8S/26	35 and H8S/263 amended		4	3 GSR3 GS	2					
I/O Register B.2 Functions GSR0—General Status Register GSR1—General Status	1421	Figure Bit	35 and H8S/26 amended 7 6 0 0	5 0	4 — G	3 SSR3 GS	2 6R2 G	SSR1 0	GSR0 0			
I/O Register B.2 Functions GSR0—General Status Register	1421	H8S/26 Figure	35 and H8S/263 amended 7 6	5	4 — G	3 SSR3 GS	2 SR2 G	SSR1 (GSR0			
I/O Register B.2 Functions GSR0—General Status Register GSR1—General Status	1421	Figure Bit	35 and H8S/26 amended 7 6 0 0	5 0	4 — G	3 SSR3 GS	2 6R2 G	SSR1 0	GSR0 0			
I/O Register B.2 Functions GSR0—General Status Register GSR1—General Status	1421	Figure Bit	35 and H8S/26 amended 7 6 0 0	5 0	4 — G	3 SSR3 GS	2 6R2 G	SSR1 0	GSR0 0			
I/O Register B.2 Functions GSR0—General Status Register GSR1—General Status	1421	Figure Bit	35 and H8S/26 amended 7 6 0 0	5 0	4 — G	3 SSR3 GS	2 6R2 G 1 R	SSR1 0	GSR0 0			
I/O Register B.2 Functions GSR0—General Status Register GSR1—General Status	1421	Figure Bit	35 and H8S/26 amended 7 6 0 0	5 0	4 — G	3 GSR3 GS 1 R Bus Off F 0 [Reso	2 SR2 GR2 GR2 In the state of the state	0 R 	O R			
I/O Register B.2 Functions GSR0—General Status Register GSR1—General Status	1421	Figure Bit	35 and H8S/26 amended 7 6 0 0	5 0	4 — G	3 GSR3 GS 1 R	2 1 R lag et condition	OR R Online online on bus or	O R F F State			
I/O Register B.2 Functions GSR0—General Status Register GSR1—General Status	1421	Figure Bit	35 and H8S/26 amended 7 6 0 0	5 0	4 — G	3 GSR3 GS 1 R	2 1 R lag et condition	0 R 	O R F F State			
I/O Register B.2 Functions GSR0—General Status Register GSR1—General Status	1421	Figure Bit	35 and H8S/26 amended 7 6 0 0	5 — 0 R	4 — G 0 R	3 GSR3 GS 1 R	2 GR2 G	OR R Online online on bus or	O R F F State			
I/O Register B.2 Functions GSR0—General Status Register GSR1—General Status	1421	Figure Bit	35 and H8S/26 amended 7 6 0 0	5 - 0 R	4 G	3	2 GR2 G	OR R Online online on bus or	O R F F State			
I/O Register B.2 Functions GSR0—General Status Register GSR1—General Status	1421	Figure Bit	35 and H8S/263 amended 7 6	5 0 R	4 G	3 SSR3 GS 1 R Bus Off F 0 [Rest • Re 1 Wheter	2 SR2 G 1 R lag — et condition to TEC ≥ ; ing Flag	on] om bus or 256 (bus	GSR0 0 R ff state off state)			

Item	Page	Revision (See Manual for Details)
B.2 Functions	1317	Figure amended
PFCR—Pin Function Control Register		Bit 7 6 5 4 3 2 1 0
		Address Output Enable 3 to 0 0 0 0 0 A8 to A23 address output disabled (Initial value*) 1 A8 address output enabled; A9 to A23 address output disabled
DACR01— D/A Control	1414	Note amended
Register 01		Note: * This register is not available in the H8S/2635 Group.
Appendix C I/O Port	1422 to	Note amended
Block Diagrams	1451	H8S/2635 and H8S/2634 → H8S/2635 Group
C.1 Port 1 Block	1422	Notes amended
Diagrams		Notes: 1. Priority order: Address output > output compare
Figure C-1 (a) Port 1 Block Diagram (Pins P10 and P11)		output/PWM output > pulse output > DR output
D.1 Port States in	1454	Table amended
Each Mode Table D-1 I/O Port		MCU Hardware Port Name Operating Standby Program Execution State Pin Name Mode Reset Mode Software Standby Mode Sleep Mode
States in Each		PF3/LWR 4 H T [OPE = 0] LWR
Processing State		5 to 6 T [OPE = 1] [16 Bit bus mode] H [Otherwise] I/O port
Appendix F Product	1456 to	Table amended
Code Lineup	1457	Product Type Part No. Mark Code Functions Packages
Table F-1 H8S/2636, H8S/2638, H8S/2639, and H8S/2630 Product Code Lineup		
Appendix G Package	1458	Description added
Dimensions		The package dimension that is shown in the Renesas Semiconductor Package Data Book has Priority.

All trademarks and registered trademarks are the property of their respective owners.

Contents

Section	on 1	Overview	1
1.1	Overv	iew	1
1.2	Intern	al Block Diagram	6
1.3	Pin D	escription	9
	1.3.1	Pin Arrangement	9
	1.3.2	Pin Functions in Each Operating Mode	13
	1.3.3	Pin Functions	18
1.4	Differ	rences between H8S/2636, H8S/2638, H8S/2639, H8S/2630, H8S/2635, and	
	H8S/2	2634	23
Section	on 2	CPU	25
2.1		riew	
2.1	2.1.1	Features	
	2.1.2	Differences between H8S/2600 CPU and H8S/2000 CPU	
	2.1.3	Differences from H8/300 CPU	
	2.1.4	Differences from H8/300H CPU	
2.2		Operating Modes	
2.3		ess Space	
2.4		ter Configuration	
	2.4.1	Overview	
	2.4.2	General Registers	
	2.4.3	Control Registers	
	2.4.4	Initial Register Values	
2.5	Data l	Formats	
	2.5.1	General Register Data Formats	39
	2.5.2	Memory Data Formats	
2.6	Instru	ction Set	
	2.6.1	Overview	42
	2.6.2	Instructions and Addressing Modes	43
	2.6.3	Table of Instructions Classified by Function	
	2.6.4	Basic Instruction Formats	54
2.7	Addre	essing Modes and Effective Address Calculation	56
	2.7.1	Addressing Mode	56
	2.7.2	Effective Address Calculation	59
2.8	Proce	ssing States	63
	2.8.1	Overview	63
	2.8.2	Reset State	64

	2.8.3	Exception-Handling State	65
	2.8.4	Program Execution State	68
	2.8.5	Bus-Released State	68
	2.8.6	Power-Down State	68
2.9	Basic Timing		69
	2.9.1	Overview	69
	2.9.2	On-Chip Memory (ROM, RAM)	69
	2.9.3	On-Chip Supporting Module Access Timing	71
	2.9.4	On-Chip HCAN Module Access Timing	73
	2.9.5	Port H and J Register Access Timing	75
	2.9.6	External Address Space Access Timing	76
2.10	Usage 1	Note	77
	2.10.1	TAS Instruction	77
	2.10.2	STM/LDM Instructions	77
	2.10.3	Caution to Observe when Using Bit Manipulation Instructions	77
Sect	ion 3	MCU Operating Modes	79
3.1	Overvi	ew	79
	3.1.1	Operating Mode Selection	79
	3.1.2	Register Configuration	80
3.2	Register Descriptions		80
	3.2.1	Mode Control Register (MDCR)	80
	3.2.2	System Control Register (SYSCR)	81
	3.2.3	Pin Function Control Register (PFCR)	83
3.3	Operating Mode Descriptions		85
	3.3.1	Mode 4	85
	3.3.2	Mode 5	85
	3.3.3	Mode 6	85
	3.3.4	Mode 7	86
3.4	Pin Fu	nctions in Each Operating Mode	86
3.5		s Map in Each Operating Mode	
Sect	ion 4	Exception Handling	93
4.1	Overvi	ew	93
	4.1.1	Exception Handling Types and Priority	93
	4.1.2	Exception Handling Operation	
	4.1.3	Exception Vector Table	
4.2	Reset	*	96
	4.2.1	Overview	96
	4.2.2	Reset Sequence	96

	4.2.3	Interrupts after Reset	98	
	4.2.4	State of On-Chip Supporting Modules after Reset Release		
4.3	Traces			
4.4	Interru	pts	100	
4.5	Trap Instruction			
4.6	Stack S	Status after Exception Handling	102	
4.7		on Use of the Stack		
Sect	ion 5	Interrupt Controller	105	
5.1		iew		
5.1	5.1.1	Features		
	5.1.2	Block Diagram		
	5.1.3	Pin Configuration		
	5.1.4	Register Configuration		
5.2		er Descriptions		
3.2	5.2.1	System Control Register (SYSCR)		
	5.2.2	Interrupt Priority Registers A to H, J to M (IPRA to IPRH, IPRJ to IPRM		
	5.2.3	IRQ Enable Register (IER)		
	5.2.4	IRQ Sense Control Registers H and L (ISCRH, ISCRL)		
	5.2.5	IRQ Status Register (ISR)		
5.3		pt Sources		
5.5	5.3.1	External Interrupts		
	5.3.2	Internal Interrupts		
	5.3.3	Interrupt Exception Handling Vector Table		
5.4		pt Operation		
J. 4	5.4.1	Interrupt Control Modes and Interrupt Operation		
	5.4.2	Interrupt Control Mode 0		
	5.4.2	Interrupt Control Mode 2		
	5.4.4	Interrupt Exception Handling Sequence		
	5.4.5	Interrupt Response Times		
5.5		Notes		
3.3	5.5.1	Contention between Interrupt Generation and Disabling		
		· · · · · · · · · · · · · · · · · · ·		
	5.5.2	Instructions that Disable Interrupts		
	5.5.3	Times when Interrupts Are Disabled		
	5.5.4	Interrupts during Execution of EEPMOV Instruction		
	5.5.5	IRQ Interrupts		
~ .	5.5.6	Notes on Use of NMI Interrupt		
5.6	DTC Activation by Interrupt			
	5.6.1	Overview		
	5.6.2	Block Diagram	133	

	5.6.3	Operation	134
Sec	tion 6	PC Break Controller (PBC)	137
6.1		view	
	6.1.1	Features	137
	6.1.2	Block Diagram	138
	6.1.3	Register Configuration	
6.2	Register Descriptions		139
	6.2.1	Break Address Register A (BARA)	
	6.2.2	Break Address Register B (BARB)	140
	6.2.3	Break Control Register A (BCRA)	140
	6.2.4	Break Control Register B (BCRB)	142
	6.2.5	Module Stop Control Register C (MSTPCRC)	142
6.3	Opera	ation	143
	6.3.1	PC Break Interrupt Due to Instruction Fetch	143
	6.3.2	PC Break Interrupt Due to Data Access	144
	6.3.3	Notes on PC Break Interrupt Handling	144
	6.3.4	Operation in Transitions to Power-Down Modes	145
	6.3.5	PC Break Operation in Continuous Data Transfer	146
	6.3.6	When Instruction Execution Is Delayed by One State	147
	6.3.7	Additional Notes	148
Sec	tion 7	Bus Controller	149
7.1	Overv	/iew	149
	7.1.1	Features	149
	7.1.2	Block Diagram	150
	7.1.3	Pin Configuration	151
	7.1.4	Register Configuration	151
7.2	Register Descriptions		152
	7.2.1	Bus Width Control Register (ABWCR)	152
	7.2.2	Access State Control Register (ASTCR)	153
	7.2.3	Wait Control Registers H and L (WCRH, WCRL)	154
	7.2.4	Bus Control Register H (BCRH)	158
	7.2.5	Bus Control Register L (BCRL)	160
	7.2.6	Pin Function Control Register (PFCR)	161
7.3	Overv	view of Bus Control	163
	7.3.1	Area Partitioning	163
	7.3.2	Bus Specifications	164
	7.3.3	Memory Interfaces	165
	7.3.4	Interface Specifications for Each Area	166

7.4	Basic	Bus Interface	167
	7.4.1	Overview	167
	7.4.2	Data Size and Data Alignment	167
	7.4.3	Valid Strobes	169
	7.4.4	Basic Timing	170
	7.4.5	Wait Control	178
7.5	Burst 1	ROM Interface	179
	7.5.1	Overview	179
	7.5.2	Basic Timing	179
	7.5.3	Wait Control	181
7.6	Idle C	ycle	181
	7.6.1	Operation	181
	7.6.2	Pin States During Idle Cycles	185
7.7	Write	Data Buffer Function	186
7.8	Bus A	rbitration	187
	7.8.1	Overview	187
	7.8.2	Operation	187
	7.8.3	Bus Transfer Timing	187
7.9	Resets	and the Bus Controller	188
Sect	ion 8	Data Transfer Controller (DTC)	189
8.1	Overv	iew	189
	8.1.1	Features	189
	8.1.2	Block Diagram	190
	8.1.3	Register Configuration	191
8.2	Regist	er Descriptions	192
	8.2.1	DTC Mode Register A (MRA)	192
	8.2.2	DTC Mode Register B (MRB)	194
	8.2.3	DTC Source Address Register (SAR)	195
	8.2.4	DTC Destination Address Register (DAR)	
	8.2.5	DTC Transfer Count Register A (CRA)	195
	8.2.6	DTC Transfer Count Register B (CRB)	196
	8.2.7	DTC Enable Registers (DTCER)	196
	8.2.8	DTC Vector Register (DTVECR)	197
	8.2.9	Module Stop Control Register A (MSTPCRA)	199
8.3	Operation		200
	8.3.1	Overview	200
	8.3.2	Activation Sources	202
	8.3.3	DTC Vector Table	204
	8.3.4	Location of Register Information in Address Space	208

	8.3.5	Normal Mode	209
	8.3.6	Repeat Mode	210
	8.3.7	Block Transfer Mode	211
	8.3.8	Chain Transfer	213
	8.3.9	Operation Timing	214
	8.3.10	Number of DTC Execution States	
	8.3.11	Procedures for Using DTC	
	8.3.12	Examples of Use of the DTC	
8.4	Interru	pts	221
8.5		Notes	
Sect	ion 9	I/O Ports	223
9.1		ew	
9.1 9.2		CW	
7.2	9.2.1	Overview	
	9.2.1	Register Configuration	
	9.2.2	Pin Functions	
9.3		FIII FUNCTIONS	
9.3	9.3.1	Overview	
	9.3.1	Register Configuration	
	9.3.2	Pin Functions	
9.4	,	FIII FUNCTIONS	
J. 4	9.4.1	Overview	
	9.4.2	Register Configuration	
	9.4.2	Pin Functions	
9.5		r iii Punctions	
9.5	9.5.1	Overview	
	9.5.1	Register Configuration	
	9.5.2	Pin Functions	
9.6	,	FIII FUNCTIONS	
9.0	9.6.1		
	9.6.2	Overview	
	9.6.2	Pin Functions	
	9.6.3 9.6.4	Pin Functions	
0.7	9.6.5	MOS Input Pull-Up Function	
9.7		Oversions	
	9.7.1	Overview	
	9.7.2	Register Configuration	
	9.7.3	Pin Functions	
	974	Pin Functions for Each Mode	273

	9.7.5	MOS Input Pull-Up Function	274
9.8	Port C		275
	9.8.1	Overview	275
	9.8.2	Register Configuration	276
	9.8.3	Pin Functions for Each Mode	279
	9.8.4	MOS Input Pull-Up Function	281
9.9	Port D		282
	9.9.1	Overview	282
	9.9.2	Register Configuration	283
	9.9.3	Pin Functions	285
	9.9.4	MOS Input Pull-Up Function	286
9.10	Port E		287
	9.10.1	Overview	287
	9.10.2	Register Configuration	288
	9.10.3	Pin Functions	290
	9.10.4	MOS Input Pull-Up Function	292
9.11	Port F		293
	9.11.1	Overview	293
	9.11.2	Register Configuration	294
	9.11.3	Pin Functions	296
9.12	Port H.		298
	9.12.1	Overview	298
	9.12.2	Register Configuration	299
	9.12.3	Pin Functions	300
9.13	Port J		301
	9.13.1	Overview	301
	9.13.2	Register Configuration	302
	9.13.3	Pin Functions	303
Secti	on 10	16-Bit Timer Pulse Unit (TPU)	305
10.1	Overvi	ew	305
	10.1.1	Features	305
	10.1.2	Block Diagram	309
	10.1.3	Pin Configuration	310
	10.1.4	Register Configuration	312
10.2	Registe	er Descriptions	314
	10.2.1	Timer Control Register (TCR)	314
	10.2.2	Timer Mode Register (TMDR)	319
	10.2.3		
	10.2.4	Timer Interrupt Enable Register (TIER)	335

	10.2.5	Timer Status Register (TSR)	338
	10.2.6	Timer Counter (TCNT)	342
	10.2.7	Timer General Register (TGR)	343
	10.2.8	Timer Start Register (TSTR)	344
	10.2.9	Timer Synchro Register (TSYR)	345
	10.2.10) Module Stop Control Register A (MSTPCRA)	346
10.3	Interfac	ce to Bus Master	347
	10.3.1	16-Bit Registers	347
	10.3.2	8-Bit Registers	347
10.4	Operat	ion	349
	10.4.1	Overview	349
	10.4.2	Basic Functions	350
	10.4.3	Synchronous Operation	356
		Buffer Operation	
	10.4.5	Cascaded Operation	362
		PWM Modes	
	10.4.7	Phase Counting Mode	370
10.5		pts	
	10.5.1	Interrupt Sources and Priorities	377
	10.5.2	DTC Activation	379
		A/D Converter Activation	
10.6	Operat	ion Timing	380
		Input/Output Timing	
		Interrupt Signal Timing	
10.7		Notes	
Sect	ion 11	Programmable Pulse Generator (PPG)	399
11.1		ew	
11.1		Features	
		Block Diagram	
		Pin Configuration	
		Registers	
11.2		er Descriptions	
11.2	_	Next Data Enable Registers H and L (NDERH, NDERL)	
		Output Data Registers H and L (PODRH, PODRL)	
		Next Data Registers H and L (NDRH, NDRL)	
		Notes on NDR Access	
		PPG Output Control Register (PCR)	
		PPG Output Mode Register (PMR)	
		Port 1 Data Direction Register (P1DDR)	
	· · · · /	1 010 1 Data Direction 100510101 (1 1DD10)	T12

	11.2.8	Module Stop Control Register A (MSTPCRA)	412
11.3	Operati	on	413
	11.3.1	Overview	413
	11.3.2	Output Timing	414
	11.3.3	Normal Pulse Output	415
	11.3.4	Non-Overlapping Pulse Output	417
	11.3.5	Inverted Pulse Output	420
	11.3.6	Pulse Output Triggered by Input Capture	421
11.4	Usage 1	Notes	422
Sacti	on 12	Watchdog Timer	125
12.1		ew	
12.1		Features	
			_
		Block Diagram Dia Configuration	
		Pin Configuration	
12.2		r Descriptions	
12.2	_	Timer Counter (TCNT)	
		Timer Counter (TCNT)	
		Reset Control/Status Register (PCSR)	
		Notes on Register Access	
12.3		on	
12.5	-		
		Watchdog Timer Operation	
		Interval Timer Operation	
		Timing of Setting Overflow Flag (OVF)	
10.4		Timing of Setting of Watchdog Timer Overflow Flag (WOVF)	
12.4		ots	
12.5	_	Notes	
		Contention between Timer Counter (TCNT) Write and Increment	
		Changing Value of PSS* and CKS2 to CKS0	
		Switching between Watchdog Timer Mode and Interval Timer Mode	
		Internal Reset in Watchdog Timer Mode	
	12.5.5	OVF Flag Clearing in Interval Timer Mode	444
Secti	on 13	Serial Communication Interface (SCI)	445
13.1	Overvi	ew	445
	13.1.1	Features	445
	13.1.2	Block Diagram	447
	13.1.3	Pin Configuration	448
	13.1.4	Register Configuration	449

13.2	Registe	er Descriptions	450
	13.2.1	Receive Shift Register (RSR)	450
	13.2.2	Receive Data Register (RDR)	450
	13.2.3	Transmit Shift Register (TSR)	451
	13.2.4	Transmit Data Register (TDR)	451
	13.2.5	Serial Mode Register (SMR)	452
	13.2.6	Serial Control Register (SCR)	455
	13.2.7	Serial Status Register (SSR)	459
	13.2.8	Bit Rate Register (BRR)	463
	13.2.9	Smart Card Mode Register (SCMR)	470
	13.2.10	Module Stop Control Register B (MSTPCRB)	471
13.3	Operati	ion	473
	13.3.1	Overview	473
	13.3.2	Operation in Asynchronous Mode	475
	13.3.3	Multiprocessor Communication Function	486
	13.3.4	Operation in Clocked Synchronous Mode	494
13.4	SCI Int	errupts	503
13.5	Usage 1	Notes	504
		Smart Card Interface	
14.1		ew	
		Features	
		Block Diagram	
		Pin Configuration	
		Register Configuration	
14.2	Registe	er Descriptions	
	14.2.1	2 2 2 (2)	
	14.2.2	Serial Status Register (SSR)	519
	14.2.3	·- · · · · · · · · · · · · · · · ·	
	14.2.4	Serial Control Register (SCR)	523
14.3	Operati	ion	524
	14.3.1	Overview	524
	14.3.2	Pin Connections	524
	14.3.3	Data Format	526
	14.3.4	Register Settings	528
	14.3.5	Clock	530
	14.3.6	Data Transfer Operations	532
	14.3.7	Operation in GSM Mode	539
	14.3.8	Operation in Block Transfer Mode	540
14.4	Hsage 1	Notes	541

Secti	ion 15	I ² C Bus Interface [Option]	
		(Only for the H8S/2638, H8S/2639, and H8S/2630)	
15.1		ew	
		Features	
		Block Diagram	
		Input/Output Pins	
		Register Configuration	
15.2		er Descriptions	
		I ² C Bus Data Register (ICDR)	
		Slave Address Register (SAR)	
		Second Slave Address Register (SARX)	
		I ² C Bus Mode Register (ICMR)	
		I ² C Bus Control Register (ICCR)	
		I ² C Bus Status Register (ICSR)	
	15.2.7	Serial Control Register X (SCRX)	573
	15.2.8	DDC Switch Register (DDCSWR)	574
	15.2.9	Module Stop Control Register B (MSTPCRB)	575
15.3	Operati	ion	576
	15.3.1	I ² C Bus Data Format	576
	15.3.2	Initial Setting	578
	15.3.3	Master Transmit Operation	578
	15.3.4	Master Receive Operation	582
	15.3.5	Slave Receive Operation	587
	15.3.6	Slave Transmit Operation	592
	15.3.7	IRIC Setting Timing and SCL Control	595
	15.3.8	Operation Using the DTC	596
	15.3.9	Noise Canceler	597
	15.3.10) Initialization of Internal State	597
15.4	Usage 1	Notes	599
Sect	ion 16	Controller Area Network (HCAN)	611
16.1		ew	
	16.1.1	Features	611
	16.1.2	Block Diagram	613
	16.1.3	Pin Configuration.	614
	16.1.4	Register Configuration	615
16.2		er Descriptions	
	_	Master Control Register (MCR)	
		General Status Register (GSR)	
		Bit Configuration Register (BCR)	

	16.2.4	Mailbox Configuration Register (MBCR)	624
	16.2.5	Transmit Wait Register (TXPR)	625
	16.2.6	Transmit Wait Cancel Register (TXCR)	
	16.2.7	Transmit Acknowledge Register (TXACK)	627
	16.2.8	Abort Acknowledge Register (ABACK)	628
	16.2.9	Receive Complete Register (RXPR)	629
	16.2.10	Remote Request Register (RFPR)	630
	16.2.11	Interrupt Register (IRR)	631
		Mailbox Interrupt Mask Register (MBIMR)	
	16.2.13	Interrupt Mask Register (IMR)	637
	16.2.14	Receive Error Counter (REC)	640
	16.2.15	Transmit Error Counter (TEC)	640
	16.2.16	Unread Message Status Register (UMSR)	641
		Local Acceptance Filter Masks (LAFML, LAFMH)	
		3 Message Control (MC0 to MC15)	
		Message Data (MD0 to MD15)	
		Module Stop Control Register C (MSTPCRC)	
16.3		ion	
	16.3.1	Hardware and Software Resets	651
	16.3.2	Initialization after Hardware Reset	654
	16.3.3	Transmit Mode	659
	16.3.4	Receive Mode	665
	16.3.5	HCAN Sleep Mode	671
	16.3.6	HCAN Halt Mode	673
	16.3.7	Interrupt Interface	673
	16.3.8	DTC Interface	675
16.4	CAN B	Sus Interface	676
16.5	Usage 1	Notes	677
~			
		A/D Converter	
17.1		ew	
		Features	
		Block Diagram	
		Pin Configuration	
		Register Configuration	
17.2		er Descriptions	
		A/D Data Registers A to D (ADDRA to ADDRD)	
		A/D Control/Status Register (ADCSR)	
		A/D Control Register (ADCR)	
	1724	Module Stop Control Register A (MSTPCRA)	690

17.3	Interfac	ce to Bus Master	691
17.4	Operat	ion	692
	17.4.1	Single Mode (SCAN = 0)	692
	17.4.2	Scan Mode (SCAN = 1)	694
	17.4.3	Input Sampling and A/D Conversion Time	696
	17.4.4	External Trigger Input Timing	697
17.5	Interru	pts	698
17.6	Usage	Notes	699
Sect	ion 18	D/A Converter	705
18.1	Overvi	ew	705
	18.1.1	Features	705
	18.1.2	Block Diagram	706
	18.1.3	Input and Output Pins	707
	18.1.4	Register Configuration	707
18.2	Registe	er Descriptions	708
	18.2.1	D/A Data Registers 0, 1 (DADR0, DADR1)	708
	18.2.2	D/A Control Register 01 (DACR01)	708
	18.2.3	Module Stop Control Register A (MSTPCRA)	710
18.3	Operat	ion	711
Sect	ion 19	Motor Control PWM Timer	713
19.1	Overvi	ew	713
	19.1.1	Features	713
	19.1.2	Block Diagram	714
	19.1.3	Pin Configuration	716
	19.1.4	Register Configuration	717
19.2		er Descriptions	
	19.2.1	PWM Control Registers 1 and 2 (PWCR1, PWCR2)	718
	19.2.2	PWM Output Control Registers 1 and 2 (PWOCR1, PWOCR2)	720
		PWM Polarity Registers 1 and 2 (PWPR1, PWPR2)	
	19.2.4	PWM Counters 1 and 2 (PWCNT1, PWCNT2)	722
	19.2.5	PWM Cycle Registers 1 and 2 (PWCYR1, PWCYR2)	723
	19.2.6	PWM Duty Registers 1A, 1C, 1E, 1G (PWDTR1A, 1C, 1E, 1G)	724
	19.2.7	PWM Buffer Registers 1A, 1C, 1E, 1G (PWBFR1A, 1C, 1E, 1G)	726
		PWM Duty Registers 2A to 2H (PWDTR2A to PWDTR2H)	
		PWM Buffer Registers 2A to 2D (PWBFR2A to PWBFR2D)	
) Module Stop Control Register D (MSTPCRD)	
19.3		aster Interface	
	19.3.1	16-Bit Data Registers	731

	19.3.2 8-E	Bit Data Registers	731
19.4	Operation		
	-	VM Channel 1 Operation	
		VM Channel 2 Operation	
19.5		2	
Secti	on 20 RA	AM	737
20.1			
	20.1.1 Blo	ock Diagram	737
		gister Configuration	
20.2	,	escriptions	
		stem Control Register (SYSCR)	
20.3	-		
20.4	-	es	
Secti	on 21A I	ROM (H8S/2636 Group)	743
21A.1		V	
	21A.1.1	Block Diagram.	
	21A.1.2	Register Configuration	
21A.2	Register	Descriptions	
	21A.2.1	Mode Control Register (MDCR)	
21A.3	Operation	n	
21A.4	Flash Me	emory Overview	747
21A.4	21A.4.1	Features	747
	21A.4.2	Block Diagram	748
	21A.4.3	Mode Transitions	749
	21A.4.4	On-Board Programming Modes	750
	21A.4.5	Flash Memory Emulation in RAM	752
	21A.4.6	Differences between Boot Mode and User Program Mode	753
	21A.4.7	Block Configuration	754
21A.5	Pin Conf	iguration	755
21A.6	Register	Configuration	756
21A.7	Register	Descriptions	757
	21A.7.1	Flash Memory Control Register 1 (FLMCR1)	757
	21A.7.2	Flash Memory Control Register 2 (FLMCR2)	760
	21A.7.3	Erase Block Register 1 (EBR1)	761
	21A.7.4	Erase Block Register 2 (EBR2)	761
	21A.7.5	RAM Emulation Register (RAMER)	762
	21A.7.6	Flash Memory Power Control Register (FLPWCR)	763
21A.8	On-Boar	d Programming Modes	764

21A.8.2 User Program Mode 769 21A.9 Flash Memory Programming/Erasing 771 21A.9.1 Program Mode 773 21A.9.2 Program-Verify Mode 774 21A.9.3 Erase Mode 778 21A.9.4 Erase-Verify Mode 779 21A.10 Protection 781 21A.10.1 Hardware Protection 781 21A.10.2 Software Protection 782 21A.10.3 Error Protection 782 21A.11 Flash Memory Emulation in RAM 784 21A.12 Interrupt Handling when Programming/Erasing Flash Memory 786 21A.13 Programmer Mode 787 21A.13 Programmer Mode 787 21A.14 Flash Memory and Power-Down States 788 21A.14 Notes on Power-Down States 788 21A.15 Flash Memory Programming and Erasing Precautions 789 21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version 794 Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group) 795 21B.1 Dlock Diagram 795 21B.1.2 Register Configuration 796 21B.2 Register Descriptions 796 21B.3 Operation 796 21B.4 Flash Memory Overview
21A.9 Flash Memory Programming/Erasing 771 21A.9.1 Program Mode 773 21A.9.2 Program-Verify Mode 774 21A.9.3 Erase Mode 778 21A.9.4 Erase-Verify Mode 779 21A.10 Protection 781 21A.10.1 Hardware Protection 782 21A.10.2 Software Protection 782 21A.11 Flash Memory Emulation in RAM 784 21A.12 Interrupt Handling when Programming/Erasing Flash Memory 786 21A.13 Programmer Mode 787 21A.14 Flash Memory and Power-Down States 788 21A.14 Flash Memory and Power-Down States 788 21A.15 Flash Memory Programming and Erasing Precautions 789 21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version 794 Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group) 795 21B.1 Block Diagram 795 21B.1 Register Configuration 796 21B.2 Register Descriptions 796 21B.3 Operati
21A.9.2 Program-Verify Mode 774 21A.9.3 Erase Mode 778 21A.9.4 Erase-Verify Mode 779 21A.10 Protection 781 21A.10.1 Hardware Protection 782 21A.10.2 Software Protection 782 21A.11 Flash Memory Emulation in RAM 784 21A.12 Interrupt Handling when Programming/Erasing Flash Memory 786 21A.13 Programmer Mode 787 21A.13.1 Socket Adapter and Memory Map 787 21A.14 Flash Memory and Power-Down States 788 21A.14.1 Note on Power-Down States 788 21A.15 Flash Memory Programming and Erasing Precautions 789 21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version 794 Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group) 795 21B.1 Block Diagram 795 21B.1.2 Register Configuration 796 21B.2 Register Descriptions 796 21B.3 Operation 796
21A.9.3 Erase Mode 778 21A.9.4 Erase-Verify Mode 779 21A.10 Protection 781 21A.10.1 Hardware Protection 781 21A.10.2 Software Protection 782 21A.10.3 Error Protection 782 21A.11 Flash Memory Emulation in RAM 784 21A.12 Interrupt Handling when Programming/Erasing Flash Memory 786 21A.13 Programmer Mode 787 21A.13.1 Socket Adapter and Memory Map 787 21A.14 Flash Memory and Power-Down States 788 21A.14.1 Notes on Power-Down States 788 21A.15 Flash Memory Programming and Erasing Precautions 789 21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version 794 Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group) 795 21B.1.1 Block Diagram 795 21B.1.2 Register Configuration 796 21B.2 Register Descriptions 796 21B.3 Operation 796 21B.3 Operation 796
21A.9.4 Erase-Verify Mode 779 21A.10 Protection 781 21A.10.1 Hardware Protection 781 21A.10.2 Software Protection 782 21A.10.3 Error Protection 782 21A.11 Flash Memory Emulation in RAM 784 21A.12 Interrupt Handling when Programming/Erasing Flash Memory 786 21A.13 Programmer Mode 787 21A.14.1 Socket Adapter and Memory Map 787 21A.14 Flash Memory and Power-Down States 788 21A.14.1 Notes on Power-Down States 788 21A.15 Flash Memory Programming and Erasing Precautions 789 21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version 794 Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group) 795 21B.1.1 Block Diagram 795 21B.1.2 Register Configuration 796 21B.2 Register Descriptions 796 21B.2.1 Mode Control Register (MDCR) 796 21B.3 Operation 796
21A.10 Protection 781 21A.10.1 Hardware Protection 781 21A.10.2 Software Protection 782 21A.10.3 Error Protection 782 21A.11 Flash Memory Emulation in RAM 784 21A.12 Interrupt Handling when Programming/Erasing Flash Memory 786 21A.13 Programmer Mode 787 21A.13.1 Socket Adapter and Memory Map 787 21A.14 Flash Memory and Power-Down States 788 21A.14.1 Notes on Power-Down States 788 21A.15 Flash Memory Programming and Erasing Precautions 789 21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version 794 Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group) 795 21B.1 Block Diagram 795 21B.1.2 Register Configuration 796 21B.2 Register Descriptions 796 21B.2.1 Mode Control Register (MDCR) 796 21B.3 Operation 796
21A.10.1 Hardware Protection 781 21A.10.2 Software Protection 782 21A.10.3 Error Protection 782 21A.11 Flash Memory Emulation in RAM 784 21A.12 Interrupt Handling when Programming/Erasing Flash Memory 786 21A.13 Programmer Mode 787 21A.13.1 Socket Adapter and Memory Map 787 21A.14 Flash Memory and Power-Down States 788 21A.15 Flash Memory Programming and Erasing Precautions 789 21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version 794 Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group) 795 21B.1 Overview 795 21B.1.2 Register Configuration 796 21B.2 Register Descriptions 796 21B.2.1 Mode Control Register (MDCR) 796 21B.3 Operation 796
21A.10.2 Software Protection 782 21A.10.3 Error Protection 782 21A.11 Flash Memory Emulation in RAM 784 21A.12 Interrupt Handling when Programming/Erasing Flash Memory 786 21A.13 Programmer Mode 787 21A.13.1 Socket Adapter and Memory Map 787 21A.14 Flash Memory and Power-Down States 788 21A.14.1 Notes on Power-Down States 788 21A.15 Flash Memory Programming and Erasing Precautions 789 21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version 794 Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group) 795 21B.1.1 Block Diagram 795 21B.1.2 Register Configuration 796 21B.2.1 Mode Control Register (MDCR) 796 21B.3 Operation 796
21A.10.3 Error Protection 782 21A.11 Flash Memory Emulation in RAM 784 21A.12 Interrupt Handling when Programming/Erasing Flash Memory 786 21A.13 Programmer Mode 787 21A.13.1 Socket Adapter and Memory Map 787 21A.14 Flash Memory and Power-Down States 788 21A.14.1 Notes on Power-Down States 788 21A.15 Flash Memory Programming and Erasing Precautions 789 21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version 794 Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group) 795 21B.1 Overview 795 21B.1.2 Register Configuration 796 21B.2 Register Descriptions 796 21B.2.1 Mode Control Register (MDCR) 796 21B.3 Operation 796
21A.11 Flash Memory Emulation in RAM
21A.12 Interrupt Handling when Programming/Erasing Flash Memory 786 21A.13 Programmer Mode 787 21A.13.1 Socket Adapter and Memory Map 787 21A.14 Flash Memory and Power-Down States 788 21A.14.1 Notes on Power-Down States 788 21A.15 Flash Memory Programming and Erasing Precautions 789 21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version 794 Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group) 795 21B.1 Overview 795 21B.1.1 Block Diagram 795 21B.1.2 Register Configuration 796 21B.2 Register Descriptions 796 21B.3 Operation 796 21B.3 Operation 796
21A.13 Programmer Mode
21A.13.1 Socket Adapter and Memory Map 787 21A.14 Flash Memory and Power-Down States 788 21A.14.1 Notes on Power-Down States 788 21A.15 Flash Memory Programming and Erasing Precautions 789 21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version 794 Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group) 795 21B.1 Overview 795 21B.1.1 Block Diagram 795 21B.1.2 Register Configuration 796 21B.2 Register Descriptions 796 21B.3 Operation 796 21B.3 Operation 796
21A.14 Flash Memory and Power-Down States 788 21A.14.1 Notes on Power-Down States 788 21A.15 Flash Memory Programming and Erasing Precautions 789 21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version 794 Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group) 795 21B.1 Overview 795 21B.1.1 Block Diagram 795 21B.1.2 Register Configuration 796 21B.2 Register Descriptions 796 21B.3 Operation 796
21A.14.1 Notes on Power-Down States 788 21A.15 Flash Memory Programming and Erasing Precautions 789 21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version 794 Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group) 795 21B.1 Overview 795 21B.1.1 Block Diagram 795 21B.1.2 Register Configuration 796 21B.2 Register Descriptions 796 21B.3 Operation 796
21A.15 Flash Memory Programming and Erasing Precautions 789 21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version 794 Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group) 795 21B.1 Overview 795 21B.1.1 Block Diagram 795 21B.1.2 Register Configuration 796 21B.2 Register Descriptions 796 21B.3 Operation 796
21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version
Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group)795 21B.1 Overview
21B.1 Overview
21B.1 Overview
21B.1.1 Block Diagram 795 21B.1.2 Register Configuration 796 21B.2 Register Descriptions 796 21B.2.1 Mode Control Register (MDCR) 796 21B.3 Operation 796
21B.1.2 Register Configuration 796 21B.2 Register Descriptions 796 21B.2.1 Mode Control Register (MDCR) 796 21B.3 Operation 796
21B.2 Register Descriptions 796 21B.2.1 Mode Control Register (MDCR) 796 21B.3 Operation 796
21B.2.1 Mode Control Register (MDCR) 796 21B.3 Operation 796
21B.3 Operation
<u>*</u>
21R / Flach Mamory Overview 700
21D.4 1 Tash McHory Overview
21B.4.1 Features
21B.4.2 Block Diagram800
21B.4.3 Mode Transitions
21B.4.4 On-Board Programming Modes802
21B.4.5 Flash Memory Emulation in RAM804
21B.4.6 Differences between Boot Mode and User Program Mode805
21B.4.7 Block Configuration806
21D 5 Dia Configuration
21B.5 Pin Configuration 807
•
21B.6 Register Configuration

	21B.7.3	Erase Block Register 1 (EBR1)	813	
	21B.7.4	Erase Block Register 2 (EBR2)	813	
	21B.7.5	RAM Emulation Register (RAMER)	814	
	21B.7.6	Flash Memory Power Control Register (FLPWCR)	815	
21B.8	On-Board	l Programming Modes	817	
	21B.8.1	Boot Mode	818	
	21B.8.2	User Program Mode	822	
21B.9	Programn	ning/Erasing Flash Memory		
	21B.9.1	Program Mode	826	
	21B.9.2	Program-Verify Mode	827	
	21B.9.3	Erase Mode	831	
	21B.9.4	Erase-Verify Mode	831	
21B.10	Protection	n	833	
	21B.10.1	Hardware Protection	833	
	21B.10.2	Software Protection	834	
	21B.10.3	Error Protection	835	
21B.11		mory Emulation in RAM		
		Handling when Programming/Erasing Flash Memory		
		ner Mode		
	_	Socket Adapter and Memory Map		
21B.14		mory and Power-Down States		
		Notes on Power-Down States		
21B.15		mory Programming and Erasing Precautions		
		Switching from F-ZTAT Version to Mask ROM Version		
Section	1 21C R	ROM (H8S/2635 Group)	849	
21C.1		/		
	21C.1.1	Block Diagram		
	21C.1.2	Register Configuration.		
21C.2		Descriptions		
	21C.2.1	Mode Control Register (MDCR)		
21C.3		1		
21C.4	Flash Memory Overview			
	21C.4.1	Features		
	21C.4.2	Block Diagram		
	21C.4.3	Mode Transitions		
	21C.4.4	On-Board Programming Modes		
	21C.4.5	Flash Memory Emulation in RAM		
	21C.4.6	Differences between Boot Mode and User Program Mode		
	21C.4.7	Block Configuration		

21C.5	Pin Confi	guration	861
21C.6	Register C	Configuration	862
21C.7	Register I	Descriptions	863
	21C.7.1	Flash Memory Control Register 1 (FLMCR1)	863
	21C.7.2	Flash Memory Control Register 2 (FLMCR2)	866
	21C.7.3	Erase Block Register 1 (EBR1)	867
	21C.7.4	Erase Block Register 2 (EBR2)	867
	21C.7.5	RAM Emulation Register (RAMER)	868
	21C.7.6	Flash Memory Power Control Register (FLPWCR)	870
21C.8	On-Board	Programming Modes	871
	21C.8.1	Boot Mode	872
	21C.8.2	User Program Mode	876
21C.9	Programn	ning/Erasing Flash Memory	878
	21C.9.1	Program Mode	880
	21C.9.2	Program-Verify Mode	881
	21C.9.3	Erase Mode	885
	21C.9.4	Erase-Verify Mode	885
21C.10		1	
	21C.10.1	Hardware Protection	887
	21C.10.2	Software Protection	888
	21C.10.3	Error Protection	889
21C.11	Flash Mei	mory Emulation in RAM	891
21C.12	Interrupt 1	Handling when Programming/Erasing Flash Memory	893
21C.13	Programn	ner Mode	894
	21C.13.1	Socket Adapter and Memory Map	894
21C.14	Flash Mei	mory and Power-Down States	895
	21C.14.1	Notes on Power-Down States	896
21C.15	Flash Mei	mory Programming and Erasing Precautions	896
21C.16	Note on S	witching from F-ZTAT Version to Mask ROM Version	902
g	224		
Section		lock Pulse Generator	002
22.4	,	H8S/2636 Group, H8S/2638 Group, H8S/2630 Group)	
22A.1		D1 1 D1	
	22A.1.1	Block Diagram	
		Register Configuration	
22A.2	_	Descriptions	
	22A.2.1	System Clock Control Register (SCKCR)	
22 4 2	22A.2.2	Low-Power Control Register (LPWRCR)	
22A.3		C	
	22A.3.1	Connecting a Crystal Resonator	906

	22A.3.2	External Clock Input	909
22A.4		uit	
22A.5		Speed Clock Divider	
22A.6		ter Clock Selection Circuit	
22A.7		Oscillator	
22A.8	Subclock	Waveform Generation Circuit	913
22A.9		Crystal Resonator	
Section	on 22B (Clock Pulse Generator (H8S/2639 Group, H8S/2635 Group)	915
22B.1	Overviev	V	915
	22B.1.1	Block Diagram	915
	22B.1.2	Register Configuration	916
22B.2	Register	Descriptions	916
	22B.2.1	System Clock Control Register (SCKCR)	916
	22B.2.2	Low-Power Control Register (LPWRCR)	917
22B.3	Oscillato	r	918
	22B.3.1	Connecting a Crystal Resonator	918
	22B.3.2	External Clock Input	921
22B.4	PLL Circ	uit	923
22B.5	Medium-	Speed Clock Divider	923
22B.6	Bus Mast	ter Clock Selection Circuit	923
22B.7	Subclock	Divider	924
22B.8	Note on l	Resonator	924
Section	[Power-Down Modes HD64F2636F, HD64F2638F, HD6432636F, HD6432638F, HD64F2630F, HD6432630F, HD64F2635F, HD6432635F,	
		ID6432634F]	925
23A.1	Overviev	v	925
	23A.1.1	Register Configuration.	929
23A.2	Register	Descriptions	930
	23A.2.1	Standby Control Register (SBYCR)	930
	23A.2.2	System Clock Control Register (SCKCR)	
	23A.2.3	Low-Power Control Register (LPWRCR)	933
	23A.2.4	Timer Control/Status Register (TCSR)	933
	23A.2.5	Module Stop Control Register (MSTPCR)	934
23A.3	Medium-	Speed Mode	
23A.4		ode	
	23A.4.1	Sleep Mode	937
	23A.4.2	Exiting Sleep Mode	937

23A.5	Module Stop Mode	938
	23A.5.1 Module Stop Mode	938
	23A.5.2 Usage Notes	939
23A.6	Software Standby Mode	940
	23A.6.1 Software Standby Mode	940
	23A.6.2 Clearing Software Standby Mode	940
	23A.6.3 Setting Oscillation Stabilization Time after Clearing Software	
	Standby Mode	941
	23A.6.4 Software Standby Mode Application Example	942
	23A.6.5 Usage Notes	943
23A.7	Hardware Standby Mode	943
	23A.7.1 Hardware Standby Mode	943
	23A.7.2 Hardware Standby Mode Timing	944
23A.8	φ Clock Output Disabling Function	945
Section	on 23B Power-Down Modes	
	[HD64F2636UF, HD6432636UF, HD64F2638UF,	
	HD6432638UF, HD64F2638WF, HD6432638WF,	
	HD64F2639UF, HD6432639UF, HD64F2639WF,	
	HD6432639WF, HD64F2630UF, HD6432630UF,	
	HD64F2630WF, HD6432630WF, HD6432635F,	
	HD64F2635F, HD6432634F]	
23B.1	Overview	947
	23B.1.1 Register Configuration	
23B.2	Register Descriptions	
	23B.2.1 Standby Control Register (SBYCR)	953
	23B.2.2 System Clock Control Register (SCKCR)	
	23B.2.3 Low-Power Control Register (LPWRCR)	957
	23B.2.4 Timer Control/Status Register (TCSR)	959
	23B.2.5 Module Stop Control Register (MSTPCR)	961
23B.3	Medium-Speed Mode	
23B.4	Sleep Mode	
	23B.4.1 Sleep Mode	
	23B.4.2 Exiting Sleep Mode	
23B.5	Module Stop Mode	964
	23B.5.1 Module Stop Mode	964
	23B.5.2 Usage Notes	966
23B.6	Software Standby Mode	966
	23B.6.1 Software Standby Mode	
	23B.6.2 Clearing Software Standby Mode	967

	23B.6.3	Setting Oscillation Stabilization Time after Clearing Software	
		Standby Mode	
	23B.6.4	Software Standby Mode Application Example	
	23B.6.5	Usage Notes	
23B.7	Hardware	e Standby Mode	
	23B.7.1	Hardware Standby Mode	970
	23B.7.2	Hardware Standby Mode Timing	971
23B.8	Watch M	ode (U-Mask, W-Mask Version, H8S/2635 Group Only)	971
	23B.8.1	Watch Mode	971
	23B.8.2	Exiting Watch Mode	972
	23B.8.3	Notes	972
23B.9	Subsleep	Mode (U-Mask, W-Mask Version, H8S/2635 Group Only)	973
	23B.9.1	Subsleep Mode	973
	23B.9.2	Exiting Subsleep Mode	973
23B.10	Subactive	e Mode (U-Mask, W-Mask Version, H8S/2635 Group Only)	
		Subactive Mode	
		Exiting Subactive Mode	
23B.11		ansitions (U-Mask, W-Mask Version, H8S/2635 Group Only)	
		Overview of Direct Transitions	
23B.12		Output Disabling Function	
	•	otes	
	C		
Section	n 24 Ele	ectrical Characteristics	979
24.1	H8S/2636	6 Group Electrical Characteristics	979
	24.1.1	Absolute Maximum Ratings	
	24.1.2	Power Supply Voltage and Operating Frequency Range	
	24.1.3	DC Characteristics	
	24.1.4	AC Characteristics	
	24.1.5	A/D Conversion Characteristics	
	24.1.6	D/A Conversion Characteristics	
	24.1.7	Flash Memory Characteristics	
24.2		8 Group Electrical Characteristics	
	24.2.1	Absolute Maximum Ratings	
	24.2.2	Power Supply Voltage and Operating Frequency Range	
	24.2.3	DC Characteristics	
	24.2.4	AC Characteristics	
	24.2.5	A/D Conversion Characteristics	
	24.2.6	D/A Conversion Characteristics	
	24.2.7	Flash Memory Characteristics	
24.3		9 Group, H8S/2635 Group Flectrical Characteristics	

	24.3.1	Absolute Maximum Ratings	1012
	24.3.2	Power Supply Voltage and Operating Frequency Range	1013
	24.3.3	DC Characteristics	1014
	24.3.4	AC Characteristics	1020
	24.3.5	A/D Conversion Characteristics	1026
	24.3.6	D/A Conversion Characteristics*	1027
	24.3.7	Flash Memory Characteristics	1028
24.4	H8S/263	0 Group Electrical Characteristics	1030
	24.4.1	Absolute Maximum Ratings	1030
	24.4.2	Power Supply Voltage and Operating Frequency Range	1031
	24.4.3	DC Characteristics	1032
	24.4.4	AC Characteristics	1038
	24.4.5	A/D Conversion Characteristics	1044
	24.4.6	D/A Conversion Characteristics	1045
	24.4.7	Flash Memory Characteristics	1046
24.5	Operation	n Timing	1048
	24.5.1	Clock Timing	1048
	24.5.2	Control Signal Timing	1049
	24.5.3	Bus Timing	1050
	24.5.4	On-Chip Supporting Module Timing	1054
24.6	Usage No	ote	1058
۸	مسائد ۸ T	in atmosting Cat	1070
		nstruction Set	
A.1		List	
A.2		Codes	
A.3	-	Code Map	
A.4		States Required for Instruction Execution	
A.5		during Instruction Execution	
A.6	Condition (Code Modification	1130
App	endix B I	nternal I/O Register	1136
B.1			
B.2			
App		O Port Block Diagrams	
C.1		k Diagrams	
C.2		k Diagrams	
C.3		k Diagram	
C.4	Port 9 Bloc	k Diagram	1435
C.5	Port A Bloo	ck Diagram	1436

Port B BI	ock Diagram	1440
Port C Bl	ock Diagram	1441
Port D Bl	ock Diagram	1442
Port E B1	ock Diagram	1443
Port F Bl	ock Diagrams	1444
Port H Bl	ock Diagram	1450
Port J Blo	ock Diagram	1451
endix D	Pin States	1452
Port State	es in Each Mode	1452
endix E	Timing of Transition to and Recovery from Hardware	
	Standby Mode	1455
endix F	Product Code Lineup	1456
endix G	Package Dimensions	1458
	Port C Bl Port D Bl Port E Bl Port F Bl Port J Blo endix D Port State	Port B Block Diagram

Section 1 Overview

1.1 Overview

The H8S/2636, H8S/2638, H8S/2639, H8S/2630, H8S/2635, and H8S/2634 are microcomputers (MCUs: microcomputer units), built around the H8S/2600 CPU, employing Renesas Electronics's proprietary architecture, and equipped with peripheral functions on-chip.

The H8S/2600 CPU has an internal 32-bit architecture, is provided with sixteen 16-bit general registers and a concise, optimized instruction set designed for high-speed operation, and can address a 16-Mbyte linear address space. The instruction set is upward-compatible with H8/300 and H8/300H CPU instructions at the object-code level, facilitating migration from the H8/300, H8/300L, or H8/300H Series.

On-chip peripheral functions required for system configuration include data transfer controller (DTC) bus masters, ROM and RAM memory, a16-bit timer-pulse unit (TPU), programmable pulse generator (PPG), motor control PWM timer (PWM) watchdog timer (WDT), serial communication interface (SCI), A/D converter, D/A converter, controller area network (HCAN) and I/O ports. An I²C bus interface (IIC) is available as an option in the H8S/2638, H8S/2639, and H8S/2630.

On-chip ROM is available as 128-kbyte, 192-kbyte, 256-kbyte, and 384-kbyte flash memory (F-ZTAT^{TM*} version), and as 128-kbyte, 192-kbyte, 256-kbyte, and 384-kbyte mask ROM. ROM is connected to the CPU via a 16-bit data bus, enabling both byte and word data to be accessed in one state. Instruction fetching has been speeded up, and processing speed increased.

Four operating modes, modes 4 to 7, are provided, and there is a choice of single-chip mode or external expansion mode.

Subclock (32 kHz oscillation) functions are available in the U-mask and W-mask versions only. These functions cannot be used with the other versions.

The features of the H8S/2636, H8S/2638, H8S/2639, H8S/2630, H8S/2635, and H8S/2634 are shown in table 1-1.

Notes: The H8S/2635 and H8S/2634 are not equipped with a DTC, a PPG, a PC brake controller, or a D/A converter.

* F-ZTAT is a trademark of Renesas Electronics Corp.

Table 1-1 Overview

Item Specification

CPU

- General-register machine
 - Sixteen 16-bit general registers (also usable as sixteen 8-bit registers or eight 32-bit registers)
- High-speed operation suitable for realtime control
 - Maximum clock rate: 20 MHz
 - High-speed arithmetic operations

8/16/32-bit register-register add/subtract : 50 ns 16×16 -bit register-register multiply : 200 ns $16 \times 16 + 42$ -bit multiply and accumulate : 200 ns $32 \div 16$ -bit register-register divide : 1000 ns

- Instruction set suitable for high-speed operation
 - Sixty-nine basic instructions
 - 8/16/32-bit move/arithmetic and logic instructions
 - Unsigned/signed multiply and divide instructions
 - Multiply-and accumulate instruction
 - Powerful bit-manipulation instructions
- CPU operating modes
 - Advanced mode: 16-Mbyte address space

Bus controller

- Address space divided into 8 areas, with bus specifications settable independently for each area
- Choice of 8-bit or 16-bit access space for each area
- 2-state or 3-state access space can be designated for each area
- Number of program wait states can be set for each area
- Direct connection to burst ROM supported

PC break controller (This function is not implemented in the H8S/2635 Group)

- Supports debugging functions by means of PC break interrupts
- Two break channels

Data transfer controller (DTC) (This function is not implemented in the H8S/2635 Group)

- Can be activated by internal interrupt or software
- Multiple transfers or multiple types of transfer possible for one activation source
- Transfer possible in repeat mode, block transfer mode, etc.
- Request can be sent to CPU for interrupt that activated DTC

Item	Specification
16-bit timer-pulse	6-channel 16-bit timer on-chip
unit (TPU)	Pulse I/O processing capability for up to 16 pins'
	Automatic 2-phase encoder count capability
Programmable	Maximum 8-bit pulse output possible with TPU as time base
pulse generator (PPG)	Output trigger selectable in 4-bit groups
(This function is not	Non-overlap margin can be set
implemented in the H8S/2635 Group)	Direct output or inverse output setting possible
Watchdog timer	Watchdog timer or interval timer selectable
(WDT) 2 channels	 Operation using sub-clock supported (WDT1 only)*
Motor control	Maximum of 16 10-bit PWM outputs
PWM timer (PWM)	Eight outputs with two channels each built in
(1 ******)	 Duty settable between 0% and 100%
	Automatic transfer of buffer register data supported
	Settable to any one of 5 operating speeds
Serial communica-	Asynchronous mode or synchronous mode selectable
tion interface (SCI) 3 channels	Multiprocessor communication function
(SCI0 to SCI2)	Smart card interface function
Controller area	CAN: Ver. 2.0B compliant
network (HCAN) 2 channels	Buffer size: 15 transmit/receive messages, transmit only one message
(The H8S/2635	Filtering of receive messages
Group has one HCAN channel)	
A/D converter	Resolution: 10 bits
	Input: 12 channels
	 High-speed conversion: 13.3 µs minimum conversion time (at 20-MHz operation)
	Single or scan mode selectable
	Sample and hold circuit
	A/D conversion can be activated by external trigger or timer trigger
D/A converter	Resolution: 8 bits
(This function is not implemented in the H8S/2635 Group)	Output: 2 channels

Item	Specification				
I/O ports	72 I/O pins, 12 input-only pins				
Memory	Flash memory of	or mask ROM			
	High-speed stat	ic RAM			
	Product Name	ROM	RAM		
	H8S/2636	128 kbytes	4 kbytes		
	H8S/2638	256 kbytes	16 kbytes		
	H8S/2639				
	H8S/2630	384 kbytes			
	H8S/2635	192 kbytes	6 kbytes		
	H8S/2634*	128 kbytes			
	Note: * The H8S/2634 is available in a mask ROM version only.				
Interrupt controller	Seven external interrupt pins (NMI, IRQ0 to IRQ5)				
	 49 internal interrupt sources (45 sources in H8S/2635) 				
	Eight priority levels settable				
Power-down states	Medium-speed	mode			
	 Sleep mode 				
	Module-stop mo	ode			
	Software stands	by mode			
	Hardware stand	lby mode			
	Sub-clock opera	ation st (subactive mode, s	subsleep mode, watch mode)		
Operating modes	Four MCU operatin	g modes			

Operating modes

Four MCU operating modes

				Extern	al Data Bus
Mode	CPU Operating Mode	Description	On-Chip ROM	Initial Value	Maximum Value
4	Advanced	On-chip ROM disabled expansion mode	Disabled	16 bits	16 bits
5		On-chip ROM disabled expansion mode	Disabled	8 bits	16 bits
6	_	On-chip ROM enabled expansion mode	Enabled	8 bits	16 bits
7		Single-chip mode	Enabled	_	_

Item	Specification
Clock pulse	On-chip PLL circuit (×1, ×2, ×4)
generator	 Input clock frequency H8S/2636, H8S/2638, H8S/2630: 4 to 20 MHz H8S/2639, H8S/2635, H8S/2634: 4 to 5 MHz
I ² C bus interface	Conforms to the I ² C bus interface type advocated by Philips
(IIC) ×2 channel (Option)	Single master mode/slave mode
(Only for the	 Possible to determine arbitration lost conditions
H8S/2638, H8S/2639, and H8S/2630)	Supports two slave addresses
Packages	128-pin plastic QFP (FP-128B)
Product lineup	Model Name ROM/
	Marala DOM Subalash 120 km DAM

Mode			ROM/		
Mask ROM Version	F-ZTAT Version	Subclock Functions	I ² C bus interface	RAM (Bytes)	Packages
HD6432636F	HD64F2636F	No	_	128 k/	FP-128B
HD6432636UF (U-Mask Version)	HD64F2636UF (U-Mask Version)	Yes	_	⁻ 4 k	
HD6432638F	HD64F2638F	No	No	256 k/	=
HD6432638UF (U-Mask Version)	HD64F2638UF (U-Mask Version)	Yes	No	16 k	
HD6432638WF (W-Mask Version)	HD64F2638WF (W-Mask Version)	Yes	Yes	=	
HD6432639UF (U-Mask Version)	HD64F2639UF (U-Mask Version)	Yes	No	_	
HD6432639WF (W-Mask Version)	HD64F2639WF (W-Mask Version)	Yes	Yes	_	
HD6432630F	HD64F2630F	No	No	384 k/	_
HD6432630UF (U-Mask Version)	HD64F2630UF (U-Mask Version)	Yes	No	16 k	
HD6432630WF (W-Mask Version)	HD64F2630WF (W-Mask Version)	Yes	Yes	_	
HD6432635F	HD64F2635F	Yes	No	192 k/ 6 k	_
HD6432634F	_	Yes	No	128 k/ 6 k	

Note: *Subclock functions (subactive mode, subsleep mode, and watch mode) are available only in the U-mask and W-mask versions, and H8S/2635 Group, but are not available in the other versions.

1.2 Internal Block Diagram

Figure 1-1 (a) shows an internal block diagram of the H8S/2636.

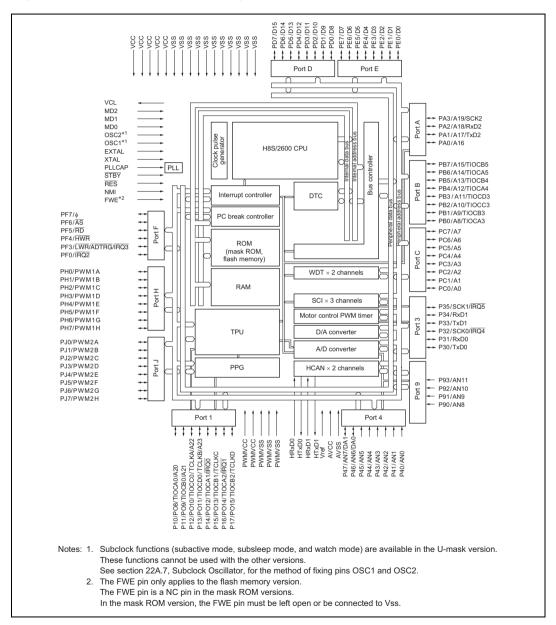


Figure 1-1 (a) Internal Block Diagram of H8S/2636

Figure 1-1 (b) shows an internal block diagram of the H8S/2638, H8S/2639, and H8S/2630.

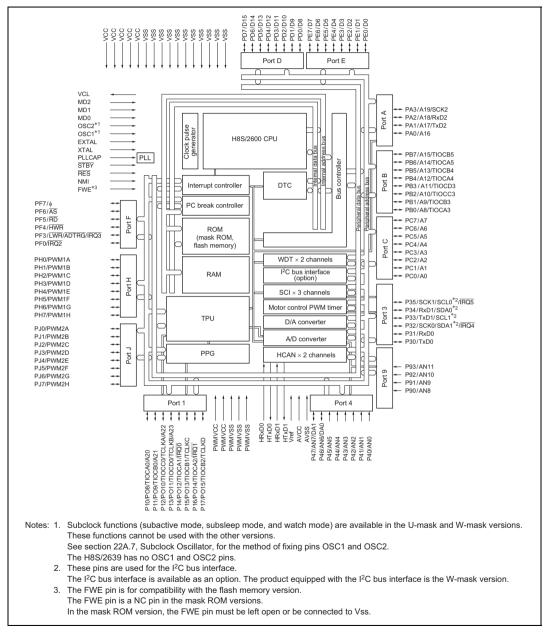


Figure 1-1 (b) Internal Block Diagram of H8S/2638, H8S/2639, and H8S/2630

Figure 1-1 (c) shows an internal block diagram of the H8S/2635 Group.

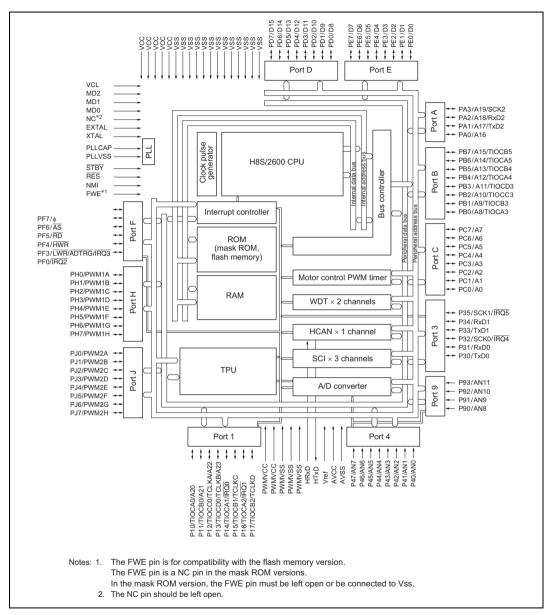


Figure 1-1 (c) Internal Block Diagram of H8S/2635 Group

1.3 Pin Description

1.3.1 Pin Arrangement

Figure 1-2 shows the pin arrangement of the H8S/2636, figure 1-3 shows the pin arrangement of the H8S/2638 and H8S/2630, figure 1-4 shows the pin arrangement of the H8S/2639, and figure 1-5 shows the pin arrangement of the H8S/2635 Group.

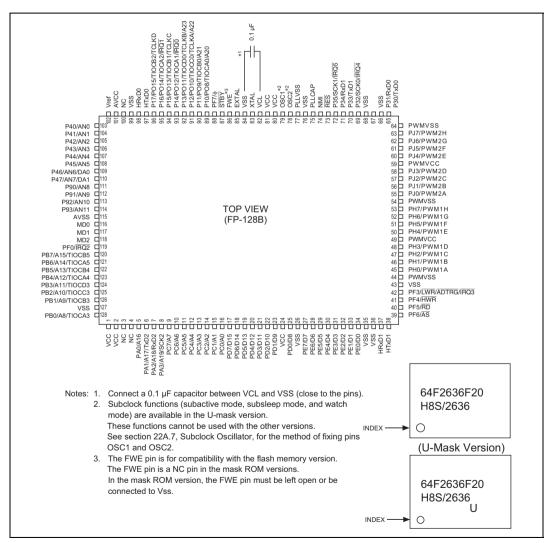


Figure 1-2 Pin Arrangement of H8S/2636 Group (FP-128B: Top View)

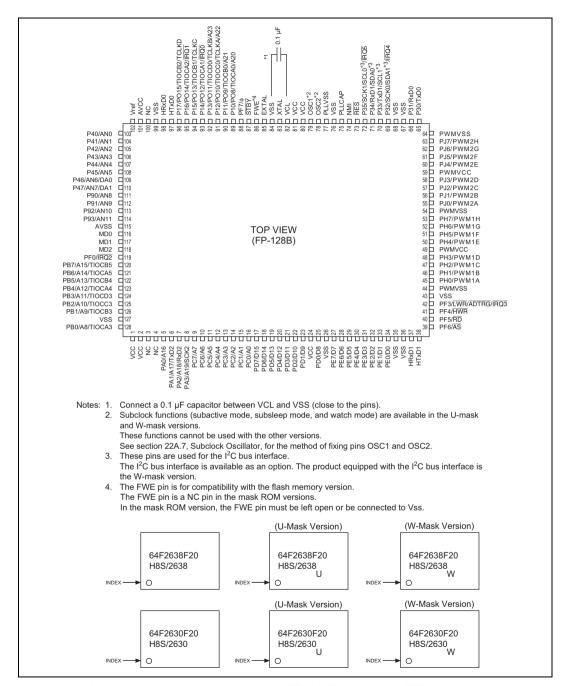


Figure 1-3 Pin Arrangement of H8S/2638 Group and H8S/2630 Group (FP-128B: Top View)

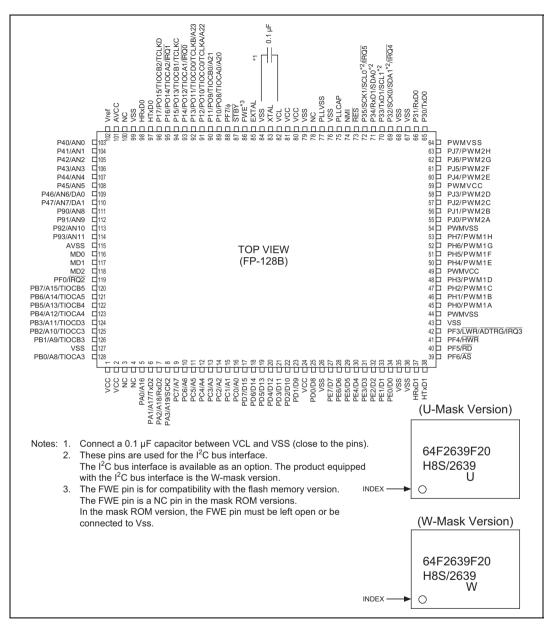


Figure 1-4 Pin Arrangement of H8S/2639 Group (FP-128B: Top View)

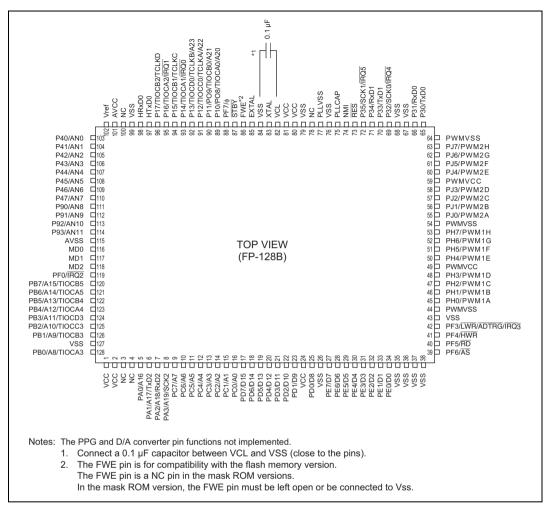


Figure 1-5 Pin Arrangement of H8S/2635 Group (FP-128B: Top View)

1.3.2 Pin Functions in Each Operating Mode

Table 1-2 shows the pin functions for each operating mode.

Table 1-2 Pin Functions in Each Operating Mode

Pin No.	Pin Name
---------	----------

1 2 3	VCC VCC NC	VCC VCC	VCC	VCC
		VCC		
3	NC		VCC	VCC
U		NC	NC	NC
4	NC	NC	NC	NC
5	PA0/A16	PA0/A16	PA0/A16	PA0
6	PA1/A17/TxD2	PA1/A17/TxD2	PA1/A17/TxD2	PA1/TxD2
7	PA2/A18/RxD2	PA2/A18/RxD2	PA2/A18/RxD2	PA2/RxD2
8	PA3/A19/SCK2	PA3/A19/SCK2	PA3/A19/SCK2	PA3/SCK2
9	A7	A7	PC7/A7	PC7
10	A6	A6	PC6/A6	PC6
11	A5	A5	PC5/A5	PC5
12	A4	A4	PC4/A4	PC4
13	A3	A3	PC3/A3	PC3
14	A2	A2	PC2/A2	PC2
15	A1	A1	PC1/A1	PC1
16	A0	A0	PC0/A0	PC0
17	D15	D15	D15	PD7
18	D14	D14	D14	PD6
19	D13	D13	D13	PD5
20	D12	D12	D12	PD4
21	D11	D11	D11	PD3
22	D10	D10	D10	PD2
23	D9	D9	D9	PD1
24	VCC	VCC	VCC	VCC
25	D8	D8	D8	PD0
26	VSS	VSS	VSS	VSS

Pin No.		Pi	n Name	
FP-128B	Mode 4	Mode 5	Mode 6	Mode 7
27	PE7/D7	PE7/D7	PE7/D7	PE7
28	PE6/D6	PE6/D6	PE6/D6	PE6
29	PE5/D5	PE5/D5	PE5/D5	PE5
30	PE4/D4	PE4/D4	PE4/D4	PE4
31	PE3/D3	PE3/D3	PE3/D3	PE3
32	PE2/D2	PE2/D2	PE2/D2	PE2
33	PE1/D1	PE1/D1	PE1/D1	PE1
34	PE0/D0	PE0/D0	PE0/D0	PE0
35	VSS	VSS	VSS	VSS
36	VSS	VSS	VSS	VSS
37	HRxD1	HRxD1	HRxD1	HRxD1
38	HTxD1	HTxD1	HTxD1	HTxD1
39	ĀS	ĀS	ĀS	PF6
40	RD	RD	RD	PF5
41	HWR	HWR	HWR	PF4
42	LWR/ADTRG/ IRQ3	PF3/LWR/ADTRG/ IRQ3	PF3/LWR/ADTRG/ IRQ3	PF3/ADTRG/ IRQ3
43	VSS	VSS	VSS	VSS
44	PWMVSS	PWMVSS	PWMVSS	PWMVSS
45	PH0/PWM1A	PH0/PWM1A	PH0/PWM1A	PH0/PWM1A
46	PH1/PWM1B	PH1/PWM1B	PH1/PWM1B	PH1/PWM1B
47	PH2/PWM1C	PH2/PWM1C	PH2/PWM1C	PH2/PWM1C
48	PH3/PWM1D	PH3/PWM1D	PH3/PWM1D	PH3/PWM1D
49	PWMVCC	PWMVCC	PWMVCC	PWMVCC
50	PH4/PWM1E	PH4/PWM1E	PH4/PWM1E	PH4/PWM1E
51	PH5/PWM1F	PH5/PWM1F	PH5/PWM1F	PH5/PWM1F
52	PH6/PWM1G	PH6/PWM1G	PH6/PWM1G	PH6/PWM1G
53	PH7/PWM1H	PH7/PWM1H	PH7/PWM1H	PH7/PWM1H
54	PWMVSS	PWMVSS	PWMVSS	PWMVSS
55	PJ0/PWM2A	PJ0/PWM2A	PJ0/PWM2A	PJ0/PWM2A
56	PJ1/PWM2B	PJ1/PWM2B	PJ1/PWM2B	PJ1/PWM2B

Pin No.	Pin No. Pin Name		n Name	
FP-128B	Mode 4	Mode 5	Mode 6	Mode 7
57	PJ2/PWM2C	PJ2/PWM2C	PJ2/PWM2C	PJ2/PWM2C
58	PJ3/PWM2D	PJ3/PWM2D	PJ3/PWM2D	PJ3/PWM2D
59	PWMVCC	PWMVCC	PWMVCC	PWMVCC
60	PJ4/PWM2E	PJ4/PWM2E	PJ4/PWM2E	PJ4/PWM2E
61	PJ5/PWM2F	PJ5/PWM2F	PJ5/PWM2F	PJ5/PWM2F
62	PJ6/PWM2G	PJ6/PWM2G	PJ6/PWM2G	PJ6/PWM2G
63	PJ7/PWM2H	PJ7/PWM2H	PJ7/PWM2H	PJ7/PWM2H
64	PWMVSS	PWMVSS	PWMVSS	PWMVSS
65	P30/TxD0	P30/TxD0	P30/TxD0	P30/TxD0
66	P31/RxD0	P31/RxD0	P31/RxD0	P31/RxD0
67	VSS	VSS	VSS	VSS
68	VSS	VSS	VSS	VSS
69	P32/SCK0/SDA1*2/ IRQ4	P32/SCK0/SDA1*2/ IRQ4	P32/SCK0/SDA1*2/ IRQ4	P32/SCK0/SDA1*2/ IRQ4
70	P33/TxD1/SCL1*2	P33/TxD1/SCL1*2	P33/TxD1/SCL1*2	P33/TxD1/SCL1*2
71	P34/RxD1/SDA0*2	P34/RxD1/SDA0*2	P34/RxD1/SDA0*2	P34/RxD1/SDA0*2
72	P35/SCK1/SCL0*2/ IRQ5	P35/SCK1/SCL0*2/ IRQ5	P35/SCK1/SCL0*2/ IRQ5	P35/SCK1/SCL0*2/ IRQ5
73	RES	RES	RES	RES
74	NMI	NMI	NMI	NMI
75	PLLCAP	PLLCAP	PLLCAP	PLLCAP
76	VSS	VSS	VSS	VSS
77	PLLVSS	PLLVSS	PLLVSS	PLLVSS
78	OSC2*1	OSC2*1	OSC2*1	OSC2*1
79	OSC1*1	OSC1*1	OSC1*1	OSC1*1
80	VCC	VCC	VCC	VCC
81	VCC	VCC	VCC	VCC
82	VCL	VCL	VCL	VCL
83	XTAL	XTAL	XTAL	XTAL
84	VSS	VSS	VSS	VSS
85	EXTAL	EXTAL	EXTAL	EXTAL
86	FWE*3	FWE*3	FWE*3	FWE*3

FP-128B 87	Mode 4 STBY	Mode 5	Mode 6	Mode 7		
87						
		STBY	STBY	STBY		
88	PF7/φ	PF7/φ	PF7/φ	PF7/φ		
89	P10/P08*4/TIOCA0/A20 P10/P08*4/TIOCA0/A20 P10/P08*4/TIOCA0/A20 P10/P08*4/TIOCA0					
90	P11/PO9*4/TIOCB0/A2	1 P11/PO9*4/TIOCB0/A2	1 P11/PO9*4/TIOCB0/A2	1 P11/PO9*4/TIOCB0		
91	P12/PO10*4/TIOCC0/ TCLKA/A22	P12/PO10*4/TIOCC0/ TCLKA/A22	P12/PO10*4/TIOCC0/ TCLKA/A22	P12/PO10*4/TIOCC0/ TCLKA		
92	P13/PO11*4/TIOCD0/ TCLKB/A23	P13/PO11*4/TIOCD0/ TCLKB/A23	P13/PO11*4/TIOCD0/ TCLKB/A23	P13/PO11*4/TIOCD0/ TCLKB		
93	P14/PO12*4/TIOCA1/ IRQ0	P14/PO12*4/TIOCA1/ IRQ0	P14/PO12*4/TIOCA1/ IRQ0	P14/PO12*4/TIOCA1/ IRQ0		
94	P15/PO13*4/TIOCB1/ TCLKC	P15/PO13*4/TIOCB1/ TCLKC	P15/PO13*4/TIOCB1/ TCLKC	P15/PO13*4/TIOCB1/ TCLKC		
95	P16/PO14*4/TIOCA2/ IRQ1	P16/PO14*4/TIOCA2/ IRQ1	P16/PO14*4/TIOCA2/ IRQ1	P16/PO14*4/TIOCA2/ IRQ1		
96	P17/PO15*4/TIOCB2/ TCLKD	P17/PO15*4/TIOCB2/ TCLKD	P17/PO15*4/TIOCB2/ TCLKD	P17/PO15*4/TIOCB2/ TCLKD		
97	HTxD0	HTxD0	HTxD0	HTxD0		
98	HRxD0	HRxD0	HRxD0	HRxD0		
99	VSS	VSS	VSS	VSS		
100	NC	NC	NC	NC		
101	AVCC	AVCC	AVCC	AVCC		
102	Vref	Vref	Vref	Vref		
103	P40/AN0	P40/AN0	P40/AN0	P40/AN0		
104	P41/AN1	P41/AN1	P41/AN1	P41/AN1		
105	P42/AN2	P42/AN2	P42/AN2	P42/AN2		
106	P43/AN3	P43/AN3	P43/AN3	P43/AN3		
107	P44/AN4	P44/AN4	P44/AN4	P44/AN4		
108	P45/AN5	P45/AN5	P45/AN5	P45/AN5		
109	P46/AN6/DA0*4	P46/AN6/DA0*4	P46/AN6/DA0*4	P46/AN6/DA0*4		
110	P47/AN7/DA1*4	P47/AN7/DA1*4	P47/AN7/DA1*4	P47/AN7/DA1*4		
111	P90/AN8	P90/AN8	P90/AN8	P90/AN8		
112	P91/AN9	P91/AN9	P91/AN9	P91/AN9		

Pin No.	Pin Name							
FP-128B	Mode 4	Mode 5	Mode 6	Mode 7				
113	P92/AN10	P92/AN10	P92/AN10	P92/AN10				
114	P93/AN11	P93/AN11	P93/AN11	P93/AN11				
115	AVSS	AVSS	AVSS	AVSS				
116	MD0	MD0	MD0	MD0				
117	MD1	MD1	MD1	MD1				
118	MD2	MD2	MD2	MD2				
119	PF0/IRQ2	PF0/IRQ2	PF0/IRQ2	PF0/IRQ2				
120	PB7/A15/TIOCB5	PB7/A15/TIOCB5	PB7/A15/TIOCB5	PB7/TIOCB5				
121	PB6/A14/TIOCA5	PB6/A14/TIOCA5	PB6/A14/TIOCA5	PB6/TIOCA5				
122	PB5/A13/TIOCB4	PB5/A13/TIOCB4	PB5/A13/TIOCB4	PB5/TIOCB4				
123	PB4/A12/TIOCA4	PB4/A12/TIOCA4	PB4/A12/TIOCA4	PB4/TIOCA4				
124	PB3/A11/TIOCD3	PB3/A11/TIOCD3	PB3/A11/TIOCD3	PB3/TIOCD3				
125	PB2/A10/TIOCC3	PB2/A10/TIOCC3	PB2/A10/TIOCC3	PB2/TIOCC3				
126	PB1/A9/TIOCB3	PB1/A9/TIOCB3	PB1/A9/TIOCB3	PB1/TIOCB3				
127	VSS	VSS	VSS	VSS				
128	PB0/A8/TIOCA3	PB0/A8/TIOCA3	PB0/A8/TIOCA3	PB0/TIOCA3				

Notes: NC pins should be connected to VSS or left open.

1. Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group.

These functions cannot be used with the other versions.

See section 22A.7, Subclock Oscillator, for the method of fixing pins OSC1 and OSC2.

The H8S/2639 and H8S/2635 Groups have no OSC1 and OSC2 pins.

2. These pins are used for the I²C bus interface.

The I²C bus interface is available as an option (H8S/2638, H8S/2639, H8S/2630 only). The product equipped with the I²C bus interface is the W-mask version.

- 3. The FWE pin is for compatibility with the flash memory version. The FWE pin is a NC pin in the mask ROM versions. In the mask ROM version, the FWE pin must be left open or be connected to Vss.
- 4. The PPG output, DA0, and DA1 are not supported in H8S/2635 Group.

1.3.3 **Pin Functions**

Table 1-3 outlines the pin functions of the H8S/2636.

Table 1-3 **Pin Functions**

Туре	Symbol	I/O	Name and Function
Power	VCC	Input	Power supply: For connection to the power supply. All VCC pins should be connected to the system power supply.
	VSS	Input	Ground: For connection to ground (0 V). All VSS pins should be connected to the system power supply (0 V).
	VCL	Output	On-chip step-down power supply pin: The VCL pin need not be connected to the power supply. Connect this pin to VSS via a 0.1 µF capacitor (placed close to the pins).
Clock	PLLVSS	Input	PLL ground: Ground for on-chip PLL oscillator.
	PLLCAP	Input	PLL capacitance: External capacitance pin for on-chip PLL oscillator.
	XTAL	Input	Crystal: Connects to a crystal oscillator. See section 22A, 22B, Clock Pulse Generator, for typical connection diagrams for a crystal oscillator.
	EXTAL	Input	External clock: Connects to a crystal oscillator. See section 22A, 22B, Clock Pulse Generator, for typical connection diagrams for a crystal oscillator.
	OSC1*1	Input	Subclock: Connects to a 32.768 kHz crystal oscillator. See section 22A, Clock Pulse Generator, for typical connection diagrams for a crystal oscillator.
	OSC2*1	Input	Subclock: Connects to a 32.768 kHz crystal oscillator. See section 22A, Clock Pulse Generator, for typical connection diagrams for a crystal oscillator.
	ф	Output	System clock: Supplies the system clock to an external device.
HCAN	HTxD0, HTxD1 ^{*3}	Output	HCAN transmit data: Pin for CAN bus transmission.
	HRxD0, HRxD1*3	Input	HCAN receive data: Pin for CAN bus reception.

Туре	Symbol	I/O	Name and Function			
Operating mode control	MD2 to MD0	Input	Mode pins: These pins set the operating mode. The relation between the settings of pins MD2 to and the operating mode is shown below. These period should not be changed while the H8S/2636 is operating.			
			MD2	MD1	MD0	Operating Mode
			0	0	0	_
					1	_
				1	0	_
					1	_
			1	0	0	Mode 4
					1	Mode 5
				1	0	Mode 6
					1	Mode 7
System control	RES	Input	Reset input: When this pin is driven low, the chip is reset.			
	STBY	Input	Standby: When this pin is driven low, a transition is made to hardware standby mode.			
	FWE*2	Input	Flash write enable: Pin for flash memory use (in planning stage).			
Interrupts	NMI	Input	Nonmaskable interrupt: Requests a nonmaskable interrupt. When this pin is not used, it should be fixed high.			
	IRQ5 to IRQ0	Input	Interrupt request 5 to 0: These pins request a maskable interrupt.			
Address bus	A23 to A0	Output	Address bus: These pins output an address.			
Data bus	D15 to D0	I/O	Data bus.	us: These	pins const	itute a bidirectional data
Bus control	ĀS	Output	Address strobe: When this pin is low, it indicates that address output on the address bus is enabled.			
	RD	Output	Read: When this pin is low, it indicates that the external address space can be read.			
	HWR	Output	High write: A strobe signal that writes to external space and indicates that the upper half (D15 to D8) of the data bus is enabled.			

Туре	Symbol	I/O	Name and Function
Bus control	LWR	Output	Low write: A strobe signal that writes to external space and indicates that the lower half (D7 to D0) of the data bus is enabled.
16-bit timer- pulse unit (TPU)	TCLKD to TCLKA	Input	Clock input D to A: These pins input an external clock.
	TIOCA0, TIOCB0, TIOCC0, TIOCD0	I/O	Input capture/output compare match A0 to D0: The TGR0A to TGR0D input capture input or output compare output, or PWM output pins.
	TIOCA1, TIOCB1	I/O	Input capture/output compare match A1 and B1: The TGR1A and TGR1B input capture input or output compare output, or PWM output pins.
	TIOCA2, TIOCB2	I/O	Input capture/output compare match A2 and B2: The TGR2A and TGR2B input capture input or output compare output, or PWM output pins.
	TIOCA3, TIOCB3, TIOCC3, TIOCD3	I/O	Input capture/output compare match A3 to D3: The TGR3A to TGR3D input capture input or output compare output, or PWM output pins.
	TIOCA4, TIOCB4	I/O	Input capture/output compare match A4 and B4: The TGR4A and TGR4B input capture input or output compare output, or PWM output pins.
	TIOCA5, TIOCB5	I/O	Input capture/output compare match A5 and B5: The TGR5A and TGR5B input capture input or output compare output, or PWM output pins.
Programmable pulse generator (PPG)	PO15 to PO8*4	Output	Pulse output 15 to 8: Pulse output pins.
Serial communication interface (SCI)/	TxD2, TxD1, TxD0	Output	Transmit data (channel 0, 1, 2): Data output pins.
Smart Card interface	RxD2, RxD1, RxD0	Input	Receive data (channel 0, 1, 2): Data input pins.
	SCK2, SCK1, SCK0	I/O	Serial clock (channel 0, 1, 2): Clock I/O pins.
A/D converter	AN11 to AN0	Input	Analog 11 to 0: Analog input pins.
	ADTRG	Input	A/D conversion external trigger input: Pin for input of an external trigger to start A/D conversion.

Туре	Symbol	I/O	Name and Function	
D/A converter DA1, DA0*5		Output	Analog output: Analog output pins for D/A converter.	
A/D converter, D/A converter	AVCC	Input	Analog power supply: A/D converter and D/A converter power supply pin.	
			When the A/D converter and D/A converter are not used, this pin should be connected to the system power supply (+5 V).	
	AVSS	Input	Analog ground: Ground pin for A/D converter and D/A converter.	
			Connect to system power supply (0 V).	
	Vref	Input	Analog reference power supply: A/D converter and D/A converter reference voltage input pin.	
			When the A/D converter and D/A converter are not used, this pin should be connected to the system power supply (+5 V).	
I/O ports	P17 to P10	I/O	Port 1: An 8-bit I/O port. Input or output can be designated for each bit by means of the port 1 data direction register (P1DDR).	
	P35 to P30	I/O	Port 3: A 6-bit I/O port. Input or output can be designated for each bit by means of the port 3 data direction register (P3DDR).	
	P47 to P40	Input	Port 4: An 8-bit input port.	
	P93 to P90	Input	Port 9: A 4-bit input port.	
	PA3 to PA0	I/O	Port A: A 4-bit I/O port. Input or output can be designated for each bit by means of the port A data direction register (PADDR).	
	PB7 to PB0	I/O	Port B: An 8-bit I/O port. Input or output can be designated for each bit by means of the port B data direction register (PBDDR).	
	PC7 to PC0	I/O	Port C: An 8-bit I/O port. Input or output can be designated for each bit by means of the port C data direction register (PCDDR).	
	PD7 to PD0	I/O	Port D: An 8-bit I/O port. Input or output can be designated for each bit by means of the port D data direction register (PDDDR).	
	PE7 to PE0	I/O	Port E: An 8-bit I/O port. Input or output can be designated for each bit by means of the port E data direction register (PEDDR).	

Туре	Symbol	I/O	Name and Function
I/O ports	PF7 to PF3, PF0	I/O	Port F: A 6-bit I/O port. Input or output can be designated for each bit by means of the port F data direction register (PFDDR).
	PH7 to PH0	I/O	Port H: An 8-bit I/O port. Input or output can be designated for each bit by means of the port B data direction register (PHDDR).
	PJ7 to PJ0	I/O	Port J: An 8-bit I/O port. Input or output can be designated for each bit by means of the port J data direction register (PJDDR).
Motor control PWM	PWM1A to PWM1H	Output	PWM output: Motor control PWM channel 1 output pins.
	PWM2A to PWM2H	Output	PWM output: Motor control PWM channel 2 output pins.
	PWMVCC	Input	PWM Power Supply: Power supply pin for motor-control PWM. Connect to the system power supply (+5 V) when the motor-control function is not used.
	PWMVSS	Input	PWM Ground: Ground pin for motor-control PWM. Connect to the system power supply (0 V).
I ² C bus interface (IIC) (Optionk) (Only for the W-	SCL0, SCL1	I/O	I ² C clock input/output (Channel 0/1): I ² C clock input/output pins that have bus-driving capability. The output of SCL0 is an NMOS open-drain type.
mask version of the H8S/2638, H8S/2639, and H8S/2630)	SDA0, SDA1	I/O	I ² C data input/output (Channel 0/1): I ² C data input/output pins that have bus-driving capability. The output of SDA0 is an NMOS open-drain type.

Notes: 1. Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group.

These functions cannot be used with the other versions.

See section 22A.7, Subclock Oscillator, for the method of fixing pins OSC1 and OSC2. The H8S/2639 and H8S/2635 Groups have no OSC1 and OSC2 pins.

- 2. The FWE pin is functional only in the flash memory version. The FWE pin is a NC pin in the mask ROM versions. In the mask ROM version, the FWE pin must be left open or be connected to Vss.
- 3. The HTxD1 and HRxD1 pins are not supported in H8S/2635 Group.
- 4. The PO15 to PO8 output are not supported in H8S/2635 Group.
- 5. The DA1 and DA0 output are not supported in H8S/2635 Group.

Differences between H8S/2636, H8S/2638, H8S/2639, H8S/2630, 1.4 H8S/2635, and H8S/2634

There are four versions of the H8S/2636, including ROM and U-mask options; there are six versions of the H8S/2638, including ROM, U-mask, and W-mask options; and there are four versions of the H8S/2639, including ROM, U-mask, and W-mask options; and there are six versions of the H8S/2630, including ROM, U-mask, and W-mask options.

The specifications of these products are compared in table 1-4 below.

Table 1-4 **Comparison of Product Specifications**

				Produ	ct Specifica	ations		
Part No.	Model	ROM	RAM	Subclock Function	I ² C Bus Interface	HCAN	DTC, PBC, PPG, DAC	Power-Down Modes
H8S/2636	HD64F2636F	128-kbyte on-chip flash	4-kbyte SRAM	No	No	2 channels	Yes	See section 23A, Power- Down Modes
HI	HD64F2636UF	memory		Yes				See section 23B, Power- Down Modes
	HD6432636F	128-kbyte mask ROM		No	No			See section 23A, Power- Down Modes
	HD6432636UF			Yes				See section 23B, Power- Down Modes
H8S/2638	HD64F2638F	256-kbyte on-chip flash	16-kbyte SRAM	No	No			See section 23A, Power- Down Modes
	HD64F2638UF	memory		Yes				See section
	HD64F2638WF				Yes			23B, Power- Down Modes
	HD6432638F	256-kbyte mask ROM		No	No			See section 23A, Power- Down Modes
	HD6432638UF			Yes	1			See section
	HD6432638WF				Yes			23B, Power- Down Modes

				Produ	ct Specifica	ations			
Part No.	Model	ROM	RAM	Subclock Function	I ² C Bus Interface	HCAN	DTC, PBC, PPG, DAC	Power-Down Modes	
H8S/2639*	HD64F2639UF	256-kbyte	16-kbyte	Yes	No	2	Yes	See section	
	HD64F2639WF	on-chip flash memory	SRAM		Yes	channels		23B, Power- Down Modes	
	HD6432639UF	256-kbyte			No				
	HD6432639WF	mask ROM			Yes				
H8S/2630	HD64F2630F	384-kbyte on-chip flash	SRAM	No	No			See section 23A, Power- Down Modes	
	HD64F2630UF	memory		Yes				See section	
	HD64F2630WF				Yes			23B, Power- Down Modes	
	HD6432630F	384-kbyte mask ROM		No	No			See section 23A, Power- Down Modes	
	HD6432630UF			Yes				See section	
	HD6432630WF	-			Yes			23B, Power- Down Modes	
H8S/2635*	HD64F2635F	192-kbyte on-chip flash memory	6-kbyte SRAM	Yes	No	1 channel	No	Down Modes	
	HD6432635F	192-kbyte mask ROM	1						
H8S/2634*	HD6432634F	128-kbyte mask ROM							

Note: * For details of the H8S/2639, H8S/2635, and H8S/2634 clock pulse generator, see section 22B, Clock Pulse Generator (H8S/2639 Group, H8S/2635 Group).

Section 2 CPU

2.1 Overview

The H8S/2600 CPU is a high-speed central processing unit with an internal 32-bit architecture that is upward-compatible with the H8/300 and H8/300H CPUs. The H8S/2600 CPU has sixteen 16-bit general registers, can address a 16-Mbyte (architecturally 4-Gbyte) linear address space, and is ideal for realtime control.

2.1.1 Features

The H8S/2600 CPU has the following features.

- Upward-compatible with H8/300 and H8/300H CPUs
 - Can execute H8/300 and H8/300H object programs
- General-register architecture
 - Sixteen 16-bit general registers (also usable as sixteen 8-bit registers or eight 32-bit registers)
- Sixty-nine basic instructions
 - 8/16/32-bit arithmetic and logic instructions
 - Multiply and divide instructions
 - Powerful bit-manipulation instructions
 - Multiply-and-accumulate instruction
- Eight addressing modes
 - Register direct [Rn]
 - Register indirect [@ERn]
 - Register indirect with displacement [@(d:16,ERn) or @(d:32,ERn)]
 - Register indirect with post-increment or pre-decrement [@ERn+ or @-ERn]
 - Absolute address [@aa:8, @aa:16, @aa:24, or @aa:32]
 - Immediate [#xx:8, #xx:16, or #xx:32]
 - Program-counter relative [@(d:8,PC) or @(d:16,PC)]
 - Memory indirect [@@aa:8]
- 16-Mbyte address space
 - Program: 16 Mbytes
 - Data: 16 Mbytes (4 Gbytes architecturally)

• High-speed operation

— All frequently-used instructions execute in one or two states

— Maximum clock rate : 20 MHz

— 8/16/32-bit register-register add/subtract : 50 ns

— 8×8 -bit register-register multiply : 150 ns

— 16 ÷ 8-bit register-register divide : 600 ns

 -16×16 -bit register-register multiply : 200 ns

 $-32 \div 16$ -bit register-register divide : 1000 ns

• Two CPU operating modes

- Normal mode*

- Advanced mode

Note: * Not available in the chip.

- Power-down state
 - Transition to power-down state by SLEEP instruction
 - CPU clock speed selection

2.1.2 Differences between H8S/2600 CPU and H8S/2000 CPU

The differences between the H8S/2600 CPU and the H8S/2000 CPU are as shown below.

Register configuration

The MAC register is supported only by the H8S/2600 CPU.

Basic instructions

The four instructions MAC, CLRMAC, LDMAC, and STMAC are supported only by the H8S/2600 CPU.

Number of execution states

The number of execution states of the MULXU and MULXS instructions is different in each CPU.

Fye	cutio	n St	ates
	Culio	11 01	aics

Instruction	Mnemonic	H8S/2600	H8S/2000	
MULXU	MULXU.B Rs, Rd	3	12	
	MULXU.W Rs, ERd	4	20	
MULXS	MULXS.B Rs, Rd	4	13	
	MULXS.W Rs, ERd	5	21	

In addition, there are differences in address space, CCR and EXR register functions, power-down modes, etc., depending on the model.

2.1.3 Differences from H8/300 CPU

In comparison to the H8/300 CPU, the H8S/2600 CPU has the following enhancements.

- More general registers and control registers
 - Eight 16-bit expanded registers, and one 8-bit and two 32-bit control registers, have been added
- Expanded address space
 - Normal mode* supports the same 64-kbyte address space as the H8/300 CPU
 - Advanced mode supports a maximum 16-Mbyte address space

Note: * Not available in the chip.

- Enhanced addressing
 - The addressing modes have been enhanced to make effective use of the 16-Mbyte address space
- Enhanced instructions
 - Addressing modes of bit-manipulation instructions have been enhanced
 - Signed multiply and divide instructions have been added
 - A multiply-and-accumulate instruction has been added
 - Two-bit shift instructions have been added
 - Instructions for saving and restoring multiple registers have been added
 - A test and set instruction has been added
- Higher speed
 - Basic instructions execute twice as fast

2.1.4 Differences from H8/300H CPU

In comparison to the H8/300H CPU, the H8S/2600 CPU has the following enhancements.

- Additional control register
 - One 8-bit and two 32-bit control registers have been added
- Enhanced instructions
 - Addressing modes of bit-manipulation instructions have been enhanced
 - A multiply-and-accumulate instruction has been added
 - Two-bit shift instructions have been added
 - Instructions for saving and restoring multiple registers have been added
 - A test and set instruction has been added
- Higher speed
 - Basic instructions execute twice as fast

2.2 **CPU Operating Modes**

The H8S/2600 CPU has two operating modes: normal and advanced. Normal mode* supports a maximum 64-kbyte address space. Advanced mode supports a maximum 16-Mbyte total address space (architecturally a maximum 16-Mbyte program area and a maximum of 4 Gbytes for program and data areas combined). The mode is selected by the mode pins of the microcontroller.

Note: * Not available in the chip.

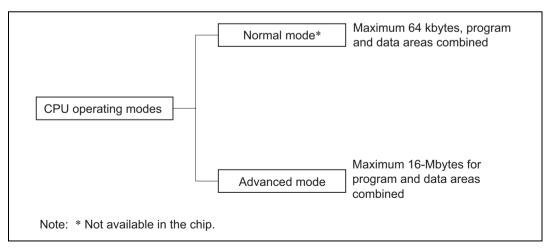


Figure 2-1 CPU Operating Modes

(1) Normal Mode (Not Available in the Chip)

The exception vector table and stack have the same structure as in the H8/300 CPU.

Address Space: A maximum address space of 64 kbytes can be accessed.

Extended Registers (En): The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16-bit segments of 32-bit registers. When En is used as a 16-bit register it can contain any value, even when the corresponding general register (Rn) is used as an address register. If the general register is referenced in the register indirect addressing mode with pre-decrement (@-Rn) or post-increment (@Rn+) and a carry or borrow occurs, however, the value in the corresponding extended register (En) will be affected.

Instruction Set: All instructions and addressing modes can be used. Only the lower 16 bits of effective addresses (EA) are valid.

Exception Vector Table and Memory Indirect Branch Addresses: In normal mode the top area starting at H'0000 is allocated to the exception vector table. One branch address is stored per 16 bits (figure 2-2). The exception vector table differs depending on the microcontroller. For details of the exception vector table, see section 4, Exception Handling.

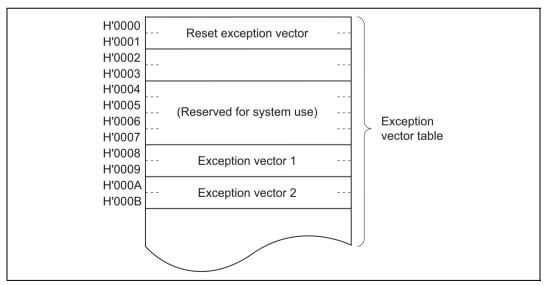


Figure 2-2 Exception Vector Table (Normal Mode)

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses an 8-bit absolute address included in the instruction code to specify a memory operand that contains a branch address. In normal mode the operand is a 16-bit word operand, providing a 16-

bit branch address. Branch addresses can be stored in the top area from H'0000 to H'00FF. Note that this area is also used for the exception vector table.

Stack Structure: When the program counter (PC) is pushed onto the stack in a subroutine call, and the PC, condition-code register (CCR), and extended control register (EXR) are pushed onto the stack in exception handling, they are stored as shown in figure 2-3. When EXR is invalid, it is not pushed onto the stack. For details, see section 4, Exception Handling.

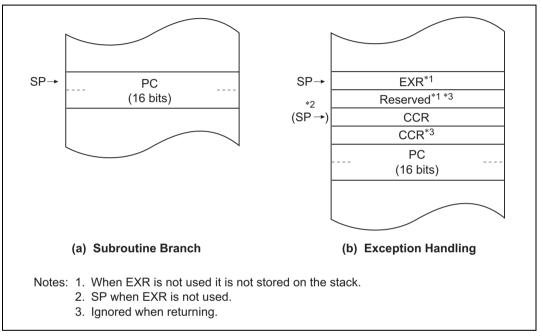


Figure 2-3 Stack Structure in Normal Mode

(2) Advanced Mode

Address Space: Linear access is provided to a 16-Mbyte maximum address space (architecturally a maximum 16-Mbyte program area and a maximum 4-Gbyte data area, with a maximum of 4 Gbytes for program and data areas combined).

Extended Registers (En): The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16-bit segments of 32-bit registers or address registers.

Instruction Set: All instructions and addressing modes can be used.

Exception Vector Table and Memory Indirect Branch Addresses: In advanced mode the top area starting at H'00000000 is allocated to the exception vector table in units of 32 bits. In each 32 bits, the upper 8 bits are ignored and a branch address is stored in the lower 24 bits (figure 2-4). For details of the exception vector table, see section 4, Exception Handling.

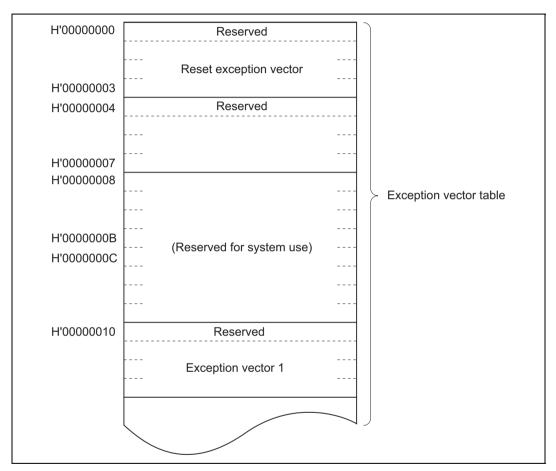


Figure 2-4 Exception Vector Table (Advanced Mode)

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses an 8-bit absolute address included in the instruction code to specify a memory operand that contains a branch address. In advanced mode the operand is a 32-bit longword operand, providing a 32-bit branch address. The upper 8 bits of these 32 bits are a reserved area that is regarded as H'00. Branch addresses can be stored in the area from H'00000000 to H'000000FF. Note that the first part of this range is also the exception vector table.

Stack Structure: In advanced mode, when the program counter (PC) is pushed onto the stack in a subroutine call, and the PC, condition-code register (CCR), and extended control register (EXR) are pushed onto the stack in exception handling, they are stored as shown in figure 2-5. When EXR is invalid, it is not pushed onto the stack. For details, see section 4, Exception Handling.

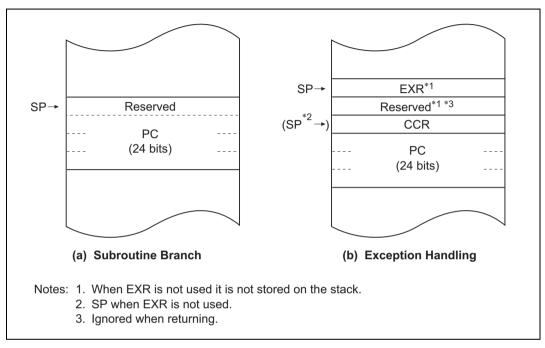


Figure 2-5 Stack Structure in Advanced Mode

2.3 Address Space

Figure 2-6 shows a memory map of the H8S/2600 CPU. The H8S/2600 CPU provides linear access to a maximum 64-kbyte address space in normal mode, and a maximum 16-Mbyte (architecturally 4-Gbyte) address space in advanced mode.

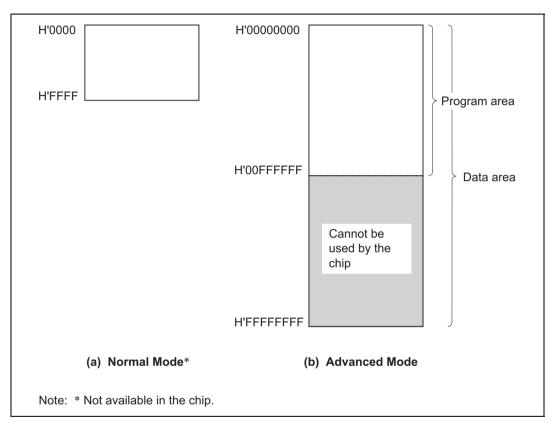


Figure 2-6 Memory Map

2.4 Register Configuration

2.4.1 Overview

The CPU has the internal registers shown in figure 2-7. There are two types of registers: general registers and control registers.

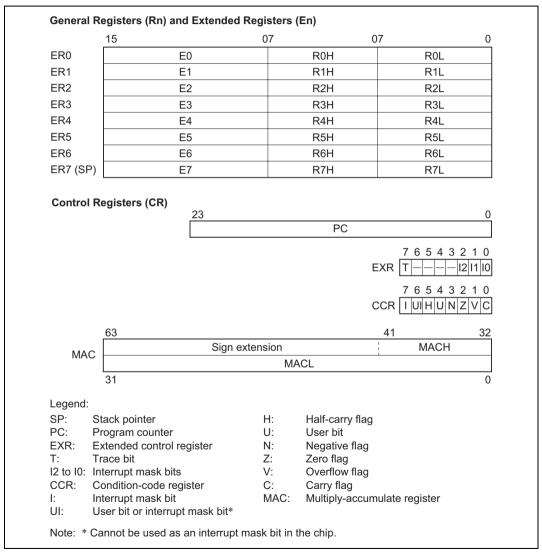


Figure 2-7 CPU Registers

2.4.2 General Registers

The CPU has eight 32-bit general registers. These general registers are all functionally alike and can be used as both address registers and data registers. When a general register is used as a data register, it can be accessed as a 32-bit, 16-bit, or 8-bit register. When the general registers are used as 32-bit registers or address registers, they are designated by the letters ER (ER0 to ER7).

The ER registers divide into 16-bit general registers designated by the letters E (E0 to E7) and R (R0 to R7). These registers are functionally equivalent, providing a maximum sixteen 16-bit registers. The E registers (E0 to E7) are also referred to as extended registers.

The R registers divide into 8-bit general registers designated by the letters RH (R0H to R7H) and RL (R0L to R7L). These registers are functionally equivalent, providing a maximum sixteen 8-bit registers.

Figure 2-8 illustrates the usage of the general registers. The usage of each register can be selected independently.

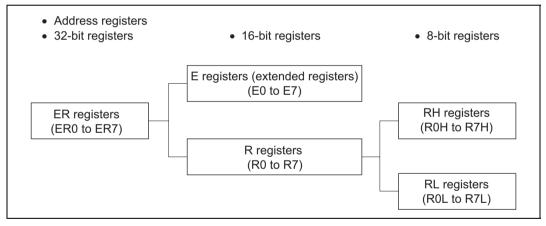


Figure 2-8 Usage of General Registers

General register ER7 has the function of stack pointer (SP) in addition to its general-register function, and is used implicitly in exception handling and subroutine calls. Figure 2-9 shows the stack.

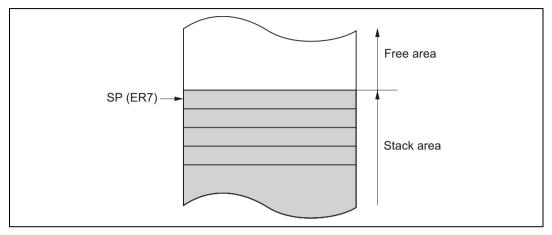


Figure 2-9 Stack

2.4.3 Control Registers

The control registers are the 24-bit program counter (PC), 8-bit extended control register (EXR), 8-bit condition-code register (CCR), and 64-bit multiply-accumulate register (MAC).

(1) Program Counter (PC)

This 24-bit counter indicates the address of the next instruction the CPU will execute. The length of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored (When an instruction is fetched, the least significant PC bit is regarded as 0).

(2) Extended Control Register (EXR)

This 8-bit register contains the trace bit (T) and three interrupt mask bits (I2 to I0).

Bit 7—Trace Bit (T): Selects trace mode. When this bit is cleared to 0, instructions are executed in sequence. When this bit is set to 1, a trace exception is generated each time an instruction is executed.

Bits 6 to 3—Reserved: These bits are reserved. They are always read as 1.

Bits 2 to 0—Interrupt Mask Bits (I2 to I0): These bits designate the interrupt mask level (0 to 7). For details, refer to section 5, Interrupt Controller.

Operations can be performed on the EXR bits by the LDC, STC, ANDC, ORC, and XORC instructions. All interrupts, including NMI, are disabled for three states after one of these instructions is executed, except for STC.

(3) Condition-Code Register (CCR)

This 8-bit register contains internal CPU status information, including an interrupt mask bit (I) and half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags.

Bit 7—Interrupt Mask Bit (I): Masks interrupts other than NMI when set to 1 (NMI is accepted regardless of the I bit setting). The I bit is set to 1 by hardware at the start of an exception-handling sequence. For details, refer to section 5, Interrupt Controller.

Bit 6—User Bit or Interrupt Mask Bit (UI): Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions. This bit can also be used as an interrupt mask bit. For details, refer to section 5, Interrupt Controller.

Bit 5—Half-Carry Flag (H): When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and cleared to 0 otherwise. When the ADD.W, SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 11, and cleared to 0 otherwise. When the ADD.L, SUB.L, CMP.L, or NEG.L instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 27, and cleared to 0 otherwise.

Bit 4—User Bit (U): Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions.

Bit 3—Negative Flag (N): Stores the value of the most significant bit (sign bit) of data.

Bit 2—Zero Flag (Z): Set to 1 to indicate zero data, and cleared to 0 to indicate non-zero data.

Bit 1—Overflow Flag (V): Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other times.

Bit 0—Carry Flag (C): Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:

- Add instructions, to indicate a carry
- Subtract instructions, to indicate a borrow
- Shift and rotate instructions, to store the value shifted out of the end bit

The carry flag is also used as a bit accumulator by bit manipulation instructions.

Some instructions leave some or all of the flag bits unchanged. For the action of each instruction on the flag bits, refer to appendix A.1, Instruction List.

Operations can be performed on the CCR bits by the LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are used as branching conditions for conditional branch (Bcc) instructions.

(4) Multiply-Accumulate Register (MAC)

This 64-bit register stores the results of multiply-and-accumulate operations. It consists of two 32-bit registers denoted MACH and MACL. The lower 10 bits of MACH are valid; the upper bits are a sign extension.

2.4.4 Initial Register Values

Reset exception handling loads the CPU's program counter (PC) from the vector table, clears the trace bit in EXR to 0, and sets the interrupt mask bits in CCR and EXR to 1. The other CCR bits and the general registers are not initialized. In particular, the stack pointer (ER7) is not initialized. The stack pointer should therefore be initialized by an MOV.L instruction executed immediately after a reset.

2.5 **Data Formats**

May 28, 2010

The CPU can process 1-bit, 4-bit (BCD), 8-bit (byte), 16-bit (word), and 32-bit (longword) data. Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2, ..., 7) of byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of 4-bit BCD data.

2.5.1 **General Register Data Formats**

Figure 2-10 shows the data formats in general registers.

Data Type	Register Number	Data Format
1-bit data	RnH	7 0 7 6 5 4 3 2 1 0 Don't care
1-bit data	RnL	7 0 Don't care 7 6 5 4 3 2 1 0
4-bit BCD data	RnH	7 4 3 0 Upper Lower Don't care
4-bit BCD data	RnL	7 4 3 0 Don't care Upper Lower
Byte data	RnH	7 0 Don't care MSB LSB
Byte data	RnL	7 0 Don't care

Figure 2-10 General Register Data Formats

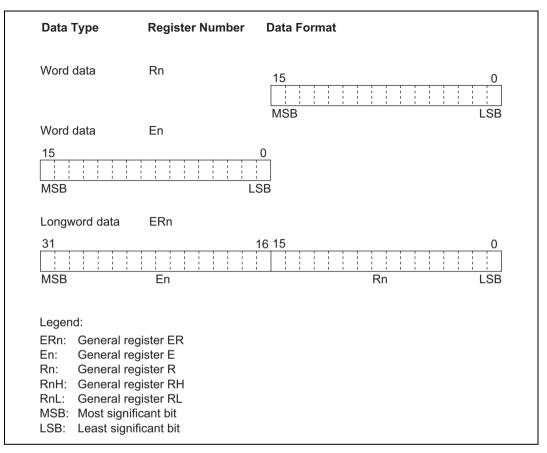


Figure 2-10 General Register Data Formats (cont)

2.5.2 Memory Data Formats

Figure 2-11 shows the data formats in memory. The CPU can access word data and longword data in memory, but word or longword data must begin at an even address. If an attempt is made to access word or longword data at an odd address, no address error occurs but the least significant bit of the address is regarded as 0, so the access starts at the preceding address. This also applies to instruction fetches.

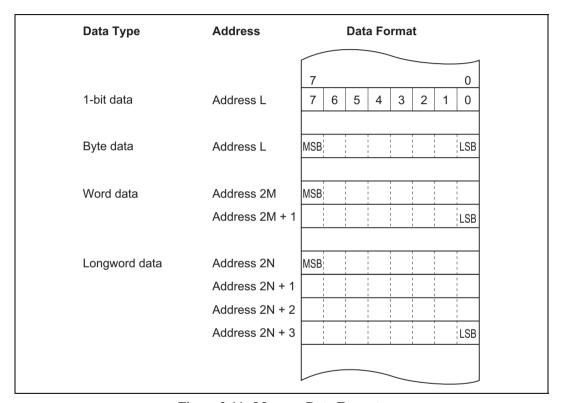


Figure 2-11 Memory Data Formats

When ER7 is used as an address register to access the stack, the operand size should be word size or longword size.

2.6 Instruction Set

2.6.1 Overview

The H8S/2600 CPU has 69 types of instructions. The instructions are classified by function in table 2-1.

Table 2-1 Instruction Classification

Function	Instructions	Size	Types
Data transfer	MOV	BWL	5
	POP*1, PUSH*1	WL	_
	LDM*5, STM*5	L	_
	MOVFPE*3, MOVTPE*3	В	_
Arithmetic	ADD, SUB, CMP, NEG	BWL	23
operations	ADDX, SUBX, DAA, DAS	В	
	INC, DEC	BWL	
	ADDS, SUBS	L	
	MULXU, DIVXU, MULXS, DIVXS	BW	
	EXTU, EXTS	WL	
	TAS*4	В	
	MAC, LDMAC, STMAC, CLRMAC	_	
Logic operations	AND, OR, XOR, NOT	BWL	4
Shift	SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR	BWL	8
Bit manipulation	BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR	В	14
Branch	Bcc*2, JMP, BSR, JSR, RTS	_	5
System control	TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP	_	9
Block data transfer	EEPMOV	_	1
		Total:	69 types

Total: 69 types

Legend: B: Byte W: Word L: Longword

Notes: 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV.W Rn, @-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn and MOV.L ERn, @-SP.

- 2. Bcc is the general name for conditional branch instructions.
- 3. Not available in the chip.
- 4. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.
- 5. Only registers ER0 to ER6 should be used when using the STM/LDM instruction.

2.6.2 Instructions and Addressing Modes

Table 2-2 indicates the combinations of instructions and addressing modes that the H8S/2600 CPU can use.

Table 2-2 Combinations of Instructions and Addressing Modes

_										_									
	_	1	WL	_		1	1	1	1	Ι	1	1		1		Ι		0	1
	8:66@@		1	1		1	1	1	1	1	1	1		1		1	1		1
	(Jq,81:b)@	1	ı	1	1	_	1	1			1	1		-	1	1			
	(Jq,8:b)@	1	ı	1	1	1	ı	ı	1	ı	1	I	ı	ı	1	1		1	1
	ZE:88@	BWL	ı	1	1	1	1	ı	1	1	1	1	1	ı	1	1	1	1	1
	42:66@	1	1	1	1	-	1	1				1	ı		1				1
Addressing Modes	91:ss@	BWL	1		ш	1	ı		1	ı	1	1	1	1	1	1		1	ı
ddressin	8:66@	В	1	1	1	1	1	1	1	1	1	1	1	1		1	1		1
٩	+u\3=0/u\3=0	BWL	1		1	1	1				1	1		1	1	1	0		
	@(d:32,ERn)	BWL	1		1	1	1				1	1		1	1	1			
	(d:16,ERn)	BWL	1		1	1	1				1	1		1	1	1			
	uЯ∃@	BWL	ı	1		1	1	ı	ı	ı	1			ı	1	В		1	
	Вп	BWL	1	1		BWL	BWL	В	_	BWL	В	BW	BW	BWL	WL			1	_
	xx#	BWL	1			BWL	WL	В	1	ı	1	1	1			1			
	Instruction MOV POP, PUSH LDM**, STM*3 MOVFPE**,		MOVFPE*1, MOVTPE*1	ADD, CMP	SUB	ADDX, SUBX	ADDS, SUBS	INC, DEC	DAA, DAS	MULXU, DIVXU	MULXS, DIVXS	NEG	EXTU, EXTS	TAS*2	MAC	CLRMAC	LDMAC, STMAC		
	Function Data transfer		Arithmetic	operations															

_											_	_				_
	_	I	1	I	I	I		0	0	0	0	1	1	I	0	BW
	8:සෑ	1	ı	ı	-	ı	0		ı	ı			1			
	(Jq,81:b)@		ı	ı	-	0			ı	ı			1	I		
	(39,8:b)@		ı	ı	-	0			ı	ı			1	I		
	28:88@		1	ı	В	ı	ı	ı	ı	1	1	M	Μ			
	[₽] Z:88@	1	1	-	_	1	0		1	1	1	1	-	_		
ng Modes	@aa:16	1	1	-	В	1				1	1	Μ	Μ	_		1
Addressing Modes	8:66@	1	1	1	В	1			1	1	1	1	1	_	1	
1	+u\3\@ERn+		1	-		1						W	Μ		_	
	(nA3,2£:b)@		I	-		1						W	Μ		_	
	(nЯ∃,81:b)@		1	-								W	Μ		_	
	@EKn		1	ı	В	ı	ı	ı	ı	1	1	*	M			
	Вn	BWL	BWL	BWL	В	ı					1	В	В			
	xx#	BWL	1	ı	-	ı	ı	ı	ı		ı	В	1	В		
	Instruction		NOT		tion	Bcc, BSR	JMP, JSR	RTS	TRAPA	RTE	SLEEP	TDC	STC	ANDC, ORC, XORC	NOP	ansfer
Function		Logic operations		Shift	Bit manipulation	Branch			System	control						Block data transfer

Legend: B: Byte W: Word

Notes: 1. Not available in the chip.
2. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.
3. Only registers ER0 to ER6 should be used when using the STM/LDM instruction.

May 28, 2010

2.6.3 Table of Instructions Classified by Function

Table 2-3 summarizes the instructions in each functional category. The notation used in table 2-3 is defined below.

Operation Notation

-	
Rd	General register (destination)*
Rs	General register (source)*
Rn	General register*
ERn	General register (32-bit register)
MAC	Multiply-accumulate register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
EXR	Extended control register
CCR	Condition-code register
N	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
_	Subtraction
×	Multiplication
÷	Division
^	Logical AND
V	Logical OR
\oplus	Logical exclusive OR
\rightarrow	Move
¬	NOT (logical complement)
:8/:16/:24/:32	8-, 16-, 24-, or 32-bit length

Note: * General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (R0 to R7, E0 to E7), and 32-bit registers (ER0 to ER7).

Table 2-3 Instructions Classified by Function

Туре	Instruction	Size*1	Function						
Data transfer	MOV	B/W/L	(EAs) → Rd, Rs → (EAd) Moves data between two general registers or between a general register and memory, or moves immediate data to a general register.						
	MOVFPE	MOVFPE B Cannot be used in this LSI.							
	MOVTPE	В	Cannot be used in this LSI.						
	POP	@SP+ → Rn Pops a register from the stack. POP.W Rn is identical to MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L @SP+, ERn.							
	PUSH	W/L	Rn → @–SP Pushes a register onto the stack. PUSH.W Rn is identical to MOV.W Rn, @–SP. PUSH.L ERn is identical to MOV.L ERn, @–SP.						
	LDM*2	L	@SP+ → Rn (register list) Pops two or more general registers from the stack.						
	STM*2	L	Rn (register list) → @-SP Pushes two or more general registers onto the stack.						

Туре	Instruction	Size*1	Function					
Arithmetic operations	ADD SUB	B/W/L	Rd \pm Rs \rightarrow Rd, Rd \pm #IMM \rightarrow Rd Performs addition or subtraction on data in two general registers, or on immediate data and data in a general register (Immediate byte data cannot be subtracted from byte data in a general register. Use the SUBX or ADD instruction).					
	ADDX SUBX	В	Rd \pm Rs \pm C \rightarrow Rd, Rd \pm #IMM \pm C \rightarrow Rd Performs addition or subtraction with carry or borrow on byte data in two general registers, or on immediate data and data in a general register.					
	INC B/W/L Rd \pm 1 \rightarrow Rd, Rd \pm 2 \rightarrow Rd DEC Increments or decrements a general register by (Byte operands can be incremented or decrement 1 only).							
	ADDS SUBS	L	Rd \pm 1 \rightarrow Rd, Rd \pm 2 \rightarrow Rd, Rd \pm 4 \rightarrow Rd Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit register.					
	DAA DAS	В	Rd decimal adjust → Rd Decimal-adjusts an addition or subtraction result in a general register by referring to the CCR to produce 4-bit BCD data.					
	MULXU	B/W	Rd \times Rs \rightarrow Rd Performs unsigned multiplication on data in two general registers: either 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.					
	MULXS	B/W Rd \times Rs \rightarrow Rd Performs signed multiplication on data in two ge registers: either 8 bits \times 8 bits \rightarrow 16 bits or 16 bit 16 bits \rightarrow 32 bits.						
	DIVXU	B/W	Rd \div Rs \rightarrow Rd Performs unsigned division on data in two general registers: either 16 bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits \div 16 bits \rightarrow 16-bit quotient and 16- bit remainder.					

Туре	Instruction	Size*1	Function					
Arithmetic operations	DIVXS	B/W	Rd \div Rs \rightarrow Rd Performs signed division on data in two general registers: either 16 bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits \div 16 bits \rightarrow 16-bit quotient and 16- bit remainder.					
	CMP	B/W/L	Rd – Rs, Rd – #IMM Compares data in a general register with data in another general register or with immediate data, and sets CCR bits according to the result.					
	NEG B/W/L $0 - Rd \rightarrow Rd$ Takes the two's complement (arithmetic complete data in a general register.							
	EXTU	W/L Rd (zero extension) → Rd Extends the lower 8 bits of a 16-bit register to wo or the lower 16 bits of a 32-bit register to longwo by padding with zeros on the left.						
	EXTS	W/L	Rd (sign extension) → Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by extending the sign bit.					
	TAS	В	@ERd – 0, 1 \rightarrow (<bit 7=""> of @ERd)*3 Tests memory contents, and sets the most significant bit (bit 7) to 1.</bit>					
	MAC	_	(EAs) × (EAd) + MAC → MAC Performs signed multiplication on memory contents and adds the result to the multiply-accumulate register. The following operations can be performed: 16 bits × 16 bits + 32 bits → 32 bits, saturating 16 bits × 16 bits + 42 bits → 42 bits, non-saturating					
	CLRMAC	_	0 → MAC Clears the multiply-accumulate register to zero.					
	LDMAC STMAC	L	$Rs \rightarrow MAC$, $MAC \rightarrow Rd$ Transfers data between a general register and a multiply-accumulate register.					

Туре	Instruction	Size*1	Function	
Logic operations	AND	B/W/L	$Rd \wedge Rs \rightarrow Rd$, $Rd \wedge \#IMM \rightarrow Rd$ Performs a logical AND operation on a general register and another general register or immediate data.	
	OR	B/W/L	$Rd \lor Rs \to Rd$, $Rd \lor \#IMM \to Rd$ Performs a logical OR operation on a general register and another general register or immediate data.	
	XOR	B/W/L	Rd ⊕ Rs → Rd, Rd ⊕ #IMM → Rd Performs a logical exclusive OR operation on a general register and another general register or immediate data.	
	NOT	B/W/L	¬ (Rd) → (Rd) Takes the one's complement of general register contents.	
Shift operations	SHAL SHAR	B/W/L	Rd (shift) → Rd Performs an arithmetic shift on general register conter 1-bit or 2-bit shift is possible.	
	SHLL SHLR	B/W/L	Rd (shift) → Rd Performs a logical shift on general register contents. 1-bit or 2-bit shift is possible.	
	ROTL ROTR	B/W/L	Rd (rotate) → Rd Rotates general register contents. 1-bit or 2-bit rotation is possible.	
	ROTXL ROTXR	B/W/L	Rd (rotate) → Rd Rotates general register contents through the carry flag. 1-bit or 2-bit rotation is possible.	

Туре	Instruction	Size*1	Function	
Bit-manipulation instructions	BSET	В	1 → (<bit>bit-No.> of <ead>) Sets a specified bit in a general register or memory operand to 1. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit>	
	BCLR	В	0 → (bit-No.> of <ead>) Clears a specified bit in a general register or memory operand to 0. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead>	
	BNOT	В	¬ (<bit-no.> of <ead>) → (<bit-no.> of <ead>) Inverts a specified bit in a general register or memory operand. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.></ead></bit-no.>	
	BTST	В	\neg (<bit-no.> of <ead>) \rightarrow Z Tests a specified bit in a general register or memory operand and sets or clears the Z flag accordingly. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.>	
	BAND	В	$C \land (\text{sbit-No.}\text{> of } \text{}) \to C$ ANDs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.	
	BIAND	В	$C \wedge [\neg (\text{sbit-No.> of } < \text{EAd>})] \rightarrow C$ ANDs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.	
	BOR	В	$C \lor (\text{sbit-No.} > \text{of } < \text{EAd>}) \to C$ ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.	
	BIOR	В	$C \vee [\neg (\text{sbit-No.> of } < \text{EAd>})] \to C$ ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.	

Туре	Instruction	Size*1	Function	
Bit- manipulation instructions	on Exclusive general r		$C \oplus (\text{-bit-No}) \text{ of -EAd}) \to C$ Exclusive-ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.	
	BIXOR	В	$C \oplus \neg [$ (<bit-no.> of <ead>)] $\rightarrow C$ Exclusive-ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>	
	BLD	В	(<bit-no.> of <ead>) → C Transfers a specified bit in a general register or memory operand to the carry flag.</ead></bit-no.>	
	BILD	В	\neg (<bit-no.> of <ead>) \rightarrow C Transfers the inverse of a specified bit in a general register or memory operand to the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>	
	BST	В	C → (<bit-no.> of <ead>) Transfers the carry flag value to a specified bit in a general register or memory operand.</ead></bit-no.>	
	BIST	В	\neg C \rightarrow (bit-No.> of <ead>) Transfers the inverse of the carry flag value to a specified bit in a general register or memory operand. The bit number is specified by 3-bit immediate data.</ead>	

Туре	Instruction	Size*1	Function			
Branch instructions	Всс	_	Branches to a specified address if a specified condition is true. The branching conditions are listed below.			
			Mnemonic	Description	Condition	
			BRA(BT)	Always (true)	Always	
			BRN(BF)	Never (false)	Never	
			BHI	High	C ∨ Z = 0	
			BLS	Low or same	C ∨ Z = 1	
			BCC(BHS)	Carry clear (high or same)	C = 0	
			BCS(BLO)	Carry set (low)	C = 1	
			BNE	Not equal	Z = 0	
			BEQ	Equal	Z = 1	
			BVC	Overflow clear	V = 0	
			BVS	Overflow set	V = 1	
			BPL	Plus	N = 0	
			ВМІ	Minus	N = 1	
			BGE	Greater or equal	N ⊕ V = 0	
			BLT	Less than	N ⊕ V = 1	
			BGT	Greater than	$Z_{\vee}(N \oplus V) = 0$	
			BLE	Less or equal	$Z_{\vee}(N \oplus V) = 1$	
				150		
	JMP	_	Branches unconditionally to a specified address.			
	BSR	_	Branches to a subroutine at a specified address.			
	JSR		Branches to a subroutine at a specified address.			
	RTS	 Returns from a subroutine 				

Туре	Instruction	Size*1	Function	
System control	TRAPA	_	Starts trap-instruction exception handling.	
instructions	RTE	_	Returns from an exception-handling routine.	
	SLEEP	_	Causes a transition to a power-down state.	
	LDC	B/W	(EAs) → CCR, (EAs) → EXR Moves the source operand contents or immediate data to CCR or EXR. Although CCR and EXR are 8-bit registers, word-size transfers are performed between them and memory. The upper 8 bits are valid.	
	STC	B/W	CCR → (EAd), EXR → (EAd) Transfers CCR or EXR contents to a general register or memory. Although CCR and EXR are 8-bit registers, word-size transfers are performed between them and memory. The upper 8 bits are valid.	
	ANDC	В	CCR \land #IMM \rightarrow CCR, EXR \land #IMM \rightarrow EXR Logically ANDs the CCR or EXR contents with immediate data.	
	ORC	В	CCR \vee #IMM \rightarrow CCR, EXR \vee #IMM \rightarrow EXR Logically ORs the CCR or EXR contents with immediate data.	
	XORC	В	CCR \oplus #IMM \rightarrow CCR, EXR \oplus #IMM \rightarrow EXR Logically exclusive-ORs the CCR or EXR contents with immediate data.	
	NOP	_	PC + 2 → PC Only increments the program counter.	

Туре	Instruction	Size	Function	
Block data transfer instruction	EEPMOV.B	_	if R4L \neq 0 then Repeat @ER5+ \rightarrow @ER6+ R4L-1 \rightarrow R4L Until R4L = 0 else next;	
	EEPMOV.W	_	if R4 ≠ 0 then Repeat @ER5+ → @ER6+ R4-1 → R4 Until R4 = 0 else next; Transfers a data block according to parameters set in general registers R4L or R4, ER5, and ER6.	
			R4L or R4: size of block (bytes) ER5: starting source address ER6: starting destination address	
			Execution of the next instruction begins as soon as the transfer is completed.	

Notes: 1. Size refers to the operand size.

B: Byte
W: Word
L: Longword

- 2. Only registers ER0 to ER6 should be used when using the STM/LDM instruction.
- 3. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

2.6.4 Basic Instruction Formats

The CPU instructions consist of 2-byte (1-word) units. An instruction consists of an operation field (op field), a register field (r field), an effective address extension (EA field), and a condition field (cc).

- (1) **Operation Field:** Indicates the function of the instruction, the addressing mode, and the operation to be carried out on the operand. The operation field always includes the first four bits of the instruction. Some instructions have two operation fields.
- (2) **Register Field:** Specifies a general register. Address registers are specified by 3 bits, data registers by 3 bits or 4 bits. Some instructions have two register fields. Some have no register field.
- (3) Effective Address Extension: Eight, 16, or 32 bits specifying immediate data, an absolute address, or a displacement.

(4) Condition Field: Specifies the branching condition of Bcc instructions.

Figure 2-12 shows examples of instruction formats.

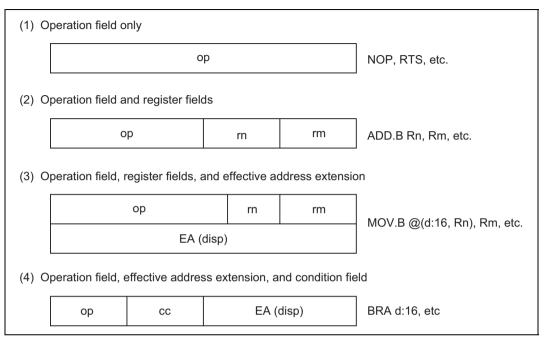


Figure 2-12 Instruction Formats (Examples)

2.7 Addressing Modes and Effective Address Calculation

2.7.1 Addressing Mode

The CPU supports the eight addressing modes listed in table 2-4. Each instruction uses a subset of these addressing modes. Arithmetic and logic instructions can use the register direct and immediate modes. Data transfer instructions can use all addressing modes except program-counter relative and memory indirect. Bit manipulation instructions use register direct, register indirect, or absolute addressing mode to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing mode to specify a bit number in the operand.

Table 2-4 Addressing Modes

No.	Addressing Mode	Symbol	
1	Register direct	Rn	
2	Register indirect	@ERn	
3	Register indirect with displacement	@(d:16,ERn)/@(d:32,ERn)	
4	Register indirect with post-increment Register indirect with pre-decrement	@ERn+ @–ERn	
5	Absolute address	@aa:8/@aa:16/@aa:24/@aa:32	
6	Immediate	#xx:8/#xx:16/#xx:32	
7	Program-counter relative	@(d:8,PC)/@(d:16,PC)	
8	Memory indirect	@@aa:8	

- (1) **Register Direct—Rn:** The register field of the instruction specifies an 8-, 16-, or 32-bit general register containing the operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E0 to E7 can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.
- (2) **Register Indirect**—@**ERn:** The register field of the instruction code specifies an address register (ERn) which contains the address of the operand on memory. If the address is a program instruction address, the lower 24 bits are valid and the upper 8 bits are all assumed to be 0 (H'00).
- (3) Register Indirect with Displacement—@(d:16, ERn) or @(d:32, ERn): A 16-bit or 32-bit displacement contained in the instruction is added to an address register (ERn) specified by the register field of the instruction, and the sum gives the address of a memory operand. A 16-bit displacement is sign-extended when added.

(4) Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @-ERn:

- Register indirect with post-increment—@ERn+
 - The register field of the instruction code specifies an address register (ERn) which contains the address of a memory operand. After the operand is accessed, 1, 2, or 4 is added to the address register contents and the sum is stored in the address register. The value added is 1 for byte access, 2 for word transfer instruction, or 4 for longword transfer instruction. For word or longword transfer instruction, the register value should be even.
- Register indirect with pre-decrement—@-ERn
 - The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the register field in the instruction code, and the result becomes the address of a memory operand. The result is also stored in the address register. The value subtracted is 1 for byte access, 2 for word transfer instruction, or 4 for longword transfer instruction. For word or longword transfer instruction, the register value should be even.
- (5) Absolute Address—@aa:8, @aa:16, @aa:24, or @aa:32: The instruction code contains the absolute address of a memory operand. The absolute address may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24), or 32 bits long (@aa:32).

To access data, the absolute address should be 8 bits (@aa:8), 16 bits (@aa:16), or 32 bits (@aa:32) long. For an 8-bit absolute address, the upper 24 bits are all assumed to be 1 (H'FFFF). For a 16-bit absolute address the upper 16 bits are a sign extension. A 32-bit absolute address can access the entire address space.

A 24-bit absolute address (@aa:24) indicates the address of a program instruction. The upper 8 bits are all assumed to be 0 (H'00).

Table 2-5 indicates the accessible absolute address ranges.

Table 2-5 Absolute Address Access Ranges

Absolute Address		Normal Mode*	Advanced Mode
Data address	8 bits (@aa:8)	H'FF00 to H'FFFF	H'FFFF00 to H'FFFFFF
	16 bits (@aa:16)	H'0000 to H'FFFF	H'000000 to H'007FFF, H'FF8000 to H'FFFFFF
	32 bits (@aa:32)		H'000000 to H'FFFFF
Program instruction address	24 bits (@aa:24)		

Note: * Not available in the chip.

(6) Immediate—#xx:8, #xx:16, or #xx:32: The instruction contains 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate data as an operand.

The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit manipulation instructions contain 3-bit immediate data in the instruction code, specifying a bit number. The TRAPA instruction contains 2-bit immediate data in its instruction code, specifying a vector address.

- (7) **Program-Counter Relative**—@(**d:8, PC**) or @(**d:16, PC**): This mode is used in the Bcc and BSR instructions. An 8-bit or 16-bit displacement contained in the instruction is sign-extended and added to the 24-bit PC contents to generate a branch address. Only the lower 24 bits of this branch address are valid; the upper 8 bits are all assumed to be 0 (H'00). The PC value to which the displacement is added is the address of the first byte of the next instruction, so the possible branching range is –126 to +128 bytes (–63 to +64 words) or –32766 to +32768 bytes (–16383 to +16384 words) from the branch instruction. The resulting value should be an even number.
- (8) Memory Indirect—@@aa:8: This mode can be used by the JMP and JSR instructions. The instruction code contains an 8-bit absolute address specifying a memory operand. This memory operand contains a branch address. The upper bits of the absolute address are all assumed to be 0, so the address range is 0 to 255 (H'0000 to H'00FF in normal mode*, H'000000 to H'000FF in advanced mode). In normal mode* the memory operand is a word operand and the branch address is 16 bits long. In advanced mode the memory operand is a longword operand, the first byte of which is assumed to be all 0 (H'00).

Note that the first part of the address range is also the exception vector area. For further details, refer to section 4, Exception Handling.

Note: * Not available in the chip.

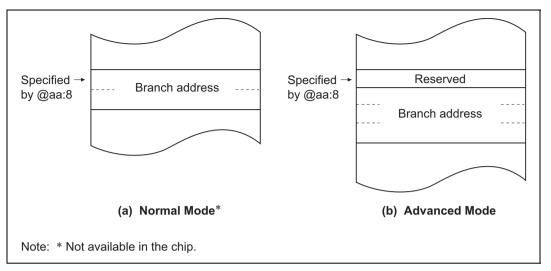
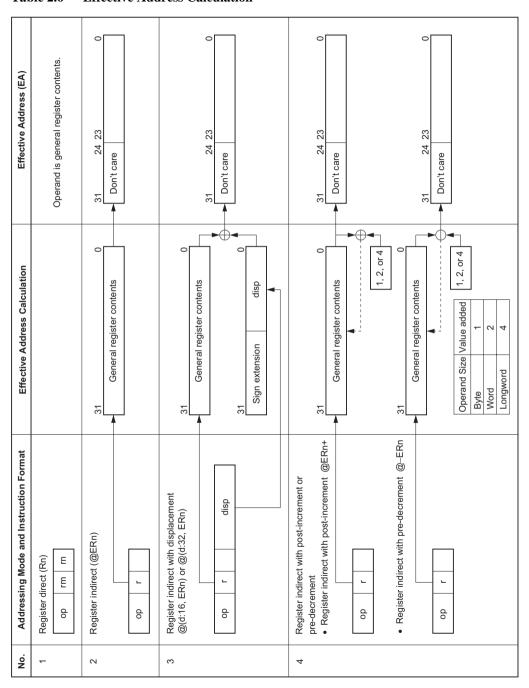
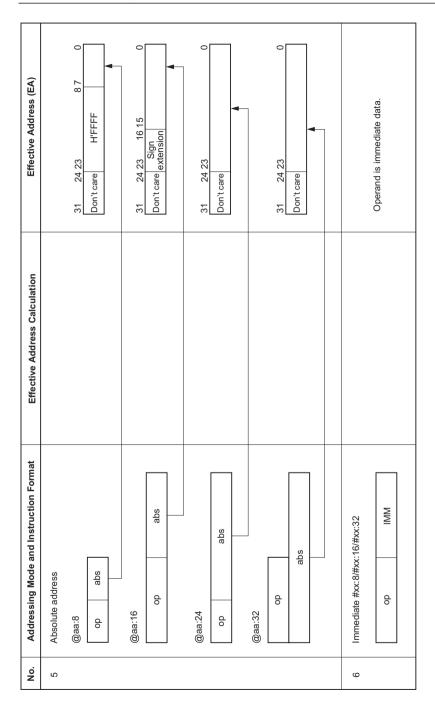
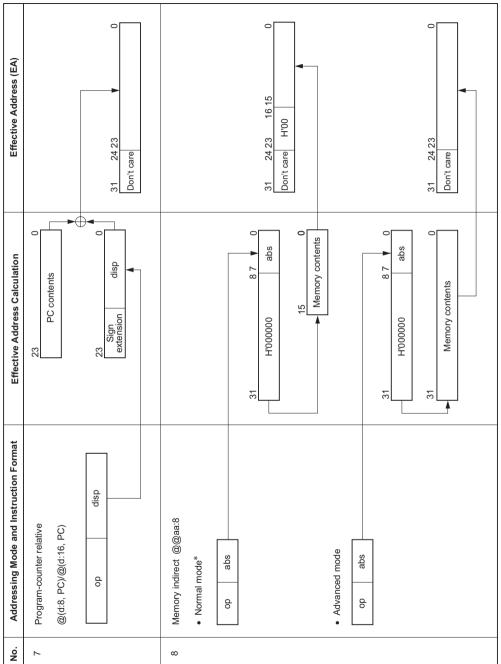


Figure 2-13 Branch Address Specification in Memory Indirect Mode


If an odd address is specified in word or longword memory access, or as a branch address, the least significant bit is regarded as 0, causing data to be accessed or instruction code to be fetched at the address preceding the specified address (For further information, see section 2.5.2, Memory Data Formats).


2.7.2 Effective Address Calculation


Table 2-6 indicates how effective addresses are calculated in each addressing mode. In normal mode* the upper 8 bits of the effective address are ignored in order to generate a 16-bit address.

Note: * Not available in the chip.

Table 2.6 Effective Address Calculation

Note: * Not available in the chip.

2.8 Processing States

2.8.1 Overview

The CPU has five main processing states: the reset state, exception handling state, program execution state, bus-released state, and power-down state. Figure 2-14 shows a diagram of the processing states. Figure 2-15 indicates the state transitions.

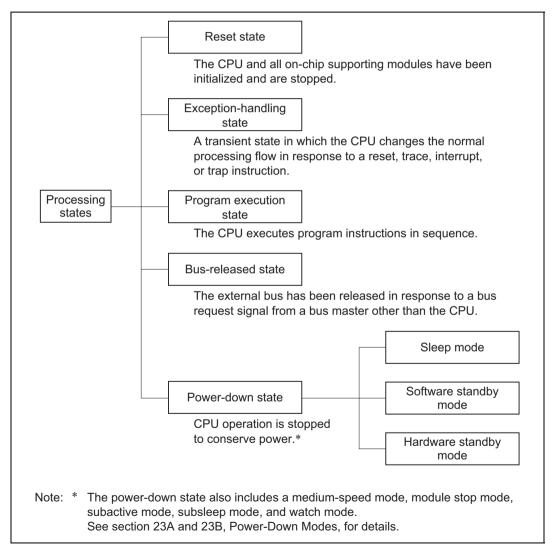


Figure 2-14 Processing States

Notes: 1. From any state except hardware standby mode, a transition to the reset state occurs whenever RES goes low. A transition can also be made to the reset state when the watchdog timer overflows.

- 2. From any state, a transition to hardware standby mode occurs when STBY goes low.
- 3. Apart from these states, there are also the watch mode, subactive mode, and the subsleep mode. See section 23A, 23B, Power-Down Modes.

Figure 2-15 State Transitions

2.8.2 Reset State

When the \overline{RES} goes low, all current processing stops and the CPU enters the reset state. In reset state all interrupts are disenabled.

Reset exception handling starts when the \overline{RES} signal changes from low to high.

The reset state can also be entered by a watchdog timer overflow. For details, refer to section 12, Watchdog Timer.

2.8.3 **Exception-Handling State**

The exception-handling state is a transient state that occurs when the CPU alters the normal processing flow due to a reset, trace, interrupt, or trap instruction. The CPU fetches a start address (vector) from the exception vector table and branches to that address.

(1) Types of Exception Handling and Their Priority

Exception handling is performed for traces, resets, interrupts, and trap instructions. Table 2-7 indicates the types of exception handling and their priority. Trap instruction exception handling is always accepted, in the program execution state.

Exception handling and the stack structure depend on the interrupt control mode set in SYSCR.

Exception Handling Types and Priority Table 2-7

Priority	Type of Exception	Detection Timing	Start of Exception Handling	
High	Reset	Synchronized with clock	Exception handling starts immediately after a low-to-high transition at the RES pin, or when the watchdog timer overflows.	
	Trace	End of instruction execution or end of exception-handling sequence*1	When the trace (T) bit is set to 1, the trace starts at the end of the current instruction or current exception-handling sequence	
	Interrupt	End of instruction execution or end of exception-handling sequence*2	When an interrupt is requested, exception handling starts at the end of the current instruction or current exception-handling sequence	
Low	Trap instruction	When TRAPA instruction is executed	Exception handling starts when a trap (TRAPA) instruction is executed*3	

Notes: 1. Traces are enabled only in interrupt control mode 2. Trace exception-handling is not executed at the end of the RTE instruction.

- 2. Interrupts are not detected at the end of the ANDC, ORC, XORC, and LDC instructions, or immediately after reset exception handling.
- 3. Trap instruction exception handling is always accepted, in the program execution state.

(2) Reset Exception Handling

After the RES pin has gone low and the reset state has been entered, when RES goes high again, reset exception handling starts. The CPU enters the reset state when the RES is low. When reset exception handling starts the CPU fetches a start address (vector) from the exception vector table and starts program execution from that address. All interrupts, including NMI, are disabled during reset exception handling and after it ends.

(3) Traces

Traces are enabled only in interrupt control mode 2. Trace mode is entered when the T bit of EXR is set to 1. When trace mode is established, trace exception handling starts at the end of each instruction.

At the end of a trace exception-handling sequence, the T bit of EXR is cleared to 0 and trace mode is cleared. Interrupt masks are not affected.

The T bit saved on the stack retains its value of 1, and when the RTE instruction is executed to return from the trace exception-handling routine, trace mode is entered again. Trace exception-handling is not executed at the end of the RTE instruction.

Trace mode is not entered in interrupt control mode 0, regardless of the state of the T bit.

(4) Interrupt Exception Handling and Trap Instruction Exception Handling

When interrupt or trap-instruction exception handling begins, the CPU references the stack pointer (ER7) and pushes the program counter and other control registers onto the stack. Next, the CPU alters the settings of the interrupt mask bits in the control registers. Then the CPU fetches a start address (vector) from the exception vector table and program execution starts from that start address.

Figure 2-16 shows the stack after exception handling ends.

Figure 2-16 Stack Structure after Exception Handling (Examples)

2.8.4 Program Execution State

In this state the CPU executes program instructions in sequence.

2.8.5 Bus-Released State

This is a state in which the bus has been released in response to a bus request from a bus master other than the CPU. While the bus is released, the CPU halts operations.

Bus masters other than the CPU is data transfer controller (DTC).

For further details, refer to section 7. Bus Controller.

2.8.6 Power-Down State

The power-down state includes both modes in which the CPU stops operating and modes in which the CPU does not stop. There are five modes in which the CPU stops operating: sleep mode, software standby mode, hardware standby mode, subsleep mode, and watch mode. There are also three other power-down modes: medium-speed mode, module stop mode, and subactive mode. In medium-speed mode the CPU and other bus masters operate on a medium-speed clock. Module stop mode permits halting of the operation of individual modules, other than the CPU. Subactive mode, subsleep mode, and watch mode are power-down states using subclock input. For details, refer to section 23A, 23B, Power-Down Modes.

- (1) **Sleep Mode:** A transition to sleep mode is made if the SLEEP instruction is executed while the software standby bit (SSBY) in the standby control register (SBYCR) is cleared to 0. In sleep mode, CPU operations stop immediately after execution of the SLEEP instruction. The contents of CPU registers are retained.
- (2) **Software Standby Mode:** A transition to software standby mode is made if the SLEEP instruction is executed while the SSBY bit in SBYCR is set to 1, the LSON bit in LPWRCR is set to 0, and the PSS bit in TCSR (WDT1) is set to 0. In software standby mode, the CPU and clock halt and all MCU operations stop. As long as a specified voltage is supplied, the contents of CPU registers and on-chip RAM are retained. The I/O ports also remain in their existing states.
- (3) **Hardware Standby Mode:** A transition to hardware standby mode is made when the STBY pin goes low. In hardware standby mode, the CPU and clock halt and all MCU operations stop. The on-chip supporting modules are reset, but as long as a specified voltage is supplied, on-chip RAM contents are retained.

2.9 Basic Timing

2.9.1 Overview

The H8S/2600 CPU is driven by a system clock, denoted by the symbol ϕ . The period from one rising edge of ϕ to the next is referred to as a "state." The memory cycle or bus cycle consists of one, two, or three states. Different methods are used to access on-chip memory, on-chip supporting modules, and the external address space.

2.9.2 On-Chip Memory (ROM, RAM)

On-chip memory is accessed in one state. The data bus is 16 bits wide, permitting both byte and word transfer instruction. Figure 2-17 shows the on-chip memory access cycle. Figure 2-18 shows the pin states.

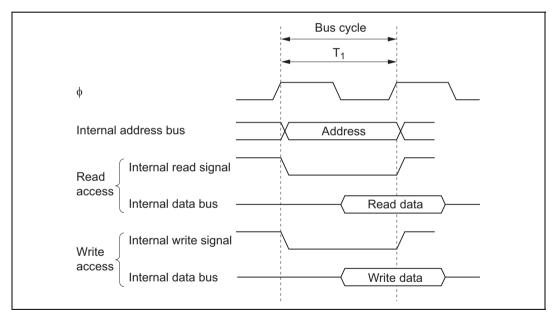


Figure 2-17 On-Chip Memory Access Cycle

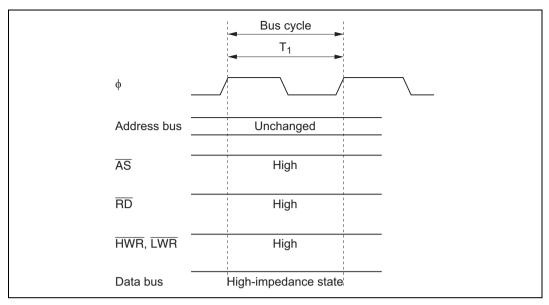


Figure 2-18 Pin States during On-Chip Memory Access

May 28, 2010

2.9.3 **On-Chip Supporting Module Access Timing**

The on-chip supporting modules are accessed in two states. The data bus is either 8 bits or 16 bits wide, depending on the particular internal I/O register being accessed. Figure 2-19 shows the access timing for the on-chip supporting modules. Figure 2-20 shows the pin states.

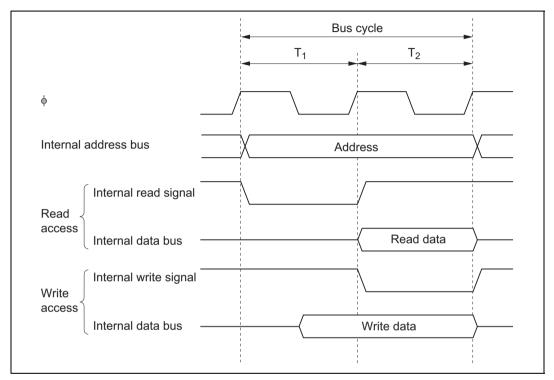


Figure 2-19 On-Chip Supporting Module Access Cycle

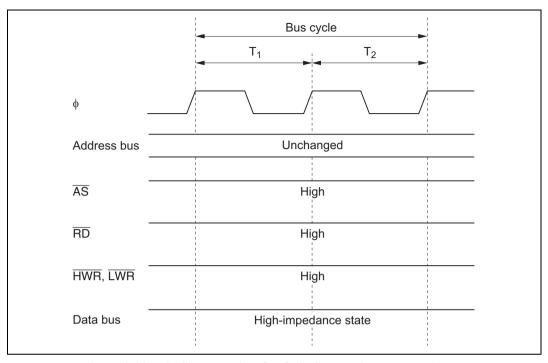


Figure 2-20 Pin States during On-Chip Supporting Module Access

2.9.4 On-Chip HCAN Module Access Timing

On-chip HCAN module access is performed in four states. The data bus width is 16 bits. Wait states can be inserted by means of a wait request from the HCAN. On-chip HCAN module access timing is shown in figures 2-21 and 2-22, and the pin states in figure 2-23.

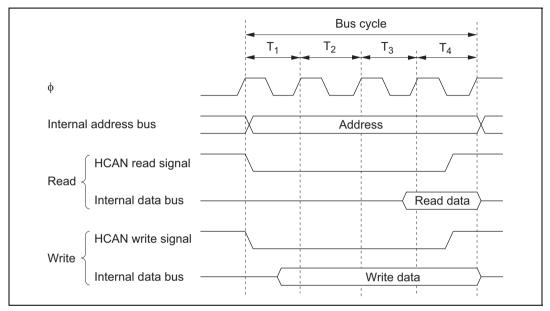


Figure 2-21 On-Chip HCAN Module Access Cycle (No Wait State)

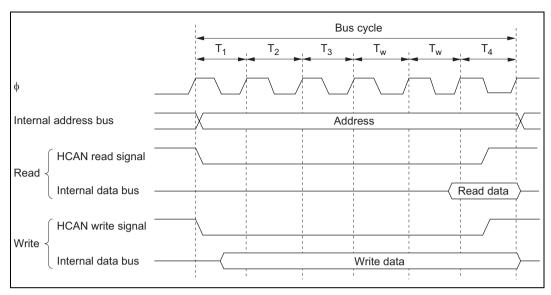


Figure 2-22 On-Chip HCAN Module Access Cycle (Wait States Inserted)

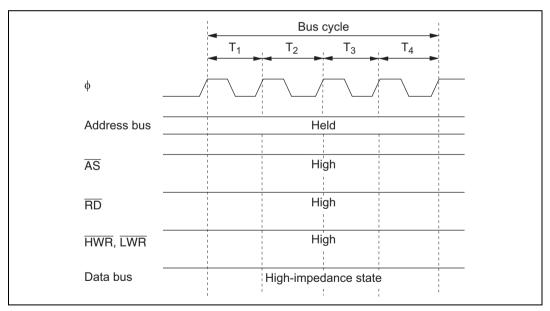


Figure 2-23 Pin States in On-Chip HCAN Module Access

2.9.5 Port H and J Register Access Timing

Accesses to port H and J registers and the on-chip motor control PWM timer module are performed in four states. The data bus width is 8 or 16 bits depending on the internal I/O register.

Access timing for port H and J registers and the on-chip motor control PWM timer module is shown in figure 2-24, and the pin states are shown in figure 2-25.

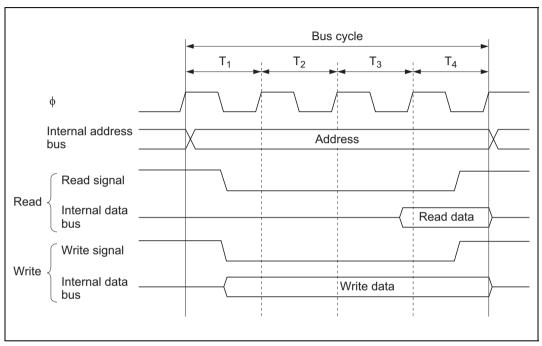


Figure 2-24 Access Cycle for Ports H and J Registers and On-Chip Motor Control PWM Timer Module

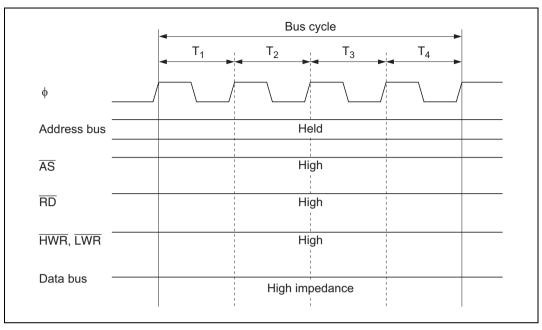


Figure 2-25 Pin States in Access to Ports H and J Registers and On-Chip Motor Control PWM Timer Module

2.9.6 External Address Space Access Timing

The external address space is accessed with an 8-bit or 16-bit data bus width in a two-state or three-state bus cycle. In three-state access, wait states can be inserted. For further details, refer to section 7, Bus Controller.

2.10 Usage Note

2.10.1 TAS Instruction

Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction. The TAS instruction is not generated by the Renesas Electronics H8S Family and H8/300 Series C/C++ compilers. If the TAS instruction is used as a user-defined intrinsic function, ensure that only register ER0, ER1, ER4, or ER5 is used.

2.10.2 STM/LDM Instructions

With STM and LDM instructions, register ER7 cannot be used as a register that can be saved (STM) or restored (LDM) since it is the stack pointer.

The number of registers that can be saved (STM) or restored (LDM) by a single instruction is two, three, or four. The registers that can be used in these cases are as follows.

Two registers: ER0–ER1, ER2–ER3, ER4–ER5

Three registers: ER0-ER2, ER4-ER6

Four registers: ER0-ER3

The Renesas Electronics H8S Family and H8/300 Series C/C++ compilers do not generate STM/LDM instructions that include ER7.

2.10.3 Caution to Observe when Using Bit Manipulation Instructions

The BSET, BCLR, BNOT, BST, and BIST instructions read data in a unit of byte, then, after bit manipulation, they write data in a unit of byte. Therefore, caution must be exercised when executing any of these instructions for registers and ports that include write-only bits.

The BCLR instruction can be used to clear the flag of an internal I/O register to 0. In that case, if it is clearly known that the pertinent flag is set to 1 in an interrupt processing routine or other processing, there is no need to read the flag in advance.

Section 3 MCU Operating Modes

3.1 Overview

3.1.1 Operating Mode Selection

The chip has four operating modes (modes 4 to 7). These modes enable selection of the CPU operating mode, enabling/disabling of on-chip ROM, and the initial bus width setting, by setting the mode pins (MD2 to MD0).

Table 3-1 lists the MCU operating modes.

Table 3-1 MCU Operating Mode Selection

MCU	J CPU					Extern	External Data Bus	
Operating Mode	MD2	MD1	MD0	Operating Mode	Description	On-Chip ROM	Initial Width	Max. Width
0*	0	0	0	_	_	_	_	_
1*	_		1	_	=			
2*	=	1	0	_				
3*	_		1	_				
4	1	0	0	Advanced	On-chip ROM	Disabled	16 bits	16 bits
5	_		1	-	disabled, expanded mode		8 bits	16 bits
6	_	1	0	_	On-chip ROM enabled, expanded mode	Enabled	8 bits	16 bits
7	=		1	_	Single-chip mode		_	_

Note: * Not available in the chip.

The CPU's architecture allows for 4 Gbytes of address space, but the chip actually accesses a maximum of 16 Mbytes.

Modes 4 to 6 are externally expanded modes that allow access to external memory and peripheral devices.

The external expansion modes allow switching between 8-bit and 16-bit bus modes. After program execution starts, an 8-bit or 16-bit address space can be set for each area, depending on the bus controller setting. If 16-bit access is selected for any one area, 16-bit bus mode is set; if 8-bit access is selected for all areas, 8-bit bus mode is set.

Note that the functions of each pin depend on the operating mode.

The chip can be used only in modes 4 to 7. This means that the mode pins must be set to select one of these modes. Do not change the inputs at the mode pins during operation.

3.1.2 Register Configuration

The chip has a mode control register (MDCR) that indicates the inputs at the mode pins (MD2 to MD0), and a system control register (SYSCR) that controls the operation of the chip. Table 3-2 summarizes these registers.

Table 3-2 MCU Registers

Name	Abbreviation	R/W	Initial Value	Address*
Mode control register	MDCR	R	Undetermined	H'FDE7
System control register	SYSCR	R/W	H'01	H'FDE5
Pin function control register	PFCR	R/W	H'0D/H'00	H'FDEB

Note: * Lower 16 bits of the address.

3.2 Register Descriptions

3.2.1 Mode Control Register (MDCR)

Bit	:	7	6	5	4	3	2	1	0	_
		_	_		_	_	MDS2	MDS1	MDS0	
Initial val	lue :	1	0	0	0	0	*	*	*	
R/W	:	R/W	_	_	_	_	R	R	R	

Note: * Determined by pins MD2 to MD0.

Page 80 of 1458

MDCR is an 8-bit register that indicates the current operating mode of the chip.

Bit 7—Reserved: Only 1 should be written to these bits.

Bits 6 to 3—Reserved: These bits are always read as 0 and cannot be modified.

Bits 2 to 0—Mode Select 2 to 0 (MDS2 to MDS0): These bits indicate the input levels at pins MD2 to MD0 (the current operating mode). Bits MDS2 to MDS0 correspond to MD2 to MD0. MDS2 to MDS0 are read-only bits, and they cannot be written to. The mode pin (MD2 to MD0) input levels are latched into these bits when MDCR is read. These latches are cancelled by a reset.

3.2.2 System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
		MACS	_	INTM1	INTM0	NMIEG		_	RAME
Initial valu	ue:	0	0	0	0	0	0	0	1
R/W	:	R/W	_	R/W	R/W	R/W	_		R/W

SYSCR is an 8-bit readable-writable register that selects saturating or non-saturating calculation for the MAC instruction, selects the interrupt control mode, selects the detected edge for NMI, and enables or disenables on-chip RAM.

SYSCR is initialized to H'01 by a reset and in hardware standby mode. SYSCR is not initialized in software standby mode.

Bit 7—MAC Saturation (MACS): Selects either saturating or non-saturating calculation for the MAC instruction.

Bit 7

MACS	 Description	
0	Non-saturating calculation for MAC instruction	(Initial value)
1	Saturating calculation for MAC instruction	

Bit 6—Reserved: This bit is always read as 0 and cannot be modified.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select the control mode of the interrupt controller. For details of the interrupt control modes, see section 5.4.1, Interrupt Control Modes and Interrupt Operation.

Bit 5	Bit 4	Interrupt Control				
INTM1	INTM0	Mode	Description			
0	0	0	Control of interrupts by I bit	(Initial value)		
	1	_	Setting prohibited			
1	0	2	Control of interrupts by I2 to I0 bits	s and IPR		
	1	_	Setting prohibited			

Bit 3—NMI Edge Select (NMIEG): Selects the valid edge of the NMI interrupt input.

Bit 3

NMIEG	 Description	
0	An interrupt is requested at the falling edge of NMI input	(Initial value)
1	An interrupt is requested at the rising edge of NMI input	

Bit 2— Reserved: Only 0 should be written to this bit.

Bit 1—Reserved: This bit is always read as 0 and cannot be modified.

Bit 0—RAM Enable (RAME): Enables or disables the on-chip RAM. The RAME bit is initialized when the reset status is released. It is not initialized in software standby mode.

Bit 0

RAME	Description	
0	On-chip RAM is disabled	
1	On-chip RAM is enabled	(Initial value)

Note: When the DTC is used, the RAME bit must not be cleared to 0.

May 28, 2010

3.2.3 **Pin Function Control Register (PFCR)**

Bit	:	7	6	5	4	3	2	1	0
		_	_			AE3	AE2	AE1	AE0
Initial value:		0	0	0	0	1/0	1/0	0	1/0
R/W	:	R/W							

PFCR is an 8-bit readable-writeable register that performs address output control in on-chip ROMenabled expansion mode.

PFCR is initialized to H'0D/H'00 by a reset and in the hardware standby mode.

Bits 7 to 4— Reserved: Only 0 should be written to these bits.

Bits 3 to 0—Address Output Enable 3 to 0 (AE3 to AE0): These bits select enabling or disabling of address outputs A8 to A23 in on-chip ROM-disabled expansion mode and on-chip ROM-enabled expansion mode. When a pin is enabled for address output, the address is output regardless of the corresponding DDR setting. When a pin is disabled for address output, it becomes an output port when the corresponding DDR bit is set to 1.

Bit 3	Bit 2	Bit 1	Bit 0	
AE3	AE2	AE1	AE0	 Description
0	0	0	0	A8 to A23 address output disabled (Initial value*)
			1	A8 address output enabled; A9 to A23 address output disabled
		1	0	A8, A9 address output enabled; A10 to A23 address output disabled
			1	A8 to A10 address output enabled; A11 to A23 address output disabled
	1	0	0	A8 to A11 address output enabled; A12 to A23 address output disabled
			1	A8 to A12 address output enabled; A13 to A23 address output disabled
		1	0	A8 to A13 address output enabled; A14 to A23 address output disabled
			1	A8 to A14 address output enabled; A15 to A23 address output disabled
1	0	0	0	A8 to A15 address output enabled; A16 to A23 address output disabled
			1	A8 to A16 address output enabled; A17 to A23 address output disabled
		1	0	A8 to A17 address output enabled; A18 to A23 address output disabled
			1	A8 to A18 address output enabled; A19 to A23 address output disabled
	1	0	0	A8 to A19 address output enabled; A20 to A23 address output disabled
			1	A8 to A20 address output enabled; A21 to A23 address output disabled (Initial value*)
		1	0	A8 to A21 address output enabled; A22, A23 address output disabled
			1	A8 to A23 address output enabled

Note: *In on-chip ROM-enabled expansion mode, bits AE3 to AE0 are initialized to B'0000.

In on-chip ROM-disabled expansion mode, bits AE3 to AE0 are initialized to B'1101.

Address pins A0 to A7 are made address outputs by setting the corresponding DDR bits to 1.

3.3 Operating Mode Descriptions

3.3.1 Mode 4

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is disabled.

Ports 1, A, B, and C function as an address bus, ports D and E function as a data bus, and part of port F carries bus control signals.

The initial bus mode after a reset is 16 bits, with 16-bit access to all areas. However, note that if 8-bit access is designated by the bus controller for all areas, the bus mode switches to 8 bits.

3.3.2 Mode 5

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is disabled.

Ports 1, A, B, and C function as an address bus, port D function as a data bus, and part of port F carries bus control signals.

The initial bus mode after a reset is 8 bits, with 8-bit access to all areas. However, note that if 16-bit access is designated by the bus controller for any area, the bus mode switches to 16 bits and port E becomes a data bus.

3.3.3 Mode 6

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is enabled.

Ports 1, A, B, and C function as input port pins immediately after a reset. Address output can be performed by setting the corresponding DDR (data direction register) bits to 1.

Port D functions as a data bus, and part of port F carries bus control signals.

The initial bus mode after a reset is 8 bits, with 8-bit access to all areas. However, note that if 16-bit access is designated by the bus controller for any area, the bus mode switches to 16 bits and port E becomes a data bus.

3.3.4 Mode 7

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is enabled, but external addresses cannot be accessed.

All I/O ports are available for use as input-output ports.

3.4 Pin Functions in Each Operating Mode

The pin functions of ports 1 and A to F vary depending on the operating mode. Table 3-3 shows their functions in each operating mode.

Table 3-3 Pin Functions in Each Mode

Port		Mode 4	Mode 5	Mode 6	Mode 7
Port A		P/A*	P/A*	P*/A	Р
Port B		P/A*	P/A*	P*/A	Р
Port C		Α	Α	P*/A	Р
Port D		D	D	D	Р
Port E		P/D*	P*/D	P*/D	Р
Port F	PF7	P/C*	P/C*	P/C*	P*/C
	PF6 to PF4	С	С	С	Р
	PF3	P/C*	P*/C	P*/C	
Port 1	P11 to P13	P*/A	P*/A	P*/A	Р
	P10	P/A*	P/A*	P*/A	

Legend:

P: I/O port

A: Address bus output

D: Data bus I/O

C: Control signals, clock I/O

*: After reset

3.5 Address Map in Each Operating Mode

An address map of the H8S/2636 is shown in figure 3-1.

An address map of the H8S/2638 and H8S/2639 is shown in figure 3-2.

An address map of the H8S/2630 is shown in figure 3-3.

An address map of the H8S/2635 is shown in figure 3-4.

An address map of the H8S/2634 is shown in figure 3-5.

The address space is 16 Mbytes in modes 4 to 7 (advanced modes).

The address space is divided into eight areas for modes 4 to 7. For details, see section 7, Bus Controller.

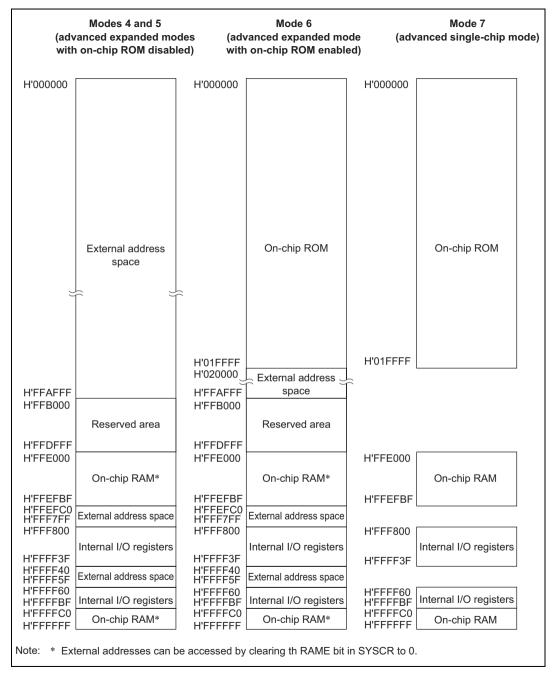


Figure 3-1 Memory Map in Each Operating Mode in the H8S/2636

Figure 3-2 Memory Map in Each Operating Mode in the H8S/2638 and H8S/2639

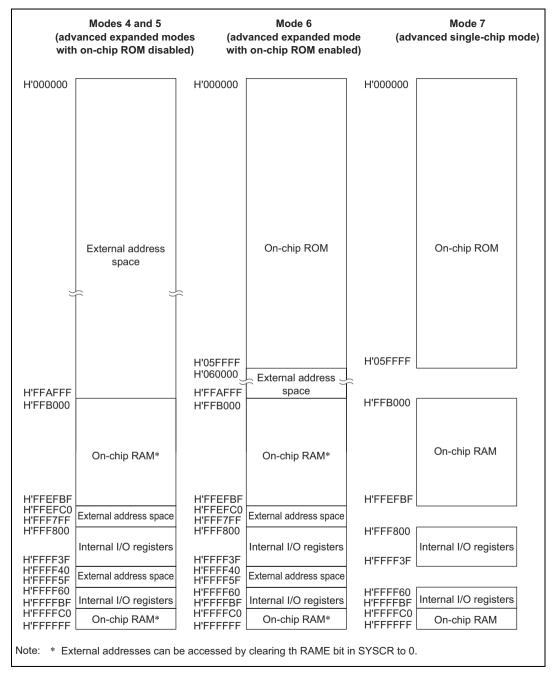


Figure 3-3 Memory Map in Each Operating Mode in the H8S/2630

May 28, 2010

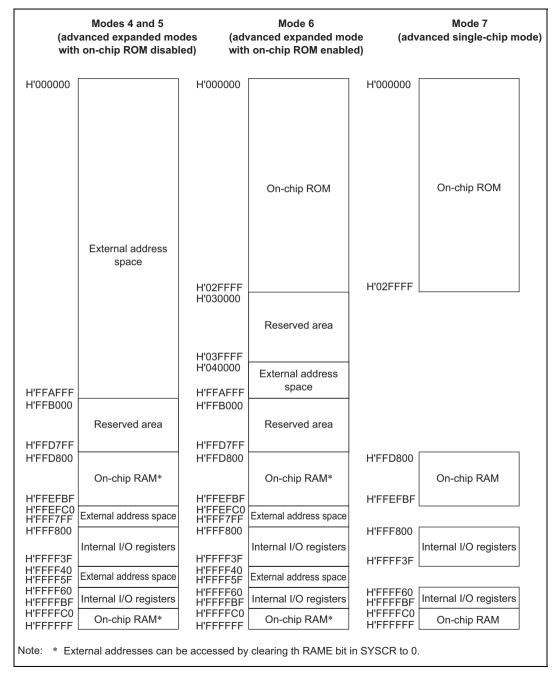


Figure 3-4 Memory Map in Each Operating Mode in the H8S/2635

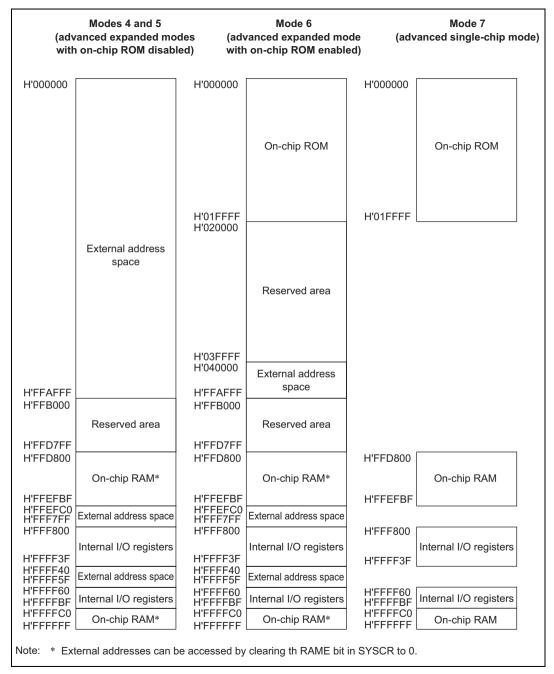


Figure 3-5 Memory Map in Each Operating Mode in the H8S/2634

Section 4 Exception Handling

4.1 Overview

4.1.1 Exception Handling Types and Priority

As table 4-1 indicates, exception handling may be caused by a reset, trace, direct transition*, trap instruction, or interrupt. Exception handling is prioritized as shown in table 4-1. If two or more exceptions occur simultaneously, they are accepted and processed in order of priority. Trap instruction exceptions are accepted at all times, in the program execution state.

Exception handling sources, the stack structure, and the operation of the CPU vary depending on the interrupt control mode set by the INTM0 and INTM1 bits of SYSCR.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only. These functions cannot be used with the other versions.

Table 4-1 Exception Types and Priority

Priority	Exception Type	Start of Exception Handling
High	Reset	Starts immediately after a low-to-high transition at the $\overline{\text{RES}}$ pin, or when the watchdog overflows. The CPU enters the reset state when the $\overline{\text{RES}}$ pin is low.
	Trace*1	Starts when execution of the current instruction or exception handling ends, if the trace (T) bit is set to 1
	Direct transition*4	Starts when a direct transition occurs due to execution of a SLEEP instruction.
	Interrupt	Starts when execution of the current instruction or exception handling ends, if an interrupt request has been issued*2
Low	Trap instruction (TRAPA)*	Started by execution of a trap instruction (TRAPA)

- Notes: 1. Traces are enabled only in interrupt control mode 2. Trace exception handling is not executed after execution of an RTE instruction.
 - 2. Interrupt detection is not performed on completion of ANDC, ORC, XORC, or LDC instruction execution, or on completion of reset exception handling.
 - 3. Trap instruction exception handling requests are accepted at all times in program execution state.
 - Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only. These functions cannot be used with the other versions.
 Supported by the H8S/2635.

4.1.2 Exception Handling Operation

Exceptions originate from various sources. Trap instructions and interrupts are handled as follows:

- 1. The program counter (PC), condition code register (CCR), and extended register (EXR) are pushed onto the stack.
- 2. The interrupt mask bits are updated. The T bit is cleared to 0.
- 3. A vector address corresponding to the exception source is generated, and program execution starts from that address.

For a reset exception, steps 2 and 3 above are carried out.

4.1.3 Exception Vector Table

The exception sources are classified as shown in figure 4-1. Different vector addresses are assigned to different exception sources.

Table 4-2 lists the exception sources and their vector addresses.

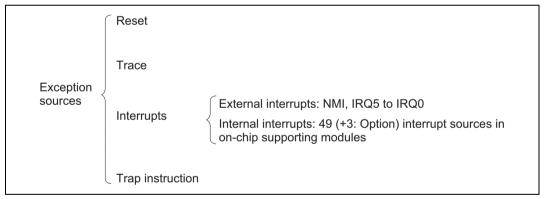


Figure 4-1 Exception Sources

Table 4-2 Exception Vector Table

			Vector Address*1
Exception Source		Vector Number	Advanced Mode
Reset		0	H'0000 to H'0003
Reserved for system	use	1	H'0004 to H'0007
		2	H'0008 to H'000B
		3	H'000C to H'000F
		4	H'0010 to H'0013
Trace		5	H'0014 to H'0017
Direct Transition*3		6	H'0018 to H'001B
External interrupt	NMI	7	H'001C to H'001F
Trap instruction (4 so	ources)	8	H'0020 to H'0023
		9	H'0024 to H'0027
		10	H'0028 to H'002B
		11	H'002C to H'002F
Reserved for system	use	12	H'0030 to H'0033
		13	H'0034 to H'0037
		14	H'0038 to H'003B
		15	H'003C to H'003F
External interrupt	IRQ0	16	H'0040 to H'0043
	IRQ1	17	H'0044 to H'0047
	IRQ2	18	H'0048 to H'004B
	IRQ3	19	H'004C to H'004F
	IRQ4	20	H'0050 to H'0053
	IRQ5	21	H'0054 to H'0057
Reserved for system	use	22	H'0058 to H'005B
		23	H'005C to H'005F
Internal interrupt*2		24	H'0060 to H'0063
		127	H'01FC to H'01FF

Notes: 1. Lower 16 bits of the address.

- For details of internal interrupt vectors, see section 5.3.3, Interrupt Exception Handling Vector Table.
- See section 23B.11, Direct Transition for details on direct transition.
 Subclock functions are available in the U-mask and W-mask versions, and H8S/2635 Group only.

4.2 Reset

4.2.1 Overview

A reset has the highest exception priority.

When the \overline{RES} pin goes low, all current operations are stopped, and this LSI enters reset state. A reset initializes the internal state of the CPU and the registers of on-chip supporting modules. Immediately after a reset, interrupt control mode 0 is set.

When the \overline{RES} pin goes from low to high, reset exception handling starts.

The H8S/2636 can also be reset by overflow of the watchdog timer. For details see section 12, Watchdog Timer.

4.2.2 Reset Sequence

This LSI enters reset state when the \overline{RES} pin goes low.

To ensure that this LSI is reset, hold the \overline{RES} pin low for at least 20 ms at power-up. To reset during operation, hold the \overline{RES} pin low for at least 20 states.

When the RES pin goes high after being held low for the necessary time, this LSI starts reset exception handling as follows.

- 1. The internal state of the CPU and the registers of the on-chip supporting modules are initialized, the T bit is cleared to 0 in EXR, and the I bit is set to 1 in EXR and CCR.
- 2. The reset exception handling vector address is read and transferred to the PC, and program execution starts from the address indicated by the PC.

Figures 4-2 and 4-3 show examples of the reset sequence.

May 28, 2010

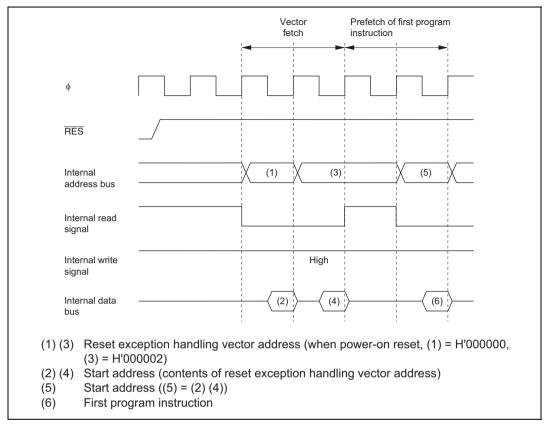


Figure 4-2 Reset Sequence (Modes 6 and 7)

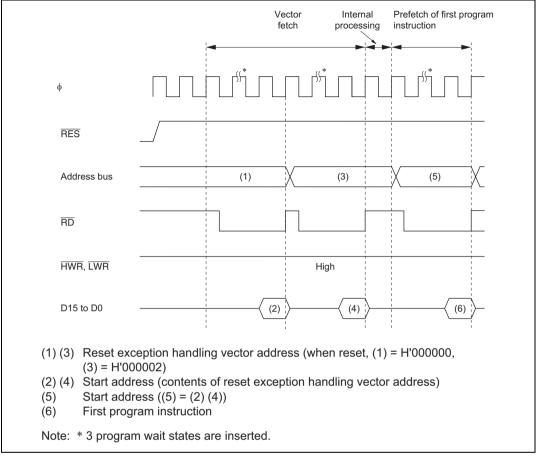


Figure 4-3 Reset Sequence (Mode 4)

4.2.3 **Interrupts after Reset**

If an interrupt is accepted after a reset but before the stack pointer (SP) is initialized, the PC and CCR will not be saved correctly, leading to a program crash. To prevent this, all interrupt requests, including NMI, are disabled immediately after a reset. Since the first instruction of a program is always executed immediately after the reset state ends, make sure that this instruction initializes the stack pointer (example: MOV.L #xx: 32, SP).

4.2.4 State of On-Chip Supporting Modules after Reset Release

After reset release, MSTPCRA to MSTPCRD are initialized to H'3F, H'FF, H'FF, and B'11********, respectively, and all modules except the DTC, enter module stop mode. Consequently, on-chip supporting module registers cannot be read or written to. Register reading and writing is enabled when module stop mode is exited.

Note: 1. The value of bits 5 to 0 is undefined.

4.3 Traces

Traces are enabled in interrupt control mode 2. Trace mode is not activated in interrupt control mode 0, irrespective of the state of the T bit. For details of interrupt control modes, see section 5, Interrupt Controller.

If the T bit in EXR is set to 1, trace mode is activated. In trace mode, a trace exception occurs on completion of each instruction.

Trace mode is canceled by clearing the T bit in EXR to 0. It is not affected by interrupt masking.

Table 4-3 shows the state of CCR and EXR after execution of trace exception handling.

Interrupts are accepted even within the trace exception handling routine.

The T bit saved on the stack retains its value of 1, and when control is returned from the trace exception handling routine by the RTE instruction, trace mode resumes.

Trace exception handling is not carried out after execution of the RTE instruction.

Table 4-3 Status of CCR and EXR after Trace Exception Handling

Interrupt Control Mode	C	CR	EXR		
interrupt Control Mode	I	UI	12 to 10	Т	
0	Trace exception handling cannot be used.				
2	1	_	_	0	

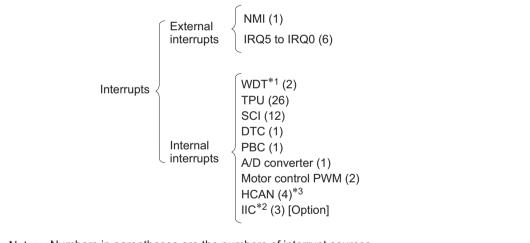
Legend:

1: Set to 1

0: Cleared to 0

—: Retains value prior to execution.

4.4 Interrupts


Interrupt exception handling can be requested by seven external sources (NMI, IRQ5 to IRQ0) and 49 internal sources in the on-chip supporting modules. Figure 4-4 classifies the interrupt sources and the number of interrupts of each type.

The on-chip supporting modules that can request interrupts include the watchdog timer (WDT), 16-bit timer-pulse unit (TPU), serial communication interface (SCI), data transfer controller (DTC), PC break controller (PBC), A/D converter, controller area network (HCAN), motor control PWM timer, and I²C bus interface (IIC). Each interrupt source has a separate vector address.

NMI is the highest-priority interrupt. Interrupts are controlled by the interrupt controller. The interrupt controller has two interrupt control modes and can assign interrupts other than NMI to eight priority/mask levels to enable multiplexed interrupt control.

For details of interrupts, see section 5, Interrupt Controller.

Notes: The DTC, PBC, and IIC are not implemented in the H8S/2635 Group.

Notes: Numbers in parentheses are the numbers of interrupt sources.

- 1. When the watchdog timer is used as an interval timer, it generates an interrupt request at each counter overflow.
- 2. I²C bus interface is available as an option in the H8S/2638, H8S/2639, and H8S/2630.
- 3. 2 sources in the H8S/2635 Group.

Figure 4-4 Interrupt Sources and Number of Interrupts

4.5 **Trap Instruction**

Trap instruction exception handling starts when a TRAPA instruction is executed. Trap instruction exception handling can be executed at all times in the program execution state.

The TRAPA instruction fetches a start address from a vector table entry corresponding to a vector number from 0 to 3, as specified in the instruction code.

Table 4-4 shows the status of CCR and EXR after execution of trap instruction exception handling.

Status of CCR and EXR after Trap Instruction Exception Handling Table 4-4

Interrupt Control Mode	C	CR	EXR		
interrupt Control Mode	I	UI	12 to 10	Т	
0	1	_	_	_	
2	1	_	_	0	

Legend:

1: Set to 1

May 28, 2010

0: Cleared to 0

—: Retains value prior to execution.

4.6 Stack Status after Exception Handling

Figure 4-5 shows the stack after completion of trap instruction exception handling and interrupt exception handling.

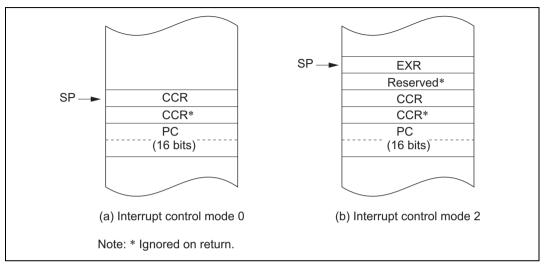


Figure 4-5 (1) Stack Status after Exception Handling (Normal Modes: Not Available in the Chip)

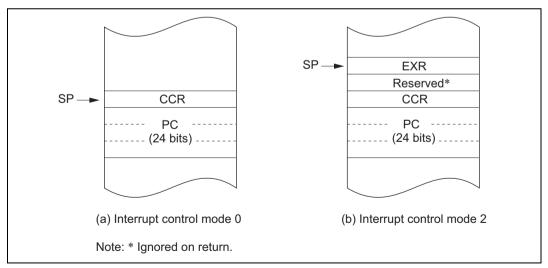


Figure 4-5 (2) Stack Status after Exception Handling (Advanced Modes)

4.7 Notes on Use of the Stack

When accessing word data or longword data, the chip assumes that the lowest address bit is 0. The stack should always be accessed by word transfer instruction or longword transfer instruction, and the value of the stack pointer (SP, ER7) should always be kept even. Use the following instructions to save registers:

```
PUSH.W Rn (or MOV.W Rn, @-SP)

PUSH.L ERn (or MOV.L ERn, @-SP)
```

Use the following instructions to restore registers:

```
POP.W Rn (or MOV.W @SP+, Rn)
POP.L ERn (or MOV.L @SP+, ERn)
```

Setting SP to an odd value may lead to a malfunction. Figure 4-6 shows an example of what happens when the SP value is odd.

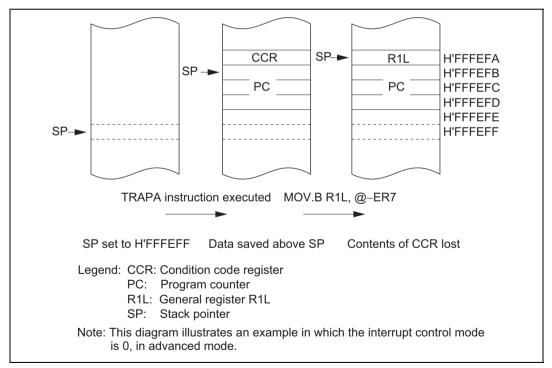


Figure 4-6 Operation when SP Value Is Odd

Section 5 Interrupt Controller

5.1 Overview

5.1.1 Features

The chip controls interrupts by means of an interrupt controller. The interrupt controller has the following features:

- Two interrupt control modes
 - Any of two interrupt control modes can be set by means of the INTM1 and INTM0 bits in the system control register (SYSCR).
- Priorities settable with IPR
 - An interrupt priority register (IPR) is provided for setting interrupt priorities. Eight priority levels can be set for each module for all interrupts except NMI.
 - NMI is assigned the highest priority level of 8, and can be accepted at all times.
- Independent vector addresses
 - All interrupt sources are assigned independent vector addresses, making it unnecessary for the source to be identified in the interrupt handling routine.
- Seven external interrupts
 - NMI is the highest-priority interrupt, and is accepted at all times. Rising edge or falling edge can be selected for NMI.
 - Falling edge, rising edge, or both edge detection, or level sensing, can be selected for IRQ5 to IRQ0.
- DTC control*
 - DTC activation is performed by means of interrupts.

Note: * The H8S/2635 Group is not equipped with a DTC.

5.1.2 Block Diagram

A block diagram of the interrupt controller is shown in figure 5-1.

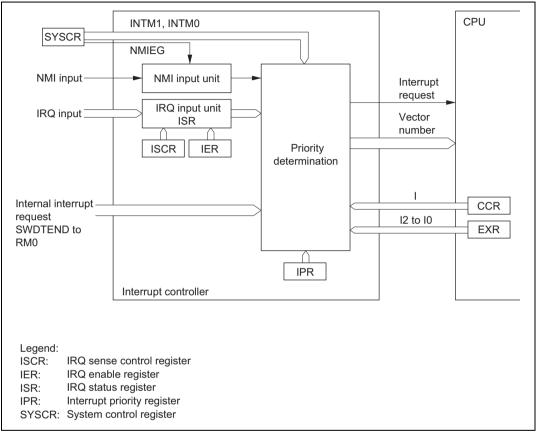


Figure 5-1 Block Diagram of Interrupt Controller

5.1.3 Pin Configuration

Table 5-1 summarizes the pins of the interrupt controller.

Table 5-1 Interrupt Controller Pins

Name	Symbol	I/O	Function
Nonmaskable interrupt	NMI	Input	Nonmaskable external interrupt; rising or falling edge can be selected
External interrupt requests 5 to 0	IRQ5 to IRQ0	Input	Maskable external interrupts; rising, falling, or both edges, or level sensing, can be selected

5.1.4 Register Configuration

Table 5-2 summarizes the registers of the interrupt controller.

Table 5-2 Interrupt Controller Registers

Name	Abbreviation	R/W	Initial Value	Address*1
System control register	SYSCR	R/W	H'01	H'FDE5
IRQ sense control register H	ISCRH	R/W	H'00	H'FE12
IRQ sense control register L	ISCRL	R/W	H'00	H'FE13
IRQ enable register	IER	R/W	H'00	H'FE14
IRQ status register	ISR	R/(W)*2	H'00	H'FE15
Interrupt priority register A	IPRA	R/W	H'77	H'FEC0
Interrupt priority register B	IPRB	R/W	H'77	H'FEC1
Interrupt priority register C	IPRC	R/W	H'77	H'FEC2
Interrupt priority register D	IPRD	R/W	H'77	H'FEC3
Interrupt priority register E	IPRE	R/W	H'77	H'FEC4
Interrupt priority register F	IPRF	R/W	H'77	H'FEC5
Interrupt priority register G	IPRG	R/W	H'77	H'FEC6
Interrupt priority register H	IPRH	R/W	H'77	H'FEC7
Interrupt priority register J	IPRJ	R/W	H'77	H'FEC9
Interrupt priority register K	IPRK	R/W	H'77	H'FECA
Interrupt priority register L	IPRL	R/W	H'77	H'FECB
Interrupt priority register M	IPRM	R/W	H'77	H'FECC

Notes: 1. Lower 16 bits of the address.

2. Can only be written with 0 for flag clearing.

5.2 Register Descriptions

Note: The H8S/2635 Group is not equipped with a DTC, a PC brake controller, or an HCAN1.

5.2.1 System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
		MACS	_	INTM1	INTM0	NMIEG	_		RAME
Initial va	ilue :	0	0	0	0	0	0	0	1
R/W	:	R/W	_	R/W	R/W	R/W	R/W	_	R/W

SYSCR is an 8-bit readable/writable register that selects the interrupt control mode, and the detected edge for NMI.

Only bits 5 to 3 are described here; for details of the other bits, see section 3.2.2, System Control Register (SYSCR).

SYSCR is initialized to H'01 by a reset and in hardware standby mode. SYSCR is not initialized in software standby mode.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select one of two interrupt control modes for the interrupt controller.

Bit 5	Bit 4	Interrupt				
INTM1	INTM0	Control Mode	Description			
0	0	0	Interrupts are controlled by I bit (Initial value			
	1	_	Setting prohibited			
1	0	2	Interrupts are controlled by bits I2 to I0, and IPR			
	1	_	Setting prohibited			

Bit 3—NMI Edge Select (NMIEG): Selects the input edge for the NMI pin.

Bit 3

NMIEG	 Description	
0	Interrupt request generated at falling edge of NMI input	(Initial value)
1	Interrupt request generated at rising edge of NMI input	

5.2.2 Interrupt Priority Registers A to H, J to M (IPRA to IPRH, IPRJ to IPRM)

Bit	:	7	6	5	4	3	2	1	0	
		_	IPR6	IPR5	IPR4		IPR2	IPR1	IPR0	
Initial val	ue:	0	1	1	1	0	1	1	1	_
R/W	:	_	R/W	R/W	R/W	_	R/W	R/W	R/W	

The IPR registers are twelve 8-bit readable/writable registers that set priorities (levels 7 to 0) for interrupts other than NMI.

The correspondence between IPR settings and interrupt sources is shown in table 5-3.

The IPR registers set a priority (level 7 to 0) for each interrupt source other than NMI.

The IPR registers are initialized to H'77 by a reset and in hardware standby mode.

Bits 7 and 3—Reserved: These bits are always read as 0 and cannot be modified.

Table 5-3 Correspondence between Interrupt Sources and IPR Settings

	Bits					
Register	6 to 4	2 to 0				
IPRA	IRQ0	IRQ1				
IPRB	IRQ2	IRQ4				
	IRQ3	IRQ5				
IPRC	*1	DTC*3				
IPRD	Watchdog timer 0	*1				
IPRE	PC break*3	A/D converter, watchdog timer 1				
IPRF	TPU channel 0	TPU channel 1				
IPRG	TPU channel 2	TPU channel 3				
IPRH	TPU channel 4	TPU channel 5				
IPRJ	*1	SCI channel 0				
IPRK	SCI channel 1	SCI channel 2				
IPRL	*1	IIC (Option)*2				
IPRM	PWM channel 1, 2 HCAN channel 1*3	HCAN channel 0				

Notes: 1. Reserved. These bits are always read as 1 and cannot be modified.

- 2. I²C bus interface is available as an option in the H8S/2638, H8S/2639, and H8S/2630. The IIC bit becomes reserved bit when this optional feature is not used.
- 3. The PC break, DTC, and HCAN channel 1 are reserved in the H8S/2635 Group.

As shown in table 5-3, multiple interrupts are assigned to one IPR. Setting a value in the range from H'0 to H'7 in the 3-bit groups of bits 6 to 4 and 2 to 0 sets the priority of the corresponding interrupt. The lowest priority level, level 0, is assigned by setting H'0, and the highest priority level, level 7, by setting H'7.

When interrupt requests are generated, the highest-priority interrupt according to the priority levels set in the IPR registers is selected. This interrupt level is then compared with the interrupt mask level set by the interrupt mask bits (I2 to I0) in the extend register (EXR) in the CPU, and if the priority level of the interrupt is higher than the set mask level, an interrupt request is issued to the CPU.

5.2.3 IRQ Enable Register (IER)

Bit	:	7	6	5	4	3	2	1	0
		_	_	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E
Initial val	ue:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

IER is an 8-bit readable/writable register that controls enabling and disabling of interrupt requests IRQ5 to IRQ0.

IER is initialized to H'00 by a reset and in hardware standby mode.

Bits 7 and 6—Reserved: These bits are always read as 0, and should only be written with 0.

Bits 5 to 0—IRQ5 to IRQ0 Enable (IRQ5E to IRQ0E): These bits select whether IRQ5 to IRQ0 are enabled or disabled.

Bit n

IRQnE	Description	
0	IRQn interrupts disabled	(Initial value)
1	IRQn interrupts enabled	

(n = 5 to 0)

5.2.4 IRQ Sense Control Registers H and L (ISCRH, ISCRL)

ISCRH

Bit	:	15	14	13	12	11	10	9	8
		_	_	_	_	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA
Initial valu	e :	0	0	0	0	0	0	0	0
R/W	:	R/W							
ISCRL									
Bit	:	7	6	5	4	3	2	1	0
		IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA
Initial valu	e :	0	0	0	0	0	0	0	0
R/W	:	R/W							

The ISCR registers are 16-bit readable/writable registers that select rising edge, falling edge, or both edge detection, or level sensing, for the input at pins $\overline{IRQ5}$ to $\overline{IRQ0}$.

The ISCR registers are initialized to H'0000 by a reset and in hardware standby mode.

Bits 15 to 12—Reserved: These bits are always read as 0, and should only be written with 0.

Bits 11 to 0—IRQ5 Sense Control A and B (IRQ5SCA, IRQ5SCB) to IRQ0 Sense Control A and B (IRQ0SCA, IRQ0SCB)

Bits 11 to 0

IRQ5SCB to IRQ0SCB	IRQ5SCA to IRQ0SCA	Description
0	0	Interrupt request generated at IRQ5 to IRQ0 input low level (initial value)
	1	Interrupt request generated at falling edge of IRQ5 to IRQ0 input
1	0	Interrupt request generated at rising edge of IRQ5 to IRQ0 input
	1	Interrupt request generated at both falling and rising edges of IRQ5 to IRQ0 input

5.2.5 IRQ Status Register (ISR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F
Initial val	lue :	0	0	0	0	0	0	0	0
R/W	:	R/(W)*							

Note: * Only 0 can be written, to clear the flag.

ISR is an 8-bit readable/writable register that indicates the status of IRQ5 to IRQ0 interrupt requests.

ISR is initialized to H'00 by a reset and in hardware standby mode.

They are not initialized in software standby mode.

Bits 7 and 6—Reserved: These bits are always read as 0.

Bits 5 to 0—IRQ5 to IRQ0 Flags (IRQ5F to IRQ0F): These bits indicate the status of IRQ5 to IRQ0 interrupt requests.

Bit n

IRQnF Description

n [Clearing conditions]

(Initial value)

- Cleared by reading IRQnF flag when IRQnF = 1, then writing 0 to IRQnF flag
- When interrupt exception handling is executed when low-level detection is set (IRQnSCB = IRQnSCA = 0) and \overline{IRQn} input is high
- When IRQn interrupt exception handling is executed when falling, rising, or bothedge detection is set (IRQnSCB = 1 or IRQnSCA = 1)
- When the DTC is activated by an IRQn interrupt, and the DISEL bit in MRB of the DTC is cleared to 0

[Setting conditions] 1

- When IRQn input goes low when low-level detection is set (IRQnSCB = IRQnSCA =
- When a falling edge occurs in IRQn input when falling edge detection is set (IRQnSCB = 0, IRQnSCA = 1)
- When a rising edge occurs in IRQn input when rising edge detection is set (IRQnSCB = 1, IRQnSCA = 0)
- When a falling or rising edge occurs in IRQn input when both-edge detection is set (IRQnSCB = IRQnSCA = 1)

(n = 5 to 0)

5.3 Interrupt Sources

Interrupt sources comprise external interrupts (NMI and IRQ5 to IRQ0) and internal interrupts (49 sources).

Note: The H8S/2635 Group is not equipped with a DTC, a PC brake controller, or an HCAN1. The H8S/2635 Group has 45 sources of internal interrupt.

5.3.1 External Interrupts

There are seven external interrupts: NMI and IRQ5 to IRQ0. Of these, NMI and IRQ5 to IRQ0 can be used to restore the chip from software standby mode.

NMI Interrupt: NMI is the highest-priority interrupt, and is always accepted by the CPU regardless of the interrupt control mode or the status of the CPU interrupt mask bits. The NMIEG bit in SYSCR can be used to select whether an interrupt is requested at a rising edge or a falling edge on the NMI pin.

The vector number for NMI interrupt exception handling is 7.

IRQ5 to IRQ0 Interrupts: Interrupts IRQ5 to IRQ0 are requested by an input signal at pins $\overline{\text{IRQ5}}$ to $\overline{\text{IRQ0}}$. Interrupts IRQ5 to IRQ0 have the following features:

- Using ISCR, it is possible to select whether an interrupt is generated by a low level, falling edge, rising edge, or both edges, at pins IRQ5 to IRQ0.
- Enabling or disabling of interrupt requests IRQ5 to IRQ0 can be selected with IER.
- The interrupt priority level can be set with IPR.
- The status of interrupt requests IRQ5 to IRQ0 is indicated in ISR. ISR flags can be cleared to 0 by software.

A block diagram of interrupts IRQ5 to IRQ0 is shown in figure 5-2.

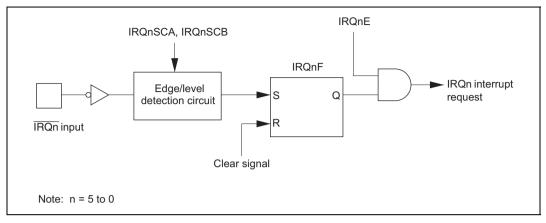


Figure 5-2 Block Diagram of Interrupts IRQ5 to IRQ0

Figure 5-3 shows the timing of setting IRQnF.

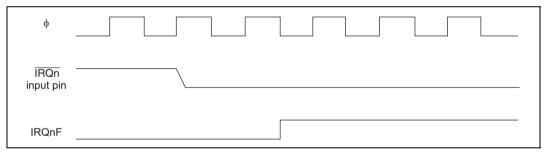


Figure 5-3 Timing of Setting IRQnF

The vector numbers for IRQ5 to IRQ0 interrupt exception handling are 21 to 16.

Detection of IRQ5 to IRQ0 interrupts does not depend on whether the relevant pin has been set for input or output. However, when a pin is used as an external interrupt input pin, do not clear the corresponding DDR to 0 and use the pin as an I/O pin for another function.

5.3.2 Internal Interrupts

There are 49 sources for internal interrupts from on-chip supporting modules.

- For each on-chip supporting module there are flags that indicate the interrupt request status, and enable bits that select enabling or disabling of these interrupts. If both of these are set to 1 for a particular interrupt source, an interrupt request is issued to the interrupt controller.
- The interrupt priority level can be set by means of IPR.
- The DTC can be activated by a TPU, SCI, or other interrupt request. When the DTC is activated by an interrupt, the interrupt control mode and interrupt mask bits are not affected.

5.3.3 Interrupt Exception Handling Vector Table

Table 5-4 shows interrupt exception handling sources, vector addresses, and interrupt priorities. For default priorities, the lower the vector number, the higher the priority.

Priorities among modules can be set by means of the IPR. The situation when two or more modules are set to the same priority, and priorities within a module, are fixed as shown in table 5-4.

Table 5-4 Interrupt Sources, Vector Addresses, and Interrupt Priorities

	Origin of		Vector Address*1			
Interrupt Source	Interrupt Source	Vector Number	Advanced Mode	IPR	Priority	
NMI	External	7	H'001C		High	
IRQ0	pin	16	H'0040	IPRA6 to 4	_ 1	
IRQ1		17	H'0044	IPRA2 to 0	_	
IRQ2 IRQ3		18 19	H'0048 H'004C	IPRB6 to 4	_	
IRQ4 IRQ5		20 21	H'0050 H'0054	IPRB2 to 0	_	
Reserved for system use	_	22 23	H'0058 H'005C	_	_	
SWDTEND (software activation interrupt end)	DTC*3	24	H'0060	IPRC2 to 0	_	
WOVI0 (interval timer)	Watchdog timer 0	25	H'0064	IPRD6 to 4	_	
Reserved for system use	_	26	H'0068	_	-	
PC break	PC break controller*3	27	H'006C	IPRE6 to 4	_	
ADI (A/D conversion end)	A/D	28	H'0070	IPRE2 to 0	_	
WOVI1 (interval timer)	Watchdog timer 1	29	H'0074			
Reserved for system use	_	30 31	H'0078 H'007C	_	_	
TGI0A (TGR0A input capture/compare match)	TPU channel 0	32	H'0080	IPRF6 to 4	_	
TGI0B (TGR0B input capture/compare match)		33	H'0084			
TGI0C (TGR0C input capture/compare match)		34	H'0088			
TGI0D (TGR0D input capture/compare match)		35	H'008C			
TCI0V (overflow 0)		36	H'0090			
Reserved for system use	_	37	H'0094	_	-	
		to 39	to H'009C		Low	

	Origin of		Vector Address*1		
Interrupt Source	Interrupt Source	Vector Number	Advanced Mode	IPR	Priority
TGI1A (TGR1A input capture/compare match)	TPU channel 1	40	H'00A0	IPRF2 to 0	High
TGI1B (TGR1B input capture/compare match)		41	H'00A4		
TCI1V (overflow 1)		42	H'00A8		
TCI1U (underflow 1)		43	H'00AC		
TGI2A (TGR2A input capture/compare match)	TPU channel 2	44	H'00B0	IPRG6 to 4	-
TGI2B (TGR2B input capture/compare match)		45	H'00B4		
TCI2V (overflow 2)		46	H'00B8		
TCI2U (underflow 2)		47	H'00BC		
TGI3A (TGR3A input capture/compare match)	TPU channel 3	48	H'00C0	IPRG2 to 0	-
TGI3B (TGR3B input capture/compare match)		49	H'00C4		
TGI3C (TGR3C input capture/compare match)		50	H'00C8		
TGI3D (TGR3D input capture/compare match)		51	H'00CC		
TCI3V (overflow 3)		52	H'00D0		
Reserved for system use	_	53	H'00D4	_	-
		to	to		
		55	H'00DC		_
TGI4A (TGR4A input capture/compare match)	TPU channel 4	56	H'00E0	IPRH6 to 4	
TGI4B (TGR4B input capture/compare match)		57	H'00E4		
TCI4V (overflow 4)		58	H'00E8		
TCI4U (underflow 4)		59	H'00EC		Low

	Origin of Interrupt	Vector	Vector Address*1 Advanced		
Interrupt Source	Source	Number	Mode	IPR	Priority
TGI5A (TGR5A input capture/compare match)	TPU channel 5	60	H'00F0	IPRH2 to 0	High †
TGI5B (TGR5B input capture/compare match)		61	H'00F4		
TCI5V (overflow 5)		62	H'00F8		
TCI5U (underflow 5)		63	H'00FC		
Reserved for system use		64	H'0100	_	-
		to 79	to H'013C		
ERI0 (receive error 0)	SCI	80	H'0140	IPRJ2 to 0	-
RXI0 (reception completed 0)	channel 0	81	H'0144		
TXI0 (transmit data empty 0)		82	H'0148		
TEI0 (transmission end 0)		83	H'014C		
ERI1 (receive error 1)	SCI	84	H'0150	IPRK6 to 4	-
RXI1 (reception completed 1)	channel 1	85	H'0154		
TXI1 (transmit data empty 1)		86	H'0158		
TEI1 (transmission end 1)		87	H'015C		
ERI2 (receive error 2)	SCI	88	H'0160	IPRK2 to 0	-
RXI2 (reception completed 2)	channel 2	89	H'0164		
TXI2 (transmit data empty 2)		90	H'0168		
TEI2 (transmission end 2)		91	H'016C		
Reserved for system use	_	92	H'0170	_	_
		to 99	to H'018C		
I ² CI0 (1-byte transmission/	I ² C	100	H'0190	IPRL2 to 0	-
reception completed)	channel 0	404	1.110.4.0.4		
DDCSW1 (format switch)	(option)*2	101	H'0194	_	
I ² CI1	I ² C channel 1	102 103	H'0198 H'019C		
Reserved for system use	(option)*2	103	110190		Low

	Origin of		Vector Address*1		
Interrupt Source	Interrupt Source	Vector Number	Advanced Mode	IPR	Priority
PWM1	PWM channel 1	104	H'01A0	IPRM6 to 4	High
PWM2	PWM channel 2	105	H'01A4		
ERS0, OVR0, RM1, SLE0, RM0	HCAN1*3	106 107	H'01A8 H'01AC		
ERS0, OVR0, RM1, SLE0, RM0	HCAN0	108 109	H'01B0 H'01B4	IPRM2 to 0	
Reserved for system use	_	110	H'01B8		
		111	H'01BC		Low

Notes: 1. Lower 16 bits of the start address.

- 2. I^2C is available as an option in the H8S/2638, H8S/2639, and H8S/2630 only. The product equipped with the I^2C bus interface is the W-mask version.
- 3. The DTC, PC break, and HCAN1 interrupts are reserved in the H8S/2635 Group.

5.4 Interrupt Operation

5.4.1 Interrupt Control Modes and Interrupt Operation

Interrupt operations in the chip differ depending on the interrupt control mode.

NMI interrupts are accepted at all times except in the reset state and the hardware standby state. In the case of IRQ interrupts and on-chip supporting module interrupts, an enable bit is provided for each interrupt. Clearing an enable bit to 0 disables the corresponding interrupt request. Interrupt sources for which the enable bits are set to 1 are controlled by the interrupt controller.

Table 5-5 shows the interrupt control modes.

The interrupt controller performs interrupt control according to the interrupt control mode set by the INTM1 and INTM0 bits in SYSCR, the priorities set in IPR, and the masking state indicated by the I bit in the CPU's CCR, and bits I2 to I0 in EXR.

Table 5-5 Interrupt Control Modes

Interrupt	SYSCR		Priority Setting	Interrupt		
Control Mode	INTM1	INTM0	Registers	Mask Bits	Description	
0	0	0	_	1	Interrupt mask control is performed by the I bit.	
_	_	1	_	_	Setting prohibited	
2	1	0	IPR	I2 to I0	8-level interrupt mask control is performed by bits I2 to I0. 8 priority levels can be set with IPR.	
_	_	1	_	_	Setting prohibited	

Figure 5-4 shows a block diagram of the priority decision circuit.

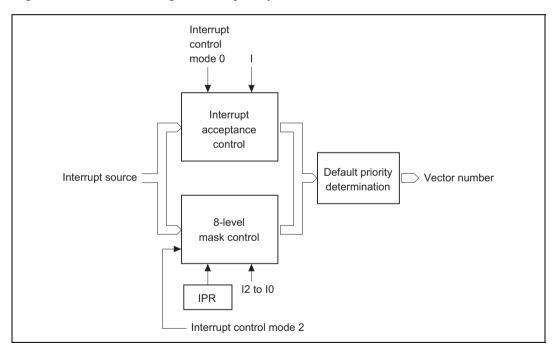


Figure 5-4 Block Diagram of Interrupt Control Operation

(1) Interrupt Acceptance Control

In interrupt control mode 0, interrupt acceptance is controlled by the I bit in CCR.

Table 5-6 shows the interrupts selected in each interrupt control mode.

Table 5-6 Interrupts Selected in Each Interrupt Control Mode (1)

	Interrupt Mask Bits	
Interrupt Control Mode	Ī	Selected Interrupts
0	0	All interrupts
	1	NMI interrupts
2	*	All interrupts

Legend:

(2) 8-Level Control

In interrupt control mode 2, 8-level mask level determination is performed for the selected interrupts in interrupt acceptance control according to the interrupt priority level (IPR).

The interrupt source selected is the interrupt with the highest priority level, and whose priority level set in IPR is higher than the mask level.

Table 5-7 Interrupts Selected in Each Interrupt Control Mode (2)

Interrupt Control Mode	Selected Interrupts
0	All interrupts
2	Highest-priority-level (IPR) interrupt whose priority level is greater than the mask level (IPR > I2 to I0).

^{*:} Don't care

(3) Default Priority Determination

When an interrupt is selected by 8-level control, its priority is determined and a vector number is generated.

If the same value is set for IPR, acceptance of multiple interrupts is enabled, and so only the interrupt source with the highest priority according to the preset default priorities is selected and has a vector number generated.

Interrupt sources with a lower priority than the accepted interrupt source are held pending.

Table 5-8 shows operations and control signal functions in each interrupt control mode.

Table 5-8 Operations and Control Signal Functions in Each Interrupt Control Mode

Interrupt Control	Setting		Interrupt A	cceptance trol	8-Level Control		8-Level Control		Default Priority Determination	T (Trace)
Mode	INTM1	INTM0		I		12 to 10	IPR	Determination	(Trace)	
0	0	0	0	IM	Χ	_	_*2	0	_	
2	1	0	Х	—* ¹	0	IM	PR	0	Т	

Legend:

 \bigcirc : Interrupt operation control performed

X: No operation (All interrupts enabled).

IM: Used as interrupt mask bit

PR: Sets priority.

—: Not used.

Notes: 1. Set to 1 when interrupt is accepted.

2. Keep the initial setting.

5.4.2 Interrupt Control Mode 0

Enabling and disabling of IRQ interrupts and on-chip supporting module interrupts can be set by means of the I bit in the CPU's CCR. Interrupts are enabled when the I bit is cleared to 0, and disabled when set to 1.

Figure 5-5 shows a flowchart of the interrupt acceptance operation in this case.

- [1] If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, an interrupt request is sent to the interrupt controller.
- [2] The I bit is then referenced. If the I bit is cleared to 0, the interrupt request is accepted. If the I bit is set to 1, only an NMI interrupt is accepted, and other interrupt requests are held pending.
- [3] Interrupt requests are sent to the interrupt controller, the highest-ranked interrupt according to the priority system is accepted, and other interrupt requests are held pending.
- [4] When an interrupt request is accepted, interrupt exception handling starts after execution of the current instruction has been completed.
- [5] The PC and CCR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine.
- [6] Next, the I bit in CCR is set to 1. This masks all interrupts except NMI.
- [7] A vector address is generated for the accepted interrupt, and execution of the interrupt handling routine starts at the address indicated by the contents of that vector address.

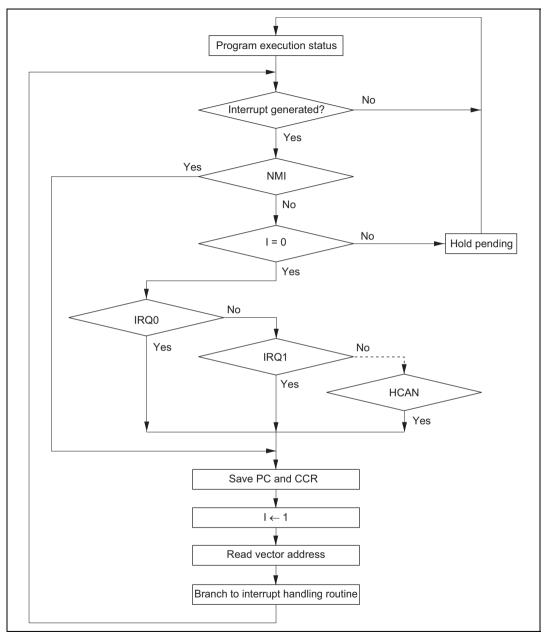


Figure 5-5 Flowchart of Procedure Up to Interrupt Acceptance in Interrupt Control Mode 0

5.4.3 Interrupt Control Mode 2

Eight-level masking is implemented for IRQ interrupts and on-chip supporting module interrupts by comparing the interrupt mask level set by bits I2 to I0 of EXR in the CPU with IPR.

Figure 5-6 shows a flowchart of the interrupt acceptance operation in this case.

- [1] If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, an interrupt request is sent to the interrupt controller.
- [2] When interrupt requests are sent to the interrupt controller, the interrupt with the highest priority according to the interrupt priority levels set in IPR is selected, and lower-priority interrupt requests are held pending. If a number of interrupt requests with the same priority are generated at the same time, the interrupt request with the highest priority according to the priority system shown in table 5-4 is selected.
- [3] Next, the priority of the selected interrupt request is compared with the interrupt mask level set in EXR. An interrupt request with a priority no higher than the mask level set at that time is held pending, and only an interrupt request with a priority higher than the interrupt mask level is accepted.
- [4] When an interrupt request is accepted, interrupt exception handling starts after execution of the current instruction has been completed.
- [5] The PC, CCR, and EXR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine.
- [6] The T bit in EXR is cleared to 0. The interrupt mask level is rewritten with the priority level of the accepted interrupt.
 If the accepted interrupt is NMI, the interrupt mask level is set to H'7.
- [7] A vector address is generated for the accepted interrupt, and execution of the interrupt handling routine starts at the address indicated by the contents of that vector address.

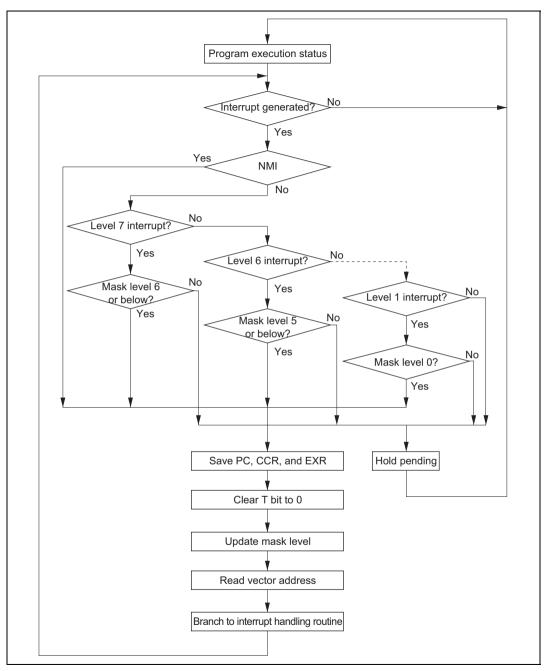


Figure 5-6 Flowchart of Procedure Up to Interrupt Acceptance in Interrupt Control Mode 2

5.4.4 Interrupt Exception Handling Sequence

Figure 5-7 shows the interrupt exception handling sequence. The example shown is for the case where interrupt control mode 0 is set in advanced mode, and the program area and stack area are in on-chip memory.

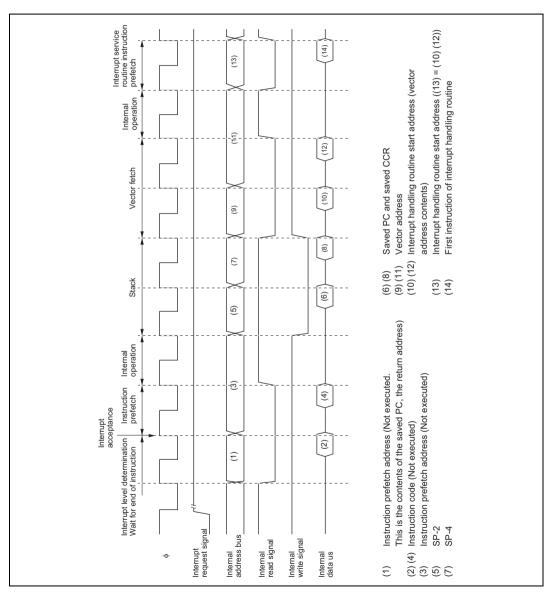


Figure 5-7 Interrupt Exception Handling

5.4.5 **Interrupt Response Times**

The chip is capable of fast word transfer instruction to on-chip memory, and the program area is provided in on-chip ROM and the stack area in on-chip RAM, enabling high-speed processing.

Table 5-9 shows interrupt response times - the interval between generation of an interrupt request and execution of the first instruction in the interrupt handling routine. The execution status symbols used in table 5-9 are explained in table 5-10.

Table 5-9 **Interrupt Response Times**

		Norma	l Mode ^{*5}	Advanced Mode		
No.	Execution Status	INTM1 = 0	INTM1 = 1	INTM1 = 0	INTM1 = 1	
1	Interrupt priority determination*1	3	3	3	3	
2	Number of wait states until executing instruction ends*2		1 to (19 + 2 · S _I)	1 to (19 + 2 · S _I)	1 to (19 + 2 · S _I)	
3	PC, CCR, EXR stack save	$2 \cdot S_K$	$3 \cdot S_K$	$2 \cdot S_K$	3 · S _K	
4	Vector fetch	Sı	Sı	2·S _I	2·S _I	
5	Instruction fetch*3	$2 \cdot S_1$	$2 \cdot S_I$	$2 \cdot S_1$	2 · S _I	
6	Internal processing*4	2	2	2	2	
Total	(using on-chip memory)	11 to 31	12 to 32	12 to 32	13 to 33	

Notes: 1. Two states in case of internal interrupt.

- 2. Refers to MULXS and DIVXS instructions.
- 3. Prefetch after interrupt acceptance and interrupt handling routine prefetch.
- 4. Internal processing after interrupt acceptance and internal processing after vector fetch.
- 5. Not implemented in the chip.

May 28, 2010

Table 5-10 Number of States in Interrupt Handling Routine Execution Statuses

		Object of Access				
			External Device			
			8 Bit Bus		16 Bit Bus	
Symbol		Internal Memory	2-State Access	3-State Access	2-State Access	3-State Access
Instruction fetch	Sı	1	4	6 + 2m	2	3 + m
Branch address read	SJ	_				
Stack manipulation	Sĸ	_				

Legend:

m: Number of wait states in an external device access.

5.5 Usage Notes

5.5.1 Contention between Interrupt Generation and Disabling

When an interrupt enable bit is cleared to 0 to disable interrupts, the disabling becomes effective after execution of the instruction.

In other words, when an interrupt enable bit is cleared to 0 by an instruction such as BCLR or MOV, if an interrupt is generated during execution of the instruction, the interrupt concerned will still be enabled on completion of the instruction, and so interrupt exception handling for that interrupt will be executed on completion of the instruction. However, if there is an interrupt request of higher priority than that interrupt, interrupt exception handling will be executed for the higher-priority interrupt, and the lower-priority interrupt will be ignored.

The same also applies when an interrupt source flag is cleared to 0.

Figure 5-8 shows an example in which the TCIEV bit in the TPU's TIER register is cleared to 0.

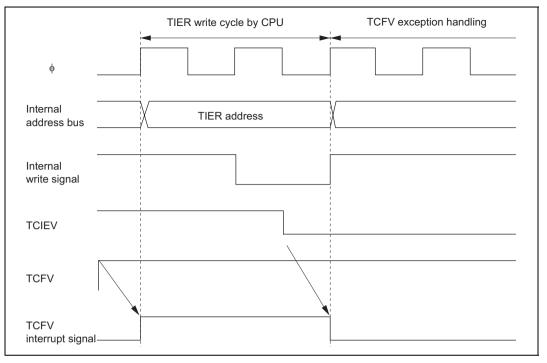


Figure 5-8 Contention between Interrupt Generation and Disabling

The above contention will not occur if an enable bit or interrupt source flag is cleared to 0 while the interrupt is masked.

5.5.2 Instructions that Disable Interrupts

Instructions that disable interrupts are LDC, ANDC, ORC, and XORC. After any of these instructions is executed, all interrupts including NMI are disabled and the next instruction is always executed. When the I bit is set by one of these instructions, the new value becomes valid two states after execution of the instruction ends.

5.5.3 Times when Interrupts Are Disabled

There are times when interrupt acceptance is disabled by the interrupt controller.

The interrupt controller disables interrupt acceptance for a 3-state period after the CPU has updated the mask level with an LDC, ANDC, ORC, or XORC instruction.

5.5.4 Interrupts during Execution of EEPMOV Instruction

Interrupt operation differs between the EEPMOV.B instruction and the EEPMOV.W instruction.

With the EEPMOV.B instruction, an interrupt request (including NMI) issued during the transfer is not accepted until the move is completed.

With the EEPMOV.W instruction, if an interrupt request is issued during the transfer, interrupt exception handling starts at a break in the transfer cycle. The PC value saved on the stack in this case is the address of the next instruction.

Therefore, if an interrupt is generated during execution of an EEPMOV.W instruction, the following coding should be used.

L1: EEPMOV.W

MOV.W R4,R4

BNE L1

5.5.5 IRQ Interrupts

When operating by clock input, acceptance of input to an \overline{IRQ} pin is synchronized with the clock. In software standby mode, the input is accepted asynchronously. For details on the input conditions, see section 24.5.2, Control Signal Timing.

5.5.6 Notes on Use of NMI Interrupt

When the system is operating normally under conditions conforming to the specified electrical properties, exception processing by the on-chip interrupt controller linked to the CPU is used to execute the NMI interrupt. When operation is not normal (runaway status) due to a software problem or abnormal input to one of the LSI's pins, no operations can be guaranteed, including the NMI interrupt. In such cases it is possible to cause the LSI to return to normal program execution by applying an external reset.

5.6 DTC Activation by Interrupt

Note: The DTC is not implemented in the H8S/2635 Group.

5.6.1 Overview

The DTC can be activated by an interrupt. In this case, the following options are available:

- Interrupt request to CPU
- Activation request to DTC
- Selection of a number of the above

For details of interrupt requests that can be used with to activate the DTC, see section 8, Data Transfer Controller (DTC).

5.6.2 Block Diagram

Figure 5-9 shows a block diagram of the DTC interrupt controller.

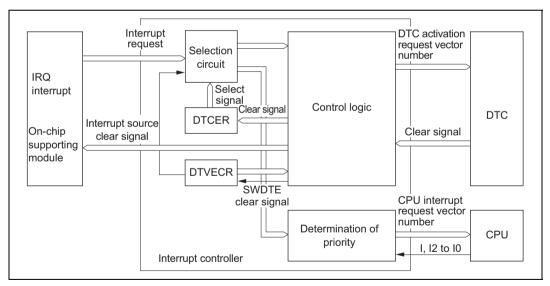


Figure 5-9 Interrupt Control for DTC

5.6.3 Operation

The interrupt controller has three main functions in DTC control.

(1) **Selection of Interrupt Source:** Interrupt factors are selected as DTC activation request or CPU interrupt request by the DTCE bit of DTCERA to DTCERG of DTC.

By specifying the DISEL bit of the DTC's MRB, it is possible to clear the DTCE bit to 0 after DTC data transfer, and request a CPU interrupt.

If DTC carries out the designate number of data transfers and the transfer counter reads 0, after DTC data transfer, the DTCE bit is also cleared to 0, and a CPU interrupt requested.

- (2) **Determination of Priority:** The DTC activation source is selected in accordance with the default priority order, and is not affected by mask or priority levels. See section 8.3.3, DTC Vector Table for the respective priority.
- (3) **Operation Order:** If the same interrupt is selected as a DTC activation source and a CPU interrupt source, the DTC data transfer is performed first, followed by CPU interrupt exception handling.

Table 5-11 shows the interrupt factor clear control and selection of interrupt factors by specification of the DTCE bit of DTCERA to DTCERG of DTC, and the DISEL bit of DTC's MRB.

Table 5-11 Interrupt Source Selection and Clearing Control

S	et	tin	gs

DTC		Interrupt Soul	rce Selection/Clearing Control
DTCE	DISEL	DTC	CPU
0	*	Χ	Δ
1	0	Δ	Х
	1	0	Δ

Legend:

 Δ : The relevant interrupt is used. Interrupt source clearing is performed. (The CPU should clear the source flag in the interrupt handling routine.)

○ : The relevant interrupt is used. The interrupt source is not cleared.

X: The relevant bit cannot be used.

* : Don't care

May 28, 2010

(4) Notes on Use: SCI and A/D converter interrupt sources are cleared when the DTC reads or writes to the prescribed register.

Section 6 PC Break Controller (PBC)

Note: The H8S/2635 Group is not equipped with a PBC.

6.1 Overview

The PC break controller (PBC) provides functions that simplify program debugging. Using these functions, it is easy to create a self-monitoring debugger, enabling programs to be debugged with the chip alone, without using an in-circuit emulator. Four break conditions can be set in the PBC: instruction fetch, data read, data write, and data read/write.

6.1.1 Features

The PC break controller has the following features:

- Two break channels (A and B)
- The following can be set as break compare conditions:
 - 24 address bits
 - Bit masking possible
 - Bus cycle
 - Instruction fetch
 - Data access: data read, data write, data read/write
 - Bus master
 - Either CPU or CPU/DTC can be selected
- The timing of PC break exception handling after the occurrence of a break condition is as follows:
 - Immediately before execution of the instruction fetched at the set address (instruction fetch)
 - Immediately after execution of the instruction that accesses data at the set address (data access)
- Module stop mode can be set
 - The initial setting is for PBC operation to be halted. Register access is enabled by clearing module stop mode.

6.1.2 Block Diagram

Figure 6-1 shows a block diagram of the PC break controller.

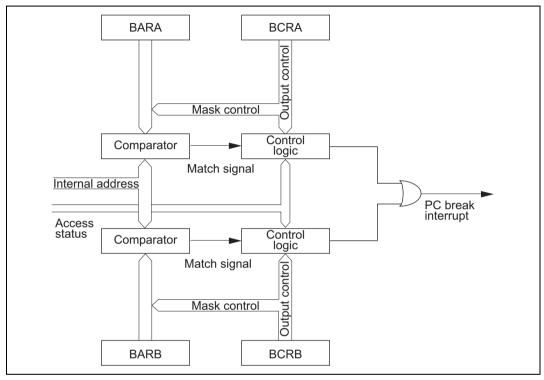


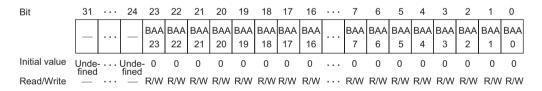
Figure 6-1 Block Diagram of PC Break Controller

6.1.3 **Register Configuration**

Table 6-1 shows the PC break controller registers.

Table 6-1 **PC Break Controller Registers**

			Initial Value	
Name	Abbreviation	R/W	Reset	Address*1
Break address register A	BARA	R/W	H'XX000000	H'FE00
Break address register B	BARB	R/W	H'XX000000	H'FE04
Break control register A	BCRA	R/(W)*2	H'00	H'FE08
Break control register B	BCRB	R/(W)*2	H'00	H'FE09
Module stop control register C	MSTPCRC	R/W	H'FF	H'FDEA


Notes: 1. Lower 16 bits of the address.

2. Only a 0 may be written to this bit to clear the flag.

6.2 **Register Descriptions**

May 28, 2010

6.2.1 **Break Address Register A (BARA)**

BARA is a 32-bit readable/writable register that specifies the channel A break address.

BAA23 to BAA0 are initialized to H'000000 by a reset and in hardware standby mode.

Bits 31 to 24—Reserved: These bits return an undefined value if read, and cannot be modified.

Bits 23 to 0—Break Address A23 to A0 (BAA23 to BAA0): These bits hold the channel A PC break address.

6.2.2 Break Address Register B (BARB)

BARB is the channel B break address register. The bit configuration is the same as for BARA.

6.2.3 Break Control Register A (BCRA)

Bit	7	6	5	4	3	2	1	0
	CMFA	CDA	BAMRA2	BAMRA1	BAMRA0	CSELA1	CSELA0	BIEA
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/(W)*	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * Only a 0 may be written to this bit to clear the flag.

BCRA is an 8-bit readable/writable register that controls channel A PC breaks. BCRA (1) selects the break condition bus master, (2) specifies bits subject to address comparison masking, and (3) specifies whether the break condition is applied to an instruction fetch or a data access. It also contains a condition match flag.

BCRA is initialized to H'00 by a reset and in hardware standby mode.

Bit 7—Condition Match Flag A (CMFA): Set to 1 when a break condition set for channel A is satisfied. This flag is not cleared to 0.

Bit 7

CMFA	 Description			
0	[Clearing condition]			
	 When 0 is written to CMFA after reading CMFA = 1 	(Initial value)		
1	[Setting condition]			
	 When a condition set for channel A is satisfied 			

Bit 6—CPU Cycle/DTC Cycle Select A (CDA): Selects the channel A break condition bus master.

Bit 6

CDA	Description	
0	PC break is performed when CPU is bus master	(Initial value)
1	PC break is performed when CPU or DTC is bus master	

Bits 5 to 3—Break Address Mask Register A2 to A0 (BAMRA2 to BAMRA0): These bits specify which bits of the break address (BAA23 to BAA0) set in BARA are to be masked.

Bit 5	Bit 4	Bit 3	
BAMRA2	BAMRA1	BAMRA0	
0 0		0	All BARA bits are unmasked and included in break conditions (Initial value)
		1	BAA0 (lowest bit) is masked, and not included in break conditions
	1	0	BAA1, BAA0 (lower 2 bits) are masked, and not included in break conditions
		1	BAA2 to BAA0 (lower 3 bits) are masked, and not included in break conditions
1	0	0	BAA3 to BAA0 (lower 4 bits) are masked, and not included in break conditions
		1	BAA7 to BAA0 (lower 8 bits) are masked, and not included in break conditions
	1	0	BAA11 to BAA0 (lower 12 bits) are masked, and not included in break conditions
		1	BAA15 to BAA0 (lower 16 bits) are masked, and not included in break conditions

Bits 2 and 1—Break Condition Select A (CSELA1, CSELA0): These bits selection an instruction fetch, data read, data write, or data read/write cycle as the channel A break condition.

Bit 2	Bit 1		
CSELA1	CSELA0	Description	
0	0	Instruction fetch is used as break condition	(Initial value)
	1	Data read cycle is used as break condition	
1	0	Data write cycle is used as break condition	
	1	Data read/write cycle is used as break condition	

Bit 0—Break Interrupt Enable A (BIEA): Enables or disables channel A PC break interrupts.

Bit 0

BIEA	 Description	
0	PC break interrupts are disabled	(Initial value)
1	PC break interrupts are enabled	

6.2.4 Break Control Register B (BCRB)

BCRB is the channel B break control register. The bit configuration is the same as for BCRA.

6.2.5 Module Stop Control Register C (MSTPCRC)

Bit	7	6	5	4	3	2	1	0
	MSTPC7	MSTPC6	MSTPC5	MSTPC4	MSTPC3	MSTPC2	MSTPC1	MSTPC0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W							

MSTPCRC is an 8-bit readable/writable register that performs module stop mode control.

When the MSTPC4 bit is set to 1, PC break controller operation is stopped at the end of the bus cycle, and module stop mode is entered. Register read/write accesses are not possible in module stop mode. For details, see section 23A.5, 23B.5, Module Stop Mode.

MSTPCRC is initialized to H'FF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 4—Module Stop (MSTPC4): Specifies the PC break controller module stop mode.

Bit 4

MSTPC4	 Description	
0	PC break controller module stop mode is cleared	
1	PC break controller module stop mode is set	(Initial value)

6.3 Operation

The operation flow from break condition setting to PC break interrupt exception handling is shown in section 6.3.1, PC Break Interrupt Due to Instruction Fetch, and 6.3.2, PC Break Interrupt Due to Data Access, taking the example of channel A.

6.3.1 PC Break Interrupt Due to Instruction Fetch

(1) Initial settings

- Set the break address in BARA. For a PC break caused by an instruction fetch, set the address of the first instruction byte as the break address.
- Set the break conditions in BCRA.

BCRA bit 6 (CDA): With a PC break caused by an instruction fetch, the bus master must be the CPU. Set 0 to select the CPU.

BCRA bits 5 to 3 (BAMA2 to BAMA0): Set the address bits to be masked.

BCRA bits 2, 1 (CSELA1, CSELA0): Set 00 to specify an instruction fetch as the break condition.

BCRA bit 0 (BIEA): Set to 1 to enable break interrupts.

(2) Satisfaction of break condition

— When the instruction at the set address is fetched, a PC break request is generated immediately before execution of the fetched instruction, and the condition match flag (CMFA) is set.

(3) Interrupt handling

 After priority determination by the interrupt controller, PC break interrupt exception handling is started.

6.3.2 PC Break Interrupt Due to Data Access

(1) Initial settings

- Set the break address in BARA. For a PC break caused by a data access, set the target ROM, RAM, I/O, or external address space address as the break address. Stack operations and branch address reads are included in data accesses.
- Set the break conditions in BCRA.

BCRA bit 6 (CDA): Select the bus master.

BCRA bits 5 to 3 (BAMA2 to BAMA0): Set the address bits to be masked.

BCRA bits 2, 1 (CSELA1, CSELA0): Set 01, 10, or 11 to specify data access as the break condition.

BCRA bit 0 (BIEA): Set to 1 to enable break interrupts.

(2) Satisfaction of break condition

— After execution of the instruction that performs a data access on the set address, a PC break request is generated and the condition match flag (CMFA) is set.

(3) Interrupt handling

 After priority determination by the interrupt controller, PC break interrupt exception handling is started.

6.3.3 Notes on PC Break Interrupt Handling

- (1) The PC break interrupt is shared by channels A and B. The channel from which the request was issued must be determined by the interrupt handler.
- (2) The CMFA and CMFB flags are not cleared to 0, so 0 must be written to CMFA or CMFB after first reading the flag while it is set to 1. If the flag is left set to 1, another interrupt will be requested after interrupt handling ends.
- (3) A PC break interrupt generated when the DTC is the bus master is accepted after the bus has been transferred to the CPU by the bus controller.

6.3.4 Operation in Transitions to Power-Down Modes

The operation when a PC break interrupt is set for an instruction fetch at the address after a SLEEP instruction is shown below.

- (1) When the SLEEP instruction causes a transition from high-speed (medium-speed) mode to sleep mode, or from subactive mode* to subsleep mode*: After execution of the SLEEP instruction, a transition is not made to sleep mode or subsleep mode*, and PC break interrupt handling is executed. After execution of PC break interrupt
 - mode*, and PC break interrupt handling is executed. After execution of PC break interrupt handling, the instruction at the address after the SLEEP instruction is executed (figure 6-2 (A)).
- (2) When the SLEEP instruction causes a transition from high-speed (medium-speed) mode to subactive mode*:
 - After execution of the SLEEP instruction, a transition is made to subactive mode* via direct transition exception handling. After the transition, PC break interrupt handling is executed, then the instruction at the address after the SLEEP instruction is executed (figure 6-2 (B)).
- (3) When the SLEEP instruction causes a transition from subactive mode* to high-speed (medium-speed) mode:
 - After execution of the SLEEP instruction, and following the clock oscillation settling time, a transition is made to high-speed (medium-speed) mode via direct transition exception handling. After the transition, PC break interrupt handling is executed, then the instruction at the address after the SLEEP instruction is executed (figure 6-2 (C)).
- (4) When the SLEEP instruction causes a transition to software standby mode or watch mode*: After execution of the SLEEP instruction, a transition is made to the respective mode, and PC break interrupt handling is not executed. However, the CMFA or CMFB flag is set (figure 6-2 (D)).

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions only.

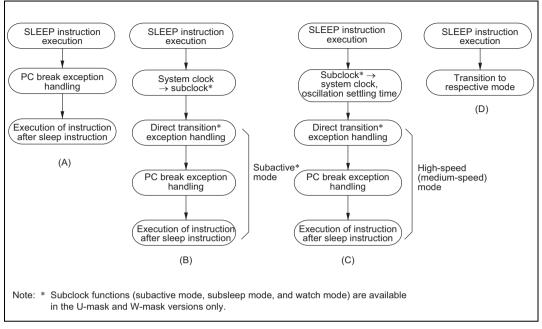


Figure 6-2 Operation in Power-Down Mode Transitions

6.3.5 PC Break Operation in Continuous Data Transfer

If a PC break interrupt is generated when the following operations are being performed, exception handling is executed on completion of the specified transfer.

- (1) When a PC break interrupt is generated at the transfer address of an EEPMOV.B instruction: PC break exception handling is executed after all data transfers have been completed and the EEPMOV.B instruction has ended.
- (2) When a PC break interrupt is generated at a DTC transfer address:31 PC break exception handling is executed after the DTC has completed the specified number of data transfers, or after data for which the DISEL bit is set to 1 has been transferred.

6.3.6 When Instruction Execution Is Delayed by One State

Caution is required in the following cases, as instruction execution is one state later than usual.

- (1) When the PBC is enabled (i.e. when the break interrupt enable bit is set to 1), execution of a one-word branch instruction (Bcc d:8, BSR, JSR, JMP, TRAPA, RTE, or RTS) located in on-chip ROM or RAM is always delayed by one state.
- (2) When break interruption by instruction fetch is set, the set address indicates on-chip ROM or RAM space, and that address is used for data access, the instruction that executes the data access is one state later than in normal operation.
- (3) When break interruption by instruction fetch is set and a break interrupt is generated, if the executing instruction immediately preceding the set instruction has one of the addressing modes shown below, and that address indicates on-chip ROM or RAM, and that address is used for data access, the instruction will be one state later than in normal operation.
 - @ERn, @(d:16,ERn), @(d:32,ERn), @-ERn/ERn+, @aa:8, @aa:24, @aa:32, @(d:8,PC), @(d:16,PC), @@aa:8
- (4) When break interruption by instruction fetch is set and a break interrupt is generated, if the executing instruction immediately preceding the set instruction is NOP or SLEEP, or has #xx,Rn as its addressing mode, and that instruction is located in on-chip ROM or RAM, the instruction will be one state later than in normal operation.

6.3.7 Additional Notes

- (1) When a PC break is set for an instruction fetch at the address following a BSR, JSR, JMP, TRAPA, RTE, or RTS instruction:
 - Even if the instruction at the address following a BSR, JSR, JMP, TRAPA, RTE, or RTS instruction is fetched, it is not executed, and so a PC break interrupt is not generated by the instruction fetch at the next address.
- (2) When the I bit is set by an LDC, ANDC, ORC, or XORC instruction, a PC break interrupt becomes valid two states after the end of the executing instruction. If a PC break interrupt is set for the instruction following one of these instructions, since interrupts, including NMI, are disabled for a 3-state period in the case of LDC, ANDC, ORC, and XORC, the next instruction is always executed. For details, see section 5, Interrupt Controller.
- (3) When a PC break is set for an instruction fetch at the address following a Bcc instruction: A PC break interrupt is generated if the instruction at the next address is executed in accordance with the branch condition, but is not generated if the instruction at the next address is not executed.
- (4) When a PC break is set for an instruction fetch at the branch destination address of a Bcc instruction:
 - A PC break interrupt is generated if the instruction at the branch destination is executed in accordance with the branch condition, but is not generated if the instruction at the branch destination is not executed.

Section 7 Bus Controller

7.1 Overview

The chip has an on-chip bus controller (BSC) that manages the external address space divided into eight areas. The bus specifications, such as bus width and number of access states, can be set independently for each area, enabling multiple memories to be connected easily.

The bus controller also has a bus arbitration function, and controls the operation of the internal bus masters: the CPU, and data transfer controller (DTC).

Note: The DTC is not implemented in the H8S/2635 Group.

7.1.1 Features

The features of the bus controller are listed below.

- Manages external address space in area units
 - Manages the external space as 8 areas of 2-Mbytes
 - Bus specifications can be set independently for each area
 - Burst ROM interface can be set
- Basic bus interface
 - 8-bit access or 16-bit access can be selected for each area
 - 2-state access or 3-state access can be selected for each area
 - Program wait states can be inserted for each area
- Burst ROM interface
 - Burst ROM interface can be set for area 0.
 - Choice of 1- or 2-state burst access
- Idle cycle insertion
 - An idle cycle can be inserted in case of an external read cycle between different areas
 - An idle cycle can be inserted in case of an external write cycle immediately after an external read cycle
- Write buffer functions
 - External write cycle and internal access can be executed in parallel
- Bus arbitration function
 - Includes a bus arbiter that arbitrates bus mastership among the CPU and DTC
- Other features
 - External bus release function

7.1.2 Block Diagram

Figure 7-1 shows a block diagram of the bus controller.

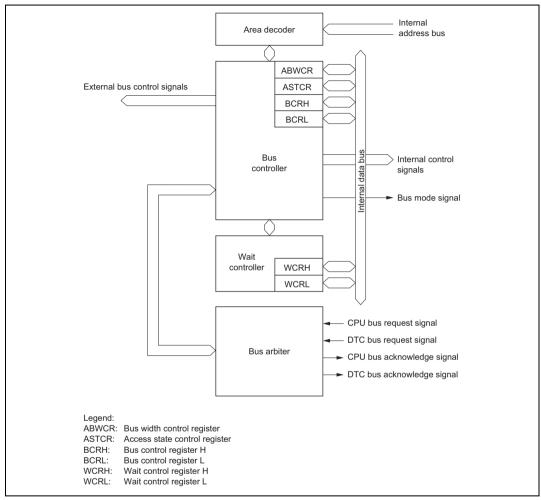


Figure 7-1 Block Diagram of Bus Controller

Pin Configuration 7.1.3

Table 7-1 summarizes the pins of the bus controller.

Bus Controller Pins Table 7-1

Name	Symbol	I/O	Function
Address strobe	ĀS	Output	Strobe signal indicating that address output on address bus is enabled.
Read	RD	Output	Strobe signal indicating that external space is being read.
High write	HWR	Output	Strobe signal indicating that external space is to be written, and upper half (D15 to D8) of data bus is enabled.
Low write	LWR	Output	Strobe signal indicating that external space is to be written, and lower half (D7 to D0) of data bus is enabled.

7.1.4 **Register Configuration**

Table 7-2 summarizes the registers of the bus controller.

Table 7-2 Bus Controller Registers

Name	Abbreviation	R/W	Initial Value	Address*1
Bus width control register	ABWCR	R/W	H'FF/H'00*2	H'FED0
Access state control register	ASTCR	R/W	H'FF	H'FED1
Wait control register H	WCRH	R/W	H'FF	H'FED2
Wait control register L	WCRL	R/W	H'FF	H'FED3
Bus control register H	BCRH	R/W	H'D0	H'FED4
Bus control register L	BCRL	R/W	H'08	H'FED5
Pin function control register	PFCR	R/W	H'0D/H'00	H'FDEB

Notes: 1. Lower 16 bits of the address.

2. Determined by the MCU operating mode.

7.2 Register Descriptions

7.2.1 Bus Width Control Register (ABWCR)

Bit	:	7	6	5	4	3	2	1	0
		ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0
Modes 5	to 7								
Initial valu	ie:	1	1	1	1	1	1	1	1
RW	:	R/W							
Mode 4									
Initial valu	ie:	0	0	0	0	0	0	0	0
RW	:	R/W							

ABWCR is an 8-bit readable/writable register that designates each area for either 8-bit access or 16-bit access.

ABWCR sets the data bus width for the external memory space. The bus width for on-chip memory and internal I/O registers is fixed regardless of the settings in ABWCR.

After a reset and in hardware standby mode, ABWCR is initialized to H'FF in modes 5, 6, 7, and to H'00 in mode 4. It is not initialized in software standby mode.

Bits 7 to 0—Area 7 to 0 Bus Width Control (ABW7 to ABW0): These bits select whether the corresponding area is to be designated for 8-bit access or 16-bit access.

Bit n

ABWn	Description
0	Area n is designated for 16-bit access
1	Area n is designated for 8-bit access
	(7:0)

(n = 7 to 0)

7.2.2 Access State Control Register (ASTCR)

Bit	:	7	6	5	4	3	2	1	0
		AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0
Initial va	alue :	1	1	1	1	1	1	1	1
R/W	:	R/W							

ASTCR is an 8-bit readable/writable register that designates each area as either a 2-state access space or a 3-state access space.

ASTCR sets the number of access states for the external memory space. The number of access states for on-chip memory and internal I/O registers is fixed regardless of the settings in ASTCR.

ASTCR is initialized to HFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 7 to 0—Area 7 to 0 Access State Control (AST7 to AST0): These bits select whether the corresponding area is to be designated as a 2-state access space or a 3-state access space.

Wait state insertion is enabled or disabled at the same time.

Bit n

ASTn	Description	
0	Area n is designated for 2-state access Wait state insertion in area n external space is disabled	
1	Area n is designated for 3-state access Wait state insertion in area n external space is enabled	(Initial value)

(n = 7 to 0)

7.2.3 Wait Control Registers H and L (WCRH, WCRL)

WCRH and WCRL are 8-bit readable/writable registers that select the number of program wait states for each area.

Program waits are not inserted in the case of on-chip memory or internal I/O registers.

WCRH and WCRL are initialized to H'FF by a reset and in hardware standby mode. They are not initialized in software standby mode.

WCRH

Bit	:	7	6	5	4	3	2	1	0
		W71	W70	W61	W60	W51	W50	W41	W40
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

Bits 7 and 6—Area 7 Wait Control 1 and 0 (W71, W70): These bits select the number of program wait states when area 7 in external space is accessed while the AST7 bit in ASTCR is set to 1.

Bit 7	Bit 6	
W71	W70	 Description
0	0	Program wait not inserted when external space area 7 is accessed
	1	1 program wait state inserted when external space area 7 is accessed
1	0	2 program wait states inserted when external space area 7 is accessed
	1	3 program wait states inserted when external space area 7 is accessed (Initial value)

Bits 5 and 4—Area 6 Wait Control 1 and 0 (W61, W60): These bits select the number of program wait states when area 6 in external space is accessed while the AST6 bit in ASTCR is set to 1.

Bit 5	Bit 4	
W61	W60	 Description
0	0	Program wait not inserted when external space area 6 is accessed
	1	1 program wait state inserted when external space area 6 is accessed
1	0	2 program wait states inserted when external space area 6 is accessed
	1	3 program wait states inserted when external space area 6 is accessed (Initial value)

Bits 3 and 2—Area 5 Wait Control 1 and 0 (W51, W50): These bits select the number of program wait states when area 5 in external space is accessed while the AST5 bit in ASTCR is set to 1.

Bit 3	Bit 2	
W51	W50	Description
0	0	Program wait not inserted when external space area 5 is accessed
	1	1 program wait state inserted when external space area 5 is accessed
1	0	2 program wait states inserted when external space area 5 is accessed
	1	3 program wait states inserted when external space area 5 is accessed (Initial value)

Bits 1 and 0—Area 4 Wait Control 1 and 0 (W41, W40): These bits select the number of program wait states when area 4 in external space is accessed while the AST4 bit in ASTCR is set to 1.

Bit 1	Bit 0	
W41	W40	Description
0	0	Program wait not inserted when external space area 4 is accessed
	1	1 program wait state inserted when external space area 4 is accessed
1	0	2 program wait states inserted when external space area 4 is accessed
	1	3 program wait states inserted when external space area 4 is accessed (Initial value)

WCRL

Bit	:	7	6	5	4	3	2	1	0
		W31	W30	W21	W20	W11	W10	W01	W00
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

Bits 7 and 6—Area 3 Wait Control 1 and 0 (W31, W30): These bits select the number of program wait states when area 3 in external space is accessed while the AST3 bit in ASTCR is set to 1.

Bit 7	Bit 6	
W31	W30	Description
0	0	Program wait not inserted when external space area 3 is accessed
	1	1 program wait state inserted when external space area 3 is accessed
1	0	2 program wait states inserted when external space area 3 is accessed
	1	3 program wait states inserted when external space area 3 is accessed (Initial value)

Bits 5 and 4—Area 2 Wait Control 1 and 0 (W21, W20): These bits select the number of program wait states when area 2 in external space is accessed while the AST2 bit in ASTCR is set to 1.

Bit 5	Bit 4	
W21	W20	Description
0	0	Program wait not inserted when external space area 2 is accessed
	1	1 program wait state inserted when external space area 2 is accessed
1	0	2 program wait states inserted when external space area 2 is accessed
	1	3 program wait states inserted when external space area 2 is accessed (Initial value)

Bits 3 and 2—Area 1 Wait Control 1 and 0 (W11, W10): These bits select the number of program wait states when area 1 in external space is accessed while the AST1 bit in ASTCR is set to 1.

Bit 3	Bit 2	
W11	W10	 Description
0	0	Program wait not inserted when external space area 1 is accessed
	1	1 program wait state inserted when external space area 1 is accessed
1	0	2 program wait states inserted when external space area 1 is accessed
	1	3 program wait states inserted when external space area 1 is accessed (Initial value)

Bits 1 and 0—Area 0 Wait Control 1 and 0 (W01, W00): These bits select the number of program wait states when area 0 in external space is accessed while the AST0 bit in ASTCR is set to 1.

Bit 1	Bit 0	
W01	W00	Description
0	0	Program wait not inserted when external space area 0 is accessed
	1	1 program wait state inserted when external space area 0 is accessed
1	0	2 program wait states inserted when external space area 0 is accessed
	1	3 program wait states inserted when external space area 0 is accessed (Initial value)

7.2.4 Bus Control Register H (BCRH)

Bit	:	7	6	5	4	3	2	1	0	_
		ICIS1	ICIS0	BRSTRM	BRSTS1	BRSTS0	_	_	_	
Initial va	lue :	1	1	0	1	0	0	0	0	_
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

BCRH is an 8-bit readable/writable register that selects enabling or disabling of idle cycle insertion, and the memory interface for area 2 to 5, and 0.

BCRH is initialized to H'D0 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Idle Cycle Insert 1 (ICIS1): Selects whether or not one idle cycle state is to be inserted between bus cycles when successive external read cycles are performed in different areas.

Bit 7

ICIS1	Description						
0	Idle cycle not inserted in case of successive external read cycles in different areas						
1	Idle cycle inserted in case of successive external read cycles in different areas						
	(Initial value)						

Bit 6—Idle Cycle Insert 0 (ICIS0): Selects whether or not one idle cycle state is to be inserted between bus cycles when successive external read and external write cycles are performed.

Bit 6

DIL 0	
ICIS0	Description
0	Idle cycle not inserted in case of successive external read and external write cycles
1	Idle cycle inserted in case of successive external read and external write cycles (Initial value)

Bit 5—Burst ROM Enable (BRSTRM): Selects whether area 0 is used as a burst ROM interface.

Bit 5

BRSTRM	Description	
0	Area 0 is basic bus interface	(Initial value)
1	Area 0 is burst ROM interface	

Bit 4—Burst Cycle Select 1 (BRSTS1): Selects the number of burst cycles for the burst ROM interface.

Bit 4

BRSTS1	Description	
0	Burst cycle comprises 1 state	
1	Burst cycle comprises 2 states	(Initial value)

Bit 3—Burst Cycle Select 0 (BRSTS0): Selects the number of words that can be accessed in a burst ROM interface burst access.

Bit 3

BRSTS0	Description	
0	Max. 4 words in burst access	(Initial value)
1	Max. 8 words in burst access	

Bits 2 to 0—Reserved: Only 0 should be written to these bits.

7.2.5 Bus Control Register L (BCRL)

Bit	:	7	6	5	4	3	2	1	0
			_	_	_		_	WDBE	_
Initial va	alue :	0	0	0	0	1	0	0	0
R/W	:	R/W	R/W	_	R/W	R/W	R/W	R/W	R/W

BCRL is an 8-bit readable/writable register that performs selection of the external bus-released state protocol, enabling or disabling of the write data buffer function.

BCRL is initialized to H'08 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 7 and 6—Reserved: Only 0 should be written to these bits.

Bit 5—Reserved: It is always read as 0. Cannot be written to.

Bit 4—Reserved: Only 0 should be written to this bit.

Bit 3—Reserved: Only 1 should be written to this bit.

Bit 2—Reserved: Only 0 should be written to this bit.

Bit 1—Write Data Buffer Enable (WDBE): This bit selects whether or not to use the write buffer function in the external write cycle.

Bit 1

WDBE	Description	
0	Write data buffer function not used	(Initial value)
1	Write data buffer function used	

Bit 0—Reserved: Only 0 should be written to these bits.

7.2.6 Pin Function Control Register (PFCR)

Bit	:	7	6	5	4	3	2	1	0	
		_	_	_		AE3	AE2	AE1	AE0	
Initial va	lue :	0	0	0	0	1/0	1/0	0	1/0	_
R/W	:	R/W								

PFCR is an 8-bit read/write register that controls the address output in on-chip ROM-enabled expansion mode.

PFCR is initialized to H'0D/H'00 by a reset and in hardware standby mode. It retains its previous state in software standby mode.

Bits 7 to 4—Reserved: Only 0 should be written to these bits.

Bits 3 to 0—Address Output Enable 3 to 0 (AE3 to AE0): These bits select enabling or disabling of address outputs A8 to A23 in on-chip ROM-disabled expansion mode and on-chip ROM-enabled expansion mode. When a pin is enabled for address output, the address is output regardless of the corresponding DDR setting. When a pin is disabled for address output, it becomes an output port when the corresponding DDR bit is set to 1.

Bit 3	Bit 2	Bit 1	Bit 0					
AE3	AE2	AE1	AE0	 Description				
0	0	0	0	A8 to A23 address output disabled (Initial value*				
			1	A8 address output enabled; A9 to A23 address output disabled				
		1	0	A8, A9 address output enabled; A10 to A23 address output disabled				
			1	A8 to A10 address output enabled; A11 to A23 address output disabled				
	1	0	0	A8 to A11 address output enabled; A12 to A23 address output disabled				
			1	A8 to A12 address output enabled; A13 to A23 address output disabled				
		1	0	A8 to A13 address output enabled; A14 to A23 address output disabled				
			1	A8 to A14 address output enabled; A15 to A23 address output disabled				
1	0	0	0	A8 to A15 address output enabled; A16 to A23 address output disabled				
			1	A8 to A16 address output enabled; A17 to A23 address output disabled				
		1	0	A8 to A17 address output enabled; A18 to A23 address output disabled				
			1	A8 to A18 address output enabled; A19 to A23 address output disabled				
	1	0	0	A8 to A19 address output enabled; A20 to A23 address output disabled				
			1	A8 to A20 address output enabled; A21 to A23 address output disabled (Initial value*)				
		1	0	A8 to A21 address output enabled; A22, A23 address output disabled				
			1	A8 to A23 address output enabled				

Note: *In on-chip ROM-enabled expansion mode, bits AE3 to AE0 are initialized to B'0000.

In on-chip ROM-disabled expansion mode, bits AE3 to AE0 are initialized to B'1101.

Address pins A0 to A7 are made address outputs by setting the corresponding DDR bits to 1.

7.3 Overview of Bus Control

7.3.1 Area Partitioning

In advanced mode, the bus controller partitions the 16 Mbytes address space into eight areas, 0 to 7, in 2-Mbyte units, and performs bus control for external space in area units. In normal mode*, it controls a 64-kbyte address space comprising part of area 0. Figure 7-2 shows an outline of the memory map.

Note: * Not available in the chip.

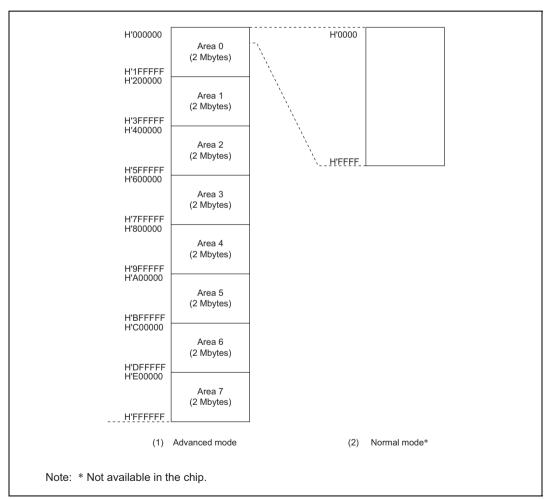


Figure 7-2 Overview of Area Partitioning

7.3.2 Bus Specifications

The external space bus specifications consist of three elements: bus width, number of access states, and number of program wait states.

The bus width and number of access states for on-chip memory and internal I/O registers are fixed, and are not affected by the bus controller.

Bus Width: A bus width of 8 or 16 bits can be selected with ADWCR. An area for which an 8-bit bus is selected functions as an 8-bit access space, and an area for which a 16-bit bus is selected functions as a16-bit access space.

If all areas are designated for 8-bit access, 8-bit bus mode is set; if any area is designated for 16-bit access, 16-bit bus mode is set. When the burst ROM interface is designated, 16-bit bus mode is always set.

Number of Access States: Two or three access states can be selected with ASTCR. An area for which 2-state access is selected functions as a 2-state access space, and an area for which 3-state access is selected functions as a 3-state access space.

With the burst ROM interface, the number of access states may be determined without regard to ASTCR.

When 2-state access space is designated, wait insertion is disabled.

Number of Program Wait States: When 3-state access space is designated by ASTCR, the number of program wait states to be inserted automatically is selected with WCRH and WCRL. From 0 to 3 program wait states can be selected.

Table 7-3 shows the bus specifications for each basic bus interface area.

Table 7-3 Bus Specifications for Each Area (Basic Bus Interface)

ABWCR	ASTCR	WCRH, WCRL		Bus Specifications (Basic Bus Interface)		
ABWn	ASTn	Wn1	Wn0	Bus Width	Access States	Program Wait States
0	0	_	_	16	2	0
	1	0	0		3	0
			1			1
		1	0	<u>—</u>		2
			1			3
1	0	_	_	8	2	0
	1	0	0		3	0
			1	<u>—</u>		1
		1	0			2
			1			3

7.3.3 Memory Interfaces

The chip's memory interfaces comprise a basic bus interface that allows direct connection or ROM, SRAM, and so on, and a burst ROM interface that allows direct connection of burst ROM. The memory interface can be selected independently for each area.

An area for which the basic bus interface is designated functions as normal space, and an area for which the burst ROM interface is designated functions as burst ROM space.

7.3.4 Interface Specifications for Each Area

The initial state of each area is basic bus interface, 3-state access space. The initial bus width is selected according to the operating mode. The bus specifications described here cover basic items only, and the sections on each memory interface (7.4, Basic Bus Interface, and 7.5, Burst ROM Interface) should be referred to for further details.

Area 0: Area 0 includes on-chip ROM, and in ROM-disabled expansion mode, all of area 0 is external space. In ROM-enabled expansion mode, the space excluding on-chip ROM is external space.

Either basic bus interface or burst ROM interface can be selected for area 0.

Areas 1 to 6: In external expansion mode, all of areas 1 to 6 is external space.

Only the basic bus interface can be used for areas 1 to 6.

Area 7: Area 7 includes the on-chip RAM and internal I/O registers. In external expansion mode, the space excluding the on-chip RAM and internal I/O registers is external space. The on-chip RAM is enabled when the RAME bit in the system control register (SYSCR) is set to 1; when the RAME bit is cleared to 0, the on-chip RAM is disabled and the corresponding space becomes external space.

Only the basic bus interface can be used for the area 7.

7.4 Basic Bus Interface

7.4.1 Overview

The basic bus interface enables direct connection of ROM, SRAM, and so on.

The bus specifications can be selected with ABWCR, ASTCR, WCRH, and WCRL (see table 7-3).

7.4.2 Data Size and Data Alignment

Data sizes for the CPU and other internal bus masters are byte, word, and longword. The bus controller has a data alignment function, and when accessing external space, controls whether the upper data bus (D15 to D8) or lower data bus (D7 to D0) is used according to the bus specifications for the area being accessed (8-bit access space or 16-bit access space) and the data size.

8-Bit Access Space: Figure 7-3 illustrates data alignment control for the 8-bit access space. With the 8-bit access space, the upper data bus (D15 to D8) is always used for accesses. The amount of data that can be accessed at one time is one byte: a word transfer instruction is performed as two byte accesses, and a longword transfer instruction, as four byte accesses.

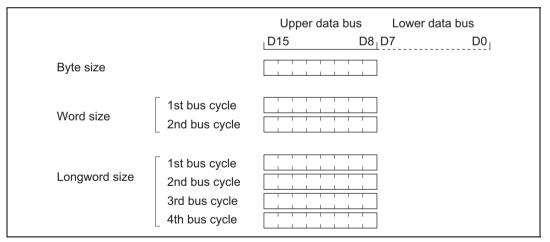


Figure 7-3 Access Sizes and Data Alignment Control (8-Bit Access Space)

16-Bit Access Space: Figure 7-4 illustrates data alignment control for the 16-bit access space. With the 16-bit access space, the upper data bus (D15 to D8) and lower data bus (D7 to D0) are used for accesses. The amount of data that can be accessed at one time is one byte or one word, and a longword transfer instruction is executed as two word transfer instructions.

In byte access, whether the upper or lower data bus is used is determined by whether the address is even or odd. The upper data bus is used for an even address, and the lower data bus for an odd address.

		Upper data bus D15 D8	Lower data bus	0
Byte size Byte size	Even addressOdd address			
Word size				
Longword size	1st bus cycle 2nd bus cycle			

Figure 7-4 Access Sizes and Data Alignment Control (16-Bit Access Space)

7.4.3 Valid Strobes

Table 7-4 shows the data buses used and valid strobes for the access spaces.

In a read, the \overline{RD} signal is valid without discrimination between the upper and lower halves of the data bus.

In a write, the \overline{HWR} signal is valid for the upper half of the data bus, and the \overline{LWR} signal for the lower half.

Table 7-4 Data Buses Used and Valid Strobes

Area	Access Size	Read/ Write	Address	Valid Strobe	Upper Data Bus (D15 to D8)	Lower data bus (D7 to D0)
8-bit access	Byte	Read	_	RD	Valid	Invalid
space		Write	_	HWR	_	Hi-Z
16-bit access	Byte	Read	Even	RD	Valid	Invalid
space			Odd		Invalid	Valid
		Write	Even	HWR	Valid	Hi-Z
			Odd	LWR	Hi-Z	Valid
	Word	Read	_	RD	Valid	Valid
		Write	_	HWR, LWR	Valid	Valid

Note: Hi-Z: High impedance.

Invalid: Input state; input value is ignored.

7.4.4 Basic Timing

8-Bit 2-State Access Space: Figure 7-5 shows the bus timing for an 8-bit 2-state access space. When an 8-bit access space is accessed, the upper half (D15 to D8) of the data bus is used.

The LWR pin is fixed high. Wait states cannot be inserted.

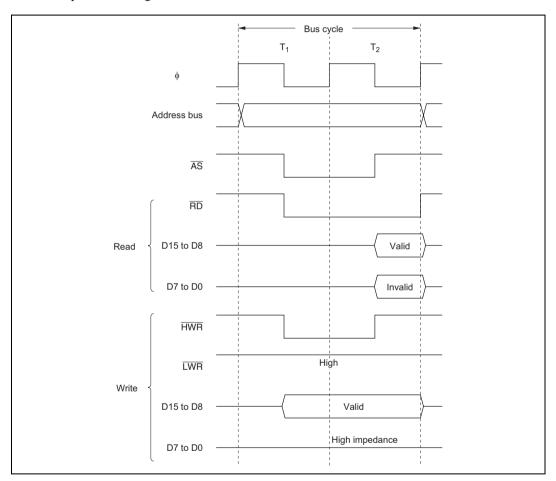


Figure 7-5 Bus Timing for 8-Bit 2-State Access Space

8-Bit 3-State Access Space: Figure 7-6 shows the bus timing for an 8-bit 3-state access space. When an 8-bit access space is accessed, the upper half (D15 to D8) of the data bus is used.

The \overline{LWR} pin is fixed high. Wait states can be inserted.

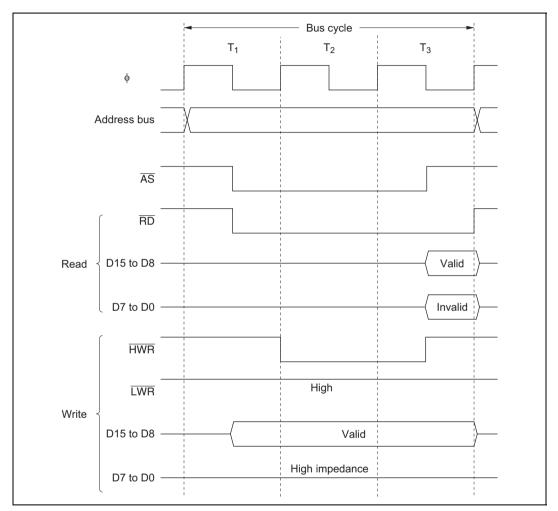


Figure 7-6 Bus Timing for 8-Bit 3-State Access Space

16-Bit 2-State Access Space: Figures 7-7 to 7-9 show bus timings for a 16-bit 2-state access space. When a 16-bit access space is accessed, the upper half (D15 to D8) of the data bus is used for the even address, and the lower half (D7 to D0) for the odd address.

Wait states cannot be inserted.

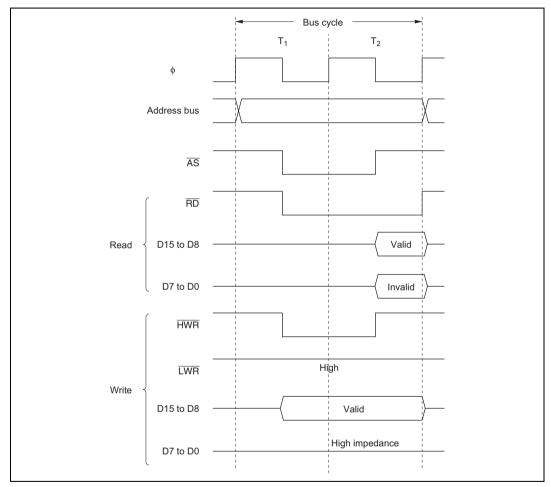


Figure 7-7 Bus Timing for 16-Bit 2-State Access Space (1) (Even Address Byte Access)

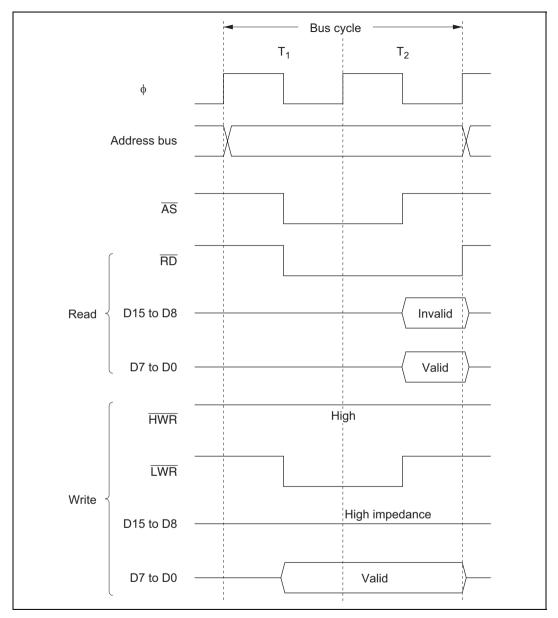


Figure 7-8 Bus Timing for 16-Bit 2-State Access Space (2) (Odd Address Byte Access)

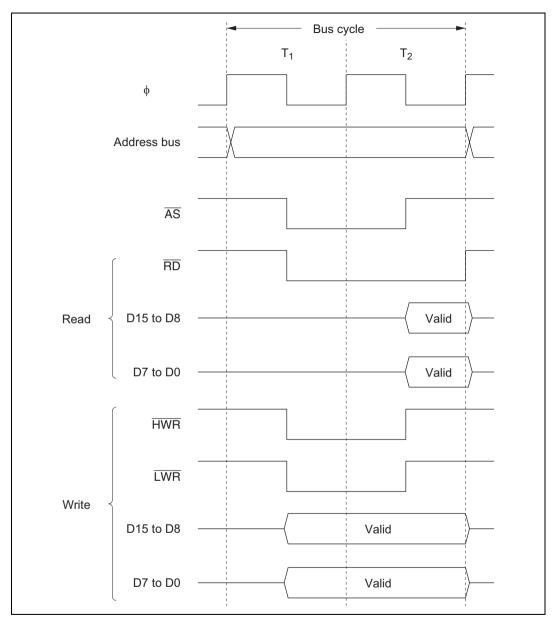


Figure 7-9 Bus Timing for 16-Bit 2-State Access Space (3) (Word Access)

16-Bit 3-State Access Space: Figures 7-10 to 7-12 show bus timings for a 16-bit 3-state access space. When a 16-bit access space is accessed, the upper half (D15 to D8) of the data bus is used for the even address, and the lower half (D7 to D0) for the odd address.

Wait states can be inserted.

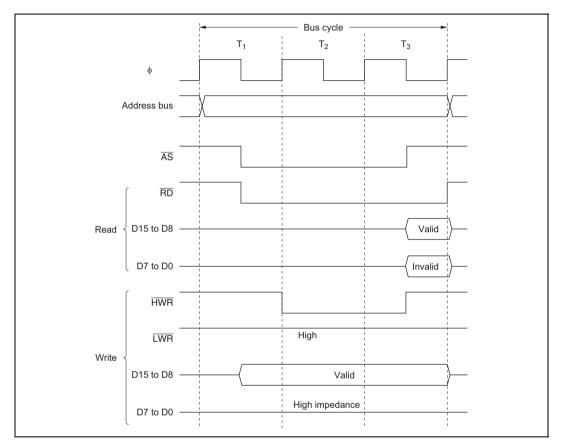


Figure 7-10 Bus Timing for 16-Bit 3-State Access Space (1) (Even Address Byte Access)

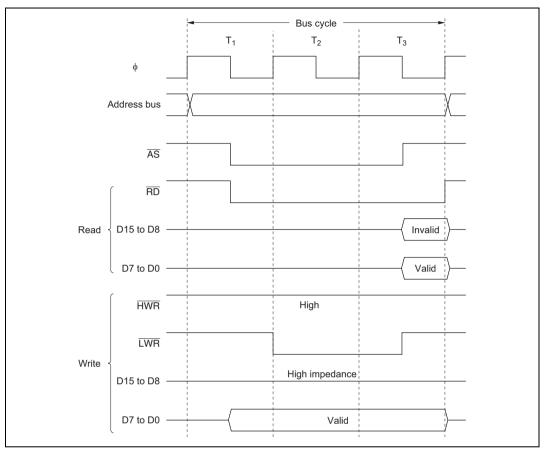


Figure 7-11 Bus Timing for 16-Bit 3-State Access Space (2) (Odd Address Byte Access)

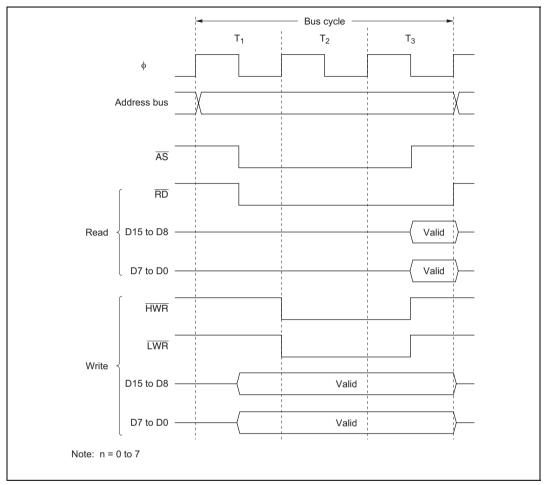


Figure 7-12 Bus Timing for 16-Bit 3-State Access Space (3) (Word Access)

7.4.5 Wait Control

When accessing external space, the chip can extend the bus cycle by inserting one or more wait states (T_w) . There are two ways of inserting wait states: program wait insertion.

Program Wait Insertion

From 0 to 3 wait states can be inserted automatically between the T₂ state and T₃ state on an individual area basis in 3-state access space, according to the settings of WCRH and WCRL.

Figure 7-13 shows an example of wait state insertion timing.

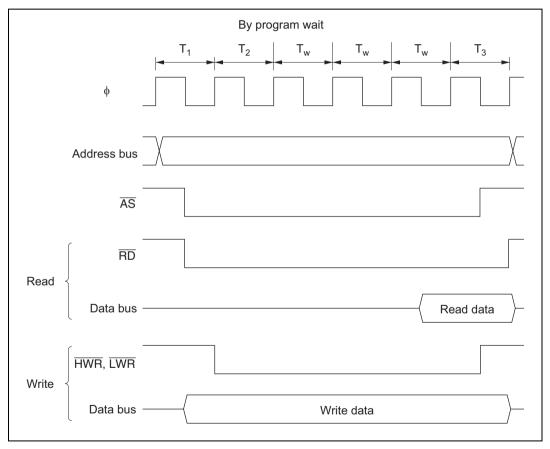


Figure 7-13 Example of Wait State Insertion Timing

The settings after a reset are: 3-state access, 3 program wait state insertion.

7.5 Burst ROM Interface

7.5.1 Overview

In this LSI, the area 0 external space can be set as burst ROM space and burst ROM interfacing performed. Burst ROM space interfacing allows 16-bit ROM capable of burst access to be accessed at high-speed.

The BRSTRM bit of BCRH sets area 0 as burst ROM space. CPU instruction fetches (only) can be performed using a maximum of 4-word or 8-word continuous burst access. 1 state or 2 states can be selected in the case of burst access.

7.5.2 Basic Timing

The AST0 bit of ASTCR sets the number of access states in the initial cycle (full access) of the burst ROM interface. Wait states can be inserted when the AST0 bit is set to 1. The burst cycle can be set for 1 state or 2 sttes by setting the BRSTS1 bit of BCRH. Wait states cannot be inserted. When area 0 is set as burst ROM space, area 0 is a 16-bit access space regardless of the ABW0 bit of ABWCR.

When the BRSTS0 bit of BCRH is cleared to 0, 4-word max. burst access is performed. When the BRSTS0 bit is set to 1, 8-word max. burst access is performed.

Figures 7-14 (a) and (b) show the basic access timing for the burst ROM space.

Figure 7-14 (a) is an example when both the AST0 and BRSTS1 bits are set to 1.

Figure 7-14 (b) is an example when both the AST0 and BRSTS1 bits are set to 0.

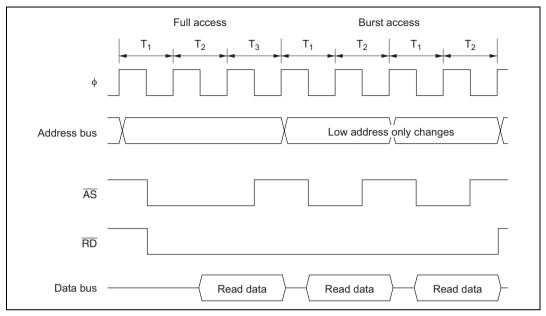


Figure 7-14 (a) Example Burst ROM Access Timing (AST0 = BRSTS1 = 1)

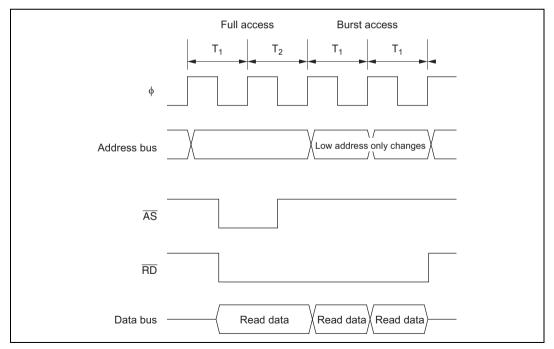


Figure 7-14 (b) Example Burst ROM Access Timing (AST0 = BRSTS1 = 0)

7.5.3 Wait Control

As with the basic bus interface, program waits can be inserted in the burst ROM interface initial cycle (full access). See section 7.4.5, Wait Control.

Wait states cannot be inserted in the burst cycle.

7.6 Idle Cycle

7.6.1 Operation

When the chip accesses external space, it can insert a 1-state idle cycle (T_I) between bus cycles in the following two cases: (1) when read accesses between different areas occur consecutively, and (2) when a write cycle occurs immediately after a read cycle. By inserting an idle cycle it is possible, for example, to avoid data collisions between ROM, with a long output floating time, and high-speed memory, I/O interfaces, and so on.

(1) Consecutive Reads between Different Areas

If consecutive reads between different areas occur while the ICIS1 bit in BCRH is set to 1, an idle cycle is inserted at the start of the second read cycle.

Figure 7-15 shows an example of the operation in this case. In this example, bus cycle A is a read cycle from ROM with a long output floating time, and bus cycle B is a read cycle from SRAM, each being located in a different area. In (a), an idle cycle is not inserted, and a collision occurs in cycle B between the read data from ROM and that from SRAM. In (b), an idle cycle is inserted, and a data collision is prevented.

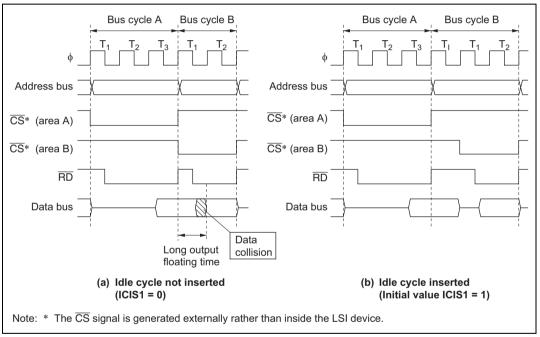


Figure 7-15 Example of Idle Cycle Operation (1)

(2) Write after Read

If an external write occurs after an external read while the ICISO bit in BCRH is set to 1, an idle cycle is inserted at the start of the write cycle.

Figure 7-16 shows an example of the operation in this case. In this example, bus cycle A is a read cycle from ROM with a long output floating time, and bus cycle B is a CPU write cycle. In (a), an idle cycle is not inserted, and a collision occurs in cycle B between the read data from ROM and the CPU write data. In (b), an idle cycle is inserted, and a data collision is prevented.

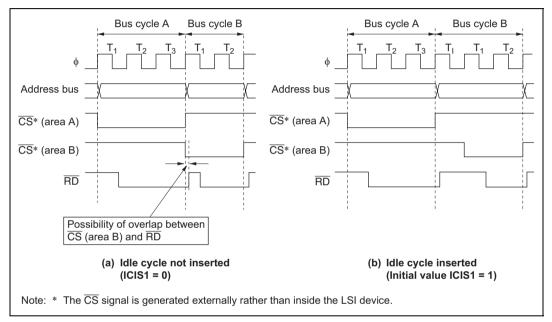


Figure 7-16 Example of Idle Cycle Operation (2)

(3) Relationship between Chip Select ($\overline{\text{CS}}^*$) Signal and Read ($\overline{\text{RD}}$) Signal

Depending on the system's load conditions, the \overline{RD} signal may lag behind the \overline{CS} signal*. An example is shown in figure 7-17.

In this case, with the setting for no idle cycle insertion (a), there may be a period of overlap between the bus cycle A \overline{RD} signal and the bus cycle B \overline{CS} signal.

Setting idle cycle insertion, as in (b), however, will prevent any overlap between the \overline{RD} and \overline{CS} signals.

In the initial state after reset release, idle cycle insertion (b) is set.

Note: * The $\overline{\text{CS}}$ signal is generated externally rather than inside the LSI device.

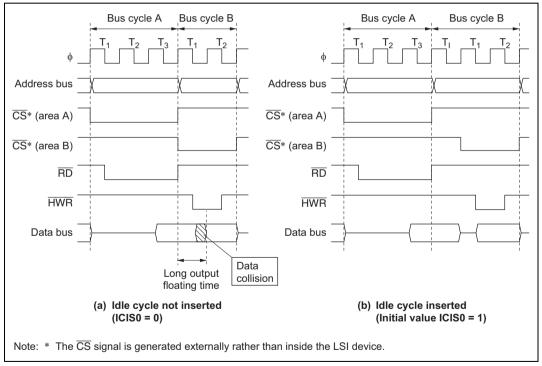


Figure 7-17 Relationship between Chip Select $(\overline{CS})^*$ and Read (\overline{RD})

7.6.2 Pin States During Idle Cycles

Table 7-5 shows the pin states during idle cycles.

Table 7-5 Pin States During Idle Cycles

Pins	Pin State
A23 to A0	Content identical to immediately following bus cycle
D15 to D0	High impedance
ĀS	High level
RD	High level
HWR	High level
LWR	High level

7.7 Write Data Buffer Function

The chip has a write data buffer function in the external data bus. Using this function enables the write data buffer to be accessed in parallel. The write data buffer function is made available by setting the WDBE bit in BCRL to 1.

Figure 7-18 shows an example of the timing when the write data buffer function is used. When this function is used, if an external write continues for 2 states or longer, and there is an internal access next, only an external write is executed in the first state, but from the next state onward an internal access (on-chip memory or internal I/O register read/write) is executed in parallel with the external write rather than waiting until it ends.

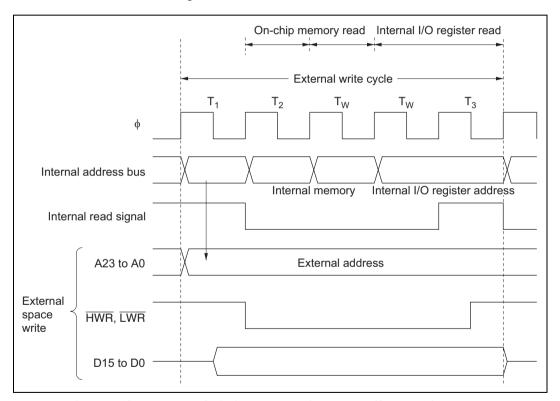


Figure 7-18 Example of Timing when Write Data Buffer Function Is Used

7.8 Bus Arbitration

Note: The H8S/2635 Group is not equipped with a DTC.

7.8.1 Overview

The chip has a bus arbiter that arbitrates bus master operations.

There are two bus masters, the CPU and DTC which perform read/write operations when they have possession of the bus. Each bus master requests the bus by means of a bus request signal. The bus arbiter determines priorities at the prescribed timing, and permits use of the bus by means of a bus request acknowledge signal. The selected bus master then takes possession of the bus and begins its operation.

7.8.2 Operation

The bus arbiter detects the bus masters' bus request signals, and if the bus is requested, sends a bus request acknowledge signal to the bus master making the request. If there are bus requests from more than one bus master, the bus request acknowledge signal is sent to the one with the highest priority. When a bus master receives the bus request acknowledge signal, it takes possession of the bus until that signal is canceled.

The order of priority of the bus masters is as follows:

7.8.3 Bus Transfer Timing

Even if a bus request is received from a bus master with a higher priority than that of the bus master that has acquired the bus and is currently operating, the bus is not necessarily transferred immediately. There are specific times at which each bus master can relinquish the bus.

CPU: The CPU is the lowest-priority bus master, and if a bus request is received from the DTC, the bus arbiter transfers the bus to the bus master that issued the request. The timing for transfer of the bus is as follows:

- The bus is transferred at a break between bus cycles. However, if a bus cycle is executed in discrete operations, as in the case of a longword-size access, the bus is not transferred between the operations. See appendix A.5, Bus States during Instruction Execution, for timings at which the bus is not transferred.
- If the CPU is in sleep mode, it transfers the bus immediately.

DTC: The DTC sends the bus arbiter a request for the bus when an activation request is generated.

The DTC can release the bus after a vector read, a register information read (3 states), a single data transfer, or a register information write (3 states). It does not release the bus during a register information read (3 states), a single data transfer, or a register information write (3 states).

7.9 Resets and the Bus Controller

In a reset, the chip, including the bus controller, enters the reset state at that point, and an executing bus cycle is discontinued.

Section 8 Data Transfer Controller (DTC)

Note: The H8S/2635 Group is not equipped with a DTC.

8.1 Overview

The chip includes a data transfer controller (DTC). The DTC can be activated by an interrupt or software, to transfer data.

8.1.1 Features

- Transfer possible over any number of channels
 - Transfer information is stored in memory
 - One activation source can trigger a number of data transfers (chain transfer)
- Wide range of transfer modes
 - Normal, repeat, and block transfer modes available
 - Incrementing, decrementing, and fixing of source and destination addresses can be selected
- Direct specification of 16-Mbyte address space possible
 - 24-bit transfer source and destination addresses can be specified
- Transfer can be set in byte or word units
- A CPU interrupt can be requested for the interrupt that activated the DTC
 - An interrupt request can be issued to the CPU after one data transfer ends
 - An interrupt request can be issued to the CPU after the specified data transfers have completely ended
- Activation by software is possible
- Module stop mode can be set
 - The initial setting enables DTC registers to be accessed. DTC operation is halted by setting module stop mode.

8.1.2 Block Diagram

Figure 8-1 shows a block diagram of the DTC.

The DTC's register information is stored in the on-chip RAM*. A 32-bit bus connects the DTC to the on-chip RAM (1 kbyte), enabling 32-bit/1-state reading and writing of the DTC register information.

Note: * When the DTC is used, the RAME bit in SYSCR must be set to 1.



Figure 8-1 Block Diagram of DTC

Register Configuration 8.1.3

Table 8-1 summarizes the DTC registers.

Table 8-1 **DTC Registers**

Name	Abbreviation	R/W	Initial Value	Address*1
DTC mode register A	MRA	*2	Undefined	*3
DTC mode register B	MRB	—* ²	Undefined	_*3
DTC source address register	SAR	*2	Undefined	_*3
DTC destination address register	DAR	*2	Undefined	*3
DTC transfer count register A	CRA	—* ²	Undefined	*3
DTC transfer count register B	CRB	—* ²	Undefined	_*3
DTC enable registers	DTCER	R/W	H'00	H'FE16 to H'FE1C
DTC vector register	DTVECR	R/W	H'00	H'FE1F
Module stop control register A	MSTPCRA	R/W	H'3F	H'FDE8

Notes: 1. Lower 16 bits of the address.

- 2. Registers within the DTC cannot be read or written to directly.
- 3. Register information is located in on-chip RAM addresses H'EBC0 to H'EFBF. It cannot be located in external memory space. When the DTC is used, do not clear the RAME bit in SYSCR to 0.

8.2 Register Descriptions

8.2.1 DTC Mode Register A (MRA)

Bit	:	7	6	5	4	3	2	1	0
		SM1	SM0	DM1	DM0	MD1	MD0	DTS	Sz
Initial valu	ie:	*	*	*	*	*	*	*	*
R/W	:	_	_	_	_	_	_	_	_

*: Undefined

MRA is an 8-bit register that controls the DTC operating mode.

Bits 7 and 6—Source Address Mode 1 and 0 (SM1, SM0): These bits specify whether SAR is to be incremented, decremented, or left fixed after a data transfer.

Bit 7	Bit 6	
SM1	SM0	Description
0	_	SAR is fixed
1	0	SAR is incremented after a transfer (by +1 when Sz = 0; by +2 when Sz = 1)
	1	SAR is decremented after a transfer (by -1 when Sz = 0; by -2 when Sz = 1)

Bits 5 and 4—Destination Address Mode 1 and 0 (DM1, DM0): These bits specify whether DAR is to be incremented, decremented, or left fixed after a data transfer.

Bit 5	Bit 4	
DM1	DM0	Description
0	_	DAR is fixed
1	0	DAR is incremented after a transfer (by +1 when Sz = 0; by +2 when Sz = 1)
	1	DAR is decremented after a transfer (by -1 when Sz = 0; by -2 when Sz = 1)

Bits 3 and 2—DTC Mode (MD1, MD0): These bits specify the DTC transfer mode.

Bit 3	Bit 2	
MD1	MD0	 Description
0	0	Normal mode
	1	Repeat mode
1	0	Block transfer mode
	1	_

Bit 1—DTC Transfer Mode Select (DTS): Specifies whether the source side or the destination side is set to be a repeat area or block area, in repeat mode or block transfer mode.

Bit 1

DTS	Description
0	Destination side is repeat area or block area
1	Source side is repeat area or block area

Bit 0—DTC Data Transfer Size (Sz): Specifies the size of data to be transferred.

Bit 0

May 28, 2010

Sz	Description	
0	Byte-size transfer	
1	Word-size transfer	

8.2.2 DTC Mode Register B (MRB)

Bit	:	7	6	5	4	3	2	1	0
		CHNE	DISEL						
Initial val	lue:	*	*	*	*	*	*	*	*
R/W	:	_	_	_	_	_	_	_	_

*: Undefined

MRB is an 8-bit register that controls the DTC operating mode.

Bit 7—DTC Chain Transfer Enable (CHNE): Specifies chain transfer. With chain transfer, a number of data transfers can be performed consecutively in response to a single transfer request.

In data transfer with CHNE set to 1, determination of the end of the specified number of transfers, clearing of the interrupt source flag, and clearing of DTCER is not performed.

Bit 7

CHNE	Description
0	End of DTC data transfer (activation waiting state is entered)
1	DTC chain transfer (new register information is read, then data is transferred)

Bit 6—DTC Interrupt Select (DISEL): Specifies whether interrupt requests to the CPU are disabled or enabled after a data transfer.

Bit 6

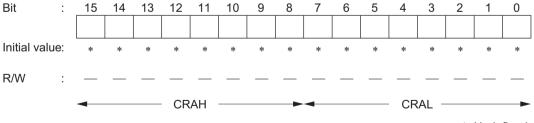
DISEL	Description
0	After a data transfer ends, the CPU interrupt is disabled unless the transfer counter is 0 (the DTC clears the interrupt source flag of the activating interrupt to 0)
1	After a data transfer ends, the CPU interrupt is enabled (the DTC does not clear the interrupt source flag of the activating interrupt to 0)

Bits 5 to 0—Reserved: These bits have no effect on DTC operation in the chip, and should always be written with 0.

8.2.3 DTC Source Address Register (SAR)

Bit	:	23	22	21	20	19	 4	3	2	1	0
Initial value	э:	*	*	*	*	*	 *	*	*	*	*
R/W	:	_	_	_	_	_	 _	_	_	_	_
									*:	Unde	fined

SAR is a 24-bit register that designates the source address of data to be transferred by the DTC. For word-size transfer, specify an even source address.


8.2.4 DTC Destination Address Register (DAR)

Bit	:	23	22	21	20	19	 4	3	2	1	0
Initial value	:	*	*	*	*	*	 *	*	*	*	*
R/W	:	_	_	_	_	_	 _	_	_	_	_
									*•	Ilndo	finad

*: Undefined

DAR is a 24-bit register that designates the destination address of data to be transferred by the DTC. For word-size transfer, specify an even destination address.

8.2.5 DTC Transfer Count Register A (CRA)

*: Undefined

CRA is a 16-bit register that designates the number of times data is to be transferred by the DTC.

In normal mode, the entire CRA functions as a 16-bit transfer counter (1 to 65536). It is decremented by 1 every time data is transferred, and transfer ends when the count reaches H'0000.

In repeat mode or block transfer mode, the CRA is divided into two parts: the upper 8 bits (CRAH) and the lower 8 bits (CRAL). CRAH holds the number of transfers while CRAL functions as an 8-bit transfer counter (1 to 256). CRAL is decremented by 1 every time data is transferred, and the contents of CRAH are sent when the count reaches H'00. This operation is repeated.

8.2.6 DTC Transfer Count Register B (CRB)

Bit	: .	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Initial value	e: `	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
R/W	:	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

*: Undefined

CRB is a 16-bit register that designates the number of times data is to be transferred by the DTC in block transfer mode. It functions as a 16-bit transfer counter (1 to 65,536) that is decremented by 1 every time data is transferred, and transfer ends when the count reaches H'0000.

8.2.7 DTC Enable Registers (DTCER)

Bit	:	7	6	5	4	3	2	1	0
		DTCE7	DTCE6	DTCE5	DTCE4	DTCE3	DTCE2	DTCE1	DTCE0
Initial va	alue:	0	0	0	0	0	0	0	0
R/W	:	R/W							

The DTC enable registers comprise seven 8-bit readable/writable registers, DTCERA to DTCERG with bits corresponding to the interrupt sources that can control enabling and disabling of DTC activation. These bits enable or disable DTC service for the corresponding interrupt sources.

The DTC enable registers are initialized to H'00 by a reset and in hardware standby mode.

Bit n—DTC Activation Enable (DTCEn)

Bit n

DTCEn	Description						
0	DTC activation by this interrupt is disabled (Initial v						
	[Clearing conditions]						
	When the DISEL bit is 1 and the data transfer has ended						
	When the specified number of transfers have ended						
1	DTC activation by this interrupt is enabled						
	[Holding condition]						
	When the DISEL bit is 0 and the specified number of transfers have no	ot ended					
		(n = 7 to 0)					

A DTCE bit can be set for each interrupt source that can activate the DTC. The correspondence between interrupt sources and DTCE bits is shown in table 8-4, together with the vector number generated for each interrupt controller.

For DTCE bit setting, use bit manipulation instructions such as BSET and BCLR for reading and writing. If all interrupts are masked, multiple activation sources can be set at one time by writing data after executing a dummy read on the relevant register.

8.2.8 DTC Vector Register (DTVECR)

Bit	:	7	6	5	4	3	2	1	0
		SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVEC0
Initial va	alue:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*1	R/W*2						

Notes: 1. Only 1 can be written to the SWDTE bit.

2. Bits DTVEC6 to DTVEC0 can be written to when SWDTE = 0.

DTVECR is an 8-bit readable/writable register that enables or disables DTC activation by software, and sets a vector number for the software activation interrupt.

DTVECR is initialized to H'00 by a reset and in hardware standby mode.

Bit 7—DTC Software Activation Enable (SWDTE): Enables or disables DTC activation by software.

Bit 7

SWDTE	Description						
0	DTC software activation is disabled (Initial val						
	[Clearing conditions]						
	When the DISEL bit is 0 and the specified number of transfers have not ended						
	 When 0 is written to the DISEL bit after a software-activated data transfer end interrupt (SWDTEND) request has been sent to the CPU 						
1	DTC software activation is enabled						
	[Holding conditions]						
	When the DISEL bit is 1 and data transfer has ended						
	When the specified number of transfers have ended						
	During data transfer due to software activation						

Bits 6 to 0—DTC Software Activation Vectors 6 to 0 (DTVEC6 to DTVEC0): These bits specify a vector number for DTC software activation.

The vector address is expressed as H'0400 + ((vector number) << 1). <<1 indicates a one-bit left-shift. For example, when DTVEC6 to DTVEC0 = H'10, the vector address is H'0420.

8.2.9 **Module Stop Control Register A (MSTPCRA)**

Bit	7	6	5	4	3	2	1	0
	MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0
Initial value	0	0	1	1	1	1	1	1
Read/Write	R/W							

MSTPCRA is a 8-bit readable/writable register that performs module stop mode control.

When the MSTPA6 bit in MSTPCRA is set to 1, the DTC operation stops at the end of the bus cycle and a transition is made to module stop mode. However, 1 cannot be written in the MSTPA6 bit while the DTC is operating. For details, see section 23A.5, 23B.5, Module Stop Mode.

MSTPCRA is initialized to H'3F by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 6—Module Stop (MSTPA6): Specifies the DTC module stop mode.

Bit 6

MSTPA6	 Description	
0	DTC module stop mode cleared	(Initial value)
1	DTC module stop mode set	

8.3 Operation

8.3.1 Overview

When activated, the DTC reads register information that is already stored in memory and transfers data on the basis of that register information. After the data transfer, it writes updated register information back to memory. Pre-storage of register information in memory makes it possible to transfer data over any required number of channels. Setting the CHNE bit to 1 makes it possible to perform a number of transfers with a single activation.

Figure 8-2 shows a flowchart of DTC operation.

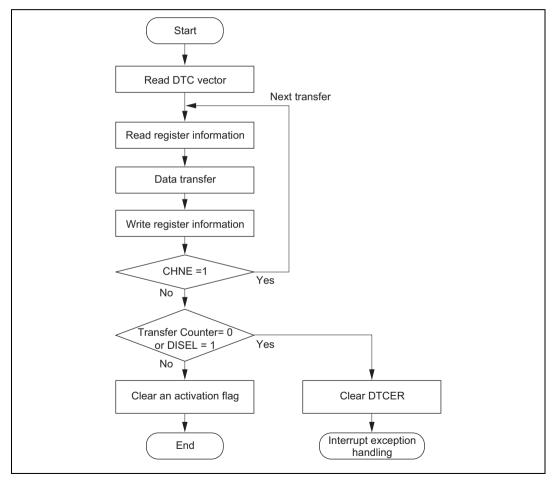


Figure 8-2 Flowchart of DTC Operation

The DTC transfer mode can be normal mode, repeat mode, or block transfer mode.

The 24-bit SAR designates the DTC transfer source address and the 24-bit DAR designates the transfer destination address. After each transfer, SAR and DAR are independently incremented, decremented, or left fixed.

Table 8-2 outlines the functions of the DTC.

Table 8-2 DTC Functions

		Addres	s Registers
Transfer Mode	Activation Source	Transfer Source	Transfer Destination
 Normal mode One transfer request transfers one byte or one word Memory addresses are incremented or decremented by 1 or 2 Up to 65,536 transfers possible Repeat mode One transfer request transfers one byte or one word Memory addresses are incremented or decremented by 1 or 2 After the specified number of transfers (1 to 256), the initial state resumes and operation continues Block transfer mode One transfer request transfers a bloof the specified size 	 IRQ TPU TGI SCI TXI or RXI A/D converter ADI Motor control PWM CMI HCAN RM0 (mail box 0) Software 	24 bits	24 bits
 Block size is from 1 to 256 bytes or words 			
 Up to 65,536 transfers possible A block area can be designated at either the source or destination 			

8.3.2 Activation Sources

The DTC operates when activated by an interrupt or by a write to DTVECR by software. An interrupt request can be directed to the CPU or DTC, as designated by the corresponding DTCER bit. An interrupt becomes a DTC activation source when the corresponding bit is set to 1, and a CPU interrupt source when the bit is cleared to 0.

At the end of a data transfer (or the last consecutive transfer in the case of chain transfer), the activation source or corresponding DTCER bit is cleared. Table 8-3 shows activation source and DTCER clearance. The activation source flag, in the case of RXIO, for example, is the RDRF flag of SCIO.

Table 8-3 Activation Source and DTCER Clearance

Activation Source	When the DISEL Bit Is 0 and the Specified Number of Transfers Have not Ended	When the DISEL Bit Is 1, or when the Specified Number of Transfers Have Ended
Software activation	The SWDTE bit is cleared to 0	The SWDTE bit remains set to 1
		An interrupt is issued to the CPU
Interrupt activation	The corresponding DTCER bit remains set to 1	The corresponding DTCER bit is cleared to 0
	The activation source flag is cleared to 0	The activation source flag remains set to 1 A request is issued to the CPU for the activation source interrupt

Figure 8-3 shows a block diagram of activation source control. For details see section 5, Interrupt Controller.

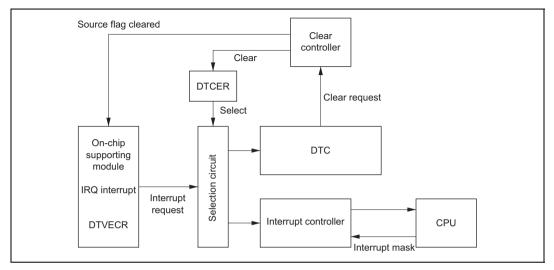


Figure 8-3 Block Diagram of DTC Activation Source Control

When an interrupt has been designated a DTC activation source, existing CPU mask level and interrupt controller priorities have no effect. If there is more than one activation source at the same time, the DTC operates in accordance with the default priorities.

8.3.3 DTC Vector Table

Figure 8-4 shows the correspondence between DTC vector addresses and register information.

Table 8-4 shows the correspondence between activation and vector addresses. When the DTC is activated by software, the vector address is obtained from: H'0400 + (DTVECR[6:0] << 1) (where << 1 indicates a 1-bit left shift). For example, if DTVECR is H'10, the vector address is H'0420.

The DTC reads the start address of the register information from the vector address set for each activation source, and then reads the register information from that start address. The register information can be placed at predetermined addresses in the on-chip RAM. The start address of the register information should be an integral multiple of four.

The configuration of the vector address is the same in both normal* and advanced modes, a 2-byte unit being used in both cases. These two bytes specify the lower bits of the address in the on-chip RAM.

Note: * Not available in the chip.

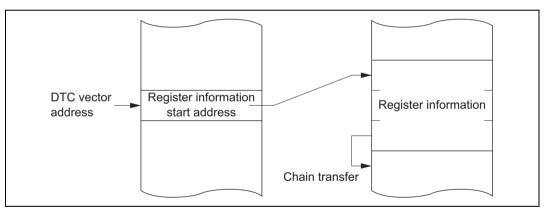


Figure 8-4 Correspondence between DTC Vector Address and Register Information

Table 8-4 Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address	DTCE*1	Priority
Write to DTVECR	Software	DTVECR	H'0400+ (DTVECR [6:0] <<1)	_	High A
IRQ0	External pin	16	H'0420	DTCEA7	
IRQ1		17	H'0422	DTCEA6	
IRQ2		18	H'0424	DTCEA5	
IRQ3		19	H'0426	DTCEA4	
IRQ4		20	H'0428	DTCEA3	
IRQ5		21	H'042A	DTCEA2	
Reserved	_	22 to 27	H'042C to H'0436	_	
ADI (A/D conversion end)	A/D	28	H'0438	DTCEB6	_
Reserved	_	29 to 31	H'043A to H'043E	_	
TGI0A (GR0A compare match/ input capture)	TPU channel 0	32	H'0440	DTCEB5	
TGI0B (GR0B compare match/ input capture)		33	H'0442	DTCEB4	
TGI0C (GR0C compare match/input capture)		34	H'0444	DTCEB3	
TGI0D (GR0D compare match/input capture)		35	H'0446	DTCEB2	
Reserved	_	36 to 39	H'0448 to H'044E	_	
TGI1A (GR1A compare match/ input capture)	TPU channel 1	40	H'0450	DTCEB1	
TGI1B (GR1B compare match/ input capture)		41	H'0452	DTCEB0	
TGI2A (GR2A compare match/ input capture)	TPU channel 2	44	H'0458	DTCEC7	
TGI2B (GR2B compare match/ input capture)		45	H'045A	DTCEC6	Low

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address	DTCE*1	Priority
TGI3A (GR3A compare match/ input capture)	TPU channel 3	48	H'0460	DTCEC5	High ↑
TGI3B (GR3B compare match/ input capture)		49	H'0462	DTCEC4	
TGI3C (GR3C compare match/ input capture)		50	H'0464	DTCEC3	
TGI3D (GR3D compare match/ input capture)		51	H'0466	DTCEC2	_
Reserved	_	52 to 55	H'0468 to H'046E	_	_
TGI4A (GR4A compare match/ input capture)	TPU channel 4	56	H'0470	DTCEC1	_
TGI4B (GR4B compare match/ input capture)		57	H'0472	DTCEC0	_
Reserved	_	58, 59	H'0474 to H'0476	_	_
TGI5A (GR5A compare match/ input capture)	TPU channel 5	60	H'0478	DTCED5	_
TGI5B (GR5B compare match/ input capture)		61	H'047A	DTCED4	
Reserved	_	62 to 80	H'047C to H'04A0	_	_
RXI0 (reception complete 0)	SCI	81	H'04A2	DTCEE3	_
TXI0 (transmit data empty 0)	channel 0	82	H'04A4	DTCEE2	_
Reserved	_	83, 84	H'04A6 to H'04A8	_	
RXI1 (reception complete 1)	SCI	85	H'04AA	DTCEE1	_
TXI1 (transmit data empty 1)	channel 1	86	H'04AC	DTCEE0	_
Reserved	_	87, 88	H'04AE to H'04B0	_	_
RXI2 (reception complete 2)	SCI	89	H'04B2	DTCEF7	_
TXI2 (transmit data empty 2)	channel 2	90	H'04B4	DTCEF6	_
Reserved	_	91 to 97	H'04B6 to H'04C2	_	Low

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address	DTCE*1	Priority
I ² CI0 (1-byte transmission/ reception completed)* ²	I ² C channel 0 (option)	100	H'04C8	DTCEF1	High ↑
I ² CI1 (1-byte transmission/ reception completed)* ²	I ² C channel 1 (option)	102	H'04CC	DTCEF0	_
CMI1 (PWCYR1 compare match)	PWM	104	H'04D0	DTCEG7	_
CMI2 (PWCYR2 compare match)	<u> </u>	105	H'04D2	DTCEG6	_
Reserved	_	106	H'04D4	_	_
RM0 (HCAN1 mail box 0)	HCAN1	107	H'04D6	DTCEG4	_
Reserved	_	108	H'04D8	_	_
RM0 (HCAN0 mail box 0)	HCAN0	109	H'04DA	DTCEG2	_
Reserved	_	110 to 124	H'04DC to H'04F8	_	Low

Notes: 1. DTCE bits with no corresponding interrupt are reserved, and should be written with 0.

2. I²C bus interface is available as an option in the H8S/2638, H8S/2639, and H8S/2630. These bits become reserved bits when this optional feature is not used or in the H8S/2636.

8.3.4 Location of Register Information in Address Space

Figure 8-5 shows how the register information should be located in the address space.

Locate the MRA, SAR, MRB, DAR, CRA, and CRB registers, in that order, from the start address of the register information (contents of the vector address). In the case of chain transfer, register information should be located in consecutive areas.

Locate the register information in the on-chip RAM (addresses: H'FFEBC0 to H'FFEFBF).

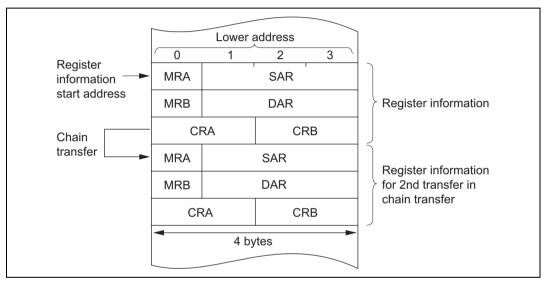


Figure 8-5 Location of Register Information in Address Space

8.3.5 Normal Mode

May 28, 2010

In normal mode, one operation transfers one byte or one word of data.

From 1 to 65,536 transfers can be specified. Once the specified number of transfers have ended, a CPU interrupt can be requested.

Table 8-5 lists the register information in normal mode and figure 8-6 shows memory mapping in normal mode.

Table 8-5 Register Information in Normal Mode

Name	Abbreviation	Function
DTC source address register	SAR	Designates source address
DTC destination address register	DAR	Designates destination address
DTC transfer count register A	CRA	Designates transfer count
DTC transfer count register B	CRB	Not used

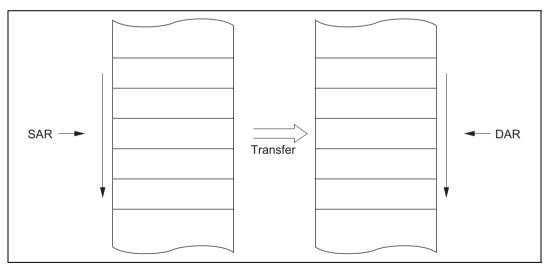


Figure 8-6 Memory Mapping in Normal Mode

8.3.6 Repeat Mode

In repeat mode, one operation transfers one byte or one word of data.

From 1 to 256 transfers can be specified. Once the specified number of transfers have ended, the initial state of the transfer counter and the address register specified as the repeat area is restored, and transfer is repeated. In repeat mode the transfer counter value does not reach H'00, and therefore CPU interrupts cannot be requested when DISEL = 0.

Table 8-6 lists the register information in repeat mode and figure 8-7 shows memory mapping in repeat mode.

Table 8-6 Register Information in Repeat Mode

Name	Abbreviation	Function
DTC source address register	SAR	Designates source address
DTC destination address register	DAR	Designates destination address
DTC transfer count register AH	CRAH	Holds number of transfers
DTC transfer count register AL	CRAL	Designates transfer count
DTC transfer count register B	CRB	Not used

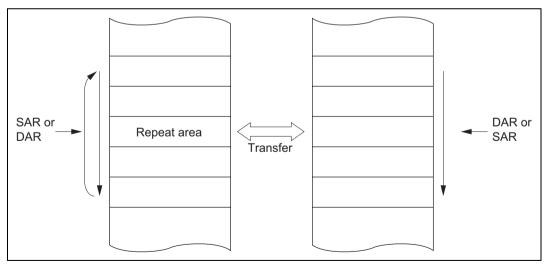


Figure 8-7 Memory Mapping in Repeat Mode

8.3.7 **Block Transfer Mode**

In block transfer mode, one operation transfers one block of data. Either the transfer source or the transfer destination is designated as a block area.

The block size is 1 to 256. When the transfer of one block ends, the initial state of the block size counter and the address register specified as the block area is restored. The other address register is then incremented, decremented, or left fixed.

From 1 to 65,536 transfers can be specified. Once the specified number of transfers have ended, a CPU interrupt is requested.

Table 8-7 lists the register information in block transfer mode and figure 8-8 shows memory mapping in block transfer mode.

Table 8-7 Register Information in Block Transfer Mode

Name	Abbreviation	Function
DTC source address register	SAR	Designates source address
DTC destination address register	DAR	Designates destination address
DTC transfer count register AH	CRAH	Holds block size
DTC transfer count register AL	CRAL	Designates block size count
DTC transfer count register B	CRB	Transfer count

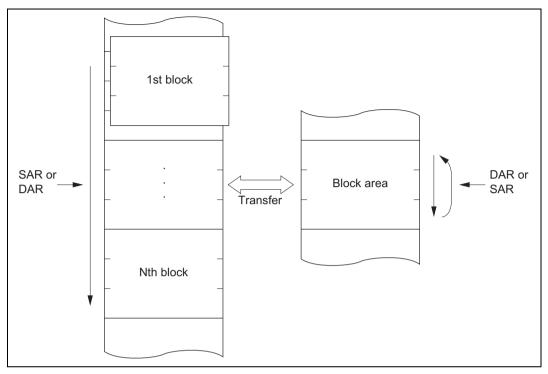


Figure 8-8 Memory Mapping in Block Transfer Mode

8.3.8 Chain Transfer

Setting the CHNE bit to 1 enables a number of data transfers to be performed consectutively in response to a single transfer request. SAR, DAR, CRA, CRB, MRA, and MRB, which define data transfers, can be set independently.

Figure 8-9 shows the memory map for chain transfer.

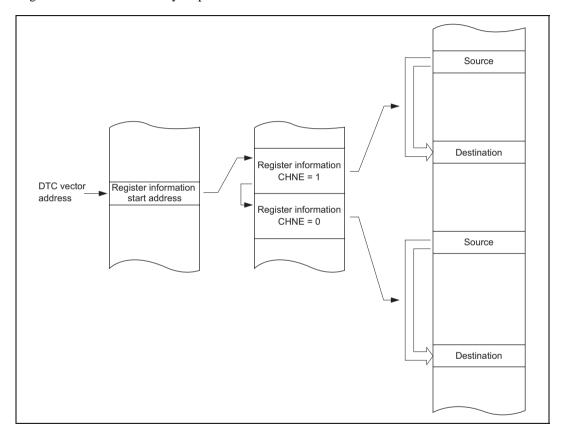


Figure 8-9 Chain Transfer Memory Map

In the case of transfer with CHNE set to 1, an interrupt request to the CPU is not generated at the end of the specified number of transfers or by setting of the DISEL bit to 1, and the interrupt source flag for the activation source is not affected.

8.3.9 **Operation Timing**

Figures 8-10 to 8-12 show an example of DTC operation timing.

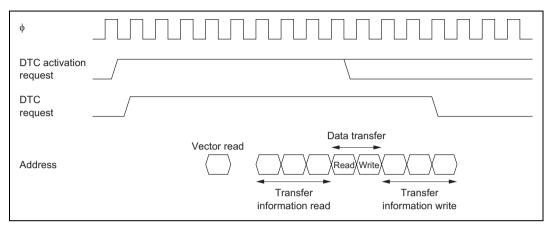


Figure 8-10 DTC Operation Timing (Example in Normal Mode or Repeat Mode)

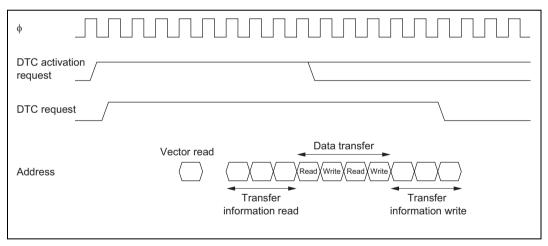


Figure 8-11 DTC Operation Timing (Example of Block Transfer Mode, with Block Size of 2)

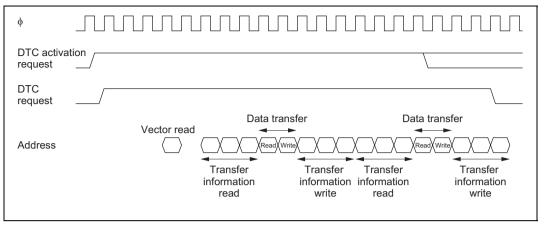


Figure 8-12 DTC Operation Timing (Example of Chain Transfer)

8.3.10 **Number of DTC Execution States**

Table 8-8 lists execution statuses for a single DTC data transfer, and table 8-9 shows the number of states required for each execution status.

Table 8-8 DTC Execution Statuses

Mode	Vector Read I	Register Information Read/Write J	Data Read K	Data Write L	Internal Operations M
Normal	1	6	1	1	3
Repeat	1	6	1	1	3
Block transfer	1	6	N	N	3

N: Block size (initial setting of CRAH and CRAL)

May 28, 2010

Table 8-9 Number of States Required for Each Execution Status

Object to b	On- Chip RAM	On- Chip ROM	On-Cl Regis	hip I/O ters	Exter	nal Devic	es			
Bus width			32	16	8	16	8	8	16	16
Access stat	es		1	1	2	2	2	3	2	3
Execution	Vector read	Sı	_	1	_	_	4	6 + 2m	2	3 + m
status	Register information read/write	SJ	1	_	_	_		_	_	_
	Byte data read	S _K	1	1	2	2	2	3 + m	2	3 + m
	Word data read	Sĸ	1	1	4	2	4	6 + 2m	2	3 + m
	Byte data write	SL	1	1	2	2	2	3 + m	2	3 + m
	Word data write	S _L	1	1	4	2	4	6 + 2m	2	3 + m
	Internal operation	S_{M}	1	1	1	1	1	1	1	1

The number of execution states is calculated from the formula below. Note that Σ means the sum of all transfers activated by one activation event (the number in which the CHNE bit is set to 1, plus 1).

Number of execution states = I
$$\cdot$$
 (S_I + 1) + Σ (J \cdot S_J + K \cdot S_K + L \cdot S_L) + M \cdot S_M

For example, when the DTC vector address table is located in on-chip ROM, normal mode is set, and data is transferred from the on-chip ROM to an internal I/O register, the time required for the DTC operation is 14 states. The time from activation to the end of the data write is 11 states.

8.3.11 Procedures for Using DTC

Activation by Interrupt: The procedure for using the DTC with interrupt activation is as follows:

- [1] Set the MRA, MRB, SAR, DAR, CRA, and CRB register information in the on-chip RAM.
- [2] Set the start address of the register information in the DTC vector address.
- [3] Set the corresponding bit in DTCER to 1.
- [4] Set the enable bits for the interrupt sources to be used as the activation sources to 1. The DTC is activated when an interrupt used as an activation source is generated.
- [5] After the end of one data transfer, or after the specified number of data transfers have ended, the DTCE bit is cleared to 0 and a CPU interrupt is requested. If the DTC is to continue transferring data, set the DTCE bit to 1.

Activation by Software: The procedure for using the DTC with software activation is as follows:

- [1] Set the MRA, MRB, SAR, DAR, CRA, and CRB register information in the on-chip RAM.
- [2] Set the start address of the register information in the DTC vector address.
- [3] Check that the SWDTE bit is 0.
- [4] Write 1 to SWDTE bit and the vector number to DTVECR.
- [5] Check the vector number written to DTVECR.
- [6] After the end of one data transfer, if the DISEL bit is 0 and a CPU interrupt is not requested, the SWDTE bit is cleared to 0. If the DTC is to continue transferring data, set the SWDTE bit to 1. When the DISEL bit is 1, or after the specified number of data transfers have ended, the SWDTE bit is held at 1 and a CPU interrupt is requested.

8.3.12 Examples of Use of the DTC

(1) Normal Mode

An example is shown in which the DTC is used to receive 128 bytes of data via the SCI.

- [1] Set MRA to fixed source address (SM1 = SM0 = 0), incrementing destination address (DM1 = 1, DM0 = 0), normal mode (MD1 = MD0 = 0), and byte size (Sz = 0). The DTS bit can have any value. Set MRB for one data transfer by one interrupt (CHNE = 0, DISEL = 0). Set the SCI RDR address in SAR, the start address of the RAM area where the data will be received in DAR, and 128 (H'0080) in CRA. CRB can be set to any value.
- [2] Set the start address of the register information at the DTC vector address.
- [3] Set the corresponding bit in DTCER to 1.
- [4] Set the SCI to the appropriate receive mode. Set the RIE bit in SCR to 1 to enable the reception complete (RXI) interrupt. Since the generation of a receive error during the SCI reception operation will disable subsequent reception, the CPU should be enabled to accept receive error interrupts.
- [5] Each time reception of one byte of data ends on the SCI, the RDRF flag in SSR is set to 1, an RXI interrupt is generated, and the DTC is activated. The receive data is transferred from RDR to RAM by the DTC. DAR is incremented and CRA is decremented. The RDRF flag is automatically cleared to 0.
- [6] When CRA becomes 0 after the 128 data transfers have ended, the RDRF flag is held at 1, the DTCE bit is cleared to 0, and an RXI interrupt request is sent to the CPU. The interrupt handling routine should perform wrap-up processing.

(2) Chain Transfer

An example of DTC chain transfer is shown in which pulse output is performed using the PPG. Chain transfer can be used to perform pulse output data transfer and PPG output trigger cycle updating. Repeat mode transfer to the PPG's NDR is performed in the first half of the chain transfer, and normal mode transfer to the TPU's TGR in the second half. This is because clearing of the activation source and interrupt generation at the end of the specified number of transfers are restricted to the second half of the chain transfer (transfer when CHNE = 0).

- [1] Perform settings for transfer to the PPG's NDR. Set MRA to source address incrementing (SM1 = 1, SM0 = 0), fixed destination address (DM1 = DM0 = 0), repeat mode (MD1 = 0, MD0 = 1), and word size (Sz = 1). Set the source side as a repeat area (DTS = 1). Set MRB to chain mode (CHNE = 1, DISEL = 0). Set the data table start address in SAR, the NDRH address in DAR, and the data table size in CRAH and CRAL. CRB can be set to any value.
- [2] Perform settings for transfer to the TPU's TGR. Set MRA to source address incrementing (SM1 = 1, SM0 = 0), fixed destination address (DM1 = DM0 = 0), normal mode (MD1 = MD0 = 0), and word size (Sz = 1). Set the data table start address in SAR, the TGRA address in DAR, and the data table size in CRA. CRB can be set to any value.
- [3] Locate the TPU transfer register information consecutively after the NDR transfer register information.
- [4] Set the start address of the NDR transfer register information to the DTC vector address.
- [5] Set the bit corresponding to TGIA in DTCER to 1.
- [6] Set TGRA as an output compare register (output disabled) with TIOR, and enable the TGIA interrupt with TIER.
- [7] Set the initial output value in PODR, and the next output value in NDR. Set bits in DDR and NDER for which output is to be performed to 1. Using PCR, select the TPU compare match to be used as the output trigger.
- [8] Set the CST bit in TSTR to 1, and start the TCNT count operation.
- [9] Each time a TGRA compare match occurs, the next output value is transferred to NDR and the set value of the next output trigger period is transferred to TGRA. The activation source TGFA flag is cleared.

[10] When the specified number of transfers are completed (the TPU transfer CRA value is 0), the TGFA flag is held at 1, the DTCE bit is cleared to 0, and a TGIA interrupt request is sent to the CPU. Termination processing should be performed in the interrupt handling routine.

(3) Software Activation

An example is shown in which the DTC is used to transfer a block of 128 bytes of data by means of software activation. The transfer source address is H'1000 and the destination address is H'2000. The vector number is H'60, so the vector address is H'04C0.

- [1] Set MRA to incrementing source address (SM1 = 1, SM0 = 0), incrementing destination address (DM1 = 1, DM0 = 0), block transfer mode (MD1 = 1, MD0 = 0), and byte size (Sz = 0). The DTS bit can have any value. Set MRB for one block transfer by one interrupt (CHNE = 0). Set the transfer source address (H'1000) in SAR, the destination address (H'2000) in DAR, and 128 (H'8080) in CRA. Set 1 (H'0001) in CRB.
- [2] Set the start address of the register information at the DTC vector address (H'04C0).
- [3] Check that the SWDTE bit in DTVECR is 0. Check that there is currently no transfer activated by software.
- [4] Write 1 to the SWDTE bit and the vector number (H'60) to DTVECR. The write data is H'E0.
- [5] Read DTVECR again and check that it is set to the vector number (H'60). If it is not, this indicates that the write failed. This is presumably because an interrupt occurred between steps 3 and 4 and led to a different software activation. To activate this transfer, go back to step 3.
- [6] If the write was successful, the DTC is activated and a block of 128 bytes of data is transferred.
- [7] After the transfer, an SWDTEND interrupt occurs. The interrupt handling routine should clear the SWDTE bit to 0 and perform other wrap-up processing.

8.4 Interrupts

An interrupt request is issued to the CPU when the DTC finishes the specified number of data transfers, or a data transfer for which the DISEL bit was set to 1. In the case of interrupt activation, the interrupt set as the activation source is generated. These interrupts to the CPU are subject to CPU mask level and interrupt controller priority level control.

In the case of activation by software, a software activated data transfer end interrupt (SWDTEND) is generated.

When the DISEL bit is 1 and one data transfer has ended, or the specified number of transfers have ended, after data transfer ends, the SWDTE bit is held at 1 and an SWDTEND interrupt is generated. The interrupt handling routine should clear the SWDTE bit to 0.

When the DTC is activated by software, an SWDTEND interrupt is not generated during a data transfer wait or during data transfer even if the SWDTE bit is set to 1.

8.5 Usage Notes

Module Stop: When the MSTPA6 bit in MSTPCRA is set to 1, the DTC clock stops, and the DTC enters the module stop state. However, 1 cannot be written in the MSTPA6 bit while the DTC is operating.

On-Chip RAM: The MRA, MRB, SAR, DAR, CRA, and CRB registers are all located in on-chip RAM. When the DTC is used, the RAME bit in SYSCR must not be cleared to 0.

DTCE Bit Setting: For DTCE bit setting, use bit manipulation instructions such as BSET and BCLR. If all interrupts are masked, multiple activation sources can be set at one time by writing data after executing a dummy read on the relevant register.

Section 9 I/O Ports

9.1 Overview

The chip has 10 I/O ports (ports 1, 3 and A to F, H, J), and two input-only port (ports 4 and 9).

Table 9-1 summarizes the port functions. The pins of each port also have other functions.

Each I/O port includes a data direction register (DDR) that controls input/output, a data register (DR) that stores output data, and a port register (PORT) used to read the pin states. The input-only ports do not have a DR or DDR register.

Ports A to E have an on-chip pull-up MOS function, and in addition to DR and DDR, have a MOS input pull-up control register (PCR) to control the on/off state of MOS input pull-up.

Ports 3, and A to C include an open-drain control register (ODR) that controls the on/off state of the output buffer PMOS.

When ports 10 to 13 and A to F are used as the output pins for expanded bus control signals, they can drive one TTL load plus a 90pF capacitance load. Those ports in other cases and ports 14 to 17 and 3 can drive one TTL load and a 30pF capacitance load. All I/O ports can drive Darlington transistors when set to output.

Port 1 pins (P16 and P14) and port 3 pins (P35 and P32) and port F (PF3 and PF0) are Schmitt-trigger inputs.

See appendix C, I/O Port Block Diagrams, for a block diagram of each port.

Table 9-1 Port Functions

Port	Description	Pins	Mode 4	Mode 5	Mode 6	Mode 7
Port 1	8-bit I/O port Schmitt-triggered input (P16, P14)	P17/PO15/TIOCB2/ TCLKD P16/PO14/TIOCA2/ IRQ1 P15/PO13/TIOCB1/ TCLKC P14/PO12/TIOCA1/ IRQ0 P13/PO11/TIOCD0/ TCLKB/A23 P12/PO10/TIOCC0/ TCLKA/A22 P11/PO9/TIOCB0/A21 P10/PO8/TIOCA0/A20	8 bit I/O port als (TCLKA, TCLKE TIOCBO, TIOCC TIOCA2, TIOCE PO8), interrupt address outputs	3, TCLKC, TCLk C0, TIOCD0, TIC 32), PPG output input pins (IRQ0 5 (A20 to A23)	KD, TIOCAO, DCA1, TIOCB1, pins (PO15 to TRQ1), and	8-bit I/O port also functioning as TPU I/O pins (TCLKA, TCLKB, TCLKC, TCLKD, TIOCAO, TIOCBO, TIOCCO, TIOCDO, TIOCA1, TIOCB1, TIOCA2, TIOCB2), PPG output pins (PO15 to PO8), interrupt input pins (IRQO, IRQO1)
Port 3	 6-bit I/O port Open-drain output capability Schmitt-triggered input (P35, P32) 	P35/SCK1/SCL0*1/ IRQ5 P34/RxD1/SDA0*1 P33/TxD1/SCL1*1 P32/SCK0/SDA1*1/ IRQ4 P31/RxD0 P30/TxD0		CK0, TxD1, RxE	SCI (channel 0 D1, SCK1), inter I I/O pins (SCL0	rupt input pins
Port 4	8-bit input port	P47/AN7/DA1 P46/AN6/DA0 P45/AN5 P44/AN4 P43/AN3 P42/AN2 P41/AN1 P40/AN0	8-bit input port a (AN7 to AN0) an			

Port	Description	Pins	Mode 4	Mode 5	Mode 6	Mode 7
Port 9	• 4-bit input port	P93/AN11 P92/AN10 P91/AN9 P90/AN8	4-bit input port a (AN11 to AN8)	also functioning	as A/D converte	r analog inputs
Port A	4-bit I/O port On-chip MOS input pull-up Open-drain output capability	PA3/A19/SCK2 PA2/A18/RxD2 PA1/A17/TxD2 PA0/A16	4-bit I/O port als 2) I/O pins (TxD outputs (A19 to	2, RxD2, SCK2		4-bit I/O port also function- ing as SCI (channel 2) I/O pins (TxD2, RxD2, SCK2)
Port B	8-bit I/O port On-chip MOS input pull-up Open-drain output capability	PB7/A15/TIOCB5 PB6/A14/TIOCA5 PB5/A13/TIOCB4 PB4/A12/TIOCA4 PB3/A11/TIOCD3 PB2/A10/TIOCC3 PB1/A9/TIOCB3 PB0/A8/TIOCA3	8-bit I/O port als (TIOCB5, TIOC TIOCC3, TIOCE outputs (A15 to	A5, TIOCB4, TIO 33, TIIOCA3) an	OCA4, TIOCD3,	8-bit I/O port also functioning as TPU I/O pins (TIOCB5, TIOCA5, TIOCB4, TIOCA4, TIOCD3, TIOCC3, TIOCB3, TIOCB3,
Port C	8-bit I/O port On-chip MOS input pull-up Open-drain output capability	PC7/A7 PC6/A6 PC5/A5 PC4/A4 PC3/A3 PC2/A2 PC1/A1 PC0/A0	8-bit I/O port als outputs (A7 to A	•	s address	I/O port
Port D	8-bit I/O port On-chip MOS input pull-up	PD7/D15 PD6/D14 PD5/D13 PD4/D12 PD3/D11 PD2/D10 PD1/D9 PD0/D8	Data bus input/o	output		I/O port

Port	Description	Pins	Mode 4	Mode 5	Mode 6	Mode 7		
Port E	• 8-bit I/O	PE7/D7	In 8-bit-bus mode: I/O port I/O port					
	port	PE6/D6	In 16-bit-bus mode: data bus input/output					
	On-chip MOS input	PE5/D5						
	MOS input pull-up	PE4/D4						
	P 3 3P	PE3/D3						
		PE2/D2						
		PE1/D1						
		PE0/D0						
Port F	6-bit I/O portSchmitt-	ΡF7/φ	When DDR = 0: When DDR = 1	When DDR = 0 (after reset): input				
	triggered input (PF3, PF0)				port When DDR = 1: φ output			
		PF6/AS	RD, HWR, LWR	outputs		I/O port		
		PF5/RD	ADTRG, IRQ3 ir	nput		ADTRG, IRQ3		
		PF4/HWR				input		
		PF3/LWR/ADTRG/ IRQ3						
		PF0/IRQ2	IRQ2 input, I/O	oort				
Port H	8-bit I/O port	PH7/PWM1H PH6/PWM1G PH5/PWM1F PH4/PWM1E PH3/PWM1D PH2/PWM1C PH1/PWM1B PH0/PWM1A	Function as both bit I/O port.	Motor Control	PWM Timer out	put pins and 8-		
Port J	8-bit I/O port	PJ7/PWM2H PJ6/PWM2G PJ5/PWM2F PJ4/PWM2E PJ3/PWM2D PJ2/PWM2C PJ1/PWM2B PJ0/PWM2A	Function as both bit I/O port.	n Motor Control	PWM Timer out	put pins and 8-		

Notes: 1. Pins for I²C bus interface.

I²C bus interface is available as an option in the H8S/2638, H8S/2639, and H8S/2630.

- 2. The PPG output is not implemented in the H8S/2635 Group.
- 3. The DA output is not implemented in the H8S/2635 Group.

9.2 Port 1

Note: The PPG output is not implemented in the H8S/2635 Group.

9.2.1 Overview

Port 1 is an 8-bit I/O port. Port 1 pins also function as PPG output pins (PO15 to PO8), TPU I/O pins (TCLKA, TCLKB, TCLKC, TCLKD, TIOCA0, TIOCB0, TIOCC0, TIOCD0, TIOCA1, TIOCB1, TIOCA2, and TIOCB2), external interrupt pins (IRQ0 and IRQ1), and address bus output pins (A23 to A20). Port 1 pin functions change according to the operating mode.

Figure 9-1 shows the port 1 pin configuration.

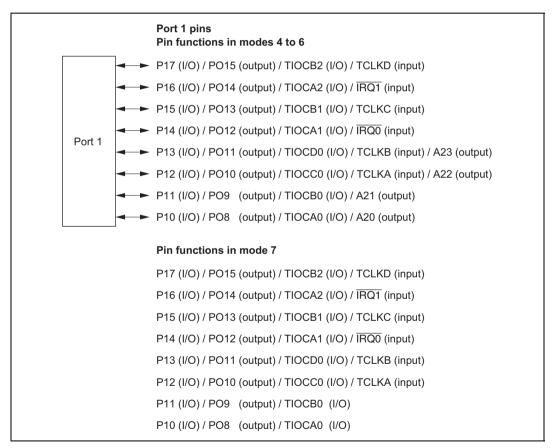


Figure 9-1 Port 1 Pin Functions

9.2.2 Register Configuration

Table 9-2 shows the port 1 register configuration.

Table 9-2 Port 1 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 1 data direction register	P1DDR	W	H'00	H'FE30
Port 1 data register	P1DR	R/W	H'00	H'FF00
Port 1 register	PORT1	R	Undefined	H'FFB0

Note: * Lower 16 bits of the address.

Port 1 Data Direction Register (P1DDR)

Bit	:	7	6	5	4	3	2	1	0
		P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR
Initial valu	e:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

P1DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 1. P1DDR cannot be read; if it is, an undefined value will be read.

Setting a P1DDR bit to 1 makes the corresponding port 1 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P1DDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 1 Data Register (P1DR)

Bit	:	7	6	5	4	3	2	1	0
		P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

P1DR is an 8-bit readable/writable register that stores output data for the port 1 pins (P17 to P10).

P1DR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 1 Register (PORT1)

Bit	:	7	6	5	4	3	2	1	0
		P17	P16	P15	P14	P13	P12	P11	P10
Initial val	ue :	*	_*	_*	*	_*	_*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins P17 to P10.

PORT1 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 1 pins (P17 to P10) must always be performed on P1DR.

If a port 1 read is performed while P1DDR bits are set to 1, the P1DR values are read. If a port 1 read is performed while P1DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT1 contents are determined by the pin states, as P1DDR and P1DR are initialized. PORT1 retains its prior state in software standby mode.

9.2.3 Pin Functions

Port 1 pins also function as PPG output pins (PO15 to PO8), TPU I/O pins (TCLKA, TCLKB, TCLKC, TCLKD, TIOCA0, TIOCB0, TIOCC0, TIOCD0, TIOCA1, TIOCB1, TIOCA2, and TIOCB2), external interrupt input pins ($\overline{IRQ0}$ and $\overline{IRQ1}$), and address bus output pins (A23 to A20). Port 1 pin functions are shown in table 9-3.

Note: The PPG output is not implemented in the H8S/2635 Group.

Table 9-3 **Port 1 Pin Functions**

Pin Selection Method and Pin Functions

P17/PO15/ TIOCB2/ TCLKD

The pin function is switched as shown below according to the combination of the TPU channel 2 setting (by bits MD3 to MD0 in TMDR2, bits IOB3 to IOB0 in TIOR2, and bits CCLR1 and CCLR0 in TCR2), bits TPSC2 to TPSC0 in TCR0 and TCR5, bit NDER15 in NDERH, and bit P17DDR.

TPU Channel 2 Setting	Table Below (1)	Table Below (2)					
P17DDR	_	0	1	1			
NDER15	_	_	0	1			
Pin function	TIOCB2 output	P17 input	P17 output	PO15 output			
		TIOCB2 input *1					
		TCLKD input *2					

Notes: 1. TIOCB2 input when MD3 to MD0 = B'0000 or B'01xx, and IOB3 =

2. TCLKD input when the setting for either TCR0 or TCR5 is: TPSC2 to TPSC0 = B'111. TCLKD input when channels 2 and 4 are set to phase counting

mode.

TPU Channel 2 Setting	(2)	(1)	(2)	(2)	(1)	(2)	
MD3 to MD0	B'0000	B'01xx	B'0010		B'0011		
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_	B'xx00	Other than B'xx00		
CCLR1, CCLR0	_	_	_	_	Other than B'10	B'10	
Output function		Output compare output	_	_	PWM mode 2 output	_	

x: Don't care

Selection Method and Pin Functions

P16/PO14/ TIOCA2/ IRQ1

May 28, 2010

The pin function is switched as shown below according to the combination of the TPU channel 2 setting (by bits MD3 to MD0 in TMDR2, bits IOA3 to IOA0 in TIOR2, and bits CCLR1 and CCLR0 in TCR2), bit NDER14 in NDERH, and bit P16DDR.

TPU Channel 2 Setting	Table Below (1)	Table Below (2)					
P16DDR	_	0	1	1			
NDER14	_	_	0	1			
Pin function	TIOCA2 output	P16 input	P16 output	PO14 output			
		TIOCA2 input *1					
		IRQ1 input					

TPU Channel 2 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000	, B'01xx	B'001x	B'0010	B'0	011
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00		
CCLR1, CCLR0	_	_	_	_	Other than B'01	B'01
Output function	_	Output compare output	_	PWM mode 1 output *2	PWM mode 2 output	_

x: Don't care

Notes: 1. TIOCA2 input when MD3 to MD0 = B'0000 or B'01xx, and IOA3 = 1.

2. TIOCB2 output is disabled.

Pin Selection Method and Pin Functions

P15/PO13/ TIOCB1/TCLKC

The pin function is switched as shown below according to the combination of the TPU channel 1 setting (by bits MD3 to MD0 in TMDR1, bits IOB3 to IOB0 in TIOR1, and bits CCLR1 and CCLR0 in TCR1), bits TPSC2 to TPSC0 in TCR0, TCR2, TCR4, and TCR5, bit NDER13 in NDERH, and bit P15DDR.

TPU Channel 1 Setting	Table Below (1)	Table Below (2)				
P15DDR	_	0	1	1		
NDER13	_	_	0	1		
Pin function	TIOCB1 output	P15 P15 PO13 input output				
		TIOCB1 input *1				
TCLKC input *2						

Notes: 1. TIOCB1 input when MD3 to MD0 = B'0000 or B'01xx, and IOB3 to IOB0 = B'10xx.

2. TCLKC input when the setting for either TCR0 or TCR2 is: TPSC2 to TPSC0 = B'110; or when the setting for either TCR4 or TCR5 is TPSC2 to TPSC0 = B'101.

TCLKC input when channels 2 and 4 are set to phase counting mode.

TPU Channel 1 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000	B'01xx	B'0010		B'0011	
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_	B'xx00	Other tha	an B'xx00
CCLR1, CCLR0	_	_	_	_	Other than B'10	B'10
Output function	_	Output compare output	_	_	PWM mode 2 output	_

x: Don't care

Selection Method and Pin Functions

P14/PO12/ TIOCA1/IRQ0

May 28, 2010

The pin function is switched as shown below according to the combination of the TPU channel 1 setting (by bits MD3 to MD0 in TMDR1, bits IOA3 to IOA0 in TIOR1, and bits CCLR1 and CCLR0 in TCR1), bit NDER12 in NDERH, and bit P14DDR.

TPU Channel 1 Setting	Table Below (1) Table Below (2					
P14DDR	_	0	1	1		
NDER12	_	_	0	1		
Pin function	TIOCA1 output	P14 input	P14 output	PO12 output		
		TIOCA1 input *1				
	ĪRQ0 input					

TPU Channel 1 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000	, B'01xx	B'001x	B'0010	B'0	011
IOA3 to IOA0	B'0000 B'0100	B'0001 to B'0011	B'xx00	Oth	er than B'x	x00
	B'1xxx	B'0101 to B'0111				
CCLR1, CCLR0	_	_	_	_	Other than B'01	B'01
Output function	_	Output compare output	_	PWM mode 1 output*2	PWM mode 2 output	_

x: Don't care

Notes: 1. TIOCA1 input when MD3 to MD0 = B'0000 or B'01xx, and IOA3 to IOA0 = B'10xx.

2. TIOCB1 output is disabled.

Pin Selection Method and Pin Functions

P13/PO11/ TIOCD0/TCLKB/ A23

The pin function is switched as shown below according to the combination of the operating mode, and the TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOD3 to IOD0 in TIOR0L, and bits CCLR2 to CCLR0 in TCR0), bits TPSC2 to TPSC0 in TCR0 to TCR2, bits AE3 to AE0 in PFCR, bit NDER11 in NDERH, and bit P13DDR.

Operating mode		Modes 4 to 6							
AE3 to AE0		B'0000 to B'1110							
TPU Channel 0 Setting	Table Below (1)	Т	_						
P13DDR	_	0	_						
NDER11	_	_	0	1	_				
Pin function	TIOCD0 output	P13 input	P13 output OCD0 input	PO11 output	A23 output				
		TI							
		TCLKB	input *2						

Operating mode	Mode 7					
AE3 to AE0	_					
TPU Channel 0 Setting	Table Table Below (2) Below (1)					
P13DDR	_	0 1 1				
NDER11	_	_ 0 1				
Pin function	TIOCD0 output	P13 input P13 output PO11 output				
		TIOCD0 input *1				
		TCLKB input *2				

- Notes: 1. TIOCD0 input when MD3 to MD0 = B'0000, and IOD3 to IOD0 = B'10xx.
 - 2. TCLKB input when the setting for TCR0 to TCR2 is: TPSC2 to TPSC0 = B'101.

TCLKB input when channels 1 and 5 are set to phase counting mode.

Selection Method and Pin Functions

P13/PO11/ TIOCD0/TCLKB/ A23

TPU Channel 0 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000		B'0010	B'0011		
IOD3 to IOD0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_	B'xx00	Other tha	an B'xx00
CCLR2 to CCLR0	_	_	_	_	Other than B'110	B'110
Output function	_	Output compare output	_	_	PWM mode 2 output	_

x: Don't care

Selection Method and Pin Functions

P12/PO10/ TIOCC0/TCLKA/ A22 The pin function is switched as shown below according to the combination of the operating mode, and the TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOC3 to IOC0 in TIOR0L, and bits CCLR2 to CCLR0 in TCR0), bits TPSC2 to TPSC0 in TCR0 to TCR5, bits AE3 to AE0 in PFCR, bit NDER10 in NDERH, and bit P12DDR.

Modes 4 to 6				
B'0000 to B'1110				B'1111
Table Below (1)	Table Below (2)			_
_	0	_		
	_	_		
TIOCC0 output	P12 P12 P010 output TIOCC0 input *1 TCLKA input *2			A22 output
	Below (1) — TIOCC0	B'0000 to Table Below (1) - 0 TIOCC0 output TI	B'0000 to B'1110 Table Below (1) - 0 1 - 0 TIOCC0 P12 P12 output	B'0000 to B'1110 Table Below (2)

Operating mode	Mode 7					
AE3 to AE0	_					
TPU Channel 0 Setting	Table Below (1)	Table Below (2)				
P12DDR	_	0 1 1				
NDER10	_	_	0	1		
Pin function	TIOCC0 output	P12 input P12 output PO10 output				
		TIOCC0 input *1				
		TCLKA input *2				

Selection Method and Pin Functions

P12/PO10/ TIOCC0/TCLKA/ A22

May 28, 2010

TPU Channel 0 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000		B'001x	B'0010	B'0011	
IOC3 to IOC0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00		xx00
CCLR2 to CCLR0	_		_	_	Other than B'101	B'101
Output function	_	Output compare output	_	PWM mode 1 output*3	PWM mode 2 output	

x: Don't care

- Notes: 1. TIOCC0 input when MD3 to MD0 = B'0000, and IOC3 to IOC0 = B'10xx.
 - 2. TCLKA input when the setting for TCR0 to TCR5 is: TPSC2 to TPSC0 = B'100.

TCLKA input when channels 1 and 5 are set to phase counting mode.

3. TIOCD0 output is disabled. When BFA = 1 or BFB = 1 in TMDR0, output is disabled and setting (2) applies.

Pin Selection Method and Pin Functions

A21

P11/PO9/TIOCB0/ The pin function is switched as shown below according to the combination of the operating mode, the TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, and bits IOB3 to IOB0 in TIOR0H), bits CCLR2 to CCLR0 in TCR0, bits AE3 to AE0 in PFCR, bit NDER9 in NDERH, and bit P11DDR.

Operating mode	Modes 4 to 6					
AE3 to AE0	B'0000 to B'1101				B'1110 to B'1111	
TPU Channel 0 Setting	Table Below (1)	Table Below (2)			_	
P11DDR	_	0	_			
NDER9	_	_	_			
Pin function	TIOCB0 output	P11 P11 PO9 output TIOCB0 input *			A21 output	

Operating mode	Mode 7				
AE3 to AE0	_				
TPU Channel 0 Setting	Table Below (1)	Table Below (2)			
P11DDR	_	0 1 1			
NDER9	_	_ 0 1			
Pin function	TIOCB0 output	P11 P11 PO9 output			
		TIOCB0 input *			

Note: *TIOCB0 input when MD3 to MD0 = B'0000, and IOB3 to IOB0 = B'10xx.

Pin Selection Method and Pin Functions

P11/PO9/TIOCB0/ A21

TPU Channel 0 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0	000	B'0010		B'0011	
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_	B'xx00	Other tha	an B'xx00
CCLR2 to CCLR0	_	_	_	_	Other than B'010	B'010
Output function	_	Output compare output	_	_	PWM mode 2 output	_

x: Don't care

Pin Selection Method and Pin Functions

A20

P10/PO8/TIOCA0/ The pin function is switched as shown below according to the combination of the operating mode, and the TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOA3 to IOA0 in TIOR0H, and bits CCLR2 to CCLR0 in TCR0), bits AE3 to AE0 in PFCR, bit NDER8 in NDERH, SAE0 bit in DMABCRH, and bit P10DDR.

Operating mode	Modes 4 to 6					
AE3 to AE0		B'0000 to B'1110 B'1101 to B'11111				
TPU Channel 0 Setting	Table Below (1)	Table Below (2)				
P10DDR	_	0	1	1	_	
NDER8	_	_	0	1	_	
Pin function	TIOCA0 output	P10 P10 PO8 A20 output input output *1				

Operating mode	Mode 7							
AE3 to AE0		_						
TPU Channel 0 Setting	Table Below (1)	Table Below (2)						
P10DDR	_	0	1	1				
NDER8	_	_	0	1				
Pin function	TIOCA0 output	P10 P10 PO8 input output output						
			TIOCA0 input *1					

Pin **Selection Method and Pin Functions**

P10/P08/TIOCA0/
A20

May 28, 2010

TPU Channel 0 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0	000	B'001x	B'0010	B'0	011
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Oth	er than B'x	x00
CCLR2 to CCLR0	_	_	_	_	Other than B'001	B'001
Output function	_	Output compare output	_	PWM mode 1 output*2	PWM mode 2 output	_

x: Don't care

Notes: 1. TIOCA0 input when MD3 to MD0 = B'0000, and IOA3 to IOA0 = B'10xx.

2. TIOCB0 output is disabled.

9.3 Port 3

9.3.1 Overview

Port 3 is an 6-bit I/O port. Port 3 is a multi-purpose port for SCI I/O pins (TxD0, RxD0, SCK0, TxD1, RxD1, SCK1), external interrupt input pins (IRQ4, IRQ5), and IIC I/O pins* (SCL0, SDA0, SCL1, SDA1). All of the port 3 pin functions have the same operating mode. The configuration for each of the port 3 pins is shown in figure. 9-2.

Note: * Available when using I²C bus interface as an option in the H8S/2638, H8S/2639, and H8S/2630 (the product equipped with the I²C bus interface is the W-mask version).

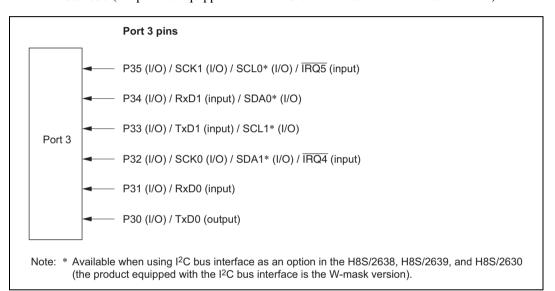


Figure 9-2 Port 3 Pin Functions

9.3.2 Register Configuration

Table 9-4 shows the configuration of port 3 registers.

Table 9-4 Port 3 Register Configuration

Name	Abbreviation	R/W	Initial Value*2	Address*1
Port 3 data direction register	P3DDR	W	B'**000000	H'FE32
Port 3 data register	P3DR	R/W	B'**000000	H'FF02
Port 3 register	PORT3	R	Undefined	H'FFB2
Port 3 open drain control register	P3ODR	R/W	B'**000000	H'FE46

Notes: 1. Lower 16 bits of the address.

2. Value of bits 5 to 0.

Port 3 Data Direction Register (P3DDR)

Bit	7	6	5	4	3	2	1	0
			P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR
Initial value	Undefined	Undefined	0	0	0	0	0	0
Read/Write	_	_	W	W	W	W	W	W

P3DDR is an 8-bit write-dedicated register, which specifies the I/O for each port 3 pin by bit. Read is disenabled. If a read is carried out, undefined values are read out.

By setting P3DDR to 1, the corresponding port 3 pins become output, and be clearing to 0 they become input.

P3DDR is initialized to B'**000000 by a reset and in hardware standby mode. The previous state is maintained in software standby mode. The pin state is determined by specifying SCI, IIC*, P3DDR, and P3DR.

Note: * Available when using I^2C bus interface as an option in the H8S/2638, H8S/2639, and H8S/2630 (the product equipped with the I^2C bus interface is the W-mask version).

Port 3 Data Register (P3DR)

Bit	7	6	5	4	3	2	1	0
	_	_	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR
Initial value	Undefined	Undefined	0	0	0	0	0	0
Read/Write	_	_	R/W	R/W	R/W	R/W	R/W	R/W

P3DR is an 8-bit readable/writable register, which stores the output data of port 3 pins (P35 to P30).

P3DR is initialized to B'**000000 by a reset and in hardware standby mode. The previous state is maintained in software standby mode.

Port 3 Register (PORT3)

Bit	7	6	5	4	3	2	1	0	_
	_	_	P35	P34	P33	P32	P31	P30	
Initial value	Undefined	Undefined	*	*	*	*	*	*	
Read/Write	_	_	R	R	R	R	R	R	

Note: * Determined by the state of pins P35 to P30.

PORT3 is an 8-bit read-dedicated register, which reflects the state of pins. Write is disenabled. Always carry out writing off output data of port 3 pins (P35 to P30) to P3DR without fail.

When P3DDR is set to 1, if port 3 is read, the values of P3DR are read. When P3DDR is cleared to 0, if port 3 is read, the states of pins are read out.

P3DDR and P3DR are initialized by a reset and in hardware standby mode, so PORT3 is determined by the state of the pins. The previous state is maintained in software standby mode.

Port 3 Open Drain Control Register (P3ODR)

Bit	7	6	5	4	3	2	1	0
			P35ODR	P34ODR	P33ODR	P32ODR	P310DR	P30ODR
Initial value	Undefined	Undefined	0	0	0	0	0	0
Read/Write		_	R/W	R/W	R/W	R/W	R/W	R/W

P3ODR is an 8-bit readable/writable register, which controls the on/off of port 3 pins (P35 to P30).

By setting P3ODR to 1, the port 3 pins become an open drain out, and when cleared to 0 they become CMOS output.

P3ODR is initialized to B'**000000 by a reset and in hardware standby mode. The previous state is maintained in software standby mode.

9.3.3 Pin Functions

The port 3 pins double as SCI I/O input pins (TxD0, RxD0, SCK0, TxD1, RxD1, and SCK1) external interrupt input pins ($\overline{IRQ4}$ and $\overline{IRQ5}$), and IIC I/O pins* (SCL0, SDA0, SCL1, and SDA1). The functions of port 3 pins are shown in table 9-5.

Note: * Available when using I²C bus interface as an option in the H8S/2638, H8S/2639, and H8S/2630 (the product equipped with the I²C bus interface is the W-mask version).

Table 9-5 **Port 3 Pin Functions**

Pin Selection Method and Pin Functions

P35/SCK1/

Switches as follows according to combinations of ICCR0 ICE bit*1 of IIC0, bit C/A of SCL0*1/IRQ5 SMR1, bits CKE0 and CKE1 of SCR1, and bit P35DDR.

> When used as a SCL0 I/O pin, always be sure to clear the following bits to 0: bit C/A of SMR1, and bits CKE0 and CKE1 of SCR1. The SCL0 output format is NMOS open drain output, enabling direct bus driving.

ICE*1		0						
CKE1		0 1						
C/A		0	_	0				
CKE0	0 1			_	_	0		
P35DDR	0	1	_	_	_	_		
Pin function	P35 input	als als als						
		·	IRQ5	input	·			

Note: *When P35ODR = 1. it becomes NMOS open drain output.

In W mask-ROM versions, the output format is NMOS push-pull. However, it becomes NMOS open drain output when P35ODR = 1.

P34/RxD1/ SDA0*1

Switches as follows according to combinations of ICCR0 ICE bit*1 of IIC0. bit RE of SCR1 and bit P34DDR. The SDA0 output format is NMOS open drain output, enabling direct bus driving.

ICE*1		1		
RE	0		1	_
P34DDR	0	1	_	_
Pin function	P34 input	P34 output*	RxD1 input	SDA0 I/O

Note: *When P34ODR = 1, it becomes NMOS open drain output.

In W mask-ROM versions, the output format is NMOS push-pull. However, it becomes NMOS open drain output when P34ODR = 1.

Pin Selection Method and Pin Functions

P33/TxD1/ SCL1*1

Switches as follows according to combinations of ICCR1 ICE bit*1 of IIC1. bit TE of SCR1 and bit P33DDR. The SCL1 output format is NMOS open drain output. enabling direct bus driving.

ICE*1		1		
TE	0		1	_
P33DDR	0	1	_	_
Pin function	P33 input	P33 output*	TxD1 output*	SCL1 I/O

Note: * When P33ODR = 1, it becomes NMOS open drain output.

P32/SCK0/

Switches as follows according to combinations of ICCR1 ICE bit*1 of IIC1, bit C/A of SDA1*1/IRQ4 SMR0, bits CKE0 and CKE1 of SCR0, and bit P32DDR. When used as a SDA1 I/O pin, always be sure to clear the following bits to 0: SMR0 C/A bit, SCR0 CKE0 and CKE1 bits.

The SDA1 output format is NMOS open drain output, enabling direct bus driving.

ICE*1		0							
CKE1		()		1	0			
C/A		0		1	_	0			
CKE0	(0	1	_	_	0			
P32DDR	0	1	_	_	_	_			
Pin function	P32 input	P32 output	SCK0 output*	SCK0 output*	SCK0 input	SDA1 I/O			
		ĪRQ4 input							

Note: * When P32ODR = 1, it becomes NMOS open drain output.

P31/RxD0/ IrRxD

Switches as follows according to combinations of bit RE of SCR0 and bit P31DDR.

RE	C	1	1
P31DDR	0	1	_
Pin function	P31 input	P31 output*	RxD0 input

Note: * When P31ODR = 1, it becomes NMOS open drain output.

P30/TxD0/ IrTxD

Switches as follows according to combinations of bit TE of SCR0 and bit P30DDR.

TE	0	1	1
P30DDR	0	1	_
Pin function	P30 input	P30 output*	TxD0 output*

Note: * When P30ODR = 1, it becomes NMOS open drain output.

Available when using I²C bus interface (the W-mask version of the H8S/2638, H8S/2639, and H8S/2630 only). In W mask-ROM versions, the output format is NMOS push-pull. However, it becomes NMOS open drain output when P34ODR = 1 and P35ODR = 1.

9.4 Port 4

Note: The DA output is not implemented in the H8S/2635 Group.

9.4.1 Overview

Port 4 is an 8-bit input-only port. Port 4 pins also function as A/D converter analog input pins (AN0 to AN7) and D/A converter analog output pins (DA0, DA1). Port 4 pin functions are the same in all operating modes. Figure 9-3 shows the port 4 pin configuration.

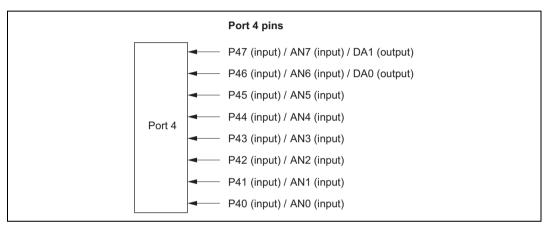


Figure 9-3 Port 4 Pin Functions

9.4.2 **Register Configuration**

Table 9-6 shows the port 4 register configuration. Port 4 is an input-only port, and does not have a data direction register or data register.

Port 4 Registers Table 9-6

Name	Abbreviation	R/W	Initial Value	Address*
Port 4 register	PORT4	R	Undefined	H'FFB3

Note: * Lower 16 bits of the address.

Port 4 Register (PORT4): The pin states are always read when a port 4 read is performed.

Bit	:	7	6	5	4	3	2	1	0
		P47	P46	P45	P44	P43	P42	P41	P40
Initial val	ue :	*	*	*	*	_*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Determined by state of pins P47 to P40.

9.4.3 **Pin Functions**

May 28, 2010

Port 4 pins also function as A/D converter analog input pins (AN0 to AN7) and D/A converter analog output pins (DA0 and DA1).

9.5 Port 9

9.5.1 Overview

Port 9 is a 4-bit input-only port. Port 9 pins also function as A/D converter analog input pins (AN8 to AN11). Port 9 pin functions are the same in all operating modes. Figure 9-4 shows the port 9 pin configuration.



Figure 9-4 Port 9 Pin Functions

9.5.2 Register Configuration

Table 9-7 shows the port 9 register configuration. Port 9 is an input-only port, and does not have a data direction register or data register.

Table 9-7 Port 9 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 9 register	PORT9	R	Undefined	H'FFB8

Note: * Lower 16 bits of the address.

Port 9 Register (PORT9): The pin states are always read when a port 9 read is performed.

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	P93	P92	P91	P90
Initial val	ue :	*	*	*	*	*	*	*	*
R/W	:	_	_	_	_	R	R	R	R

Note: * Determined by state of pins P93 to P90.

9.5.3 Pin Functions

Port 9 pins also function as A/D converter analog input pins (AN8 to AN11) are multipurpose pins which function as A/D converter analog input pins (AN8 to AN11).

9.6 Port A

9.6.1 Overview

Port A is a 4-bit I/O port. Port A pins also function as address bus outputs and SCI2 I/O pins (SCK2, RxD2, and TxD2). The pin functions change according to the operating mode.

Port A has an on-chip MOS input pull-up function that can be controlled by software.

Figure 9-5 shows the port A pin configuration.

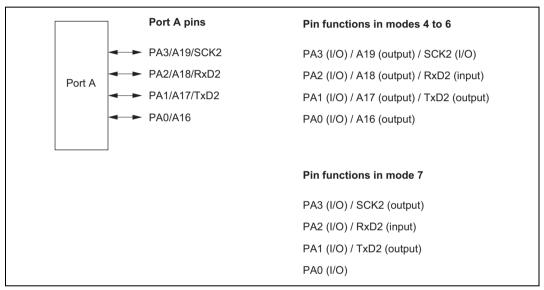


Figure 9-5 Port A Pin Functions

9.6.2 **Register Configuration**

Table 9-8 shows the port A register configuration.

Table 9-8 **Port A Registers**

Name	Abbreviation	R/W	Initial Value*2	Address*1
Port A data direction register	PADDR	W	H'0	H'FE39
Port A data register	PADR	R/W	H'0	H'FF09
Port A register	PORTA	R	Undefined	H'FFB9
Port A MOS pull-up control register	PAPCR	R/W	H'0	H'FF40
Port A open-drain control register	PAODR	R/W	H'0	H'FF47

Notes: 1. Lower 16 bits of the address.

2. Value of bits 3 to 0.

Port A Data Direction Register (PADDR)

Bit :	7	6	5	4	3	2	1	0
	_	_	_	_	PA3DDR	PA2DDR	PA1DDR	PA0DDR
Initial value:	Undefined	Undefined	Undefined	Undefined	0	0	0	0
R/W :	_	_	_	_	W	W	W	W

PADDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port A. PADDR cannot be read; if it is, an undefined value will be read.

Bits 7 to 4 are reserved; they return an undetermined value if read.

PADDR is initialized to H'0 (bits 3 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

Modes 4 to 6

The corresponding port A pins become address outputs in accordance with the setting of bits AE3 to AE0 in PFCR, irrespective of the value of bits PA3DDR to PA0DDR. When pins are not used as address outputs, setting a PADDR bit to 1 makes the corresponding port A pin an output port, while clearing the bit to 0 makes the pin an input port.

• Mode 7

Setting a PADDR bit to 1 makes the corresponding port A pin an output port, while clearing the bit to 0 makes the pin an input port.

Port A Data Register (PADR)

Bit	: 7	6	5	4	3	2	1	0
	_	_	_	_	PA3DR	PA2DR	PA1DR	PA0DR
Initial value	Undefined	Undefined	Undefined	Undefined	0	0	0	0
R/W	: —			_	R/W	R/W	R/W	R/W

PADR is an 8-bit readable/writable register that stores output data for the port A pins (PA3 to PA0).

Bits 7 to 4 are reserved; they return an undetermined value if read, and cannot be modified.

PADR is initialized to H'0 (bits 3 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port A Register (PORTA)

Bit	:	7	6	5	4	3	2	1	0	
		_			_	PA3	PA2	PA1	PA0	
Initial val	lue :	Undefined	Undefined	Undefined	Undefined	*	_*	_*	*	-
R/W	:	_	_	_	_	R	R	R	R	

Note: * Determined by state of pins PA3 to PA0.

PORTA is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port A pins (PA3 to PA0) must always be performed on PADR.

Bits 7 to 4 are reserved; they return an undetermined value if read, and cannot be modified.

If a port A read is performed while PADDR bits are set to 1, the PADR values are read. If a port A read is performed while PADDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTA contents are determined by the pin states, as PADDR and PADR are initialized. PORTA retains its prior state in software standby mode.

Port A MOS Pull-Up Control Register (PAPCR)

Bit :	7	6	5	4	3	2	1	0
	_	_	_	_	PA3PCR	PA2PCR	PA1PCR	PA0PCR
Initial value:	Undefined	Undefined	Undefined	Undefined	0	0	0	0
R/W :	_	_	_	_	R/W	R/W	R/W	R/W

PAPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port A on an individual bit basis.

Bits 7 to 4 are reserved; they return an undetermined value if read, and cannot be modified. In modes 4 to 6, if a pin is in the input state in accordance with the settings in PFCR, in the SCI's SCMR, SMR, and SCR, and in DDR, setting the corresponding PAPCR bit to 1 turns on the MOS input pull-up for that pin.

In mode 7, if a pin is in the input state in accordance with the settings in the SCI's SCMR, SMR, and SCR, and in DDR, setting the corresponding PAPCR bit to 1 turns on the MOS input pull-up for that pin.

PAPCR is initialized by a reset or to H'0 (bits 3 to 0), and in hardware standby mode. It retains its prior state in software standby mode.

Port A Open Drain Control Register (PAODR)

Bit :	7	6	5	4	3	2	1	0
	_	_	_	_	PA3ODR	PA2ODR	PA10DR	PA0ODR
Initial value:	Undefined	Undefined	Undefined	Undefined	0	0	0	0
R/W :	_	_	_	_	R/W	R/W	R/W	R/W

PAODR is an 8-bit readable/writable register that controls whether PMOS is on or off for each port A pin (PA3 to PA0).

Bits 7 to 4 are reserved; they return an undetermined value if read, and cannot be modified.

When pins are not address outputs in accordance with the setting of bits AE3 to AE0 in PFCR, setting a PAODR bit makes the corresponding port A pin an NMOS open-drain output, while clearing the bit to 0 makes the pin a CMOS output.

PAODR is initialized to H'0 (bits 3 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

9.6.3 Pin Functions

Port A pins also function as SCI input/output pins (TxD2, RxD2, SCK2) and address bus output pins (A19 to A16). Port A pin functions are shown in table 9-9.

Table 9-9 Port A Pin Functions

Pin Selection Method and Pin Functions

PA3/A19/SCK2

The pin function is switched as shown below according to the operating mode, bits AE3 to AE0 in PFCR, bit C/\overline{A} in SMR and bits CKE0 and CKE1 in SCR of SCI2, and bit PA3DDR.

Operating mode	Modes 4 to 6						
AE3 to AE0	B'0000 to B'1011					B'1100 to B'1111	
CKE1	0				1	_	
C/A	0			1		_	
CKE0	0		1	_		_	
PA3DDR	0 1		_	_	_	_	
Pin function	PA3 input	PA3 output	SCK2 output	SCK2 output	SCK2 input	A19 output	

Operating mode	Mode 7						
CKE1		1					
C/A		1	_				
CKE0	0		1	_	_		
PA3DDR	0	1	_	_	_		
Pin function	PA3 input	PA3 output	SCK2 output	SCK2 output	SCK2 input		

Pin

Selection Method and Pin Functions

PA2/A18/RxD2

The pin function is switched as shown below according to the operating mode. bits AE3 to AE0 in PFCR, bit RE in SCR of SCI2, and bit PA2DDR.

Operating mode	Modes 4 to 6					
AE3 to AE0	В	B'1011 to B'1111				
RE	()	1	_		
PA2DDR	0	0 1		_		
Pin function	PA2 input	PA2 output	RxD2 input	A18 output		

Operating mode	Mode 7					
RE	(1				
PA2DDR	0	1	_			
Pin function	PA2 input	PA2 output	RxD2 input			

PA1/A17/TxD2

The pin function is switched as shown below according to the operating mode, bits AE3 to AE0 in PFCR, bit TE in SCR of SCI2, and bit PA1DDR.

Operating mode	Modes 4 to 6					
AE3 to AE0	В	B'1010 to B'1111				
TE	0		1	_		
PA1DDR	0	1	_	_		
Pin function	PA1 input	PA1 output	TxD2 output	A17 output		

Operating mode	Mode 7					
TE	(1				
PA1DDR	0	1	_			
Pin function	PA1 input	PA1 output	TxD2 output			

Pin Selection Method and Pin Functions

PA0/A16

The pin function is switched as shown below according to the operating mode, bits AE3 to AE0 in PFCR, and bit PA0DDR.

Operating mode	Modes 4 to 6					
AE3 to AE0	B'0000 to	B'1001 to B'1111				
PA0DDR	0	1	_			
Pin function	PA0 input	PA0 output	A16 output			

Operating mode	Mode 7			
PA0DDR	0	1		
Pin function	PA0 input	PA0 output		

Pin Functions 9.6.4

Modes 4 to 6: In modes 4 to 6, port A pins function as address outputs according to the setting of AE3 to AE0 in PFCR; when they do not function as address outputs, the pins function as SCI I/O pins and I/O ports.

Port A pin functions in modes 4 to 6 are shown in figure 9-6.

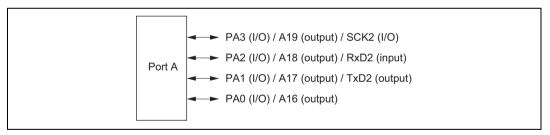


Figure 9-6 Port A Pin Functions (Modes 4 to 6)

Mode 7: In mode 7, port A pins function as I/O ports and SCI2 I/O pins (SCK2, TxD2, RxD2). Input or output can be specified for each pin on an individual bit basis. Setting a PADDR bit to 1 makes the corresponding port A pin an output port, while clearing the bit to 0 makes the pin an input port.

Port A pin functions are shown in figure 9-7.

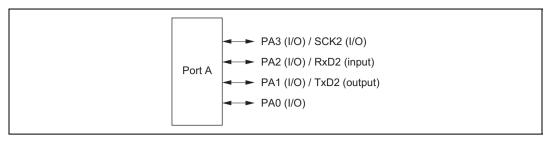


Figure 9-7 Port A Pin Functions (Mode 7)

9.6.5 MOS Input Pull-Up Function

Port A has an on-chip MOS input pull-up function that can be controlled by software. MOS input pull-up can be specified as on or off on an individual bit basis.

In modes 4 to 6, if a pin is in the input state in accordance with the settings in PFCR, in the SCI's SCMR, SMR, and SCR, and in DDR, setting the corresponding PAPCR bit to 1 turns on the MOS input pull-up for that pin.

In mode 7, if a pin is in the input state in accordance with the settings in the SCI's SCMR, SMR, and SCR, and in DDR, setting the corresponding PAPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained in software standby mode.

Table 9-10summarizes the MOS input pull-up states.

Table 9-10 MOS Input Pull-Up States (Port A)

Pin States	Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
Address output or SCI output	OFF	OFF	OFF	OFF
Other than above			ON/OFF	ON/OFF

Legend:

OFF: MOS input pull-up is always off.

ON/OFF: On when PADDR = 0 and PAPCR = 1; otherwise off.

9.7 Port B

9.7.1 Overview

Port B is an 8-bit I/O port. Port B pins also function as TPU I/O pins (TIOCA3, TIOCB3, TIOCC3, TIOCD3, TIOCA4, TIOCB4, TIOCA5, TIOCB5) and as address outputs; the pin functions change according to the operating mode.

Port B has an on-chip MOS input pull-up function that can be controlled by software.

Figure 9-8 shows the port B pin configuration.

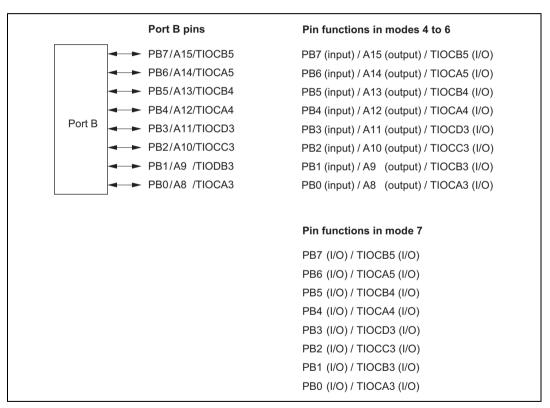


Figure 9-8 Port B Pin Functions

9.7.2 Register Configuration

Table 9-11 shows the port B register configuration.

Table 9-11 Port B Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port B data direction register	PBDDR	W	H'00	H'FE3A
Port B data register	PBDR	R/W	H'00	H'FF0A
Port B register	PORTB	R	Undefined	H'FFBA
Port B MOS pull-up control register	PBPCR	R/W	H'00	H'FF41
Port B open-drain control register	PBODR	R/W	H'00	H'FE48

Note: * Lower 16 bits of the address.

Port B Data Direction Register (PBDDR)

Bit	:	7	6	5	4	3	2	1	0
		PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR
Initial valu	ie:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PBDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port B. PBDDR cannot be read; if it is, an undefined value will be read.

PBDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

Modes 4 to 6

The corresponding port B pins become address outputs in accordance with the setting of bits AE3 to AE0 in PFCR, irrespective of the value of the PBDDR bits. When pins are not used as address outputs, setting a PBDDR bit to 1 makes the corresponding port B pin an output port, while clearing the bit to 0 makes the pin an input port.

Mode 7

Setting a PBDDR bit to 1 makes the corresponding port B pin an output port, while clearing the bit to 0 makes the pin an input port.

Port B Data Register (PBDR)

Bit	:	7	6	5	4	3	2	1	0
		PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR
Initial val	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PBDR is an 8-bit readable/writable register that stores output data for the port B pins (PB7 to PB0). PBDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port B Register (PORTB)

Bit	:	7	6	5	4	3	2	1	0
		PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Initial valu	ue :	*	_*	_*	_*	_*	_*	_*	_*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PB7 to PB0.

PORTB is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port B pins (PB7 to PB0) must always be performed on PBDR.

If a port B read is performed while PBDDR bits are set to 1, the PBDR values are read. If a port B read is performed while PBDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTB contents are determined by the pin states, as PBDDR and PBDR are initialized. PORTB retains its prior state in software standby mode.

Port B MOS Pull-Up Control Register (PBPCR)

Bit	:	7	6	5	4	3	2	1	0
		PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PBPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port B on an individual bit basis.

In modes 4 to 6, if a pin is in the input state in accordance with the settings in PFCR, in the TPU's TIOR, and in DDR, setting the corresponding PBPCR bit to 1 turns on the MOS input pull-up for that pin.

In mode 7, if a pin is in the input state in accordance with the settings in the TPU's TIOR and in DDR, setting the corresponding PBPCR bit to 1 turns on the MOS input pull-up for that pin.

PBPCR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port B Open Drain Control Register (PBODR)

Bit	:	7	6	5	4	3	2	1	0
		PB7ODR	PB6ODR	PB5ODR	PB4ODR	PB3ODR	PB2ODR	PB10DR	PB0ODR
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PBODR is an 8-bit readable/writable register that controls the PMOS on/off state for each port B pin (PB7 to PB0).

When pins are not address outputs in accordance with the setting of bits AE3 to AE0 in PFCR, setting a PBODR bit makes the corresponding port B pin an NMOS open-drain output, while clearing the bit to 0 makes the pin a CMOS output.

PBODR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

9.7.3 Pin Functions

Port B pins also function as TPU output pins (TIOCA3, TIOCB3, TIOCC3, TIOCD3, TIOCA4, TIOCB4, TIOCC4, and TIOCD4) and address bus output pins (A15 to A8).

Table 9-12 Port B Pin Functions

Pin Selection Method and Pin Functions

PB7/A15/TIOCB5

The function of this pin changes according to the operating mode and the setting of bits AE3 to AE0 in PFCR; the TPU5 settings of bits MD3 to MD0 in TMDR5, bits IOB3 to IOB0 in TIOR5, and the CCLR1 and CCLR0 bits in TCR5; and the setting of the PB7DDR bit.

Operating Mode	Modes 4 to 6					
AE3 to AE0	B'00	B'1000 to B'1111				
TPU Channel 5 Setting	Table Below (1)	Table B	_			
PB7DDR	_	0	1	_		
Pin function	TIOCB5 output	PB7 input	A15 output			

Operating Mode	Mode 7					
TPU Channel 5 Setting	Table Below (1)	Table Below (2)				
PB7DDR	_	0	1			
Pin function	Pin function TIOCB5 output		PB7 output			
		TIOCB5 input *				

Pin Selection Method and Pin Functions

PB7/A15/TIOCB5

TPU Channel 5 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000), B'01xx	B'0010		B'0011	
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_	B'xx00	Other tha	an B'xx00
CCLR1, CCLR0	_	_	_	_	Other than B'10	B'10
Output function	_	Output compare output	_	_	PWM mode 2 output	_

x: Don't care

Note: TIOCB5 input when MD3 to MD0 = B'0000 or B'01xx and IOB3 = 1.

Pin Selection Method and Pin Functions

PB6/A14/TIOCA5

The function of this pin changes according to the operating mode and the setting of bits AE3 to AE0 in PFCR; the TPU5 settings of bits MD3 to MD0 in TMDR5, bits IOA3 to IOA0 in TIOR5, and the CCLR1 and CCLR0 bits in TCR5; and the setting of the PB6DDR bit.

Operating Mode	Modes 4 to 6					
AE3 to AE0	B'00	B'0000 to B'0110				
TPU Channel 5 Setting	Table Below (1)	Table B	_			
PB6DDR	_	0	1	_		
Pin function	TIOCA5 output	PB6 input	PB6 output	A14 output		
		TIOCA5	input *1			

Operating Mode	Mode 7					
TPU Channel 5 Setting	Table Below (1)	Table Below (2)				
PB6DDR	_	0	1			
Pin function	TIOCA5 output	PB6 input	PB6 output			
		TIOCA5 input *1				

TPU Channel 5 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000), B'01xx	B'001x	B'0010	B'0011	
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00	Other tha	an B'xx00
CCLR1, CCLR0	_	_	_	_	Other than B'01	B'01
Output function	_	Output compare output	_	PWM mode 1 output*2	PWM mode 2 output	_

x: Don't care

Notes: 1. TIOCA5 input when MD3 to MD0 = B'0000 or B'01xx and IOA3 = 1.

TIOCB5 output is disabled.

Pin

Selection Method and Pin Functions

PB5/A13/TIOCB4

The function of this pin changes according to the operating mode and the setting of bits AE3 to AE0 in PFCR; the TPU4 settings of bits MD3 to MD0 in TMDR4, bits IOB3 to IOB0 in TIOR4, and the CCLR1 and CCLR0 bits in TCR4; and the setting of the PB5DDR bit.

Operating Mode	Modes 4 to 6					
AE3 to AE0	B'00	B'0110 to B'1111				
TPU Channel 4 Setting	Table Below (1)	Table B	_			
PB5DDR	_	0	1	_		
Pin function	TIOCB4 output	PB5 input PB5 output		A13 output		
		TIOCB4	TIOCB4 input *			

Operating Mode	Mode 7			
TPU Channel 4 Setting	Table Below (1)	Table Below (2)		
PB5DDR	_	0 1		
Pin function	TIOCB4 output	PB5 input	PB5 output	
		TIOCB4 input *		

TPU Channel 4 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000), B'01xx	B'0010		B'0011	
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_	B'xx00	Other tha	an B'xx00
CCLR1, CCLR0	_	_	_	_	Other than B'10	B'10
Output function	_	Output compare output	_	_	PWM mode 2 output	_

x: Don't care

Note: TIOCB4 input when MD3 to MD0 = B'0000 or B'01xx and IOB3 to IOB0 = B'10xx.

Pin Selection Method and Pin Functions

PB4/A12/TIOCA4

The function of this pin changes according to the operating mode and the setting of bits AE3 to AE0 in PFCR; the TPU4 settings of bits MD3 to MD0 in TMDR4, bits IOA3 to IOA0 in TIOR4, and the CCLR1 and CCLR0 bits in TCR4; and the setting of the PB4DDR bit.

Operating Mode	Modes 4 to 6				
AE3 to AE0	B'00	B'0101 to B'1111			
TPU Channel 4 Setting	Table Below (1)	Table B	_		
PB4DDR	_	0 1		_	
Pin function	TIOCA4 output	PB4 input TIOCA4	A12 output		

Operating Mode	Mode 7			
TPU Channel 4 Setting	Table Below (1)	Table Below (2)		
PB4DDR	_	0	1	
Pin function	TIOCA4 output	PB4 input	PB4 output	
		TIOCA4 input *1		

TPU Channel 4 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000), B'01xx	B'001x	B'0010	B'0	011
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00	Other tha	an B'xx00
CCLR1, CCLR0	_	_	_	_	Other than B'01	B'01
Output function	_	Output compare output	_	PWM mode 1 output*2	PWM mode 2 output	_

x: Don't care

Notes: 1. TIOCA4 input when MD3 to MD0 = B'0000 or B'01xx and IOA3 to IOA0 = B'10xx.

2. TIOCB4 output is disabled.

Pin

Selection Method and Pin Functions

PB3/A11/TIOCD3

The function of this pin changes according to the operating mode and the setting of bits AE3 to AE0 in PFCR; the TPU3 settings of bits MD3 to MD0 in TMDR3, bits IOD3 to IOD0 in TIORL3, and bits CCLR2 to CCLR0 in TCR3; and the setting of the PB3DDR bit.

Operating Mode	Modes 4 to 6				
AE3 to AE0	B'00	B'0100 to B'1111			
TPU Channel 3 Setting	Table Below (1)	Table B	_		
PB3DDR	_	0	_		
Pin function	TIOCD3 output	PB3 input	A11 output		
		TIOCD			

Operating Mode	Mode 7			
TPU Channel 3 Setting	Table Below (1)	Table Below (2)		
PB3DDR	_	0 1		
Pin function	TIOCD3 output	PB3 input	PB3 output	
		TIOCD3 input *		

TPU Channel 3 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0	0000	B'0010		B'0011	
IOD3 to IOD0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_	B'xx00	Other tha	an B'xx00
CCLR2 to CCLR0	_	_	_	_	Other than B'110	B'110
Output function	_	Output compare output	_	_	PWM mode 2 output	_

x: Don't care

Note: TIOCD3 input when MD3 to MD0 = B'0000 or B'01xx and IOD3 to IOD0 = B'10xx.

Pin Selection Method and Pin Functions

PB2/A10/TIOCC3

The function of this pin changes according to the operating mode and the setting of bits AE3 to AE0 in PFCR; the TPU3 settings of bits MD3 to MD0 in TMDR3, bits IOC3 to IOC0 in TIORL3, and bits CCLR2 to CCLR0 in TCR3; and the setting of the PB2DDR bit.

Operating Mode	Modes 4 to 6				
AE3 to AE0	B'00	B'0011 to B'1111			
TPU Channel 3 Setting	Table Below (1)	Table B	_		
PB2DDR	_	0 1		_	
Pin function	TIOCC3 output	PB2 input	A10 output		
		TIOCC3			

Operating Mode	Mode 7			
TPU Channel 3 Setting	Table Below (1)	Table Below (2)		
PB2DDR	_	0	1	
Pin function	TIOCC3 output	PB2 input	PB2 output	
		TIOCC3 input *1		

TPU Channel 3 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'	0000	B'001x	B'0010	B'0	011
IOC3 to IOC0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00	Other tha	an B'xx00
CCLR2 to CCLR0	_	_	_	_	Other than B'101	B'101
Output function	_	Output compare output	_	PWM mode 1 output*2	PWM mode 2 output	_

x: Don't care

Notes: 1. TIOCC3 input when MD3 to MD0 = B'0000 and IOC3 to IOC0 = B'10xx.

2. TIOCD3 output is disabled.

Pin

Selection Method and Pin Functions

PB1/A9/TIOCB3

The function of this pin changes according to the operating mode and the setting of bits AE3 to AE0 in PFCR; the TPU3 settings of bits MD3 to MD0 in TMDR3, bits IOB3 to IOB0 in TIORH3, and bits CCLR2 to CCLR0 in TCR3; and the setting of the PB1DDR bit.

Operating Mode	Modes 4 to 6				
AE3 to AE0	B'0000 to B'0001 B'0010 to B'1111				
TPU Channel 3 Setting	Table Below (1)	Table B	_		
PB1DDR	_	0 1		_	
Pin function	TIOCB3 output	PB1 input	A9 output		
		TIOCBS			

Operating Mode	Mode 7				
TPU Channel 3 Setting	Table Below (1)	Table Below (2)			
PB1DDR	_	0	1		
Pin function	TIOCB3 output	PB1 input PB1 output			
		TIOCB3 input *			

TPU Channel 3 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000, B'01xx		B'0010	B'0011		
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_	B'xx00	Other tha	an B'xx00
CCLR1, CCLR0	_	_	_	_	Other than B'010	B'010
Output function	_	Output compare output	_	_	PWM mode 2 output	_

x: Don't care

Note: TIOCB3 input when MD3 to MD0 = B'0000 or B'01xx and IOB3 to IOB0 = B'10xx.

Pin Selection Method and Pin Functions

PB0/A8/TIOCA3

The function of this pin changes according to the operating mode and the setting of bits AE3 to AE0 in PFCR; the TPU3 settings of bits MD3 to MD0 in TMDR3, bits IOA3 to IOA0 in TIORH3, and bits CCLR2 to CCLR0 in TCR3; and the setting of the PB0DDR bit.

Operating Mode	Modes 4 to 6				
AE3 to AE0	B'0000 B'0001 B'1111				
TPU Channel 3 Setting	Table Below (1)	Table B	_		
PB0DDR	_	0	1	_	
Pin function	TIOCA3 output	PB0 input TIOCA3	A8 output		

Operating Mode	Mode 7				
TPU Channel 3 Setting	Table Below (1)	Table Below (2)			
PB0DDR	_	0	1		
Pin function	TIOCA3 output	PB0 input	PB0 output		
		TIOCA3 input *1			

TPU Channel 3 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000, B'01xx		B'001x	B'0010	B'0011	
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00	Other tha	an B'xx00
CCLR1, CCLR0	_	_	_	_	Other than B'001	B'001
Output function	_	Output compare output	_	PWM mode 1 output*2	PWM mode 2 output	_

x: Don't care

Notes: 1. TIOCA3 input when MD3 to MD0 = B'0000 and IOA3 to IOA0 = B'10xx.

2. TIOCB3 output is disabled.

9.7.4 Pin Functions for Each Mode

Modes 4 to 6: In modes 4 to 6, the corresponding port B pins become address outputs in accordance with the setting of bits AE3 to AE0 in PFCR. When pins are not used as address outputs, they function as TPU I/O pins and I/O ports.

Port B pin functions in modes 4 to 6 are shown in figure 9-9.

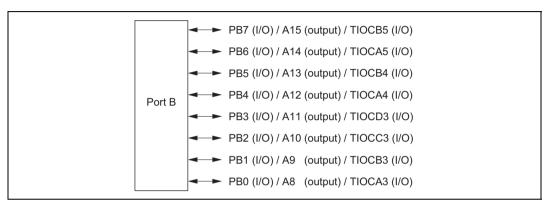


Figure 9-9 Port B Pin Functions (Modes 4 to 6)

Mode 7: In mode 7, port B pins function as I/O ports and TPU I/O pins (TIOCA3, TIOCB3, TIOCC3, TIOCD3, TIOCA4, TIOCB4, TIOCA5, and TIOCB5). Input or output can be specified for each pin on an individual bit basis. Setting a PBDDR bit to 1 makes the corresponding port B pin an output port, while clearing the bit to 0 makes the pin an input port.

Port B pin functions in mode 7 are shown in figure 9-10.

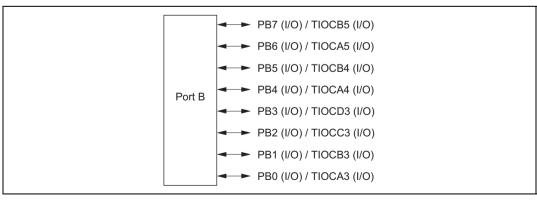


Figure 9-10 Port B Pin Functions (Mode 7)

9.7.5 MOS Input Pull-Up Function

Port B has an on-chip MOS input pull-up function that can be controlled by software. MOS input pull-up can be specified as on or off on an individual bit basis.

In modes 4 to 6, if a pin is in the input state in accordance with the settings in PFCR, in the TPU's TIOR, and in DDR, setting the corresponding PBPCR bit to 1 turns on the MOS input pull-up for that pin.

In mode 7, if a pin is in the input state in accordance with the settings in the TPU's TIOR and in DDR, setting the corresponding PBPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained by a manual reset or in software standby mode.

Table 9-13 summarizes the MOS input pull-up states.

Table 9-13 MOS Input Pull-Up States (Port B)

Pin States	Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
Address output or TPU output	OFF	OFF	OFF	OFF
Other than above	_		ON/OFF	ON/OFF

Legend:

OFF: MOS input pull-up is always off.

ON/OFF: On when PBDDR = 0 and PBPCR = 1; otherwise off.

9.8 Port C

9.8.1 Overview

Port C is an 8-bit I/O port. Port C has an address bus output function. The pin functions change according to the operating mode.

Port C has an on-chip MOS input pull-up function that can be controlled by software.

Figure 9-11 shows the port C pin configuration.

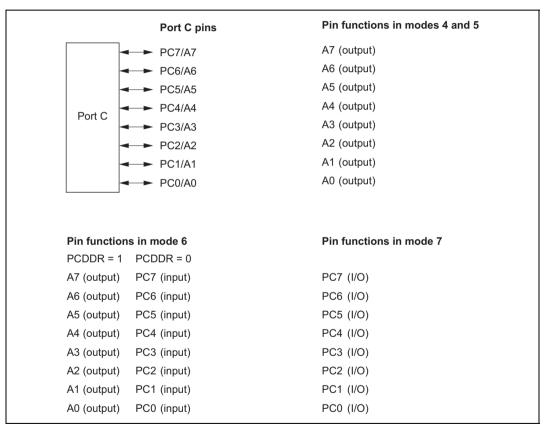


Figure 9-11 Port C Pin Functions

9.8.2 Register Configuration

Table 9-14 shows the port C register configuration.

Table 9-14 Port C Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port C data direction register	PCDDR	W	H'00	H'FE3B
Port C data register	PCDR	R/W	H'00	H'FF0B
Port C register	PORTC	R	Undefined	H'FFBB
Port C MOS pull-up control register	PCPCR	R/W	H'00	H'FF42
Port C open-drain control register	PCODR	R/W	H'00	H'FE49

Note: * Lower 16 bits of the address.

Port C Data Direction Register (PCDDR)

Bit	:	7	6	5	4	3	2	1	0
		PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR
Initial valu	e :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PCDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port C. PCDDR cannot be read; if it is, an undefined value will be read.

PCDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when the mode is changed to software standby mode.

Modes 4 and 5
 The corresponding port C pins are address outputs irrespective of the value of the PCDDR bits.

Mode 6 Setting a PCDDR bit to 1 makes the corresponding port C pin an address output, while clearing the bit to 0 makes the pin an input port.

Mode 7 Setting a PCDDR bit to 1 makes the corresponding port C pin an output port, while clearing the bit to 0 makes the pin an input port.

Port C Data Register (PCDR)

Bit	:	7	6	5	4	3	2	1	0
		PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR
Initial val	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PCDR is an 8-bit readable/writable register that stores output data for the port C pins (PC7 to PC0).

PCDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port C Register (PORTC)

Bit	:	7	6	5	4	3	2	1	0
		PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Initial va	ılue :	*	_*	_*	_*	_*	_*	_*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PC7 to PC0.

PORTC is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port C pins (PC7 to PC0) must always be performed on PCDR.

If a port C read is performed while PCDDR bits are set to 1, the PCDR values are read. If a port C read is performed while PCDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTC contents are determined by the pin states, as PCDDR and PCDR are initialized. PORTC retains its prior state in software standby mode.

Port C MOS Pull-Up Control Register (PCPCR)

Bit	:	7	6	5	4	3	2	1	0
		PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PC0PCR
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PCPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port C on an individual bit basis.

In modes 6 and 7, if PCPCR is set to 1 when the port is in the input state in accordance with the settings of PCDDR, the MOS input pull-up is set to ON.

PCPCR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state by a manual reset or in software standby mode.

Port C Open Drain Control Register (PCODR)

Bit	7	6	5	4	3	2	1	0
	PC7ODR	PC6ODR	PC5ODR	PC4ODR	PC3ODR	PC2ODR	PC10DR	PC0ODR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PCDDR is an 8-bit Read/Write register and controls PMOS On/Off of each pin (PC7 to PC0) of port C.

If PCODR is set to 1 by setting AE3 to AE0 in PFCR in mode other than address output mode, port C pins function as NMOS open drain outputs and when the setting is cleared to 0, the pins function as CMOS outputs.

PCODR is initialized to H'00 in reset mode or hardware standby mode. PCODR retains the last state in software standby mode.

9.8.3 Pin Functions for Each Mode

Modes 4 and 5: In modes 4 and 5, port C pins function as address outputs automatically.

Figure 9-12 shows the port C pin functions.

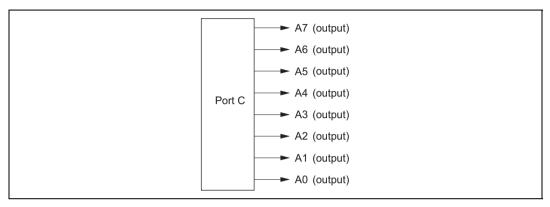


Figure 9-12 Port C Pin Functions (Modes 4 and 5)

Mode 6: In mode 6, port C pints function as address outputs or input ports and I/O can be specified in bit units. When each bit in PCDDR is set to 1, the corresponding pin functions as an address output and when the bit cleared to 0, the pin functions as an input port.

Figure 9-13 shows the port C pin functions.

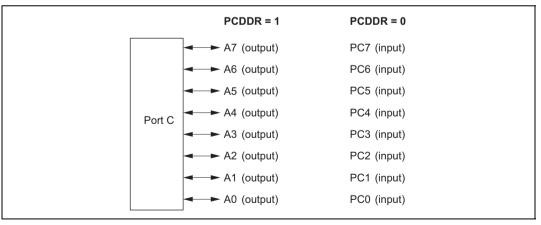


Figure 9-13 Port C Pin Functions (Mode 6)

Mode 7: In mode 7, port C pins function as I/O ports and I/O can be specified for each pin in bit units. When each bit in PCDDR is set to 1, the corresponding pin functions as an output port and when the bit is cleared to 0, the pin functions as an input port.

Figure 9-14 shows the port C pin functions.

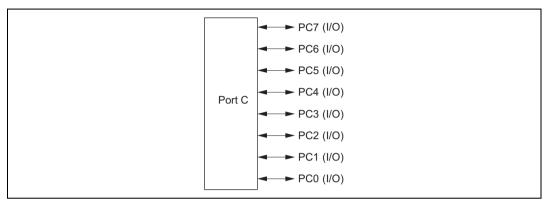


Figure 9-14 Port C Pin Functions (Mode 7)

9.8.4 **MOS Input Pull-Up Function**

Port C has an on-chip MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes 6 and 7, and can be specified as on or off on an individual bit basis.

In modes 6 and 7, when PCPCR is set to 1 in the input state by setting of PCDDR, the MOS input pull-up is set to ON.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained by a manual reset or in software standby mode.

Table 9-15 summarizes the MOS input pull-up states.

Table 9-15 MOS Input Pull-Up States (Port C)

Pin States	Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
Address output	OFF	OFF	OFF	OFF
Other than above			ON/OFF	ON/OFF

Legend:

OFF: MOS input pull-up is always off.

ON/OFF: On when PCDDR = 0 and PCPCR = 1; otherwise off.

9.9 Port D

9.9.1 Overview

Port D is an 8-bit I/O port. Port D has a data bus I/O function, and the pin functions change according to the operating mode.

Port D has an on-chip MOS input pull-up function that can be controlled by software.

Figure 9-15 shows the port D pin configuration.

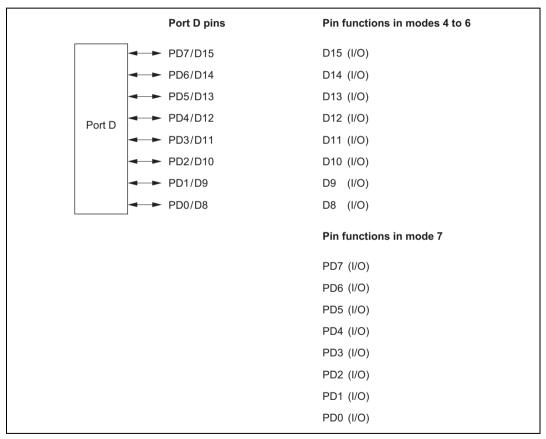


Figure 9-15 Port D Pin Functions

9.9.2 **Register Configuration**

Table 9-16 shows the port D register configuration.

Table 9-16 Port D Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port D data direction register	PDDDR	W	H'00	H'FE3C
Port D data register	PDDR	R/W	H'00	H'FF0C
Port D register	PORTD	R	Undefined	H'FFBC
Port D MOS pull-up control register	PDPCR	R/W	H'00	H'FE43

Note: * Lower 16 bits of the address

Port D Data Direction Register (PDDDR)

Bit	:	7	6	5	4	3	2	1	0
		PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PDDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port D. PDDDR cannot be read; if it is, an undefined value will be read.

PDDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Modes 4 to 6

The input/output direction specification by PDDDR is ignored, and port D is automatically designated for data I/O.

Mode 7

Setting a PDDDR bit to 1 makes the corresponding port D pin an output port, while clearing the bit to 0 makes the pin an input port.

Port D Data Register (PDDR)

Bit	:	7	6	5	4	3	2	1	0
		PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PDDR is an 8-bit readable/writable register that stores output data for the port D pins (PD7 to PD0).

PDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port D Register (PORTD)

Bit	:	7	6	5	4	3	2	1	0
		PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Initial va	ılue :	*	_*	_*	*	*	_*	_*	_*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PD7 to PD0.

PORTD is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port D pins (PD7 to PD0) must always be performed on PDDR.

If a port D read is performed while PDDDR bits are set to 1, the PDDR values are read. If a port D read is performed while PDDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTD contents are determined by the pin states, as PDDDR and PDDR are initialized. PORTD retains its prior state in software standby mode.

Port D MOS Pull-Up Control Register (PDPCR)

Bit	:	7	6	5	4	3	2	1	0
		PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PDPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port D on an individual bit basis.

When a PDDDR bit is cleared to 0 (input port setting) in mode 7, setting the corresponding PDPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PDPCR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

9.9.3 Pin Functions

Modes 4 to 6: In modes 4 to 6, port D pins are automatically designated as data I/O pins.

Port D pin functions in modes 4 to 6 are shown in figure 9-16.

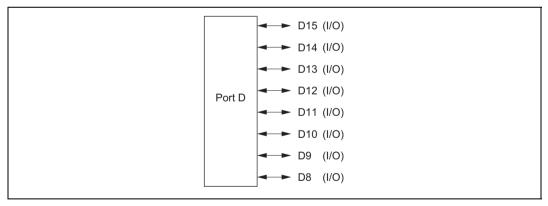


Figure 9-16 Port D Pin Functions (Modes 4 to 6)

Mode 7: In mode 7, port D pins function as I/O ports. Input or output can be specified for each pin on an individual bit basis. Setting a PDDDR bit to 1 makes the corresponding port D pin an output port, while clearing the bit to 0 makes the pin an input port.

Port D pin functions in mode 7 are shown in figure 9-17.

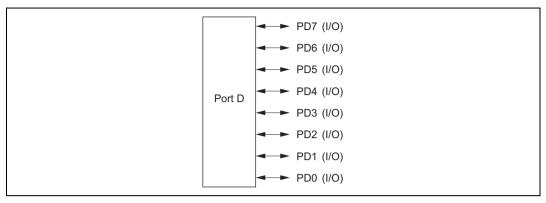


Figure 9-17 Port D Pin Functions (Mode 7)

9.9.4 MOS Input Pull-Up Function

Port D has an on-chip MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in mode 7, and can be specified as on or off on an individual bit basis.

When a PDDDR bit is cleared to 0 in mode 7, setting the corresponding PDPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained in software standby mode.

Table 9-17 summarizes the MOS input pull-up states.

Table 9-17 MOS Input Pull-Up States (Port D)

Modes	Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
4 to 6	OFF	OFF	OFF	OFF
7			ON/OFF	ON/OFF

Legend:

OFF: MOS input pull-up is always off.

ON/OFF: On when PDDDR = 0 and PDPCR = 1; otherwise off.

9.10 Port E

9.10.1 Overview

Port E is an 8-bit I/O port. Port E has a data bus I/O function, and the pin functions change according to the operating mode and whether 8-bit or 16-bit bus mode is selected.

Port E has an on-chip MOS input pull-up function that can be controlled by software.

Figure 9-18 shows the port E pin configuration.

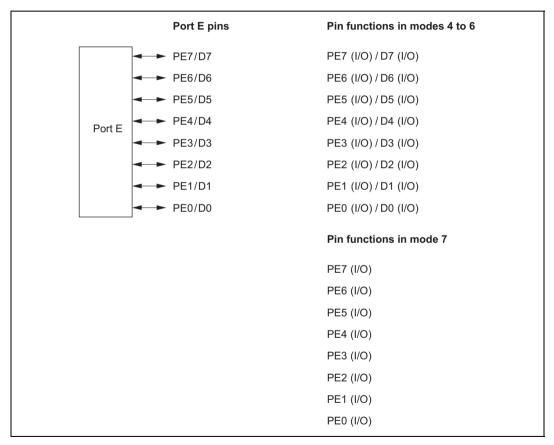


Figure 9-18 Port E Pin Functions

9.10.2 Register Configuration

Table 9-18 shows the port E register configuration.

Table 9-18 Port E Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port E data direction register	PEDDR	W	H'00	H'FE3D
Port E data register	PEDR	R/W	H'00	H'FF0D
Port E register	PORTE	R	Undefined	H'FFBD
Port E MOS pull-up control register	PEPCR	R/W	H'00	H'FE44

Note: *Lower 16 bits of the address.

Port E Data Direction Register (PEDDR)

Bit	:	7	6	5	4	3	2	1	0
		PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR
Initial val	ue:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PEDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port E. PEDDR cannot be read; if it is, an undefined value will be read.

PEDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state by a manual reset or in software standby mode.

Modes 4 to 6

When 8-bit bus mode has been selected, port E pins function as I/O ports. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

When 16-bit bus mode has been selected, the input/output direction specification by PEDDR is ignored, and port E is designated for data I/O.

For details of 8-bit and 16-bit bus modes, see section 7, Bus Controller.

Mode 7

Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

Port E Data Register (PEDR)

Bit	:	7	6	5	4	3	2	1	0
		PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR
Initial va	ilue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PEDR is an 8-bit readable/writable register that stores output data for the port E pins (PE7 to PE0).

PEDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port E Register (PORTE)

Bit	:	7	6	5	4	3	2	1	0
		PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Initial valu	ie:	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PE7 to PE0.

PORTE is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port E pins (PE7 to PE0) must always be performed on PEDR.

If a port E read is performed while PEDDR bits are set to 1, the PEDR values are read. If a port E read is performed while PEDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTE contents are determined by the pin states, as PEDDR and PEDR are initialized. PORTE retains its prior state in software standby mode.

Port E MOS Pull-Up Control Register (PEPCR)

Bit	:	7	6	5	4	3	2	1	0
		PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PEPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port E on an individual bit basis.

When a PEDDR bit is cleared to 0 (input port setting) with 8-bit bus mode selected in mode 4, 5, or 6, or in mode 7, setting the corresponding PEPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PEPCR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

9.10.3 Pin Functions

Modes 4 to 6: In modes 4 to 6, when 8-bit access is designated and 8-bit bus mode is selected, port E pins are automatically designated as I/O ports. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

When 16-bit bus mode is selected, the input/output direction specification by PEDDR is ignored, and port E is designated for data I/O.

Port E pin functions in modes 4 to 6 are shown in figure 9-19.

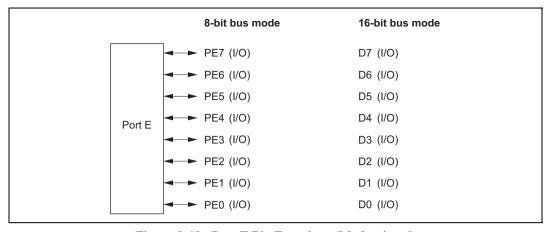


Figure 9-19 Port E Pin Functions (Modes 4 to 6)

Mode 7: In mode 7, port E pins function as I/O ports. Input or output can be specified for each pin on a bit-by-bit basis. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

Port E pin functions in mode 7 are shown in figure 9-20.

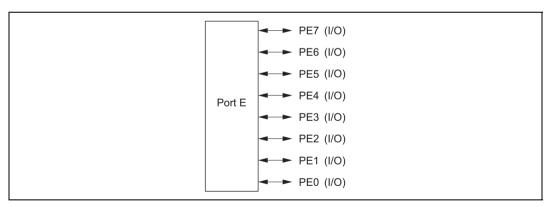


Figure 9-20 Port E Pin Functions (Mode 7)

9.10.4 MOS Input Pull-Up Function

Port E has an on-chip MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes 4 to 6 when 8-bit bus mode is selected, or in mode 7, and can be specified as on or off on an individual bit basis.

When a PEDDR bit is cleared to 0 in modes 4 to 6 when 8-bit bus mode is selected, or in mode 7, setting the corresponding PEPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained in software standby mode.

Table 9-19 summarizes the MOS input pull-up states.

Table 9-19 MOS Input Pull-Up States (Port E)

Modes		Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
7		OFF	OFF	ON/OFF	ON/OFF
4 to 6	8-bit bus				
	16-bit bus			OFF	OFF

Legend:

OFF: MOS input pull-up is always off.

ON/OFF: On when PEDDR = 0 and PEPCR = 1; otherwise off.

9.11 Port F

9.11.1 Overview

Port F is a 6-bit I/O port. Port F pins also function as external interrupt input pins ($\overline{IRQ2}$ and $\overline{IRQ3}$), A/D trigger input pin (\overline{ADTRG}), bus control signal input/output pins (\overline{AS} , \overline{RD} , \overline{HWR} , and \overline{LWR}), and the system clock (ϕ) output pin.

Figure 9-21 shows the port F pin configuration.

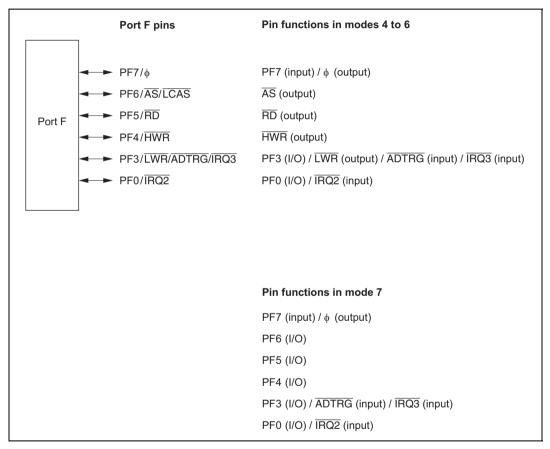


Figure 9-21 Port F Pin Functions

9.11.2 Register Configuration

Table 9-20 shows the port F register configuration.

Table 9-20 Port F Registers

Name	Abbreviation	R/W	Initial Value	Address*1
Port F data direction register	PFDDR	W	B'10000**0*2/ B'00000**0*2	H'FE3E
Port F data register	PFDR	R/W	B'00000**0	H'FF0E
Port F register	PORTF	R	Undefined	H'FFBE

Notes: 1. Lower 16 bits of the address.

2. Initial value depends on the mode.

Port F Data Direction Register (PFDDR)

Bit	:	7	6	5	4	3	2	1	0
		PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	_	_	PF0DDR
Modes 4 to 6	6			-	-				
Initial valu	e :	1	0	0	0	0	undefined	undefined	0
R/W	:	W	W	W	W	W	_	_	W
Mode 7									
Initial valu	e :	0	0	0	0	0	undefined	undefined	0
R/W	:	W	W	W	W	W	_	_	W

PFDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port F. PFDDR cannot be read; if it is, an undefined value will be read.

PFDDR is initialized by a reset, and in hardware standby mode, to B'10000**0 in modes 4 to 6, and to B'00000**0 in mode 7. It retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the bus control output pins retain their output state or become high-impedance when a transition is made to software standby mode.

Modes 4 to 6

Page 294 of 1458

Pin PF7 functions as the ϕ output pin when the corresponding PFDDR bit is set to 1, and as an input port when the bit is cleared to 0.

The input/output direction specified by PFDDR is ignored for pins PF6 to PF3, which are automatically designated as bus control outputs (\overline{AS} , \overline{RD} , \overline{HWR} , and \overline{LWR}) (in the 8-bit mode, pin PF3 is designated by PFDDR).

Pin PF0 is setting a PFDDR bit to 1 makes the corresponding port F pin an output port, while clearing the bit to 0 makes the pin an input port.

Mode 7

Setting a PFDDR bit to 1 makes the corresponding port F pin PF6 to PF3, PF0 an output port, or in the case of pin PF7, the ϕ output pin. Clearing the bit to 0 makes the pin an input port.

Port F Data Register (PFDR)

Bit	:	7	6	5	4	3	2	1	0
		PF7DR	PF6DR	PF5DR	PF4DR	PF3DR		_	PF0DR
Initial valu	ue :	0	0	0	0	0	undefined	undefined	0
R/W	:	R/W	R/W	R/W	R/W	R/W	_	_	R/W

PFDR is an 8-bit readable/writable register that stores output data for the port F pins (PF7 to PF3, PF0).

PFDR is initialized to B'00000**0 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port F Register (PORTF)

Bit	:	7	6	5	4	3	2	1	0
		PF7	PF6	PF5	PF4	PF3	_	_	PF0
Initial val	ue :	_*	_*	*	*	_*	undefined	undefined	*
R/W	:	R	R	R	R	R	_	_	R

Note: * Determined by state of pins PF7 to PF3, PF0.

PORTF is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port F pins (PF7 to PF3, PF0) must always be performed on PFDR.

If a port F read is performed while PFDDR bits are set to 1, the PFDR values are read. If a port F read is performed while PFDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTF contents are determined by the pin states, as PFDDR and PFDR are initialized. PORTF retains its prior state in software standby mode.

Mode 7

1

PF4 output

0

PF4 input

9.11.3 Pin Functions

Port F pins also function as external interrupt input pins (IRQ2 and IRQ3), A/D trigger input pin (\overline{ADTRG}), bus control signal input/output pins (\overline{AS} , \overline{RD} , \overline{HWR} , \overline{LWR}), and the system clock (ϕ) output pin. The pin functions differ between modes 4 to 6, and mode 7. Port F pin functions are shown in table 9-21.

Table 9-21 Port F Pin Functions

and bit PF4DDR.

Operating
Mode

PF4DDR

Pin function

The pin function is switched as shown below according to bit PF7DDR.								
PF7DDR	0			1				
Pin function	PF7 input		φ οι	ıtput				
The pin function	is switched as shown	below accord	ding to bit Pf	F6DDR.				
Operating Mode	Modes 4 to 6	6	Mode 7					
PF6DDR	_		0	1				
Pin function	AS output		PF6 input	PF6 output				
		·						
		below accord	ding to the o	perating mode				
Operating Mode	Modes 4 to 6		Mode 7					
PF5DDR	_	0		1				
Pin function	RD output	PF5 inpu	ut	PF5 output				
	PF7DDR Pin function The pin function Operating Mode PF6DDR Pin function The pin function and bit PF5DDR Operating Mode PF5DDR	PF7DDR 0 Pin function PF7 input The pin function is switched as shown Mode Mode PF6DDR — Pin function AS output The pin function is switched as shown and bit PF5DDR. Operating Mode Modes 4 to 6 PF5DDR — PF5DDR — Operating Mode Modes 4 to 6 PF5DDR —	PF7DDR 0 Pin function PF7 input The pin function is switched as shown below accord Mode Operating Modes 4 to 6 Mode PF6DDR — Pin function AS output The pin function is switched as shown below accordand bit PF5DDR. Operating Mode Modes 4 to 6 PF5DDR — 0	PF7DDR 0 Pin function PF7 input				

Modes 4 to 6

HWR output

Pin

Selection Method and Pin Functions

PF3/I WR/ ADTRG/IRQ3

The pin function is switched as shown below according to the operating mode, the bus mode. A/D converter bits TRGS1 and TRGS0, and bit PF3DDR.

Operating mode	ı	Modes 4 to 6	Mode 7			
Bus mode	16-bit bus mode	8-bit bu	is mode	_	_	
PF3DDR	_	0	1	0	1	
Pin function	LWR output pin	PF3 input pin			PF3 output pin	
		ADTRG input pin*1				
		IRQ3 input pin*2				

Notes: 1. ADTRG input when TRGS0 = TRGS1 = 1.

2. When used as an external interrupt input pin, do not use as an I/O pin for another function.

PF0/IRQ2

The pin function is switched as shown below according to the bit PF0DDR.

PF0DDR	0	1					
Pin function	PF0 input	PF0 output					
	IRQ2 input						

9.12 Port H

9.12.1 Overview

Port H is an 8-bit I/O port. Port H pins also function as motor control PWM timer output pins (PWM1A to PWM1H).

Figure 9-22 shows the port H pin configuration.

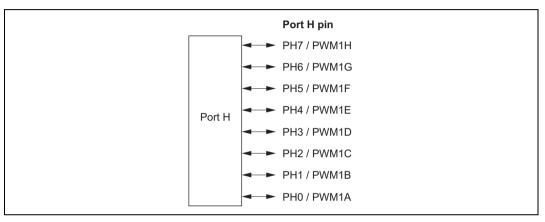


Figure 9-22 Port H Pin Functions

9.12.2 Register Configuration

Table 9-22 shows the port H register configuration.

Table 9-22 Port H Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port H data direction register	PHDDR	W	H'00	H'FC20
Port H data register	PHDR	RW	H'00	H'FC24
Port H register	PORTH	R	Undefined	H'FC28

Note: *Lower 16 bits of the address.

Port H Data Direction Register (PHDDR)

Bit	:	7	6	5	4	3	2	1	0
		PH7DDR	PH6DDR	PH5DDR	PH4DDR	PH3DDR	PH2DDR	PH1DDR	PH0DDR
Initial value	e :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PHDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port H. PHDDR cannot be read. If it is, an undefined value will be read.

PHDDR is initialized to H'00 by a reset and in hardware standby mode. It retains its prior state in software standby mode.

Port H Data Register (PHDR)

Bit	:	7	6	5	4	3	2	1	0
		PH7DR	PH6DR	PH5DR	PH4DR	PH3DR	PH2DR	PH1DR	PH0DR
Initial val	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PHDR is an 8-bit readable/writeable register that stores output data for the port H pins (PH7 to PH0).

PHDR is initialized to H'00 by a reset and in hardware standby mode. It retains its prior state in software standby mode.

Port H Register (PORTH)

Bit	:	7	6	5	4	3	2	1	0
		PH7	PH6	PH5	PH4	PH3	PH2	PH1	PH0
Initial va	lue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by the state of PH7 to PH0

PORTH is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port H pins (PH7 to PH0) must always be performed on PHDR.

If a port H read is performed while PHDDR bits are set to 1, the PHDR values are read. If a port H read is performed while PHDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTH contents are determined by the pin states, as PHDDR and PHDR are initialized. PORTH retains its prior state in software standby mode.

9.12.3 Pin Functions

As shown in table 9-23, the port H pin functions can be switched, bit by bit, by changing the values of OE1A to OE1H of motor control PWM timer PWOCR1 and PHDDR.

Table 9-23 Port H Pin Functions

0E1A to 0E1H	1	0	
PHDDR	_	0	1
Pin function	PWM output	PH7 to PH0 input	PH7 to PH0 output

9.13 Port J

9.13.1 Overview

Port J is an 8-bit I/O port. Port J pins also function as motor control PWM timer output pins (PWM2A to PWM2H).

Figure 9-23 shows the port J pin configuration.

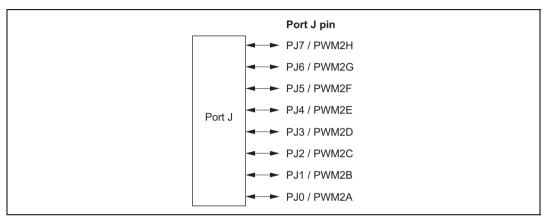


Figure 9-23 Port J Pin Functions

9.13.2 Register Configuration

Table 9-24 shows the port J register configuration.

Table 9-24 Port J Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port J data direction register	PJDDR	W	H'00	H'FC21
Port J data register	PJDR	RW	H'00	H'FC25
Port J register	PORTJ	R	Undefined	H'FC29

Note: *Lower 16 bits of the address

Port J Data Direction Register (PJDDR)

Bit	:	7	6	5	4	3	2	1	0
		PJ7DDR	PJ6DDR	PJ5DDR	PJ4DDR	PJ3DDR	PJ2DDR	PJ1DDR	PJ0DDR
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PJDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port J. PJDDR cannot be read. If it is, an undefined value will be read.

PJDDR is initialized to H'00 by a reset and in hardware standby mode. It retains its prior state in software standby mode.

Port J Data Register (PJDR)

Bit	:	7	6	5	4	3	2	1	0
		PJ7DR	PJ6DR	PJ5DR	PJ4DR	PJ3DR	PJ2DR	PJ1DR	PJ0DR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PJDR is an 8-bit readable/writeable register that stores output data for the port J pins (PJ7 to PJ0).

PJDR is initialized to H'00 by a reset and in hardware standby mode. It retains its prior state in software standby mode.

Port J Register (PORTJ)

Bit	:	7	6	5	4	3	2	1	0
		PJ7	PJ6	PJ5	PJ4	PJ3	PJ2	PJ1	PJ0
Initial value	e :	_*	_*	_*	*	_*	_*	*	*
R/W	:	R	R	R	R	R	R	R	R

PORTJ is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port J pins (PJ7 to PJ0) must always be performed on PJDR.

If a port J read is performed while PJDDR bits are set to 1, the PJDR values are read. If a port J read is performed while PJDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTJ contents are determined by the pin states, as PJDDR and PJDR are initialized. PORTJ retains its prior state in software standby mode.

9.13.3 **Pin Functions**

As shown in table 9-25, the port J pin functions can be switched, bit by bit, by changing the values of OE2A to OE2H of motor control PWM timer PWOCR2 and PJDDR.

Table 9-25 Port J Pin Functions

OE2A to OE2H	1	0	
PJDDR	_	0	1
Pin function	PWM output	PJ7 to PJ0 input	PJ7 to PJ0 output

Section 10 16-Bit Timer Pulse Unit (TPU)

Note: The H8S/2635 Group is not equipped with a DTC or a PPG.

10.1 Overview

The chip has an on-chip 16-bit timer pulse unit (TPU) that comprises six 16-bit timer channels.

10.1.1 Features

- Maximum 16-pulse input/output
 - A total of 16 timer general registers (TGRs) are provided (four each for channels 0 and 3, and two each for channels 1, 2, 4, and 5), each of which can be set independently as an output compare/input capture register
 - TGRC and TGRD for channels 0 and 3 can also be used as buffer registers
- Selection of 8 counter input clocks for each channel
- The following operations can be set for each channel:
 - Waveform output at compare match: Selection of 0, 1, or toggle output
 - Input capture function: Selection of rising edge, falling edge, or both edge detection
 - Counter clear operation: Counter clearing possible by compare match or input capture
 - Synchronous operation: Multiple timer counters (TCNT) can be written to simultaneously
 - Simultaneous clearing by compare match and input capture possible
 - Register simultaneous input/output possible by counter synchronous operation
 - PWM mode: Any PWM output duty can be set
 - Maximum of 15-phase PWM output possible by combination with synchronous operation
- Buffer operation settable for channels 0 and 3
 - Input capture register double-buffering possible
 - Automatic rewriting of output compare register possible
- Phase counting mode settable independently for each of channels 1, 2, 4, and 5
 - Two-phase encoder pulse up/down-count possible
- Cascaded operation
 - Channel 2 (channel 5) input clock operates as 32-bit counter by setting channel 1 (channel 4) overflow/underflow
- Fast access via internal 16-bit bus
 - Fast access is possible via a 16-bit bus interface

- 26 interrupt sources
 - For channels 0 and 3, four compare match/input capture dual-function interrupts and one overflow interrupt can be requested independently
 - For channels 1, 2, 4, and 5, two compare match/input capture dual-function interrupts, one overflow interrupt, and one underflow interrupt can be requested independently
- · Automatic transfer of register data
 - Block transfer, 1-word data transfer, and 1-byte data transfer possible by data transfer controller (DTC)
- Programmable pulse generator (PPG) output trigger can be generated
 - Channel 0 to 3 compare match/input capture signals can be used as PPG output trigger
- A/D converter conversion start trigger can be generated
 - Channel 0 to 5 compare match A/input capture A signals can be used as A/D converter conversion start trigger
- Module stop mode can be set
 - As the initial setting, TPU operation is halted. Register access is enabled by exiting module stop mode.

Table 10-1 lists the functions of the TPU.

Table 10-1 TPU Functions

Item		Channel 0	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
Count clock		φ/1 φ/4 φ/16 φ/64 TCLKA TCLKB TCLKC	φ/1 φ/4 φ/16 φ/64 φ/256 TCLKA TCLKB	φ/1 φ/4 φ/16 φ/64 φ/1024 ΤCLKA ΤCLKB ΤCLKC	φ/1 φ/4 φ/16 φ/64 φ/256 φ/1024 φ/4096 TCLKA	φ/1 φ/4 φ/16 φ/64 φ/1024 ΤCLKA TCLKC	φ/1 φ/4 φ/16 φ/64 φ/256 ΤCLKA ΤCLKC TCLKD
General registers		TGR0A TGR0B	TGR1A TGR1B	TGR2A TGR2B	TGR3A TGR3B	TGR4A TGR4B	TGR5A TGR5B
General registers/ buffer registers		TGR0C TGR0D	_	_	TGR3C TGR3D	_	_
I/O pins		TIOCA0 TIOCB0 TIOCC0 TIOCD0	TIOCA1 TIOCB1	TIOCA2 TIOCB2	TIOCA3 TIOCB3 TIOCC3 TIOCD3	TIOCA4 TIOCB4	TIOCA5 TIOCB5
Counter cl function	ear	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture
Compare match output	0 output	0	0	0	0	0	0
	1 output	0	0	0	0	0	0
	Toggle output	0	0	0	0	0	0
Input capture function		0	0	0	0	0	0
Synchronous operation		0	0	0	0	0	0
PWM mode		0	0	0	0	0	0
Phase counting mode		_	0	0	_	0	0
Buffer operation		0	_	_	0	_	_

Item	Channel 0	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
DTC activation	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture
A/D converter trigger	TGR0A compare match or input capture	TGR1A compare match or input capture	TGR2A compare match or input capture	TGR3A compare match or input capture	TGR4A compare match or input capture	TGR5A compare match or input capture
PPG trigger	TGR0A/ TGR0B compare match or input capture	TGR1A/ TGR1B compare match or input capture	TGR2A/ TGR2B compare match or input capture	TGR3A/ TGR3B compare match or input capture	_	_
Interrupt sources	Sources Compare match or input capture 0A Compare match or input capture 0B Compare match or input capture 0C Compare match or input capture 0C Compare match or input capture 0D	4 sources Compare match or input capture 1A Compare match or input capture 1B Overflow Underflow	Sources Compare match or en input capture 2A Compare match or input capture 2B Overflow Underflow	5 sources Compare match or input capture 3A Compare match or input capture 3B Compare match or input capture 3C Compare match or input capture 3C Ompare match or input capture 3C Ompare match or input capture 3D Overflow	4 sources Compare match or input capture 4A Compare match or input capture 4B Overflow Underflow	4 sources Compare match or input capture 5A Compare match or input capture 5B Overflow Underflow

Legend:

: Possible: Not possible

10.1.2 Block Diagram

Figure 10-1 shows a block diagram of the TPU.

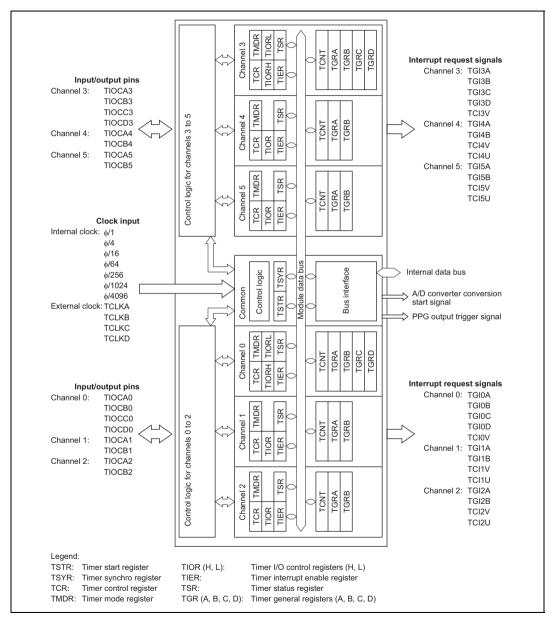


Figure 10-1 Block Diagram of TPU

10.1.3 Pin Configuration

Table 10-2 summarizes the TPU pins.

Table 10-2 TPU Pins

Channel	Name	Symbol	I/O	Function
All	Clock input A	TCLKA	Input	External clock A input pin (Channel 1 and 5 phase counting mode A phase input)
	Clock input B	TCLKB	Input	External clock B input pin (Channel 1 and 5 phase counting mode B phase input)
	Clock input C	TCLKC	Input	External clock C input pin (Channel 2 and 4 phase counting mode A phase input)
	Clock input D	TCLKD	Input	External clock D input pin (Channel 2 and 4 phase counting mode B phase input)
0	Input capture/out compare match A0	TIOCA0	I/O	TGR0A input capture input/output compare output/PWM output pin
	Input capture/out compare match B0	TIOCB0	I/O	TGR0B input capture input/output compare output/PWM output pin
	Input capture/out compare match C0	TIOCC0	I/O	TGR0C input capture input/output compare output/PWM output pin
	Input capture/out compare match D0	TIOCD0	I/O	TGR0D input capture input/output compare output/PWM output pin
1	Input capture/out compare match A1	TIOCA1	I/O	TGR1A input capture input/output compare output/PWM output pin
	Input capture/out compare match B1	TIOCB1	I/O	TGR1B input capture input/output compare output/PWM output pin
2	Input capture/out compare match A2	TIOCA2	I/O	TGR2A input capture input/output compare output/PWM output pin
	Input capture/out compare match B2	TIOCB2	I/O	TGR2B input capture input/output compare output/PWM output pin

Channel	Name	Symbol	I/O	Function
3	Input capture/out compare match A3	TIOCA3	I/O	TGR3A input capture input/output compare output/PWM output pin
	Input capture/out compare match B3	TIOCB3	I/O	TGR3B input capture input/output compare output/PWM output pin
	Input capture/out compare match C3	TIOCC3	I/O	TGR3C input capture input/output compare output/PWM output pin
	Input capture/out compare match D3	TIOCD3	I/O	TGR3D input capture input/output compare output/PWM output pin
4	Input capture/out compare match A4	TIOCA4	I/O	TGR4A input capture input/output compare output/PWM output pin
	Input capture/out compare match B4	TIOCB4	I/O	TGR4B input capture input/output compare output/PWM output pin
5	Input capture/out compare match A5	TIOCA5	I/O	TGR5A input capture input/output compare output/PWM output pin
	Input capture/out compare match B5	TIOCB5	I/O	TGR5B input capture input/output compare output/PWM output pin

10.1.4 Register Configuration

Table 10-3 summarizes the TPU registers.

Table 10-3 TPU Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address *1
0	Timer control register 0	TCR0	R/W	H'00	H'FF10
	Timer mode register 0	TMDR0	R/W	H'C0	H'FF11
	Timer I/O control register 0H	TIOR0H	R/W	H'00	H'FF12
	Timer I/O control register 0L	TIOR0L	R/W	H'00	H'FF13
	Timer interrupt enable register 0	TIER0	R/W	H'40	H'FF14
	Timer status register 0	TSR0	R/(W)*2	H'C0	H'FF15
	Timer counter 0	TCNT0	R/W	H'0000	H'FF16
	Timer general register 0A	TGR0A	R/W	H'FFFF	H'FF18
	Timer general register 0B	TGR0B	R/W	H'FFFF	H'FF1A
	Timer general register 0C	TGR0C	R/W	H'FFFF	H'FF1C
	Timer general register 0D	TGR0D	R/W	H'FFFF	H'FF1E
1	Timer control register 1	TCR1	R/W	H'00	H'FF20
	Timer mode register 1	TMDR1	R/W	H'C0	H'FF21
	Timer I/O control register 1	TIOR1	R/W	H'00	H'FF22
	Timer interrupt enable register 1	TIER1	R/W	H'40	H'FF24
	Timer status register 1	TSR1	R/(W) *2	H'C0	H'FF25
	Timer counter 1	TCNT1	R/W	H'0000	H'FF26
	Timer general register 1A	TGR1A	R/W	H'FFFF	H'FF28
	Timer general register 1B	TGR1B	R/W	H'FFFF	H'FF2A
2	Timer control register 2	TCR2	R/W	H'00	H'FF30
	Timer mode register 2	TMDR2	R/W	H'C0	H'FF31
	Timer I/O control register 2	TIOR2	R/W	H'00	H'FF32
	Timer interrupt enable register 2	TIER2	R/W	H'40	H'FF34
	Timer status register 2	TSR2	R/(W) *2	H'C0	H'FF35
	Timer counter 2	TCNT2	R/W	H'0000	H'FF36
	Timer general register 2A	TGR2A	R/W	H'FFFF	H'FF38
	Timer general register 2B	TGR2B	R/W	H'FFFF	H'FF3A

Channel	Name	Abbreviation	R/W	Initial Value	Address*1
3	Timer control register 3	TCR3	R/W	H'00	H'FE80
	Timer mode register 3	TMDR3	R/W	H'C0	H'FE81
	Timer I/O control register 3H	TIOR3H	R/W	H'00	H'FE82
	Timer I/O control register 3L	TIOR3L	R/W	H'00	H'FE83
	Timer interrupt enable register 3	TIER3	R/W	H'40	H'FE84
	Timer status register 3	TSR3	R/(W)*2	H'C0	H'FE85
	Timer counter 3	TCNT3	R/W	H'0000	H'FE86
	Timer general register 3A	TGR3A	R/W	H'FFFF	H'FE88
	Timer general register 3B	TGR3B	R/W	H'FFFF	H'FE8A
	Timer general register 3C	TGR3C	R/W	H'FFFF	H'FE8C
	Timer general register 3D	TGR3D	R/W	H'FFFF	H'FE8E
4	Timer control register 4	TCR4	R/W	H'00	H'FE90
	Timer mode register 4	TMDR4	R/W	H'C0	H'FE91
	Timer I/O control register 4	TIOR4	R/W	H'00	H'FE92
	Timer interrupt enable register 4	TIER4	R/W	H'40	H'FE94
	Timer status register 4	TSR4	R/(W) *2	H'C0	H'FE95
	Timer counter 4	TCNT4	R/W	H'0000	H'FE96
	Timer general register 4A	TGR4A	R/W	H'FFFF	H'FE98
	Timer general register 4B	TGR4B	R/W	H'FFFF	H'FE9A
5	Timer control register 5	TCR5	R/W	H'00	H'FEA0
	Timer mode register 5	TMDR5	R/W	H'C0	H'FEA1
	Timer I/O control register 5	TIOR5	R/W	H'00	H'FEA2
	Timer interrupt enable register 5	TIER5	R/W	H'40	H'FEA4
	Timer status register 5	TSR5	R/(W) *2	H'C0	H'FEA5
	Timer counter 5	TCNT5	R/W	H'0000	H'FEA6
	Timer general register 5A	TGR5A	R/W	H'FFFF	H'FEA8
	Timer general register 5B	TGR5B	R/W	H'FFFF	H'FEAA
All	Timer start register	TSTR	R/W	H'00	H'FEB0
	Timer synchro register	TSYR	R/W	H'00	H'FEB1
	Module stop control register A	MSTPCRA	R/W	H'3F	H'FDE8

Notes: 1. Lower 16 bits of the address.

2. Can only be written with 0 for flag clearing.

10.2 Register Descriptions

10.2.1 Timer Control Register (TCR)

Channel 0: TCR0
Channel 3: TCR3

Bit	:	7	6	5	4	3	2	1	0
		CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0
Initial val	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

Channel 1: TCR1
Channel 2: TCR2
Channel 4: TCR4
Channel 5: TCR5

Bit	:	7	6	5	4	3	2	1	0
		_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	_	R/W						

The TCR registers are 8-bit registers that control the TCNT channels. The TPU has six TCR registers, one for each of channels 0 to 5. The TCR registers are initialized to H'00 by a reset, and in hardware standby mode.

TCR register settings should be made only when TCNT operation is stopped.

Bits 7 to 5—Counter Clear 2, 1, and 0 (CCLR2, CCLR1, CCLR0): These bits select the TCNT counter clearing source.

Bit 7 CCLR2	Bit 6 CCLR1	Bit 5 CCLR0	Description				
0	0	0	TCNT clearing disabled (Initial value)				
		1	TCNT cleared by TGRA compare match/input capture				
	1	0	TCNT cleared by TGRB compare match/input capture				
		1	TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation *1				
1	0	0	TCNT clearing disabled				
		1	TCNT cleared by TGRC compare match/input capture *2				
	1	0	TCNT cleared by TGRD compare match/input capture *2				
		1	TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation *1				
	CCLR2	CCLR2 CCLR1 0 0 1 1 0	CCLR2 CCLR1 CCLR0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0				

Channel	Bit 7 Reserved [*]	Bit 6	Bit 5 CCLR0	Description
1, 2, 4, 5	0	0	0	TCNT clearing disabled (Initial value)
			1	TCNT cleared by TGRA compare match/input capture
		1	0	TCNT cleared by TGRB compare match/input capture
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation *1

Notes: 1. Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

- 2. When TGRC or TGRD is used as a buffer register, TCNT is not cleared because the buffer register setting has priority, and compare match/input capture does not occur.
- 3. Bit 7 is reserved in channels 1, 2, 4, and 5. It is always read as 0 and cannot be modified.

Bits 4 and 3—Clock Edge 1 and 0 (CKEG1, CKEG0): These bits select the input clock edge. When the input clock is counted using both edges, the input clock period is halved (e.g. $\phi/4$ both edges = $\phi/2$ rising edge). If phase counting mode is used on channels 1, 2, 4, and 5, this setting is ignored and the phase counting mode setting has priority.

Bit 4 CKEG1	Bit 3 CKEG0	Description	
0	0	Count at rising edge	(Initial value)
	1	Count at falling edge	
1	_	Count at both edges	

Note: Internal clock edge selection is valid when the input clock is $\phi/4$ or slower. This setting is ignored if the input clock is $\phi/1$, or when overflow/underflow of another channel is selected.

Bits 2 to 0—Time Prescaler 2, 1, and 0 (TPSC2 to TPSC0): These bits select the TCNT counter clock. The clock source can be selected independently for each channel. Table 10-4 shows the clock sources that can be set for each channel.

Table 10-4 TPU Clock Sources

			Ir	nternal	Clock		External Clock				Overflow/	
Channel	ф/1	ф/4	ф/16	ф/64	ф/256	ф/1024	ф/4096	TCLKA	TCLKB	TCLKC	TCLKD	Underflow on Another Channel
0	0	0	0	0				0	0	0	0	
1	0	0	0	0	0			0	0			0
2	0	0	0	0		0		0	0	0		
3	0	0	0	0	0	0	0	0				
4	0	0	0	0		0		0		0		0
5	0	0	0	0	0			0		0	0	

Legend:

SettingBlank: No setting

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
0	0	0	0	Internal clock: counts on φ/1 (Initial value)
			1	Internal clock: counts on φ/4
		1	0	Internal clock: counts on φ/16
			1	Internal clock: counts on φ/64
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	External clock: counts on TCLKC pin input
			1	External clock: counts on TCLKD pin input
		1	0 1	• '

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
1	0	0	0	Internal clock: counts on $\phi/1$ (Initial value)
			1	Internal clock: counts on \$\phi/4\$
		1	0	Internal clock: counts on \$\phi/16\$
			1	Internal clock: counts on \$\phi/64\$
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	Internal clock: counts on \$\phi/256\$
			1	Counts on TCNT2 overflow/underflow

Note: This setting is ignored when channel 1 is in phase counting mode.

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
2	0	0	0	Internal clock: counts on $\phi/1$ (Initial value)
			1	Internal clock: counts on $\phi/4$
		1	0	Internal clock: counts on $\phi/16$
			1	Internal clock: counts on \$\phi/64\$
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	External clock: counts on TCLKC pin input
			1	Internal clock: counts on \$\phi/1024\$

Note: This setting is ignored when channel 2 is in phase counting mode.

Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
0	0	0	Internal clock: counts on $\phi/1$ (Initial value)
		1	Internal clock: counts on $\phi/4$
	1	0	Internal clock: counts on $\phi/16$
		1	Internal clock: counts on $\phi/64$
1	0	0	External clock: counts on TCLKA pin input
		1	Internal clock: counts on $\phi/1024$
	1	0	Internal clock: counts on $\phi/256$
		1	Internal clock: counts on φ/4096
		TPSC2 TPSC1 0 0 1	TPSC2 TPSC1 TPSC0 0 0 0 1 0 1 1 0 1

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description		
4	0	0	0	Internal clock: counts on $\phi/1$ (Initial value)		
			1	Internal clock: counts on $\phi/4$		
		1	0	Internal clock: counts on $\phi/16$		
			1	Internal clock: counts on \$\phi/64\$		
	1	0	0	External clock: counts on TCLKA pin input		
			1	External clock: counts on TCLKC pin input		
		1	0	Internal clock: counts on $\phi/1024$		
			1	Counts on TCNT5 overflow/underflow		

Note: This setting is ignored when channel 4 is in phase counting mode.

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
5	0	0	0	Internal clock: counts on $\phi/1$ (Initial value)
			1	Internal clock: counts on $\phi/4$
		1	0	Internal clock: counts on $\phi/16$
			1	Internal clock: counts on \$\phi/64\$
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKC pin input
		1	0	Internal clock: counts on \$\phi/256\$
			1	External clock: counts on TCLKD pin input

Note: This setting is ignored when channel 5 is in phase counting mode.

10.2.2 Timer Mode Register (TMDR)

Channel 0: TMDR0 Channel 3: TMDR3

Bit	:	7	6	5	4	3	2	1	0
		_	_	BFB	BFA	MD3	MD2	MD1	MD0
Initial va	ılue :	1	1	0	0	0	0	0	0
R/W	:	_	_	R/W	R/W	R/W	R/W	R/W	R/W

Channel 1: TMDR1 Channel 2: TMDR2 Channel 4: TMDR4 Channel 5: TMDR5

Bit :		7	6	5	4	3	2	1	0
	-	-	_	_	_	MD3	MD2	MD1	MD0
Initial value:		1	1	0	0	0	0	0	0
R/W :	-	_	_	_	_	R/W	R/W	R/W	R/W

The TMDR registers are 8-bit readable/writable registers that are used to set the operating mode for each channel. The TPU has six TMDR registers, one for each channel. The TMDR registers are initialized to H'C0 by a reset, and in hardware standby mode.

TMDR register settings should be made only when TCNT operation is stopped.

Bits 7 and 6—Reserved: These bits are always read as 1 and cannot be modified.

Bit 5—Buffer Operation B (BFB): Specifies whether TGRB is to operate in the normal way, or TGRB and TGRD are to be used together for buffer operation. When TGRD is used as a buffer register, TGRD input capture/output compare is not generated.

In channels 1, 2, 4, and 5, which have no TGRD, bit 5 is reserved. It is always read as 0 and cannot be modified.

occi, piloti	
GRB operates normally	(Initial value)
GRB and TGRD used together for buffer operation	
	GRB operates normally GRB and TGRD used together for buffer operation

Bit 4—Buffer Operation A (BFA): Specifies whether TGRA is to operate in the normal way, or TGRA and TGRC are to be used together for buffer operation. When TGRC is used as a buffer register, TGRC input capture/output compare is not generated.

In channels 1, 2, 4, and 5, which have no TGRC, bit 4 is reserved. It is always read as 0 and cannot be modified.

Bit 4 BFA	Description	
0	TGRA operates normally	(Initial value)
1	TGRA and TGRC used together for buffer operation	

Bits 3 to 0—Modes 3 to 0 (MD3 to MD0): These bits are used to set the timer operating mode.

Bit 3 MD3 ^{*1}	Bit 2 MD2 ^{*2}	Bit 1 MD1	Bit 0 MD0	Description	
0	0	0	0	Normal operation	(Initial value)
			1	Reserved	
		1	0	PWM mode 1	
			1	PWM mode 2	
	1	0	0	Phase counting mode 1	
			1	Phase counting mode 2	
		1	0	Phase counting mode 3	
			1	Phase counting mode 4	
1	*	*	*	_	

*: Don't care

Notes: 1. MD3 is a reserved bit. In a write, it should always be written with 0.

2. Phase counting mode cannot be set for channels 0 and 3. In this case, 0 should always be written to MD2.

10.2.3 Timer I/O Control Register (TIOR)

Channel 0: TIOR0H
Channel 1: TIOR1
Channel 2: TIOR2
Channel 3: TIOR3H
Channel 4: TIOR4
Channel 5: TIOR5

Bit	:	7	6	5	4	3	2	1	0
		IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
Initial val	ue :	0	0	0	0	0	0	0	0
R/W		R/W							

Channel 0: TIOR0L Channel 3: TIOR3L

Bit	:	7	6	5	4	3	2	1	0
		IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

The TIOR registers are 8-bit registers that control the TGR registers. The TPU has eight TIOR registers, two each for channels 0 and 3, and one each for channels 1, 2, 4, and 5. The TIOR registers are initialized to H'00 by a reset, and in hardware standby mode.

Care is required since TIOR is affected by the TMDR setting. The initial output specified by TIOR is valid when the counter is stopped (the CST bit in TSTR is cleared to 0). Note also that, in PWM mode 2, the output at the point at which the counter is cleared to 0 is specified.

Bits 7 to 4— I/O Control B3 to B0 (IOB3 to IOB0) I/O Control D3 to D0 (IOD3 to IOD0):

Bits IOB3 to IOB0 specify the function of TGRB. Bits IOD3 to IOD0 specify the function of TGRD.

	Bit 7	Bit 6	Bit 5	Bit 4	
Channel	IOB3	IOB2	IOB1	IOB0	Description

Onamo	.020	.002	.05.	.000	Doodriptii	J.1.	
0	0	0	0	0	TGR0B	Output disabled	(Initial value)
				1	is output compare	Initial output is	0 output at compare match
			1	0	register	0 output	1 output at compare match
				1			Toggle output at compare match
		1	0	0	=	Output disabled	
				1	=	Initial output is 1	0 output at compare match
			1	0 output	1 output at compare match		
			1		Toggle output at compare match		
	1	0	0	0	TGR0B	Capture input	Input capture at rising edge
				1	⁻is input _capture	source is TIOCB0 pin	Input capture at falling edge
	1 * register	поово ріп	Input capture at both edges				
		1	*	*		Capture input source is channel 1/count clock	Input capture at TCNT1 count-up/count-down*1

*: Don't care

Note: 1. When bits TPSC2 to TPSC0 in TCR1 are set to B'000 and φ/1 is used as the TCNT1 count clock, this setting is invalid and input capture is not generated.

May 28, 2010

Channel	Bit 7 IOD3	Bit 6 IOD2	Bit 5 IOD1	Bit 4 IOD0	Description	on											
0	0	0	0	0	TGR0D	Output disabled	(Initial value)										
				1	is output compare	Initial output is 0	0 output at compare match										
			1	0	register*2	output	1 output at compare match										
				1	`		Toggle output at compare match										
		1	0	0		Output disabled											
	1	=	Initial output is 1	0 output at compare match													
													1	0	_	output	1 output at compare match
				1	_		Toggle output at compare match										
	1	0	0	0	TGR0D	Capture input	Input capture at rising edge										
				1	is input capture	source is TIOCD0 pin	Input capture at falling edge										
			1	*	register*2	ПОСВО РІП	Input capture at both edges										
		1	*	*		Capture input source is channel 1/count clock	Input capture at TCNT1 count-up/count-down*1										

*: Don't care

Notes: 1. When bits TPSC2 to TPSC0 in TCR1 are set to B'000 and $\phi/1$ is used as the TCNT1 count clock, this setting is invalid and input capture is not generated.

2. When the BFB bit in TMDR0 is set to 1 and TGR0D is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Channel	Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	Description	on	
1	0	0	0	0	TGR1B	Output disabled	(Initial value)
				1	compare output register Output disa	Initial output is 0	0 output at compare match
			1	0		output	1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
				1		Initial output is 1 output	0 output at compare match
			1	0			1 output at compare match
				1	_		Toggle output at compare match
	1	0	0	0	TGR1B	Capture input	Input capture at rising edge
				1	⁻is input ₋capture	source is TIOCB1 pin	Input capture at falling edge
			1	*	register	1100b1 pill	Input capture at both edges
		1	*	*	-	Capture input source is TGR0C compare match/ input capture	Input capture at generation of TGR0C compare match/input capture

Channel	Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	Description	on	
2	0	0	0	0	TGR2B	Output disabled	(Initial value)
				1	is output compare	Initial output is 0	0 output at compare match
	1 0 register	output	1 output at compare match				
				1			Toggle output at compare match
		1	0	0		Output disabled	
	1	_	Initial output is 1	0 output at compare match			
			1	0	=	output	1 output at compare match
				1	_		Toggle output at compare match
1	1	*	0	0	TGR2B	Capture input	Input capture at rising edge
				1	is input capture	source is	Input capture at falling edge
			1	*	register	TIOCB2 pin	Input capture at both edges

^{*:} Don't care

Page 326 of 1458

Channel	Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	Description	on	
3	0	0	0	0	TGR3B	Output disabled	(Initial value)
				1	is output	Initial output is 0	0 output at compare match
			1	0	register output Output disabled	output	1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
		1	_	Initial output is 1	0 output at compare match		
			1	0	=	output	1 output at compare match
				1	_		Toggle output at compare match
	1	0	0	0	TGR3B	Capture input	Input capture at rising edge
				1	⁻is input _capture	source is	Input capture at falling edge
			1	*	register	TIOCB3 pin	Input capture at both edges
	1 * *		Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/count-down*1			

Note: 1. When bits TPSC2 to TPSC0 in TCR4 are set to B'000 and φ/1 is used as the TCNT4 count clock, this setting is invalid and input capture is not generated.

May 28, 2010

Channel	Bit 7 IOD3	Bit 6 IOD2	Bit 5 IOD1	Bit 4 IOD0	Description	on	
3	0	0	0	0	TGR3D	Output disabled	(Initial value)
				1	is output	Initial output is 0	0 output at compare match
			1	0	compare register*2 output Output disable	output	1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
	1	_	Initial output is 1	0 output at compare match			
			1	1 0	_	output	1 output at compare match
				1	_		Toggle output at compare match
	1	0	0	0	TGR3D	Capture input	Input capture at rising edge
				1	is input capture	source is TIOCD3 pin	Input capture at falling edge
			1	*	register*2	ПОСВЗ РІП	Input capture at both edges
		1	*	*		Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/count-down*1

- Notes: 1. When bits TPSC2 to TPSC0 in TCR4 are set to B'000 and $\phi/1$ is used as the TCNT4 count clock, this setting is invalid and input capture is not generated.
 - 2. When the BFB bit in TMDR3 is set to 1 and TGR3D is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Channel	Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	Description	on	
4	0	0	0	0	TGR4B	Output disabled	(Initial value)
				1	is output	Initial output is 0	0 output at compare match
			1	0	compare register	output	1 output at compare match
	1		Toggle output at compare match				
		1	0	0 0	_	Output disabled	
	1	_	Initial output is 1	0 output at compare match			
			1	0	_	output	1 output at compare match
			1	_		Toggle output at compare match	
	1	0	0	0	TGR4B	Capture input	Input capture at rising edge
				1	⁻is input _capture	source is	Input capture at falling edge
			1	ste	register	TIOCB4 pin	Input capture at both edges
		1	*	*		Capture input source is TGR3C compare match/ input capture	Input capture at generation of TGR3C compare match/ input capture

Channel	Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	Description	on	
5	0	0	0	0	TGR5B	Output disabled	(Initial value)
				1	compare output register	Initial output is 0	0 output at compare match
			1	0		output	1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
				1	=	Initial output is 1 output	0 output at compare match
			1	0	=		1 output at compare match
				1	-		Toggle output at compare match
	1	*	0	0	TGR5B	Capture input	Input capture at rising edge
				1	⁻is input ∟capture	·	Input capture at falling edge
			1	*	register		Input capture at both edges

Bits 3 to 0— I/O Control A3 to A0 (IOA3 to IOA0) I/O Control C3 to C0 (IOC3 to IOC0):

IOA3 to IOA0 specify the function of TGRA. IOC3 to IOC0 specify the function of TGRC.

	Bit 3	Bit 2	Bit 1	Bit 0	
Channel	IOA3	IOA2	IOA1	IOA0	Description

•							
0	0	0	0	0	TGR0A	Output disabled	(Initial value)
			1	is output compare	Initial output is 0	0 output at compare match	
			1	0	register	output	1 output at compare match
				1			Toggle output at compare match
		1	0	0	_	Output disabled	
	·	Initial output is 1	0 output at compare match				
			1	0	_	output	1 output at compare match
	1		Toggle output at compare match				
	1	0	0	0	TGR0A	Capture input	Input capture at rising edge
				1	is input	source is TIOCA0 pin	Input capture at falling edge
			1	* capture	register		Input capture at both edges
		1	*	*		Capture input source is channel 1/ count clock	Input capture at TCNT1 count-up/count-down

^{*:} Don't care

Channel	Bit 3 IOC3	Bit 2 IOC2	Bit 1 IOC1	Bit 0 IOC0	Description	on	
0	0	0	0	0	TGR0C	Output disabled	(Initial value)
				1	is output compare	Initial output is 0	0 output at compare match
			1	0	register*1	output	1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
	1	_	Initial output is 1	0 output at compare match			
			1	0	_	output	1 output at compare match
				1	_		Toggle output at compare match
	1	0	0	0	TGR0C	Capture input	Input capture at rising edge
				1	⁻is input ₋capture	source is TIOCC0 pin	Input capture at falling edge
			1	*	register*1	110000 piii	Input capture at both edges
		1	*	*		Capture input source is channel 1/count clock	Input capture at TCNT1 count-up/count-down

1. When the BFA bit in TMDR0 is set to 1 and TGR0C is used as a buffer register, this Note: setting is invalid and input capture/output compare is not generated.

Channel	Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	Description	on	
1	0	0	0	0	TGR1A	Output disabled	(Initial value)
				1	is output compare	Initial output is 0	0 output at compare match
			1	0	register	Outbut	1 output at compare match
		1		Toggle output at compare match			
		1	0 0 Output disabled				
		1	_	Initial output is 1	0 output at compare match		
			1	0	_	output	1 output at compare match
				1	_		Toggle output at compare match
	1	0	0	0	TGR1A is	Capture input	Input capture at rising edge
				1	input capture	source is TIOCA1 pin	Input capture at falling edge
			1	*	register	TIOCAT PIII	Input capture at both edges
		1	*	*	_	Capture input source is TGR0A compare match/ input capture	Input capture at generation of channel 0/TGR0A compare match/input capture

Channel	Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	Description	on	
2	0	0	0	0	TGR2A	Output disabled	(Initial value)
				1	is output compare	Initial output is 0	0 output at compare match
			1	0	register	output	1 output at compare match
				1		Toggle output at compare match	
	1 0 0		Output disabled				
				1		Initial output is 1	0 output at compare match
			1	0	_	output	1 output at compare match
				1	_		Toggle output at compare match
1	1	*	0	0	TGR2A	Capture input	Input capture at rising edge
				1	is input capture register	source is	Input capture at falling edge
			1	*		TIOCA2 pin	Input capture at both edges

Channel	Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	Description	on	
3	0	0	0	0	TGR3A	Output disabled	(Initial value)
				1	is output compare	Initial output is 0	0 output at compare match
			1	0	register	output	1 output at compare match
				1			Toggle output at compare match
		1	0	0	Output disabled		
				1	_	Initial output is 1 output	0 output at compare match
			1	0	_		1 output at compare match
				1	_		Toggle output at compare match
	1	0	0	0	TGR3A	Capture input	Input capture at rising edge
				1	⁻is input _capture	source is TIOCA3 pin	Input capture at falling edge
			1	*	register		Input capture at both edges
		1	*	*		Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/count-down

Channel	Bit 3 IOC3	Bit 2 IOC2	Bit 1 IOC1	Bit 0 IOC0	Description	on										
3	0	0	0	0	TGR3C	Output disabled	(Initial value)									
				1	is output compare	Initial output is 0	0 output at compare match									
			1	0	register*1	output	1 output at compare match									
				1		Initi		Toggle output at compare match								
		1	0	0			- -	- -	Output disabled							
				1					_	_	_	_			Initial output is 1	0 output at compare match
			1	0									output	1 output at compare match		
				1				Toggle output at compare match								
	1	0	0	0	TGR3C	Capture input	Input capture at rising edge									
				1	⁻is input ₋capture	source is TIOCC3 pin	Input capture at falling edge									
	1 * register*1	Input capture at both edges														
		1	*	*	_	Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/count-down									

Note: 1. When the BFA bit in TMDR3 is set to 1 and TGR3C is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Channel	Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	Description	on	
4	0	0	0	0	TGR4A	Output disabled	(Initial value)
				1	is output	Initial output is 0	0 output at compare match
			1	0	compare register	output	1 output at compare match
			1	Toggle output at compare match			
		1	0	0	_	output .	
				1	_		0 output at compare match
			1	0	_		1 output at compare match
				1	-		Toggle output at compare match
	1	0	0	0	TGR4A	Capture input	Input capture at rising edge
				1	is input capture	source is TIOCA4 pin	Input capture at falling edge
			1	*	register	посла ріп	Input capture at both edges
		1	*	*	-	Capture input source is TGR3A compare match/ input capture	Input capture at generation of TGR3A compare match/input capture

Channel	IOA3	IOA2	IOA1	IOA0	Description	on						
5	0	0	0	0	TGR5A	Output disabled	(Initial value)					
				1	is output compare	Initial output is 0	0 output at compare match					
			1	0	register	output	1 output at compare match					
				1	_		_		1			Toggle output at compare match
		1	0	0		Output disabled						
				1	=	Initial output is 1 output	0 output at compare match					
			1	0	-		1 output at compare match					
			1		Toggle output at compare match							
	1	*	0	0	TGR5A	s input source is	Input capture at rising edge					
				1	⁻is input _capture		Input capture at falling edge					
			1	*	register	поодо ріп	Input capture at both edges					

Timer Interrupt Enable Register (TIER) 10.2.4

Channel 0: TIER0 Channel 3: TIER3

Bit	:	7	6	5	4	3	2	1	0
		TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA
Initial value	e :	0	1	0	0	0	0	0	0
R/W	:	R/W	_	_	R/W	R/W	R/W	R/W	R/W

Channel 1: TIER1 **Channel 2: TIER2** Channel 4: TIER4 **Channel 5: TIER5**

May 28, 2010

Bit	:	7	6	5	4	3	2	1	0
		TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA
Initial va	lue :	0	1	0	0	0	0	0	0
R/W	:	R/W	_	R/W	R/W	_	_	R/W	R/W

The TIER registers are 8-bit registers that control enabling or disabling of interrupt requests for each channel. The TPU has six TIER registers, one for each channel. The TIER registers are initialized to H'40 by a reset, and in hardware standby mode.

Bit 7—A/D Conversion Start Request Enable (TTGE): Enables or disables generation of A/D conversion start requests by TGRA input capture/compare match.

Bit 7 TTGE	Description	
0	A/D conversion start request generation disabled	(Initial value)
1	A/D conversion start request generation enabled	

Bit 6—Reserved: This bit is always read as 1 and cannot be modified.

Bit 5—Underflow Interrupt Enable (TCIEU): Enables or disables interrupt requests (TCIU) by the TCFU flag when the TCFU flag in TSR is set to 1 in channels 1, 2, 4, and 5.

In channels 0 and 3, bit 5 is reserved. It is always read as 0 and cannot be modified.

Bit 5 TCIEU	Description	
0	Interrupt requests (TCIU) by TCFU disabled	(Initial value)
1	Interrupt requests (TCIU) by TCFU enabled	

Bit 4—Overflow Interrupt Enable (TCIEV): Enables or disables interrupt requests (TCIV) by the TCFV flag when the TCFV flag in TSR is set to 1.

Bit 4 TCIEV	Description	
0	Interrupt requests (TCIV) by TCFV disabled	(Initial value)
1	Interrupt requests (TCIV) by TCFV enabled	

Bit 3—TGR Interrupt Enable D (TGIED): Enables or disables interrupt requests (TGID) by the TGFD bit when the TGFD bit in TSR is set to 1 in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 3 is reserved. It is always read as 0 and cannot be modified.

Bit 3 TGIED	Description	
0	Interrupt requests (TGID) by TGFD bit disabled	(Initial value)
1	Interrupt requests (TGID) by TGFD bit enabled	

Bit 2—TGR Interrupt Enable C (TGIEC): Enables or disables interrupt requests (TGIC) by the TGFC bit when the TGFC bit in TSR is set to 1 in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 2 is reserved. It is always read as 0 and cannot be modified.

Bit 2		
TGIEC	Description	
0	Interrupt requests (TGIC) by TGFC bit disabled	(Initial value)
1	Interrupt requests (TGIC) by TGFC bit enabled	

Bit 1—TGR Interrupt Enable B (TGIEB): Enables or disables interrupt requests (TGIB) by the TGFB bit when the TGFB bit in TSR is set to 1.

Bit 1 TGIEB	Description	
0	Interrupt requests (TGIB) by TGFB bit disabled	(Initial value)
1	Interrupt requests (TGIB) by TGFB bit enabled	

Bit 0—TGR Interrupt Enable A (TGIEA): Enables or disables interrupt requests (TGIA) by the TGFA bit when the TGFA bit in TSR is set to 1.

Bit 0 TGIEA	Description	
0	Interrupt requests (TGIA) by TGFA bit disabled	(Initial value)
1	Interrupt requests (TGIA) by TGFA bit enabled	

10.2.5 Timer Status Register (TSR)

Channel 0: TSR0 Channel 3: TSR3

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA
Initial valu	ue :	1	1	0	0	0	0	0	0
R/W	:	_	_	_	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*

Note: * Can only be written with 0 for flag clearing.

Channel 1: TSR1 Channel 2: TSR2 Channel 4: TSR4 Channel 5: TSR5

Bit	:	7	6	5	4	3	2	1	0
		TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA
Initial val	ue :	1	1	0	0	0	0	0	0
R/W	:	R	_	R/(W)*	R/(W)*	_	_	R/(W)*	R/(W)*

Note: * Can only be written with 0 for flag clearing.

The TSR registers are 8-bit registers that indicate the status of each channel. The TPU has six TSR registers, one for each channel. The TSR registers are initialized to H'C0 by a reset, and in hardware standby mode.

May 28, 2010

Bit 7—Count Direction Flag (TCFD): Status flag that shows the direction in which TCNT counts in channels 1, 2, 4, and 5.

In channels 0 and 3, bit 7 is reserved. It is always read as 1 and cannot be modified.

Bit 7 TCFD	Description	
0	TCNT counts down	
1	TCNT counts up	(Initial value)

Bit 6—Reserved: This bit is always read as 1 and cannot be modified.

Bit 5—Underflow Flag (TCFU): Status flag that indicates that TCNT underflow has occurred when channels 1, 2, 4, and 5 are set to phase counting mode.

In channels 0 and 3, bit 5 is reserved. It is always read as 0 and cannot be modified.

Bit 5 TCFU	Description	
0	[Clearing condition]	(Initial value)
	 When 0 is written to TCFU after reading TCFU = 1 	
1	[Setting condition]	
	When the TCNT value underflows (changes from H'0000 to H'FFFF)	

Bit 4—Overflow Flag (TCFV): Status flag that indicates that TCNT overflow has occurred.

Bit 4 TCFV	Description	
0	[Clearing condition]	(Initial value)
	 When 0 is written to TCFV after reading TCFV = 1 	
1	[Setting condition]	
	When the TCNT value overflows (changes from H'FFFF to H'0000)	

Bit 3—Input Capture/Output Compare Flag D (TGFD): Status flag that indicates the occurrence of TGRD input capture or compare match in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 3 is reserved. It is always read as 0 and cannot be modified.

Bit 3 TGFD	Description
0	[Clearing conditions] (Initial value)
	 When DTC is activated by TGID interrupt while DISEL bit of MRB in DTC is 0
	 When 0 is written to TGFD after reading TGFD = 1
1	[Setting conditions]
	 When TCNT = TGRD while TGRD is functioning as output compare register
	 When TCNT value is transferred to TGRD by input capture signal while TGRD is
	functioning as input capture register

Bit 2—Input Capture/Output Compare Flag C (TGFC): Status flag that indicates the occurrence of TGRC input capture or compare match in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 2 is reserved. It is always read as 0 and cannot be modified.

Bit 2										
TGFC	Description									
0	[Clearing conditions] (Initial value)									
	 When DTC is activated by TGIC interrupt while DISEL bit of MRB in DTC is 0 									
	 When 0 is written to TGFC after reading TGFC = 1 									
1	[Setting conditions]									
	 When TCNT = TGRC while TGRC is functioning as output compare register 									
	 When TCNT value is transferred to TGRC by input capture signal while TGRC is functioning as input capture register 									

Bit 1—Input Capture/Output Compare Flag B (TGFB): Status flag that indicates the occurrence of TGRB input capture or compare match.

Bit 1 TGFB	Description
0	[Clearing conditions] (Initial value)
	 When DTC is activated by TGIB interrupt while DISEL bit of MRB in DTC is 0
	 When 0 is written to TGFB after reading TGFB = 1
1	[Setting conditions]
	 When TCNT = TGRB while TGRB is functioning as output compare register
	 When TCNT value is transferred to TGRB by input capture signal while TGRB is
	functioning as input capture register

Bit 0—Input Capture/Output Compare Flag A (TGFA): Status flag that indicates the occurrence of TGRA input capture or compare match.

Bit 0 TGFA	Description									
0	[Clearing conditions] (Initial value)									
	 When DTC is activated by TGIA interrupt while DISEL bit of MRB in DTC is 0 									
	 When 0 is written to TGFA after reading TGFA = 1 									
1	[Setting conditions]									
	 When TCNT = TGRA while TGRA is functioning as output compare register 									
	When TCNT value is transferred to TGRA by input capture signal while TGRA is									
	functioning as input capture register									

10.2.6 Timer Counter (TCNT)

Channel 0: TCNT0 (up-counter)

Channel 1: TCNT1 (up/down-counter*)
Channel 2: TCNT2 (up/down-counter*)

Channel 3: TCNT3 (up-counter)

Channel 4: TCNT4 (up/down-counter*)
Channel 5: TCNT5 (up/down-counter*)

Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	e :	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	:	R/W															

Note: *These counters can be used as up/down-counters only in phase counting mode or when counting overflow/underflow on another channel. In other cases they function as upcounters.

The TCNT registers are 16-bit counters. The TPU has six TCNT counters, one for each channel.

The TCNT counters are initialized to H'0000 by a reset, and in hardware standby mode.

The TCNT counters cannot be accessed in 8-bit units; they must always be accessed as a 16-bit unit.

10.2.7 Timer General Register (TGR)

Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value :		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
R/W	:	R/W															

The TGR registers are 16-bit registers with a dual function as output compare and input capture registers. The TPU has 16 TGR registers, four each for channels 0 and 3 and two each for channels 1, 2, 4, and 5. TGRC and TGRD for channels 0 and 3 can also be designated for operation as buffer registers*. The TGR registers are initialized to H'FFFF by a reset, and in hardware standby mode.

The TGR registers cannot be accessed in 8-bit units; they must always be accessed as a 16-bit unit.

Note: * TGR buffer register combinations are TGRA—TGRC and TGRB—TGRD.

10.2.8 Timer Start Register (TSTR)

Bit :	7	6	5	4	3	2	1	0
	_	_	CST5	CST4	CST3	CST2	CST1	CST0
Initial value:	0	0	0	0	0	0	0	0
R/W :	_	_	R/W	R/W	R/W	R/W	R/W	R/W

TSTR is an 8-bit readable/writable register that selects operation/stoppage for channels 0 to 5. TSTR is initialized to H'00 by a reset, and in hardware standby mode. When setting the operating mode in TMDR or setting the count clock in TCR, first stop the TCNT counter.

Bits 7 and 6—Reserved: Should always be written with 0.

Bits 5 to 0—Counter Start 5 to 0 (CST5 to CST0): These bits select operation or stoppage for TCNT.

Bit n CSTn	Description	
0	TCNTn count operation is stopped	(Initial value)
1	TCNTn performs count operation	
	_	- 54-0

n = 5 to 0

Note: If 0 is written to the CST bit during operation with the TIOC pin designated for output, the counter stops but the TIOC pin output compare output level is retained. If TIOR is written to when the CST bit is cleared to 0, the pin output level will be changed to the set initial output value.

10.2.9 Timer Synchro Register (TSYR)

Bit :		7	6	5	4	3	2	1	0
	-		_	SYNC5	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0
Initial value:		0	0	0	0	0	0	0	0
R/W :	-	_	_	R/W	R/W	R/W	R/W	R/W	R/W

TSYR is an 8-bit readable/writable register that selects independent operation or synchronous operation for the channel 0 to 4 TCNT counters. A channel performs synchronous operation when the corresponding bit in TSYR is set to 1.

TSYR is initialized to H'00 by a reset, and in hardware standby mode.

Bits 7 and 6—Reserved: Should always be written with 0.

Bits 5 to 0—Timer Synchro 5 to 0 (SYNC5 to SYNC0): These bits select whether operation is independent of or synchronized with other channels.

When synchronous operation is selected, synchronous presetting of multiple channels*1, and synchronous clearing through counter clearing on another channel*2 are possible.

Notes: 1. To set synchronous operation, the SYNC bits for at least two channels must be set to 1.

2. To set synchronous clearing, in addition to the SYNC bit, the TCNT clearing source must also be set by means of bits CCLR2 to CCLR0 in TCR.

Bit n SYNCn	Description	
0	TCNTn operates independently (TCNT presetting/clearing is unrelated to other channels)	(Initial value)
1	TCNTn performs synchronous operation	
	TCNT synchronous presetting/synchronous clearing is possible	

n = 5 to 0

10.2.10 Module Stop Control Register A (MSTPCRA)

Bit	t :	7	6	5	4	3	2	1	0
		MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0
Ini	tial value :	0	0	1	1	1	1	1	1
R/	W :	R/W							

MSTPCRA is an 8-bit readable/writable register that performs module stop mode control.

When the MSTPA5 bit in MSTPCRA is set to 1, TPU operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 23A.5, 23B.5, Module Stop Mode.

MSTPCRA is initialized to H'3F by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 5—Module Stop (MSTPA5): Specifies the TPU module stop mode.

Bit 5 MSTPA5	Description	
0	TPU module stop mode cleared	
1	TPU module stop mode set	(Initial value)

10.3 Interface to Bus Master

10.3.1 **16-Bit Registers**

TCNT and TGR are 16-bit registers. As the data bus to the bus master is 16 bits wide, these registers can be read and written to in 16-bit units.

These registers cannot be read or written to in 8-bit units; 16-bit access must always be used.

An example of 16-bit register access operation is shown in figure 10-2.

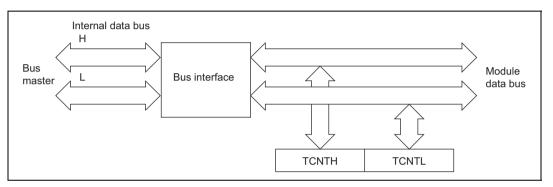


Figure 10-2 16-Bit Register Access Operation [Bus Master ↔ TCNT (16 Bits)]

10.3.2 8-Bit Registers

May 28, 2010

Registers other than TCNT and TGR are 8-bit. As the data bus to the CPU is 16 bits wide, these registers can be read and written to in 16-bit units. They can also be read and written to in 8-bit units.

Examples of 8-bit register access operation are shown in figures 10-3, 10-4, and 10-5.

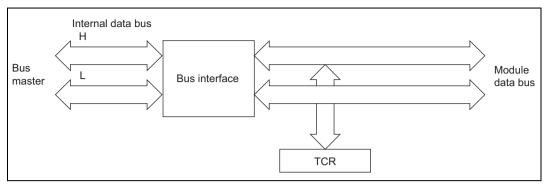


Figure 10-3 8-Bit Register Access Operation [Bus Master ↔ TCR (Upper 8 Bits)]

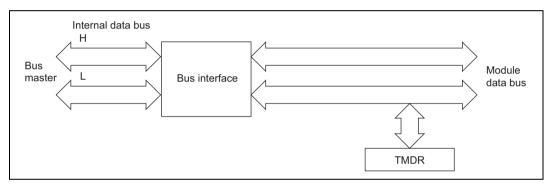


Figure 10-4 8-Bit Register Access Operation [Bus Master ↔ TMDR (Lower 8 Bits)]

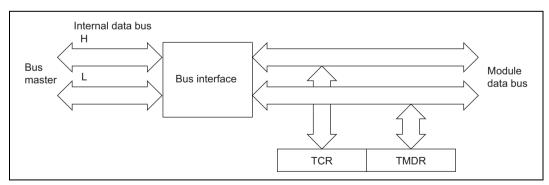


Figure 10-5 8-Bit Register Access Operation [Bus Master ↔ TCR and TMDR (16 Bits)]

10.4 Operation

10.4.1 Overview

Operation in each mode is outlined below.

Normal Operation: Each channel has a TCNT and TGR register. TCNT performs up-counting, and is also capable of free-running operation, synchronous counting, and external event counting.

Each TGR can be used as an input capture register or output compare register.

Synchronous Operation: When synchronous operation is designated for a channel, TCNT for that channel performs synchronous presetting. That is, when TCNT for a channel designated for synchronous operation is rewritten, the TCNT counters for the other channels are also rewritten at the same time. Synchronous clearing of the TCNT counters is also possible by setting the timer synchronization bits in TSYR for channels designated for synchronous operation.

Buffer Operation

- When TGR is an output compare register
 When a compare match occurs, the value in the buffer register for the relevant channel is transferred to TGR.
- When TGR is an input capture register
 When input capture occurs, the value in TCNT is transfer to TGR and the value previously held in TGR is transferred to the buffer register.

Cascaded Operation: The channel 1 counter (TCNT1), channel 2 counter (TCNT2), channel 4 counter (TCNT4), and channel 5 counter (TCNT5) can be connected together to operate as a 32-bit counter.

PWM Mode: In this mode, a PWM waveform is output. The output level can be set by means of TIOR. A PWM waveform with a duty of between 0% and 100% can be output, according to the setting of each TGR register.

Phase Counting Mode: In this mode, TCNT is incremented or decremented by detecting the phases of two clocks input from the external clock input pins in channels 1, 2, 4, and 5. When phase counting mode is set, the corresponding TCLK pin functions as the clock pin, and TCNT performs up- or down-counting.

This can be used for two-phase encoder pulse input.

10.4.2 Basic Functions

Counter Operation: When one of bits CST0 to CST5 is set to 1 in TSTR, the TCNT counter for the corresponding channel starts counting. TCNT can operate as a free-running counter, periodic counter, and so on.

• Example of count operation setting procedure
Figure 10-6 shows an example of the count operation setting procedure.

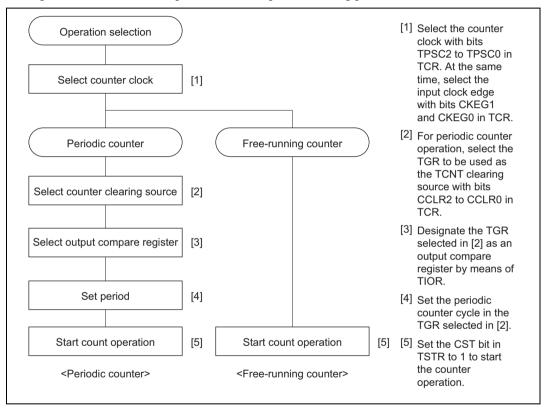
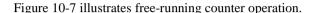



Figure 10-6 Example of Counter Operation Setting Procedure

H'0000.

May 28, 2010

Free-running count operation and periodic count operation Immediately after a reset, the TPU's TCNT counters are all designated as free-running counters. When the relevant bit in TSTR is set to 1 the corresponding TCNT counter starts upcount operation as a free-running counter. When TCNT overflows (from H'FFFF to H'0000). the TCFV bit in TSR is set to 1. If the value of the corresponding TCIEV bit in TIER is 1 at this point, the TPU requests an interrupt. After overflow, TCNT starts counting up again from

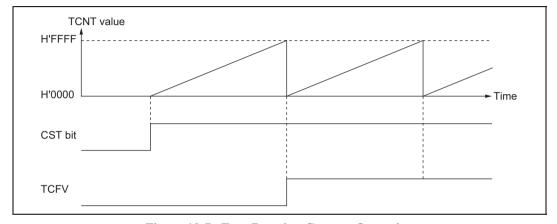


Figure 10-7 Free-Running Counter Operation

When compare match is selected as the TCNT clearing source, the TCNT counter for the relevant channel performs periodic count operation. The TGR register for setting the period is designated as an output compare register, and counter clearing by compare match is selected by means of bits CCLR2 to CCLR0 in TCR. After the settings have been made, TCNT starts up-count operation as periodic counter when the corresponding bit in TSTR is set to 1. When the count value matches the value in TGR, the TGF bit in TSR is set to 1 and TCNT is cleared to H'0000.

If the value of the corresponding TGIE bit in TIER is 1 at this point, the TPU requests an interrupt. After a compare match, TCNT starts counting up again from H'0000.

Figure 10-8 illustrates periodic counter operation.

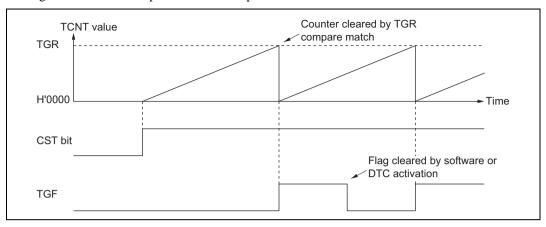


Figure 10-8 Periodic Counter Operation

Waveform Output by Compare Match: The TPU can perform 0, 1, or toggle output from the corresponding output pin using compare match.

• Example of setting procedure for waveform output by compare match
Figure 10-9 shows an example of the setting procedure for waveform output by compare match

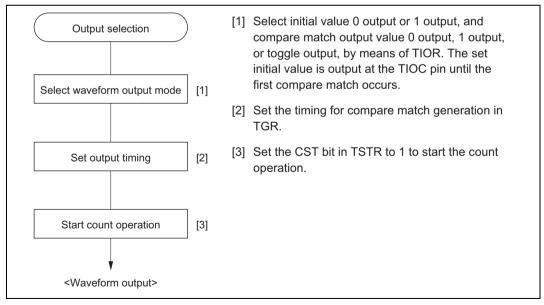


Figure 10-9 Example of Setting Procedure for Waveform Output by Compare Match

Examples of waveform output operation
 Figure 10-10 shows an example of 0 output/1 output.

In this example TCNT has been designated as a free-running counter, and settings have been made so that 1 is output by compare match A, and 0 is output by compare match B. When the set level and the pin level coincide, the pin level does not change.

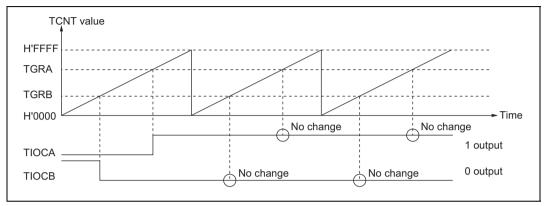


Figure 10-10 Example of 0 Output/1 Output Operation

Figure 10-11 shows an example of toggle output.

In this example TCNT has been designated as a periodic counter (with counter clearing performed by compare match B), and settings have been made so that output is toggled by both compare match A and compare match B.

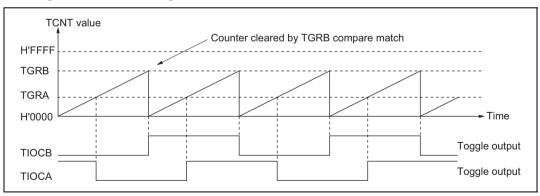


Figure 10-11 Example of Toggle Output Operation

Input Capture Function: The TCNT value can be transferred to TGR on detection of the TIOC pin input edge.

Rising edge, falling edge, or both edges can be selected as the detected edge. For channels 0, 1, 3, and 4, it is also possible to specify another channel's counter input clock or compare match signal as the input capture source.

Note: When another channel's counter input clock is used as the input capture input for channels 0 and 3, φ/1 should not be selected as the counter input clock used for input capture input. Input capture will not be generated if φ/1 is selected.

• Example of input capture operation setting procedure
Figure 10-12 shows an example of the input capture operation setting procedure.

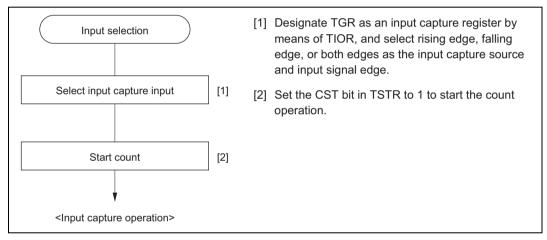


Figure 10-12 Example of Input Capture Operation Setting Procedure

May 28, 2010

Example of input capture operation Figure 10-13 shows an example of input capture operation.

In this example both rising and falling edges have been selected as the TIOCA pin input capture input edge, falling edge has been selected as the TIOCB pin input capture input edge, and counter clearing by TGRB input capture has been designated for TCNT.

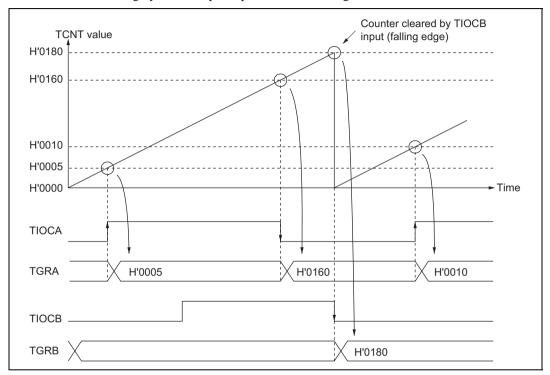


Figure 10-13 Example of Input Capture Operation

10.4.3 Synchronous Operation

In synchronous operation, the values in a number of TCNT counters can be rewritten simultaneously (synchronous presetting). Also, a number of TCNT counters can be cleared simultaneously by making the appropriate setting in TCR (synchronous clearing).

Synchronous operation enables TGR to be incremented with respect to a single time base.

Channels 0 to 5 can all be designated for synchronous operation.

Example of Synchronous Operation Setting Procedure: Figure 10-14 shows an example of the synchronous operation setting procedure.

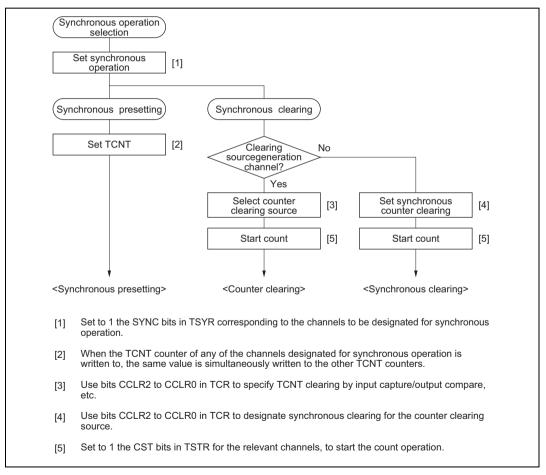


Figure 10-14 Example of Synchronous Operation Setting Procedure

May 28, 2010

Example of Synchronous Operation: Figure 10-15 shows an example of synchronous operation.

In this example, synchronous operation and PWM mode 1 have been designated for channels 0 to 2, TGR0B compare match has been set as the channel 0 counter clearing source, and synchronous clearing has been set for the channel 1 and 2 counter clearing source.

Three-phase PWM waveforms are output from pins TIOC0A, TIOC1A, and TIOC2A. At this time, synchronous presetting, and synchronous clearing by TGR0B compare match, is performed for channel 0 to 2 TCNT counters, and the data set in TGR0B is used as the PWM cycle.

For details of PWM modes, see section 10.4.6, PWM Modes.

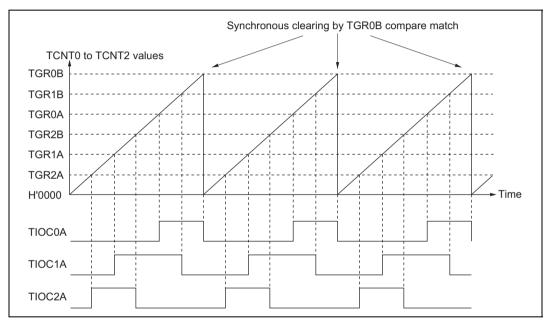


Figure 10-15 Example of Synchronous Operation

10.4.4 Buffer Operation

Buffer operation, provided for channels 0 and 3, enables TGRC and TGRD to be used as buffer registers.

Buffer operation differs depending on whether TGR has been designated as an input capture register or as a compare match register.

Table 10-5 shows the register combinations used in buffer operation.

Table 10-5 Register Combinations in Buffer Operation

Channel	Timer General Register	Buffer Register
0	TGR0A	TGR0C
	TGR0B	TGR0D
3	TGR3A	TGR3C
	TGR3B	TGR3D

• When TGR is an output compare register

When a compare match occurs, the value in the buffer register for the corresponding channel is transferred to the timer general register.

This operation is illustrated in figure 10-16.

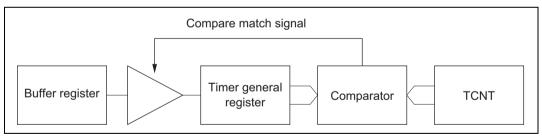


Figure 10-16 Compare Match Buffer Operation

• When TGR is an input capture register

When input capture occurs, the value in TCNT is transferred to TGR and the value previously held in the timer general register is transferred to the buffer register.

This operation is illustrated in figure 10-17.

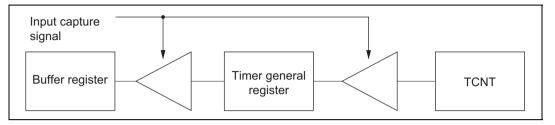


Figure 10-17 Input Capture Buffer Operation

Example of Buffer Operation Setting Procedure: Figure 10-18 shows an example of the buffer operation setting procedure.

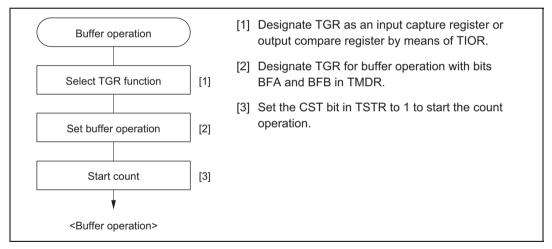


Figure 10-18 Example of Buffer Operation Setting Procedure

Examples of Buffer Operation

• When TGR is an output compare register

Figure 10-19 shows an operation example in which PWM mode 1 has been designated for channel 0, and buffer operation has been designated for TGRA and TGRC. The settings used in this example are TCNT clearing by compare match B, 1 output at compare match A, and 0 output at compare match B.

As buffer operation has been set, when compare match A occurs the output changes and the value in buffer register TGRC is simultaneously transferred to timer general register TGRA. This operation is repeated each time compare match A occurs.

For details of PWM modes, see section 10.4.6, PWM Modes.

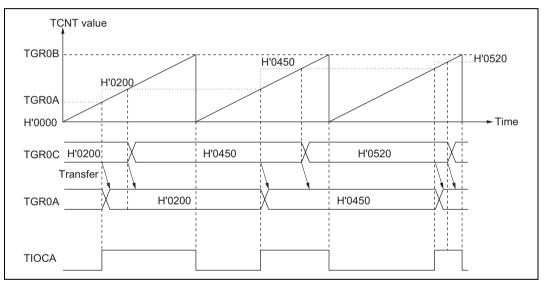


Figure 10-19 Example of Buffer Operation (1)

• When TGR is an input capture register

Figure 10-20 shows an operation example in which TGRA has been designated as an input capture register, and buffer operation has been designated for TGRA and TGRC.

Counter clearing by TGRA input capture has been set for TCNT, and both rising and falling edges have been selected as the TIOCA pin input capture input edge.

As buffer operation has been set, when the TCNT value is stored in TGRA upon occurrence of input capture A, the value previously stored in TGRA is simultaneously transferred to TGRC.

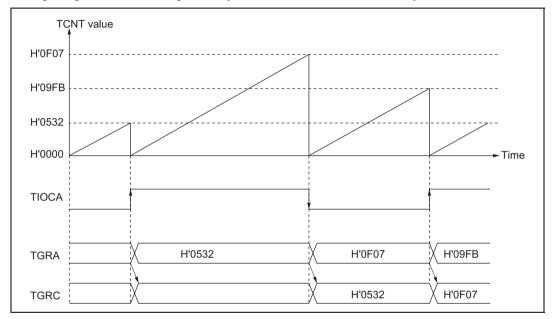


Figure 10-20 Example of Buffer Operation (2)

10.4.5 Cascaded Operation

In cascaded operation, two 16-bit counters for different channels are used together as a 32-bit counter.

This function works by counting the channel 1 (channel 4) counter clock upon overflow/underflow of TCNT2 (TCNT5) as set in bits TPSC2 to TPSC0 in TCR.

Underflow occurs only when the lower 16-bit TCNT is in phase-counting mode.

Table 10-6 shows the register combinations used in cascaded operation.

Note: When phase counting mode is set for channel 1 or 4, the counter clock setting is invalid and the counter operates independently in phase counting mode.

Table 10-6 Cascaded Combinations

Combination	Upper 16 Bits	Lower 16 Bits
Channels 1 and 2	TCNT1	TCNT2
Channels 4 and 5	TCNT4	TCNT5

Example of Cascaded Operation Setting Procedure: Figure 10-21 shows an example of the setting procedure for cascaded operation.

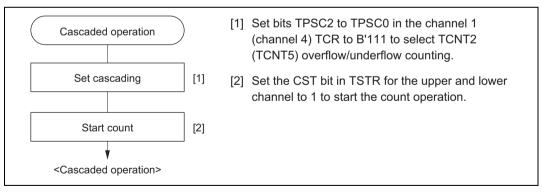


Figure 10-21 Cascaded Operation Setting Procedure

Examples of Cascaded Operation: Figure 10-22 illustrates the operation when counting upon TCNT2 overflow/underflow has been set for TCNT1, TGR1A, and TGR2A have been designated as input capture registers, and TIOC pin rising edge has been selected.

When a rising edge is input to the TIOCA1 and TIOCA2 pins simultaneously, the upper 16 bits of the 32-bit data are transferred to TGR1A, and the lower 16 bits to TGR2A.

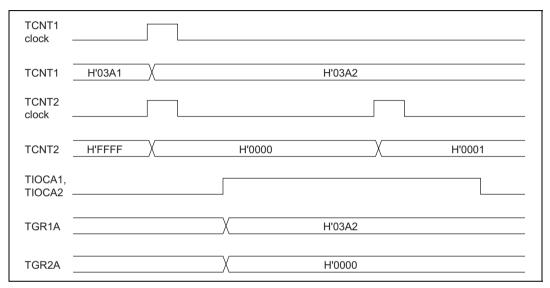


Figure 10-22 Example of Cascaded Operation (1)

Figure 10-23 illustrates the operation when counting upon TCNT2 overflow/underflow has been set for TCNT1, and phase counting mode has been designated for channel 2.

TCNT1 is incremented by TCNT2 overflow and decremented by TCNT2 underflow.

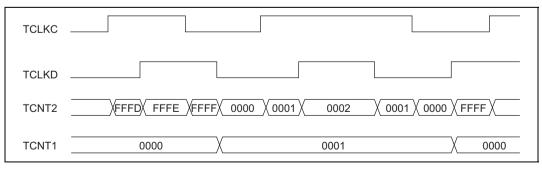


Figure 10-23 Example of Cascaded Operation (2)

10.4.6 **PWM Modes**

In PWM mode, PWM waveforms are output from the output pins. 0, 1, or toggle output can be selected as the output level in response to compare match of each TGR.

Designating TGR compare match as the counter clearing source enables the period to be set in that register. All channels can be designated for PWM mode independently. Synchronous operation is also possible.

There are two PWM modes, as described below.

PWM mode 1

PWM output is generated from the TIOCA and TIOCC pins by pairing TGRA with TGRB and TGRC with TGRD. The output specified by bits IOA3 to IOA0 and IOC3 to IOC0 in TIOR is output from the TIOCA and TIOCC pins at compare matches A and C, and the output specified by bits IOB3 to IOB0 and IOD3 to IOD0 in TIOR is output at compare matches B and D. The initial output value is the value set in TGRA or TGRC. If the set values of paired TGRs are identical, the output value does not change when a compare match occurs. In PWM mode 1, a maximum 8-phase PWM output is possible.

PWM mode 2

PWM output is generated using one TGR as the cycle register and the others as duty registers. The output specified in TIOR is performed by means of compare matches. Upon counter clearing by a synchronization register compare match, the output value of each pin is the initial value set in TIOR. If the set values of the cycle and duty registers are identical, the output value does not change when a compare match occurs.

In PWM mode 2, a maximum 15-phase PWM output is possible by combined use with synchronous operation.

The correspondence between PWM output pins and registers is shown in table 10-7.

Table 10-7 PWM Output Registers and Output Pins

		Output Pins		
Channel	Registers	PWM Mode 1	PWM Mode 2	
0	TGR0A	TIOCA0	TIOCA0	
	TGR0B		TIOCB0	
	TGR0C	TIOCC0	TIOCC0	
	TGR0D		TIOCD0	
1	TGR1A	TIOCA1	TIOCA1	
	TGR1B		TIOCB1	
2	TGR2A	TIOCA2	TIOCA2	
	TGR2B		TIOCB2	
3	TGR3A	TIOCA3	TIOCA3	
	TGR3B		TIOCB3	
	TGR3C	TIOCC3	TIOCC3	
	TGR3D		TIOCD3	
4	TGR4A	TIOCA4	TIOCA4	
	TGR4B		TIOCB4	
5	TGR5A	TIOCA5	TIOCA5	
	TGR5B		TIOCB5	

Note: In PWM mode 2, PWM output is not possible for the TGR register in which the period is set.

Example of PWM Mode Setting Procedure: Figure 10-24 shows an example of the PWM mode setting procedure.

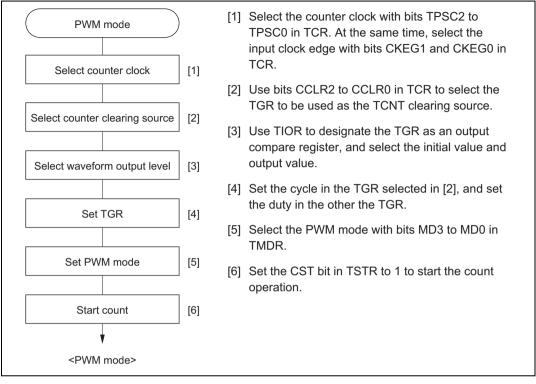


Figure 10-24 Example of PWM Mode Setting Procedure

Examples of PWM Mode Operation: Figure 10-25 shows an example of PWM mode 1 operation.

In this example, TGRA compare match is set as the TCNT clearing source, 0 is set for the TGRA initial output value and output value, and 1 is set as the TGRB output value.

In this case, the value set in TGRA is used as the period, and the values set in TGRB registers as the duty.

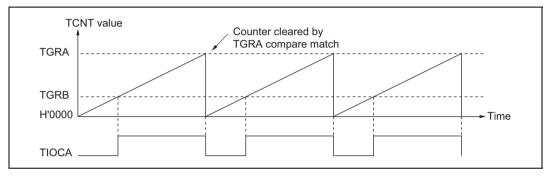


Figure 10-25 Example of PWM Mode Operation (1)

Figure 10-26 shows an example of PWM mode 2 operation.

In this example, synchronous operation is designated for channels 0 and 1, TGR1B compare match is set as the TCNT clearing source, and 0 is set for the initial output value and 1 for the output value of the other TGR registers (TGR0A to TGR0D, TGR1A), to output a 5-phase PWM waveform.

In this case, the value set in TGR1B is used as the cycle, and the values set in the other TGRs as the duty.

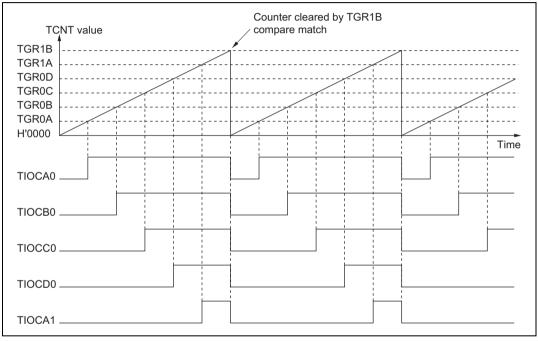


Figure 10-26 Example of PWM Mode Operation (2)

Figure 10-27 shows examples of PWM waveform output with 0% duty and 100% duty in PWM mode.

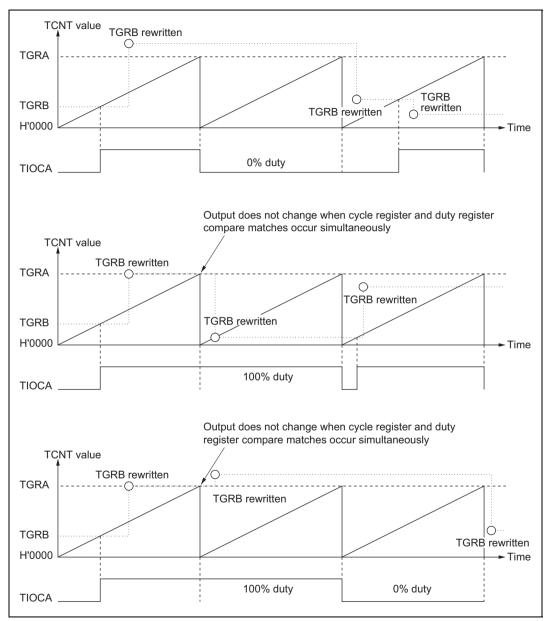


Figure 10-27 Example of PWM Mode Operation (3)

10.4.7 **Phase Counting Mode**

In phase counting mode, the phase difference between two external clock inputs is detected and TCNT is incremented/decremented accordingly. This mode can be set for channels 1, 2, 4, and 5.

When phase counting mode is set, an external clock is selected as the counter input clock and TCNT operates as an up/down-counter regardless of the setting of bits TPSC2 to TPSC0 and bits CKEG1 and CKEG0 in TCR. However, the functions of bits CCLR1 and CCLR0 in TCR, and of TIOR, TIER, and TGR are valid, and input capture/compare match and interrupt functions can be used.

When overflow occurs while TCNT is counting up, the TCFV flag in TSR is set; when underflow occurs while TCNT is counting down, the TCFU flag is set.

The TCFD bit in TSR is the count direction flag. Reading the TCFD flag provides an indication of whether TCNT is counting up or down.

Table 10-8 shows the correspondence between external clock pins and channels.

Table 10-8 Phase Counting Mode Clock Input Pins

Page 370 of 1458

	External Clock Pins	
Channels	A-Phase	B-Phase
When channel 1 or 5 is set to phase counting mode	TCLKA	TCLKB
When channel 2 or 4 is set to phase counting mode	TCLKC	TCLKD

Example of Phase Counting Mode Setting Procedure: Figure 10-28 shows an example of the phase counting mode setting procedure.

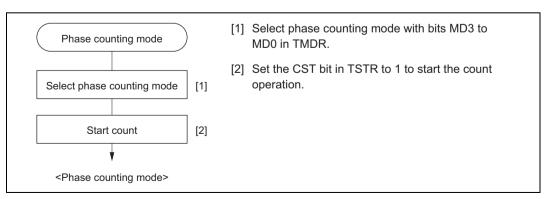


Figure 10-28 Example of Phase Counting Mode Setting Procedure

May 28, 2010

Examples of Phase Counting Mode Operation: In phase counting mode, TCNT counts up or down according to the phase difference between two external clocks. There are four modes, according to the count conditions.

Phase counting mode 1

Figure 10-29 shows an example of phase counting mode 1 operation, and table 10-9 summarizes the TCNT up/down-count conditions.

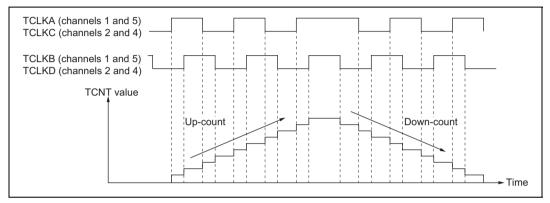


Figure 10-29 Example of Phase Counting Mode 1 Operation

Table 10-9 Up/Down-Count Conditions in Phase Counting Mode 1

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level		Up-count
Low level	7_	
	Low level	
1	High level	
High level	7_	Down-count
Low level		
	High level	
	Low level	

Legend:

: Rising edge Falling edge Phase counting mode 2
 Figure 10-30 shows an example of phase counting mode 2 operation, and table 10-10 summarizes the TCNT up/down-count conditions.

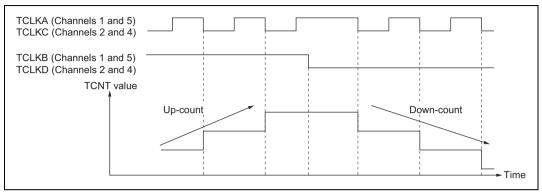


Figure 10-30 Example of Phase Counting Mode 2 Operation

Table 10-10 Up/Down-Count Conditions in Phase Counting Mode 2

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation	
High level		Don't care	
Low level	7_		
	Low level		
7_	High level	Up-count	
High level	7	Don't care	
Low level			
	High level		
7	Low level	Down-count	

Legend:

: Rising edge

Phase counting mode 3

Figure 10-31 shows an example of phase counting mode 3 operation, and table 10-11 summarizes the TCNT up/down-count conditions.

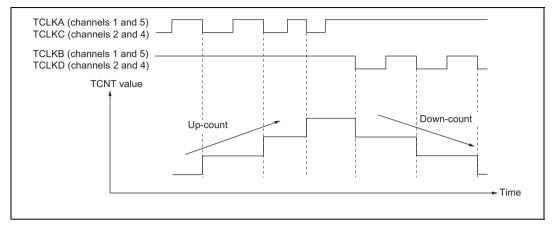


Figure 10-31 Example of Phase Counting Mode 3 Operation

Table 10-11 Up/Down-Count Conditions in Phase Counting Mode 3

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level		Don't care
Low level	7_	
	Low level	
7_	High level	Up-count
High level	7_	Down-count
Low level		Don't care
	High level	
1	Low level	

Legend:

Rising edge Falling edge • Phase counting mode 4

Figure 10-32 shows an example of phase counting mode 4 operation, and table 10-12 summarizes the TCNT up/down-count conditions.

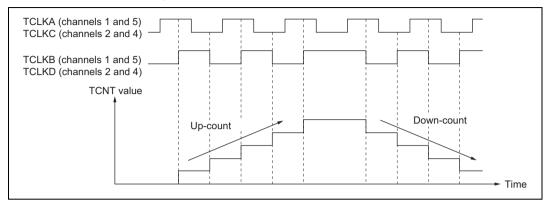


Figure 10-32 Example of Phase Counting Mode 4 Operation

Table 10-12 Up/Down-Count Conditions in Phase Counting Mode 4

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level		Up-count
Low level	7_	
	Low level	Don't care
7_	High level	
High level	7	Down-count
Low level		
	High level	Don't care
7_	Low level	

Legend:

: Rising edge : Falling edge **Phase Counting Mode Application Example:** Figure 10-33 shows an example in which phase counting mode is designated for channel 1, and channel 1 is coupled with channel 0 to input servo motor 2-phase encoder pulses in order to detect the position or speed.

Channel 1 is set to phase counting mode 1, and the encoder pulse A-phase and B-phase are input to TCLKA and TCLKB.

Channel 0 operates with TCNT counter clearing by TGR0C compare match; TGR0A and TGR0C are used for the compare match function, and are set with the speed control period and position control period. TGR0B is used for input capture, with TGR0B and TGR0D operating in buffer mode. The channel 1 counter input clock is designated as the TGR0B input capture source, and detection of the pulse width of 2-phase encoder 4-multiplication pulses is performed.

TGR1A and TGR1B for channel 1 are designated for input capture, channel 0 TGR0A and TGR0C compare matches are selected as the input capture source, and store the up/down-counter values for the control periods.

This procedure enables accurate position/speed detection to be achieved.

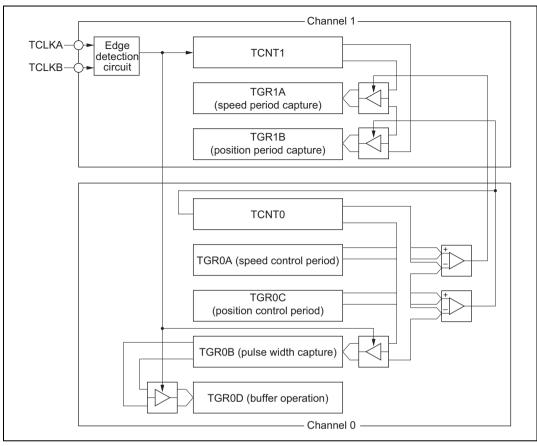


Figure 10-33 Phase Counting Mode Application Example

10.5 Interrupts

10.5.1 Interrupt Sources and Priorities

There are three kinds of TPU interrupt source: TGR input capture/compare match, TCNT overflow, and TCNT underflow. Each interrupt source has its own status flag and enable/disabled bit, allowing generation of interrupt request signals to be enabled or disabled individually.

When an interrupt request is generated, the corresponding status flag in TSR is set to 1. If the corresponding enable/disable bit in TIER is set to 1 at this time, an interrupt is requested. The interrupt request is cleared by clearing the status flag to 0.

Relative channel priorities can be changed by the interrupt controller, but the priority order within a channel is fixed. For details, see section 5, Interrupt Controller.

Table 10-13 lists the TPU interrupt sources.

Table 10-13 TPU Interrupts

Channel	Interrupt Source	Description	DTC Activation	Priority
0	TGI0A	TGR0A input capture/compare match	Possible	High
	TGI0B	TGR0B input capture/compare match	Possible	
	TGI0C	TGR0C input capture/compare match	Possible	_
	TGI0D	TGR0D input capture/compare match	Possible	_
	TCI0V	TCNT0 overflow	Not possible	_
1	TGI1A	TGR1A input capture/compare match	Possible	_
	TGI1B	TGR1B input capture/compare match	Possible	_
	TCI1V	TCNT1 overflow	Not possible	_
	TCI1U	TCNT1 underflow	Not possible	_
2	TGI2A	TGR2A input capture/compare match	Possible	_
	TGI2B	TGR2B input capture/compare match	Possible	_
	TCI2V	TCNT2 overflow	Not possible	_
	TCI2U	TCNT2 underflow	Not possible	_
3	TGI3A	TGR3A input capture/compare match	Possible	_
	TGI3B	TGR3B input capture/compare match	Possible	_
	TGI3C	TGR3C input capture/compare match	Possible	_
	TGI3D	TGR3D input capture/compare match	Possible	_
	TCI3V	TCNT3 overflow	Not possible	_
4	TGI4A	TGR4A input capture/compare match	Possible	_
	TGI4B	TGR4B input capture/compare match	Possible	_
	TCI4V	TCNT4 overflow	Not possible	_
	TCI4U	TCNT4 underflow	Not possible	_
5	TGI5A	TGR5A input capture/compare match	Possible	_
	TGI5B	TGR5B input capture/compare match	Possible	_
	TCI5V	TCNT5 overflow	Not possible	_
	TCI5U	TCNT5 underflow	Not possible	Low

Note: This table shows the initial state immediately after a reset. The relative channel priorities can be changed by the interrupt controller.

Input Capture/Compare Match Interrupt: An interrupt is requested if the TGIE bit in TIER is set to 1 when the TGF flag in TSR is set to 1 by the occurrence of a TGR input capture/compare match on a particular channel. The interrupt request is cleared by clearing the TGF flag to 0. The TPU has 16 input capture/compare match interrupts, four each for channels 0 and 3, and two each for channels 1, 2, 4, and 5.

Overflow Interrupt: An interrupt is requested if the TCIEV bit in TIER is set to 1 when the TCFV flag in TSR is set to 1 by the occurrence of TCNT overflow on a channel. The interrupt request is cleared by clearing the TCFV flag to 0. The TPU has six overflow interrupts, one for each channel.

Underflow Interrupt: An interrupt is requested if the TCIEU bit in TIER is set to 1 when the TCFU flag in TSR is set to 1 by the occurrence of TCNT underflow on a channel. The interrupt request is cleared by clearing the TCFU flag to 0. The TPU has four underflow interrupts, one each for channels 1, 2, 4, and 5.

10.5.2 DTC Activation

Note: The DTC is not implemented in the H8S/2635 and H8S/2634.

DTC Activation: The DTC can be activated by the TGR input capture/compare match interrupt for a channel. For details, see section 8, Data Transfer Controller (DTC).

A total of 16 TPU input capture/compare match interrupts can be used as DTC activation sources, four each for channels 0 and 3, and two each for channels 1, 2, 4, and 5.

10.5.3 A/D Converter Activation

The A/D converter can be activated by the TGRA input capture/compare match for a channel.

If the TTGE bit in TIER is set to 1 when the TGFA flag in TSR is set to 1 by the occurrence of a TGRA input capture/compare match on a particular channel, a request to start A/D conversion is sent to the A/D converter. If the TPU conversion start trigger has been selected on the A/D converter side at this time, A/D conversion is started.

In the TPU, a total of six TGRA input capture/compare match interrupts can be used as A/D converter conversion start sources, one for each channel.

10.6 Operation Timing

10.6.1 Input/Output Timing

TCNT Count Timing: Figure 10-34 shows TCNT count timing in internal clock operation, and figure 10-35 shows TCNT count timing in external clock operation.

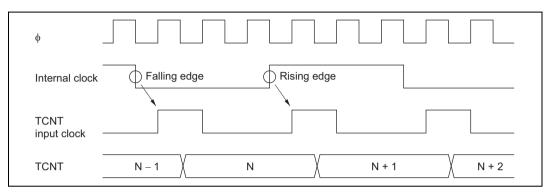


Figure 10-34 Count Timing in Internal Clock Operation

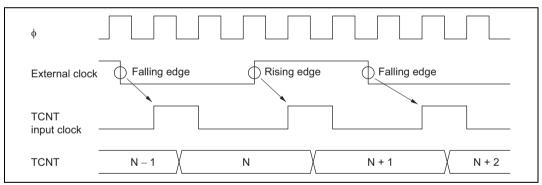


Figure 10-35 Count Timing in External Clock Operation

Output Compare Output Timing: A compare match signal is generated in the final state in which TCNT and TGR match (the point at which the count value matched by TCNT is updated). When a compare match signal is generated, the output value set in TIOR is output at the output compare output pin. After a match between TCNT and TGR, the compare match signal is not generated until the TCNT input clock is generated.

Figure 10-36 shows output compare output timing.

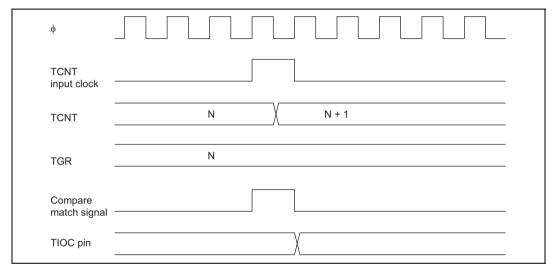


Figure 10-36 Output Compare Output Timing

Input Capture Signal Timing: Figure 10-37 shows input capture signal timing.

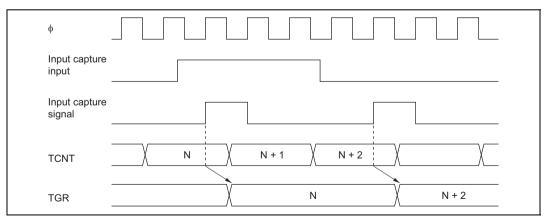


Figure 10-37 Input Capture Input Signal Timing

Timing for Counter Clearing by Compare Match/Input Capture: Figure 10-38 shows the timing when counter clearing by compare match occurrence is specified, and figure 10-39 shows the timing when counter clearing by input capture occurrence is specified.

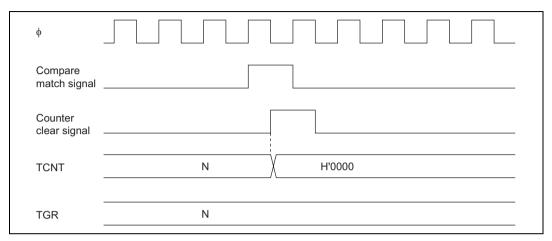


Figure 10-38 Counter Clear Timing (Compare Match)

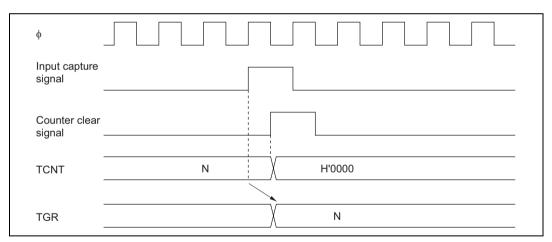


Figure 10-39 Counter Clear Timing (Input Capture)

Buffer Operation Timing: Figures 10-40 and 10-41 show the timing in buffer operation.

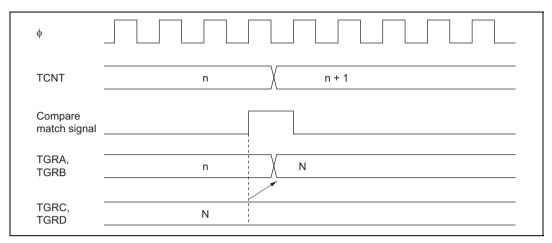


Figure 10-40 Buffer Operation Timing (Compare Match)

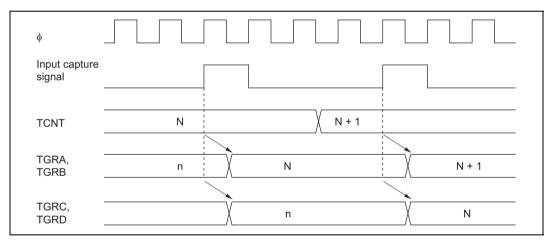


Figure 10-41 Buffer Operation Timing (Input Capture)

10.6.2 Interrupt Signal Timing

TGF Flag Setting Timing in Case of Compare Match: Figure 10-42 shows the timing for setting of the TGF flag in TSR by compare match occurrence, and TGI interrupt request signal timing.

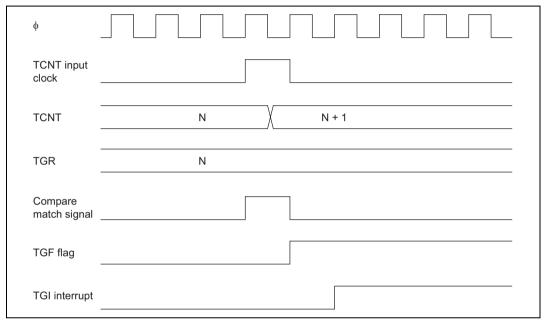


Figure 10-42 TGI Interrupt Timing (Compare Match)

TGF Flag Setting Timing in Case of Input Capture: Figure 10-43 shows the timing for setting of the TGF flag in TSR by input capture occurrence, and TGI interrupt request signal timing.

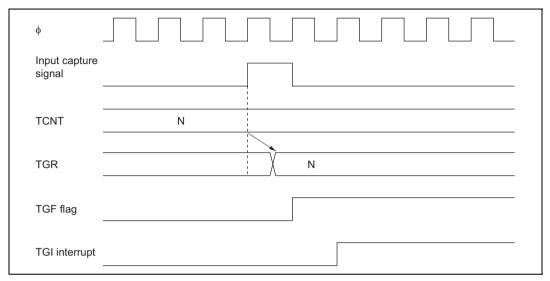


Figure 10-43 TGI Interrupt Timing (Input Capture)

TCFV Flag/TCFU Flag Setting Timing: Figure 10-44 shows the timing for setting of the TCFV flag in TSR by overflow occurrence, and TCIV interrupt request signal timing.

Figure 10-45 shows the timing for setting of the TCFU flag in TSR by underflow occurrence, and TCIU interrupt request signal timing.

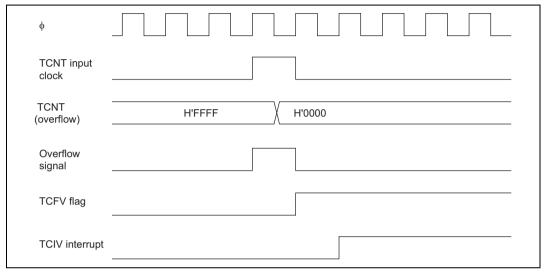


Figure 10-44 TCIV Interrupt Setting Timing

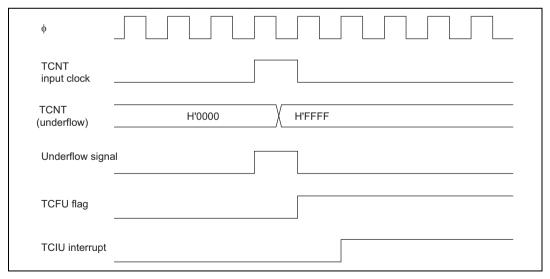


Figure 10-45 TCIU Interrupt Setting Timing

Status Flag Clearing Timing: After a status flag is read as 1 by the CPU, it is cleared by writing 0 to it. When the DTC* is activated, the flag is cleared automatically. Figure 10-46 shows the timing for status flag clearing by the CPU, and figure 10-47 shows the timing for status flag clearing by the DTC.

Note: * The DTC is not implemented in the H8S/2635 Group.

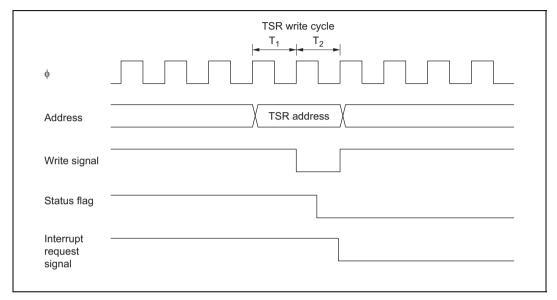


Figure 10-46 Timing for Status Flag Clearing by CPU

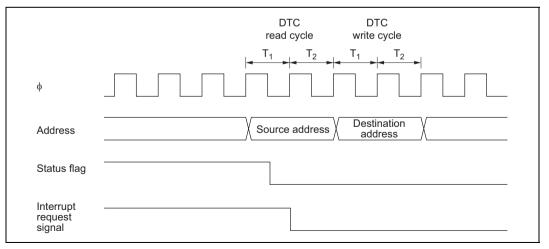


Figure 10-47 Timing for Status Flag Clearing by DTC Activation

10.7 Usage Notes

Note that the kinds of operation and contention described below occur during TPU operation.

Input Clock Restrictions: The input clock pulse width must be at least 1.5 states in the case of single-edge detection, and at least 2.5 states in the case of both-edge detection. The TPU will not operate properly with a narrower pulse width.

In phase counting mode, the phase difference and overlap between the two input clocks must be at least 1.5 states, and the pulse width must be at least 2.5 states. Figure 10-48 shows the input clock conditions in phase counting mode.



Figure 10-48 Phase Difference, Overlap, and Pulse Width in Phase Counting Mode

Caution on Period Setting: When counter clearing by compare match is set, TCNT is cleared in the final state in which it matches the TGR value (the point at which the count value matched by TCNT is updated). Consequently, the actual counter frequency is given by the following formula:

$$f = \frac{\phi}{(N+1)}$$

Where f : Counter frequency

N: TGR set value

Contention between TCNT Write and Clear Operations: If the counter clear signal is generated in the T₂ state of a TCNT write cycle, TCNT clearing takes precedence and the TCNT write is not performed.

Figure 10-49 shows the timing in this case.

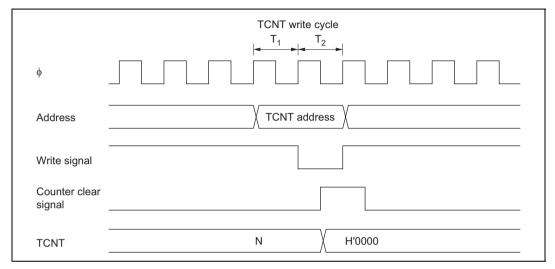


Figure 10-49 Contention between TCNT Write and Clear Operations

Contention between TCNT Write and Increment Operations: If incrementing occurs in the T₂ state of a TCNT write cycle, the TCNT write takes precedence and TCNT is not incremented.

Figure 10-50 shows the timing in this case.

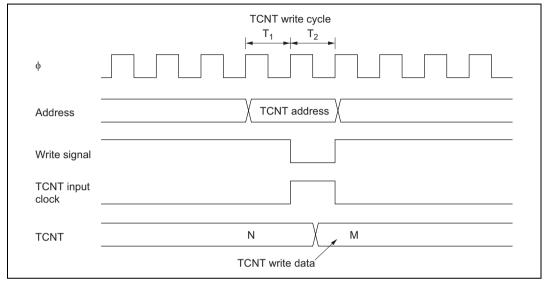


Figure 10-50 Contention between TCNT Write and Increment Operations

Contention between TGR Write and Compare Match: If a compare match occurs in the T_2 state of a TGR write cycle, the TGR write takes precedence and the compare match signal is inhibited. A compare match does not occur even if the same value as before is written.

Figure 10-51 shows the timing in this case.

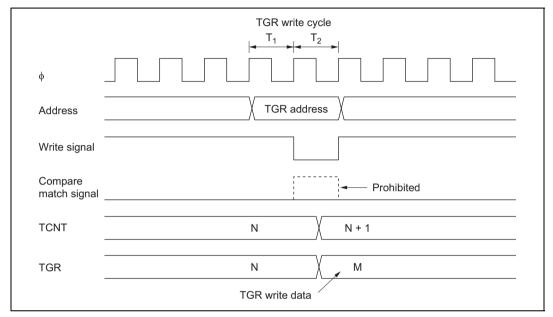


Figure 10-51 Contention between TGR Write and Compare Match

Contention between Buffer Register Write and Compare Match: If a compare match occurs in the T_2 state of a TGR write cycle, the data transferred to TGR by the buffer operation will be the data prior to the write.

Figure 10-52 shows the timing in this case.

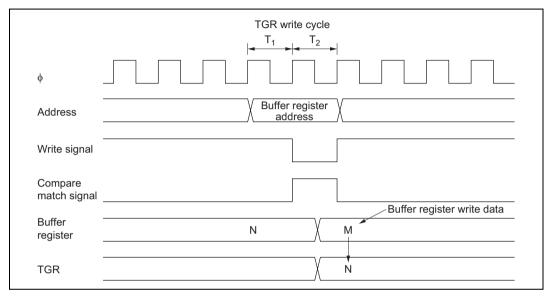
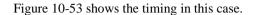



Figure 10-52 Contention between Buffer Register Write and Compare Match

Contention between TGR Read and Input Capture: If the input capture signal is generated in the T_1 state of a TGR read cycle, the data that is read will be the data after input capture transfer.

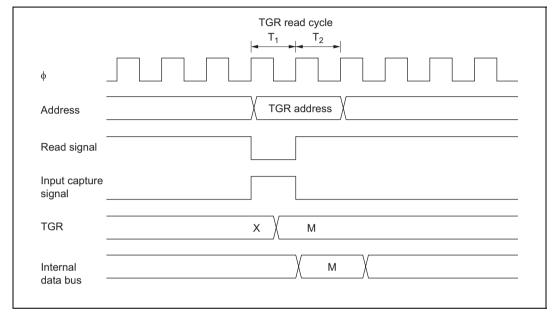


Figure 10-53 Contention between TGR Read and Input Capture

Contention between TGR Write and Input Capture: If the input capture signal is generated in the T_2 state of a TGR write cycle, the input capture operation takes precedence and the write to TGR is not performed.

Figure 10-54 shows the timing in this case.

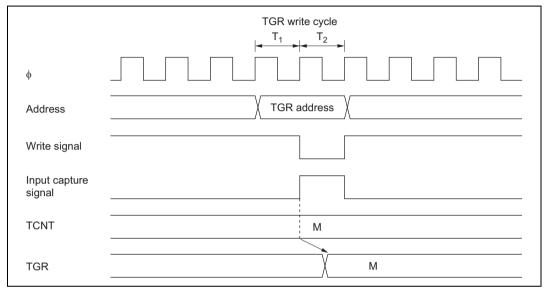


Figure 10-54 Contention between TGR Write and Input Capture

Contention between Buffer Register Write and Input Capture: If the input capture signal is generated in the T_2 state of a buffer write cycle, the buffer operation takes precedence and the write to the buffer register is not performed.

Figure 10-55 shows the timing in this case.

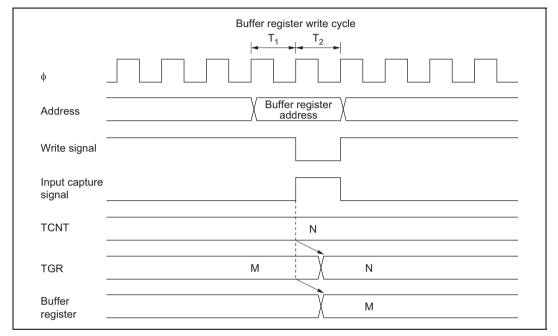


Figure 10-55 Contention between Buffer Register Write and Input Capture

Contention between Overflow/Underflow and Counter Clearing: If overflow/underflow and counter clearing occur simultaneously, the TCFV/TCFU flag in TSR is not set and TCNT clearing takes precedence.

Figure 10-56 shows the operation timing when a TGR compare match is specified as the clearing source, and H'FFFF is set in TGR.

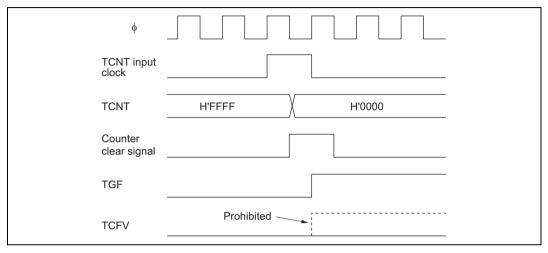


Figure 10-56 Contention between Overflow and Counter Clearing

Contention between TCNT Write and Overflow/Underflow: If there is an up-count or down-count in the T₂ state of a TCNT write cycle, and overflow/underflow occurs, the TCNT write takes precedence and the TCFV/TCFU flag in TSR is not set.

Figure 10-57 shows the operation timing when there is contention between TCNT write and overflow.

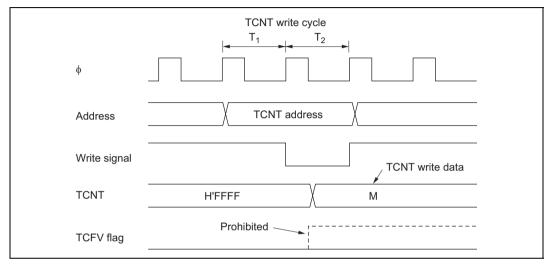


Figure 10-57 Contention between TCNT Write and Overflow

Multiplexing of I/O Pins: In the chip, the TCLKA input pin is multiplexed with the TIOCC0 I/O pin, the TCLKB input pin with the TIOCD0 I/O pin, the TCLKC input pin with the TIOCB1 I/O pin, and the TCLKD input pin with the TIOCB2 I/O pin. When an external clock is input, compare match output should not be performed from a multiplexed pin.

Interrupts and Module Stop Mode: If module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source or the DTC* activation source. Interrupts should therefore be disabled before entering module stop mode.

Note: * The DTC is not implemented in the H8S/2635 Group.

Section 11 Programmable Pulse Generator (PPG)

Note: The H8S/2635 Group is not equipped with a PPG.

11.1 Overview

The chip has an on-chip programmable pulse generator (PPG) that provides pulse outputs by using the 16-bit timer-pulse unit (TPU) as a time base. The PPG pulse outputs are divided into 4-bit groups (group 3 and group 2) that can operate both simultaneously and independently.

11.1.1 Features

PPG features are listed below.

- 8-bit output data
 - Maximum 8-bit data can be output, and output can be enabled on a bit-by-bit basis
- Two output groups
 - Output trigger signals can be selected in 4-bit groups to provide up to two different 4-bit outputs
- Selectable output trigger signals
 - Output trigger signals can be selected for each group from the compare match signals of four TPU channels
- Non-overlap mode
 - A non-overlap margin can be provided between pulse outputs
- Can operate together with the data transfer controller (DTC)
 - The compare match signals selected as output trigger signals can activate the DTC for sequential output of data without CPU intervention
- Settable inverted output
 - Inverted data can be output for each group
- Module stop mode can be set
 - As the initial setting, PPG operation is halted. Register access is enabled by exiting module stop mode

11.1.2 Block Diagram

Figure 11-1 shows a block diagram of the PPG.

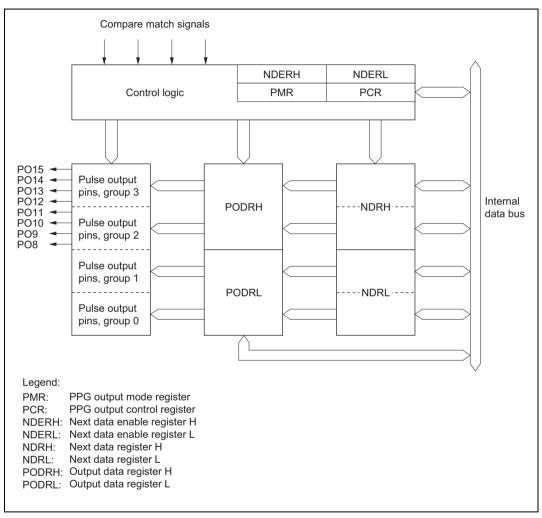


Figure 11-1 Block Diagram of PPG

Pin Configuration 11.1.3

Table 11-1 summarizes the PPG pins.

Table 11-1 PPG Pins

Name	Symbol	I/O	Function	
Pulse output 8	PO8	Output	Group 2 pulse output	
Pulse output 9	PO9	Output		
Pulse output 10	PO10	Output		
Pulse output 11	PO11	Output		
Pulse output 12	PO12	Output	Group 3 pulse output	
Pulse output 13	PO13	Output		
Pulse output 14	PO14	Output		
Pulse output 15	PO15	Output		

11.1.4 Registers

Table 11-2 summarizes the PPG registers.

Table 11-2 PPG Registers

Name	Abbreviation	R/W	Initial Value	Address*1
PPG output control register	PCR	R/W	H'FF	H'FE26
PPG output mode register	PMR	R/W	H'F0	H'FE27
Next data enable register H	NDERH	R/W	H'00	H'FE28
Next data enable register L*4	NDERL	R/W	H'00	H'FE29
Output data register H	PODRH	R/(W)*2	H'00	H'FE2A
Output data register L*4	PODRL	R/(W)*2	H'00	H'FE2B
Next data register H	NDRH	R/W	H'00	H'FE2C*3 H'FE2E
Next data register L*4	NDRL	R/W	H'00	H'FE2D ^{*3} H'FE2F
Port 1 data direction register	P1DDR	W	H'00	H'FE30
Module stop control register A	MSTPCRA	R/W	H'3F	H'FDE8

Notes: 1. Lower 16 bits of the address.

- 2. Bits used for pulse output cannot be written to.
- 3. When the same output trigger is selected for pulse output groups 2 and 3 by the PCR setting, the NDRH address is H'FE2C. When the output triggers are different, the NDRH address is H'FE2E for group 2 and H'FE2C for group 3.
 - Similarly, when the same output trigger is selected for pulse output groups 0 and 1 by the PCR setting, the NDRL address is H'FE2D. When the output triggers are different, the NDRL address is H'FE2F for group 0 and H'FE2D for group 1.
- 4. The chip has no pins corresponding to pulse output groups 0 and 1.

1

NDER1

Λ

NDER0

2

NDER2

11.2 Register Descriptions

7

NDER7

11.2.1 Next Data Enable Registers H and L (NDERH, NDERL)

۵

NDER6

NDERH

Rit

Dit	•	,	U	3	7	3	_	'	U	
		NDER15	NDER14	NDER13	NDER12	NDER11	NDER10	NDER9	NDER8	
Initial valu	ie :	0	0	0	0	0	0	0	0	
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
NDERL										
Bit	:	7	6	5	4	3	2	1	0	

1

2

NDER3

Initial value: 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W

NDER4

NDER5

NDERH and NDERL are 8-bit readable/writable registers that enable or disable pulse output on a bit-by-bit basis.

If a bit is enabled for pulse output by NDERH or NDERL, the NDR value is automatically transferred to the corresponding PODR bit when the TPU compare match event specified by PCR occurs, updating the output value. If pulse output is disabled, the bit value is not transferred from NDR to PODR and the output value does not change.

NDERH and NDERL are each initialized to H'00 by a reset and in hardware standby mode. They are not initialized in software standby mode.

NDERH Bits 7 to 0—Next Data Enable 15 to 8 (NDER15 to NDER8): These bits enable or disable pulse output on a bit-by-bit basis.

Bits 7 to 0 NDER15 to NDER8	Description
0	Pulse outputs PO15 to PO8 are disabled (NDR15 to NDR8 are not transferred to POD15 to POD8) (Initial value
1	Pulse outputs PO15 to PO8 are enabled (NDR15 to NDR8 are transferred to POD15 to POD8)

NDERL Bits 7 to 0—Next Data Enable 7 to 0 (NDER7 to NDER0): These bits enable or disable pulse output on a bit-by-bit basis.

Bits 7 to 0 NDER7 to NDER0	Description	
0	Pulse outputs PO7 to PO0 are disabled (NDR7 to transferred to POD7 to POD0)	NDR0 are not (Initial value)
1	Pulse outputs PO7 to PO0 are enabled (NDR7 to POD7 to POD0)	NDR0 are transferred to

11.2.2 Output Data Registers H and L (PODRH, PODRL)

PODRH

Bit	:	7	6	5	4	3	2	1	0
		POD15	POD14	POD13	POD12	POD11	POD10	POD9	POD8
Initial value	э:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*							

PODRL

Bit	:	7	6	5	4	3	2	1	0
		POD7	POD6	POD5	POD4	POD3	POD2	POD1	POD0
Initial value	э:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*							

Note: *A bit that has been set for pulse output by NDER is read-only.

PODRH and PODRL are 8-bit readable/writable registers that store output data for use in pulse output. However, the chip has no pins corresponding to PODRL.

11.2.3 Next Data Registers H and L (NDRH, NDRL)

NDRH and NDRL are 8-bit readable/writable registers that store the next data for pulse output. During pulse output, the contents of NDRH and NDRL are transferred to the corresponding bits in PODRH and PODRL when the TPU compare match event specified by PCR occurs. The NDRH and NDRL addresses differ depending on whether pulse output groups have the same output trigger or different output triggers. For details see section 11.2.4, Notes on NDR Access.

NDRH and NDRL are each initialized to H'00 by a reset and in hardware standby mode. They are not initialized in software standby mode.

11.2.4 Notes on NDR Access

The NDRH and NDRL addresses differ depending on whether pulse output groups have the same output trigger or different output triggers.

Same Trigger for Pulse Output Groups: If pulse output groups 2 and 3 are triggered by the same compare match event, the NDRH address is H'FE2C. The upper 4 bits belong to group 3 and the lower 4 bits to group 2. Address H'FE2E consists entirely of reserved bits that cannot be modified and are always read as 1.

Address H'FE2C

Bit	:	7	6	5	4	3	2	1	0
		NDR15	NDR14	NDR13	NDR12	NDR11	NDR10	NDR9	NDR8
Initial val	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address H'FE2E

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	_	_	_	_
Initial valu	e :	1	1	1	1	1	1	1	1
R/W	:	_	_	_	_	_	_	_	_

If pulse output groups 0 and 1 are triggered by the same compare match event, the NDRL address is HFE2D. The upper 4 bits belong to group 1 and the lower 4 bits to group 0. Address HFE2F consists entirely of reserved bits that cannot be modified and are always read as 1. However, the chip has no output pins corresponding to pulse output groups 0 and 1.

Address H'FE2D

Bit	:	7	6	5	4	3	2	1	0
		NDR7	NDR6	NDR5	NDR4	NDR3	NDR2	NDR1	NDR0
Initial va	ılue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

Address H'FE2F

Bit	:	7	6	5	4	3	2	1	0
		_		_	_	_		_	_
Initial val	ue:	1	1	1	1	1	1	1	1
R/W	:	_	_	_	_	_	_	_	_

Different Triggers for Pulse Output Groups: If pulse output groups 2 and 3 are triggered by different compare match events, the address of the upper 4 bits in NDRH (group 3) is H'FE2C and the address of the lower 4 bits (group 2) is H'FE2E. Bits 3 to 0 of address H'FE2C and bits 7 to 4 of address H'FE2E are reserved bits that cannot be modified and are always read as 1.

Address H'FE2C

Bit	:	7	6	5	4	3	2	1	0
		NDR15	NDR14	NDR13	NDR12		_	_	_
Initial va	lue :	0	0	0	0	1	1	1	1
R/W	:	R/W	R/W	R/W	R/W	_	_	_	_

Address H'FE2E

Page 406 of 1458

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	NDR11	NDR10	NDR9	NDR8
Initial value	:	1	1	1	1	0	0	0	0
R/W	:	_	_	_	_	R/W	R/W	R/W	R/W

If pulse output groups 0 and 1 are triggered by different compare match event, the address of the upper 4 bits in NDRL (group 1) is HFE2D and the address of the lower 4 bits (group 0) is HFE2F. Bits 3 to 0 of address HFE2D and bits 7 to 4 of address HFE2F are reserved bits that cannot be modified and are always read as 1. However, the chip has no output pins corresponding to pulse output groups 0 and 1.

Address H'FE2D

Bit	:	7	6	5	4	3	2	1	0
		NDR7	NDR6	NDR5	NDR4	_	_	_	_
Initial va	lue :	0	0	0	0	1	1	1	1
R/W	:	R/W	R/W	R/W	R/W	_	_	_	_

Address H'FE2F

Bit	:	7	6	5	4	3	2	1	0
		1	_	_		NDR3	NDR2	NDR1	NDR0
Initial val	ue :	1	1	1	1	0	0	0	0
R/W	:		_		_	R/W	R/W	R/W	R/W

11.2.5 PPG Output Control Register (PCR)

Bit	:	7	6	5	4	3	2	1	0
		G3CMS1	G3CMS0	G2CMS1	G2CMS0	G1CMS1	G1CMS0	G0CMS1	G0CMS0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

PCR is an 8-bit readable/writable register that selects output trigger signals for PPG outputs on a group-by-group basis.

PCR is initialized to HFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 7 and 6—Group 3 Compare Match Select 1 and 0 (G3CMS1, G3CMS0): These bits select the compare match that triggers pulse output group 3 (pins PO15 to PO12).

		Description					
Bit 7 G3CMS1	Bit 6 G3CMS0	Output Trigger for Pulse Output Group 3					
0	0	Compare match in TPU channel 0					
	1	Compare match in TPU channel 1					
1	0	Compare match in TPU channel 2					
	1	Compare match in TPU channel 3	(Initial value)				

Bits 5 and 4—Group 2 Compare Match Select 1 and 0 (G2CMS1, G2CMS0): These bits select the compare match that triggers pulse output group 2 (pins PO11 to PO8).

		Description					
Bit 5 G2CMS1	Bit 4 G2CMS0	Output Trigger for Pulse Output Group 2					
0	0	Compare match in TPU channel 0	_				
	1	Compare match in TPU channel 1					
1	0	Compare match in TPU channel 2					
	1	Compare match in TPU channel 3	(Initial value)				

Bits 3 and 2—Group 1 Compare Match Select 1 and 0 (G1CMS1, G1CMS0): These bits select the compare match that triggers pulse output group 1 (pins PO7 to PO4). However, the chip has no output pins corresponding to pulse output group 1.

		Description					
Bit 3 G1CMS1	Bit 2 G1CMS0	Output Trigger for Pulse Output Group 1					
0	0	Compare match in TPU channel 0	_				
	1	Compare match in TPU channel 1					
1	0	Compare match in TPU channel 2					
	1	Compare match in TPU channel 3	(Initial value)				

Bits 1 and 0—Group 0 Compare Match Select 1 and 0 (G0CMS1, G0CMS0): These bits select the compare match that triggers pulse output group 0 (pins PO3 to PO0). However, the chip has no output pins corresponding to pulse output group 0.

		Description					
Bit 1 G0CMS1	Bit 0 G0CMS0	Output Trigger for Pulse Output Group 0					
0	0	Compare match in TPU channel 0	_				
	1	Compare match in TPU channel 1					
1	0	Compare match in TPU channel 2					
	1	Compare match in TPU channel 3	(Initial value)				

May 28, 2010

11.2.6 **PPG Output Mode Register (PMR)**

Bit	:	7	6	5	4	3	2	1	0
		G3INV	G2INV	G1INV	G0INV	G3NOV	G2NOV	G1NOV	G0NOV
Initial val	ue :	1	1	1	1	0	0	0	0
R/W	:	R/W							

PMR is an 8-bit readable/writable register that selects pulse output inversion and non-overlapping operation for each group.

The output trigger period of a non-overlapping operation PPG output waveform is set in TGRB and the non-overlap margin is set in TGRA. The output values change at compare match A and B.

For details, see section 11.3.4, Non-Overlapping Pulse Output.

PMR is initialized to H'F0 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Group 3 Inversion (G3INV): Selects direct output or inverted output for pulse output group 3 (pins PO15 to PO12).

Bit 7 G3INV	Description
0	Inverted output for pulse output group 3 (low-level output at pin for a 1 in PODRH)
1	Direct output for pulse output group 3 (high-level output at pin for a 1 in PODRH) (Initial value)

Bit 6—Group 2 Inversion (G2INV): Selects direct output or inverted output for pulse output group 2 (pins PO11 to PO8).

Bit 6 G2INV	Description
0	Inverted output for pulse output group 2 (low-level output at pin for a 1 in PODRH)
1	Direct output for pulse output group 2 (high-level output at pin for a 1 in PODRH) (Initial value)

Bit 5—Group 1 Inversion (G1INV): Selects direct output or inverted output for pulse output group 1 (pins PO7 to PO4). However, the chip has no pins corresponding to pulse output group 1.

Bit 5 G1INV	Description
0	Inverted output for pulse output group 1 (low-level output at pin for a 1 in PODRL)
1	Direct output for pulse output group 1 (high-level output at pin for a 1 in PODRL) (Initial value)

Bit 4—Group 0 Inversion (G0INV): Selects direct output or inverted output for pulse output group 0 (pins PO3 to PO0). However, the chip has no pins corresponding to pulse output group 0.

Bit 4 G0INV	Description
0	Inverted output for pulse output group 0 (low-level output at pin for a 1 in PODRL)
1	Direct output for pulse output group 0 (high-level output at pin for a 1 in PODRL) (Initial value)

Bit 3—Group 3 Non-Overlap (G3NOV): Selects normal or non-overlapping operation for pulse output group 3 (pins PO15 to PO12).

Bit 3 G3NOV	Description
0	Normal operation in pulse output group 3 (output values updated at compare match A in the selected TPU channel) (Initial value)
1	Non-overlapping operation in pulse output group 3 (independent 1 and 0 output at compare match A or B in the selected TPU channel)

Bit 2—Group 2 Non-Overlap (G2NOV): Selects normal or non-overlapping operation for pulse output group 2 (pins PO11 to PO8).

Bit 2 G2NOV	Description
0	Normal operation in pulse output group 2 (output values updated at compare match A in the selected TPU channel) (Initial value)
1	Non-overlapping operation in pulse output group 2 (independent 1 and 0 output at compare match A or B in the selected TPU channel)

Bit 1—Group 1 Non-Overlap (**G1NOV**): Selects normal or non-overlapping operation for pulse output group 1 (pins PO7 to PO4). However, the chip has no pins corresponding to pulse output group 1.

Bit 1 G1NOV	Description
0	Normal operation in pulse output group 1 (output values updated at compare match A in the selected TPU channel) (Initial value)
1	Non-overlapping operation in pulse output group 1 (independent 1 and 0 output at compare match A or B in the selected TPU channel)

Bit 0—Group 0 Non-Overlap (**G0NOV**): Selects normal or non-overlapping operation for pulse output group 0 (pins PO3 to PO0). However, the chip has no pins corresponding to pulse output group 0.

Bit 0 G0NOV	Description
0	Normal operation in pulse output group 0 (output values updated at compare match A in the selected TPU channel) (Initial value)
1	Non-overlapping operation in pulse output group 0 (independent 1 and 0 output at compare match A or B in the selected TPU channel)

11.2.7 Port 1 Data Direction Register (P1DDR)

Bit	:	7	6	5	4	3	2	1	0
		P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR
Initial val	ue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

P1DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 1.

Port 1 is multiplexed with pins PO15 to PO8. Bits corresponding to pins used for PPG output must be set to 1. For further information about P1DDR, see section 9.2, Port 1.

11.2.8 Module Stop Control Register A (MSTPCRA)

Bit	:	7	6	5	4	3	2	1	0
		MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0
Initial value	е:	0	0	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRA is a 16-bit readable/writable register that performs module stop mode control.

When the MSTPA3 bit in MSTPCRA is set to 1, PPG operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 23A.5, 23B.5, Module Stop Mode.

MSTPCRA is initialized to H'3F by a reset and in hardware standby mode. It is not initialized by a manual reset and in software standby mode.

Bit 3—Module Stop (MSTPA3): Specifies the PPG module stop mode.

Bit 3 MSTPA3 Description

0	PPG module stop mode cleared	
1	PPG module stop mode set	(Initial value)

11.3 Operation

11.3.1 Overview

PPG pulse output is enabled when the corresponding bits in P1DDR and NDER are set to 1. In this state the corresponding PODR contents are output.

When the compare match event specified by PCR occurs, the corresponding NDR bit contents are transferred to PODR to update the output values.

Figure 11-2 illustrates the PPG output operation and table 11-3 summarizes the PPG operating conditions.

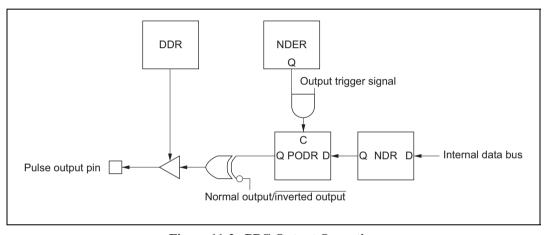


Figure 11-2 PPG Output Operation

Table 11-3 PPG Operating Conditions

NDER	DDR	Pin Function
0	0	Generic input port
	1	Generic output port
1	0	Generic input port (but the PODR bit is a read-only bit, and when compare match occurs, the NDR bit value is transferred to the PODR bit)
	1	PPG pulse output

Sequential output of data of up to 16 bits is possible by writing new output data to NDR before the next compare match. For details of non-overlapping operation, see section 11.3.4, Non-Overlapping Pulse Output.

11.3.2 Output Timing

If pulse output is enabled, NDR contents are transferred to PODR and output when the specified compare match event occurs. Figure 11-3 shows the timing of these operations for the case of normal output in groups 2 and 3, triggered by compare match A.

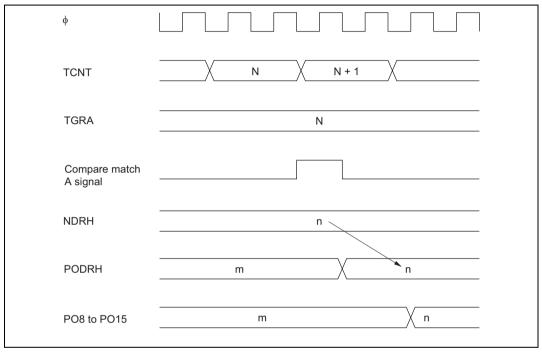


Figure 11-3 Timing of Transfer and Output of NDR Contents (Example)

11.3.3 Normal Pulse Output

Sample Setup Procedure for Normal Pulse Output: Figure 11-4 shows a sample procedure for setting up normal pulse output.

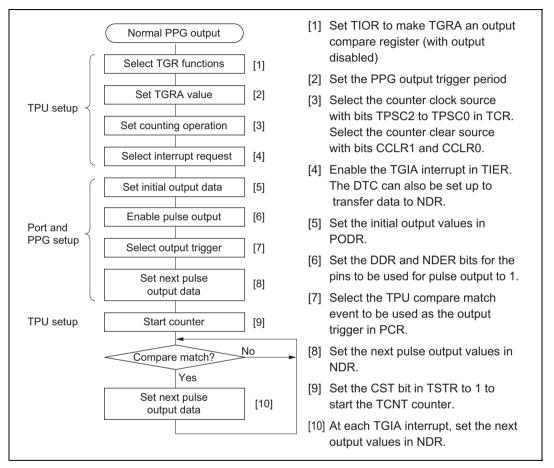


Figure 11-4 Setup Procedure for Normal Pulse Output (Example)

Example of Normal Pulse Output (Example of Five-Phase Pulse Output): Figure 11-5 shows an example in which pulse output is used for cyclic five-phase pulse output.

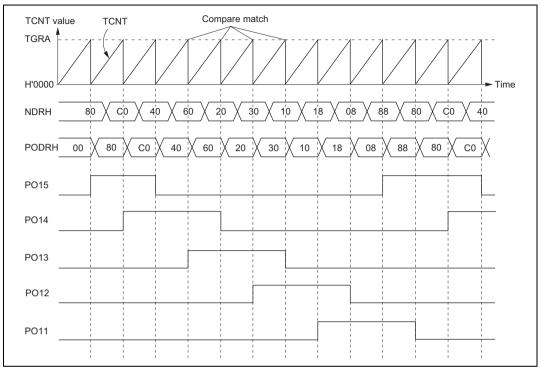


Figure 11-5 Normal Pulse Output Example (Five-Phase Pulse Output)

- [1] Set up the TPU channel to be used as the output trigger channel so that TGRA is an output compare register and the counter will be cleared by compare match A. Set the trigger period in TGRA and set the TGIEA bit in TIER to 1 to enable the compare match A (TGIA) interrupt.
- [2] Write H'F8 in P1DDR and NDERH, and set the G3CMS1, G3CMS0, G2CMS1, and G2CMS0 bits in PCR to select compare match in the TPU channel set up in the previous step to be the output trigger. Write output data H'80 in NDRH.
- [3] The timer counter in the TPU channel starts. When compare match A occurs, the NDRH contents are transferred to PODRH and output. The TGIA interrupt handling routine writes the next output data (H'C0) in NDRH.
- [4] Five-phase overlapping pulse output (one or two phases active at a time) can be obtained subsequently by writing H'40, H'60, H'20, H'30. H'10, H'18, H'08, H'88... at successive TGIA

interrupts. If the DTC is set for activation by this interrupt, pulse output can be obtained without imposing a load on the CPU.

11.3.4 Non-Overlapping Pulse Output

Sample Setup Procedure for Non-Overlapping Pulse Output: Figure 11-6 shows a sample procedure for setting up non-overlapping pulse output.

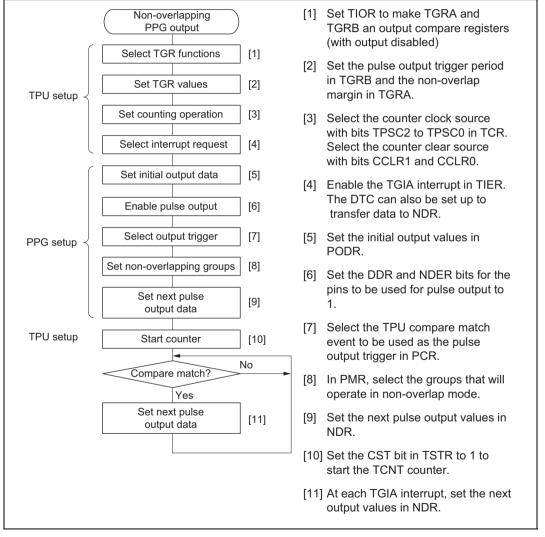


Figure 11-6 Setup Procedure for Non-Overlapping Pulse Output (Example)

Example of Non-Overlapping Pulse Output (Example of Four-Phase Complementary Non-Overlapping Output): Figure 11-7 shows an example in which pulse output is used for four-phase complementary non-overlapping pulse output.

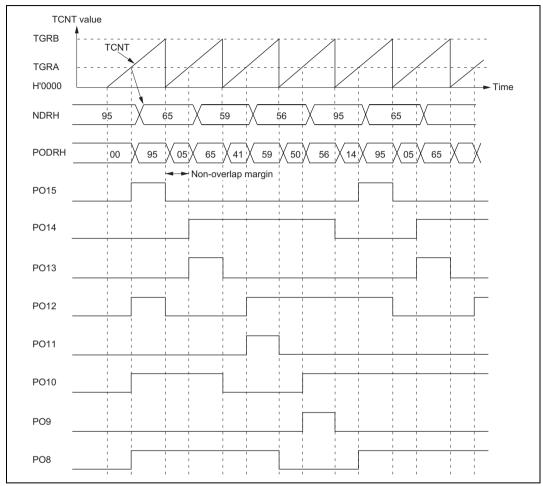


Figure 11-7 Non-Overlapping Pulse Output Example (Four-Phase Complementary)

- [1] Set up the TPU channel to be used as the output trigger channel so that TGRA and TGRB are output compare registers. Set the trigger period in TGRB and the non-overlap margin in TGRA, and set the counter to be cleared by compare match B. Set the TGIEA bit in TIER to 1 to enable the TGIA interrupt.
- [2] Write H'FF in P1DDR and NDERH, and set the G3CMS1, G3CMS0, G2CMS1, and G2CMS0 bits in PCR to select compare match in the TPU channel set up in the previous step to be the output trigger. Set the G3NOV and G2NOV bits in PMR to 1 to select non-overlapping output. Write output data H'95 in NDRH.
- [3] The timer counter in the TPU channel starts. When a compare match with TGRB occurs, outputs change from 1 to 0. When a compare match with TGRA occurs, outputs change from 0 to 1 (the change from 0 to 1 is delayed by the value set in TGRA). The TGIA interrupt handling routine writes the next output data (H'65) in NDRH.
- [4] Four-phase complementary non-overlapping pulse output can be obtained subsequently by writing H'59, H'56, H'95... at successive TGIA interrupts. If the DTC is set for activation by this interrupt, pulse output can be obtained without imposing a load on the CPU.

11.3.5 **Inverted Pulse Output**

If the G3INV, G2INV, G1INV, and G0INV bits in PMR are cleared to 0, values that are the inverse of the PODR contents can be output.

Figure 11-8 shows the outputs when G3INV and G2INV are cleared to 0, in addition to the settings of figure 11-7.

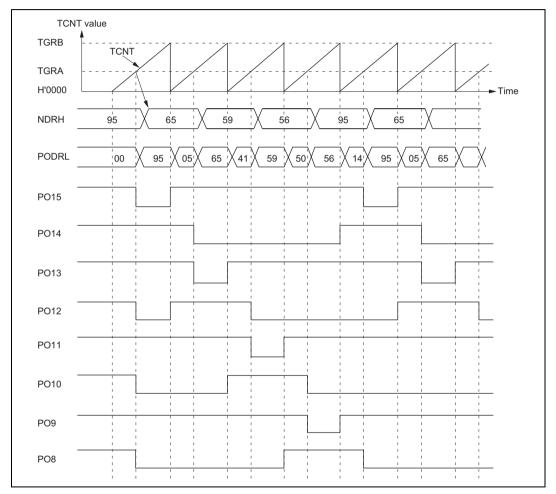


Figure 11-8 Inverted Pulse Output (Example)

May 28, 2010

Pulse Output Triggered by Input Capture 11.3.6

Pulse output can be triggered by TPU input capture as well as by compare match. If TGRA functions as an input capture register in the TPU channel selected by PCR, pulse output will be triggered by the input capture signal.

Figure 11-9 shows the timing of this output.

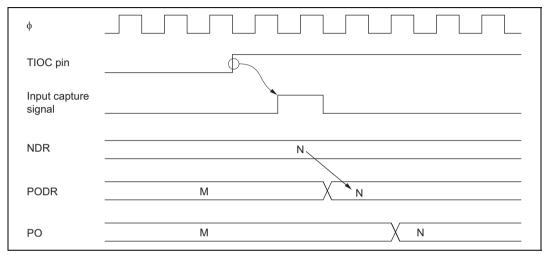


Figure 11-9 Pulse Output Triggered by Input Capture (Example)

11.4 Usage Notes

Operation of Pulse Output Pins: Pins PO8 to PO15 are also used for other peripheral functions such as the TPU. When output by another peripheral function is enabled, the corresponding pins cannot be used for pulse output. Note, however, that data transfer from NDR bits to PODR bits takes place, regardless of the usage of the pins.

Pin functions should be changed only under conditions in which the output trigger event will not occur.

Note on Non-Overlapping Output: During non-overlapping operation, the transfer of NDR bit values to PODR bits takes place as follows.

- NDR bits are always transferred to PODR bits at compare match A.
- At compare match B, NDR bits are transferred only if their value is 0. Bits are not transferred if their value is 1.

Figure 11-10 illustrates the non-overlapping pulse output operation.

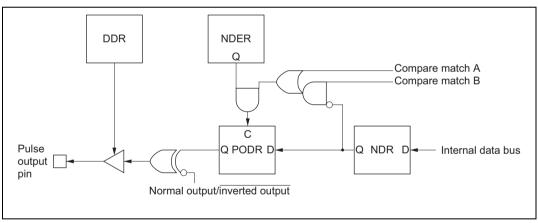


Figure 11-10 Non-Overlapping Pulse Output

May 28, 2010

Therefore, 0 data can be transferred ahead of 1 data by making compare match B occur before compare match A. The NDR contents should not be altered during the interval from compare match B to compare match A (the non-overlap margin).

This can be accomplished by having the TGIA interrupt handling routine write the next data in NDR, or by having the TGIA interrupt activate the DTC. Note, however, that the next data must be written before the next compare match B occurs.

Figure 11-11 shows the timing of this operation.

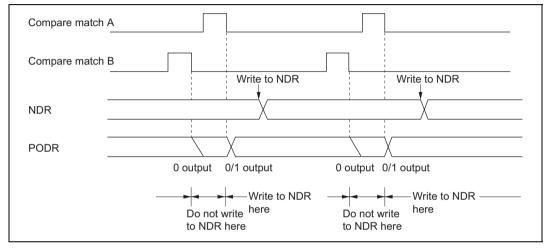


Figure 11-11 Non-Overlapping Operation and NDR Write Timing

Section 12 Watchdog Timer

12.1 Overview

The chip has two channel inbuilt watchdog timers (WDT0/WDT1). The WDT can also generate an internal reset signal for the chip if a system crash prevents the CPU from writing to the timer counter, allowing it to overflow.

When this watchdog function is not needed, the WDT can be used as an interval timer. In interval timer operation, an interval timer interrupt is generated each time the counter overflows.

12.1.1 Features

WDT features are listed below.

- Switchable between watchdog timer mode and interval timer mode
- An internal reset can be issued if the timer counter overflows
 - In the watchdog timer mode, the WDT can generate an internal reset
- Interrupt generation when in interval timer mode
 - If the counter overflows, the WDT generates an interval timer interrupt
- WDT0 and WDT1 respectively allow eight and sixteen types*1 of counter input clock to be selected
 - The maximum interval of the WDT is given as a system clock cycle \times 131072 \times 256
 - A subclock*2 may be selected for the input counter of WDT1
 - Where a subclock is selected, the maximum interval is given as a subclock cycle \times 256 \times 256
- Notes: 1. Other than the U-mask and W-mask versions, and H8S/2635 Group have eight types of counter input clock as well as WDT0.
 - Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.
 See section 22A.7, Subclock Oscillator, for the method of fixing pins when OSC1 and OSC2 are not used. The H8S/2639 and H8S/2635 Groups have no OSC1 and OSC2 pins.

12.1.2 Block Diagram

Figures 12-1 (a) and 12-1 (b) show block diagrams of the WDT.

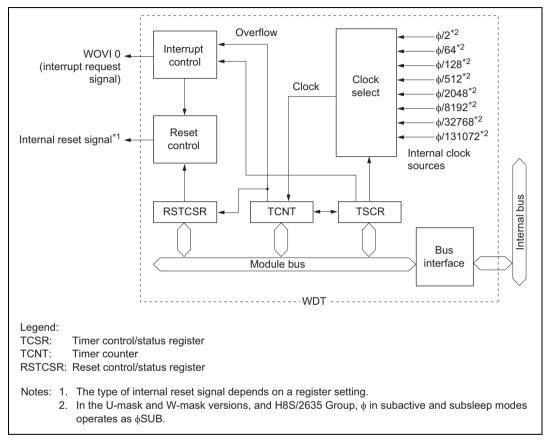


Figure 12-1 (a) Block Diagram of WDT0

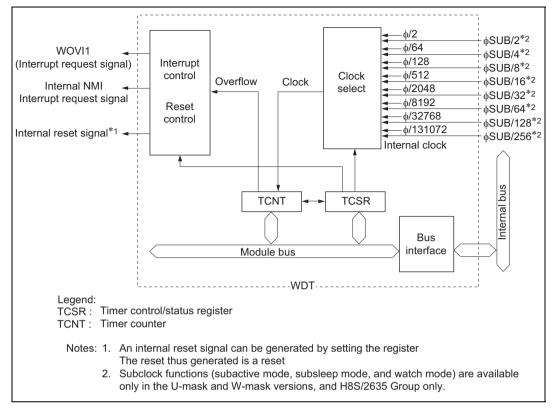


Figure 12-1 (b) Block Diagram of WDT1

12.1.3 Pin Configuration

There are no pins related to the WDT.

12.1.4 Register Configuration

The WDT has five registers, as summarized in table 12-1. These registers control clock selection, WDT mode switching, and the reset signal.

Table 12-1 WDT Registers

					Addı	ess*1
Channel	Name	Abbreviation	R/W	Initial Value	Write*2	Read
0	Timer control/status register 0	TCSR0	R/(W)*3	H'18	H'FF74	H'FF74
	Timer counter 0	TCNT0	R/W	H'00	H'FF74	H'FF75
	Reset control/status register	RSTCSR0	R/(W)*3	H'1F	H'FF76	H'FF77
1	Timer control/status register 1	TCSR1	R/(W)*3	H'00	H'FFA2	H'FFA2
	Timer counter 1	TCNT1	R/W	H'00	H'FFA2	H'FFA3

Notes: 1. Lower 16 bits of the address.

- 2. For details of write operations, see section 12.2.4, Notes on Register Access.
- 3. Only a write of 0 is permitted to bit 7, to clear the flag.

12.2 Register Descriptions

12.2.1 Timer Counter (TCNT)

Bit	:	7	6	5	4	3	2	1	0
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

TCNT is an 8-bit readable/writable * up-counter.

When the TME bit is set to 1 in TCSR, TCNT starts counting pulses generated from the internal clock source selected by bits CKS2 to CKS0 in TCSR. When the count overflows (changes from H'FF to H'00), an interval timer interrupt (WOVI) is generated, depending on the mode selected by the WT/TT bit in TCSR.

TCNT is initialized to H'00 by a reset, in hardware standby mode, or when the TME bit is cleared to 0. It is not initialized in software standby mode.

Note: * TCNT is write-protected by a password to prevent accidental overwriting. For details see section 12.2.4, Notes on Register Access.

12.2.2 Timer Control/Status Register (TCSR)

TCSR0

Bit	:	7	6	5	4	3	2	1	0
		OVF	WT/ IT	TME	_	_	CKS2	CKS1	CKS0
Initial valu	ıe:	0	0	0	1	1	0	0	0
R/W	:	R/(W)*	R/W	R/W	_	_	R/W	R/W	R/W

Note: *Only a 0 may be written to this bit to clear the flag.

TCSR1

Bit	:	7	6	5	4	3	2	1	0
		OVF	WT/IT	TME	PSS*2	RST/NMI	CKS2	CKS1	CKS0
Initial val	lue :	0	0	0	0	0	0	0	0
R/W	:	R/(W)*1	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Notes: 1. Only a 0 may be written to this bit to clear the flag.

2. Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

TCSR is an 8-bit readable/writable* register. Its functions include selecting the clock source to be input to TCNT, and the timer mode.

TCSR0 (TCSR1) is initialized to H'18 (H'00) by a reset and in hardware standby mode. It is not initialized in software standby mode.

Note: * TCSR is write-protected by a password to prevent accidental overwriting. For details see section 12.2.4, Notes on Register Access.

May 28, 2010

Bit 7—Overflow Flag (OVF): Indicates that TCNT has overflowed from H'FF to H'00.

Bit 7 OVF	Description					
0	[Clearing conditions] (Initial value)					
	 Cleared when 0 is written to the TME bit (Only applies to WDT1) 					
	 Cleared by reading TCSR* when OVF = 1, then writing 0 to OVF 					
1	[Setting condition]					
	 When TCNT overflows (changes from H'FF to H'00) 					
	When internal reset request generation is selected in watchdog timer mode, OVF is					
	cleared automatically by the internal reset.					

Note: *When interval timer interrupts are disabled and OVF is polled, read the OVF = 1 state at least twice.

In the interval timer mode, the OVF flag can be cleared in the interval timer interrupt routine by writing 0 to OVF after reading TCSR when OVF is set to 1, in accordance with the conditions for clearing the OVF flag.

However, when attempting to poll the OVF flag when interval timer interrupts are prohibited the OVF value will not be recognized as 1 (even though it is set to 1) if there is a conflict between the timing used to set the OVF flag and the timing used to read the OVF flag.

In such cases it is possible to completely satisfy the conditions for clearing the OVF flag by reading OVF two or more times while its value is 1. In a situation such as the above, the OVF flag should be read two or more times while its value is 1 and then cleared.

Bit 6—Timer Mode Select (WT/TT): Selects whether the WDT is used as a watchdog timer or interval timer. This selection determines whether WDT0 issues an internal reset when TCNT overflows while bit RSTE of the reset control/status register (RSTCSR) is set to 1. In the interval timer mode, WDT0 sends a WOVI interrupt request to the CPU. WDT1, on the other hand, requests a reset or an NMI interrupt from the CPU if the watchdog timer mode is chosen, whereas it requests a WOVI interrupt from the CPU if the interval timer mode is chosen.

WDT0 Mode Select

TCSR0 WT/IT	Description	
0	Interval timer mode: WDT0 requests an interval timer interrupt (WOVI) from the CPU when the TCNT overflows	(Initial value)
1	Watchdog timer mode: A reset is issued when the TCNT overflows if the RSTCSR is set to 1^{*}	RSTE bit of

Note: * For details see section 12.2.3, Reset Control/Status Register (RSTCSR).

WDT1 Mode Select

TCSR1 WT/IT	Description	
0	Interval timer mode: WDT1 requests an interval timer interrupt (WOVI) from the CPU when the TCNT overflows	(Initial value)
1	Watchdog timer mode: WDT1 requests a reset or an NMI interrupt from the CPU when the TCNT overflows	

Bit 5—Timer Enable (TME): Selects whether TCNT runs or is halted.

Bit 5 TME	Description	
0	TCNT is initialized to H'00 and halted	(Initial value)
1	TCNT counts	

WDT0 TCSR Bit 4—Reserved Bit: A read operation on this bit always causes a 1 to be read out. Every write operation on this bit is invalidated.

WDT1 TCSR Bit 4—Prescaler Select (PSS): This bit is used to select an input clock source for the TCNT of WDT1.

See the descriptions of Clock Select 2 to 0 for details.

WDT1 TCSR Bit 4

PSS	Description	
0	The TCNT counts frequency-division clock pulses of the $\boldsymbol{\phi}$ based prescaler (PSM)	(Initial value)
1	The TCNT counts frequency-division clock pulses of the ϕ SUB*-bas (PSS)	sed prescaler

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available only in the U-mask and W-mask versions, but are not available in the other versions.

WDT0 TCSR Bit 3—Reserved: A read operation on this bit always causes a 1 to be read out. Every write operation on this bit is invalidated.

WDT1 TCSR Bit 3—Reset or NMI (RST/NMI): This bit is used to choose between an internal reset request and an NMI request when the TCNT overflows during the watchdog timer mode.

Bit 3

RST/NMI	Description	
0	NMI request	(Initial value)
1	Internal reset request	

Bits 2 to 0—Clock Select 2 to 0 (CKS2 to CKS0): These bits select one of eight internal clock sources, obtained by dividing the system clock (ϕ) or subclock* (ϕSUB) , for input to TCNT.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions, and in them the PSS bit is reserved. Only 0 should be written to this bit.

WDT0 Input Clock Select

_			
Desc	ru	ntic	'n
2000		~	

			-	
Bit 2 CKS2	Bit 1 CKS1	Bit 0 CKS0	Clock	Overflow Period ^{*1} (where φ = 20 MHz)
0	0	0	φ/2 ^{*2} (initial value)	25.6 µs
		1	φ/64 ^{*2}	819.2 µs
	1	0	ф/128 ^{*2}	1.6 ms
		1	φ/512 ^{*2}	6.6 ms
1	0	0	φ/2048 ^{*2}	26.2 ms
		1	ф/8192 ^{*2}	104.9 ms
	1	0	φ/32768 ^{*2}	419.4 ms
		1	φ/131072 ^{*2}	1.68 s

Notes: 1. An overflow period is the time interval between the start of counting up from H'00 on the TCNT and the occurrence of a TCNT overflow.

2. In the U-mask and W-mask versions, and H8S/2635 Group, φ in subactive and subsleep modes operates as \$\psi SUB.

WDT1 Input Clock Select

				Description	
Bit 4 PSS*2	Bit 2 CKS2	Bit 1 CKS1	Bit 0 CKS0	Clock	Overflow Period ^{*1} (where ϕ = 20 MHz) (where ϕ SUB ^{*2} = 32.768 kHz)
0	0	0	0	φ/2 (initial value)	25.6 µs
			1	φ/64	819.2 µs
		1	0	φ/128	1.6 ms
			1	φ/512	6.6 ms
	1	0	0	φ/2048	26.2 ms
			1	φ/8192	104.9 ms
		1	0	ф/32768	419.4 ms
0	1	1	1	ф/131072	1.68 s
1	0	0	0	φSUB/2*2	15.6 ms
			1	φSUB/4*2	31.3 ms
		1	0	φSUB/8*2	62.5 ms
			1	φSUB/16*2	125 ms
	1	0	0	φSUB/32*2	250 ms
			1	φSUB/64*2	500 ms
		1	0	φSUB/128*2	1 s
			1	φSUB/256*2	2 s

Notes: 1. An overflow period is the time interval between the start of counting up from H'00 on the TCNT and the occurrence of a TCNT overflow.

 Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.
 These functions cannot be used with the other versions, therefore PSS bit is reserved.
 0 should be written when writing.

12.2.3 Reset Control/Status Register (RSTCSR)

Bit	:	7	6	5	4	3	2	1	0
		WOVF	RSTE	RSTS	_	_	_	_	_
Initial va	alue :	0	0	0	1	1	1	1	1
R/W	:	R/(W)*	R/W	R/W	_	_	_	_	_

Note: * Can only be written with 0 for flag clearing.

RSTCSR is an 8-bit readable/writable* register that controls the generation of the internal reset signal when TCNT overflows, and selects the type of internal reset signal.

RSTCSR is initialized to H'1F by a reset signal from the \overline{RES} pin, but not by the WDT internal reset signal caused by overflows.

Note: * RSTCSR is write-protected by a password to prevent accidental overwriting. For details see section 12.2.4, Notes on Register Access.

Bit 7—Watchdog Overflow Flag (WOVF): Indicates that TCNT has overflowed (changed from H'FF to H'00) during watchdog timer operation. This bit is not set in interval timer mode.

Bit 7 WOVF	Description	
0	[Clearing condition]	(Initial value)
	 Cleared by reading RSTCSR when WOVF = 1, then writing 	0 to WOVF
1	[Setting condition]	
	 Set when TCNT overflows (changed from H'FF to H'00) duri operation 	ng watchdog timer

Bit 6—Reset Enable (RSTE): Specifies whether or not a reset signal is generated in the H8S/2636 if TCNT overflows during watchdog timer operation.

Bit 6 RSTE	Description	
0	Reset signal is not generated if TCNT overflows*	(Initial value)
1	Reset signal is generated if TCNT overflows	

Note: *The modules within the chip are not reset, but TCNT and TCSR within the WDT are reset.

Bit 5—Reset Select (RSTS): Selects the type of internal reset generated if TCNT overflows during watchdog timer operation.

For details of the types of reset, see section 4, Exception Handling.

Bit 5 RSTS	Description	
0	Reset	(Initial value)
1	Do not set	

Bits 4 to 0—Reserved: Always read as 1 and cannot be modified.

12.2.4 Notes on Register Access

The watchdog timer's TCNT, TCSR, and RSTCSR registers differ from other registers in being more difficult to write to. The procedures for writing to and reading these registers are given below.

Writing to TCNT and TCSR: These registers must be written to by a word transfer instruction. They cannot be written to with byte instructions.

Figure 12-2 shows the format of data written to TCNT and TCSR. TCNT and TCSR both have the same write address. For a write to TCNT, the upper byte of the written word must contain H'5A and the lower byte must contain the write data. For a write to TCSR, the upper byte of the written word must contain H'A5 and the lower byte must contain the write data. This transfers the write data from the lower byte to TCNT or TCSR.

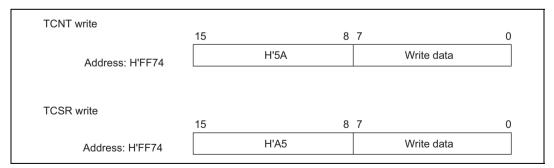


Figure 12-2 Format of Data Written to TCNT and TCSR (WDT0)

Writing to RSTCSR: RSTCSR must be written to by word transfer instruction to address H'FF76. It cannot be written to with byte instructions.

Figure 12-3 shows the format of data written to RSTCSR. The method of writing 0 to the WOVF bit differs from that for writing to the RSTE bit.

To write 0 to the WOVF bit, the write data must have H'A5 in the upper byte and H'00 in the lower byte. This clears the WOVF bit to 0, but has no effect on the RSTE bit. To write to the RSTE bit, the upper byte must contain H'5A and the lower byte must contain the write data. This writes the values in bits 6 and 5 of the lower byte into the RSTE bit, but has no effect on the WOVF bit.

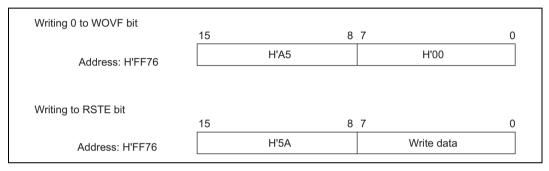


Figure 12-3 Format of Data Written to RSTCSR (WDT0)

Reading TCNT, TCSR, and RSTCSR (WDT0): These registers are read in the same way as other registers. The read addresses are H'FF74 for TCSR, H'FF75 for TCNT, and H'FF77 for RSTCSR.

12.3 Operation

12.3.1 Watchdog Timer Operation

To use the WDT as a watchdog timer, set the WT/IT bit in TCSR and the TME bit to 1. Software must prevent TCNT overflows by rewriting the TCNT value (normally by writing H'00) before overflow occurs. This ensures that TCNT does not overflow while the system is operating normally. If TCNT overflows without being rewritten because of a system malfunction or other error, an internal reset is issued, in the case of WDT0, if the RSTE bit in RSTCSR is set to 1.

If a reset caused by a signal input to the \overline{RES} pin occurs at the same time as a reset caused by a WDT overflow, the \overline{RES} pin reset has priority and the WOVF bit in RSTCSR is cleared to 0.

In the case of WDT1, the chip is reset, or an NMI interrupt request is generated, for 516 system clock periods (516 ϕ) (515 or 516 clock periods when the clock source is ϕ /SUB* (PSS = 1)). This is illustrated in figure 12-4 (b).

An NMI request from the watchdog timer and an interrupt request from the NMI pin are both treated as having the same vector. So, avoid handling an NMI request from the watchdog timer and an interrupt request from the NMI pin at the same time.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only. These functions cannot be used with the other versions.

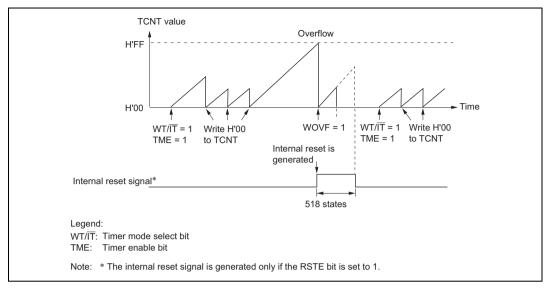


Figure 12-4 (a) WDT0 Watchdog Timer Operation

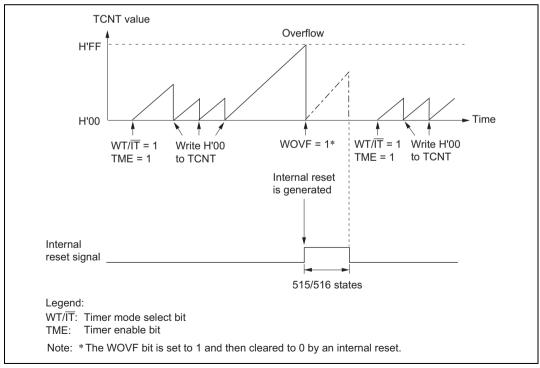


Figure 12-4 (b) WDT1 Watchdog Timer Operation

May 28, 2010

12.3.2 Interval Timer Operation

To use the WDT as an interval timer, clear the WT/IT bit in TCSR to 0 and set the TME bit to 1. An interval timer interrupt (WOVI) is generated each time TCNT overflows, provided that the WDT is operating as an interval timer, as shown in figure 12-5. This function can be used to generate interrupt requests at regular intervals.

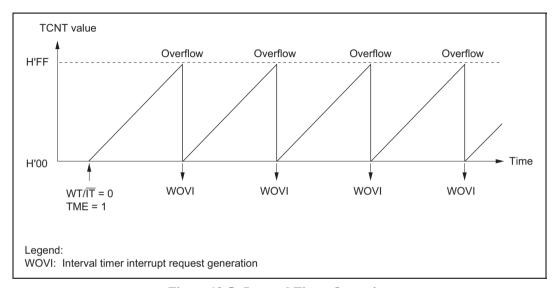


Figure 12-5 Interval Timer Operation

12.3.3 Timing of Setting Overflow Flag (OVF)

The OVF flag is set to 1 if TCNT overflows during interval timer operation. At the same time, an interval timer interrupt (WOVI) is requested. This timing is shown in figure 12-6.

With WDT1, the OVF bit of the TCSR is set to 1 and a simultaneous NMI interrupt is requested when the TCNT overflows if the NMI request has been chosen in the watchdog timer mode.

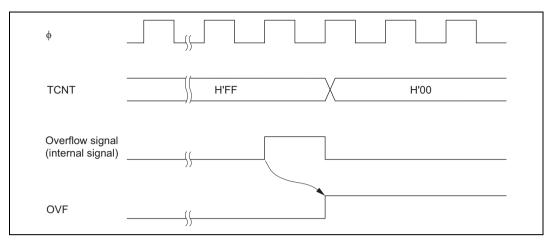


Figure 12-6 Timing of Setting of OVF

12.3.4 Timing of Setting of Watchdog Timer Overflow Flag (WOVF)

In the WDT0, the WOVF flag is set to 1 if TCNT overflows during watchdog timer operation. If TCNT overflows while the RSTE bit in RSTCSR is set to 1, an internal reset signal is generated for the entire chip. Figure 12-7 shows the timing in this case.

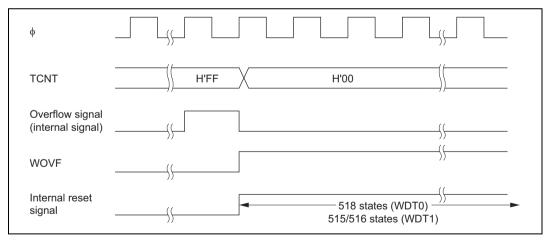


Figure 12-7 Timing of Setting of WOVF

12.4 Interrupts

During interval timer mode operation, an overflow generates an interval timer interrupt (WOVI). The interval timer interrupt is requested whenever the OVF flag is set to 1 in TCSR. OVF must be cleared to 0 in the interrupt handling routine.

If an NMI request has been chosen in the watchdog timer mode, an NMI request is generated when a TCNT overflow occurs.

12.5 Usage Notes

12.5.1 Contention between Timer Counter (TCNT) Write and Increment

If a timer counter clock pulse is generated during the T_2 state of a TCNT write cycle, the write takes priority and the timer counter is not incremented. Figure 12-8 shows this operation.

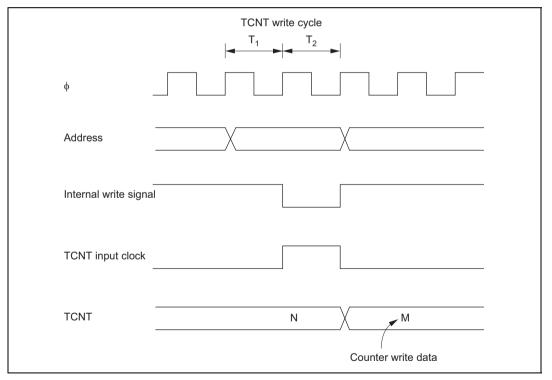


Figure 12-8 Contention between TCNT Write and Increment

12.5.2 Changing Value of PSS* and CKS2 to CKS0

If bits PSS and CKS2 to CKS0 in TCSR are written to while the WDT is operating, errors could occur in the incrementation. Software must stop the watchdog timer (by clearing the TME bit to 0) before changing the value of bits PSS* and CKS2 to CKS0.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions.

12.5.3 Switching between Watchdog Timer Mode and Interval Timer Mode

If the mode is switched from watchdog timer to interval timer, or vice versa, while the WDT is operating, errors could occur in the incrementation. Software must stop the watchdog timer (by clearing the TME bit to 0) before switching the mode.

12.5.4 Internal Reset in Watchdog Timer Mode

The chip is not reset internally if TCNT overflows while the RSTE bit is cleared to 0 during watchdog timer operation, but TCNT and TSCR of the WDT are reset.

12.5.5 OVF Flag Clearing in Interval Timer Mode

If conflict occurs between OVF flag clearing and OVF flag reading in interval timer mode, the flag may not be cleared by writing 0 to OVF even though the OVF = 1 state has been read. When interval timer interrupts are disabled and the OVF flag is polled, for instance, and there is a possibility of conflict between OVF flag setting and reading, the OVF = 1 state should be read at least twice before writing 0 to OVF in order to clear the flag.

Section 13 Serial Communication Interface (SCI)

Note: The H8S/2635 Group is not equipped with a DTC.

13.1 Overview

The chip is equipped with 3 independent serial communication interface (SCI) channels. The SCI can handle both asynchronous and clocked synchronous serial communication. A function is also provided for serial communication between processors (multiprocessor communication function).

13.1.1 Features

SCI features are listed below.

- Choice of asynchronous or clocked synchronous serial communication mode Asynchronous mode
 - Serial data communication executed using asynchronous system in which synchronization is achieved character by character

Serial data communication can be carried out with standard asynchronous communication chips such as a Universal Asynchronous Receiver/Transmitter (UART) or Asynchronous Communication Interface Adapter (ACIA)

- A multiprocessor communication function is provided that enables serial data communication with a number of processors
- Choice of 12 serial data transfer formats

Data length : 7 or 8 bits Stop bit length : 1 or 2 bits

Parity : Even, odd, or none

Multiprocessor bit : 1 or 0

— Receive error detection: Parity, overrun, and framing errors

— Break detection : Break can be detected by reading the RxD pin level directly in

case of a framing error

Clocked Synchronous mode

Serial data communication synchronized with a clock
 Serial data communication can be carried out with other chips that have a synchronous communication function

One serial data transfer format

Data length : 8 bits

— Receive error detection: Overrun errors detected

- Full-duplex communication capability
 - The transmitter and receiver are mutually independent, enabling transmission and reception to be executed simultaneously
 - Double-buffering is used in both the transmitter and the receiver, enabling continuous transmission and continuous reception of serial data
- Choice of LSB-first or MSB-first transfer
 - Can be selected regardless of the communication mode* (except in the case of asynchronous mode 7-bit data)
 - Note: * Descriptions in this section refer to LSB-first transfer.
- On-chip baud rate generator allows any bit rate to be selected
- Choice of serial clock source: internal clock from baud rate generator or external clock from SCK pin
- Four interrupt sources
 - Four interrupt sources transmit-data-empty, transmit-end, receive-data-full, and receive error that can issue requests independently
 - The transmit-data-empty interrupt and receive data full interrupts can activate the data transfer controller (DTC) to execute data transfer
- Module stop mode can be set
 - As the initial setting, SCI operation is halted. Register access is enabled by exiting module stop mode

13.1.2 Block Diagram

Figure 13-1 shows a block diagram of the SCI.

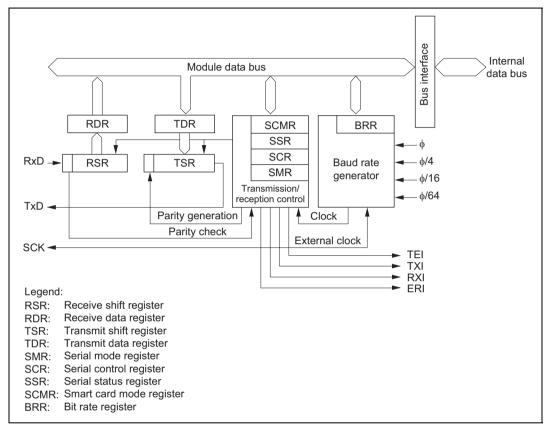


Figure 13-1 Block Diagram of SCI

13.1.3 Pin Configuration

Table 13-1 shows the serial pins for each SCI channel.

Table 13-1 SCI Pins

Channel	Pin Name	$Symbol^*$	I/O	Function
0	Serial clock pin 0	SCK0	I/O	SCI0 clock input/output
	Receive data pin 0	RxD0	Input	SCI0 receive data input
	Transmit data pin 0	TxD0	Output	SCI0 transmit data output
1	Serial clock pin 1	SCK1	I/O	SCI1 clock input/output
	Receive data pin 1	RxD1	Input	SCI1 receive data input
	Transmit data pin 1	TxD1	Output	SCI1 transmit data output
2	Serial clock pin 2	SCK2	I/O	SCI2 clock input/output
	Receive data pin 2	RxD2	Input	SCI2 receive data input
	Transmit data pin 2	TxD2	Output	SCI2 transmit data output

Note: * Pin names SCK, RxD, and TxD are used in the text for all channels, omitting the channel designation.

13.1.4 Register Configuration

The SCI has the internal registers shown in table 13-2. These registers are used to specify asynchronous mode or clocked synchronous mode, the data format, and the bit rate, and to control transmitter/receiver.

Table 13-2 SCI Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address*1
0	Serial mode register 0	SMR0	R/W	H'00	H'FF78
	Bit rate register 0	BRR0	R/W	H'FF	H'FF79
	Serial control register 0	SCR0	R/W	H'00	H'FF7A
	Transmit data register 0	TDR0	R/W	H'FF	H'FF7B
	Serial status register 0	SSR0	R/(W)*2	H'84	H'FF7C
	Receive data register 0	RDR0	R	H'00	H'FF7D
	Smart card mode register 0	SCMR0	R/W	H'F2	H'FF7E
1	Serial mode register 1	SMR1	R/W	H'00	H'FF80
	Bit rate register 1	BRR1	R/W	H'FF	H'FF81
	Serial control register 1	SCR1	R/W	H'00	H'FF82
	Transmit data register 1	TDR1	R/W	H'FF	H'FF83
	Serial status register 1	SSR1	R/(W)*2	H'84	H'FF84
	Receive data register 1	RDR1	R	H'00	H'FF85
	Smart card mode register 1	SCMR1	R/W	H'F2	H'FF86
2	Serial mode register 2	SMR2	R/W	H'00	H'FF88
	Bit rate register 2	BRR2	R/W	H'FF	H'FF89
	Serial control register 2	SCR2	R/W	H'00	H'FF8A
	Transmit data register 2	TDR2	R/W	H'FF	H'FF8B
	Serial status register 2	SSR2	R/(W)*2	H'84	H'FF8C
	Receive data register 2	RDR2	R	H'00	H'FF8D
	Smart card mode register 2	SCMR2	R/W	H'F2	H'FF8E
All	Module stop control register B	MSTPCRB	R/W	H'FF	H'FDE9

Notes: 1. Lower 16 bits of the address.

2. Can only be written with 0 for flag clearing.

13.2 Register Descriptions

13.2.1 Receive Shift Register (RSR)

Bit	:	7	6	5	4	3	2	1	0
R/W		_	_	_		_	_	_	_

RSR is a register used to receive serial data.

The SCI sets serial data input from the RxD pin in RSR in the order received, starting with the LSB (bit 0), and converts it to parallel data. When one byte of data has been received, it is transferred to RDR automatically.

RSR cannot be directly read or written to by the CPU.

13.2.2 Receive Data Register (RDR)

Bit	:	7	6	5	4	3	2	1	0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R	R	R	R	R	R	R	R

RDR is a register that stores received serial data.

When the SCI has received one byte of serial data, it transfers the received serial data from RSR to RDR where it is stored, and completes the receive operation. After this, RSR is receive-enabled.

Since RSR and RDR function as a double buffer in this way, enables continuous receive operations to be performed.

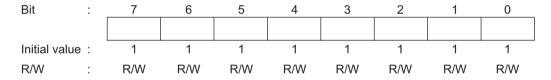
RDR is a read-only register, and cannot be written to by the CPU.

RDR is initialized to H'00 by a reset, in standby mode, watch mode*, subactive mode*, and subsleep mode* or module stop mode.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only. These functions cannot be used with the other versions.

13.2.3 Transmit Shift Register (TSR)

Bit	:	7	6	5	4	3	2	1	0
R/W	:	_	_	_		_	_	_	_


TSR is a register used to transmit serial data.

To perform serial data transmission, the SCI first transfers transmit data from TDR to TSR, then sends the data to the TxD pin starting with the LSB (bit 0).

When transmission of one byte is completed, the next transmit data is transferred from TDR to TSR, and transmission started, automatically. However, data transfer from TDR to TSR is not performed if the TDRE bit in SSR is set to 1.

TSR cannot be directly read or written to by the CPU.

13.2.4 Transmit Data Register (TDR)

TDR is an 8-bit register that stores data for serial transmission.

When the SCI detects that TSR is empty, it transfers the transmit data written in TDR to TSR and starts serial transmission. Continuous serial transmission can be carried out by writing the next transmit data to TDR during serial transmission of the data in TSR.

TDR can be read or written to by the CPU at all times.

TDR is initialized to H'FF by a reset, in standby mode, watch mode*, subactive mode*, and subsleep mode* or module stop mode.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions.

13.2.5 Serial Mode Register (SMR)

Bit :	7	6	5	4	3	2	1	0
	C/A	CHR	PE	O/E	STOP	MP	CKS1	CKS0
Initial value:	0	0	0	0	0	0	0	0
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SMR is an 8-bit register used to set the SCI's serial transfer format and select the baud rate generator clock source.

SMR can be read or written to by the CPU at all times.

SMR is initialized to H'00 by a reset and in hardware standby mode.

Bit 7—Communication Mode (C/\overline{A}): Selects asynchronous mode or clocked synchronous mode as the SCI operating mode.

Bit 7

C/Ā	Description	
0	Asynchronous mode	(Initial value)
1	Clocked synchronous mode	

Bit 6—Character Length (CHR): Selects 7 or 8 bits as the data length in asynchronous mode. In clocked synchronous mode, a fixed data length of 8 bits is used regardless of the CHR setting.

Bit 6

CHR	Description	
0	8-bit data	(Initial value)
1	7-bit data*	

Note: * When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted, and it is not possible to choose between LSB-first or MSB-first transfer.

Bit 5—Parity Enable (PE): In asynchronous mode, selects whether or not parity bit addition is performed in transmission, and parity bit checking in reception. In clocked synchronous mode with a multiprocessor format, parity bit addition and checking is not performed, regardless of the PE bit setting.

Bit 5

PE	Description	
0	Parity bit addition and checking disabled	(Initial value)
1	Parity bit addition and checking enabled*	

Note:* When the PE bit is set to 1, the parity (even or odd) specified by the O/\overline{E} bit is added to transmit data before transmission. In reception, the parity bit is checked for the parity (even or odd) specified by the O/\overline{E} bit.

Bit 4—Parity Mode (O/\overline{E}) : Selects either even or odd parity for use in parity addition and checking.

The O/\overline{E} bit setting is only valid when the PE bit is set to 1, enabling parity bit addition and checking, in asynchronous mode. The O/E bit setting is invalid in clocked synchronous mode, when parity addition and checking is disabled in asynchronous mode, and when a multiprocessor format is used

Bit 4

O/Ē	Description	
0	Even parity*1	(Initial value)
1	Odd parity*2	

- Notes: 1. When even parity is set, parity bit addition is performed in transmission so that the total number of 1 bits in the transmit character plus the parity bit is even.
 - In reception, a check is performed to see if the total number of 1 bits in the receive character plus the parity bit is even.
 - 2 When odd parity is set, parity bit addition is performed in transmission so that the total number of 1 bits in the transmit character plus the parity bit is odd. In reception, a check is performed to see if the total number of 1 bits in the receive character plus the parity bit is odd.

Bit 3—Stop Bit Length (STOP): Selects 1 or 2 bits as the stop bit length in asynchronous mode. The STOP bits setting is only valid in asynchronous mode. If clocked synchronous mode is set the STOP bit setting is invalid since stop bits are not added.

Bit 3

STOP	Description	
0	1 stop bit: In transmission, a single 1 bit (stop bit) is added to the end of a transmit character before it is sent	(Initial value)
1	2 stop bits: In transmission, two 1 bits (stop bits) are added to the end of a transmit character before it is sent	

In reception, only the first stop bit is checked, regardless of the STOP bit setting. If the second stop bit is 1, it is treated as a stop bit; if it is 0, it is treated as the start bit of the next transmit character.

Bit 2—Multiprocessor Mode (MP): Selects multiprocessor format. When multiprocessor format is selected, the PE bit and O/\overline{E} bit parity settings are invalid. The MP bit setting is only valid in asynchronous mode; it is invalid in clocked synchronous mode.

For details of the multiprocessor communication function, see section 13.3.3, Multiprocessor Communication Function.

Bit 2

MP	Description	
0	Multiprocessor function disabled	(Initial value)
1	Multiprocessor format selected	

Bits 1 and 0—Clock Select 1 and 0 (CKS1, CKS0): These bits select the clock source for the baud rate generator. The clock source can be selected from ϕ , $\phi/4$, $\phi/16$, and $\phi/64$, according to the setting of bits CKS1 and CKS0.

For the relation between the clock source, the bit rate register setting, and the baud rate, see section 13.2.8, Bit Rate Register (BRR).

Bit 1	Bit 0		
CKS1	CKS0	 Description	
0	0	φ clock	(Initial value)
	1	φ/4 clock	
1	0	φ/16 clock	
	1	φ/64 clock	

13.2.6 Serial Control Register (SCR)

Bit	:	7	6	5	4	3	2	1	0	_
		TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	
Initial va	lue :	0	0	0	0	0	0	0	0	
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

SCR is a register that performs enabling or disabling of SCI transfer operations, serial clock output in asynchronous mode, and interrupt requests, and selection of the serial clock source.

SCR can be read or written to by the CPU at all times.

SCR is initialized to H'00 by a reset and in standby mode.

Bit 7—Transmit Interrupt Enable (TIE): Enables or disables transmit data empty interrupt (TXI) request generation when serial transmit data is transferred from TDR to TSR and the TDRE flag in SSR is set to 1.

Bit 7

TIE	Description	
0	Transmit data empty interrupt (TXI) requests disabled*	(Initial value)
1	Transmit data empty interrupt (TXI) requests enabled	

Note:* TXI interrupt request cancellation can be performed by reading 1 from the TDRE flag, then clearing it to 0, or clearing the TIE bit to 0.

Bit 6—Receive Interrupt Enable (RIE): Enables or disables receive data full interrupt (RXI) request and receive error interrupt (ERI) request generation when serial receive data is transferred from RSR to RDR and the RDRF flag in SSR is set to 1.

Bit 6

RIE	Description
0	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request disabled* (Initial value)
1	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request enabled

Note:* RXI and ERI interrupt request cancellation can be performed by reading 1 from the RDRF flag, or the FER, PER, or ORER flag, then clearing the flag to 0, or clearing the RIE bit to 0.

Bit 5—Transmit Enable (TE): Enables or disables the start of serial transmission by the SCI.

Bit 5

TE	Description	
0	Transmission disabled*1	(Initial value)
1	Transmission enabled*2	

Notes: 1. The TDRE flag in SSR is fixed at 1.

2. In this state, serial transmission is started when transmit data is written to TDR and the TDRE flag in SSR is cleared to 0.

SMR setting must be performed to decide the transfer format before setting the TE bit to 1.

Bit 4—Receive Enable (RE): Enables or disables the start of serial reception by the SCI.

Bit 4

RE	Description	
0	Reception disabled*1	(Initial value)
1	Reception enabled*2	

Notes: 1. Clearing the RE bit to 0 does not affect the RDRF, FER, PER, and ORER flags, which retain their states.

 Serial reception is started in this state when a start bit is detected in asynchronous mode or serial clock input is detected in clocked synchronous mode.
 SMR setting must be performed to decide the transfer format before setting the RE bit to 1. **Bit 3—Multiprocessor Interrupt Enable (MPIE):** Enables or disables multiprocessor interrupts. The MPIE bit setting is only valid in asynchronous mode when the MP bit in SMR is set to 1.

The MPIE bit setting is invalid in clocked synchronous mode or when the MP bit is cleared to 0.

Bit 3

MPIE	Description					
0	Multiprocessor interrupts disabled (normal reception performed) (Initial value)					
	[Clearing conditions]					
	 When the MPIE bit is cleared to 0 					
	 When MPB= 1 data is received 					
1	Multiprocessor interrupts enabled*					
	Receive interrupt (RXI) requests, receive error interrupt (ERI) request of the RDRF, FER, and ORER flags in SSR are disabled until data with multiprocessor bit set to 1 is received.					

Note: *When receive data including MPB = 0 is received, receive data transfer from RSR to RDR, receive error detection, and setting of the RDRF, FER, and ORER flags in SSR, is not performed. When receive data including MPB = 1 is received, the MPB bit in SSR is set to 1, the MPIE bit is cleared to 0 automatically, and generation of RXI and ERI interrupts (when the TIE and RIE bits in SCR are set to 1) and FER and ORER flag setting is enabled.

Bit 2—Transmit End Interrupt Enable (TEIE): Enables or disables transmit end interrupt (TEI) request generation when there is no valid transmit data in TDR in MSB data transmission.

Bit 2

TEIE	Description	
0	Transmit end interrupt (TEI) request disabled*	(Initial value)
1	Transmit end interrupt (TEI) request enabled*	

Note: *TEI cancellation can be performed by reading 1 from the TDRE flag in SSR, then clearing it to 0 and clearing the TEND flag to 0, or clearing the TEIE bit to 0.

Bits 1 and 0—Clock Enable 1 and 0 (CKE1, CKE0): These bits are used to select the SCI clock source and enable or disable clock output from the SCK pin. The combination of the CKE1 and CKE0 bits determines whether the SCK pin functions as an I/O port, the serial clock output pin, or the serial clock input pin.

The setting of the CKE0 bit, however, is only valid for internal clock operation (CKE1 = 0) in asynchronous mode. The CKE0 bit setting is invalid in clocked synchronous mode, and in the case of external clock operation (CKE1 = 1). Note that the SCI's operating mode must be decided using SMR before setting the CKE1 and CKE0 bits.

For details of clock source selection, see table 13.9.

Bit 1	Bit 0					
CKE1	CKE0	— Description				
0	0	Asynchronous mode	Internal clock/SCK pin functions as I/O port*1			
		Clocked synchronous mode	Internal clock/SCK pin functions as serial clock output*1			
	1	Asynchronous mode	Internal clock/SCK pin functions as clock output*2			
		Clocked synchronous mode	Internal clock/SCK pin functions as serial clock output			
1	0	Asynchronous mode	External clock/SCK pin functions as clock input*3			
		Clocked synchronous mode	External clock/SCK pin functions as serial clock input			
	1	Asynchronous mode	External clock/SCK pin functions as clock input*3			
		Clocked synchronous mode	External clock/SCK pin functions as serial clock input			

Notes: 1. Initial value

- 2. Outputs a clock of the same frequency as the bit rate.
- 3. Inputs a clock with a frequency 16 times the bit rate.

13.2.7 Serial Status Register (SSR)

Bit	:	7	6	5	4	3	2	1	0
		TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT
Initial val	ue:	1	0	0	0	0	1	0	0
R/W	:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W

Note: * Only 0 can be written, to clear the flag.

SSR is an 8-bit register containing status flags that indicate the operating status of the SCI, and multiprocessor bits.

SSR can be read or written to by the CPU at all times. However, 1 cannot be written to flags TDRE, RDRF, ORER, PER, and FER. Also note that in order to clear these flags they must be read as 1 beforehand. The TEND flag and MPB flag are read-only flags and cannot be modified.

SSR is initialized to H'84 by a reset, in standby mode, watch mode*, subactive mode*, and subsleep mode* or module stop mode.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions.

Bit 7—Transmit Data Register Empty (TDRE): Indicates that data has been transferred from TDR to TSR and the next serial data can be written to TDR.

Bit 7

May 28, 2010

TDRE	 Description				
0	[Clearing conditions]				
	 When 0 is written to TDRE after reading TDRE = 1 				
	When the DTC is activated by a TXI interrupt and writes da	ita to TDR			
1	[Setting conditions]	(Initial value)			
	 When the TE bit in SCR is 0 				
	When data is transferred from TDR to TSR and data can be	e written to TDR			

Bit 6—Receive Data Register Full (RDRF): Indicates that the received data is stored in RDR.

	• •	^
В	Ιt	b

RDRF	Description
0	[Clearing conditions] (Initial value)
	 When 0 is written to RDRF after reading RDRF = 1
	 When the DTC is activated by an RXI interrupt and reads data from RDR
1	[Setting condition]
	When serial reception ends normally and receive data is transferred from RSR to
	RDR

Note: RDR and the RDRF flag are not affected and retain their previous values when an error is detected during reception or when the RE bit in SCR is cleared to 0.

If reception of the next data is completed while the RDRF flag is still set to 1, an overrun error will occur and the receive data will be lost.

Bit 5—Overrun Error (ORER): Indicates that an overrun error occurred during reception, causing abnormal termination.

Bit 5

ORER	 Description	
0	[Clearing condition]	(Initial value)*1
	 When 0 is written to ORER after reading ORER = 1 	
1	[Setting condition]	
	 When the next serial reception is completed while RDRF = 1*2 	
Notes: 1	The ORER flag is not affected and retains its previous state when the	e RF bit in SCR is

Notes: 1. The ORER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0.

The receive data prior to the overrun error is retained in RDR, and the data received subsequently is lost. Also, subsequent serial reception cannot be continued while the ORER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either. **Bit 4—Framing Error (FER):** Indicates that a framing error occurred during reception in asynchronous mode, causing abnormal termination.

Bit 4

FER	 Description	
0	[Clearing condition]	(Initial value)*1
	 When 0 is written to FER after reading FER = 1 	
1	[Setting condition]	
	 When the SCI checks whether the stop bit at the end of reception ends, and the stop bit is 0*2 	the receive data when

Notes: 1. The FER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0.

2. In 2-stop-bit mode, only the first stop bit is checked for a value of 0; the second stop bit is not checked. If a framing error occurs, the receive data is transferred to RDR but the RDRF flag is not set. Also, subsequent serial reception cannot be continued while the FER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.

Bit 3—Parity Error (PER): Indicates that a parity error occurred during reception using parity addition in asynchronous mode, causing abnormal termination.

Bit 3

PER	Description
0	[Clearing condition] (Initial value)*1
	 When 0 is written to PER after reading PER = 1
1	[Setting condition]
	 When, in reception, the number of 1 bits in the receive data plus the parity bit does not match the parity setting (even or odd) specified by the O/E bit in SMR*2

Notes: 1. The PER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0.

2. If a parity error occurs, the receive data is transferred to RDR but the RDRF flag is not set. Also, subsequent serial reception cannot be continued while the PER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.

Bit 2—Transmit End (TEND): Indicates that there is no valid data in TDR when the last bit of the transmit character is sent, and transmission has been ended.

The TEND flag is read-only and cannot be modified.

Bit 2

TEND	 Description	
0	[Clearing conditions]	
	 When 0 is written to TDRE after reading TDRE = 1 	
	When the DMAC or DTC is activated by a TXI interrupt a	and writes data to TDR
1	[Setting conditions]	(Initial value)
	 When the TE bit in SCR is 0 	
	When TDRE = 1 at transmission of the last bit of a 1-byte	e serial transmit character

Bit 1—Multiprocessor Bit (MPB): When reception is performed using multiprocessor format in asynchronous mode, MPB stores the multiprocessor bit in the receive data.

MPB is a read-only bit, and cannot be modified.

Bit 1

MPB	Description	
0	[Clearing condition]	(Initial value)*
	 When data with a 0 multiprocessor bit is received 	
1	[Setting condition]	
	 When data with a 1 multiprocessor bit is received 	

Note: * Retains its previous state when the RE bit in SCR is cleared to 0 with multiprocessor format.

Bit 0—Multiprocessor Bit Transfer (MPBT): When transmission is performed using multiprocessor format in asynchronous mode, MPBT stores the multiprocessor bit to be added to the transmit data.

The MPBT bit setting is invalid when multiprocessor format is not used, when not transmitting, and in clocked synchronous mode.

Bit 0

MPBT	 Description	
0	Data with a 0 multiprocessor bit is transmitted	(Initial value)
1	Data with a 1 multiprocessor bit is transmitted	

13.2.8 Bit Rate Register (BRR)

Bit :	:	7	6	5	4	3	2	1	0	_
Initial value	:	1	1	1	1	1	1	1	1	_
R/W	:	R/W								

BRR is an 8-bit register that sets the serial transfer bit rate in accordance with the baud rate generator operating clock selected by bits CKS1 and CKS0 in SMR.

BRR can be read or written to by the CPU at all times.

BRR is initialized to H'FF by a reset and in standby mode.

As baud rate generator control is performed independently for each channel, different values can be set for each channel.

Table 13-3 shows sample BRR settings in asynchronous mode, and table 13-4 shows sample BRR settings in clocked synchronous mode.

Table 13-3 BRR Settings for Various Bit Rates (Asynchronous Mode)

		φ = 4 M	Hz	ф	= 4.9152	MHz	φ = 5 MHz			
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
110	2	70	0.03	2	86	0.31	2	88	-0.25	
150	1	207	0.16	1	255	0.00	2	64	0.16	
300	1	103	0.16	1	127	0.00	1	129	0.16	
600	0	207	0.16	0	255	0.00	1	64	0.16	
1200	0	103	0.16	0	127	0.00	0	129	0.16	
2400	0	51	0.16	0	63	0.00	0	64	0.16	
4800	0	25	0.16	0	31	0.00	0	32	-1.36	
9600	0	12	0.16	0	15	0.00	0	15	1.73	
19200		_	_	0	7	0.00	0	7	1.73	
31250	0	3	0.00	0	4	-1.70	0	4	0.00	
38400	_	_	_	0	3	0.00	0	3	1.73	

	φ = 6 MHz				φ = 6.144 MHz			$\phi = 7.3728$	MHz	φ = 8 MHz		
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	2	106	-0.44	2	108	0.08	2	130	-0.07	2	141	0.03
150	2	77	0.16	2	79	0.00	2	95	0.00	2	103	0.16
300	1	155	0.16	1	159	0.00	1	191	0.00	1	207	0.16
600	1	77	0.16	1	79	0.00	1	95	0.00	1	103	0.16
1200	0	155	0.16	0	159	0.00	0	191	0.00	0	207	0.16
2400	0	77	0.16	0	79	0.00	0	95	0.00	0	103	0.16
4800	0	38	0.16	0	39	0.00	0	47	0.00	0	51	0.16
9600	0	19	-2.34	0	19	0.00	0	23	0.00	0	25	0.16
19200	0	9	-2.34	0	9	0.00	0	11	0.00	0	12	0.16
31250	0	5	0.00	0	5	2.40	_	_	_	0	7	0.00
38400	0	4	-2.34	0	4	0.00	0	5	0.00	_	_	_

	$\phi = 9.8304 \text{ MHz}$			$\phi = 10 \text{ MHz}$			φ = 12 MHz			φ = 12.288 MHz		
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	2	174	-0.26	2	177	-0.25	2	212	0.03	2	217	0.08
150	2	127	0.00	2	129	0.16	2	155	0.16	2	159	0.00
300	1	255	0.00	2	64	0.16	2	77	0.16	2	79	0.00
600	1	127	0.00	1	129	0.16	1	155	0.16	1	159	0.00
1200	0	255	0.00	1	64	0.16	1	77	0.16	1	79	0.00
2400	0	127	0.00	0	129	0.16	0	155	0.16	0	159	0.00
4800	0	63	0.00	0	64	0.16	0	77	0.16	0	79	0.00
9600	0	31	0.00	0	32	-1.36	0	38	0.16	0	39	0.00
19200	0	15	0.00	0	15	1.73	0	19	-2.34	0	19	0.00
31250	0	9	-1.70	0	9	0.00	0	11	0.00	0	11	2.40
38400	0	7	0.00	0	7	1.73	0	9	-2.34	0	9	0.00

	φ = 14 MHz			ф.	φ = 14.7456 MHz			φ = 16 MHz			φ = 17.2032 MHz		
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
110	2	248	-0.17	3	64	0.70	3	70	0.03	3	75	0.48	
150	2	181	0.16	2	191	0.00	2	207	0.16	2	223	0.00	
300	2	90	0.16	2	95	0.00	2	103	0.16	2	111	0.00	
600	1	181	0.16	1	191	0.00	1	207	0.16	1	223	0.00	
1200	1	90	0.16	1	95	0.00	1	103	0.16	1	111	0.00	
2400	0	181	0.16	0	191	0.00	0	207	0.16	0	223	0.00	
4800	0	90	0.16	0	95	0.00	0	103	0.16	0	111	0.00	
9600	0	45	-0.93	0	47	0.00	0	51	0.16	0	55	0.00	
19200	0	22	-0.93	0	23	0.00	0	25	0.16	0	27	0.00	
31250	0	13	0.00	0	14	-1.70	0	15	0.00	0	16	1.20	
38400	_	_	_	0	11	0.00	0	12	0.16	0	13	0.00	

		φ = 18 N	ИHz		$\phi = 19.6608 \text{ MHz}$			z φ = 20 MHz		
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
110	3	79	-0.12	3	86	0.31	3	88	-0.25	
150	2	233	0.16	2	255	0.00	3	64	0.16	
300	2	116	0.16	2	127	0.00	2	129	0.16	
600	1	233	0.16	1	255	0.00	2	64	0.16	
1200	1	116	0.16	1	127	0.00	1	129	0.16	
2400	0	233	0.16	0	255	0.00	1	64	0.16	
4800	0	116	0.16	0	127	0.00	0	129	0.16	
9600	0	58	-0.69	0	63	0.00	0	64	0.16	
19200	0	28	1.02	0	31	0.00	0	32	-1.36	
31250	0	17	0.00	0	19	-1.70	0	19	0.00	
38400	0	14	-2.34	0	15	0.00	0	15	1.73	

Table 13-4 BRR Settings for Various Bit Rates (Clocked Synchronous Mode)

Bit Rate	φ = 4 MHz		$\phi = 8 \text{ MHz}$		φ = 10 MHz		φ = 16 MHz		φ = 20 MHz	
(bit/s)	n	N	n	N	n	N	n	N	n	N
110	_	_								
250	2	249	3	124	_	_	3	249		
500	2	124	2	249	_	_	3	124	_	_
1 k	1	249	2	124	_	_	2	249	_	_
2.5 k	1	99	1	199	1	249	2	99	2	124
5 k	0	199	1	99	1	124	1	199	1	249
10 k	0	99	0	199	0	249	1	99	1	124
25 k	0	39	0	79	0	99	0	159	0	199
50 k	0	19	0	39	0	49	0	79	0	99
100 k	0	9	0	19	0	24	0	39	0	49
250 k	0	3	0	7	0	9	0	15	0	19
500 k	0	1	0	3	0	4	0	7	0	9
1 M	0	0*	0	1			0	3	0	4
2.5 M					0	0*			0	1
5 M									0	0*

Note: As far as possible, the setting should be made so that the error is no more than 1%. Legend:

Blank: Cannot be set.

—: Can be set, but there will be a degree of error.

*: Continuous transfer is not possible.

The BRR setting is found from the following formulas.

Asynchronous mode:

$$N = \frac{\phi}{64 \times 2^{2n-1} \times B} \times 10^6 - 1$$

Clocked synchronous mode:

$$N = \frac{\phi}{8 \times 2^{2n-1} \times B} \times 10^6 - 1$$

Where B: Bit rate (bit/s)

N: BRR setting for baud rate generator $(0 \le N \le 255)$

φ: Operating frequency (MHz)

n: Baud rate generator input clock (n = 0 to 3)(See the table below for the relation between n and the clock.)

CKS₁ CKS0 Clock n 0 0 0 ф 1 φ/4 1 0 2 $\phi/16$ 1 0 3 1 1 ₀/64

SMR Setting

The bit rate error in asynchronous mode is found from the following formula:

Error (%) = {
$$\frac{\phi \times 10^6}{(N+1) \times B \times 64 \times 2^{2n-1}} - 1$$
} × 100

Table 13-5 shows the maximum bit rate for each frequency in asynchronous mode. Tables 13-6 and 13-7 show the maximum bit rates with external clock input.

Table 13-5 Maximum Bit Rate for Each Frequency (Asynchronous Mode)

φ (MHz)	Maximum Bit Rate (bit/s)	n	N	
4	125000	0	0	
4.9152	153600	0	0	
5	156250	0	0	
6	187500	0	0	
6.144	192000	0	0	
7.3728	230400	0	0	
8	250000	0	0	
9.8304	307200	0	0	
10	312500	0	0	
12	375000	0	0	
12.288	384000	0	0	
14	437500	0	0	
14.7456	460800	0	0	
16	500000	0	0	
17.2032	537600	0	0	
18	562500	0	0	
19.6608	614400	0	0	
20	625000	0	0	

Table 13-6 Maximum Bit Rate with External Clock Input (Asynchronous Mode)

φ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bit/s)
4	1.0000	62500
4.9152	1.2288	76800
5	1.2500	78125
6	1.5000	93750
6.144	1.5360	96000
7.3728	1.8432	115200
8	2.0000	125000
9.8304	2.4576	153600
10	2.5000	156250
12	3.0000	187500
12.288	3.0720	192000
14	3.5000	218750
14.7456	3.6864	230400
16	4.0000	250000
17.2032	4.3008	268800
18	4.5000	281250
19.6608	4.9152	307200
20	5.0000	312500

Table 13-7 Maximum Bit Rate with External Clock Input (Clocked Synchronous Mode)

φ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bit/s)
4	0.6667	666666.7
6	1.0000	1000000.0
8	1.3333	1333333.3
10	1.6667	1666666.7
12	2.0000	2000000.0
14	2.3333	2333333.3
16	2.6667	2666666.7
18	3.0000	3000000.0
20	3.3333	3333333.3

13.2.9 Smart Card Mode Register (SCMR)

Bit :	:	7	6	5	4	3	2	1	0
		_	_	_	_	SDIR	SINV	_	SMIF
Initial value:	:	1	1	1	1	0	0	1	0
R/W :	:	_				R/W	R/W	_	R/W

SCMR selects LSB-first or MSB-first by means of bit SDIR. Except in the case of asynchronous mode 7-bit data, LSB-first or MSB-first can be selected regardless of the serial communication mode. The descriptions in this chapter refer to LSB-first transfer.

For details of the other bits in SCMR, see section 14.2.1, Smart Card Mode Register (SCMR).

SCMR is initialized to H'F2 by a reset and in standby mode.

Bits 7 to 4—Reserved: These bits are always read as 1 and cannot be modified.

Bit 3—Smart Card Data Transfer Direction (SDIR): Selects the serial/parallel conversion format.

This bit is valid when 8-bit data is used as the transmit/receive format.

Bit 3

SDIR	 Description	
0	TDR contents are transmitted LSB-first	(Initial value)
	Receive data is stored in RDR LSB-first	
1	TDR contents are transmitted MSB-first	
	Receive data is stored in RDR MSB-first	

Bit 2—Smart Card Data Invert (SINV): Specifies inversion of the data logic level. The SINV bit does not affect the logic level of the parity bit(s): parity bit inversion requires inversion of the O/\overline{E} bit in SMR.

Bit 2

SINV	Description	
0	TDR contents are transmitted without modification Receive data is stored in RDR without modification	(Initial value)
1	TDR contents are inverted before being transmitted Receive data is stored in RDR in inverted form	

Bit 1—Reserved: This bit is always read as 1 and cannot be modified.

Bit 0—Smart Card Interface Mode Select (SMIF): When the smart card interface operates as a normal SCI, 0 should be written in this bit.

Bit 0

SMIF	Description	
0	Operates as normal SCI (smart card interface function disabled)	(Initial value)
1	Smart card interface function enabled	

13.2.10 Module Stop Control Register B (MSTPCRB)

MSTPCRB

Bit	:	7	6	5	4	3	2	1	0
		MSTPB7	MSTPB6	MSTPB5	MSTPB4	МЅТРВ3	MSTPB2	MSTPB1	MSTPB0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRB is 8-bit readable/writable registers that perform module stop mode control.

Setting any of bits MSTPB7 to MSTBP5 to 1 stops SCI0 to SCI2 operating and enter module stop mode on completion of the bus cycle. For details, see section 23A.5, 23B.5, Module Stop Mode.

MSTPCRB is initialized to H'FF by a reset and in hardware standby mode. They are not initialized by a manual reset and in software standby mode.

Bit 7—Module Stop (MSTPB7): Specifies the SCI0 module stop mode.

Bit 7

MSTPB7		
0	SCI0 module stop mode is cleared	
1	SCI0 module stop mode is set	(Initial value)

Bit 6—Module Stop (MSTPB6): Specifies the SCI1 module stop mode.

Bit 6

MSTPB6	Description	
0	SCI1 module stop mode is cleared	_
1	SCI1 module stop mode is set	(Initial value)

Bit 5—Module Stop (MSTPB5): Specifies the SCI2 module stop mode.

Bit 5

MSTPB5	 Description	
0	SCI2 module stop mode is cleared	
1	SCI2 module stop mode is set	(Initial value)

13.3 Operation

13.3.1 Overview

The SCI can carry out serial communication in two modes: asynchronous mode in which synchronization is achieved character by character, and clocked synchronous mode in which synchronization is achieved with clock pulses.

Selection of asynchronous or clocked synchronous mode and the transmission format is made using SMR as shown in table 13-8. The SCI clock is determined by a combination of the C/\overline{A} bit in SMR and the CKE1 and CKE0 bits in SCR, as shown in table 13-9.

Asynchronous Mode

- Data length: Choice of 7 or 8 bits
- Choice of parity addition, multiprocessor bit addition, and addition of 1 or 2 stop bits (the combination of these parameters determines the transfer format and character length)
- Detection of framing, parity, and overrun errors, and breaks, during reception
- Choice of internal or external clock as SCI clock source
 - When internal clock is selected:
 - The SCI operates on the baud rate generator clock and a clock with the same frequency as the bit rate can be output
 - When external clock is selected:
 - A clock with a frequency of 16 times the bit rate must be input (the on-chip baud rate generator is not used)

Clocked Synchronous Mode

- Transfer format: Fixed 8-bit data
- Detection of overrun errors during reception
- Choice of internal or external clock as SCI clock source
 - When internal clock is selected:
 - The SCI operates on the baud rate generator clock and a serial clock is output off-chip
 - When external clock is selected:
 - The on-chip baud rate generator is not used, and the SCI operates on the input serial clock

Table 13-8 SMR Settings and Serial Transfer Format Selection

SMR Settings							SCI Transfer Format		
Bit 7	Bit 6	Bit 2	Bit 5	Bit 3	- - Mode	Data Length	Multi Processor Bit	Parity Bit	Stop Bit Length
0	0	0	0	0	Asynchronous mode	8-bit data	No	No	1 bit
				1					2 bits
			1	0				Yes	1 bit
				1	_				2 bits
	1	_	0	0	- - -	7-bit data	_	No	1 bit
				1					2 bits
			1	0				Yes	1 bit
				1	_				2 bits
	1	1	_	0	Asynchronous mode (multi- processor format)	8-bit data	Yes -	No	1 bit
			_	1					2 bits
			_	0		7-bit data			1 bit
			_	1	_				2 bits
1	_	_	_	_	Clocked synchronous mode	8-bit data	No		None

Table 13-9 SMR and SCR Settings and SCI Clock Source Selection

SMR	SCR	Setting		SCI Transmit/Receive Clock		
Bit 7	Bit 1	Bit 0	_	Clock		
C/Ā	CKE1	CKE0	Mode	Source	SCK Pin Function	
0	0	0	Asynchronous	Internal	SCI does not use SCK pin	
		1	mode —		Outputs clock with same frequency as bit rate	
	1	0	_	External	Inputs clock with frequency of 16 times the bit rate	
		1	_			
1	0	0	Clocked	Internal	Outputs serial clock	
		1	synchronous mode			
	1	0	-111000	External	Inputs serial clock	
		1	_			

13.3.2 Operation in Asynchronous Mode

In asynchronous mode, characters are sent or received, each preceded by a start bit indicating the start of communication and stop bits indicating the end of communication. Serial communication is thus carried out with synchronization established on a character-by-character basis.

Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communication. Both the transmitter and the receiver also have a double-buffered structure, so that data can be read or written during transmission or reception, enabling continuous data transfer.

Figure 13-2 shows the general format for asynchronous serial communication.

In asynchronous serial communication, the transmission line is usually held in the mark state (high level). The SCI monitors the transmission line, and when it goes to the space state (low level), recognizes a start bit and starts serial communication.

One serial communication character consists of a start bit (low level), followed by data (in LSB-first order), a parity bit (high or low level), and finally stop bits (high level).

In asynchronous mode, the SCI performs synchronization at the falling edge of the start bit in reception. The SCI samples the data on the 8th pulse of a clock with a frequency of 16 times the length of one bit, so that the transfer data is latched at the center of each bit.

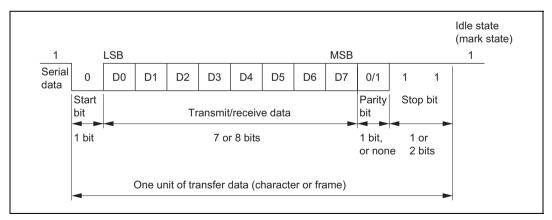


Figure 13-2 Data Format in Asynchronous Communication (Example with 8-Bit Data, Parity, Two Stop Bits)

Data Transfer Format: Table 13-10 shows the data transfer formats that can be used in asynchronous mode. Any of 12 transfer formats can be selected according to the SMR setting.

Table 13-10 Serial Transfer Formats (Asynchronous Mode)

SMR Settings				Serial Transfer Format and Frame Length		
CHR	PE	MP	STOP	1 2 3 4 5 6 7 8 9 10 11 12		
0	0	0	0	S 8-bit data STOP		
0	0	0	1	S 8-bit data STOP STOP		
0	1	0	0	S 8-bit data P STOP		
0	1	0	1	S 8-bit data P STOP STOP		
1	0	0	0	S 7-bit data STOP		
1	0	0	1	S 7-bit data STOP STOP		
1	1	0	0	S 7-bit data P STOP		
1	1	0	1	S 7-bit data P STOP STOP		
0	_	1	0	S 8-bit data MPB STOP		
0	_	1	1	S 8-bit data MPB STOP STOP		
1	_	1	0	S 7-bit data MPB STOP		
1	_	1	1	S 7-bit data MPB STOP STOP		

Legend:

S: Start bit STOP: Stop bit P: Parity bit

MPB: Multiprocessor bit

Clock: Either an internal clock generated by the on-chip baud rate generator or an external clock input at the SCK pin can be selected as the SCI's serial clock, according to the setting of the C/\overline{A} bit in SMR and the CKE1 and CKE0 bits in SCR. For details of SCI clock source selection, see table 13-9.

When an external clock is input at the SCK pin, the clock frequency should be 16 times the bit rate used.

When the SCI is operated on an internal clock, the clock can be output from the SCK pin. The frequency of the clock output in this case is equal to the bit rate, and the phase is such that the rising edge of the clock is in the middle of the transmit data, as shown in figure 13-3.

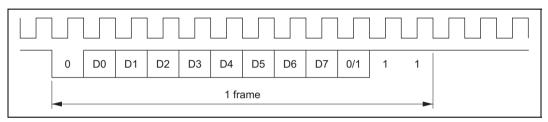


Figure 13-3 Relation between Output Clock and Transfer Data Phase (Asynchronous Mode)

Data Transfer Operations:

• SCI initialization (asynchronous mode)

Before transmitting and receiving data, you should first clear the TE and RE bits in SCR to 0, then initialize the SCI as described below.

When the operating mode, transfer format, etc., is changed, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, the TDRE flag is set to 1 and TSR is initialized. Note that clearing the RE bit to 0 does not change the contents of the RDRF, PER, FER, and ORER flags, or the contents of RDR.

When an external clock is used the clock should not be stopped during operation, including initialization, since operation is uncertain.

Figure 13-4 shows a sample SCI initialization flowchart.

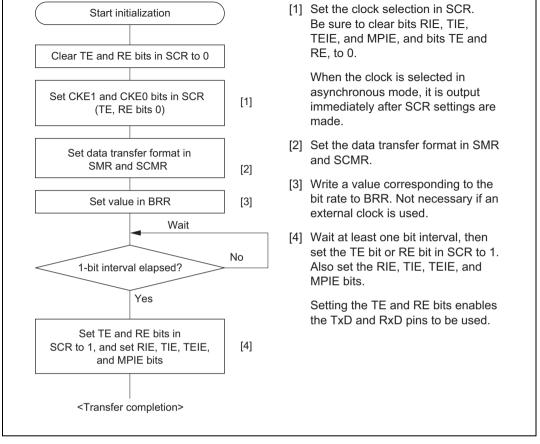


Figure 13-4 Sample SCI Initialization Flowchart

Serial data transmission (asynchronous mode)

Figure 13-5 shows a sample flowchart for serial transmission.

The following procedure should be used for serial data transmission.

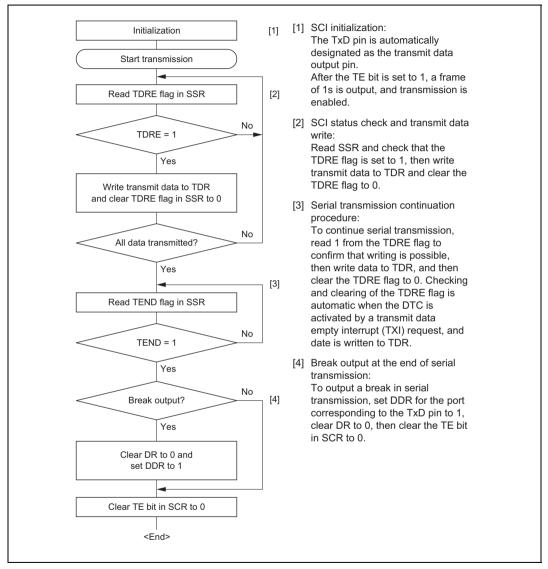


Figure 13-5 Sample Serial Transmission Flowchart

In serial transmission, the SCI operates as described below.

- [1] The SCI monitors the TDRE flag in SSR, and if is 0, recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
- [2] After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission.

If the TIE bit is set to 1 at this time, a transmit data empty interrupt (TXI) is generated. The serial transmit data is sent from the TxD pin in the following order.

[a] Start bit:

One 0-bit is output.

[b] Transmit data:

8-bit or 7-bit data is output in LSB-first order.

[c] Parity bit or multiprocessor bit:

One parity bit (even or odd parity), or one multiprocessor bit is output.

A format in which neither a parity bit nor a multiprocessor bit is output can also be selected.

[d] Stop bit(s):

One or two 1-bits (stop bits) are output.

[e] Mark state:

1 is output continuously until the start bit that starts the next transmission is sent.

[3] The SCI checks the TDRE flag at the timing for sending the stop bit.

If the TDRE flag is cleared to 0, the data is transferred from TDR to TSR, the stop bit is sent, and then serial transmission of the next frame is started.

If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then the "mark state" is entered in which 1 is output continuously. If the TEIE bit in SCR is set to 1 at this time, a TEI interrupt request is generated.

Figure 13-6 shows an example of the operation for transmission in asynchronous mode.

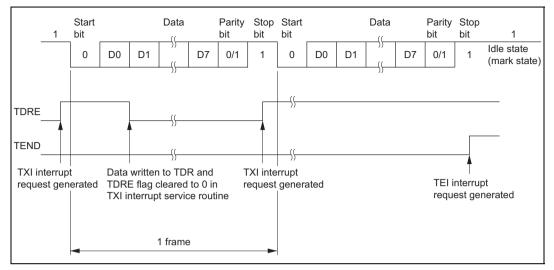


Figure 13-6 Example of Operation in Transmission in Asynchronous Mode (Example with 8-Bit Data, Parity, One Stop Bit)

Serial data reception (asynchronous mode)
 Figure 13-7 shows a sample flowchart for serial reception.
 The following procedure should be used for serial data reception.

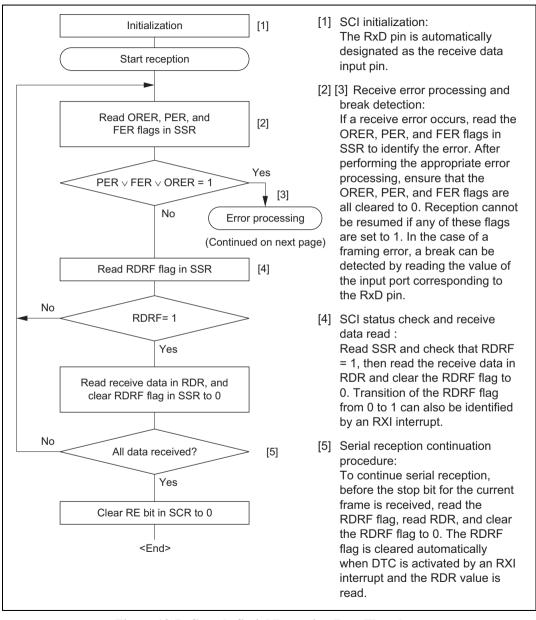


Figure 13-7 Sample Serial Reception Data Flowchart

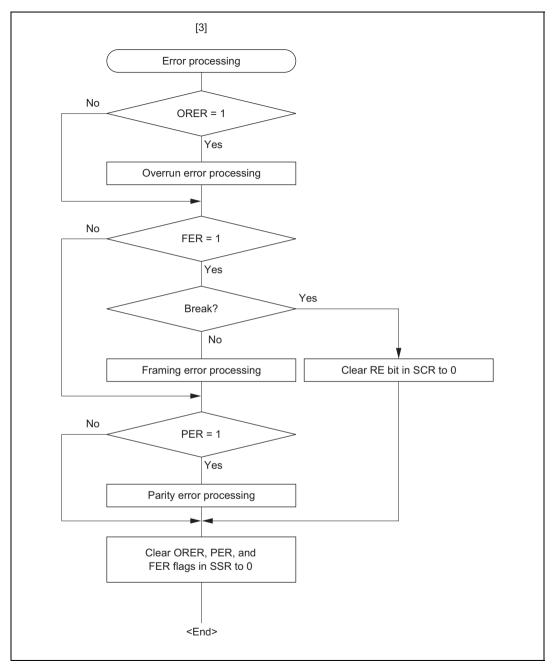


Figure 13-7 Sample Serial Reception Data Flowchart (cont)

In serial reception, the SCI operates as described below.

- [1] The SCI monitors the transmission line, and if a 0 stop bit is detected, performs internal synchronization and starts reception.
- [2] The received data is stored in RSR in LSB-to-MSB order.
- [3] The parity bit and stop bit are received.

After receiving these bits, the SCI carries out the following checks.

[a] Parity check:

The SCI checks whether the number of 1 bits in the receive data agrees with the parity (even or odd) set in the O/\overline{E} bit in SMR.

[b] Stop bit check:

The SCI checks whether the stop bit is 1.

If there are two stop bits, only the first is checked.

[c] Status check:

The SCI checks whether the RDRF flag is 0, indicating that the receive data can be transferred from RSR to RDR.

If all the above checks are passed, the RDRF flag is set to 1, and the receive data is stored in RDR.

If a receive error* is detected in the error check, the operation is as shown in table 13-11.

Note: * Subsequent receive operations cannot be performed when a receive error has occurred. Also note that the RDRF flag is not set to 1 in reception, and so the error flags must be cleared to 0.

[4] If the RIE bit in SCR is set to 1 when the RDRF flag changes to 1, a receive data full interrupt (RXI) request is generated.

Also, if the RIE bit in SCR is set to 1 when the ORER, PER, or FER flag changes to 1, a receive error interrupt (ERI) request is generated.

Table 13-11 Receive Errors and Conditions for Occurrence

Receive Error	Abbreviation	Occurrence Condition	Data Transfer
Overrun error	ORER	When the next data reception is completed while the RDRF flag in SSR is set to 1	Receive data is not transferred from RSR to RDR
Framing error	FER	When the stop bit is 0	Receive data is transferred from RSR to RDR
Parity error	PER	When the received data differs from the parity (even or odd) set in SMR	Receive data is transferred from RSR to RDR

Figure 13-8 shows an example of the operation for reception in asynchronous mode.

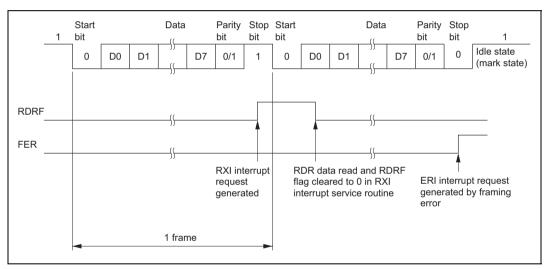


Figure 13-8 Example of SCI Operation in Reception (Example with 8-Bit Data, Parity, One Stop Bit)

13.3.3 Multiprocessor Communication Function

The multiprocessor communication function performs serial communication using the multiprocessor format, in which a multiprocessor bit is added to the transfer data, in asynchronous mode. Use of this function enables data transfer to be performed among a number of processors sharing transmission lines.

When multiprocessor communication is carried out, each receiving station is addressed by a unique ID code.

The serial communication cycle consists of two component cycles: an ID transmission cycle which specifies the receiving station, and a data transmission cycle. The multiprocessor bit is used to differentiate between the ID transmission cycle and the data transmission cycle.

The transmitting station first sends the ID of the receiving station with which it wants to perform serial communication as data with a 1 multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit added.

The receiving station skips the data until data with a 1 multiprocessor bit is sent.

When data with a 1 multiprocessor bit is received, the receiving station compares that data with its own ID. The station whose ID matches then receives the data sent next. Stations whose ID does not match continue to skip the data until data with a 1 multiprocessor bit is again received. In this way, data communication is carried out among a number of processors.

Figure 13-9 shows an example of inter-processor communication using the multiprocessor format.

Data Transfer Format: There are four data transfer formats.

When the multiprocessor format is specified, the parity bit specification is invalid.

For details, see table 13-10.

Clock: See the section on asynchronous mode.

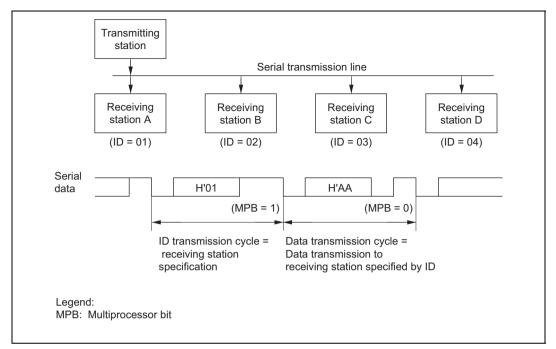


Figure 13-9 Example of Inter-Processor Communication Using Multiprocessor Format (Transmission of Data H'AA to Receiving Station A)

Data Transfer Operations:

Multiprocessor serial data transmission Figure 13-10 shows a sample flowchart for multiprocessor serial data transmission. The following procedure should be used for multiprocessor serial data transmission.

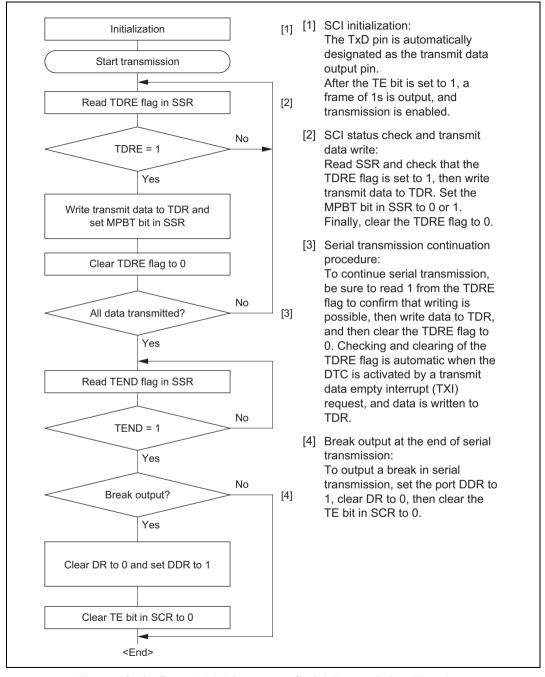


Figure 13-10 Sample Multiprocessor Serial Transmission Flowchart

In serial transmission, the SCI operates as described below.

- [1] The SCI monitors the TDRE flag in SSR, and if is 0, recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
- [2] After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission.

If the TIE bit in SCR is set to 1 at this time, a transmit data empty interrupt (TXI) is generated. The serial transmit data is sent from the TxD pin in the following order.

[a] Start bit:

One 0-bit is output.

- [b] Transmit data:
 - 8-bit or 7-bit data is output in LSB-first order.
- [c] Multiprocessor bit

One multiprocessor bit (MPBT value) is output.

[d] Stop bit(s):

One or two 1-bits (stop bits) are output.

- [e] Mark state:
 - 1 is output continuously until the start bit that starts the next transmission is sent.
- [3] The SCI checks the TDRE flag at the timing for sending the stop bit.

If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, the stop bit is sent, and then serial transmission of the next frame is started.

If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then the mark state is entered in which 1 is output continuously. If the TEIE bit in SCR is set to 1 at this time, a transmission end interrupt (TEI) request is generated.

Figure 13-11 shows an example of SCI operation for transmission using the multiprocessor format.

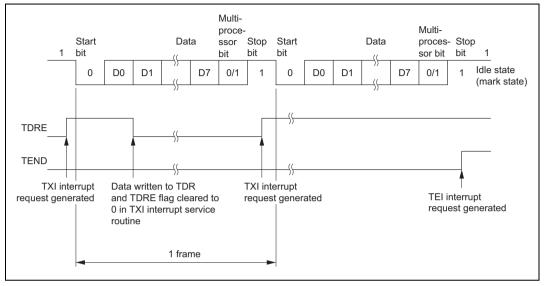


Figure 13-11 Example of SCI Operation in Transmission (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

Multiprocessor serial data reception
 Figure 13-12 shows a sample flowchart for multiprocessor serial reception.
 The following procedure should be used for multiprocessor serial data reception.

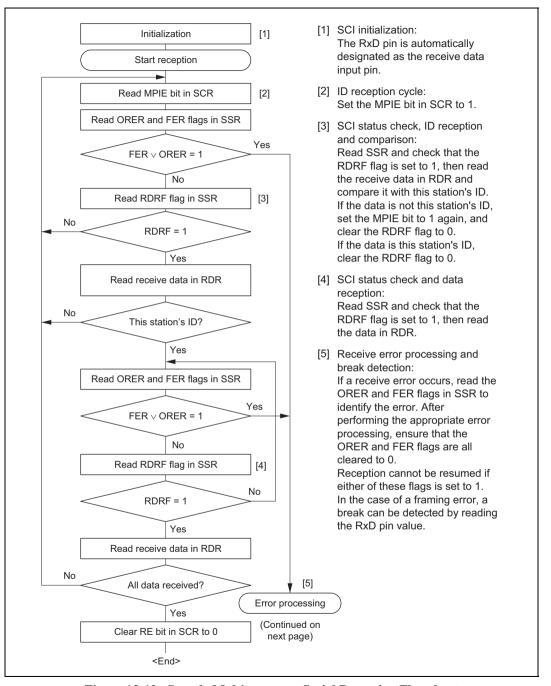


Figure 13-12 Sample Multiprocessor Serial Reception Flowchart

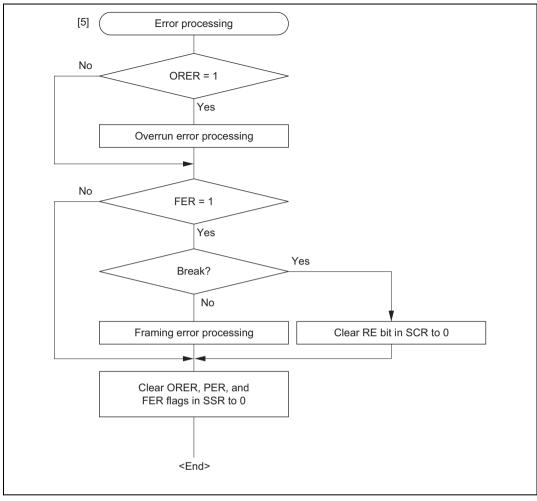


Figure 13-12 Sample Multiprocessor Serial Reception Flowchart (cont)

Start Data (ID1) Stop Start Data (Data1) Stop MPB bit bit bit MPB bit 1 0 D0 0 D1 D7 0 Idle state D7 1 (mark state) MPIE **RDRF RDR** ID1 value MPIE = 0 RXI interrupt RDR data read If not this station's ID, RXI interrupt request is and RDRF flag MPIE bit is set to 1 request not generated, and RDR (multiprocessor cleared to 0 in again retains its state interrupt) RXI interrupt service routine generated (a) Data does not match station's ID Start Data (ID2) Stop Start Data (Data2) Stop bit MPB bit MPB bit bit 1 D0 D1 D0 Idle state 0 D7 1 D1 D7 0 (mark state) MPIE **RDRF** RDR ID1 ID2 Data2 value MPIE = 0 RXI interrupt RDR data read and Matches this station's ID, MPIE bit set to 1 request RDRF flag cleared so reception continues, and again to 0 in RXI interrupt (multiprocessor data is received in RXI

Figure 13-13 shows an example of SCI operation for multiprocessor format reception.

Figure 13-13 Example of SCI Operation in Reception (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

(b) Data matches station's ID

service routine

interrupt service routine

interrupt)

generated

13.3.4 Operation in Clocked Synchronous Mode

In clocked synchronous mode, data is transmitted or received in synchronization with clock pulses, making it suitable for high-speed serial communication.

Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communication by use of a common clock. Both the transmitter and the receiver also have a double-buffered structure, so that data can be read or written during transmission or reception, enabling continuous data transfer.

Figure 13-14 shows the general format for clocked synchronous serial communication.

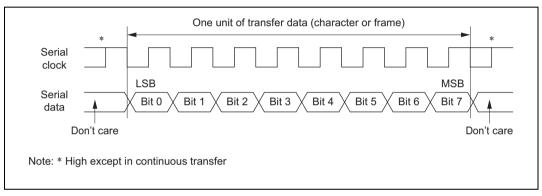


Figure 13-14 Data Format in Synchronous Communication

In clocked synchronous serial communication, data on the transmission line is output from one falling edge of the serial clock to the next. Data confirmation is guaranteed at the rising edge of the serial clock.

In clocked serial communication, one character consists of data output starting with the LSB and ending with the MSB. After the MSB is output, the transmission line holds the MSB state.

In clocked synchronous mode, the SCI receives data in synchronization with the rising edge of the serial clock.

May 28, 2010

Data Transfer Format: A fixed 8-bit data format is used.

No parity or multiprocessor bits are added.

Clock: Either an internal clock generated by the on-chip baud rate generator or an external serial clock input at the SCK pin can be selected, according to the setting of the C/\overline{A} bit in SMR and the CKE1 and CKE0 bits in SCR. For details of SCI clock source selection, see table 13-9.

When the SCI is operated on an internal clock, the serial clock is output from the SCK pin.

Eight serial clock pulses are output in the transfer of one character, and when no transfer is performed the clock is fixed high. When only receive operations are performed, however, the serial clock is output until an overrun error occurs or the RE bit is cleared to 0. If you want to perform receive operations in units of one character, you should select an external clock as the clock source.

Data Transfer Operations:

• SCI initialization (clocked synchronous mode)

Before transmitting and receiving data, you should first clear the TE and RE bits in SCR to 0, then initialize the SCI as described below.

When the operating mode, transfer format, etc., is changed, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, the TDRE flag is set to 1 and TSR is initialized. Note that clearing the RE bit to 0 does not change the contents of the RDRF, PER, FER, and ORER flags, or the contents of RDR.

Figure 13-15 shows a sample SCI initialization flowchart.

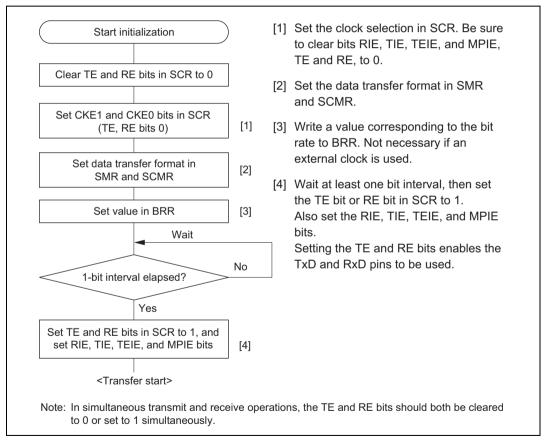


Figure 13-15 Sample SCI Initialization Flowchart

Serial data transmission (clocked synchronous mode)
 Figure 13-16 shows a sample flowchart for serial transmission.
 The following procedure should be used for serial data transmission.

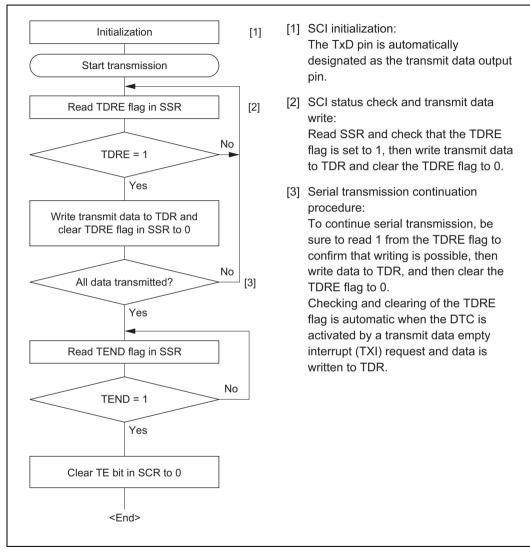


Figure 13-16 Sample Serial Transmission Flowchart

In serial transmission, the SCI operates as described below.

- [1] The SCI monitors the TDRE flag in SSR, and if is 0, recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
- [2] After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission. If the TIE bit in SCR is set to 1 at this time, a transmit data empty interrupt (TXI) is generated.
 - When clock output mode has been set, the SCI outputs 8 serial clock pulses. When use of an external clock has been specified, data is output synchronized with the input clock.
 - The serial transmit data is sent from the TxD pin starting with the LSB (bit 0) and ending with the MSB (bit 7).
- [3] The SCI checks the TDRE flag at the timing for sending the MSB (bit 7).

 If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial transmission of the next frame is started.
 - If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, the MSB (bit 7) is sent, and the TxD pin maintains its state.
 - If the TEIE bit in SCR is set to 1 at this time, a TEI interrupt request is generated.
- [4] After completion of serial transmission, the SCK pin is fixed high. Figure 13-17 shows an example of SCI operation in transmission.

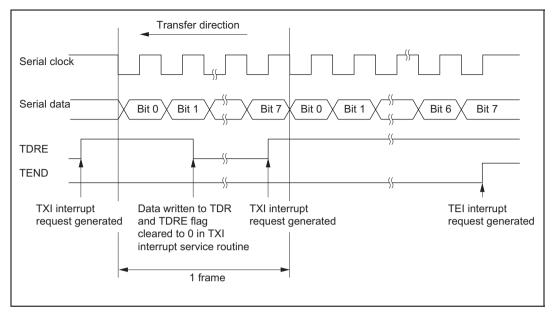


Figure 13-17 Example of SCI Operation in Transmission

Serial data reception (clocked synchronous mode)

Figure 13-18 shows a sample flowchart for serial reception.

The following procedure should be used for serial data reception.

When changing the operating mode from asynchronous to clocked synchronous, be sure to check that the ORER, PER, and FER flags are all cleared to 0.

The RDRF flag will not be set if the FER or PER flag is set to 1, and neither transmit nor receive operations will be possible.

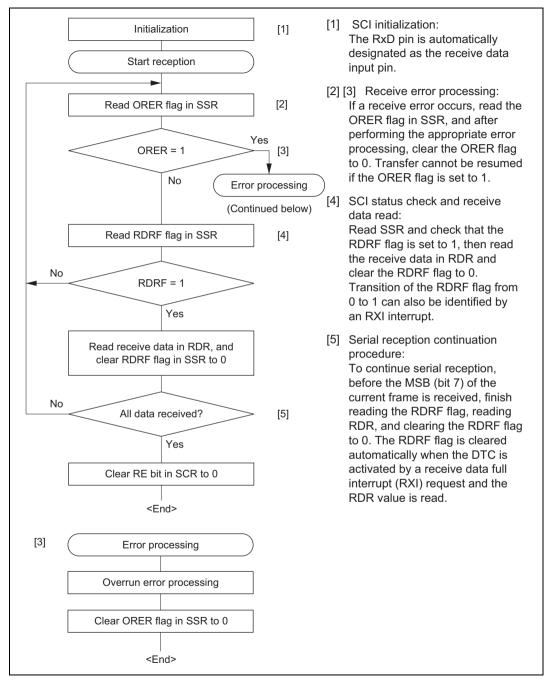


Figure 13-18 Sample Serial Reception Flowchart

In serial reception, the SCI operates as described below.

- [1] The SCI performs internal initialization in synchronization with serial clock input or output.
- [2] The received data is stored in RSR in LSB-to-MSB order.

After reception, the SCI checks whether the RDRF flag is 0 and the receive data can be transferred from RSR to RDR.

If this check is passed, the RDRF flag is set to 1, and the receive data is stored in RDR. If a receive error is detected in the error check, the operation is as shown in table 13-11.

Neither transmit nor receive operations can be performed subsequently when a receive error has been found in the error check.

[3] If the RIE bit in SCR is set to 1 when the RDRF flag changes to 1, a receive data full interrupt (RXI) request is generated.

Also, if the RIE bit in SCR is set to 1 when the ORER flag changes to 1, a receive error interrupt (ERI) request is generated.

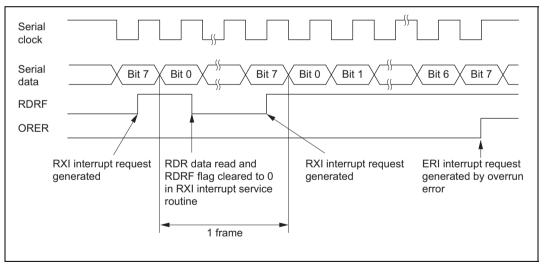


Figure 13-19 Example of SCI Operation in Reception

• Simultaneous serial data transmission and reception (clocked synchronous mode) Figure 13-20 shows a sample flowchart for simultaneous serial transmit and receive operations.

The following procedure should be used for simultaneous serial data transmit and receive operations.

Page 502 of 1458

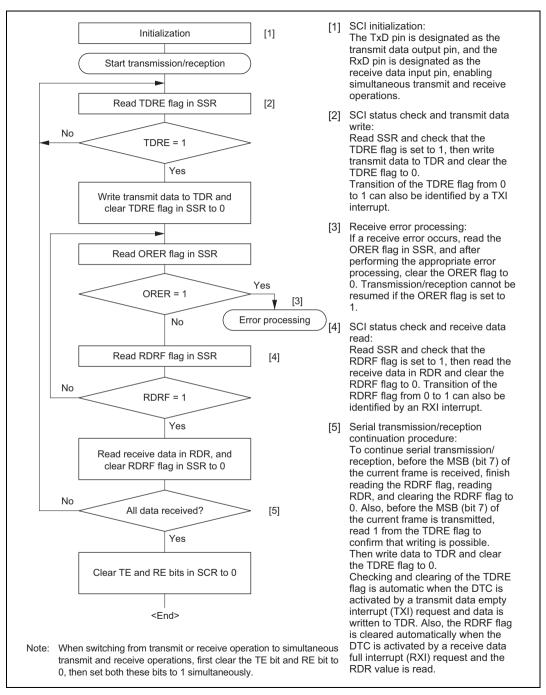


Figure 13-20 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations

13.4 SCI Interrupts

The SCI has four interrupt sources: the transmit-end interrupt (TEI) request, receive-error interrupt (ERI) request, receive-data-full interrupt (RXI) request, and transmit-data-empty interrupt (TXI) request. Table 13-13 shows the interrupt sources and their relative priorities. Individual interrupt sources can be enabled or disabled with the TIE, RIE, and TEIE bits in the SCR. Each kind of interrupt request is sent to the interrupt controller independently.

When the TDRE flag in SSR is set to 1, a TXI interrupt request is generated. When the TEND flag in SSR is set to 1, a TEI interrupt request is generated. A TXI interrupt can activate the DTC to perform data transfer. The TDRE flag is cleared to 0 automatically when data transfer is performed by the DTC. The DTC cannot be activated by a TEI interrupt request.

When the RDRF flag in SSR is set to 1, an RXI interrupt request is generated. When the ORER, PER, or FER flag in SSR is set to 1, an ERI interrupt request is generated. An RXI interrupt can activate the DTC to perform data transfer. The RDRF flag is cleared to 0 automatically when data transfer is performed by the DTC. The DTC cannot be activated by an ERI interrupt request.

Table 13-12 SCI Interrupt Sources

Channel	Interrupt Source	t Description	DTC Activation	Priority*
0	ERI	Interrupt due to receive error (ORER, FER, or PER)	Not possible	High
	RXI	Interrupt due to receive data full state (RDRF)	Possible	_ 1
	TXI	Interrupt due to transmit data empty state (TDRE)	Possible	_
	TEI	Interrupt due to transmission end (TEND)	Not possible	_
1	ERI	Interrupt due to receive error (ORER, FER, or PER)	Not possible	_
	RXI	Interrupt due to receive data full state (RDRF)	Possible	_
	TXI	Interrupt due to transmit data empty state (TDRE)	Possible	_
	TEI	Interrupt due to transmission end (TEND)	Not possible	_
2	ERI	Interrupt due to receive error (ORER, FER, or PER)	Not possible	_
	RXI	Interrupt due to receive data full state (RDRF)	Possible	_
	TXI	Interrupt due to transmit data empty state (TDRE)	Possible	_
	TEI	Interrupt due to transmission end (TEND)	Not possible	Low

Note: *This table shows the initial state immediately after a reset. Relative priorities among channels can be changed by means of the interrupt controller.

A TEI interrupt is requested when the TEND flag is set to 1 while the TEIE bit is set to 1. The TEND flag is cleared at the same time as the TDRE flag. Consequently, if a TEI interrupt and a

TXI interrupt are requested simultaneously, the TXI interrupt may have priority for acceptance, with the result that the TDRE and TEND flags are cleared. Note that the TEI interrupt will not be accepted in this case.

13.5 Usage Notes

The following points should be noted when using the SCI.

Relation between Writes to TDR and the TDRE Flag

The TDRE flag in SSR is a status flag that indicates that transmit data has been transferred from TDR to TSR. When the SCI transfers data from TDR to TSR, the TDRE flag is set to 1.

Data can be written to TDR regardless of the state of the TDRE flag. However, if new data is written to TDR when the TDRE flag is cleared to 0, the data stored in TDR will be lost since it has not yet been transferred to TSR. It is therefore essential to check that the TDRE flag is set to 1 before writing transmit data to TDR.

Operation when Multiple Receive Errors Occur Simultaneously

If a number of receive errors occur at the same time, the state of the status flags in SSR is as shown in table 13-14. If there is an overrun error, data is not transferred from RSR to RDR, and the receive data is lost.

Table 13-13 State of SSR Status Flags and Transfer of Receive Data

	SSR Status Flags			Receive Data Transfer			
RDRF	ORER	FER	PER	RSR to RDR	Receive Error Status		
1	1	0	0	Х	Overrun error		
0	0	1	0	0	Framing error		
0	0	0	1	0	Parity error		
1	1	1	0	X	Overrun error + framing error		
1	1	0	1	X	Overrun error + parity error		
0	0	1	1	0	Framing error + parity error		
1	1	1	1	Х	Overrun error + framing error + parity error		

Notes: \bigcirc :Receive data is transferred from RSR to RDR.

X: Receive data is not transferred from RSR to RDR.

Break Detection and Processing (Asynchronous Mode Only): When framing error (FER) detection is performed, a break can be detected by reading the RxD pin value directly. In a break, the input from the RxD pin becomes all 0s, and so the FER flag is set, and the parity error flag (PER) may also be set.

Note that, since the SCI continues the receive operation after receiving a break, even if the FER flag is cleared to 0, it will be set to 1 again.

Sending a Break (Asynchronous Mode Only): The TxD pin has a dual function as an I/O port whose direction (input or output) is determined by DR and DDR. This can be used to send a break.

Between serial transmission initialization and setting of the TE bit to 1, the mark state is replaced by the value of DR (the pin does not function as the TxD pin until the TE bit is set to 1). Consequently, DDR and DR for the port corresponding to the TxD pin are first set to 1.

To send a break during serial transmission, first clear DR to 0, then clear the TE bit to 0.

When the TE bit is cleared to 0, the transmitter is initialized regardless of the current transmission state, the TxD pin becomes an I/O port, and 0 is output from the TxD pin.

Receive Error Flags and Transmit Operations (Clocked Synchronous Mode Only):

Transmission cannot be started when a receive error flag (ORER, PER, or FER) is set to 1, even if the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission.

Note also that receive error flags cannot be cleared to 0 even if the RE bit is cleared to 0.

Receive Data Sampling Timing and Reception Margin in Asynchronous Mode:

In asynchronous mode, the SCI operates on a basic clock with a frequency of 16 times the transfer rate.

In reception, the SCI samples the falling edge of the start bit using the basic clock, and performs internal synchronization. Receive data is latched internally at the rising edge of the 8th pulse of the basic clock. This is illustrated in figure 13-21.

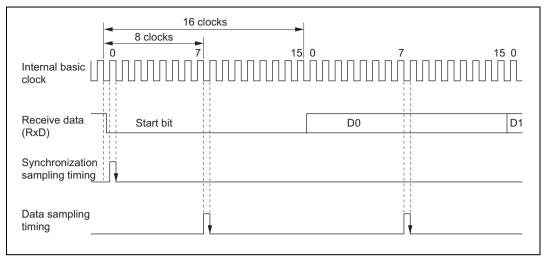


Figure 13-21 Receive Data Sampling Timing in Asynchronous Mode

Thus the reception margin in asynchronous mode is given by formula (1) below.

$$M = |(0.5 - \frac{1}{2N}) - (L - 0.5) F - \frac{|D - 0.5|}{N} (1 + F)| \times 100\%$$

... Formula (1)

Where M: Reception margin (%)

N: Ratio of bit rate to clock (N = 16)

D: Clock duty (D = 0 to 1.0) L: Frame length (L = 9 to 12)

F: Absolute value of clock rate deviation

Assuming values of F = 0 and D = 0.5 in formula (1), a reception margin of 46.875% is given by formula (2) below.

When D = 0.5 and F = 0,

$$M = (0.5 - \frac{1}{2 \times 16}) \times 100\%$$
= 46.875% ... Formula (2)

However, this is only the computed value, and a margin of 20% to 30% should be allowed in system design.

Restrictions on Use of DTC*

Note: * The DTC is not implemented in the H8S/2635 Group.

- When an external clock source is used as the serial clock, the transmit clock should not be input until at least 5 φ clock cycles after TDR is updated by the DTC. Misoperation may occur if the transmit clock is input within 4 φ clocks after TDR is updated (figure 13-22).
- When RDR is read by the DTC, be sure to set the activation source to the relevant SCI reception end interrupt (RXI).

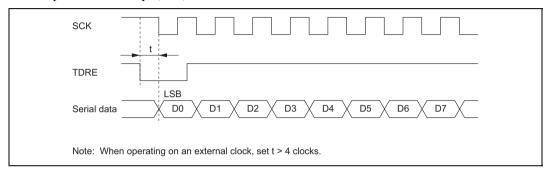


Figure 13-22 Example of Clocked Synchronous Transmission by DTC

Operation in Case of Mode Transition

Transmission

Operation should be stopped (by clearing TE, TIE, and TEIE to 0) before making a module stop mode, software standby mode, watch mode, subactive mode, or subsleep mode transition. TSR, TDR, and SSR are reset. The output pin states in module stop mode, software standby mode, watch mode, subactive mode, or subsleep mode depend on the port settings, and becomes high-level output after the relevant mode is cleared. If a transition is made during transmission, the data being transmitted will be undefined. When transmitting without changing the transmit mode after the relevant mode is cleared, transmission can be started by setting TE to 1 again, and performing the following sequence: SSR read -> TDR write -> TDRE clearance. To transmit with a different transmit mode after clearing the relevant mode, the procedure must be started again from initialization. Figure 13-23 shows a sample flowchart for mode transition during transmission. Port pin states are shown in figures 13-24 and 13-25. Operation should also be stopped (by clearing TE, TIE, and TEIE to 0) before making a

DTC* transmission.

Note: * The DTC is not implemented in the H8S/2635 Group.

transition from transmission by DTC* transfer to module stop mode, software standby mode, watch mode, subactive mode, or subsleep mode transition. To perform transmission with the DTC* after the relevant mode is cleared, setting TE and TIE to 1 will set the TXI flag and start

Reception

Receive operation should be stopped (by clearing RE to 0) before making a module stop mode, software standby mode, watch mode, subactive mode, or subsleep mode transition. RSR, RDR, and SSR are reset. If a transition is made without stopping operation, the data being received will be invalid.

To continue receiving without changing the reception mode after the relevant mode is cleared, set RE to 1 before starting reception. To receive with a different receive mode, the procedure must be started again from initialization.

Figure 13-26 shows a sample flowchart for mode transition during reception.

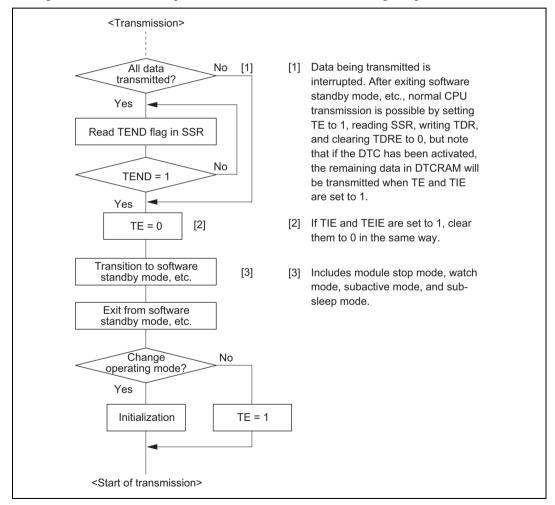


Figure 13-23 Sample Flowchart for Mode Transition during Transmission

May 28, 2010

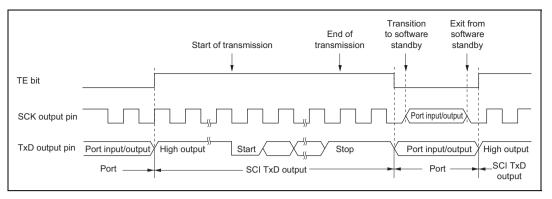


Figure 13-24 Asynchronous Transmission Using Internal Clock

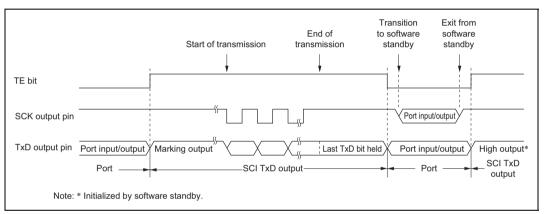


Figure 13-25 Synchronous Transmission Using Internal Clock

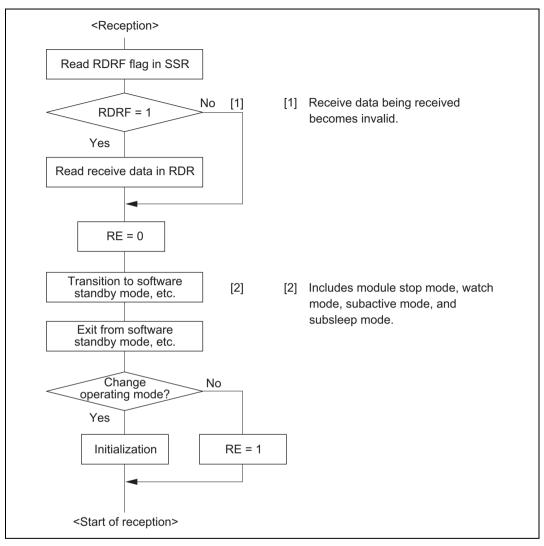


Figure 13-26 Sample Flowchart for Mode Transition during Reception

Switching from SCK Pin Function to Port Pin Function:

- Problem in Operation: When switching the SCK pin function to the output port function (high-level output) by making the following settings while DDR = 1, DR = 1, C/A = 1, CKE1 = 0, CKE0 = 0, and TE = 1 (synchronous mode), low-level output occurs for one half-cycle.
- 1. End of serial data transmission
- 2 TE bit = 0
- 3. C/\overline{A} bit = 0 ... switchover to port output
- 4. Occurrence of low-level output (see figure 13-27)

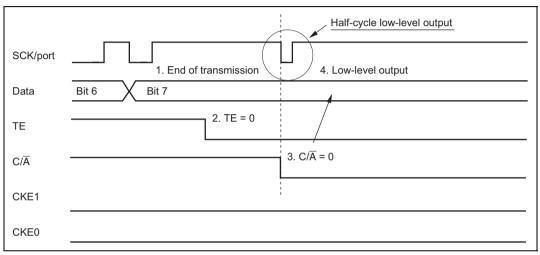


Figure 13-27 Operation when Switching from SCK Pin Function to Port Pin Function

• Sample Procedure for Avoiding Low-Level Output: As this sample procedure temporarily places the SCK pin in the input state, the SCK/port pin should be pulled up beforehand with an external circuit.

With DDR = 1, DR = 1, C/\overline{A} = 1, CKE1 = 0, CKE0 = 0, and TE = 1, make the following settings in the order shown.

- 1. End of serial data transmission
- 2. TE bit = 0
- 3. CKE1 bit = 1
- 4. C/\overline{A} bit = 0 ... switchover to port output
- 5. CKE1 bit = 0

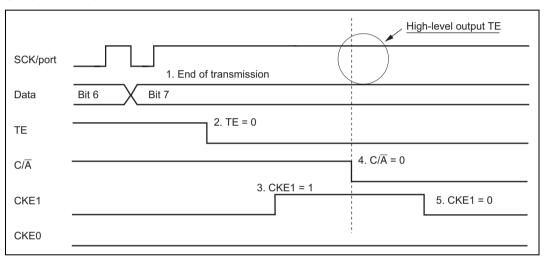


Figure 13-28 Operation when Switching from SCK Pin Function to Port Pin Function (Example of Preventing Low-Level Output)

Section 14 Smart Card Interface

Note: The H8S/2635 Group is not equipped with a DTC.

14.1 Overview

SCI supports an IC card (Smart Card) interface conforming to ISO/IEC 7816-3 (Identification Card) as a serial communication interface extension function.

Switching between the normal serial communication interface and the Smart Card interface is carried out by means of a register setting.

14.1.1 Features

Features of the Smart Card interface supported by the chip are as follows.

- Asynchronous mode
 - Data length: 8 bits
 - Parity bit generation and checking
 - Transmission of error signal (parity error) in receive mode
 - Error signal detection and automatic data retransmission in transmit mode
 - Direct convention and inverse convention both supported
- On-chip baud rate generator allows any bit rate to be selected
- Three interrupt sources
 - Three interrupt sources (transmit data empty, receive data full, and transmit/receive error) that can issue requests independently
 - The transmit data empty interrupt and receive data full interrupt can activate the data transfer controller (DTC)* to execute data transfer

Note: * The DTC is not implemented in the H8S/2635 Group.

14.1.2 Block Diagram

Figure 14-1 shows a block diagram of the Smart Card interface.

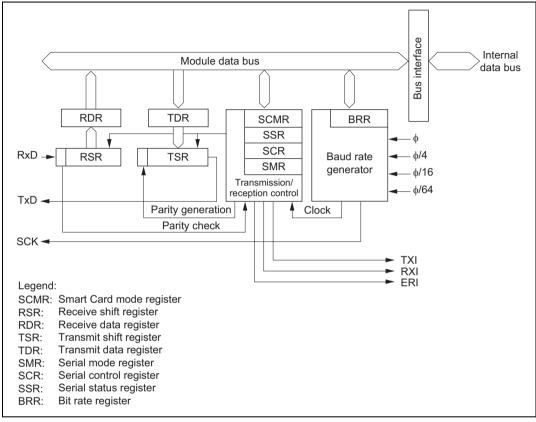


Figure 14-1 Block Diagram of Smart Card Interface

14.1.3 Pin Configuration

Table 14-1 shows the Smart Card interface pin configuration.

Table 14-1 Smart Card Interface Pins

Channel	Pin Name	Symbol	I/O	Function
0	Serial clock pin 0	SCK0	I/O	SCI0 clock input/output
	Receive data pin 0	RxD0	Input	SCI0 receive data input
	Transmit data pin 0	TxD0	Output	SCI0 transmit data output
1	Serial clock pin 1	SCK1	I/O	SCI1 clock input/output
	Receive data pin 1	RxD1	Input	SCI1 receive data input
	Transmit data pin 1	TxD1	Output	SCI1 transmit data output
2	Serial clock pin 2	SCK2	I/O	SCI2 clock input/output
	Receive data pin 2	RxD2	Input	SCI2 receive data input
	Transmit data pin 2	TxD2	Output	SCI2 transmit data output

14.1.4 Register Configuration

Table 14-2 shows the registers used by the Smart Card interface. Details of SMR, BRR, SCR, TDR, RDR, and MSTPCR are the same as for the normal SCI function: see the register descriptions in section 13, Serial Communication Interface (SCI).

Table 14-2 Smart Card Interface Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address*1
0	Serial mode register 0	SMR0	R/W	H'00	H'FF78
	Bit rate register 0	BRR0	R/W	H'FF	H'FF79
	Serial control register 0	SCR0	R/W	H'00	H'FF7A
	Transmit data register 0	TDR0	R/W	H'FF	H'FF7B
	Serial status register 0	SSR0	R/(W)*2	H'84	H'FF7C
	Receive data register 0	RDR0	R	H'00	H'FF7D
	Smart card mode register 0	SCMR0	R/W	H'F2	H'FF7E
1	Serial mode register 1	SMR1	R/W	H'00	H'FF80
	Bit rate register 1	BRR1	R/W	H'FF	H'FF81
	Serial control register 1	SCR1	R/W	H'00	H'FF82
	Transmit data register 1	TDR1	R/W	H'FF	H'FF83
	Serial status register 1	SSR1	R/(W)*2	H'84	H'FF84
	Receive data register 1	RDR1	R	H'00	H'FF85
	Smart card mode register 1	SCMR1	R/W	H'F2	H'FF86
2	Serial mode register 2	SMR2	R/W	H'00	H'FF88
	Bit rate register 2	BRR2	R/W	H'FF	H'FF89
	Serial control register 2	SCR2	R/W	H'00	H'FF8A
	Transmit data register 2	TDR2	R/W	H'FF	H'FF8B
	Serial status register 2	SSR2	R/(W)*2	H'84	H'FF8C
	Receive data register 2	RDR2	R	H'00	H'FF8D
	Smart card mode register 2	SCMR2	R/W	H'F2	H'FF8E
All	Module stop control register B	MSTPCRB	R/W	H'FF	H'FDE9

Notes: 1. Lower 16 bits of the address.

2. Can only be written with 0 for flag clearing.

May 28, 2010

14.2 **Register Descriptions**

Registers added with the Smart Card interface and bits for which the function changes are described here.

14.2.1 Smart Card Mode Register (SCMR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	SDIR	SINV	_	SMIF
Initial value	e :	1	1	1	1	0	0	1	0
R/W	:	_	_	_	_	R/W	R/W	_	R/W

SCMR is an 8-bit readable/writable register that selects the Smart Card interface function.

SCMR is initialized to H'F2 by a reset and in standby mode.

Bits 7 to 4—Reserved: These bits are always read as 1 and cannot be modified.

Bit 3—Smart Card Data Transfer Direction (SDIR): Selects the serial/parallel conversion format.

Bit 3 SDIR	Description	
0	TDR contents are transmitted LSB-first	(Initial value)
	Receive data is stored in RDR LSB-first	
1	TDR contents are transmitted MSB-first	
	Receive data is stored in RDR MSB-first	

Bit 2—Smart Card Data Invert (SINV): Specifies inversion of the data logic level. This function is used together with the SDIR bit for communication with an inverse convention card. The SINV bit does not affect the logic level of the parity bit. For parity-related setting procedures, see section 14.3.4, Register Settings.

Bit 2 SINV	Description	
0	TDR contents are transmitted as they are	(Initial value)
	Receive data is stored as it is in RDR	
1	TDR contents are inverted before being transmitted	
	Receive data is stored in inverted form in RDR	

Bit 1—Reserved: This bit is always read as 1 and cannot be modified.

Bit 0—Smart Card Interface Mode Select (SMIF): Enables or disables the Smart Card interface function.

Bit 0 SMIF	Description	
0	Smart Card interface function is disabled	(Initial value)
1	Smart Card interface function is enabled	

May 28, 2010

14.2.2 Serial Status Register (SSR)

Bit	:	7	6	5	4	3	2	1	0
		TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT
Initial value:		1	0	0	0	0	1	0	0
R/W	:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W

Note: *Only 0 can be written, to clear these flags.

Bit 4 of SSR has a different function in Smart Card interface mode. Coupled with this, the setting conditions for bit 2, TEND, are also different.

Bits 7 to 5—Operate in the same way as for the normal SCI. For details, see section 13.2.7, Serial Status Register (SSR).

Bit 4—Error Signal Status (ERS): In Smart Card interface mode, bit 4 indicates the status of the error signal sent back from the receiving end in transmission. Framing errors are not detected in Smart Card interface mode.

Bit 4 ERS	Description						
0	Normal reception, with no error signal						
	[Clearing conditions]	(Initial value)					
	 Upon reset, and in standby mode or module stop mode 						
	 When 0 is written to ERS after reading ERS = 1 						
1	Error signal sent from receiver indicating detection of parity error						
	[Setting condition]						
	 When the Low level of the error signal is sampled 						

Clearing the TE bit in SCR to 0 does not affect the ERS flag, which retains its previous Note: state.

Bits 3 to 0—Operate in the same way as for the normal SCI. For details, see section 13.2.7, Serial Status Register (SSR).

However, the setting conditions for the TEND bit, are as shown below.

Bit 2 TEND	Description
0	Transmission is in progress
	[Clearing conditions]
	 When 0 is written to TDRE after reading TDRE = 1
	 When the DTC is activated by a TXI interrupt and write data to TDR
1	Transmission has ended (Initial value) [Setting conditions]
	 Upon reset, and in standby mode or module stop mode
	 When the TE bit in SCR is 0 and the ERS bit is also 0
	 When TDRE = 1 and ERS = 0 (normal transmission) 2.5 etu after transmission of a 1-byte serial character when GM = 0 and BLK = 0
	 When TDRE = 1 and ERS = 0 (normal transmission) 1.5 etu after transmission of a 1-byte serial character when GM = 0 and BLK = 1
	 When TDRE = 1 and ERS = 0 (normal transmission) 1.0 etu after transmission of a 1-byte serial character when GM = 1 and BLK = 0
	 When TDRE = 1 and ERS = 0 (normal transmission) 1.0 etu after transmission of a 1-byte serial character when GM = 1 and BLK = 1

Note: etu: Elementary time unit (time for transfer of 1 bit)

14.2.3 Serial Mode Register (SMR)

Bit	:	7	6	5	4	3	2	1	0
		GM	BLK	PE	O/E	BCP1	BCP0	CKS1	CKS0
Initial value:		0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: When the smart card interface is used, be sure to make the 1 setting shown for bit 5.

The function of bits 7, 6, 3, and 2 of SMR changes in Smart Card interface mode.

Bit 7—GSM Mode (GM): Sets the smart card interface function to GSM mode.

This bit is cleared to 0 when the normal smart card interface is used. In GSM mode, this bit is set to 1, the timing of setting of the TEND flag that indicates transmission completion is advanced and clock output control mode addition is performed. The contents of the clock output control mode addition are specified by bits 1 and 0 of the serial control register (SCR).

Bit 7 GM	Description					
0	Normal smart card interface mode operation (Initial value)					
	 TEND flag generation 12.5 etu (11.5 etu in block transfer mode) after beginning of start bit 					
	Clock output ON/OFF control only					
1	GSM mode smart card interface mode operation					
	 TEND flag generation 11.0 etu after beginning of start bit 					
	 High/Low fixing control possible in addition to clock output ON/OFF control (set by SCR) 					

Note: etu: Elementary time unit (time for transfer of 1 bit)

Bit 6—Block Transfer Mode (BLK): Selects block transfer mode.

Bit 6

BLK	 Description						
0	Normal Smart Card interface mode operation						
	Error signal transmission/detection and automatic data retransmission performed						
	TXI interrupt generated by TEND flag						
	 TEND flag set 12.5 etu after start of transmission (11.0 etu in GSM mode) 						
1	Block transfer mode operation						
	 Error signal transmission/detection and automatic data retransmission not performed 						
	TXI interrupt generated by TDRE flag						
	 TEND flag set 11.5 etu after start of transmission (11.0 etu in GSM mode) 						

Note: etu: Elementary time unit (time for transfer of 1 bit)

Bits 3 and 2—Basic Clock Pulse 1 and 2 (BCP1, BCP0): These bits specify the number of basic clock periods in a 1-bit transfer interval on the Smart Card interface.

Bit 3	Bit 2				
BCP1	BCP0	Description			
0	0	32 clock periods	(Initial value)		
	1	64 clock periods			
1	0	372 clock periods			
	1	256 clock periods			

Bits 5, 4, 1, and 0: Operate in the same way as for the normal SCI. For details, see section 13.2.5, Serial Mode Register (SMR).

May 28, 2010

Serial Control Register (SCR) 14.2.4

Bit	:	7	6	5	4	3	2	1	0
		TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
Initial value:		0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

In smart card interface mode, the function of bits 1 and 0 of SCR changes when bit 7 of the serial mode register (SMR) is set to 1.

Bits 7 to 2—Operate in the same way as for the normal SCI.

For details, see section 13.2.6, Serial Control Register (SCR).

Bits 1 and 0—Clock Enable 1 and 0 (CKE1, CKE0): These bits are used to select the SCI clock source and enable or disable clock output from the SCK pin.

In smart card interface mode, in addition to the normal switching between clock output enabling and disabling, the clock output can be specified as to be fixed high or low.

SCMR	SMR	SCR Setting		
SMIF	C/Ā, GM	CKE1 CKE0		SCK Pin Function
0	See the SC	Cl		
1	0	0	0	Operates as port I/O pin
1	0	0	1	Outputs clock as SCK output pin
1	1	0	0	Operates as SCK output pin, with output fixed low
1	1	0	1	Outputs clock as SCK output pin
1	1	1	0	Operates as SCK output pin, with output fixed high
1	1	1	1	Outputs clock as SCK output pin

14.3 Operation

14.3.1 Overview

The main functions of the Smart Card interface are as follows.

- One frame consists of 8-bit data plus a parity bit.
- In transmission, a guard time of at least 2 etu (Elementary time unit: the time for transfer of 1 bit) is left between the end of the parity bit and the start of the next frame.
- If a parity error is detected during reception, a low error signal level is output for one etu period, 10.5 etu after the start bit.
- If the error signal is sampled during transmission, the same data is transmitted automatically after the elapse of 2 etu or longer (except in block transfer mode).
- Only asynchronous communication is supported; there is no clocked synchronous communication function.

Note: etu: Elementary time unit (time for transfer of 1 bit)

14.3.2 Pin Connections

Figure 14-2 shows a schematic diagram of Smart Card interface related pin connections.

In communication with an IC card, since both transmission and reception are carried out on a single data transmission line, the TxD pin and RxD pin should be connected with the LSI pin. The data transmission line should be pulled up to the V_{CC} power supply with a resistor.

When the clock generated on the Smart Card interface is used by an IC card, the SCK pin output is input to the CLK pin of the IC card. No connection is needed if the IC card uses an internal clock.

LSI port output is used as the reset signal.

Other pins must normally be connected to the power supply or ground.

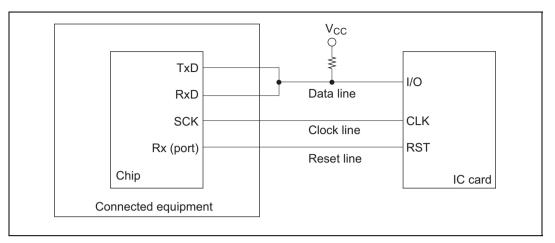


Figure 14-2 Schematic Diagram of Smart Card Interface Pin Connections

Note: If an IC card is not connected, and the TE and RE bits are both set to 1, closed transmission/reception is possible, enabling self-diagnosis to be carried out.

14.3.3 Data Format

Normal Transfer Mode: Figure 14-3 shows the normal Smart Card interface data format. In reception in this mode, a parity check is carried out on each frame, and if an error is detected an error signal is sent back to the transmitting end, and retransmission of the data is requested. If an error signal is sampled during transmission, the same data is retransmitted.

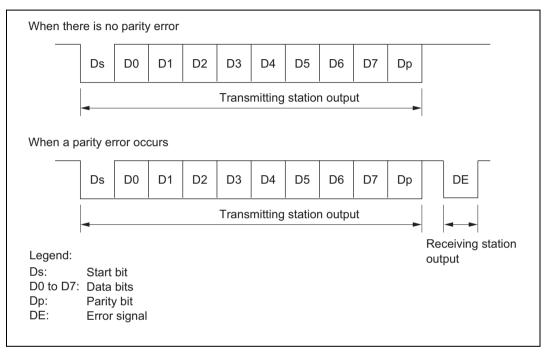


Figure 14-3 Normal Smart Card Interface Data Format

The operation sequence is as follows.

- [1] When the data line is not in use it is in the high-impedance state, and is fixed high with a pull-up resistor.
- [2] The transmitting station starts transfer of one frame of data. The data frame starts with a start bit (Ds, low-level), followed by 8 data bits (D0 to D7) and a parity bit (Dp).
- [3] With the Smart Card interface, the data line then returns to the high-impedance state. The data line is pulled high with a pull-up resistor.

[4] The receiving station carries out a parity check.

If there is no parity error and the data is received normally, the receiving station waits for reception of the next data.

If a parity error occurs, however, the receiving station outputs an error signal (DE, low-level) to request retransmission of the data. After outputting the error signal for the prescribed length of time, the receiving station places the signal line in the high-impedance state again. The signal line is pulled high again by a pull-up resistor.

[5] If the transmitting station does not receive an error signal, it proceeds to transmit the next data frame

If it does receive an error signal, however, it returns to step [2] and retransmits the erroneous data.

Block Transfer Mode: The operation sequence in block transfer mode is as follows.

- [1] When the data line in not in use it is in the high-impedance state, and is fixed high with a pull-up resistor.
- [2] The transmitting station starts transfer of one frame of data. The data frame starts with a start bit (Ds, low-level), followed by 8 data bits (D0 to D7) and a parity bit (Dp).
- [3] With the Smart Card interface, the data line then returns to the high-impedance state. The data line is pulled high with a pull-up resistor.
- [4] After reception, a parity error check is carried out, but an error signal is not output even if an error has occurred. When an error occurs reception cannot be continued, so the error flag should be cleared to 0 before the parity bit of the next frame is received.
- [5] The transmitting station proceeds to transmit the next data frame.

14.3.4 Register Settings

Table 14-3 shows a bit map of the registers used by the smart card interface.

Bits indicated as 0 or 1 must be set to the value shown. The setting of other bits is described below

Table 14-3 Smart Card Interface Register Settings

	Bit									
Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SMR	GM	BLK	1	O/E	BCP1	BCP0	CKS1	CKS0		
BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0		
SCR	TIE	RIE	TE	RE	0	0	CKE1*	CKE0		
TDR	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0		
SSR	TDRE	RDRF	ORER	ERS	PER	TEND	0	0		
RDR	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0		
SCMR	_	_	_	_	SDIR	SINV	_	SMIF		

Notes: —: Unused bit.

SMR Setting: The GM bit is cleared to 0 in normal smart card interface mode, and set to 1 in GSM mode. The O/\overline{E} bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

Bits CKS1 and CKS0 select the clock source of the on-chip baud rate generator. Bits BCP1 and BCP0 select the number of basic clock periods in a 1-bit transfer interval. For details, see section 14.3.5, Clock.

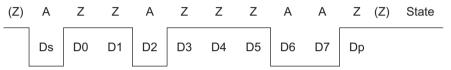
The BLK bit is cleared to 0 in normal smart card interface mode, and set to 1 in block transfer mode.

BRR Setting: BRR is used to set the bit rate. See section 14.3.5, Clock, for the method of calculating the value to be set.

SCR Setting: The function of the TIE, RIE, TE, and RE bits is the same as for the normal SCI. For details, see section 13, Serial Communication Interface (SCI).

Bits CKE1 and CKE0 specify the clock output. When the GM bit in SMR is cleared to 0, set these bits to B'00 if a clock is not to be output, or to B'01 if a clock is to be output. When the GM bit in SMR is set to 1, clock output is performed. The clock output can also be fixed high or low.

^{*:} The CKE1 bit must be cleared to 0 when the GM bit in SMR is cleared to 0.


Smart Card Mode Register (SCMR) Setting: The SDIR bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

The SINV bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

The SMIF bit is set to 1 in the case of the Smart Card interface.

Examples of register settings and the waveform of the start character are shown below for the two types of IC card (direct convention and inverse convention).

Direct convention (SDIR = SINV = $O/\overline{E} = 0$)

With the direct convention type, the logic 1 level corresponds to state Z and the logic 0 level to state A, and transfer is performed in LSB-first order. The start character data above is H'3B.

The parity bit is 1 since even parity is stipulated for the Smart Card.

Inverse convention (SDIR = SINV = $O/\overline{E} = 1$)

May 28, 2010

With the inverse convention type, the logic 1 level corresponds to state A and the logic 0 level to state Z, and transfer is performed in MSB-first order. The start character data above is H'3F.

The parity bit is 0, corresponding to state Z, since even parity is stipulated for the Smart Card.

With the H8S/2636, H8S/2638, H8S/2639, and H8S/2630 inversion specified by the SINV bit applies only to the data bits, D7 to D0. For parity bit inversion, the O/E bit in SMR is set to odd parity mode (the same applies to both transmission and reception).

14.3.5 Clock

Only an internal clock generated by the on-chip baud rate generator can be used as the transmit/receive clock for the smart card interface. The bit rate is set with BRR and the CKS1, CKS0, BCP1 and BCP0 bits in SMR. The formula for calculating the bit rate is as shown below. Table 14-5 shows some sample bit rates.

If clock output is selected by setting CKE0 to 1, a clock is output from the SCK pin. The clock frequency is determined by the bit rate and the setting of bits BCP1 and BCP0.

$$B = \frac{\phi}{S \times 2^{2n+1} \times (N+1)} \times 10^6$$

Where: $N = \text{Value set in BRR } (0 \le N \le 255)$

B = Bit rate (bit/s)

 ϕ = Operating frequency (MHz)

n = See table 14-4

S = Number of internal clocks in 1-bit period, set by BCP1 and BCP0

Table 14-4 Correspondence between n and CKS1, CKS0

n	CKS1	CKS0
0	0	0
1	-	1
2	1	0
3	-	1

Table 14-5 Examples of Bit Rate B (bit/s) for Various BRR Settings (When n = 0 and S = 372)

	φ (MHz)								
N	10.00	10.714	13.00	14.285	16.00	18.00	20.00		
0	13441	14400	17473	19200	21505	24194	26882	,	
1	6720	7200	8737	9600	10753	12097	13441		
2	4480	4800	5824	6400	7168	8065	8961		

. .---

Note: Bit rates are rounded to the nearest whole number.

The method of calculating the value to be set in the bit rate register (BRR) from the operating frequency and bit rate, on the other hand, is shown below. N is an integer, $0 \le N \le 255$, and the smaller error is specified.

$$N = \frac{\varphi}{S \times 2^{2n+1} \times B} \times 10^6 - 1$$

Table 14-6 Examples of BRR Settings for Bit Rate B (bit/s) (When n = 0 and S = 372)

φ (MHz) 7.1424 14.2848 10.00 10.7136 13.00 16.00 18.00 20.00 bit/s Ν Error Error Error Error Ν Error Ν Error Ν **Error** Ν **Error** 9600 0.00 30 25 8.99 0.00 12.01 2 15.99 6.60

Note: A blank means no setting is available.

Table 14-7 Maximum Bit Rate at Various Frequencies (Smart Card Interface Mode) (when S = 372)

φ (MHz)	Maximum Bit Rate (bit/s)	N	n
7.1424	9600	0	0
10.00	13441	0	0
10.7136	14400	0	0
13.00	17473	0	0
14.2848	19200	0	0
16.00	21505	0	0
18.00	24194	0	0
20.00	26882	0	0

The bit rate error is given by the following formula:

Error (%) =
$$(\frac{\phi}{S \times 2^{2n+1} \times B \times (N+1)} \times 10^6 - 1) \times 100$$

14.3.6 Data Transfer Operations

Initialization: Before transmitting and receiving data, initialize the SCI as described below. Initialization is also necessary when switching from transmit mode to receive mode, or vice versa.

- [1] Clear the TE and RE bits in SCR to 0.
- [2] Clear the error flags ERS, PER, and ORER in SSR to 0.
- [3] Set the GM, BLK, O/E, BCP1, BCP0, CKS1, CKS0 bits in SMR. Set the PE bit to 1.
- [4] Set the SMIF, SDIR, and SINV bits in SCMR.

 When the SMIF bit is set to 1, the TxD and RxD pins are both switched from ports to SCI pins, and are placed in the high-impedance state.
- [5] Set the value corresponding to the bit rate in BRR.
- [6] Set the CKE0 and CKE1 bits in SCR. Clear the TIE, RIE, TE, RE, MPIE, and TEIE bits to 0. If the CKE0 bit is set to 1, the clock is output from the SCK pin.
- [7] Wait at least one bit interval, then set the TIE, RIE, TE, and RE bits in SCR. Do not set the TE bit and RE bit at the same time, except for self-diagnosis.

Serial Data Transmission (Except Block Transfer Mode): As data transmission in smart card mode involves error signal sampling and retransmission processing, the processing procedure is different from that for the normal SCI. Figure 14-4 shows a flowchart for transmitting, and figure 14-5 shows the relation between a transmit operation and the internal registers.

- [1] Perform Smart Card interface mode initialization as described above in initialization.
- [2] Check that the ERS error flag in SSR is cleared to 0.
- [3] Repeat steps [2] and [3] until it can be confirmed that the TEND flag in SSR is set to 1.
- [4] Write the transmit data to TDR, clear the TDRE flag to 0, and perform the transmit operation. The TEND flag is cleared to 0.
- [5] When transmitting data continuously, go back to step [2].
- [6] To end transmission, clear the TE bit to 0.

With the above processing, interrupt servicing or data transfer by the DTC is possible.

If transmission ends and the TEND flag is set to 1 while the TIE bit is set to 1 and interrupt requests are enabled, a transmit data empty interrupt (TXI) request will be generated. If an error occurs in transmission and the ERS flag is set to 1 while the RIE bit is set to 1 and interrupt requests are enabled, a transfer error interrupt (ERI) request will be generated.

The timing for setting the TEND flag depends on the value of the GM bit in SMR. The TEND flag set timing is shown in figure 14-6.

If the DTC* is activated by a TXI request, the number of bytes set in the DTC* can be transmitted automatically, including automatic retransmission.

For details, see Interrupt Operation and Data Transfer Operation by DTC below.

Notes: For block transfer mode, see section 13.3.2, Operation in Asynchronous Mode.

* The DTC is not implemented in the H8S/2635 Group.

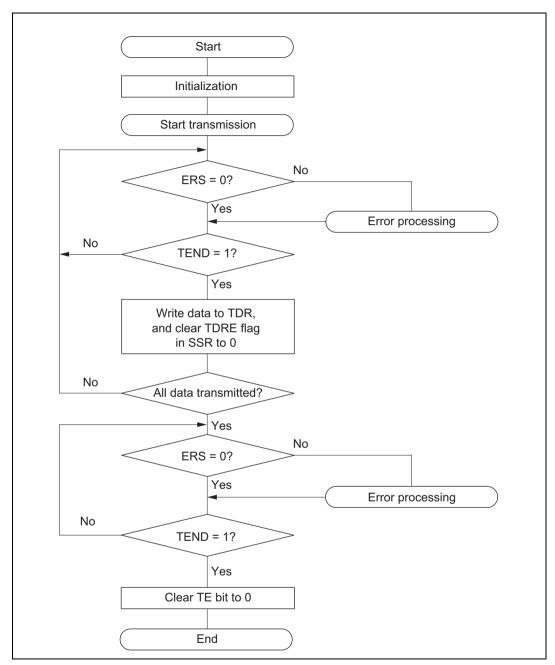


Figure 14-4 Example of Transmission Processing Flow

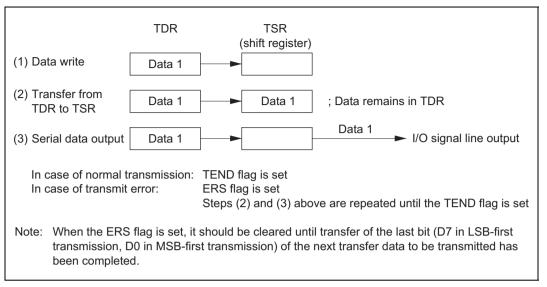


Figure 14-5 Relation Between Transmit Operation and Internal Registers

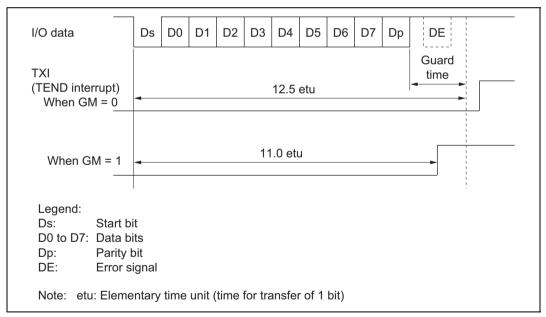


Figure 14-6 TEND Flag Generation Timing in Transmission Operation

Serial Data Reception (Except Block Transfer Mode): Data reception in Smart Card mode uses the same processing procedure as for the normal SCI. Figure 14-7 shows an example of the transmission processing flow.

- [1] Perform Smart Card interface mode initialization as described above in Initialization.
- [2] Check that the ORER flag and PER flag in SSR are cleared to 0. If either is set, perform the appropriate receive error processing, then clear both the ORER and the PER flag to 0.
- [3] Repeat steps [2] and [3] until it can be confirmed that the RDRF flag is set to 1.
- [4] Read the receive data from RDR.
- [5] When receiving data continuously, clear the RDRF flag to 0 and go back to step [2].
- [6] To end reception, clear the RE bit to 0.

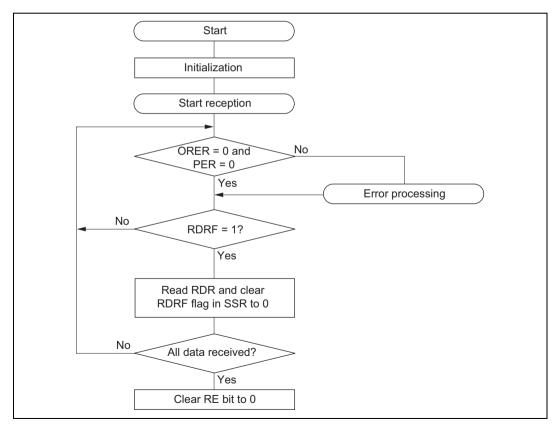


Figure 14-7 Example of Reception Processing Flow

With the above processing, interrupt servicing or data transfer by the DTC* is possible.

If reception ends and the RDRF flag is set to 1 while the RIE bit is set to 1 and interrupt requests are enabled, a receive data full interrupt (RXI) request will be generated. If an error occurs in reception and either the ORER flag or the PER flag is set to 1, a transfer error interrupt (ERI) request will be generated.

If the DTC* is activated by an RXI request, the receive data in which the error occurred is skipped, and only the number of bytes of receive data set in the DTC* are transferred.

For details, see Interrupt Operation and Data Transfer Operation by DTC* followings.

If a parity error occurs during reception and the PER is set to 1, the received data is still transferred to RDR, and therefore this data can be read.

Notes: For block transfer mode, see section 13.3.2, Operation in Asynchronous Mode.

* The DTC is not implemented in the H8S/2635 Group.

Mode Switching Operation: When switching from receive mode to transmit mode, first confirm that the receive operation has been completed, then start from initialization, clearing RE bit to 0 and setting TE bit to 1. The RDRF flag or the PER and ORER flags can be used to check that the receive operation has been completed.

When switching from transmit mode to receive mode, first confirm that the transmit operation has been completed, then start from initialization, clearing TE bit to 0 and setting RE bit to 1. The TEND flag can be used to check that the transmit operation has been completed.

Fixing Clock Output Level: When the GM bit in SMR is set to 1, the clock output level can be fixed with bits CKE1 and CKE0 in SCR. At this time, the minimum clock pulse width can be made the specified width.

Figure 14-8 shows the timing for fixing the clock output level. In this example, GSM is set to 1, CKE1 is cleared to 0, and the CKE0 bit is controlled.

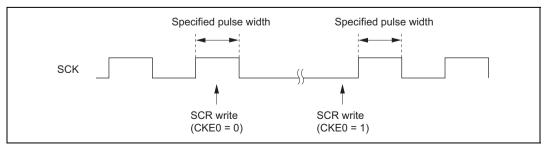


Figure 14-8 Timing for Fixing Clock Output Level

Interrupt Operation (Except Block Transfer Mode): There are three interrupt sources in smart card interface mode: transmit data empty interrupt (TXI) requests, transfer error interrupt (ERI) requests, and receive data full interrupt (RXI) requests. The transmit end interrupt (TEI) request is not used in this mode.

When the TEND flag in SSR is set to 1, a TXI interrupt request is generated.

When the RDRF flag in SSR is set to 1, an RXI interrupt request is generated.

When any of flags ORER, PER, and ERS in SSR is set to 1, an ERI interrupt request is generated. The relationship between the operating states and interrupt sources is shown in table 14-8.

Note: For block transfer mode, see section 13.4, SCI Interrupts.

Table 14-8 Smart Card Mode Operating States and Interrupt Sources

Operating Sta	te	Flag	Enable Bit	Interrupt Source	DTC Activation	
Transmit Mode	Normal operation	TEND	TIE	TXI	Possible	
	Error	ERS	RIE	ERI	Not possible	
Receive Mode	Normal operation	RDRF	RIE	RXI	Possible	
	Error	PER, ORER	RIE	ERI	Not possible	

Data Transfer Operation by DTC*: In smart card mode, as with the normal SCI, transfer can be carried out using the DTC. In a transmit operation, the TDRE flag is also set to 1 at the same time as the TEND flag in SSR, and a TXI interrupt is generated. If the TXI request is designated beforehand as a DTC activation source, the DTC will be activated by the TXI request, and transfer of the transmit data will be carried out. The TDRE and TEND flags are automatically cleared to 0 when data transfer is performed by the DTC. In the event of an error, the SCI retransmits the same data automatically. During this period, TEND remains cleared to 0 and the DTC is not activated. Therefore, the SCI and DTC will automatically transmit the specified number of bytes, including retransmission in the event of an error. However, the ERS flag is not cleared automatically when an error occurs, and so the RIE bit should be set to 1 beforehand so that an ERI request will be generated in the event of an error, and the ERS flag will be cleared.

When performing transfer using the DTC, it is essential to set and enable the DTC before carrying out SCI setting. For details of the DTC setting procedures, see section 8, Data Transfer Controller (DTC).

In a receive operation, an RXI interrupt request is generated when the RDRF flag in SSR is set to 1. If the RXI request is designated beforehand as a DTC activation source, the DTC will be activated by the RXI request, and transfer of the receive data will be carried out. The RDRF flag is cleared to 0 automatically when data transfer is performed by the DTC. If an error occurs, an error flag is set but the RDRF flag is not. Consequently, the DTC is not activated, but instead, an ERI interrupt request is sent to the CPU. Therefore, the error flag should be cleared.

Notes: For block transfer mode, see section 13.4, SCI Interrupts.

* The DTC is not implemented in the H8S/2635 Group.

14.3.7 Operation in GSM Mode

Switching the Mode: When switching between smart card interface mode and software standby mode, the following switching procedure should be followed in order to maintain the clock duty.

- When changing from smart card interface mode to software standby mode
- [1] Set the data register (DR) and data direction register (DDR) corresponding to the SCK pin to the value for the fixed output state in software standby mode.
- [2] Write 0 to the TE bit and RE bit in the serial control register (SCR) to halt transmit/receive operation. At the same time, set the CKE1 bit to the value for the fixed output state in software standby mode.
- [3] Write 0 to the CKE0 bit in SCR to halt the clock.
- [4] Wait for one serial clock period.

 During this interval, clock output is fixed at the specified level, with the duty preserved.
- [5] Make the transition to the software standby state.
- When returning to smart card interface mode from software standby mode
- [6] Exit the software standby state.
- [7] Write 1 to the CKE0 bit in SCR and output the clock. Signal generation is started with the normal duty.

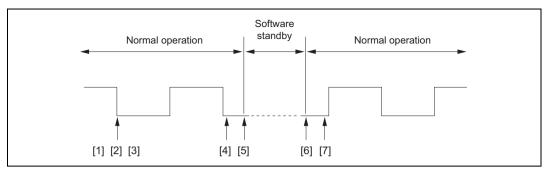


Figure 14-9 Clock Halt and Restart Procedure

Powering On: To secure the clock duty from power-on, the following switching procedure should be followed.

- [1] The initial state is port input and high impedance. Use a pull-up resistor or pull-down resistor to fix the potential.
- [2] Fix the SCK pin to the specified output level with the CKE1 bit in SCR.
- [3] Set SMR and SCMR, and switch to smart card mode operation.
- [4] Set the CKE0 bit in SCR to 1 to start clock output.

14.3.8 Operation in Block Transfer Mode

Operation in block transfer mode is the same as in SCI asynchronous mode, except for the following points. For details, see section 13.3.2, Operation in Asynchronous Mode.

Data Format: The data format is 8 bits with parity. There is no stop bit, but there is a 2-bit (1-bit or more in reception) error guard time.

Also, except during transmission (with start bit, data bits, and parity bit), the transmission pins go to the high-impedance state, so the signal lines must be fixed high with a pull-up resistor.

Transmit/Receive Clock: Only an internal clock generated by the on-chip baud rate generator can be used as the transmit/receive clock. The number of basic clock periods in a 1-bit transfer interval can be set to 32, 64, 372, or 256 with bits BCP1 and BCP0. For details, see section 14.3.5, Clock.

ERS (**FER**) **Flag:** As with the normal Smart Card interface, the ERS flag indicates the error signal status, but since error signal transmission and reception is not performed, this flag is always cleared to 0.

14.4 Usage Notes

The following points should be noted when using the SCI as a Smart Card interface.

Receive Data Sampling Timing and Reception Margin in Smart Card Interface Mode: In Smart Card interface mode, the SCI operates on a basic clock with a frequency of 32, 64, 372, or 256 times the transfer rate (as determined by bits BCP1 and BCP0).

In reception, the SCI samples the falling edge of the start bit using the basic clock, and performs internal synchronization. Receive data is latched internally at the rising edge of the 16th, 32nd, 186th, or 128th pulse of the basic clock. Figure 14-10 shows the receive data sampling timing when using a clock of 372 times the transfer rate.

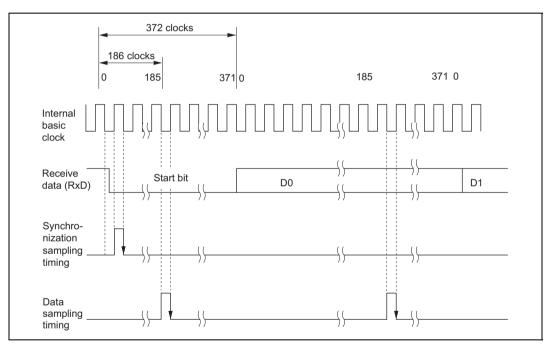


Figure 14-10 Receive Data Sampling Timing in Smart Card Mode (Using Clock of 372 Times the Transfer Rate)

Thus the reception margin in asynchronous mode is given by the following formula.

Formula for reception margin in smart card interface mode

$$M = \left| (0.5 - \frac{1}{2N}) - (L - 0.5) F - \frac{\left| D - 0.5 \right|}{N} (1 + F) \right| \times 100\%$$

Where M: Reception margin (%)

N: Ratio of bit rate to clock (N = 32, 64, 372, and 256)

D: Clock duty (D = 0 to 1.0)

L: Frame length (L = 10)

F: Absolute value of clock frequency deviation

Assuming values of F = 0, D = 0.5 and N = 372 in the above formula, the reception margin formula is as follows.

When D = 0.5 and F = 0,
M =
$$(0.5 - 1/2 \times 372) \times 100\%$$

= 49.866%

Retransfer Operations (Except Block Transfer Mode): Retransfer operations are performed by the SCI in receive mode and transmit mode as described below.

- Retransfer operation when SCI is in receive mode
 Figure 14-11 illustrates the retransfer operation when the SCI is in receive mode.
- [1] If an error is found when the received parity bit is checked, the PER bit in SSR is automatically set to 1. If the RIE bit in SCR is enabled at this time, an ERI interrupt request is generated. The PER bit in SSR should be kept cleared to 0 until the next parity bit is sampled.
- [2] The RDRF bit in SSR is not set for a frame in which an error has occurred.
- [3] If no error is found when the received parity bit is checked, the PER bit in SSR is not set to 1.
- [4] If no error is found when the received parity bit is checked, the receive operation is judged to have been completed normally, and the RDRF flag in SSR is automatically set to 1. If the RIE bit in SCR is enabled at this time, an RXI interrupt request is generated.
 If DTC* data transfer by an RXI source is enabled, the contents of RDR can be read automatically. When the RDR data is read by the DTC*, the RDRF flag is automatically cleared to 0.
- [5] When a normal frame is received, the pin retains the high-impedance state at the timing for error signal transmission.

Note: * The DTC is not implemented in the H8S/2635 Group.

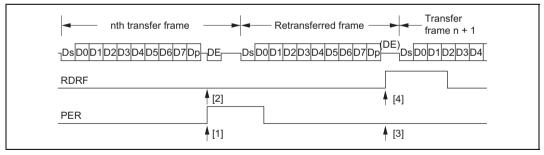


Figure 14-11 Retransfer Operation in SCI Receive Mode

- Retransfer operation when SCI is in transmit mode
 Figure 14-12 illustrates the retransfer operation when the SCI is in transmit mode.
- [6] If an error signal is sent back from the receiving end after transmission of one frame is completed, the ERS bit in SSR is set to 1. If the RIE bit in SCR is enabled at this time, an ERI

- interrupt request is generated. The ERS bit in SSR should be kept cleared to 0 until the next parity bit is sampled.
- [7] The TEND bit in SSR is not set for a frame for which an error signal indicating an abnormality is received
- [8] If an error signal is not sent back from the receiving end, the ERS bit in SSR is not set.
- [9] If an error signal is not sent back from the receiving end, transmission of one frame, including a retransfer, is judged to have been completed, and the TEND bit in SSR is set to 1. If the TIE bit in SCR is enabled at this time, a TXI interrupt request is generated.
 - If data transfer by the DTC* by means of the TXI source is enabled, the next data can be written to TDR automatically. When data is written to TDR by the DTC*, the TDRE bit is automatically cleared to 0.

Note: * The DTC is not implemented in the H8S/2635 Group.

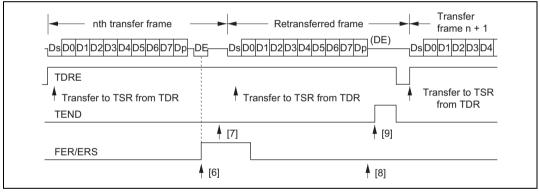


Figure 14-12 Retransfer Operation in SCI Transmit Mode

Section 15 I²C Bus Interface [Option] (Only for the H8S/2638, H8S/2639, and H8S/2630)

A two-channel I^2C bus interface is available as an option in the H8S/2638, H8S/2639, and H8S/2630 (the product equipped with the I^2C bus interface is the W-mask version). Observe the following notes when using this option.

A "W" is added to the part number in products in which this optional function is used.

Examples: HD64F2638WF*

Note: * When the optional function is used in a U-mask version, "U" is replaced with "W".

Example: HD64F2638UF → HD64F2638WF

15.1 Overview

A two-channel I^2C bus interface is available for the H8S/2638, H8S/2639, and H8S/2630 as an option. The I^2C bus interface conforms to and provides a subset of the Philips I^2C bus (inter-IC bus) interface functions. The register configuration that controls the I^2C bus differs partly from the Philips configuration, however.

Each I²C bus interface channel uses only one data line (SDA) and one clock line (SCL) to transfer data, saving board and connector space.

15.1.1 Features

- Selection of addressing format or non-addressing format
 - I²C bus format: addressing format with acknowledge bit, for master/slave operation
 - Serial format: non-addressing format without acknowledge bit, for master operation only
- Conforms to Philips I²C bus interface (I²C bus format)
- Two ways of setting slave address (I²C bus format)
- Start and stop conditions generated automatically in master mode (I²C bus format)
- Selection of acknowledge output levels when receiving (I²C bus format)
- Automatic loading of acknowledge bit when transmitting (I²C bus format)
- Wait function in master mode (I²C bus format)
 - A wait can be inserted by driving the SCL pin low after data transfer, excluding acknowledgement. The wait can be cleared by clearing the interrupt flag.

- Wait function in slave mode (I²C bus format)
 - A wait request can be generated by driving the SCL pin low after data transfer, excluding acknowledgement. The wait request is cleared when the next transfer becomes possible.
- Three interrupt sources
 - Data transfer end (including transmission mode transition with I²C bus format and address reception after loss of master arbitration)
 - Address match: when any slave address matches or the general call address is received in slave receive mode (I²C bus format)
 - Stop condition detection
- Selection of 16 internal clocks (in master mode)
- Direct bus drive (with SCL and SDA pins)
 - Two pins—P35/SCL0 and P34/SDA0—(normally NMOS push-pull outputs) function as NMOS open-drain outputs when the bus drive function is selected.
 - Two pins—P33/SCL1 and P32/SDA1—(normally CMOS pins) function as NMOS-only outputs when the bus drive function is selected.

15.1.2 Block Diagram

Figure 15-1 shows a block diagram of the I²C bus interface.

Figure 15-2 shows an example of I/O pin connections to external circuits. Channel 0 I/O pins are NMOS open drains, and it is possible to apply voltages in excess of the power supply (V_{CC}) voltage for this LSI. Set the upper limit of voltage applied to the power supply (V_{CC}) power supply range + 0.3 V, i.e. 5.8 V. Channel 1 I/O pins are driven solely by NMOS, so in terms of appearance they carry out the same operations as an NMOS open drain. However, the voltage which can be applied to the I/O pins depends on the voltage of the power supply (V_{CC}) of this LSI.



Figure 15-1 Block Diagram of I²C Bus Interface

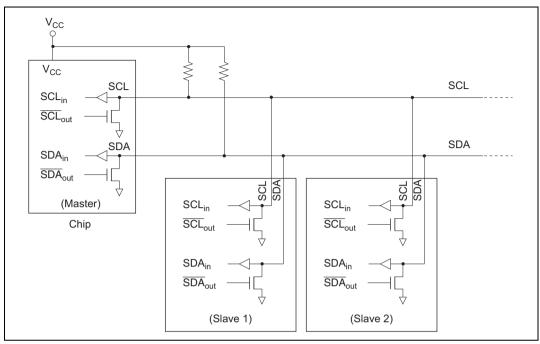


Figure 15-2 I²C Bus Interface Connections (Example: The Chip as Master)

15.1.3 Input/Output Pins

Table 15-1 summarizes the input/output pins used by the I²C bus interface.

Table 15-1 I²C Bus Interface Pins

Channel	Name	Abbreviation	I/O	Function
0	Serial clock	SCL0	I/O	IIC0 serial clock input/output
	Serial data	SDA0	I/O	IIC0 serial data input/output
1	Serial clock	SCL1	I/O	IIC1 serial clock input/output
	Serial data	SDA1	I/O	IIC1 serial data input/output

Note: In the text, the channel subscript is omitted, and only SCL and SDA are used.

15.1.4 Register Configuration

Table 15-2 summarizes the registers of the I²C bus interface.

Table 15-2 Register Configuration

Channel	Name	Abbreviation	R/(W)	Initial Value	Address*1
0	I ² C bus control register	ICCR0	R/(W)*4	H'01	H'FF78*3
	I ² C bus status register	ICSR0	R/(W)*4	H'00	H'FF79*3
	I ² C bus data register	ICDR0	R/W	_	H'FF7E*2*3
	I ² C bus mode register	ICMR0	R/W	H'00	H'FF7F*2*3
	Slave address register	SAR0	R/W	H'00	H'FF7F*2*3
	Second slave address register	SARX0	R/W	H'01	H'FF7E*2*3
1	I ² C bus control register	ICCR1	R/(W)* ⁴	H'01	H'FF80*3
	I ² C bus status register	ICSR1	R/(W)*4	H'00	H'FF81*3
	I ² C bus data register	ICDR1	R/W	_	H'FF86*2*3
	I ² C bus mode register	ICMR1	R/W	H'00	H'FF87*2*3
	Slave address register	SAR1	R/W	H'00	H'FF87*2*3
	Second slave address register	SARX1	R/W	H'01	H'FF86*2*3
Common	Serial control register X	SCRX	R/W	H'08	H'FDB4
	DDC switch register	DDCSWR	R/W	H'0F	H'FDB5
	Module stop control register B	MSTPCRB	R/W	H'FF	H'FDE9

Notes: 1. Lower 16 bits of the address.

- 2. The register that can be written or read depends on the ICE bit in the I^2C bus control register. The slave address register can be accessed when ICE = 0, and the I^2C bus mode register can be accessed when ICE = 1.
- 3. The I²C bus interface registers are assigned to the same addresses as other registers. Register selection is performed by means of the IICE bit in the serial control register X (SCRX).
- 4. Only 0 can be written, to clear the flag.

15.2 Register Descriptions

15.2.1 I²C Bus Data Register (ICDR)

Bit	:	7	6	5	4	3	2	1	0
		ICDR7	ICDR6	ICDR5	ICDR4	ICDR3	ICDR2	ICDR1	ICDR0
Initial value	:		_	_	_	_	_	_	
R/W	:	R/W							

ICDRR

Bit	:	7	6	5	4	3	2	1	0
		ICDRR7	ICDRR6	ICDRR5	ICDRR4	ICDRR3	ICDRR2	ICDRR1	ICDRR0
Initial value	:	_	_	_	_	_	_	_	_
R/W	:	R	R	R	R	R	R	R	R

ICDRS

Bit	:	7	6	5	4	3	2	1	0
		ICDRS7	ICDRS6	ICDRR5	ICDRS4	ICDRS3	ICDRS2	ICDRS1	ICDRS0
Initial value	:	_	_	_	_	_	_	_	_
R/W	:	_	_	_	_	_	_	_	_

• ICDRT

Bit	:	7	6	5	4	3	2	1	0
		ICDRT7	ICDRT6	ICDRT5	ICDRT4	ICDRT3	ICDRT2	ICDRT1	ICDRT0
Initial value	:		_	_	_	_		_	
R/W	:	W	W	W	W	W	W	W	W

• TDRE, RDRF (internal flags)

Bit	:	_	_
		TDRE	RDRF
Initial value	:	0	0
R/W	:	_	_

ICDR is an 8-bit readable/writable register that is used as a transmit data register when transmitting and a receive data register when receiving. ICDR is divided internally into a shift register (ICDRS), receive buffer (ICDRR), and transmit buffer (ICDRT). ICDRS cannot be read or written by the CPU, ICDRR is read-only, and ICDRT is write-only. Data transfers among the three registers are performed automatically in coordination with changes in the bus state, and affect the status of internal flags such as TDRE and RDRF.

If IIC is in transmit mode and the next data is in ICDRT (the TDRE flag is 0) following transmission/reception of one frame of data using ICDRS, data is transferred automatically from ICDRT to ICDRS. If IIC is in receive mode and no previous data remains in ICDRR (the RDRF flag is 0) following transmission/reception of one frame of data using ICDRS, data is transferred automatically from ICDRS to ICDRR.

If the number of bits in a frame, excluding the acknowledge bit, is less than 8, transmit data and receive data are stored differently. Transmit data should be written justified toward the MSB side when MLS = 0, and toward the LSB side when MLS = 1. Receive data bits read from the LSB side should be treated as valid when MLS = 0, and bits read from the MSB side when MLS = 1.

ICDR is assigned to the same address as SARX, and can be written and read only when the ICE bit is set to 1 in ICCR.

The value of ICDR is undefined after a reset.

The TDRE and RDRF flags are set and cleared under the conditions shown below. Setting the TDRE and RDRF flags affects the status of the interrupt flags.

TDRE	Description								
0	The next transmit data is in ICDR (ICDRT), or transmission cannot be started (Initial value)								
	[Clearing conditions]								
	• When transmit data is written in ICDR (ICDRT) in transmit mode (TRS = 1)								
	 When a stop condition is detected in the bus line state after a stop condition is issued with the I²C bus format or serial format selected 								
	 When a stop condition is detected with the I²C bus format selected 								
	In receive mode (TRS = 0)								
	(A 0 write to TRS during transfer is valid after reception of a frame containing an acknowledge bit)								
1	The next transmit data can be written in ICDR (ICDRT)								
	[Setting conditions]								
	 In transmit mode (TRS = 1), when a start condition is detected in the bus line state after a start condition is issued in master mode with the I²C bus format or serial format selected 								
	When data is transferred from ICDRT to ICDRS								
	(Data transfer from ICDRT to ICDRS when TRS = 1 and TDRE = 0, and ICDRS is empty)								
	 In receive mode (TRS = 0), when a switch is made from slave receive mode (TRS 								
	= 0) to transmit mode (TRS = 1) after detection of a start condition (first time only)								
RDRF	Description								
0	The data in ICDR (ICDRR) is invalid (Initial value)								

RDRF	Description							
0	The data in ICDR (ICDRR) is invalid	(Initial value)						
	[Clearing condition]							
	When ICDR (ICDRR) receive data is read in receive mode							
1	The ICDR (ICDRR) receive data can be read							
	[Setting condition]							
	When data is transferred from ICDRS to ICDRR							
	(Data transfer from ICDRS to ICDRR in case of normal termination w and RDRF = 0)	rith TRS = 0						

15.2.2 Slave Address Register (SAR)

Bit :	7	6	5	4	3	2	1	0	_
	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS	
Initial value :	0	0	0	0	0	0	0	0	_
R/W :	R/W	R/W							

SAR is an 8-bit readable/writable register that stores the slave address and selects the communication format. When the chip is in slave mode (and the addressing format is selected), if the upper 7 bits of SAR match the upper 7 bits of the first frame received after a start condition, the chip operates as the slave device specified by the master device. SAR is assigned to the same address as ICMR, and can be written and read only when the ICE bit is cleared to 0 in ICCR.

SAR is initialized to H'00 by a reset and in hardware standby mode.

Bits 7 to 1—Slave Address (SVA6 to SVA0): Set a unique address in bits SVA6 to SVA0, differing from the addresses of other slave devices connected to the I²C bus.

Bit 0—Format Select (FS): Used together with the FSX bit in SARX to select the communication format.

- I²C bus format: addressing format with acknowledge bit
- Synchronous serial format: non-addressing format without acknowledge bit, for master mode only

The FS bit also specifies whether or not SAR slave address recognition is performed in slave mode.

SAR Bit 0	SARX Bit 0		
FS	FSX	Operating Mode	
0	0	I ² C bus format	
		 SAR and SARX slave addresses recognized 	
	1	I ² C bus format	(Initial value)
		 SAR slave address recognized 	
		 SARX slave address ignored 	
1	0	I ² C bus format	
		 SAR slave address ignored 	
		 SARX slave address recognized 	
	1	Synchronous serial format	
		 SAR and SARX slave addresses ignored 	

15.2.3 Second Slave Address Register (SARX)

Bit	:	7	6	5	4	3	2	1	0
		SVAX6	SVAX5	SVAX4	SVAX3	SVAX2	SVAX1	SVAX0	FSX
Initial value	:	0	0	0	0	0	0	0	1
R/W	:	R/W	R/W						

SARX is an 8-bit readable/writable register that stores the second slave address and selects the communication format. When the chip is in slave mode (and the addressing format is selected), if the upper 7 bits of SARX match the upper 7 bits of the first frame received after a start condition, the chip operates as the slave device specified by the master device. SARX is assigned to the same address as ICDR, and can be written and read only when the ICE bit is cleared to 0 in ICCR.

SARX is initialized to H'01 by a reset and in hardware standby mode.

Bits 7 to 1—Second Slave Address (SVAX6 to SVAX0): Set a unique address in bits SVAX6 to SVAX0, differing from the addresses of other slave devices connected to the I²C bus.

Bit 0—Format Select X (FSX): Used together with the FS bit in SAR to select the communication format.

- I²C bus format: addressing format with acknowledge bit
- Synchronous serial format: non-addressing format without acknowledge bit, for master mode only

The FSX bit also specifies whether or not SARX slave address recognition is performed in slave mode. For details, see the description of the FS bit in SAR.

15.2.4 I²C Bus Mode Register (ICMR)

Bit :	7	6	5	4	3	2	1	0
	MLS	WAIT	CKS2	CKS1	CKS0	BC2	BC1	BC0
Initial value :	0	0	0	0	0	0	0	0
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

ICMR is an 8-bit readable/writable register that selects whether the MSB or LSB is transferred first, performs master mode wait control, and selects the master mode transfer clock frequency and the transfer bit count. ICMR is assigned to the same address as SAR. ICMR can be written and read only when the ICE bit is set to 1 in ICCR.

ICMR is initialized to H'00 by a reset and in hardware standby mode.

Bit 7—MSB-First/LSB-First Select (MLS): Selects whether data is transferred MSB-first or LSB-first.

If the number of bits in a frame, excluding the acknowledge bit, is less than 8, transmit data and receive data are stored differently. Transmit data should be written justified toward the MSB side when MLS = 0, and toward the LSB side when MLS = 1. Receive data bits read from the LSB side should be treated as valid when MLS = 0, and bits read from the MSB side when MLS = 1.

Do not set this bit to 1 when the I²C bus format is used.

Bit 7

MLS	Description	
0	MSB-first	(Initial value)
1	LSB-first	

Bit 6—Wait Insertion Bit (WAIT): Selects whether to insert a wait between the transfer of data and the acknowledge bit, in master mode with the I²C bus format. When WAIT is set to 1, after the fall of the clock for the final data bit, the IRIC flag is set to 1 in ICCR, and a wait state begins (with SCL at the low level). When the IRIC flag is cleared to 0 in ICCR, the wait ends and the acknowledge bit is transferred. If WAIT is cleared to 0, data and acknowledge bits are transferred consecutively with no wait inserted.

The IRIC flag in ICCR is set to 1 on completion of the acknowledge bit transfer, regardless of the WAIT setting.

The setting of this bit is invalid in slave mode.

Bit 6

WAIT	Description	
0	Data and acknowledge bits transferred consecutively	(Initial value)
1	Wait inserted between data and acknowledge bits	

Bits 5 to 3—Serial Clock Select (CKS2 to CKS0): These bits, together with the IICX1 (channel 1) or IICX0 (channel 0) bit in the SCRX register, select the serial clock frequency in master mode. They should be set according to the required transfer rate.

SC	RX
Bit	

5 or 6	Bit 5	Bit 4	Bit 3		Transfer Rate				
IICX	CKS2	CKS1	CKS0	_ Clock	φ = 5 MHz	φ = 8 MHz	φ = 10 MHz	φ = 16 MHz	φ = 20 MHz
0	0	0	0	φ/28	179 kHz	286 kHz	357 kHz	571 kHz*	714 kHz*
			1	φ/40	125 kHz	200 kHz	250 kHz	400 kHz	500 kHz*
		1	0	ф/48	104 kHz	167 kHz	208 kHz	333 kHz	417 kHz*
			1	φ/64	78.1 kHz	125 kHz	156 kHz	250 kHz	313 kHz
	1	0	0	φ/80	62.5 kHz	100 kHz	125 kHz	200 kHz	250 kHz
			1	φ/100	50.0 kHz	80.0 kHz	100 kHz	160 kHz	200 kHz
		1	0	φ/112	44.6 kHz	71.4 kHz	89.3 kHz	143 kHz	179 kHz
			1	φ/128	39.1 kHz	62.5 kHz	78.1 kHz	125 kHz	156 kHz
1	0	0	0	φ/56	89.3 kHz	143 kHz	179 kHz	286 kHz	357 kHz
			1	φ/80	62.5 kHz	100 kHz	125 kHz	200 kHz	250 kHz
		1	0	φ/96	52.1 kHz	83.3 kHz	104 kHz	167 kHz	208 kHz
			1	φ/128	39.1 kHz	62.5 kHz	78.1 kHz	125 kHz	156 kHz
	1	0	0	ф/160	31.3 kHz	50.0 kHz	62.5 kHz	100 kHz	125 kHz
			1	φ/200	25.0 kHz	40.0 kHz	50.0 kHz	80.0 kHz	100 kHz
		1	0	φ/224	22.3 kHz	35.7 kHz	44.6 kHz	71.4 kHz	89.3 kHz
			1	ф/256	19.5 kHz	31.3 kHz	39.1 kHz	62.5 kHz	78.1 kHz

Note: *These rates are outside the ranges stipulated in the I²C bus interface specifications (normal mode: max. 100 kHz, high-speed mode: max. 400 kHz).

Bits 2 to 0—Bit Counter (BC2 to BC0): Bits BC2 to BC0 specify the number of bits to be transferred next. With the I²C bus format (when the FS bit in SAR or the FSX bit in SARX is 0), the data is transferred with one addition acknowledge bit. Bit BC2 to BC0 settings should be made during an interval between transfer frames. If bits BC2 to BC0 are set to a value other than 000, the setting should be made while the SCL line is low.

The bit counter is initialized to 000 by a reset and when a start condition is detected. The value returns to 000 at the end of a data transfer, including the acknowledge bit.

Bit 2	Bit 1	Bit 0	Bits	/Frame	
BC2	BC1	BC0	Synchronous Serial Format	I ² C Bus Format	
0	0	0	8	9	(Initial value)
		1	1	2	
	1	0	2	3	
		1	3	4	
1	0	0	4	5	
		1	5	6	
	1	0	6	7	
		1	7	8	

15.2.5 I²C Bus Control Register (ICCR)

Bit	:	7	6	5	4	3	2	1	0
		ICE	IEIC	MST	TRS	ACKE	BBSY	IRIC	SCP
Initial value	:	0	0	0	0	0	0	0	1
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/(W)*	W

Note: * Only 0 can be written, for flag clearing.

ICCR is an 8-bit readable/writable register that enables or disables the I^2C bus interface, enables or disables interrupts, selects master or slave mode and transmission or reception, enables or disables acknowledgement, confirms the I^2C bus interface bus status, issues start/stop conditions, and performs interrupt flag confirmation.

ICCR is initialized to H'01 by a reset and in hardware standby mode.

Bit 7—I²C Bus Interface Enable (ICE): Selects whether or not the I²C bus interface is to be used. When ICE is set to 1, port pins function as SCL and SDA input/output pins and transfer operations are enabled. When ICE is cleared to 0, the I²C bus interface module is halted and its internal states are cleared.

The SAR and SARX registers can be accessed when ICE is 0. The ICMR and ICDR registers can be accessed when ICE is 1.

Bit 7

ICE	Description
0	I ² C bus interface module disabled, with SCL and SDA signal pins set to port function (Initial value)
	I ² C bus interface module internal states initialized
	SAR and SARX can be accessed
1	I ² C bus interface module enabled for transfer operations (pins SCL and SCA are driving the bus)
	ICMR and ICDR can be accessed

Bit 6—I²C Bus Interface Interrupt Enable (IEIC): Enables or disables interrupts from the I²C bus interface to the CPU

Bit 6

IEIC	Description	
0	Interrupts disabled	(Initial value)
1	Interrupts enabled	

Bit 5—Master/Slave Select (MST)

Bit 4—Transmit/Receive Select (TRS)

MST selects whether the I²C bus interface operates in master mode or slave mode.

TRS selects whether the I²C bus interface operates in transmit mode or receive mode.

In master mode with the I^2C bus format, when arbitration is lost, MST and TRS are both reset by hardware, causing a transition to slave receive mode. In slave receive mode with the addressing format (FS = 0 or FSX = 0), hardware automatically selects transmit or receive mode according to the R/W bit in the first frame after a start condition.

Modification of the TRS bit during transfer is deferred until transfer of the frame containing the acknowledge bit is completed, and the changeover is made after completion of the transfer.

MST and TRS select the operating mode as follows.

Bit 5 MST	Bit 4 TRS		
		Operating Mode	
0	0	Slave receive mode	(Initial value)
	1	Slave transmit mode	
1	0	Master receive mode	
	1	Master transmit mode	

Bit 5

MST	Description		
0	Slave mode	(Initial value)	
	[Clearing conditions]		
	(1) When 0 is written by software		
	(2) When bus arbitration is lost after transmission is started in I ² mode	² C bus format master	
1	Master mode		
	[Setting conditions]		
	(1) When 1 is written by software (in cases other than clearing	condition (2))	
	(2) When 1 is written in MST after reading MST = 0 (in case of	clearing condition (2))	

Bit 4

TRS	Description	
0	Receive mode	(Initial value)
	[Clearing conditions]	
	(1) When 0 is written by software (in cases other than setting condition (3))	
	(2) When 0 is written in TRS after reading TRS = 1 (in case of	f clearing condition (3))
	(3) When bus arbitration is lost after transmission is started in mode	I ² C bus format master
1	Transmit mode	
	[Setting conditions]	
	(1) When 1 is written by software (in cases other than clearing	g conditions (3) and 4)
	(2) When 1 is written in TRS after reading TRS = 0 (in case of and 4)	f clearing conditions (3)
	(3) When a 1 is received as the R/W bit of the first frame in I ² C	C bus format slave mode

Bit 3—Acknowledge Bit Judgement Selection (ACKE): Specifies whether the value of the acknowledge bit returned from the receiving device when using the I²C bus format is to be ignored and continuous transfer is performed, or transfer is to be aborted and error handling, etc., performed if the acknowledge bit is 1. When the ACKE bit is 0, the value of the received acknowledge bit is not indicated by the ACKB bit, which is always 0.

In this LSI, the DTC can be used to perform continuous transfer. The DTC is activated when the IRTR interrupt flag is set to 1 (IRTR is one of two interrupt flags, the other being IRIC). When the ACKE bit is 0, the TDRE, IRIC, and IRTR flags are set on completion of data transmission, regardless of the value of the acknowledge bit. When the ACKE bit is 1, the TDRE, IRIC, and IRTR flags are set on completion of data transmission when the acknowledge bit is 0, and the IRIC flag alone is set on completion of data transmission when the acknowledge bit is 1.

When the DTC is activated, the TDRE, IRIC, and IRTR flags are cleared to 0 after the specified number of data transfers have been executed. Consequently, interrupts are not generated during continuous data transfer, but if data transmission is completed with a 1 acknowledge bit when the ACKE bit is set to 1, the DTC is not activated and an interrupt is generated, if enabled.

Depending on the receiving device, the acknowledge bit may be significant, in indicating completion of processing of the received data, for instance, or may be fixed at 1 and have no significance.

Bit 3

ACKE	 Description
0	The value of the acknowledge bit is ignored, and continuous transfer is performed (Initial value)
1	If the acknowledge bit is 1, continuous transfer is interrupted

Bit 2—Bus Busy (BBSY): The BBSY flag can be read to check whether the I²C bus (SCL, SDA) is busy or free. In master mode, this bit is also used to issue start and stop conditions.

A high-to-low transition of SDA while SCL is high is recognized as a start condition, setting BBSY to 1. A low-to-high transition of SDA while SCL is high is recognized as a stop condition, clearing BBSY to 0.

To issue a start condition, use a MOV instruction to write 1 in BBSY and 0 in SCP. A retransmit start condition is issued in the same way. To issue a stop condition, use a MOV instruction to write 0 in BBSY and 0 in SCP. It is not possible to write to BBSY in slave mode; the I²C bus interface must be set to master transmit mode before issuing a start condition. MST and TRS should both be set to 1 before writing 1 in BBSY and 0 in SCP.

Bit 2

BBSY	Description	
0	Bus is free	(Initial value)
	[Clearing condition]	
	When a stop condition is detected	
1	Bus is busy	
	[Setting condition]	
	When a start condition is detected	

Bit 1—I²C Bus Interface Interrupt Request Flag (IRIC): Indicates that the I²C bus interface has issued an interrupt request to the CPU. IRIC is set to 1 at the end of a data transfer, when a slave address or general call address is detected in slave receive mode, when bus arbitration is lost in master transmit mode, and when a stop condition is detected. IRIC is set at different times depending on the FS bit in SAR and the WAIT bit in ICMR. See section 15.3.7, IRIC Setting Timing and SCL Control. The conditions under which IRIC is set also differ depending on the setting of the ACKE bit in ICCR.

IRIC is cleared by reading IRIC after it has been set to 1, then writing 0 in IRIC.

When the DTC is used, IRIC is cleared automatically and transfer can be performed continuously without CPU intervention.

Bit 1

IRIC	Description
0	Waiting for transfer, or transfer in progress (Initial value)
	[Clearing conditions]
	 When 0 is written in IRIC after reading IRIC = 1
	 When ICDR is written or read by the DTC (When the TDRE or RDRF flag is cleared to 0)
	(This is not always a clearing condition; see the description of DTC operation for details)
4	Interwint requested

1 Interrupt requested

[Setting conditions]

I²C bus format master mode

- When a start condition is detected in the bus line state after a start condition is issued (when the TDRE flag is set to 1 because of first frame transmission)
- When a wait is inserted between the data and acknowledge bit when WAIT = 1
- At the end of data transfer
 (at the rise of the 9th transmit/receive clock pulse, or at the fall of the 8th transmit/receive clock pulse when using wait insertion)
- When a slave address is received after bus arbitration is lost (when the AL flag is set to 1)
- When 1 is received as the acknowledge bit when the ACKE bit is 1 (when the ACKB bit is set to 1)

I²C bus format slave mode

- When the slave address (SVA, SVAX) matches (when the AAS and AASX flags are set to 1)
- and at the end of data transfer up to the subsequent retransmission start condition or stop condition detection (when the TDRE or RDRF flag is set to 1)
- When the general call address is detected (when FS = 0 and the ADZ flag is set to 1) and at the end of data transfer up to the subsequent retransmission start condition or stop condition detection (when the TDRE or RDRF flag is set to 1)
- When 1 is received as the acknowledge bit when the ACKE bit is 1 (when the ACKB bit is set to 1)
- When a stop condition is detected (when the STOP or ESTP flag is set to 1)

Synchronous serial format

- At the end of data transfer (when the TDRE or RDRF flag is set to 1)
- When a start condition is detected with serial format selected

When any other condition arises in which the TDRE or RDRF flag is set to 1

When, with the I²C bus format selected, IRIC is set to 1 and an interrupt is generated, other flags must be checked in order to identify the source that set IRIC to 1. Although each source has a corresponding flag, caution is needed at the end of a transfer.

When the TDRE or RDRF internal flag is set, the readable IRTR flag may or may not be set. The IRTR flag (the DTC start request flag) is not set at the end of a data transfer up to detection of a retransmission start condition or stop condition after a slave address (SVA) or general call address match in I²C bus format slave mode.

Even when the IRIC flag and IRTR flag are set, the TDRE or RDRF internal flag may not be set. The IRIC and IRTR flags are not cleared at the end of the specified number of transfers in continuous transfer using the DTC. The TDRE or RDRF flag is cleared, however, since the specified number of ICDR reads or writes have been completed.

Table 15-3 shows the relationship between the flags and the transfer states.

Table 15-3 Flags and Transfer States

MST	TRS	BBSY	ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB	State
1/0	1/0	0	0	0	0	0	0	0	0	0	Idle state (flag clearing required)
1	1	0	0	0	0	0	0	0	0	0	Start condition issuance
1	1	1	0	0	1	0	0	0	0	0	Start condition established
1	1/0	1	0	0	0	0	0	0	0	0/1	Master mode wait
1	1/0	1	0	0	1	0	0	0	0	0/1	Master mode transmit/receive end
0	0	1	0	0	0	1/0	1	1/0	1/0	0	Arbitration lost
0	0	1	0	0	0	0	0	1	0	0	SAR match by first frame in slave mode
0	0	1	0	0	0	0	0	1	1	0	General call address match
0	0	1	0	0	0	1	0	0	0	0	SARX match
0	1/0	1	0	0	0	0	0	0	0	0/1	Slave mode transmit/receive end (except after SARX match)
0	1/0	1	0	0	1	1	0	0	0	0	Slave mode
0	1	1	0	0	0	1	0	0	0	1	transmit/receive end (after SARX match)
0	1/0	0	1/0	1/0	0	0	0	0	0	0/1	Stop condition detected

Bit 0—Start Condition/Stop Condition Prohibit (SCP): Controls the issuing of start and stop conditions in master mode. To issue a start condition, write 1 in BBSY and 0 in SCP. A retransmit start condition is issued in the same way. To issue a stop condition, write 0 in BBSY and 0 in SCP. This bit is always read as 1. If 1 is written, the data is not stored.

Bit 0

SCP	Description	
0	Writing 0 issues a start or stop condition, in combinatio	n with the BBSY flag
1	Reading always returns a value of 1 Writing is ignored	(Initial value)

I²C Bus Status Register (ICSR) 15.2.6

Bit	:	7	6	5	4	3	2	1	0
		ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*	R/W						

Note: * Only 0 can be written, for flag clearing.

ICSR is an 8-bit readable/writable register that performs flag confirmation and acknowledge confirmation and control.

ICSR is initialized to H'00 by a reset and in hardware standby mode.

Bit 7—Error Stop Condition Detection Flag (ESTP): Indicates that a stop condition has been detected during frame transfer in I²C bus format slave mode.

Bit 7

ESTP	Description				
0	No error stop condition	(Initial value)			
	[Clearing conditions]				
	 When 0 is written in ESTP after reading ESTP = 1 				
	When the IRIC flag is cleared to 0				
1	In I ² C bus format slave mode				
	Error stop condition detected				
	[Setting condition]				
	When a stop condition is detected during frame transfer				
	In other modes				
	No meaning				

Bit 6—Normal Stop Condition Detection Flag (STOP): Indicates that a stop condition has been detected after completion of frame transfer in I²C bus format slave mode.

Bit 6

STOP	Description			
0	No normal stop condition	(Initial value)		
	[Clearing conditions]			
	 When 0 is written in STOP after reading STOP = 1 			
	When the IRIC flag is cleared to 0			
1	In I ² C bus format slave mode			
	Normal stop condition detected			
	[Setting condition]			
	When a stop condition is detected after completion of frame tran	sfer		
	In other modes			
	No meaning			

Bit 5—I²C Bus Interface Continuous Transmission/Reception Interrupt Request Flag (IRTR): Indicates that the I²C bus interface has issued an interrupt request to the CPU, and the source is completion of reception/transmission of one frame in continuous transmission/reception

source is completion of reception/transmission of one frame in continuous transmission/reception for which DTC activation is possible. When the IRTR flag is set to 1, the IRIC flag is also set to 1 at the same time.

IRTR flag setting is performed when the TDRE or RDRF flag is set to 1. IRTR is cleared by reading IRTR after it has been set to 1, then writing 0 in IRTR. IRTR is also cleared automatically when the IRIC flag is cleared to 0.

Bit 5

IRTR	 Description					
0	Waiting for transfer, or transfer in progress	(Initial value)				
	[Clearing conditions]					
	 When 0 is written in IRTR after reading IRTR = 1 					
	 When the IRIC flag is cleared to 0 					
1	Continuous transfer state					
	[Setting conditions]					
	 In I²C bus interface slave mode When the TDRE or RDRF flag is set to 1 when AASX = 1 					
	 In other modes When the TDRE or RDRF flag is set to 1 					

Bit 4—Second Slave Address Recognition Flag (AASX): In I²C bus format slave receive mode, this flag is set to 1 if the first frame following a start condition matches bits SVAX6 to SVAX0 in SARX.

AASX is cleared by reading AASX after it has been set to 1, then writing 0 in AASX. AASX is also cleared automatically when a start condition is detected.

Bit 4

AASX	Description
0	Second slave address not recognized (Initial value)
	[Clearing conditions]
	 When 0 is written in AASX after reading AASX = 1
	When a start condition is detected
	In master mode
1	Second slave address recognized
	[Setting condition]
	 When the second slave address is detected in slave receive mode and ESX = 0

Bit 3—Arbitration Lost (AL): This flag indicates that arbitration was lost in master mode. The I^2C bus interface monitors the bus. When two or more master devices attempt to seize the bus at nearly the same time, if the I^2C bus interface detects data differing from the data it sent, it sets AL to 1 to indicate that the bus has been taken by another master.

AL is cleared by reading AL after it has been set to 1, then writing 0 in AL. In addition, AL is reset automatically by write access to ICDR in transmit mode, or read access to ICDR in receive mode.

Bit 3

AL	Description				
0	Bus arbitration won (Initial value)				
	[Clearing conditions]				
	 When ICDR data is written (transmit mode) or read (receive mode) 				
	 When 0 is written in AL after reading AL = 1 				
1	Arbitration lost				
	[Setting conditions]				
	 If the internal SDA and SDA pin disagree at the rise of SCL in master transmit mode 				
	 If the internal SCL line is high at the fall of SCL in master transmit mode 				

Bit 2—Slave Address Recognition Flag (AAS): In I²C bus format slave receive mode, this flag is set to 1 if the first frame following a start condition matches bits SVA6 to SVA0 in SAR, or if the general call address (H'00) is detected.

AAS is cleared by reading AAS after it has been set to 1, then writing 0 in AAS. In addition, AAS is reset automatically by write access to ICDR in transmit mode, or read access to ICDR in receive mode.

AAS	Description
0	Slave address or general call address not recognized (Initial value) [Clearing conditions]
	 When ICDR data is written (transmit mode) or read (receive mode) When 0 is written in AAS after reading AAS = 1
	In master mode
1	Slave address or general call address recognized [Setting condition]
	 When the slave address or general call address is detected in slave receive mode and FS = 0

Bit 1—General Call Address Recognition Flag (ADZ): In I²C bus format slave receive mode, this flag is set to 1 if the first frame following a start condition is the general call address (H'00).

ADZ is cleared by reading ADZ after it has been set to 1, then writing 0 in ADZ. In addition, ADZ is reset automatically by write access to ICDR in transmit mode, or read access to ICDR in receive mode.

Bit 1

ADZ	Description	
0	General call address not recognized (Initial	l value)
	[Clearing conditions]	
	 When ICDR data is written (transmit mode) or read (receive mode) 	
	 When 0 is written in ADZ after reading ADZ = 1 	
	In master mode	
1	General call address recognized	
	[Setting condition]	
	 When the general call address is detected in slave receive mode and (FS) FS = 0) 	K = 0 or

Bit 0—Acknowledge Bit (ACKB): Stores acknowledge data. In transmit mode, after the receiving device receives data, it returns acknowledge data, and this data is loaded into ACKB. In receive mode, after data has been received, the acknowledge data set in this bit is sent to the transmitting device.

When this bit is read, in transmission (when TRS = 1), the value loaded from the bus line (returned by the receiving device) is read. In reception (when TRS = 0), the value set by internal software is read.

In addition, when this bit is written to in reception the transmission acknowledge data setting is overwritten regardless of the value of TRS. The value loaded from the reception device is maintained unchanged, so caution is necessary when using bit operation instructions to overwrite this register.

Bit 0

ACKB	Description	
0	Receive mode: 0 is output at acknowledge output timing	(Initial value)
	Transmit mode: Indicates that the receiving device has acknowled is 0)	edged the data (signal
1	Receive mode: 1 is output at acknowledge output timing	
	Transmit mode: Indicates that the receiving device has not acknowledge (signal is 1)	owledged the data

15.2.7 Serial Control Register X (SCRX)

Bit	:	7	6	5	4	3	2	1	0
		_	IICX1	IICX0	IICE			_	
Initial value	:	0	0	0	0	1	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W

SCRX is an 8-bit readable/writable register that controls register access, the I^2C interface operating mode. If a module controlled by SCRX is not used, do not write 1 to the corresponding bit

SCRX is initialized to H'08 by a reset and in hardware standby mode.

Bit 7—Reserved: Do not set 1.

Bit 6—I²C Transfer Select 1 (IICX1): This bit, together with bits CKS2 to CKS0 in ICMR of IIC1, selects the transfer rate in master mode. For details, see section 15.2.4, I²C Bus Mode Register (ICMR).

Bit 5—I²C **Transfer Select 0 (IICX0):** This bit, together with bits CKS2 to CKS0 in ICMR of IIC0, selects the transfer rate in master mode. For details, see section 15.2.4, I²C Bus Mode Register (ICMR).

Bit 4—I²C **Master Enable (IICE):** Controls CPU access to the I²C bus interface data and control registers (ICCR, ICSR, ICDR/SARX, ICMR/SAR).

Bit 4

IICE	Description	
0	CPU access to I ² C bus interface data and control registers is disabled	(Initial value)
1	CPU access to I ² C bus interface data and control registers is enabled	

Bit 3— Reserved: Always returns a value of 1 if it is read.

Bits 2 to 0—Reserved: Do not set 1.

15.2.8 DDC Switch Register (DDCSWR)

Bit	:	7	6	5	4	3	2	1	0	_
		_	_	_	_	CLR3	CLR2	CLR1	CLR0	
Initial value	:	0	0	0	0	1	1	1	1	
R/W	:	R/(W)*1	R/(W)*1	R/(W)*1	R/(W)*1	W*2	W*2	W*2	W*2	

Notes: 1. Should always be written with 0.

2. Always read as 1.

DDCSWR is an 8-bit readable/writable register that is used to initialize the IIC module.

DDCSWR is initialized to H'0F by a reset and in hardware standby mode.

Bits 7 to 4—Reserved: Should always be written with 0.

Bits 3 to 0—IIC Clear 3 to 0 (CLR3 to CLR0): These bits control initialization of the internal state of IIC0 and IIC1.

These bits can only be written to; if read they will always return a value of 1.

When a write operation is performed on these bits, a clear signal is generated for the internal latch circuit of the corresponding module(s), and the internal state of the IIC module(s) is initialized.

The write data for these bits is not retained. To perform IIC clearance, bits CLR3 to CLR0 must be written to simultaneously using an MOV instruction. Do not use a bit manipulation instruction such as BCLR.

When clearing is required again, all the bits must be written to in accordance with the setting.

Bit 3	Bit 2	Bit 1	Bit 0	
CLR3	CLR2	CLR1	CLR0	 Description
0	0	_	_	Setting prohibited
	1	0	0	Setting prohibited
			1	IIC0 internal latch cleared
		1	0	IIC1 internal latch cleared
			1	IIC0 and IIC1 internal latches cleared
1	_	_	_	Invalid setting

15.2.9 Module Stop Control Register B (MSTPCRB)

Bit	:	7	6	5	4	3	2	1	0
		MSTPB7	MSTPB6	MSTPB5	MSTPB4	MSTPB3	MSTPB2	MSTPB1	MSTPB0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRB is an 8-bit readable/writable register that perform module stop mode control.

When the MSTPB4 or MSTPB3 bit is set to 1, operation of the corresponding IIC channel is halted at the end of the bus cycle, and a transition is made to module stop mode. For details, see section 23A.5, 23B.5, Module Stop Mode.

MSTPCRB is initialized to H'FF by a power-on reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 4—Module Stop (MSTPB4): Specifies IIC channel 0 module stop mode.

Bit 4

MSTPB4		
0	IIC channel 0 module stop mode is cleared	
1	IIC channel 0 module stop mode is set	(Initial value)

Bit 3—Module Stop (MSTPB3): Specifies IIC channel 1 module stop mode.

Bit 3

MSTPB3		
0	IIC channel 1 module stop mode is cleared	_
1	IIC channel 1 module stop mode is set	(Initial value)

15.3 Operation

15.3.1 I²C Bus Data Format

The I²C bus interface has serial and I²C bus formats.

The I²C bus formats are addressing formats with an acknowledge bit. These are shown in figures 15-3 (a) and (b). The first frame following a start condition always consists of 8 bits.

The serial format is a non-addressing format with no acknowledge bit. Although start and stop conditions must be issued, this format can be used as a synchronous serial format. This is shown in figure 15-4.

Figure 15-5 shows the I²C bus timing.

The symbols used in figures 15-3 to 15-5 are explained in table 15-4.

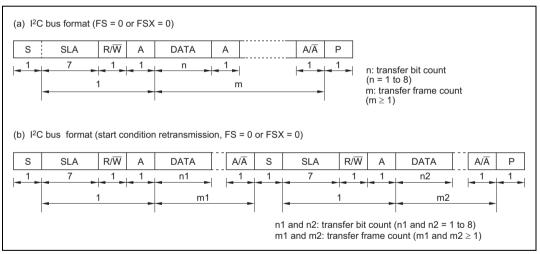


Figure 15-3 I²C Bus Data Formats (I²C Bus Formats)

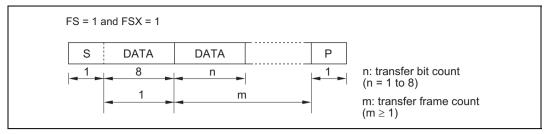


Figure 15-4 I²C Bus Data Format (Serial Format)

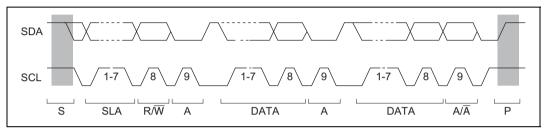


Figure 15-5 I²C Bus Timing

Table 15-4 I²C Bus Data Format Symbols

_		-
Lea	_	
Lea	eп	ıu

_	
S	Start condition. The master device drives SDA from high to low while SCL is high
SLA	Slave address, by which the master device selects a slave device
R/W	Indicates the direction of data transfer: from the slave device to the master device when R/\overline{W} is 1, or from the master device to the slave device when R/\overline{W} is 0
A	Acknowledge. The receiving device (the slave in master transmit mode, or the master in master receive mode) drives SDA low to acknowledge a transfer
DATA	Transferred data. The bit length is set by bits BC2 to BC0 in ICMR. The MSB-first or LSB-first format is selected by bit MLS in ICMR
P	Stop condition. The master device drives SDA from low to high while SCL is high

15.3.2 Initial Setting

At startup the following procedure is used to initialize the IIC.

Figure 15-6 Flowchart for IIC Initialization (Example)

Note: The ICMR register should be written to only after transmit or receive operations have completed.

Writing to the ICMR register while a transmit or receive operation is in progress could cause an erroneous value to be written to bit counter bits BC2 to BC0. This could result in improper operation.

15.3.3 Master Transmit Operation

Page 578 of 1458

In I²C bus format master transmit mode, the master device outputs the transmit clock and transmit data, and the slave device returns an acknowledge signal.

Figure 15-7 is a flowchart showing an example of the master transmit mode.

Figure 15-7 Flowchart for Master Transmit Mode (Example)

The procedure for transmitting data sequentially, synchronized with ICDR (ICDRT) write operations, is described below.

- [1] Perform initial settings as described in section 15.3.2, Initial Setting.
- [2] Read the BBSY flag in ICCR to confirm that the bus is free.
- [3] Set bits MST and TSR in ICCR to 1 to switch to the master transmit mode.
- [4] Write 1 to BBSY and 0 to SCP in ICCR. This changes SDA from high to low when SCL is high, and generates the start condition.
- [5] The IRIC and IRTR flags are set to 1 when the start condition is generated. If the IEIC bit in ICCR has been set to 1, an interrupt request is sent to the CPU.
- [6] After the start condition is detected, write the data (slave address + R/W) to ICDR. With the I²C bus format (when the FS bit in SAR or the FSX bit in SARX is 0), the first frame data following the start condition indicates the 7-bit slave address and transmit/receive direction (R/W). Next, clear the IRIC flag to 0 to indicate the end of the transfer. Continue successively writing to ICDR and clearing the IRIC flag to ensure that processing of other interrupts does not intervene. If the time required to transmit one byte of data elapses by the time the IRIC flag is cleared, it will not be possible to determine the end of the transmission. The master device sequentially sends the transmit clock and the data written to ICDR. The selected slave device (i.e., the slave device with the matching slave address) drives SDA low at the 9th transmit clock pulse and returns an acknowledge signal.
- [7] When one frame of data has been transmitted, the IRIC flag is set to 1 at the rise of the 9th transmit clock pulse. After one frame has been transmitted, SCL is automatically fixed low in synchronization with the internal clock until the next transmit data is written.
- [8] Read the ACKB bit in ICSR to confirm that its value is 0. If the slave device has not returned an acknowledge signal and the value of ACKB is 1, perform the transmit end processing described in step [12] and then recommence the transmit operation from the beginning.
- [9] Write the transmit data to ICDR. Next, clear the IRIC flag to 0 to indicate the end of the transfer. Then continue successively writing to ICDR and clearing the IRIC flag as described in step [6]. Transmission of the next frame is synchronized with the internal clock.
- [10] When one frame of data has been transmitted, the IRIC flag is set to 1 at the rise of the 9th transmit clock pulse. After one frame has been transmitted, SCL is automatically fixed low in synchronization with the internal clock until the next transmit data is written.
- [11] Read the ACKB bit in ICSR to confirm that the slave device has returned an acknowledge signal and the value of ACKB is 0. If the slave device has not returned an acknowledge signal and the value of ACKB is 1, perform the transmit end processing described in step [12].
- [12] Clear the IRIC flag to 0. Write 0 to the ACKE bit in ICCR and clear the received ACKB bit to 0.

Write 0 to BBSY and SCP in ICCR. This changes SDA from low to high when SCL is high, and generates the stop condition.

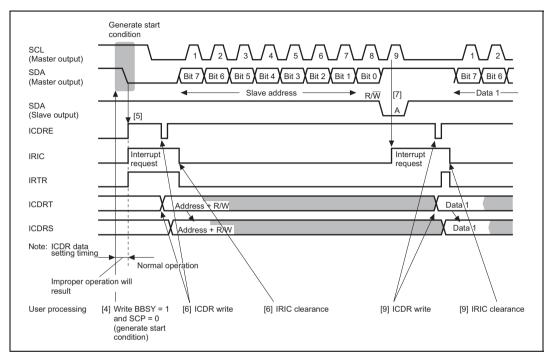


Figure 15-8 Example of Master Transmit Mode Operation Timing (MLS = WAIT = 0)

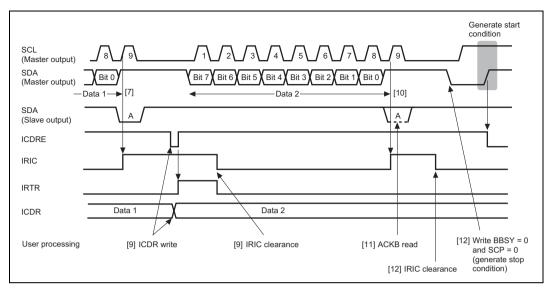


Figure 15-9 Example of Master Transmit Mode Stop Condition Generation Timing (MLS = WAIT = 0)

15.3.4 **Master Receive Operation**

In I²C bus format master receive mode, the master device outputs the receive clock, receives data, and returns an acknowledge signal. The slave device transmits data.

The master device transmits the data containing the slave address + R/W (0: read) in the 1st frame after a start condition is generated in the master transmit mode. After the slave device is selected the switch to receive operation takes place.

(1) Receive Operation Using Wait States

Figures 15-10 and 15-11 are flowcharts showing examples of the master receive mode (WAIT = 1).

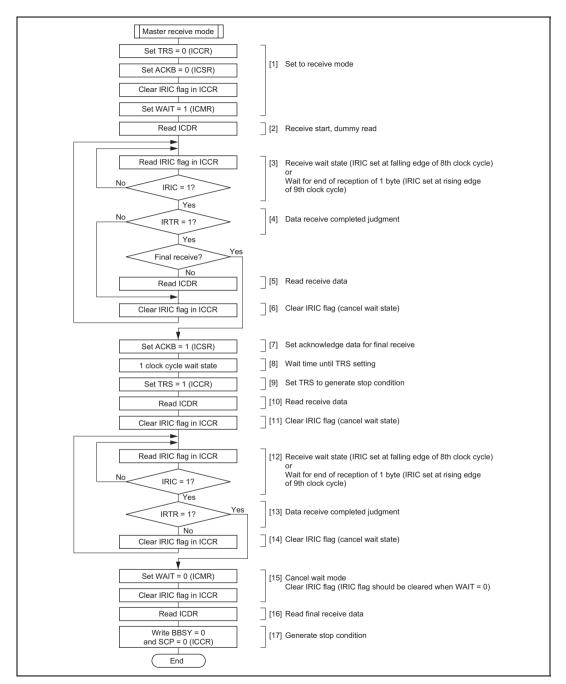


Figure 15-10 Flowchart for Master Receive Mode (Receiving Multiple Bytes) (WAIT = 1) (Example)

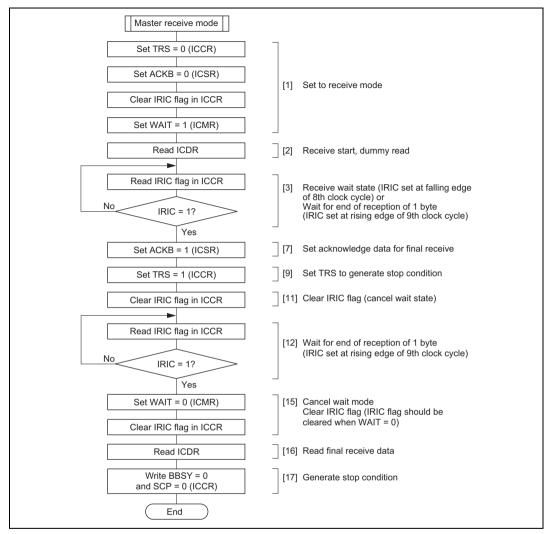


Figure 15-11 Flowchart for Master Receive Mode (Receiving 1 Byte) (WAIT = 1) (Example)

The procedure for receiving data sequentially, using the wait states (WAIT bit) for synchronization with ICDR (ICDRR) read operations, is described below.

The procedure below describes the operation for receiving multiple bytes. Note that some of the steps are omitted when receiving only 1 byte. Refer to figure 15-11 for details.

- [1] Clear the TRS bit in ICCR to 0 to switch from transmit mode to receive mode. Clear the ACKB bit in ICSR to 0 (acknowledge data setting). Clear the IRIC flag to 0, then set the WAIT bit in ICMR to 1.
- [2] When ICDR is read (dummy data read), reception is started, and the receive clock is output, and data received, in synchronization with the internal clock.
- [3] The IRIC flag is set to 1 by the following two conditions. At that point, an interrupt request is issued to the CPU if the IEIC bit in ICCR is set to 1.
 - The flag is set at the falling edge of the 8th clock cycle of the receive clock for 1 frame. SCL is automatically held low, in synchronization with the internal clock, until the IRIC flag is cleared.
 - 2. The flag is set at the rising edge of the 9th clock cycle of the receive clock for 1 frame. The IRIC flag and ICDRF flag are set to 1, indicating that reception of 1 frame of data has ended. The master device continues to output the receive clock for the receive data.
- [4] Read the IRTR flag in ICSR. If the IRTR flag value is 0, the wait state is cancelled by clearing the IRIC flag as described in step [6] below. If the IRTR flag value is 1 and the next receive data is the final receive data, perform the end processing described in step [7] below.
- [5] If the IRTR flag value is 1, read the ICDR receive data.
- [6] Clear the IRTR flag to 0. If condition [3]-1 is true, the master device drives SDA to low level and returns an acknowledge signal when the receive clock outputs the 9th clock cycle. Further data can be received by repeating steps [3] through [6].
- [7] Set the ACKB bit in ICSR to 1 to set the acknowledge data for the final receive.
- [8] Wait for at least 1 clock cycle after the IRIC flag is set to 1 and then wait for the rising edge of the 1st clock cycle of the next receive data.
- [9] Set the TSR bit in ICCR to 1 to switch from the receive mode to the transmit mode. The TSR bit setting value at this point becomes valid when the rising edge of the next 9th clock cycle is input.
- [10] Read the ICDR receive data.
- [11] Clear the IRTR flag to 0.
- [12] The IRIC flag is set to 1 by the following two conditions.
 - The flag is set at the falling edge of the 8th clock cycle of the receive clock for 1 frame. SCL is automatically held low, in synchronization with the internal clock, until the IRIC flag is cleared.
 - 2. The flag is set at the rising edge of the 9th clock cycle of the receive clock for 1 frame. The IRIC flag and ICDRF flag are set to 1, indicating that reception of 1 frame of data has ended. The master device continues to output the receive clock for the receive data.
- [13] Read the IRTR flag in ICSR. If the IRTR flag value is 0, the wait state is cancelled by clearing the IRIC flag as described in step [14] below. If the IRTR flag value is 1 and the

- receive operation has finished, perform the issue stop condition processing described in step [15] below.
- [14] If the IRTR flag value is 0, clear the IRIC flag to 0 to cancel the wait state. Return to reading the IRIC flag, as described in step [12], to detect the end of the receive operation.
- [15] Clear the WAIT bit in ICMR to 0 to cancel the wait mode. Then clear the IRIC flag to 0. The IRIC flag should be cleared when the value of WAIT is 0 (The stop condition may not be output properly when the issue stop condition instruction is executed if the WAIT bit was cleared to 0 after the IRIC flag is cleared to 0).
- [16] Read the final receive data in ICDR.
- [17] Write 0 to BBSY and SCP in ICCR. This changes SDA from low to high when SCL is high, and generates the stop condition.

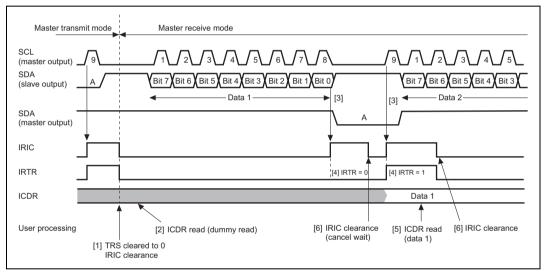


Figure 15-12 Example of Master Receive Mode Operation Timing (MLS = ACKB = 0, WAIT = 1)

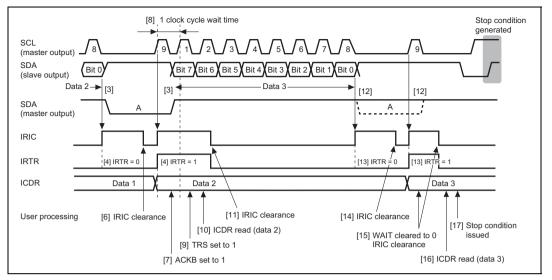


Figure 15-13 Example of Master Receive Mode Stop Condition Generation Timing (MLS = ACKB = 0, WAIT = 1)

15.3.5 Slave Receive Operation

In slave receive mode, the master device outputs the transmit clock and transmit data, and the slave device returns an acknowledge signal.

The slave device compares its own address with the slave address in the first frame following the establishment of the start condition issued by the master device. If the addresses match, the slave device operates as the slave device designated by the master device.

Figure 15-14 is a flowchart showing an example of slave receive mode operation.

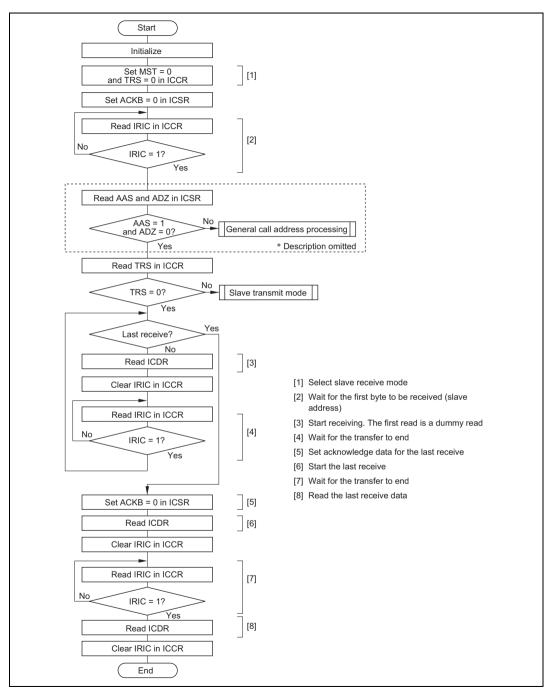


Figure 15-14 Flowchart for Slave Transmit Mode (Example)

The reception procedure and operations in slave receive mode are described below.

- [1] Set the ICE bit in ICCR to 1. Set the MLS bit in ICMR and the MST and TRS bits in ICCR according to the operating mode.
- [2] When the start condition output by the master device is detected, the BBSY flag in ICCR is set to 1.
- [3] When the slave address matches in the first frame following the start condition, the device operates as the slave device specified by the master device. If the 8th data bit (R/\overline{W}) is 0, the TRS bit in ICCR remains cleared to 0, and slave receive operation is performed.
- [4] At the 9th clock pulse of the receive frame, the slave device drives SDA low and returns an acknowledge signal. At the same time, the IRIC flag in ICCR is set to 1. If the IEIC bit in ICCR has been set to 1, an interrupt request is sent to the CPU. If the RDRF internal flag has been cleared to 0, it is set to 1, and the receive operation continues. If the RDRF internal flag has been set to 1, the slave device drives SCL low from the fall of the receive clock until data is read into ICDR.
- [5] Read ICDR and clear the IRIC flag in ICCR to 0. The RDRF flag is cleared to 0.

Receive operations can be performed continuously by repeating steps [4] and [5]. When SDA is changed from low to high when SCL is high, and the stop condition is detected, the BBSY flag in ICCR is cleared to 0.

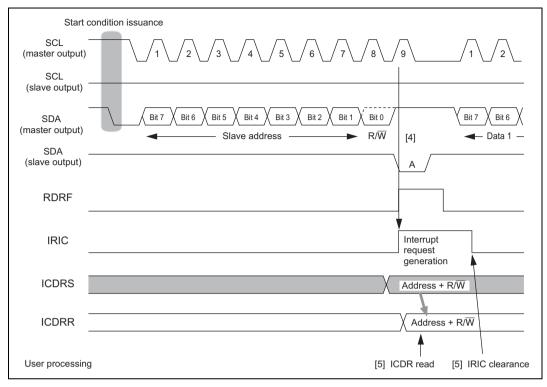


Figure 15-15 Example of Slave Receive Mode Operation Timing (1) (MLS = ACKB = 0)

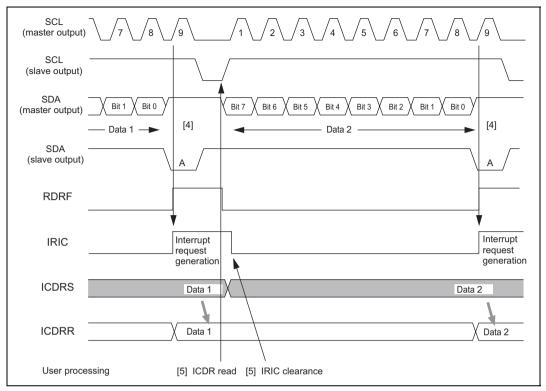


Figure 15-16 Example of Slave Receive Mode Operation Timing (2) (MLS = ACKB = 0)

15.3.6 Slave Transmit Operation

In slave transmit operation, the slave device compares its own address with the slave address transmitted by the master device in the first frame (address receive frame) following detection of the start condition. If the addresses match and the 8th bit (R/W) is set to 1 (read), the TRS bit in ICCR is automatically set to 1 and slave transmit mode is activated.

Figure 15-17 is a flowchart showing an example of slave transmit mode operation.

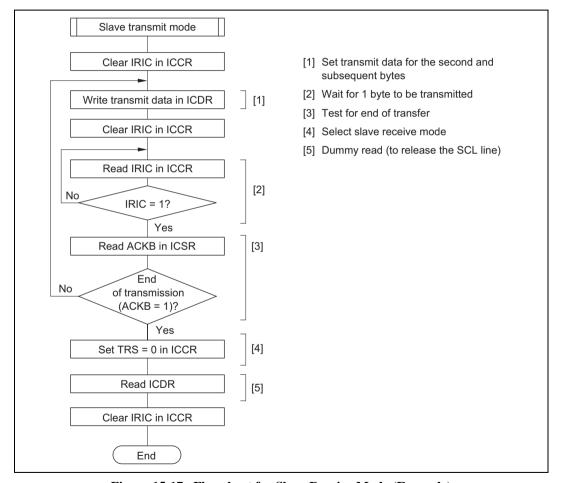


Figure 15-17 Flowchart for Slave Receive Mode (Example)

In slave transmit mode, the slave device outputs the transmit data, while the master device outputs the receive clock and returns an acknowledge signal. The transmission procedure and operations in slave transmit mode are described below.

- [1] Set the ICE bit in ICCR to 1. Set the MLS bit in ICMR and the MST and TRS bits in ICCR according to the operating mode.
- [2] When the slave address matches in the first frame following detection of the start condition, the slave device drives SDA low at the 9th clock pulse and returns an acknowledge signal. At the same time, the IRIC flag in ICCR is set to 1. If the IEIC bit in ICCR has been set to 1, an interrupt request is sent to the CPU. If the 8th data bit (R/W) is 1, the TRS bit in ICCR is set to 1, and the mode changes to slave transmit mode automatically. The TDRF flag is set to 1. The slave device drives SCL low from the fall of the transmit clock until ICDR data is written.
- [3] After clearing the IRIC flag to 0, write data to ICDR. The TDRE internal flag is cleared to 0. The written data is transferred to ICDRS, and the TDRE internal flag and the IRIC and IRTR flags are set to 1 again. After clearing the IRIC flag to 0, write the next data to ICDR. The slave device sequentially sends the data written into ICDR in accordance with the clock output by the master device at the timing shown in figure 15-18.
- [4] When one frame of data has been transmitted, the IRIC flag in ICCR is set to 1 at the rise of the 9th transmit clock pulse. If the TDRE internal flag has been set to 1, this slave device drives SCL low from the fall of the transmit clock until data is written to ICDR. The master device drives SDA low at the 9th clock pulse, and returns an acknowledge signal. As this acknowledge signal is stored in the ACKB bit in ICSR, this bit can be used to determine whether the transfer operation was performed normally. When the TDRE internal flag is 0, the data written into ICDR is transferred to ICDRS, transmission is started, and the TDRE internal flag and the IRIC and IRTR flags are set to 1 again.
- [5] To continue transmission, clear the IRIC flag to 0, then write the next data to be transmitted into ICDR. The TDRE flag is cleared to 0.

Transmit operations can be performed continuously by repeating steps [4] and [5]. To end transmission, write H'FF to ICDR to release SDA on the slave side. When SDA is changed from low to high when SCL is high, and the stop condition is detected, the BBSY flag in ICCR is cleared to 0.

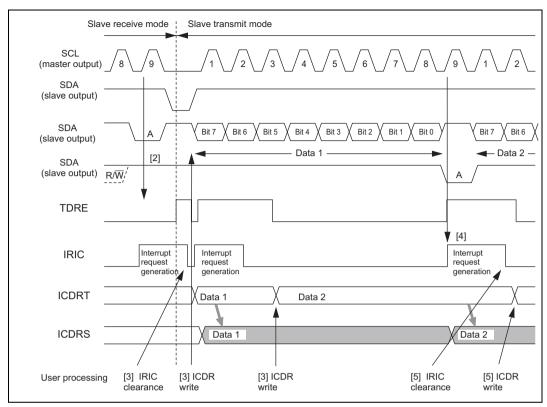


Figure 15-18 Example of Slave Transmit Mode Operation Timing (MLS = 0)

15.3.7 IRIC Setting Timing and SCL Control

The interrupt request flag (IRIC) is set at different times depending on the WAIT bit in ICMR, the FS bit in SAR, and the FSX bit in SARX. If the TDRE or RDRF internal flag is set to 1, SCL is automatically held low after one frame has been transferred; this timing is synchronized with the internal clock. Figure 15-19 shows the IRIC set timing and SCL control.

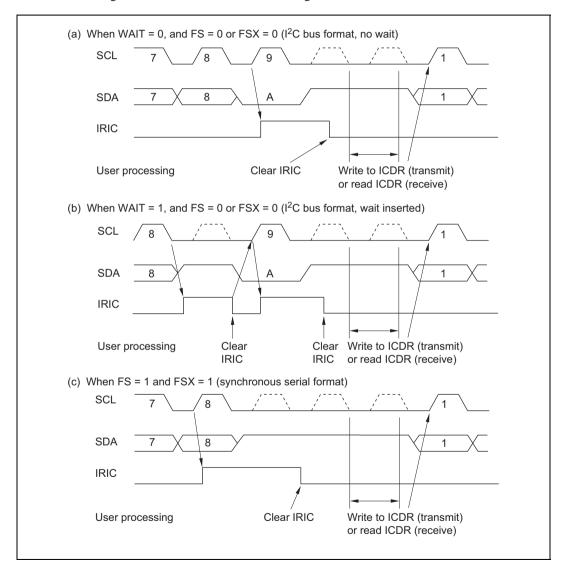


Figure 15-19 IRIC Setting Timing and SCL Control

15.3.8 Operation Using the DTC

The I^2C bus format provides for selection of the slave device and transfer direction by means of the slave address and the R/\overline{W} bit, confirmation of reception with the acknowledge bit, indication of the last frame, and so on. Therefore, continuous data transfer using the DTC must be carried out in conjunction with CPU processing by means of interrupts.

Table 15-5 shows some examples of processing using the DTC. These examples assume that the number of transfer data bytes is known in slave mode.

Table 15-5 Examples of Operation Using the DTC

Item	Master Transmit Mode	Master Receive Mode	Slave Transmit Mode	Slave Receive Mode
Slave address + R/W bit transmission/ reception	Transmission by DTC (ICDR write)	Transmission by CPU (ICDR write)	Reception by CPU (ICDR read)	Reception by CPU (ICDR read)
Dummy data read	_	Processing by CPU (ICDR read)	_	_
Actual data transmission/ reception	Transmission by DTC (ICDR write)	Reception by DTC (ICDR read)	Transmission by DTC (ICDR write)	Reception by DTC (ICDR read)
Dummy data (H'FF) write	_	_	Processing by DTC (ICDR write)	_
Last frame processing	Not necessary	Reception by CPU (ICDR read)	Not necessary	Reception by CPU (ICDR read)
Transfer request processing after last frame processing	1st time: Clearing by CPU 2nd time: End condition issuance by CPU	Not necessary	Automatic clearing on detection of end condition during transmission of dummy data (H'FF)	Not necessary
Setting of number of DTC transfer data frames	Transmission: Actual data count + 1 (+1 equivalent to slave address + R/W bits)	Reception: Actual data count	Transmission: Actual data count + 1 (+1 equivalent to dummy data (H'FF))	Reception: Actual data count

15.3.9 Noise Canceler

The logic levels at the SCL and SDA pins are routed through noise cancelers before being latched internally. Figure 15-20 shows a block diagram of the noise canceler circuit.

The noise canceler consists of two cascaded latches and a match detector. The SCL (or SDA) input signal is sampled on the system clock, but is not passed forward to the next circuit unless the outputs of both latches agree. If they do not agree, the previous value is held.

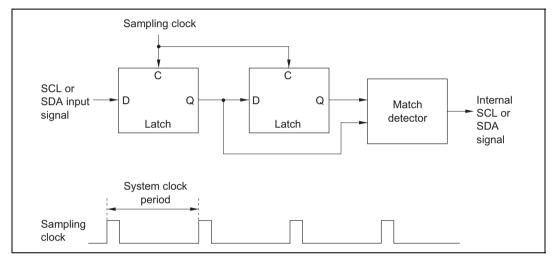


Figure 15-20 Block Diagram of Noise Canceler

15.3.10 Initialization of Internal State

The IIC has a function for forcible initialization of its internal state if a deadlock occurs during communication.

Initialization is executed by (1) setting bits CLR3 to CLR0 in the DDCSWR register or (2) clearing the ICE bit. For details of settings for bits CLR3 to CLR0, see section 15.2.8, DDC Switch Register (DDCSWR).

Scope of Initialization: The initialization executed by this function covers the following items:

- TDRE and RDRF internal flags
- Transmit/receive sequencer and internal operating clock counter
- Internal latches for retaining the output state of the SCL and SDA pins (wait, clock, data output, etc.)

The following items are not initialized:

- Actual register values (ICDR, SAR, SARX, ICMR, ICCR, ICSR, DDCSWR, and STCR)
- Internal latches used to retain register read information for setting/clearing flags in the ICMR, ICCR, ICSR, and DDCSWR registers
- The value of the ICMR register bit counter (BC2 to BC0)
- Generated interrupt sources (interrupt sources transferred to the interrupt controller)

Notes on Initialization:

- Interrupt flags and interrupt sources are not cleared, and so flag clearing measures must be taken as necessary.
- Basically, other register flags are not cleared either, and so flag clearing measures must be taken as necessary.
- When initialization is performed by means of the DDCSWR register, the write data for bits CLR3 to CLR0 is not retained. To perform IIC clearance, bits CLR3 to CLR0 must be written to simultaneously using an MOV instruction. Do not use a bit manipulation instruction such as BCLR. Similarly, when clearing is required again, all the bits must be written to simultaneously in accordance with the setting.
- If a flag clearing setting is made during transmission/reception, the IIC module will stop
 transmitting/receiving at that point and the SCL and SDA pins will be released. When
 transmission/reception is started again, register initialization, etc., must be carried out as
 necessary to enable correct communication as a system.

The value of the BBSY bit cannot be modified directly by this module clear function, but since the stop condition pin waveform is generated according to the state and release timing of the SCL and SDA pins, the BBSY bit may be cleared as a result. Similarly, state switching of other bits and flags may also have an effect.

To prevent problems caused by these factors, the following procedure should be used when initializing the IIC state.

- 1. Execute initialization of the internal state according to the setting of bits CLR3 to CLR0, or according to the ICE bit.
- 2. Execute a stop condition issuance instruction (write 0 to BBSY and SCP) to clear the BBST bit to 0, and wait for two transfer rate clock cycles.
- 3. Re-execute initialization of the internal state according to the setting of bits CLR3 to CLR0, or according to the ICE bit.
- 4. Initialize (re-set) the IIC registers.

15.4 Usage Notes

- In master mode, if an instruction to generate a start condition is immediately followed by an instruction to generate a stop condition, neither condition will be output correctly. To output consecutive start and stop conditions, after issuing the instruction that generates the start condition, read the relevant ports, check that SCL and SDA are both low, then issue the instruction that generates the stop condition. Note that SCL may not yet have gone low when BBSY is cleared to 0.
- Either of the following two conditions will start the next transfer. Pay attention to these
 conditions when reading or writing to ICDR.
 - Write access to ICDR when ICE = 1 and TRS = 1 (including automatic transfer from ICDRT to ICDRS)
 - Read access to ICDR when ICE = 1 and TRS = 0 (including automatic transfer from ICDRS to ICDRR)
- Table 15-6 shows the timing of SCL and SDA output in synchronization with the internal clock. Timings on the bus are determined by the rise and fall times of signals affected by the bus load capacitance, series resistance, and parallel resistance.

Table 15-6 I²C Bus Timing (SCL and SDA Output)

Item	Symbol	Output Timing	Unit	Notes
SCL output cycle time	t _{SCLO}	28 t _{cyc} to 256 t _{cyc}	ns	Figure 24-28
SCL output high pulse width	t _{SCLHO}	0.5 t _{SCLO}	ns	(reference)
SCL output low pulse width	t _{SCLLO}	0.5 t _{SCLO}	ns	-
SDA output bus free time	t _{BUFO}	0.5 t _{SCLO} - 1 t _{cyc}	ns	-
Start condition output hold time	t _{STAHO}	0.5 t _{SCLO} - 1 t _{cyc}	ns	-
Retransmission start condition output setup time	t _{STASO}	1 t _{SCLO}	ns	-
Stop condition output setup time	t _{STOSO}	0.5 t _{SCLO} + 2 t _{cyc}	ns	-
Data output setup time (master)	t _{SDASO}	1 t _{SCLLO} - 3 t _{cyc}	ns	-
Data output setup time (slave)		1 t _{SCLL} – 3 t _{cyc}		
Data output hold time	t _{SDAHO}	3 t _{cyc}	ns	-

SCL and SDA input is sampled in synchronization with the internal clock. The AC timing
therefore depends on the system clock cycle t_{cyc}, as shown in tables 24-19, 24-31, 24-43 in
section 24, Electrical Characteristics. Note that the I²C bus interface AC timing specifications
will not be met with a system clock frequency of less than 5 MHz.

• The I²C bus interface specification for the SCL rise time t_{sr} is under 1000 ns (300 ns for high-speed mode). In master mode, the I²C bus interface monitors the SCL line and synchronizes one bit at a time during communication. If t_{sr} (the time for SCL to go from low to V_{IH}) exceeds the time determined by the input clock of the I²C bus interface, the high period of SCL is extended. The SCL rise time is determined by the pull-up resistance and load capacitance of the SCL line. To insure proper operation at the set transfer rate, adjust the pull-up resistance and load capacitance so that the SCL rise time does not exceed the values given in the table 15-7.

Table 15-7 Permissible SCL Rise Time (t_{Sr}) Values

l ime Indication								
IICX	t _{cyc} Indication	1	I ² C Bus Specification (Max.)	φ = 5 MHz	φ = 8 MHz	φ = 10 MHz	φ = 16 MHz	φ = 20 MHz
0	7.5 t _{cyc}	Standard mode	1000 ns	1000 ns	937 ns	750 ns	468 ns	375 ns
		High-speed mode	300 ns	300 ns	300 ns	300 ns	300 ns	300 ns
1	17.5 t _{cyc}	Standard mode	1000 ns	1000 ns	1000 ns	1000 ns	1000 ns	875 ns
		High-speed mode	300 ns	300 ns	300 ns	300 ns	300 ns	300 ns

• The I²C bus interface specifications for the SCL and SDA rise and fall times are under 1000 ns and 300 ns. The I²C bus interface SCL and SDA output timing is prescribed by t_{Scyc} and t_{cyc}, as shown in table 15-6. However, because of the rise and fall times, the I²C bus interface specifications may not be satisfied at the maximum transfer rate. Table 15-8 shows output timing calculations for different operating frequencies, including the worst-case influence of rise and fall times.

 t_{BUFO} fails to meet the I^2C bus interface specifications at any frequency. The solution is either (a) to provide coding to secure the necessary interval (approximately 1 μ s) between issuance of a stop condition and issuance of a start condition, or (b) to select devices whose input timing permits this output timing for use as slave devices connected to the I^2C bus.

 t_{SCLLO} in high-speed mode and t_{STASO} in standard mode fail to satisfy the I^2C bus interface specifications for worst-case calculations of t_{Sr}/t_{Sf} . Possible solutions that should be investigated include (a) adjusting the rise and fall times by means of a pull-up resistor and capacitive load, (b) reducing the transfer rate to meet the specifications, or (c) selecting devices whose input timing permits this output timing for use as slave devices connected to the I^2C bus.

Table 15-8 I²C Bus Timing (with Maximum Influence of t_{Sr}/t_{Sf})

Time Indication (at Maximum Transfer Rate) [ns]

Item	t _{cyc} Indication		t _{sr} /t _{sf} Influence (Max.)	I ² C Bus Specifi- cation (Min.)	φ = 5 MHz	φ = 8 MHz	φ = 10 MHz	φ = 16 MHz	φ = 20 MHz
t _{SCLHO}	0.5 t _{SCLO} (-t _{Sr})	Standard mode	-1000	4000	4000	4000	4000	4000	4000
		High-speed mode	-300	600	950	950	950	950	950
t _{SCLLO}	0.5 t _{SCLO} (-t _{Sf})	Standard mode	-250	4700	4750	4750	4750	4750	4750
		High-speed mode	-250	1300	1000*1	1000*1	1000*1	1000*1	1000*1
t _{BUFO}	0.5 t _{SCLO} – 1 t _{cyc}	Standard mode	-1000	4700	3800*1	3875 ^{*1}	3900 ^{*1}	3938 ^{*1}	3950*1
(-t _{Sr})	(-t _{Sr})	High-speed mode	-300	1300	750 ^{*1}	825 ^{*1}	850 ^{*1}	888 ^{*1}	900*1
1 t _c	0.5 t _{SCLO} – 1 t _{cyc}	Standard mode	-250	4000	4550	4625	4650	4688	4700
	(-t _{Sf})	High-speed mode	-250	600	800	875	900	938	950
t _{STASO}	1 t _{SCLO} (-t _{Sr})	Standard mode	-1000	4700	9000	9000	9000	9000	9000
		High-speed mode	-300	600	2200	2200	2200	2200	2200
t _{STOSO}	0.5 t _{SCLO} + 2 t _{cyc}	Standard mode	-1000	4000	4400	4250	4200	4125	4100
	(-t _{Sr})	High-speed mode	-300	600	1350	1200	1150	1075	1050
t _{SDASO} (master)	-,-	Standard mode	-1000	250	3100	3325	3400	3513	3550
	(-t _{Sr})	High-speed mode	-300	100	400	625	700	813	850
t _{SDASO} (slave)	1 t _{SCLL} *2 – 3 t _{cyc} *2	Standard mode	-1000	250	3100	3325	3400	3513	3550
	(-t _{Sr})	High-speed mode	-300	100	400	625	700	813	850

					(44				
Item	t _{cyc} Indication		t _{Sr} /t _{Sf} Influence (Max.)	I ² C Bus Specifi- cation (Min.)	φ = 5 MHz	φ = 8 MHz	φ = 10 MHz	φ = 16 MHz	φ = 20 MHz
t _{SDAHO}	3 t _{cyc}	Standard mode	0	0	600	375	300	188	150
		High-speed mode	0	0	600	375	300	188	150

Time Indication (at Maximum Transfer Rate) [ns]

- Does not meet the I²C bus interface specification. Remedial action such as the following is necessary: (a) secure a start/stop condition issuance interval; (b) adjust the rise and fall times by means of a pull-up resistor and capacitive load; (c) reduce the transfer rate; (d) select slave devices whose input timing permits this output timing.
 The values in the above table will vary depending on the settings of the IICX bit and bits
 - CKS0 to CKS2. Depending on the frequency it may not be possible to achieve the maximum transfer rate; therefore, whether or not the I^2C bus interface specifications are met must be determined in accordance with the actual setting conditions.
 - 2. Calculated using the I²C bus specification values (standard mode: 4700 ns min.; high-speed mode: 1300 ns min.).

• Note on ICDR Read at End of Master Reception

To halt reception at the end of a receive operation in master receive mode, set the TRS bit to 1 and write 0 to BBSY and SCP in ICCR. This changes SDA from low to high when SCL is high, and generates the stop condition. After this, receive data can be read by means of an ICDR read, but if data remains in the buffer the ICDRS receive data will not be transferred to ICDR, and so it will not be possible to read the second byte of data.

If it is necessary to read the second byte of data, issue the stop condition in master receive mode (i.e. with the TRS bit cleared to 0). When reading the receive data, first confirm that the BBSY bit in the ICCR register is cleared to 0, the stop condition has been generated, and the bus has been released, then read the ICDR register with TRS cleared to 0.

Note that if the receive data (ICDR data) is read in the interval between execution of the instruction for issuance of the stop condition (writing of 0 to BBSY and SCP in ICCR) and the actual generation of the stop condition, the clock may not be output correctly in subsequent master transmission.

Clearing of the MST bit after completion of master transmission/reception, or other modifications of IIC control bits to change the transmit/receive operating mode or settings, must be carried out during interval (a) in figure 15-18 (after confirming that the BBSY bit has been cleared to 0 in the ICCR register).

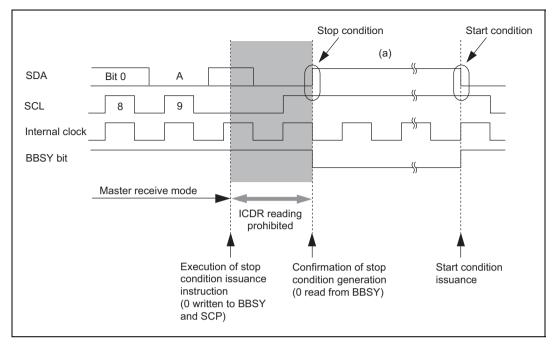


Figure 15-21 Points for Attention Concerning Reading of Master Receive Data

Notes on Start Condition Issuance for Retransmission Figure 15-22 shows the timing of start condition issuance for retransmission, and the timing for subsequently writing data to ICDR, together with the corresponding flowchart.

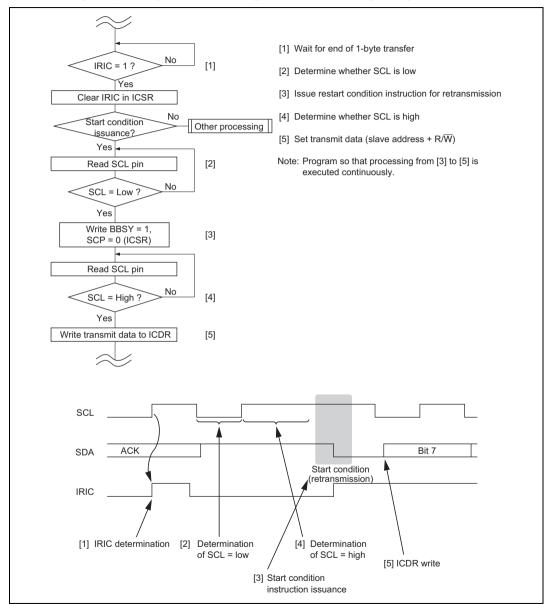


Figure 15-22 Flowchart and Timing of Start Condition Instruction Issuance for Retransmission

• Notes on I²C Bus Interface Stop Condition Instruction Issuance

If the rise time of the 9th SCL acknowledge exceeds the specification because the bus load capacitance is large, or if there is a slave device of the type that drives SCL low to effect a wait, issue the stop condition instruction after reading SCL and determining it to be low, as shown below.

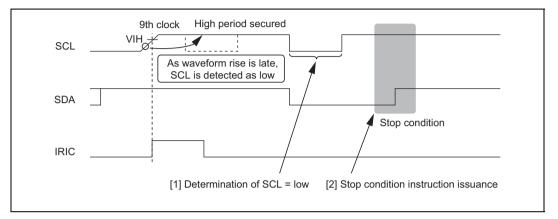


Figure 15-23 Timing of Stop Condition Issuance

Notes on IRIC Flag Clearance when Using Wait Function

If the SCL rise time exceeds the designated duration or if the slave device is of the type that keeps SCL low and applies a wait state when the wait function is used in the master mode of the I²C bus interface, read SCL and clear the IRIC flag after determining that SCL has gone low, as shown below.

Clearing the IRIC flag to 0 when WAIT is set to 1 and SCL is being held at high level can cause the SDA value to change before SCL goes low, resulting in a start condition or stop condition being generated erroneously.

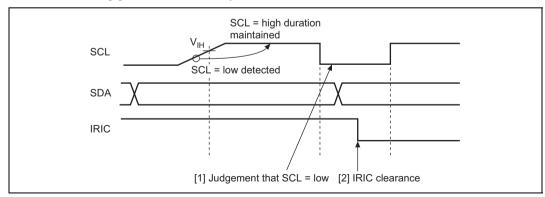


Figure 15-24 IRIC Flag Clearance in WAIT = 1 Status

Notes on ICDR Reads and ICCR Access in Slave Transmit Mode
 In a transmit operation in the slave mode of the I²C bus interface, do not read the ICDR register or read or write to the ICCR register during the period indicated by the shaded portion in figure 15-25.

Normally, when interrupt processing is triggered in synchronization with the rising edge of the 9th clock cycle, the period in question has already elapsed when the transition to interrupt processing takes place, so there is no problem with reading the ICDR register or reading or writing to the ICCR register.

To ensure that the interrupt processing is performed properly, one of the following two conditions should be applied.

- (1) Make sure that reading received data from the ICDR register, or reading or writing to the ICCR register, is completed before the next slave address receive operation starts.
- (2) Monitor the BC2 to BC0 counter in the ICMR register and, when the value of BC2 to BC0 is 000 (8th or 9th clock cycle), allow a waiting time of at least 2 transfer clock cycles in order to involve the problem period in question before reading from the ICDR register, or reading or writing to the ICCR register.

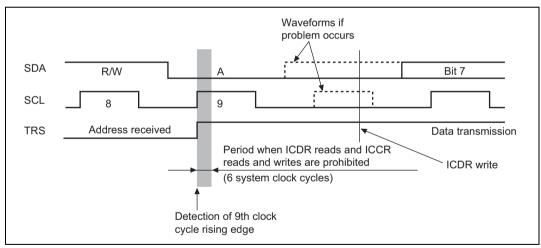


Figure 15-25 ICDR Read and ICCR Access Timing in Slave Transmit Mode

Notes on TRS Bit Setting in Slave Mode

From the detection of the rising edge of the 9th clock cycle or of a stop condition to when the rising edge of the next SCL pin signal is detected (the period indicated as (a) in figure 15-26) in the slave mode of the I²C bus interface, the value set in the TRS bit in the ICCR register is effective immediately.

However, at other times (indicated as (b) in figure 15-26) the value set in the TRS bit is put on hold until the next rising edge of the 9th clock cycle or stop condition is detected, rather than taking effect immediately.

This results in the actual internal value of the TRS bit remaining 1 (transmit mode) and no acknowledge bit being sent at the 9th clock cycle address receive completion in the case of an address receive operation following a restart condition input with no stop condition intervening.

When receiving an address in the slave mode, clear the TRS bit to 0 during the period indicated as (a) in figure 15-26.

To cancel the holding of the SCL bit low by the wait function in the slave mode, clear the TRS bit to 0 and then perform a dummy read of the ICDR register.

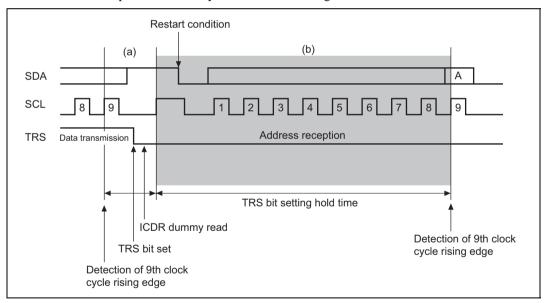


Figure 15-26 TRS Bit Setting Timing in Slave Mode

• Notes on ICDR Reads in Transmit Mode and ICDR Writes in Receive Mode

When attempting to read ICDR in the transmit mode (TRS = 1) or write to ICDR in the receive mode (TRS = 0) under certain conditions, the SCL pin may not be held low after the completion of the transmit or receive operation and a clock may not be output to the SCL bus line before the ICDR register access operation can take place properly.

When accessing ICDR, always change the setting to the transmit mode before performing a read operation, and always change the setting to the receive mode before performing a write operation.

Notes on ACKE Bit and TRS Bit in Slave Mode

When using the I^2C bus interface, if an address is received in the slave mode immediately after 1 is received as an acknowledge bit (ACKB = 1) in the transmit mode (TRS = 1), an interrupt may be generated at the rising edge of the 9th clock cycle if the address does not match. When performing slave mode operations using the IIC bus interface module, make sure to do the following.

- (1) When a 1 is received as an acknowledge bit for the final transmit data after completing a series of transmit operations, clear the ACKE bit in the ICCR register to 0 to initialize the ACKB bit to 0.
- (2) In the slave mode, change the setting to the receive mode (TRS = 0) before the start condition is input. To ensure that the switch from the slave transmit mode to the slave receive mode is accomplished properly, end the transmission as described in figure 15-17.
- Notes on Arbitration Lost in Master Mode

The I²C bus interface recognizes the data in transmit/receive frame as an address when arbitration is lost in master mode and a transition to slave receive mode is automatically carried out.

When arbitration is lost not in the first frame but in the second frame or subsequent frame, transmit/receive data that is not an address is compared with the value set in the SAR or SARX register as an address. If the receive data matches with the address in the SAR or SARX register, the I²C bus interface erroneously recognizes that the address call has occurred. (See figure 15-27.)

In multi-master mode, a bus conflict could happen. When The I²C bus interface is operated in master mode, check the state of the AL bit in the ICSR register every time after one frame of data has been transmitted or received.

When arbitration is lost during transmitting the second frame or subsequent frame, take avoidance measures.

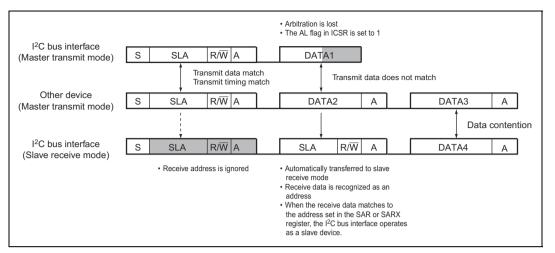


Figure 15-27 Diagram of Erroneous Operation when Arbitration is Lost

Though it is prohibited in the normal I²C protocol, the same problem may occur when the MST bit is erroneously set to 1 and a transition to master mode is occurred during data transmission or reception in slave mode. In multi-master mode, pay attention to the setting of the MST bit when a bus conflict may occur. In this case, the MST bit in the ICCR register should be set to 1 according to the order below.

- (a) Make sure that the BBSY flag in the ICCR register is 0 and the bus is free before setting the MST bit.
- (b) Set the MST bit to 1.
- (c) To confirm that the bus was not entered to the busy state while the MST bit is being set, check that the BBSY flag in the ICCR register is 0 immediately after the MST bit has been set.

Notes on Wait Operation in Master Mode

During master mode operation using the wait function, when the interrupt flag IRIC bit is cleared from 1 to 0 between the falling edge of the 7th clock cycle and the falling edge of the 8th clock cycle, in some cases no wait is inserted after the falling edge of the 8th clock cycle and the clock pulse of the 9th clock cycle is output continuously.

Observe the following with regard to clearing the IRIC flag while using the wait function.

At the rising edge of the 9th clock cycle, set the IRIC flag to 1 and then clear it to zero before the rising edge of the 1st clock cycle (while the value of the BC2 to BC0 counter value is 2 or greater).

If clearing of the IRIC flag is delayed by interrupt processing or the like and the BC counter value reaches 1 or 0, confirm that the SCL pin state is low-level after the BC2 to BC0 counter has reached 0 and then clear the IRIC flag. (See figure 15.28.)

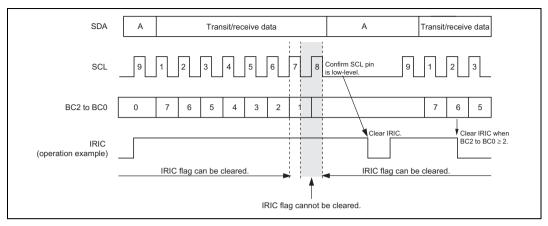


Figure 15-28 Timing of IRIC Flag Clearing During Wait Operation

Section 16 Controller Area Network (HCAN)

Notes: The H8S/2635 Group is not equipped with a DTC.

Only a single HCAN channel, HCAN0, is implemented in the H8S/2635 Group.

16.1 Overview

The HCAN is a module for controlling a controller area network (CAN) for realtime communication in vehicular and industrial equipment systems, etc. The chip has a 2-channel on-chip HCAN module.

Reference: Bosch CAN Specification Version 2.0, 1991, Robert Bosch GmbH

16.1.1 Features

- CAN version: Bosch 2.0B active compatible
 - Communication systems:
 - NRZ (Non-Return to Zero) system (with bit-stuffing function)
 - Broadcast communication system
 - Transmission path: Bidirectional 2-wire serial communication
 - Communication speed: Max. 1 Mbps
 - Data length: 0 to 8 bytes
- Number of channel: 2 (HCAN0, HCAN1)
- Data buffers: 16 per channel (one receive-only buffer and 15 buffers settable for transmission/reception)
- Data transmission: Choice of two methods:
 - Mailbox (buffer) number order (low-to-high)
 - Message priority (identifier) high-to-low order
- Data reception: Two methods:
 - Message identifier match (transmit/receive-setting buffers)
 - Reception with message identifier masked (receive-only)
- CPU interrupts: Two interrupt vectors for 12 interrupt causes per channel:
 - Error interrupt
 - Reset processing interrupt
 - Message reception interrupt (mailbox 1 to 15)
 - Message reception interrupt (mailbox 0)
 - Message transmission interrupt

- HCAN operating modes: Support for various modes:
 - Hardware reset
 - Software reset
 - Normal status (error-active, error-passive)
 - Bus off status
 - HCAN configuration mode
 - HCAN sleep mode
 - HCAN halt mode
- Other features: DTC can be activated by message reception mailbox (HCAN mailbox 0 only)

16.1.2 Block Diagram

Figure 16-1 shows a block diagram of the HCAN.

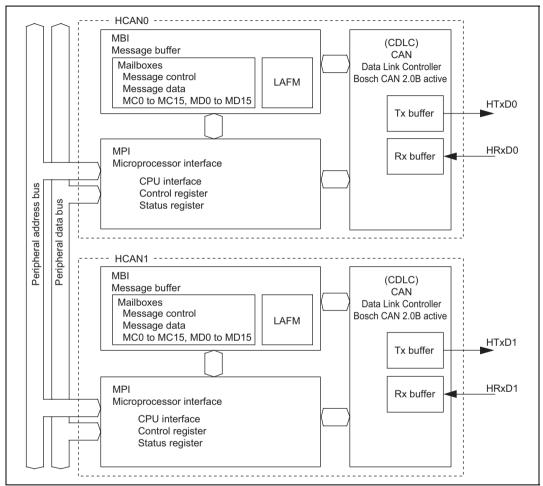


Figure 16-1 HCAN Block Diagram

Message Buffer Interface (MBI): The MBI, consisting of mailboxes and a local acceptance filter mask (LAFM), stores CAN transmit/receive messages (identifiers, data, etc.). Transmit messages are written by the CPU. For receive messages, the data received by the CDLC is stored automatically.

Microprocessor Interface (MPI): The MPI, consisting of a bus interface, control register, status register, etc., controls HCAN internal data, statuses, and so forth.

CAN Data Link Controller (CDLC): The CDLC performs transmission and reception of messages conforming to the Bosch CAN Ver. 2.0B active standard (data frames, remote frames, error frames, overload frames, inter-frame spacing), as well as CRC checking, bus arbitration, and other functions.

16.1.3 Pin Configuration

Table 16-1 shows the HCAN's pins.

When using HCAN pins, settings must be made in the HCAN configuration mode (during initialization: MCR0 = 1 and GSR3 = 1).

Table 16-1 HCAN Pins

Channel	Name	Abbreviation	Input/Output	Function
0	HCAN transmit data pin 0	HTxD0	Output	Channel 0 CAN bus transmission pin
	HCAN receive data pin 0	HRxD0	Input	Channel 0 CAN bus reception pin
1*	HCAN transmit data pin 1	HTxD1	Output	Channel 1 CAN bus transmission pin
	HCAN receive data pin 1	HRxD1	Input	Channel 1 CAN bus reception pin

Note: * The HCAN1 is not supported by the H8S/2635 Group.

A bus driver is necessary between the pins and the CAN bus. A HA13721 compatible model is recommended.

16.1.4 Register Configuration

Table 16-2 lists the HCAN's registers.

Table 16-2 HCAN Registers

Channel	Name	Abbre- viation	R/W	Initial Value	Address*1	Access Size
0	Master control register	MCR	R/W	H'01	H'F800	8 bits 16 bits
-	General status register	GSR	R/W	H'0C	H'F801	8 bits
	Bit configuration register	BCR	R/W	H'0000	H'F802	8/16 bits
	Mailbox configuration register	MBCR	R/W	H'0100	H'F804	8/16 bits
	Transmit wait register	TXPR	R/W	H'0000	H'F806	8/16 bits
	Transmit wait cancel register	TXCR	R/W	H'0000	H'F808	8/16 bits
	Transmit acknowledge register	TXACK	R/W	H'0000	H'F80A	8/16 bits
	Abort acknowledge register	ABACK	R/W	H'0000	H'F80C	8/16 bits
	Receive complete register	RXPR	R/W	H'0000	H'F80E	8/16 bits
	Remote request register	RFPR	R/W	H'0000	H'F810	8/16 bits
	Interrupt register	IRR	R/W	H'0100	H'F812	8/16 bits
	Mailbox interrupt mask register	MBIMR	R/W	H'FFFF	H'F814	8/16 bits
	Interrupt mask register	IMR	R/W	H'FEFF	H'F816	8/16 bits
	Receive error counter	REC	R	H'00	H'F818	8 bits 16 bits
	Transmit error counter	TEC	R	H'00	H'F819	8 bits
	Unread message status register	UMSR	R/W	H'0000	H'F81A	8/16 bits
	Local acceptance filter mask L	LAFML	R/W	H'0000	H'F81C	8/16 bits
	Local acceptance filter mask H	LAFMH	R/W	H'0000	H'F81E	8/16 bits

Channel	Name	Abbreviation	R/W	Initial Value	Address*1	Access Size
0	Message control 0 [1:8]	MC0 [1:8]	R/W	Undefined	H'F820	8/16 bits
	Message control 1 [1:8]	MC1 [1:8]	R/W	Undefined	H'F828	8/16 bits
	Message control 2 [1:8]	MC2 [1:8]	R/W	Undefined	H'F830	8/16 bits
	Message control 3 [1:8]	MC3 [1:8]	R/W	Undefined	H'F838	8/16 bits
	Message control 4 [1:8]	MC4 [1:8]	R/W	Undefined	H'F840	8/16 bits
	Message control 5 [1:8]	MC5 [1:8]	R/W	Undefined	H'F848	8/16 bits
	Message control 6 [1:8]	MC6 [1:8]	R/W	Undefined	H'F850	8/16 bits
	Message control 7 [1:8]	MC7 [1:8]	R/W	Undefined	H'F858	8/16 bits
	Message control 8 [1:8]	MC8 [1:8]	R/W	Undefined	H'F860	8/16 bits
	Message control 9 [1:8]	MC9 [1:8]	R/W	Undefined	H'F868	8/16 bits
	Message control 10 [1:8]	MC10 [1:8]	R/W	Undefined	H'F870	8/16 bits
	Message control 11 [1:8]	MC11 [1:8]	R/W	Undefined	H'F878	8/16 bits
	Message control 12 [1:8]	MC12 [1:8]	R/W	Undefined	H'F880	8/16 bits
	Message control 13 [1:8]	MC13 [1:8]	R/W	Undefined	H'F888	8/16 bits
	Message control 14 [1:8]	MC14 [1:8]	R/W	Undefined	H'F890	8/16 bits
	Message control 15 [1:8]	MC15 [1:8]	R/W	Undefined	H'F898	8/16 bits
	Message data 0 [1:8]	MD0 [1:8]	R/W	Undefined	H'F8B0	8/16 bits
	Message data 1 [1:8]	MD1 [1:8]	R/W	Undefined	H'F8B8	8/16 bits
	Message data 2 [1:8]	MD2 [1:8]	R/W	Undefined	H'F8C0	8/16 bits
	Message data 3 [1:8]	MD3 [1:8]	R/W	Undefined	H'F8C8	8/16 bits
	Message data 4 [1:8]	MD4 [1:8]	R/W	Undefined	H'F8D0	8/16 bits
	Message data 5 [1:8]	MD5 [1:8]	R/W	Undefined	H'F8D8	8/16 bits
	Message data 6 [1:8]	MD6 [1:8]	R/W	Undefined	H'F8E0	8/16 bits
	Message data 7 [1:8]	MD7 [1:8]	R/W	Undefined	H'F8E8	8/16 bits
	Message data 8 [1:8]	MD8 [1:8]	R/W	Undefined	H'F8F0	8/16 bits
	Message data 9 [1:8]	MD9 [1:8]	R/W	Undefined	H'F8F8	8/16 bits
	Message data 10 [1:8]	MD10 [1:8]	R/W	Undefined	H'F900	8/16 bits
	Message data 11 [1:8]	MD11 [1:8]	R/W	Undefined	H'F908	8/16 bits
	Message data 12 [1:8]	MD12 [1:8]	R/W	Undefined	H'F910	8/16 bits
	Message data 13 [1:8]	MD13 [1:8]	R/W	Undefined	H'F918	8/16 bits
	Message data 14 [1:8]	MD14 [1:8]	R/W	Undefined	H'F920	8/16 bits
	Message data 15 [1:8]	MD15 [1:8]	R/W	Undefined	H'F928	8/16 bits

Channel	Name	Abbre- viation	R/W	Initial Value	Address*1	Access Size
1*2	Master control register	MCR	R/W	H'01	H'FA00	8 bits 16 bits
	General status register	GSR	R/W	H'0C	H'FA01	8 bits
	Bit configuration register	BCR	R/W	H'0000	H'FA02	8/16 bits
	Mailbox configuration register	MBCR	R/W	H'0100	H'FA04	8/16 bits
	Transmit wait register	TXPR	R/W	H'0000	H'FA06	8/16 bits
	Transmit wait cancel register	TXCR	R/W	H'0000	H'FA08	8/16 bits
	Transmit acknowledge register	TXACK	R/W	H'0000	H'FA0A	8/16 bits
	Abort acknowledge register	ABACK	R/W	H'0000	H'FA0C	8/16 bits
	Receive complete register	RXPR	R/W	H'0000	H'FA0E	8/16 bits
	Remote request register	RFPR	R/W	H'0000	H'FA10	8/16 bits
	Interrupt register	IRR	R/W	H'0100	H'FA12	8/16 bits
	Mailbox interrupt mask register	MBIMR	R/W	H'FFFF	H'FA14	8/16 bits
	Interrupt mask register	IMR	R/W	H'FEFF	H'FA16	8/16 bits
	Receive error counter	REC	R	H'00	H'FA18	8 bits 16 bits
	Transmit error counter	TEC	R	H'00	H'FA19	8 bits
	Unread message status register	UMSR	R/W	H'0000	H'FA1A	8/16 bits
	Local acceptance filter mask L	LAFML	R/W	H'0000	H'FA1C	8/16 bits
	Local acceptance filter mask H	LAFMH	R/W	H'0000	H'FA1E	8/16 bits

Channel	Name	Abbreviation	R/W	Initial Value	Address*1	Access Size
1*2	Message control 0 [1:8]	MC0 [1:8]	R/W	Undefined	H'FA20	8/16 bits
	Message control 1 [1:8]	MC1 [1:8]	R/W	Undefined	H'FA28	8/16 bits
	Message control 2 [1:8]	MC2 [1:8]	R/W	Undefined	H'FA30	8/16 bits
	Message control 3 [1:8]	MC3 [1:8]	R/W	Undefined	H'FA38	8/16 bits
	Message control 4 [1:8]	MC4 [1:8]	R/W	Undefined	H'FA40	8/16 bits
	Message control 5 [1:8]	MC5 [1:8]	R/W	Undefined	H'FA48	8/16 bits
	Message control 6 [1:8]	MC6 [1:8]	R/W	Undefined	H'FA50	8/16 bits
	Message control 7 [1:8]	MC7 [1:8]	R/W	Undefined	H'FA58	8/16 bits
	Message control 8 [1:8]	MC8 [1:8]	R/W	Undefined	H'FA60	8/16 bits
	Message control 9 [1:8]	MC9 [1:8]	R/W	Undefined	H'FA68	8/16 bits
	Message control 10 [1:8]	MC10 [1:8]	R/W	Undefined	H'FA70	8/16 bits
	Message control 11 [1:8]	MC11 [1:8]	R/W	Undefined	H'FA78	8/16 bits
	Message control 12 [1:8]	MC12 [1:8]	R/W	Undefined	H'FA80	8/16 bits
	Message control 13 [1:8]	MC13 [1:8]	R/W	Undefined	H'FA88	8/16 bits
	Message control 14 [1:8]	MC14 [1:8]	R/W	Undefined	H'FA90	8/16 bits
	Message control 15 [1:8]	MC15 [1:8]	R/W	Undefined	H'FA98	8/16 bits
	Message data 0 [1:8]	MD0 [1:8]	R/W	Undefined	H'FAB0	8/16 bits
	Message data 1 [1:8]	MD1 [1:8]	R/W	Undefined	H'FAB8	8/16 bits
	Message data 2 [1:8]	MD2 [1:8]	R/W	Undefined	H'FAC0	8/16 bits
	Message data 3 [1:8]	MD3 [1:8]	R/W	Undefined	H'FAC8	8/16 bits
	Message data 4 [1:8]	MD4 [1:8]	R/W	Undefined	H'FAD0	8/16 bits
	Message data 5 [1:8]	MD5 [1:8]	R/W	Undefined	H'FAD8	8/16 bits
	Message data 6 [1:8]	MD6 [1:8]	R/W	Undefined	H'FAE0	8/16 bits
	Message data 7 [1:8]	MD7 [1:8]	R/W	Undefined	H'FAE8	8/16 bits
	Message data 8 [1:8]	MD8 [1:8]	R/W	Undefined	H'FAF0	8/16 bits
	Message data 9 [1:8]	MD9 [1:8]	R/W	Undefined	H'FAF8	8/16 bits
	Message data 10 [1:8]	MD10 [1:8]	R/W	Undefined	H'FB00	8/16 bits
	Message data 11 [1:8]	MD11 [1:8]	R/W	Undefined	H'FB08	8/16 bits
	Message data 12 [1:8]	MD12 [1:8]	R/W	Undefined	H'FB10	8/16 bits
	Message data 13 [1:8]	MD13 [1:8]	R/W	Undefined	H'FB18	8/16 bits
	Message data 14 [1:8]	MD14 [1:8]	R/W	Undefined	H'FB20	8/16 bits
	Message data 15 [1:8]	MD15 [1:8]	R/W	Undefined	H'FB28	8/16 bits
All	Module stop control register C	MSTPCRC	R/W	H'FF	H'FDEA	8/16 bits

Notes: 1. Lower 16 bits of the address.

2. The HCAN1 is not supported by the H8S/2635 Group.

16.2 Register Descriptions

16.2.1 Master Control Register (MCR)

The master control register (MCR) is an 8-bit readable/writable register that controls the CAN interface.

Bit:	7	6	5	4	3	2	1	0
	MCR7	_	MCR5	_	_	MCR2	MCR1	MCR0
Initial value:	0	0	0	0	0	0	0	1
R/W:	R/W	R	R/W	R	R	R/W	R/W	R/W

Bit 7—HCAN Sleep Mode Release (MCR7): Enables or disables HCAN sleep mode release by bus operation.

Bit 7: MCR7	Description	
0	HCAN sleep mode release by CAN bus operation disabled	(Initial value)
1	HCAN sleep mode release by CAN bus operation enabled	

Bit 6—Reserved: This bit always reads 0. The write value should always be 0.

Bit 5—HCAN Sleep Mode (MCR5): Enables or disables HCAN sleep mode transition.

Bit 5: MCR5	Description	
0	HCAN sleep mode released	(Initial value)
1	Transition to HCAN sleep mode enabled	

Bits 4 and 3—Reserved: These bits always read 0. The write value should always be 0.

Bit 2—Message Transmission Method (MCR2): Selects the transmission method for transmit messages.

Bit 2: MCR2	Description
0	Transmission order determined by message identifier priority (Initial value)
1	Transmission order determined by mailbox (buffer) number priority (TXPR1 > TXPR15)

Bit 1—Halt Request (MCR1): Controls halting of the HCAN module.

Bit 1: MCR1	Description	
0	HCAN normal operating mode	(Initial value)
1	HCAN halt mode transition request	

Bit 0—Reset Request (MCR0): Controls resetting of the HCAN module.

Bit 0: MCR0	Description	
0	Normal operating mode (MCR0 = 0 and GSR3 = 0)	
	[Setting condition]	
	 When 0 is written after an HCAN reset 	
1	HCAN reset mode transition request	(Initial value)

In order for GSR3 to change from 1 to 0 after 0 is written to MCR0, time is required before the HCAN is internally reset. There is consequently a delay before GSR3 is cleared to 0 after MCR0 is cleared to 0.

16.2.2 General Status Register (GSR)

The general status register (GSR) is an 8-bit readable register that indicates the status of the CAN bus.

GSR

Bit:	7	6	5	4	3	2	1	0
	_	_	_	_	GSR3	GSR2	GSR1	GSR0
Initial value:	0	0	0	0	1	1	0	0
R/W:	R	R	R	R	R	R	R	R

Bits 7 to 4—Reserved: These bits always read 0.

May 28, 2010

Bit 3—Reset Status Bit (GSR3): Indicates whether the HCAN module is in the normal operating state or the reset state. Writes are invalid.

Bit 3: MCR3	Description	
0	Normal operating state	
	[Setting condition]	
	 After an HCAN internal reset 	
1	Configuration mode	
	[Reset condition]	
	 MCR0 reset mode and sleep mode 	(Initial value)

Bit 2—Message Transmission Status Flag (GSR2): Flag that indicates whether the module is currently in the message transmission period. The "message transmission period" is the period from the start of message transmission (SOF) until the end of a 3-bit intermission interval after EOF (End of Frame). Writes are invalid.

Bit 2: GSR2	Description	
0	Message transmission period	
1	[Reset condition]	(Initial value)
	Idle period	

Bit 1—Transmit/Receive Warning Flag (GSR1): Flag that indicates an error warning. Writes are invalid.

Bit 1: GSR1	Description	
0	[Reset condition]	
	• When TEC < 96 and REC < 96 or TEC \geq 256	(Initial value)
1	When TEC ≥ 96 or REC ≥ 96	

Bit 0—Bus Off Flag (GSR0): Flag that indicates the bus off state. Writes are invalid.

Bit 0: GSR0	Description	
0	[Reset condition]	
	 Recovery from bus off state 	(Initial value)
1	When TEC ≥ 256 (bus off state)	

16.2.3 Bit Configuration Register (BCR)

The bit configuration register (BCR) is a 16-bit readable/writable register that is used to set CAN bit timing parameters and the baud rate prescaler.

15	14	13	12	11	10	9	8
BCR7	BCR6	BCR5	BCR4	BCR3	BCR2	BCR1	BCR0
0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
7	6	5	4	3	2	1	0
BCR15	BCR14	BCR13	BCR12	BCR11	BCR10	BCR9	BCR8
0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	BCR7 0 R/W 7 BCR15 0	BCR7 BCR6 0 0 R/W R/W 7 6 BCR15 BCR14 0 0	BCR7 BCR6 BCR5 0 0 0 R/W R/W R/W 7 6 5 BCR15 BCR14 BCR13 0 0 0	BCR7 BCR6 BCR5 BCR4 0 0 0 0 R/W R/W R/W R/W 7 6 5 4 BCR15 BCR14 BCR13 BCR12 0 0 0 0	BCR7 BCR6 BCR5 BCR4 BCR3 0 0 0 0 0 R/W R/W R/W R/W R/W 7 6 5 4 3 BCR15 BCR14 BCR13 BCR12 BCR11 0 0 0 0 0	BCR7 BCR6 BCR5 BCR4 BCR3 BCR2 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W 7 6 5 4 3 2 BCR15 BCR14 BCR13 BCR12 BCR11 BCR10 0 0 0 0 0 0	BCR7 BCR6 BCR5 BCR4 BCR3 BCR2 BCR1 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W 7 6 5 4 3 2 1 BCR15 BCR14 BCR13 BCR12 BCR11 BCR10 BCR9 0 0 0 0 0 0 0

Bits 15 and 14—Resynchronization Jump Width (SJW): These bits set the bit synchronization range.

Bit 15:	Bit 14:		
BCR7	BCR6	Description	
0	0	Bit synchronization width = 1 time quantum	(Initial value)
	1	Bit synchronization width = 2 time quanta	
1	0	Bit synchronization width = 3 time quanta	
	1	Bit synchronization width = 4 time quanta	

Bits 13 to 8—Baud Rate Prescaler (BRP): These bits are used to set the CAN bus baud rate.

Bit 13: BCR5	Bit 12: BCR4	Bit 11: BCR3	Bit 10: BCR2	Bit 9: BCR1	Bit 8: BCR0	Description	
0	0	0	0	0	0	2 × system clock	(Initial value)
0	0	0	0	0	1	4 × system clock	
0	0	0	0	1	0	6 × system clock	
•	•	•		•	•	•	
	•				•	•	
•	•	•	•	•	•	•	
1	1	1	1	1	1	128 × system clock	

Bit 7—Bit Sample Point (BSP): Sets the point at which data is sampled.

Bit 7: BCR15	Description
0	Bit sampling at one point (end of time segment 1 (TSEG1)) (Initial value)
1	Bit sampling at three points (end of time segment 1 (TSEG1) and preceding and following time quanta)

Bits 6 to 4—Time Segment 2 (TSEG2): These bits are used to set the segment for correcting 1-bit time error. A value from 2 to 8 can be set.

Bit 6: BCR14	Bit 5: BCR13	Bit 4: BCR12	Description	
0	0	0	Setting prohibited	(Initial value)
		1	TSEG2 = 2 time quanta	
	1	0	TSEG2 = 3 time quanta	
		1	TSEG2 = 4 time quanta	
1	0	0	TSEG2 = 5 time quanta	
		1	TSEG2 = 6 time quanta	
	1	0	TSEG2 = 7 time quanta	
		1	TSEG2 = 8 time quanta	

Bits 3 to 0—Time Segment 1 (TSEG1): These bits are used to set the segment for absorbing output buffer, CAN bus, and input buffer delay. A value from 1 to 16 can be set.

Bit 3: BCR11	Bit 2: BCR10	Bit 1: BCR9	Bit 0: BCR8	Description	
0	0	0	0	Setting prohibited	(Initial value)
0	0	0	1	Setting prohibited	
0	0	1	0	Setting prohibited	
0	0	1	1	TSEG1 = 4 time quanta	
0	1	0	0	TSEG1 = 5 time quanta	
	•	•		•	
•		•	•		
1	1	1	1	TSEG1 = 16 time quanta	

(x = 15 to 1, y = 15 to 9 and 7 to 0)

16.2.4 Mailbox Configuration Register (MBCR)

The mailbox configuration register (MBCR) is a 16-bit readable/writable register that is used to set mailbox (buffer) transmission/reception.

MBCR								
Bit:	15	14	13	12	11	10	9	8
	MBCR7	MBCR6	MBCR5	MBCR4	MBCR3	MBCR2	MBCR1	_
Initial value:	0	0	0	0	0	0	0	1
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R
Bit:	7	6	5	4	3	2	1	0
	MBCR15	MBCR14	MBCR13	MBCR12	MBCR11	MBCR10	MBCR9	MBCR8
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 15 to 9 and 7 to 0—Mailbox Setting Register (MBCR7 to MBCR1, MBCR15 to MBCR8): These bits set the polarity of the corresponding mailboxes.

Bit y: MBCRx	Description	
0	Corresponding mailbox is set for transmission	(Initial value)
1	Corresponding mailbox is set for reception	

TVDD

May 28, 2010

16.2.5 Transmit Wait Register (TXPR)

The transmit wait register (TXPR) is a 16-bit readable/writable register that is used to set a transmit wait after a transmit message is stored in a mailbox (buffer) (CAN bus arbitration wait).

IXPR									
Bit:	15	14	13	12	11	10	9	8	
	TXPR7	TXPR6	TXPR5	TXPR4	TXPR3	TXPR2	TXPR1	_	ì
Initial value:	0	0	0	0	0	0	0	0	
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	
Bit:	7	6	5	4	3	2	1	0	
	TXPR15	TXPR14	TXPR13	TXPR12	TXPR11	TXPR10	TXPR9	TXPR8	ì
Initial value:	0	0	0	0	0	0	0	0	
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bits 15 to 9 and 7 to 0—Transmit Wait Register (TXPR7 to TXPR1, TXPR15 to TXPR8): These bits set a transmit wait for the corresponding mailboxes.

Bit y: TXPRx	Description							
0	Transmit message idle state in corresponding mailbox							
	[Clearing condition]							
	 Message transmission completion and cancellation completion 							
1	Transmit message transmit wait in corresponding mailbox arbitration)	(CAN bus						
	(x = 15 to 1, y =	15 to 9 and 7 to 0)						

16.2.6 Transmit Wait Cancel Register (TXCR)

The transmit wait cancel register (TXCR) is a 16-bit readable/writable register that controls cancellation of transmit wait messages in mailboxes (buffers).

TXCR								
Bit:	15	14	13	12	11	10	9	8
	TXCR7	TXCR6	TXCR5	TXCR4	TXCR3	TXCR2	TXCR1	_
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R						
Bit:	7	6	5	4	3	2	1	0
	TXCR15	TXCR14	TXCR13	TXCR12	TXCR11	TXCR10	TXCR9	TXCR8
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W						
							(x = 15 to	9, 7 to 0)

Bits 15 to 9 and 7 to 0—Transmit Wait Cancel Register (TXCR7 to TXCR1, TXCR15 to TXCR8): These bits control cancellation of transmit wait messages in the corresponding HCAN mailboxes.

Bit y: TXCRx	Description
0	Transmit message cancellation idle state in corresponding mailbox (Initial value)
	[Clearing condition]
	 Completion of TXPR clearing (when transmit message is canceled normally)
1	TXPR cleared for corresponding mailbox (transmit message cancellation)
	(x = 15 to 1, y = 15 to 9 and 7 to 0)

16.2.7 Transmit Acknowledge Register (TXACK)

The transmit acknowledge register (TXACK) is a 16-bit readable/writable register containing status flags that indicate normal transmission of mailbox (buffer) transmit messages.

TXACK								
Bit:	15	14	13	12	11	10	9	8
	TXACK7	TXACK6	TXACK5	TXACK4	TXACK3	TXACK2	TXACK1	_
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R
Bit:	7	6	5	4	3	2	1	0
	TXACK15	TXACK14	TXACK13	TXACK12	TXACK11	TXACK10	TXACK9	TXACK8
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*

Note: * Only a write of 1 is permitted, to clear the flag.

Bits 15 to 9 and 7 to 0—Transmit Acknowledge Register (TXACK7 to TXACK1, TXACK15 to TXACK8): These bits indicate that a transmit message in the corresponding HCAN mailbox has been transmitted normally.

Bit y: TXACKx	Description					
0	[Clearing condition]					
	Writing 1	(Initial value)				
1	Completion of message transmission for corresponding mailbox					
	(x = 1	5 to 1, y = 15 to 9 and 7 to 0)				

ADACK

16.2.8 Abort Acknowledge Register (ABACK)

The abort acknowledge register (ABACK) is a 16-bit readable/writable register containing status flags that indicate normal cancellation (aborting) of a mailbox (buffer) transmit messages.

ABACK								
Bit:	15	14	13	12	11	10	9	8
	ABACK7	ABACK6	ABACK5	ABACK4	ABACK3	ABACK2	ABACK1	_
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R
Bit:	7	6	5	4	3	2	1	0
	ABACK15	ABACK14	ABACK13	ABACK12	ABACK11	ABACK10	ABACK9	ABACK8
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*

Note: * Only a write of 1 is permitted, to clear the flag.

Bits 15 to 9 and 7 to 0—Abort Acknowledge Register (ABACK7 to ABACK1, ABACK15 to ABACK8): These bits indicate that a transmit message in the corresponding mailbox has been canceled (aborted) normally.

Bit y: ABACKx	Description	
0	[Clearing condition]	
	Writing 1	(Initial value)
1	Completion of transmit message cancellation for corres	sponding mailbox
	(x = 15 to 1,	y = 15 to 9 and 7 to 0

16.2.9 **Receive Complete Register (RXPR)**

The receive complete register (RXPR) is a 16-bit readable/writable register containing status flags that indicate normal reception of messages (data frame or remote frame) in mailboxes (buffers).

In the case of remote frame reception, the corresponding remote request register (RFPR) is also set simultaneously.

RXPR								
Bit:	15	14	13	12	11	10	9	8
	RXPR7	RXPR6	RXPR5	RXPR4	RXPR3	RXPR2	RXPR1	RXPR0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/(W)*							
Bit:	7	6	5	4	3	2	1	0
	RXPR15	RXPR14	RXPR13	RXPR12	RXPR11	RXPR10	RXPR9	RXPR8
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/(W)*							

Note: * Only a write of 1 is permitted, to clear the flag.

Bits 15 to 0—Receive Complete Register (RXPR7 to RXPR0, RXPR15 to RXPR8): These bits indicate that a receive message has been received normally in the corresponding mailbox.

Bit x: RXPRx	Description	
0	[Clearing condition]	
	 Writing 1 	(Initial value)
1	Completion of message (data frame or remote fra corresponding mailbox	me) reception in
		(x = 15 to 0)

16.2.10 Remote Request Register (RFPR)

The remote request register (RFPR) is a 16-bit readable/writable register containing status flags that indicate normal reception of remote frames in mailboxes (buffers). When a bit in this register is set, the corresponding reception complete bit is set simultaneously.

RFPR								
Bit:	15	14	13	12	11	10	9	8
	RFPR7	RFPR6	RFPR5	RFPR4	RFPR3	RFPR2	RFPR1	RFPR0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/(W)*							
Bit:	7	6	5	4	3	2	1	0
	RFPR15	RFPR14	RFPR13	RFPR12	RFPR11	RFPR10	RFPR9	RFPR8
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/(W)*							

Note: * Only a write of 1 is permitted, to clear the flag.

Bits 15 to 0—Remote Request Register (RFPR7 to RFPR0, RFPR15 to RFPR8): These bits indicate that a remote frame has been received normally in the corresponding mailbox.

Bit x: RFPRx	Description	
0	[Clearing condition]	
	Writing 1	(Initial value)
1	Completion of remote frame reception in corresp	onding mailbox
		(x = 15 to 0)

...

May 28, 2010

16.2.11 Interrupt Register (IRR)

The interrupt register (IRR) is a 16-bit readable/writable register containing status flags for the various interrupt sources.

IKK								
Bit:	15	14	13	12	11	10	9	8
	IRR7	IRR6	IRR5	IRR4	IRR3	IRR2	IRR1	IRR0
Initial value:	0	0	0	0	0	0	0	1
R/W:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/(W)*
Bit:	7	6	5	4	3	2	1	0
	_	_	_	IRR12	_	_	IRR9	IRR8
Initial value:	0	0	0	0	0	0	0	0
R/W:	_	_	_	R/(W)*	_	_	R	R/(W)*

Note: * Only a write of 1 is permitted, to clear the flag.

Bit 15—Overload Frame Interrupt Flag (IRR7): Status flag indicating that the HCAN has transmitted an overload frame.

Bit 15: IRR7	Description			
0	[Clearing condition]			
	Writing 1	(Initial value)		
1	Overload frame transmission			
	[Setting condition]			
	 When overload frame is transmitted 			

Bit 14—Bus Off Interrupt Flag (IRR6): Status flag indicating the bus off state caused by the transmit error counter.

Bit 14: IRR6	Description	
0	[Clearing condition]	
	Writing 1	(Initial value)
1	Bus off state caused by transmit error	
	[Setting condition]	
	 When TEC ≥ 256 	

Bit 13—Error Passive Interrupt Flag (IRR5): Status flag indicating the error passive state caused by the transmit/receive error counter.

Bit 13: IRR5	Description	
0	[Clearing condition]	
	Writing 1	(Initial value)
1	Error passive state caused by transmit/receive error	
	[Setting condition]	
	• When TEC ≥ 128 or REC ≥ 128	

Bit 12—Receive Overload Warning Interrupt Flag (IRR4): Status flag indicating the error warning state caused by the receive error counter.

Bit 12: IRR4	Description	
0	[Clearing condition]	
	 Writing 1 	(Initial value)
1	Error warning state caused by receive error	
	[Setting condition]	
	 When REC ≥ 96 	

Bit 11—Transmit Overload Warning Interrupt Flag (IRR3): Status flag indicating the error warning state caused by the transmit error counter.

Bit 11: IRR3	Description			
0	[Clearing condition]			
	 Writing 1 	(Initial value)		
1	Error warning state caused by transmit error			
	[Setting condition]			
	• When TEC ≥ 96			

Bit 10—Remote Frame Request Interrupt Flag (IRR2): Status flag indicating that a remote frame has been received in a mailbox (buffer).

Bit 10: IRR2	Description
0	[Clearing condition]
	 Clearing of all bits in RFPR (remote request register) of mailbox for which receive interrupt requests are enabled by MBIMR (Initial value)
1	Remote frame received and stored in mailbox [Setting condition]
	 When remote frame reception is completed, when corresponding MBIMR = 0

Bit 9—Receive Message Interrupt Flag (IRR1): Status flag indicating that a mailbox (buffer) receive message has been received normally.

Bit 9: IRR1	Description		
0	[Clearing condition]		
	 Clearing of all bits in RXPR (receive complete register) of mailbox for which receive interrupt requests are enabled by MBIMR (Initial value) 		
1	Data frame or remote frame received and stored in mailbox [Setting condition]		
	 When data frame or remote frame reception is completed, when corresponding MBIMR = 0 		

Bit 8—Reset Interrupt Flag (IRR0): Status flag indicating that the HCAN module has been reset. This bit cannot be masked in the interrupt mask register (IMR). If this bit is not cleared after reset input or recovery from software standby mode, interrupt handling will be performed as soon as interrupts are enabled by the interrupt controller.

Bit 8: IRR0	Description	
0	[Clearing condition]	
	Writing 1	
1	Hardware reset (HCAN module stop*, software standby) [Setting condition]	(Initial value)
	 When reset processing is completed after a hardware reset (HCAN module stop*, software standby) 	

Note: * After reset or hardware standby release, the module stop bit is initialized to 1, and so the HCAN enters the module stop state.

Bits 7 to 5, 3, and 2—Reserved: These bits always read 0. The write value should always be 0.

Bit 4—Bus Operation Interrupt Flag (IRR12): Status flag indicating detection of a dominant bit due to bus operation when the HCAN module is in HCAN sleep mode.

Bit 4: IRR12	Description	
0	CAN bus idle state	(Initial value)
	[Clearing condition]	
	Writing 1	
1	CAN bus operation in HCAN sleep mode	
	[Setting condition]	
	Bus operation (dominant bit detection) in HCAN sleep me	ode

Bit 1—Unread Interrupt Flag (IRR9): Status flag indicating that a receive message has been overwritten while still unread.

Bit 1: IRR9	Description
0	[Clearing condition]
	 Clearing of all bits in UMSR (unread message status register)
	(Initial value)
1	Unread message overwrite
	[Setting condition]
	 When UMSR (unread message status register) is set

Bit 0—Mailbox Empty Interrupt Flag (IRR8): Status flag indicating that the next transmit message can be stored in the mailbox.

Bit 0: IRR8	Description
0	[Clearing condition]
	Writing 1 (Initial value)
1	Transmit message has been transmitted or aborted, and new message can be stored
	[Setting condition]
	 When TXPR (transmit wait register) is cleared by completion of transmission or completion of transmission abort

16.2.12 Mailbox Interrupt Mask Register (MBIMR)

The mailbox interrupt mask register (MBIMR) is a 16-bit readable/writable register containing flags that enable or disable individual mailbox (buffer) interrupt requests.

MRIMK								
Bit:	15	14	13	12	11	10	9	8
	MBIMR7	MBIMR6	MBIMR5	MBIMR4	MBIMR3	MBIMR2	MBIMR1	MBIMR0
Initial value:	1	1	1	1	1	1	1	1
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit:	7	6	5	4	3	2	1	0
	MBIMR15	MBIMR14	MBIMR13	MBIMR12	MBIMR11	MBIMR10	MBIMR9	MBIMR8
Initial value:	1	1	1	1	1	1	1	1
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bits 15 to 0—Mailbox Interrupt Mask (MBIMRx): Flags that enable or disable individual mailbox interrupt requests.

Bit x: MBIMRx	Description	
0	[Transmitting]	_
	 Interrupt request to CPU due to TXPR clearing 	
	[Receiving]	
	 Interrupt request to CPU due to RXPR setting 	
1	Interrupt requests to CPU disabled	(Initial value)

(x = 15 to 0)

...

Interrupt Mask Register (IMR) 16.2.13

The interrupt mask register (IMR) is a 16-bit readable/writable register containing flags that enable or disable requests by individual interrupt sources.

IMR								
Bit:	15	14	13	12	11	10	9	8
	IMR7	IMR6	IMR5	IMR4	IMR3	IMR2	IMR1	_
Initial value:	1	1	1	1	1	1	1	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R
Bit:	7	6	5	4	3	2	1	0
	_	_	_	IMR12	_	_	IMR9	IMR8
Initial value:	1	1	1	1	1	1	1	1
R/W:	R	R	R	R/W	R	R	R/W	R/W

Bit 15—Overload Frame/Bus Off Recovery Interrupt Mask (IMR7): Enables or disables overload frame/bus off recovery interrupt requests.

Bit 15: IMR7	Description
0	Overload frame/bus off recovery interrupt request (OVR0) to CPU by IRR7 enabled
1	Overload frame/bus off recovery interrupt request (OVR0) to CPU by IRR7 disabled (Initial value)

Bit 14—Bus Off Interrupt Mask (IMR6): Enables or disables bus off interrupt requests caused by the transmit error counter.

Bit 14: IMR6	Description	
0	Bus off interrupt request (ERS0) to CPU by IRR6 enabled	_
1	Bus off interrupt request (ERS0) to CPU by IRR6 disabled	(Initial value)

Bit 13—Error Passive Interrupt Mask (IMR5): Enables or disables error passive interrupt requests caused by the transmit/receive error counter.

Bit 13: IMR5	Description
0	Error passive interrupt request (ERS0) to CPU by IRR5 enabled
1	Error passive interrupt request (ERS0) to CPU by IRR5 disabled
	(Initial value)

Bit 12—Receive Overload Warning Interrupt Mask (IMR4): Enables or disables error warning interrupt requests caused by the receive error counter.

Bit 12: IMR4	Description
0	REC error warning interrupt request (OVR0) to CPU by IRR4 enabled
1	REC error warning interrupt request (OVR0) to CPU by IRR4 disabled
	(Initial value)

Bit 11—Transmit Overload Warning Interrupt Mask (IMR3): Enables or disables error warning interrupt requests caused by the transmit error counter.

Bit 11: IMR3	Description
0	TEC error warning interrupt request (OVR0) to CPU by IRR3 enabled
1	TEC error warning interrupt request (OVR0) to CPU by IRR3 disabled (Initial value)

Bit 10—Remote Frame Request Interrupt Mask (IMR2): Enables or disables remote frame reception interrupt requests.

Bit 10: IMR2	Description
0	Remote frame reception interrupt request (OVR0) to CPU by IRR2 enabled
1	Remote frame reception interrupt request (OVR0) to CPU by IRR2 disabled (Initial value)

Bit 9—Receive Message Interrupt Mask (IMR1): Enables or disables message reception interrupt requests.

Bit 9: IMR1	Description
0	Message reception interrupt request (RM1) to CPU by IRR1 enabled
1	Message reception interrupt request (RM1) to CPU by IRR1 disabled (Initial value)

Bit 8—Reserved: The reset flag cannot be masked. This bit always reads 0. The write value should always be 0.

Bits 7 to 5, 3, and 2—Reserved: These bits always read 1. The write value should always be 1.

Bit 4—Bus Operation Interrupt Mask (IMR12): Enables or disables interrupt requests due to bus operation in sleep mode.

Bit 4: IMR12	Description
0	Bus operation interrupt request (OVR0) to CPU by IRR12 enabled
1	Bus operation interrupt request (OVR0) to CPU by IRR12 disabled (Initial value)

Bit 1—Unread Interrupt Mask (IMR9): Enables or disables unread receive message overwrite interrupt requests.

Bit 1: IMR9	Description	
0	Unread message overwrite interrupt request (OVR0) to CPU by IRR9 enabled	
1	Unread message overwrite interrupt request (OVR0) to CPU by IRR9 disabled (Initial val	lue)

Bit 0—Mailbox Empty Interrupt Mask (IMR8): Enables or disables mailbox empty interrupt requests.

Bit 0: IMR8	Description				
0	Mailbox empty interrupt request (SLE0) to CPU by IRR8 enabled				
1	Mailbox empty interrupt request (SLE0) to CPU by IRR8 disabled				
	(Initial value)				

16.2.14 Receive Error Counter (REC)

The receive error counter (REC) is an 8-bit read-only register that functions as a counter indicating the number of receive message errors on the CAN bus. The count value is stipulated in the CAN protocol.

REC								
Bit:	7	6	5	4	3	2	1	0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R

16.2.15 Transmit Error Counter (TEC)

The transmit error counter (TEC) is an 8-bit read-only register that functions as a counter indicating the number of transmit message errors on the CAN bus. The count value is stipulated in the CAN protocol.

TEC									
Bit:	7	6	5	4	3	2	1	0	
Initial value:	0	0	0	0	0	0	0	0	_
R/W:	R	R	R	R	R	R	R	R	

Unread Message Status Register (UMSR)

The unread message status register (UMSR) is a 16-bit readable/writable register containing status flags that indicate, for individual mailboxes (buffers), that a received message has been overwritten by a new receive message before being read. When a message is overwritten by a new receive message, the old data is lost.

UMSR								
Bit:	15	14	13	12	11	10	9	8
	UMSR7	UMSR6	UMSR5	UMSR4	UMSR3	UMSR2	UMSR1	UMSR0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/(W)*							
Bit:	7	6	5	4	3	2	1	0
	UMSR15	UMSR14	UMSR13	UMSR12	UMSR11	UMSR10	UMSR9	UMSR8
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/(W)*							

Note: *Only 1 can be written, to clear the flag to 0.

Bits 15 to 0—Unread Message Status Flags (UMSRx): Status flags indicating that an unread receive message has been overwritten.

Bit x: UMSRx	Description					
0	[Clearing condition]					
	Writing 1	(Initial value)				
1	Unread receive message is overwritten by a new message					
	[Setting condition]					
	When a new message is received before RXPR is cleared					
		(x = 15 to 0)				

16.2.17 Local Acceptance Filter Masks (LAFML, LAFMH)

The local acceptance filter masks (LAFML, LAFMH) are 16-bit readable/writable registers that filter receive messages to be stored in the receive-only mailbox (MC0, MD0) according to the identifier. In these registers, consist of LAFMH15: MSB to LAFMH5: LSB are 11 standard/extended identifier bits, and LAFMH1: MSB to LAFML0: LSB are 18 extended identifier bits.

	_			
А	-	IV	ш	ı

Bit:	15	14	13	12	11	10	9	8
	LAFML7	LAFML6	LAFML5	LAFML4	LAFML3	LAFML2	LAFML1	LAFML0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit:	7	6	5	4	3	2	1	0
	LAFML15	LAFML14	LAFML13	LAFML12	LAFML11	LAFML10	LAFML9	LAFML8
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
LAFMH								
Bit:	15	14	13	12	11	10	9	8
	LAFMH7	LAFMH6	LAFMH5	_	_	_	LAFMH1	LAFMH0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R	R	R	R/W	R/W
Bit:	7	6	5	4	3	2	1	0
	LAFMH15	LAFMH14	LAFMH13	LAFMH12	LAFMH11	LAFMH10	LAFMH9	LAFMH8
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

LAFMH Bits 7 to 0 and 15 to 13—11-Bit Identifier Filter (LAFMH7 to LAFMH5, LAFMH15 to LAFMH8): Filter mask bits for the first 11 bits of the receive message identifier (for both standard and extended identifiers).

Bit x: LAFMHx	Description
0	Stored in MC0 and MD0 (receive-only mailbox) depending on bit match between MC0 message identifier and receive message identifier (Initial value)
1	Stored in MC0 and MD0 (receive-only mailbox) regardless of bit match between MC0 message identifier and receive message identifier
	(x = 15 to 5)

LAFMH Bits 12 to 10—Reserved: These bits always read 0. The write value should always be 0.

LAFMH Bits 9 and 8, LAFML Bits 15 to 0—18-Bit Identifier Filter (LAFMH1, LAFMH0, LAFML7 to LAFML0, LAFML15 to LAFML8): Filter mask bits for the 18 bits of the receive message identifier (extended).

Bit y:	LAFMHx LAFMLy	Description
0		Stored in MC0 (receive-only mailbox) depending on bit match between MC0 message identifier and receive message identifier (Initial value)
1		Stored in MC0 (receive-only mailbox) regardless of bit match between MC0 message identifier and receive message identifier

(x = 1 and 0, y = 15 to 0)

16.2.18 Message Control (MC0 to MC15)

The message control register sets (MC0 to MC15) consist of eight 8-bit readable/writable registers (MCx[1] to MCx[8]). The HCAN has 16 sets of these registers (MC0 to MC15).

The initial value of these registers is undefined, so they must be initialized (by writing 0 or 1).

MCx [1]								
Bit:	7	6	5	4	3	2	1	0
	_		_	_	DLC3	DLC2	DLC1	DLC0
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MCx [2]								
Bit:	7	6	5	4	3	2	1	0
	_	_	_	_	_	_	_	_
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MCx [3]								
Bit:	7	6	5	4	3	2	1	0
	_	_	_	_	_	_	_	_
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MCx [4]								
Bit:	7	6	5	4	3	2	1	0
	_		_	_	_		_	_
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
							*:\	Jndefined

MCx [5]								
Bit:	7	6	5	4	3	2	1	0
	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W							
MCx [6]								
Bit:	7	6	5	4	3	2	1	0
	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W							
MCx [7]								
Bit:	7	6	5	4	3	2	1	0
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W							
MCx [8]								
Bit:	7	6	5	4	3	2	1	0
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W							
								Jndefined = 15 to 0)

MCx[1] Bits 7 to 4—Reserved: The initial value of these bits is undefined; they must be initialized (by writing 0 or 1).

MCx[1] Bits 3 to 0—Data Length Code (DLC): These bits indicate the required length of data frames and remote frames.

Bit 3: DLC3	Bit 2: DLC2	Bit 1: DLC1	Bit 0: DLC0	Description
0	0	0	0	Data length = 0 bytes
			1	Data length = 1 byte
		1	0	Data length = 2 bytes
			1	Data length = 3 bytes
	1	0	0	Data length = 4 bytes
			1	Data length = 5 bytes
		1	0	Data length = 6 bytes
			1	Data length = 7 bytes
1	0/1	0/1	0/1	Data length = 8 bytes

MCx[2] Bits 7 to 0—Reserved: The initial value of these bits is undefined; they must be initialized (by writing 0 or 1).

MCx[3] Bits 7 to 0—Reserved: The initial value of these bits is undefined; they must be initialized (by writing 0 or 1).

MCx[4] Bits 7 to 0—Reserved: The initial value of these bits is undefined; they must be initialized (by writing 0 or 1).

MCx[6] Bits 7 to 0—Standard Identifier (STD_ID10 to STD_ID3)

MCx[5] Bits 7 to 5—Standard Identifier (STD_ID2 to STD_ID0)

These bits set the identifier (standard identifier) of data frames and remote frames.

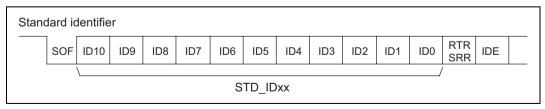


Figure 16-2 Standard identifier

MCx[5] Bit 4—Remote Transmission Request (RTR): Used to distinguish between data frames and remote frames.

Bit 4: RTR	Description
0	Data frame
1	Remote frame

MCx[5] Bit 3—Identifier Extension (IDE): Used to distinguish between the standard format and extended format of data frames and remote frames.

Bit 3: IDE	Description
0	Standard format
1	Extended format

MCx[5] Bit 2—Reserved: The initial value of this bit is undefined; it must be initialized (by writing 0 or 1).

MCx[5] Bits 1 and 0—Extended Identifier (EXD_ID17, EXD_ID16)

MCx[8] Bits 7 to 0—Extended Identifier (EXD_ID15 to EXD_ID8)

MCx[7] Bits 7 to 0—Extended Identifier (EXD_ID7 to EXD_ID0)

These bits set the identifier (extended identifier) of data frames and remote frames.

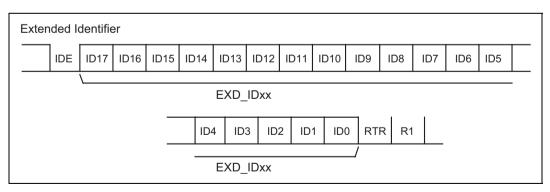


Figure 16-3 Extended identifier

16.2.19 Message Data (MD0 to MD15)

The message data register sets (MD0 to MD15) consist of eight 8-bit readable/writable registers (MDx[1] to MDx[8]). The HCAN has 16 sets of these registers (MD0 to MD15).

The initial value of these registers is undefined, so they must be initialized (by writing 0 or 1).

MDx [1]								
Bit:	7	6	5	4	3	2	1	0
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W							
MDx [2]								
Bit:	7	6	5	4	3	2	1	0
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W							
MDx [3]								
Bit:	7	6	5	4	3	2	1	0
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W							
MDx [4]								
Bit:	7	6	5	4	3	2	1	0
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W							

MDx [5]								
Bit:	7	6	5	4	3	2	1	0
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W							
MDx [6]								
Bit:	7	6	5	4	3	2	1	0
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W							
MDx [7]								
Bit:	7	6	5	4	3	2	1	0
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W							
MDx [8]								
Bit:	7	6	5	4	3	2	1	0
Initial value:	*	*	*	*	*	*	*	*
R/W:	R/W							
								Undefined
							(X	= 0 to 15)

16.2.20 Module Stop Control Register C (MSTPCRC)

Bit:	7	6	5	4	3	2	1	0
	MSTPC7	MSTPC6	MSTPC5	MSTPC4	MSTPC3	MSTPC2*	MSTPC1	MSTPC0
Initial value:	1	1	1	1	1	1	1	1
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * The MSTPC2 is not available and is reserved in the H8S/2635 Group.

MSTPCRC is an 8-bit readable/writable register that performs module stop mode control.

When the MSTPC3 and MSTPC2 bits are set to 1, HCAN0 and 1 operation is stopped at the end of the bus cycle, and module stop mode is entered. Register read/write accesses are not possible in module stop mode. For details, see section 23A.5, 23B.5, Module Stop Mode.

MSTPCRC is initialized to H'FF by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bit 3—Module Stop (MSTPC3): Specifies the HCAN module stop mode.

Bit 3: MSTPC3	Description	
0	HCAN0 module stop mode is cleared	
1	HCAN0 module stop mode is set	(Initial value)

Bit 2—Module Stop (MSTPC2)*: Specifies the HCAN module stop mode.

Note: * The MSTPC2 is not available and is reserved in the H8S/2635 Group.

Bit 2: MSTPC2	Description	
0	HCAN1 module stop mode is cleared	_
1	HCAN1 module stop mode is set	(Initial value)

16.3 Operation

The device is equipped with a 1-channel HCAN module or with 2-channel HCAN modules, which are controlled independently. In the latter case, both modules have identical specifications, and they are controlled in the same manner.

16.3.1 Hardware and Software Resets

The HCAN can be reset by a hardware reset or software reset.

Hardware Reset (HCAN Module Stop, Reset*, Hardware*/Software Standby): Initialization is performed by automatic setting of the MCR reset request bit (MCR0) in MCR and the reset state bit (GSR3) in GSR within the HCAN (hardware reset). At the same time, all internal registers are initialized. However mailbox contents are retained. A flowchart of this reset is shown in figure 16-4.

Note: * In a reset and in hardware standby mode, the module stop bit is initialized to 1 and the HCAN enters the module stop state.

Software Reset (Write to MCR0): In normal operation initialization is performed by setting the MCR reset request bit (MCR0) in MCR (Software reset). With this kind of reset, if the CAN controller is performing a communication operation (transmission or reception), the initialization state is not entered until the message has been completed. During initialization, the reset state bit (GSR3) in GSR is set. In this kind of initialization, the error counters (TEC and REC) are initialized but other registers and RAM (mailboxes) are not. A flowchart of this reset is shown in figure 16-5.

Page 652 of 1458

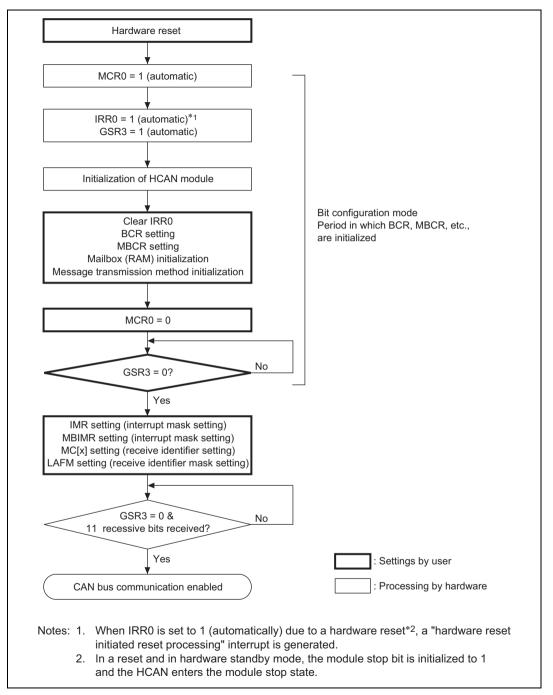


Figure 16-4 Hardware Reset Flowchart

May 28, 2010

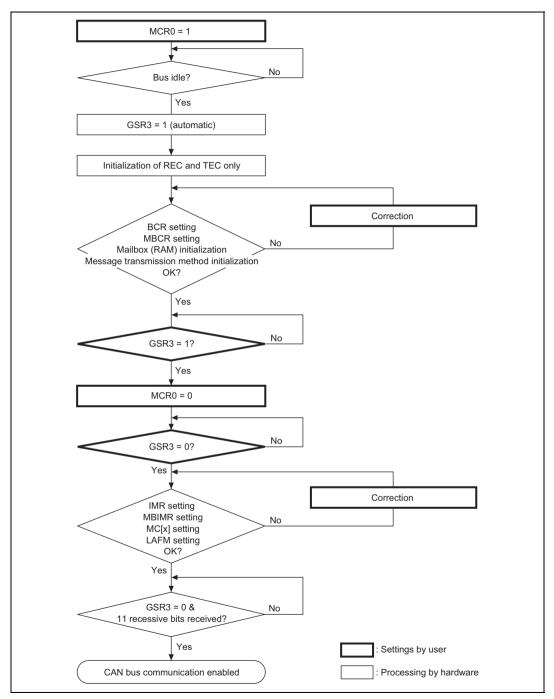


Figure 16-5 Software Reset Flowchart

16.3.2 Initialization after Hardware Reset

After a hardware reset, the following initialization processing should be carried out:

- Clearing of IRR0 bit in interrupt register (IRR)
- Bit rate setting
- Mailbox transmit/receive settings
- Mailbox (RAM) initialization
- Message transmission method setting

These initial settings must be made while the HCAN is in bit configuration mode. Configuration mode is a state in which the reset request bit (MCR0) in the master control register (MCR) is 1 and the reset status bit in the general status register (GSR) is also 1 (GSR3 = 1). Configuration mode is exited by clearing the reset request bit in MCR to 0; when MCR0 is cleared to 0, the HCAN automatically clears the reset state bit (GSR3) in the general status register (GSR). The power-up sequence then begins, and communication with the CAN bus is possible as soon as the sequence ends. The power-up sequence consists of the detection of 11 consecutive recessive bits.

IRR0 Clearing: The reset interrupt flag (IRR0) is always set after a reset or recovery from software standby mode. As an HCAN interrupt is initiated immediately when interrupts are enabled, IRR0 should be cleared.

Bit Rate and Bit Timing Settings: As bit rate settings, a baud rate setting and bit timing setting must be made each time a CAN node begins communication. The baud rate and bit timing settings are made in the bit configuration register (BCR).

a. Note

BCR can be written to at all times, but should only be modified in configuration mode. Settings should be made so that all CAN controllers connected to the CAN bus have the same baud rate and bit width.

Limits for the settable variables (TSEG1, TSEG2, BRP, sample point, and SJW) are shown in table 16-3.

Table 16-3 BCR Register Value Setting Ranges

Name	Abbreviation	Min. Value	Max. Value
Time segment 1	TSEG1	B'0011	B'1111
Time segment 2	TSEG2	B'001	B'111
Baud rate prescaler	BRP	B'000000	B'111111
Sample point	SAM	B'0	B'1
Synchronization jump width	SJW	B'00	B'11

b. Value Setting Ranges

• The minimum value of SJW is stipulated in the CAN specifications.

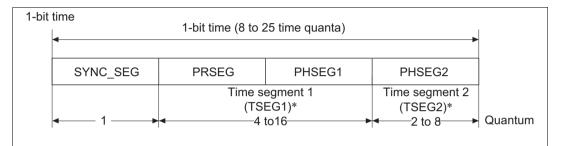
$$3 \ge SJW \ge 0$$

• The minimum value of TSEG1 is stipulated in the CAN specifications.

• The minimum value of TSEG2 is stipulated in the CAN specifications.

The following formula is used to calculate the baud rate.

Bit rate =
$$\frac{f_{CLK}}{2 \times (BRP + 1) \times (3 + TSEG1 + TSEG2)}$$


Note: $f_{CLK} = \phi$ (system clock)

The BCR value are used for BRP, TSEG1, and TSEG2.

Example: With a 1 Mb/s baud rate and a 20 MHz input clock:

1 Mb/s =
$$\frac{20 \text{ MHz}}{2 \times (0 + 1) \times (3 + 4 + 3)}$$

Item	Set Values	Actual Values
f _{CLK}	20 MHz	_
BRP	0 (B'000000)	System clock × 2
TSEG1	4 (B'0100)	5TQ
TSEG2	3 (B'011)	4TQ

Legend:

SYNC SEG: Segment for establishing synchronization of nodes on the CAN bus (Normal bit

edge transitions occur in this segment).

PRSEG: Segment for compensating for physical delay between networks.

PHSEG1: Buffer segment for correcting phase drift (positive). (This segment is extended

when synchronization (resynchronization) is established).

PHSEG2: Buffer segment for correcting phase drift (negative). (This segment is

shortened when synchronization (resynchronization) is established).

Note: * The time quanta values of TSEG1 and TSEG2 become the value of TSEG + 1.

Figure 16-6 Detailed Description of One Bit

HCAN bit rate calculation:

Bit rate =
$$\frac{f_{CLK}}{2 \times (BRP + 1) \times (3 + TSEG1 + TSEG2)}$$

f_{CLK}: peripheral clock (φ)

Note: The BCR values are used for BRP, TSEG1, and TSEG2.

BCR Setting Constraints

TSEG1 > TSEG2
$$\geq$$
 SJW (SJW = 0 to 3)

These constraints allow the setting range shown in table 16-4 for TSEG1 and TSEG2 in BCR.

TSEG2 (BCR [14:12]) 001 010 011 100 101 110 111 TSFG1 0011 Nο Yes Nο Nο Nο Nο Nο (BCR [11:8]) Yes* 0100 Yes Yes No No No No 0101 Yes* Yes Yes Yes Nο Nο Nο Yes* 0110 Yes Yes Yes Yes Nο Nο Yes* 0111 Yes Yes Yes Yes Yes No Yes* 1000 Yes Yes Yes Yes Yes Yes 1001 Yes* Yes Yes Yes Yes Yes Yes Yes* 1010 Yes Yes Yes Yes Yes Yes 1011 Yes* Yes Yes Yes Yes Yes Yes Yes* 1100 Yes Yes Yes Yes Yes Yes Yes* 1101 Yes Yes Yes Yes Yes Yes Yes* Yes Yes 1110 Yes Yes Yes Yes Yes* 1111 Yes Yes Yes Yes Yes Yes

Table 16-4 Setting Range for TSEG1 and TSEG2 in BCR

Notes: The time quanta value for TSEG1 and TSEG2 is the TSEG value + 1.

Mailbox Transmit/Receive Settings: HCAN0, 1 each have 16 mailboxes. Mailbox 0 is receive-only, while mailboxes 1 to 15 can be set for transmission or reception. Mailboxes that can be set for transmission or reception must be designated either for transmission use or for reception use before communication begins. The Initial status of mailboxes 1 to 15 is for transmission (while mailbox 0 is for reception only). Mailbox transmit/receive settings are not initialized by a software reset.

• Setting for transmission

Transmit mailbox setting (mailboxes 1 to 15)

Clearing a corresponding mailbox in the mailbox configuration register (MBCR) to 0 designates the specified mailbox for transmission use. After a reset, mailboxes are initialized for transmission use, so this setting is not necessary.

• Setting for reception

Transmit/receive mailbox setting (mailboxes 1 to 15)

^{*} Only a value other than BRP[13:8] = B'000000 can be set.

Setting a bit to 1 in the mailbox configuration register (MBCR) designates the corresponding mailbox for reception use. When setting mailboxes for reception, to improve message transmission efficiency, high-priority messages should be set in low-to-high mailbox order (priority order: mailbox 1 > mailbox 15).

Receive-only mailbox (mailbox 0)
 No setting is necessary, as this mailbox is always used for reception.

Mailbox (Message Control/Data (MCx[x], MDx[x]) Initial Settings: After power is supplied, all registers and RAM (message control/data, control registers, status registers, etc.) are initialized. Message control/data (MCx[x], MDx[x]) only are in RAM, and so their values are undefined. Initial values must therefore be set in all the mailboxes (by writing 0s or 1s).

Setting the Message Transmission Method: Either of the following message transmission methods can be selected with the message transmission method bit (MCR2) in the master control register (MCR):

- a. Transmission order determined by message identifier priority
- b. Transmission order determined by mailbox number priority

When a is selected, if a number of messages are designated as waiting for transmission (TXPR = 1), the message with the highest priority set in the message identifier (MCx[5] to MCx[8]) is stored in the transmit buffer. CAN bus arbitration is then carried out for the message in the transmit buffer, and message transmission is performed when the transmission right is acquired. When the TXPR bit is set, internal arbitration is performed again, and the highest-priority message is found and stored in the transmit buffer.

When b is selected, if a number of messages are designated as waiting for transmission (TXPR = 1), messages are stored in the transmit buffer in low-to-high mailbox order (priority order: mailbox 1 > mailbox 15). CAN bus arbitration is then carried out for the messages in the transmit buffer, and message transmission is performed when the bus is acquired.

16.3.3 Transmit Mode

Message transmission is performed using mailboxes 1 to 15. The transmission procedure is described below, and a transmission flowchart is shown in figure 16-6.

Initialization (after hardware reset only)

- a. Clearing of IRR0 bit in interrupt register (IRR)
- b. Bit rate settings
- c. Mailbox transmit/receive settings
- d. Mailbox (RAM) initialization
- e. Message transmission method setting

Interrupt and transmit data settings

- a. CPU interrupt source setting
- b. Arbitration field setting
- c. Control field setting
- d. Data field setting

Message transmission and interrupts

- Message transmission wait
- b. Message transmission completion and interrupt
- Message transmission cancellation
- d. Message retransmission

Initialization (After Hardware Reset Only): These settings should be made while the HCAN is in bit configuration mode.

IRR0 clearing

The reset interrupt flag (IRR0) is always set after a reset or recovery from software standby mode. As an HCAN interrupt is initiated immediately when interrupts are enabled, IRR0 should be cleared.

Bit rate settings

Set values relating to the CAN bus communication speed and resynchronization. Refer to Bit Rate and Bit Timing Settings in 16.3.2, Initialization after Hardware Reset, for details.

• Mailbox transmit/receive settings

Mailbox transmit/receive settings should be made in advance. A total of 30 mailbox can be set for transmission or reception (mailboxes 1 to 15 in HCAN0 and HCAN1). To set a mailbox for transmission, clear the corresponding bit to 0 in the mailbox configuration register (MBCR). Refer to Mailbox Transmit/Receive Settings in 16.3.2, Initialization after Hardware Reset, for details

• Mailbox (RAM) initialization

As message control/data registers (MCx[x], MDx[x]) are configured in RAM, their initial values after powering on are undefined, and so bit initialization is necessary. Write 0s or 1s to the mailboxes. See Mailbox (Message Control/Data (MCx[x], MDx[x]) Initial Setting in 16.3.2. Initialization after a Hardware Reset, for details.

Message transmission method setting

Set the transmission method for mailboxes designated for transmission. The following two transmission methods can be used. Refer to Message Transmission Method Setting in 16.3.2, Initialization after Hardware Reset, for details.

- a. Transmission order determined by message identifier priority
- b. Transmission order determined by mailbox number priority

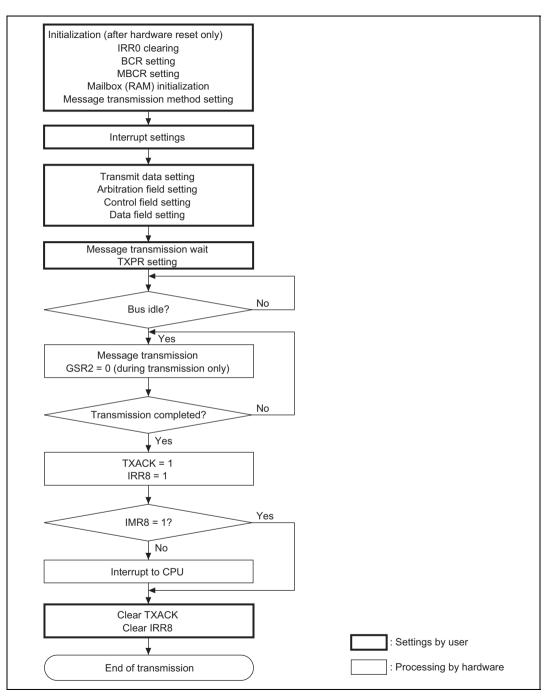


Figure 16-7 Transmission Flowchart

Interrupt and Transmit Data Settings: When mailbox initialization is finished, CPU interrupt source settings and data settings must be made. Interrupt source settings are made in the mailbox interrupt register (MBIMR) and interrupt mask register (IMR), while transmit data settings are made by writing the necessary data from the arbitration field, control field, and data field, described below, in the corresponding message control (MCx[1] to MCx[8]) and message data (MDx[1] to MDx[8]).

• CPU interrupt source setting

Transmission acknowledge and transmission abort acknowledge interrupts can be masked for individual mailboxes in the mailbox interrupt mask register (MBIMR). Interrupt register (IRR) interrupts can be masked in the interrupt mask register (IMR).

Arbitration field setting

In the arbitration field, the 11-bit identifier (STD_ID0 to STD_ID10) and RTR bit (standard format) or 29-bit identifier (STD_ID0 to STD_ID10, EXT_ID0 to EXT_ID17) and IDE, RTR bit (extended format) are set. The registers to be set are MCx[5] to MCx[8].

Control field setting

In the control field, the byte length of the data to be transmitted is set in DLC0 to DLC3. The register to be set is MCx[1].

• Data field setting

In the data field, the data to be transmitted is set in byte units in the range of 0 to 8 bytes. The registers to be set are MDx[1] to MDx[8].

The number of bytes in the data actually transmitted depends on the data length code (DLC) in the control field. If a value exceeding the value set in DLC is set in the data field, only the number of bytes set in DLC will actually be transmitted.

Message Transmission and Interrupts:

• Message transmission wait

If message transmission is to be performed after completion of the message control (MCx[1] to MCx[8]) and message data (MDx[1] to MDx[8]).settings, transmission is started by setting the corresponding mailbox transmit wait bit (TXPR1 to TXPR15) to 1 in the transmit wait register (TXPR). The following two transmission methods can be used:

- a. Transmission order determined by message identifier priority
- b. Transmission order determined by mailbox number priority

When a is selected, if a number of messages are designated as waiting for transmission (TXPR = 1), messages are stored in the transmit buffer in low-to-high mailbox order (priority order: mailbox 1 > mailbox 15). CAN bus arbitration is then carried out for the messages in the transmit buffer, and message transmission is performed when the bus is acquired.

When b is selected, if a number of messages are designated as waiting for transmission (TXPR = 1), the message with the highest priority set in the message identifier (MCx[5] to MCx[8]) is stored in the transmit buffer. CAN bus arbitration is then carried out for the message in the transmit buffer, and message transmission is performed when the transmission right is acquired. When the TXPR bit is set, internal arbitration is performed again, the highest-priority message is found and stored in the transmit buffer, CAN bus arbitration is carried out in the same way, and message transmission is performed when the transmission right is acquired.

Message transmission completion and interrupt

When a message is transmitted error-free using the above procedure, the corresponding acknowledge bit (TXACK1 to TXACK15) in the transmit acknowledge register (TXACK) and transmit wait bit (TXPR1 to TXPR15) in the transmit wait register (TXPR) are automatically initialized. Also, if the corresponding bit (MBIMR1 to MBIMR15) in the mailbox interrupt mask register (MBIMR) and the mailbox empty interrupt bit (IRR8) in the interrupt mask register (IMR) are set to the interrupt enable state at the same time, an interrupt can be sent to the CPU.

Message transmission cancellation

Transmission cancellation can be specified for a message stored in a mailbox as a transmit wait message. A transmit wait message is canceled by setting the bit for the corresponding mailbox (TXCR1 to TXCR15) to 1 in the transmit cancel register (TXCR). When cancellation is executed, the transmit wait register (TXPR) is automatically reset, and the corresponding bit is set to 1 in the abort acknowledge register (ABACK). An interrupt can be requested. Also, if the mailbox empty interrupt (IRR8) is enabled for the bits (MBIMR1 to MBIMR15) corresponding to the mailbox interrupt mask register (MBIMR) and interrupt mask register (IMR), interrupts may be sent to the CPU.

However, a transmit wait message cannot be canceled at the following times:

- a. During internal arbitration or CAN bus arbitration
- b. During data frame or remote frame transmission

Also, transmission cannot be canceled by clearing the transmit wait register (TXPR). Figure 16-5 shows a flowchart of transmit message cancellation.

• Message retransmission

If transmission of a transmit message is aborted in the following cases, the message is retransmitted automatically:

- a. CAN bus arbitration failure (failure to acquire the bus)
- b. Error during transmission (bit error, stuff error, CRC error, frame error, ACK error)

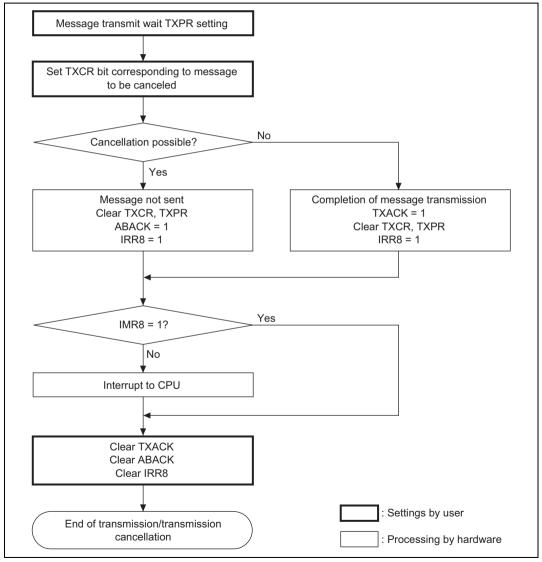


Figure 16-8 Transmit Message Cancellation Flowchart

16.3.4 Receive Mode

Message reception is performed using mailboxes 0 and 1 to 15. The reception procedure is described below, and a reception flowchart is shown in figure 16-9.

Initialization (after hardware reset only)

- a. Clearing of IRR0 bit in interrupt register (IRR)
- b. Bit rate settings
- c. Mailbox transmit/receive settings
- d. Mailbox (RAM) initialization

Interrupt and receive message settings

- a. CPU interrupt source setting
- b. Arbitration field setting
- c. Local acceptance filter mask (LAFM) settings

Message reception and interrupts

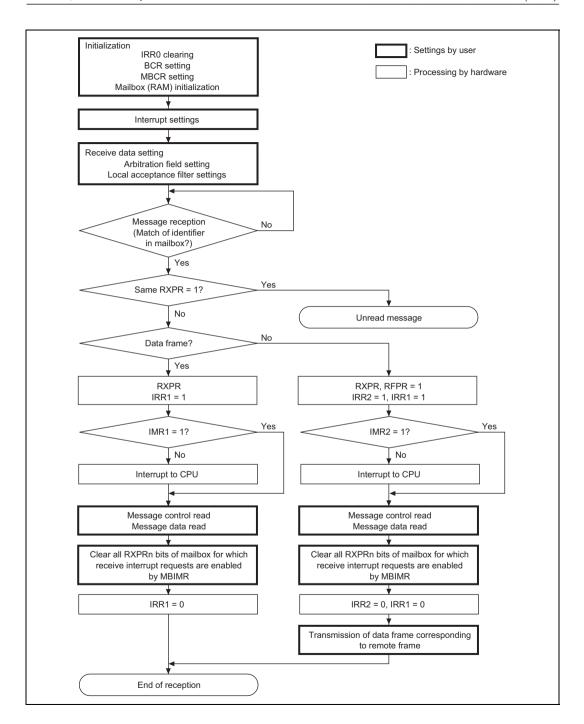
- a. Message reception CRC check
- b. Data frame reception
- c. Remote frame reception
- d. Unread message reception

Initialization (**After Hardware Reset Only**): These settings should be made while the HCAN is in bit configuration mode.

IRR0 clearing

The reset interrupt flag (IRR0) is always set after a reset or recovery from software standby mode. As an HCAN interrupt is initiated immediately when interrupts are enabled, IRR0 should be cleared.

Bit rate settings


Set values relating to the CAN bus communication speed and resynchronization. Refer to Bit Rate and Bit Timing Settings in 16.3.2, Initialization after Hardware Reset, for details.

• Mailbox transmit/receive settings

Each channel has one receive-only mailbox (mailbox 0) plus 15 mailboxes that can be set for reception. Thus a total of 32 mailboxes can be used for reception. To set a mailbox for reception, set the corresponding bit to 1 in the mailbox configuration register (MBCR). The initial setting for mailboxes is 0, designating transmission use. Refer to Mailbox Transmit/Receive Settings in 16.3.2, Initialization after Hardware Reset, for details.

• Mailbox (RAM) initialization

As message control/data registers (MCx[x], MDx[x]) are configured in RAM, their initial values after powering on are undefined, and so bit initialization is necessary. Write 0s or 1s to the mailboxes. See Mailbox (Message Control/Data (MCx[x], MDx[x]) Initial Setting in 16.3.2, Initialization after a Hardware Reset, for details.

Figure 16-9 Reception Flowchart

Interrupt and Receive Message Settings: When mailbox initialization is finished, CPU interrupt source settings and receive message specifications must be made. Interrupt source settings are made in the mailbox interrupt register (MBIMR) and interrupt mask register (IMR). To receive a message, the identifier must be set in advance in the message control (MCx[1] to MCx[8]) for the receiving mailbox. When a message is received, all the bits in the receive message identifier are compared, and if a 100% match is found, the message is stored in the matching mailbox. Mailbox 0 (MB0) has a local acceptance filter mask (LAFM) that allows Don't care settings to be made.

• CPU interrupt source settings

When transmitting, transmission acknowledge and transmission abort acknowledge interrupts can be masked for individual mailboxes in the mailbox interrupt mask register (MBIMR). When receiving, data frame and remote frame receive wait interrupts can be masked. Interrupt register (IRR) interrupts can be masked in the interrupt mask register (IMR).

Arbitration field setting

In the arbitration field, the identifier (STD_ID0 to STD_ID10, EXT_ID0 to EXT_ID17) of the message to be received is set. If all the bits in the set identifier do not match, the message is not stored in a mailbox.

Example: Mailbox 1 010_1010_1010 (standard identifier)

Only one kind of message identifier can be received by MB1

Identifier 1: 010_1010_1010

Local acceptance filter mask (LAFM) setting

The local acceptance filter mask is provided for mailbox 0 (MB0) only, enabling a Don't care specification to be made for all bits in the received identifier. This allows various kinds of messages to be received.

Example: Mailbox 0 010_1010_1010 (standard identifier)

LAFM 000_0000_0011 (0: Care, 1: Don't care)

A total of four kinds of message identifiers can be received by MB0

 Identifier 1:
 010_1010_1000

 Identifier 2:
 010_1010_1001

 Identifier 3:
 010_1010_1010

 Identifier 4:
 010_1010_1011

Message Reception and Interrupts:

• Message reception CRC check

When a message is received, a CRC check is performed automatically (by hardware). If the result of the CRC check is normal, ACK is transmitted in the ACK field irrespective of whether or not the message can be received.

• Data frame reception

If the received message is confirmed to be error-free by the CRC check, etc., the identifier in the mailbox (and also LAFM in the case of mailbox 0 only) and the identifier of the receive message are compared, and if a complete match is found, the message is stored in the mailbox. The message identifier comparison is carried out on each mailbox in turn, starting with mailbox 0 and ending with mailbox 15. If a complete match is found, the comparison ends at that point, the message is stored in the matching mailbox, and the corresponding receive complete bit (RXPR0 to RXPR15) is set in the receive complete register (RXPR). However, when a mailbox 0 LAFM comparison is carried out, even if the identifier matches, the mailbox comparison sequence does not end at that point, but continues with mailbox 1 and then the remaining mailboxes. It is therefore possible for a message matching mailbox 0 to be received by another mailbox (however, the same message cannot be stored in more than one of mailboxes 1 to 15). If the corresponding bit (MBIMR0 to MBIMR15) in the mailbox interrupt mask register (MBIMR) and the receive message interrupt mask (IMR1) in the interrupt mask register (IMR) are set to the interrupt enable value at this time, an interrupt can be sent to the CPU.

Remote frame reception

Two kinds of messages—data frames and remote frames—can be stored in mailboxes. A remote frame differs from a data frame in that the remote reception request bit (RTR) in the message control register (MC[x]5) and the data field are 0 bytes. The data length to be returned in a data frame must be stored in the data length code (DLC) in the control field.

When a remote frame (RTR = recessive) is received, the corresponding bit is set in the remote request wait register (RFPR). If the corresponding bit (MBIMR0 to MBIMR15) in the mailbox interrupt mask register (MBIMR) and the remote frame request interrupt mask (IRR2) in the interrupt mask register (IMR) are set to the interrupt enable value at this time, an interrupt can be sent to the CPU.

• Unread message reception

When a received message matches the identifier in a mailbox, the message is stored in the mailbox. If a message overwrite occurs before the CPU reads the message, the corresponding bit (UMSR0 to UMSR15) is set in the unread message register (UMSR). In overwriting of an unread message, when a new message is received before the corresponding bit in the receive

complete register (RXPR) has been cleared, the unread message register (UMSR) is set. If the unread interrupt flag (IRR9) in the interrupt mask register (IMR) is set to the interrupt enable value at this time, an interrupt can be sent to the CPU. Figure 16-10 shows a flowchart of unread message overwriting.

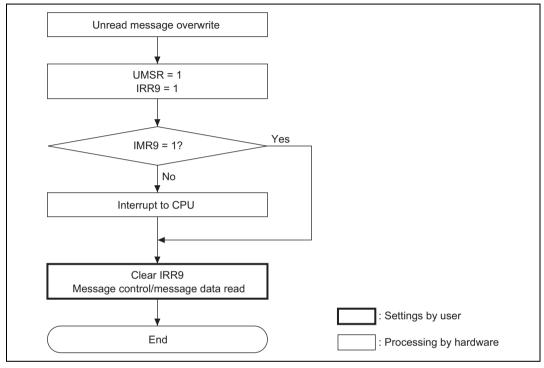


Figure 16-10 Unread Message Overwrite Flowchart

16.3.5 HCAN Sleep Mode

The HCAN is provided with an HCAN sleep mode that places the HCAN module in the sleep state to reduce current dissipation. Figure 16-11 shows a flowchart of the HCAN sleep mode.

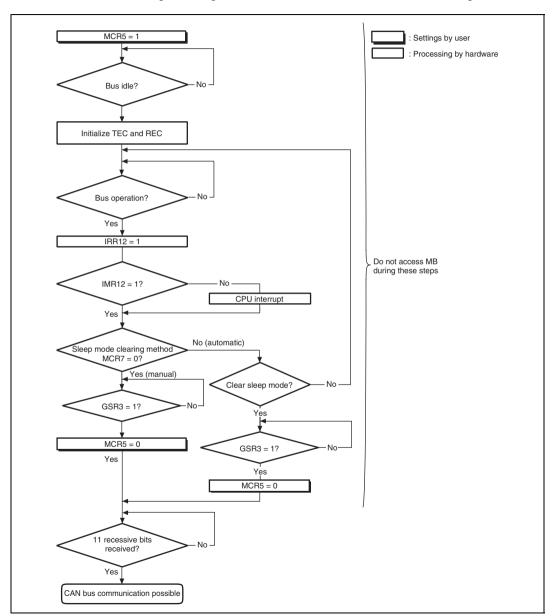


Figure 16-11 HCAN Sleep Mode Flowchart

HCAN sleep mode is entered by setting the HCAN sleep mode bit (MCR5) to 1 in the master control register (MCR). If the CAN bus is operating, the transition to HCAN sleep mode is delayed until the bus becomes idle.

Either of the following methods of clearing HCAN sleep mode can be selected by making a setting in the MCR7 bit.

- 1. Clearing by software
- 2. Clearing by CAN bus operation

Eleven recessive bits must be received after HCAN sleep mode is cleared before CAN bus communication is enabled again.

Clearing by software: HCAN sleep mode is cleared by writing a 0 to MCR5 from the CPU.

Clearing by CAN bus operation: Clearing by CAN bus operation occurs automatically when the CAN bus performs an operation and this change is detected. In this case, the first message is not received in the mailbox, and normal reception starts from the next message. When a change is detected on the CAN bus in HCAN sleep mode, the bus operation interrupt flag (IRR12) is set in the interrupt register (IRR). If the bus interrupt mask (IMR12) in the interrupt mask register (IMR) is set to the interrupt enable value at this time, an interrupt can be sent to the CPU.

16.3.6 HCAN Halt Mode

The HCAN halt mode is provided to enable mailbox settings to be changed without performing an HCAN hardware or software reset. Figure 16-12 shows a flowchart of the HCAN halt mode.

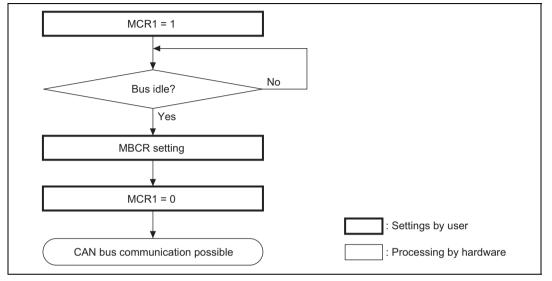


Figure 16-12 HCAN Halt Mode Flowchart

HCAN halt mode is entered by setting the halt request bit (MCR1) to 1 in the master control register (MCR). However, if the CAN bus is operating at the time of a transition, the transition to HCAN ALT mode is delayed until the bus becomes idle.

HCAN halt mode is cleared by clearing MCR1 to 0.

16.3.7 Interrupt Interface

There are 12 HCAN interrupt sources, to which five independent interrupt vectors are assigned. Table 16-5 lists the HCAN interrupt sources.

With the exception of the reset processing vector (IRR0), these sources can be masked. Masking is implemented using the mailbox interrupt mask register (MBIMR) and interrupt mask register (IMR).

Page 674 of 1458

Table 16-5 HCAN Interrupt Sources

Channel	IPR Bits	Vector	Vector Number	IRR Bit	Description
HCAN0	IPRM (2 to 0)	ERS0	108	IRR5	Error passive interrupt (TEC ≥ 128 or REC ≥ 128)
				IRR6	Bus off interrupt (TEC ≥ 256)
		OVR0	108	IRR0	Hardware reset processing interrupt
				IRR2	Remote frame reception interrupt
				IRR3	Error warning interrupt (TEC ≥ 96)
				IRR4	Error warning interrupt (REC ≥ 96)
				IRR7	Overload frame transmission interrupt
				IRR9	Unread message overwrite interrupt
				IRR12	HCAN sleep mode CAN bus operation interrupt
		RM0	109	IRR1	Mailbox 0 message reception interrupt
		RM1	108	IRR1	Mailbox 1 to 15 message reception interrupt
		SLE0	108	IRR8	Message transmission/cancellation interrupt
HCAN1	IPRM (6 to 4)	ERS0	106	IRR5	Error passive interrupt (TEC ≥ 128 or REC ≥ 128)
				IRR6	Bus off interrupt (TEC ≥ 256)
		OVR0	106	IRR0	Hardware reset processing interrupt
				IRR2	Remote frame reception interrupt
				IRR3	Error warning interrupt (TEC ≥ 96)
				IRR4	Error warning interrupt (REC ≥ 96)
				IRR7	Overload frame transmission interrupt
				IRR9	Unread message overwrite interrupt
				IRR12	HCAN sleep mode CAN bus operation interrupt
		RM0	107	IRR1	Mailbox 0 message reception interrupt
		RM1	106	IRR1	Mailbox 1 to 15 message reception interrupt
		SLE0	106	IRR8	Message transmission/cancellation interrupt

16.3.8 DTC Interface*

Note: * The DTC is not implemented in the H8S/2635 Group.

The DTC can be activated by reception of a message in the HCAN's mailbox 0. When DTC transfer ends after DTC activation has been set, the RXPR0 and RFPR0 flags are acknowledge signal automatically. An interrupt request due to a receive interrupt from the HCAN cannot be sent to the CPU in this case. Figure 16-13 shows a DTC transfer flowchart.

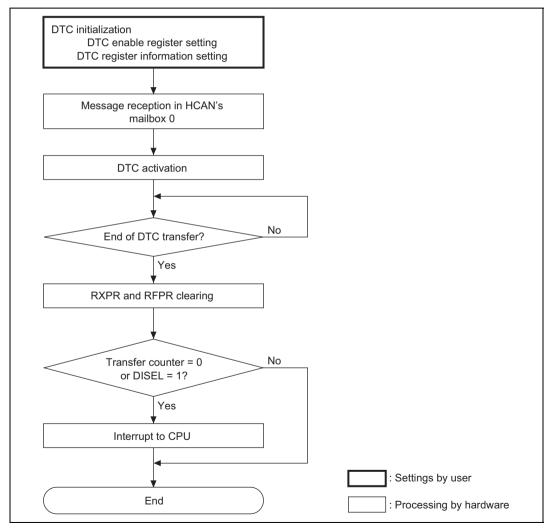


Figure 16-13 DTC Transfer Flowchart

16.4 CAN Bus Interface

A bus transceiver IC is necessary to connect the chip to a CAN bus. A HA13721 transceiver IC, or compatible device, is recommended. Figure 16-14 shows a sample connection diagram.

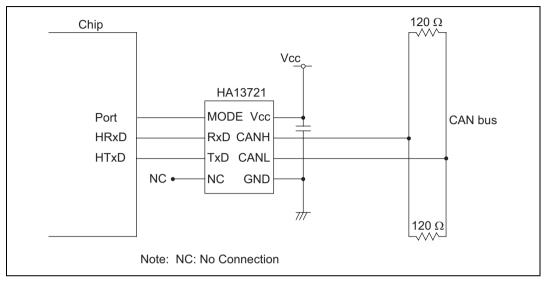


Figure 16-14 High-Speed Interface Using HA13721

16.5 Usage Notes

(1) Reset

The HCAN is reset by a reset, and in hardware standby mode and software standby mode. All the registers are initialized in a reset, but mailboxes (message control (MCx[x])/message data (MDx[x]) are not. However, after powering on, mailboxes (message control (MCx[x])/message data (MDx[x]) are initialized, and their values are undefined. Therefore, mailbox initialization must always be carried out after a reset or a transition to hardware standby mode or software standby mode. Also, the reset interrupt flag (IRR0) is always set after reset input or recovery from software standby mode. As this bit cannot be masked in the interrupt mask register (IMR), if HCAN interrupts are set as enabled by the interrupt controller without this flag having been cleared, an HCAN interrupt will be initiated immediately. IRR0 must therefore be cleared during initialization.

(2) HCAN sleep mode

The bus operation interrupt flag (IRR12) in the interrupt register (IRR) is set by bus operation in HCAN sleep mode. Therefore, this flag is not used by the HCAN to indicate sleep mode release. Also note that the reset status bit (GSR3) in the general status register (GSR) is set in sleep mode.

(3) Interrupts

When the mailbox interrupt mask register (MBIMR) is set, the interrupt register (IRR8,2,1) is not set by reception completion, transmission completion, or transmission cancellation for the set mailboxes.

(4) Error counters

In the case of error active and error passive, REC and TEC normally count up and down. In the bus off state, 11-bit recessive sequences are counted (REC + 1) using REC. If REC reaches 96 during the count, IRR4 and GSR1 are set.

(5) Register access

Byte or word access can be used on all HCAN registers. Longword access cannot be used.

(6) HCAN medium-speed mode

HCAN registers cannot be read or written to in medium-speed mode.

(7) Register retention during standby

All HCAN registers are initialized in hardware standby mode and software standby mode.

(8) Usage of bit manipulation instructions

The HCAN status flags are cleared by writing 1, so do not use a bit manipulation instruction to clear a flag.

When clearing a flag, use the MOV instruction to write 1 to only the bit that is to be cleared.

(9) HCAN TXCR Operation

When the transmit wait cancel register (TXCR) is used to cancel transmission of the
message in a mailbox waiting for transmission, the corresponding bit in TXCR and the
transmit wait register (TXPR) may not be cleared even after the transmission is canceled.
This occurs when the following conditions are all satisfied.

[Conditions]

- The HRxD pin is tied to "1" because of a CAN bus error, etc.
- There is one or more mailboxes waiting for transmission or transmitting.
- Ongoing message transmission from a mailbox is canceled by TXCR.

If this occurs, the transmission is canceled but TXPR and TXCR continue to indicate a wrong status telling that a message is being cancelled. As a result, transmission cannot be restarted even after the HRxD pin is released from the tied state and the CAN bus has recovered. If there are two or more messages for transmission, a message which is not being transmitted is canceled and a message being transmitted retains its state.

To avoid this, take either of the following countermeasures.

[Countermeasures]

- Do not cancel transmission by TXCR. Transmission will be completed after the CAN bus has recovered, then TXPR is cleared and the HCAN operates normally.
- To cancel transmission, write 1 to the corresponding bit in TXCR repeatedly until the bit becomes 0. TXPR and TXCR are cleared, and the HCAN operates normally.
- 2. When the bus-off state is entered while any mailbox is waiting for transmission with TXPR set, transmission cannot be canceled even if TXCR is set because the internal state machine does not operate during the bus-off state. Because of this, on recovery from the bus-off state, one message will be transmitted or the message will be canceled with a transmission error. For message clearing on recovery from the bus-off state, take the following countermeasure.

[Countermeasure]

— Reset the HCAN during the bus-off period to clear the messages in the mailboxes waiting for transmission. To reset the HCAN, set the module stop bit (MSTPC3 in MSTPCRC) to 1 and then clear it. In this case, the HCAN is entirely reset. Therefore the initial settings must be made again.

(10) HCAN Transmit Procedure

When transmission is set while the bus is in the idle state, if the next transmission is set or the set transmission is canceled under the following conditions within 50 μ s, the transmit message ID of being set may be damaged.

- When the second transmission has the message whose priority is higher than the first one
- When the massage of the highest priority is canceled in the first transmission

Make whichever setting shown below to avoid the message IDs from being damaged.

- Set transmission in one TXPR. After transmission of all transmit messages is completed, set transmission again (mass transmission setting). The interval between transmission settings should be 50 μs or longer.
- Make the transmission setting according to the priority of transmit messages.
- Set the interval to be 50 µs or longer between TXPR and another TXPR or between TXPR and TXCR.

Table 16-6 Interval Limitation between TXPR and TXPR or between TXPR and TXCR

Baud Rate (bps)	Set Interval (μs)
1 M	50
500 k	50
250 k	50

(11) Note on Releasing the HCAN Reset or HCAN Sleep

Before releasing the HCAN reset or HCAN sleep (MCR0 = 0 or MCR5 = 0), confirm that the GSR3 bit (the reset status bit) is set to 1.

(12) Note on Accessing Mailbox during the HCAN Sleep

Do not access the mailbox during the HCAN sleep. If accessed, the CPU might halt. Accessing registers during the HCAN sleep does not cause the CPU halt, nor does accessing the mailbox in other than the HCAN sleep mode.

Section 17 A/D Converter

Note: The H8S/2635 Group is not equipped with a DTC.

17.1 Overview

The chip incorporates a successive approximation type 10-bit A/D converter that allows up to twelve analog input channels to be selected.

17.1.1 Features

A/D converter features are listed below.

- 10-bit resolution
- Twelve input channels
- Settable analog conversion voltage range
 - Conversion of analog voltages with the reference voltage pin (Vref) as the analog reference voltage
- High-speed conversion
 - Minimum conversion time: 13.3 µs per channel (at 20-MHz operation)
- Choice of single mode or scan mode
 - Single mode: Single-channel A/D conversion
 - Scan mode: Continuous A/D conversion on 1 to 4 channels
- Four data registers
 - Conversion results are held in a 16-bit data register for each channel
- Sample and hold function
- Three kinds of conversion start
 - Choice of software or timer conversion start trigger (TPU), or ADTRG pin
- A/D conversion end interrupt generation
 - A/D conversion end interrupt (ADI) request can be generated at the end of A/D conversion
- Module stop mode can be set
 - As the initial setting, A/D converter operation is halted. Register access is enabled by exiting module stop mode.

17.1.2 Block Diagram

Figure 17-1 shows a block diagram of the A/D converter.

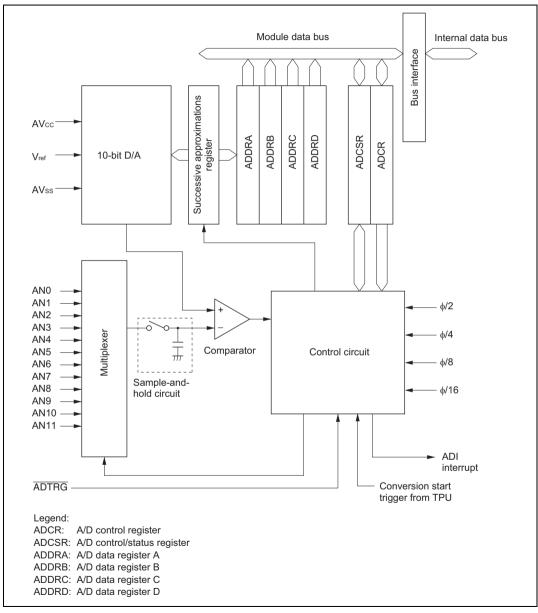


Figure 17-1 Block Diagram of A/D Converter

Pin Configuration 17.1.3

Table 17-1 summarizes the input pins used by the A/D converter.

The AVCC and AVSS pins are the power supply pins for the analog block in the A/D converter. The Vref pin is the A/D conversion reference voltage pin.

The 12 analog input pins are divided into two channel sets and two groups, with analog input pins 0 to 7 (AN0 to AN7) comprising channel set 0, analog input pins 8 to 11 (AN8 to AN11) comprising channel set 1, analog input pins 0 to 3 and 8 to 11 (AN0 to AN3, AN8 to AN11) comprising group 0, and analog input pins 4 to 7 (AN4 to AN7) comprising group 1.

Table 17-1 A/D Converter Pins

May 28, 2010

Pin Name	Symbol	I/O	Function
Analog power supply pin	AVCC	Input	Analog block power supply
Analog ground pin	AVSS	Input	Analog block ground and reference voltage
Reference voltage pin	Vref	Input	A/D conversion reference voltage
Analog input pin 0	AN0	Input	Channel set 0 (CH3 = 0) group 0 analog inputs
Analog input pin 1	AN1	Input	
Analog input pin 2	AN2	Input	
Analog input pin 3	AN3	Input	
Analog input pin 4	AN4	Input	Channel set 0 (CH3 = 0) group 1 analog inputs
Analog input pin 5	AN5	Input	
Analog input pin 6	AN6	Input	<u> </u>
Analog input pin 7	AN7	Input	
Analog input pin 8	AN8	Input	Channel set 1 (CH3 = 1) group 0 analog inputs
Analog input pin 9	AN9	Input	<u> </u>
Analog input pin 10	AN10	Input	
Analog input pin 11	AN11	Input	
A/D external trigger input pin	ADTRG	Input	External trigger input for starting A/D conversion

17.1.4 Register Configuration

Table 17-2 summarizes the registers of the A/D converter.

Table 17-2 A/D Converter Registers

Name	Abbreviation	R/W	Initial Value	Address*1
A/D data register AH	ADDRAH	R	H'00	H'FF90
A/D data register AL	ADDRAL	R	H'00	H'FF91
A/D data register BH	ADDRBH	R	H'00	H'FF92
A/D data register BL	ADDRBL	R	H'00	H'FF93
A/D data register CH	ADDRCH	R	H'00	H'FF94
A/D data register CL	ADDRCL	R	H'00	H'FF95
A/D data register DH	ADDRDH	R	H'00	H'FF96
A/D data register DL	ADDRDL	R	H'00	H'FF97
A/D control/status register	ADCSR	R/(W)*2	H'00	H'FF98
A/D control register	ADCR	R/W	H'33	H'FF99
Module stop control register A	MSTPCRA	R/W	H'3F	H'FDE8

Notes: 1. Lower 16 bits of the address.

2. Bit 7 can only be written with 0 for flag clearing.

May 28, 2010

Register Descriptions 17.2

17.2.1 A/D Data Registers A to D (ADDRA to ADDRD)

Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	_	_	_	_		_
Initial value	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

There are four 16-bit read-only ADDR registers, ADDRA to ADDRD, used to store the results of A/D conversion

The 10-bit data resulting from A/D conversion is transferred to the ADDR register for the selected channel and stored there. The upper 8 bits of the converted data are transferred to the upper byte (bits 15 to 8) of ADDR, and the lower 2 bits are transferred to the lower byte (bits 7 and 6) and stored. Bits 5 to 0 are always read as 0.

The correspondence between the analog input channels and ADDR registers is shown in table 17-3.

ADDR can always be read by the CPU. The upper byte can be read directly, but for the lower byte, data transfer is performed via a temporary register (TEMP). For details, see section 17.3, Interface to Bus Master.

The ADDR registers are initialized to H'0000 by a reset, and in standby mode or module stop mode.

Table 17-3 Analog Input Channels and Corresponding ADDR Registers

Analog Input Channel

Channel	Set 0 (CH3 = 0)	Chann	el Set 1 (CH3 = 1)	
Group 0	Group 1	Group 0	Group 1	A/D Data Register
AN0	AN4	AN8	Setting prohibited	ADDRA
AN1	AN5	AN9	Setting prohibited	ADDRB
AN2	AN6	AN10	Setting prohibited	ADDRC
AN3	AN7	AN11	Setting prohibited	ADDRD

17.2.2 A/D Control/Status Register (ADCSR)

Bit	:	7	6	5	4	3	2	1	0
		ADF	ADIE	ADST	SCAN	СНЗ	CH2	CH1	CH0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * Only 0 can be written to bit 7, to clear this flag.

ADCSR is an 8-bit readable/writable register that controls A/D conversion operations.

ADCSR is initialized to H'00 by a reset, and in hardware standby mode or module stop mode.

Bit 7—A/D End Flag (ADF): Status flag that indicates the end of A/D conversion.

Bit 7

ADF	 Description				
0	[Clearing conditions] (Initia				
	 When 0 is written to the ADF flag after reading ADF = 1 				
	 When the DTC is activated by an ADI interrupt and ADDR is read 				
1	[Setting conditions]				
	Single mode: When A/D conversion ends				
	Scan mode: When A/D conversion ends on all specified channels				

Bit 6—A/D Interrupt Enable (ADIE): Selects enabling or disabling of interrupt (ADI) requests at the end of A/D conversion.

Bit 6

ADIE	Description	
0	A/D conversion end interrupt (ADI) request disabled	(Initial value)
1	A/D conversion end interrupt (ADI) request enabled	

Bit 5—A/D Start (ADST): Selects starting or stopping on A/D conversion. Holds a value of 1 during A/D conversion.

The ADST bit can be set to 1 by software, a timer conversion start trigger, or the A/D external trigger input pin (\overline{ADTRG}) .

Bit 5

ADST	Description	
0	A/D conversion	on stopped (Initial value)
1	Single mode:	A/D conversion is started. Cleared to 0 automatically when conversion on the specified channel ends
	Scan mode:	A/D conversion is started. Conversion continues sequentially on the selected channels until ADST is cleared to 0 by software, a reset, or a transition to standby mode or module stop mode.

Bit 4—Scan Mode (SCAN): Selects single mode or scan mode as the A/D conversion operating mode. See section 17.4, Operation, for single mode and scan mode operation. Only set the SCAN bit while conversion is stopped (ADST = 0).

Bit 4

SCAN	Description	
0	Single mode	(Initial value)
1	Scan mode	

Bit 3—Channel Select 3 (CH3): Switches the analog input pins assigned to group 0 or group 1. Setting CH3 to 1 enables AN8 to AN11 to be used instead of AN0 to AN7.

Bit 3

СНЗ	Description
1	AN8 to AN11 are group 0 analog input pins
0	AN0 to AN3 are group 0 analog input pins, AN4 to AN7 are group 1 analog input pins (Initial value)

Page 688 of 1458

Bits 2 to 0—Channel Select 2 to 0 (CH2 to CH0): Together with the SCAN bit, these bits select the analog input channels.

Only set the input channel while conversion is stopped (ADST = 0).

	Chanı	nel Selection	on	Description				
СНЗ	CH2	CH1	CH0	Single Mode (SCAN = 0)	Scan Mode (SCAN = 1)			
0	0	0	0	AN0 (Initial value)	AN0			
			1	AN1	ANO, AN1			
		1	0	AN2	AN0 to AN2			
			1	AN3	AN0 to AN3			
	1	0	0	AN4	AN4			
			1	AN5	AN4, AN5			
		1	0	AN6	AN4 to AN6			
			1	AN7	AN4 to AN7			
1	0	0	0	AN8	AN8			
			1	AN9	AN8, AN9			
		1	0	AN10	AN8 to AN10			
			1	AN11	AN8 to AN11			
	1	0	0	Setting prohibited	Setting prohibited			
			1	Setting prohibited	Setting prohibited			
		1	0	Setting prohibited	Setting prohibited			
			1	Setting prohibited	Setting prohibited			

May 28, 2010

17.2.3 A/D Control Register (ADCR)

Bit	:	7	6	5	4	3	2	1	0	_
		TRGS1	TRGS0	_	_	CKS1	CKS0	_		
Initial value	:	0	0	1	1	0	0	1	1	_
R/W	:	R/W	R/W	_	_	R/W	R/W	_	_	

ADCR is an 8-bit readable/writable register that enables or disables external triggering of A/D conversion operations and sets the A/D conversion time.

ADCR is initialized to H'33 by a reset, and in standby mode or module stop mode.

Bits 7 and 6—Timer Trigger Select 1 and 0 (TRGS1, TRGS0): Select enabling or disabling of the start of A/D conversion by a trigger signal. Only set bits TRGS1 and TRGS0 while conversion is stopped (ADST = 0).

Bit 7	Bit 6					
TRGS1	TRGS0	Description				
0	0	A/D conversion start by software is enabled	(Initial value)			
	1	A/D conversion start by TPU conversion start trigger is e	nabled			
1	0	Setting prohibited				
	1	A/D conversion start by external trigger pin (ADTRG) is enabled				

Bits 5, 4, 1, and 0—Reserved: These bits are reserved; they are always read as 1 and cannot be modified.

Bits 3 and 2—Clock Select 1 and 0 (CKS1, CKS0): These bits select the A/D conversion time. The conversion time should be changed only when ADST = 0.

Set bits CKS1 and CKS0 to give a conversion time of at least 10 $\mu s. \,$

Bit 3	Bit 2		
CKS1	CKS0	 Description	
0	0	Conversion time = 530 states (max.)	(Initial value)
	1	Conversion time = 266 states (max.)	
1	0	Conversion time = 134 states (max.)	
	1	Conversion time = 68 states (max.)	

17.2.4 Module Stop Control Register A (MSTPCRA)

Bit	:	7	6	5	4	3	2	1	0
		MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0
Initial value	:	0	0	1	1	1	1	1	1
R/W	:	R/W							

MSTPCR is an 8-bit readable/writable register that performs module stop mode control.

When the MSTPA1 bit in MSTPCR is set to 1, A/D converter operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 23A.5, 23B.5, Module Stop Mode.

MSTPCRA is initialized to H'3F by a reset and in hardware standby mode. It is not initialized by a reset and in software standby mode.

Bit 1—Module Stop (MSTPA1): Specifies the A/D converter module stop mode.

Bit 1

MSTPA1		
0	A/D converter module stop mode cleared	
1	A/D converter module stop mode set	(Initial value)

17.3 Interface to Bus Master

ADDRA to ADDRD are 16-bit registers, and the data bus to the bus master is 8 bits wide. Therefore, in accesses by the bus master, the upper byte is accessed directly, but the lower byte is accessed via a temporary register (TEMP).

A data read from ADDR is performed as follows. When the upper byte is read, the upper byte value is transferred to the CPU and the lower byte value is transferred to TEMP. Next, when the lower byte is read, the TEMP contents are transferred to the CPU.

When reading ADDR, always read the upper byte before the lower byte. It is possible to read only the upper byte, but if only the lower byte is read, incorrect data may be obtained.

Figure 17-2 shows the data flow for ADDR access.

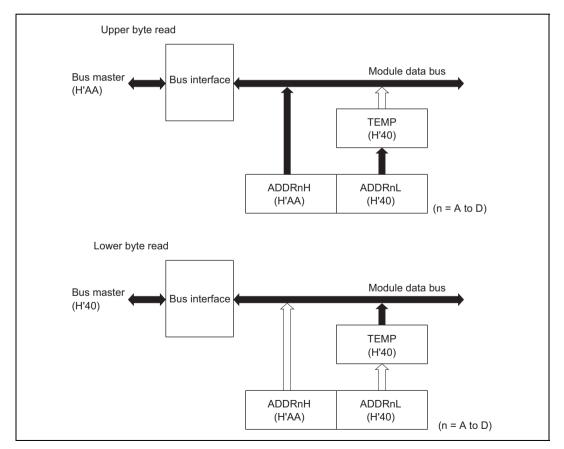


Figure 17-2 ADDR Access Operation (Reading H'AA40)

17.4 Operation

The A/D converter operates by successive approximation with 10-bit resolution. It has two operating modes: single mode and scan mode.

17.4.1 Single Mode (SCAN = 0)

Single mode is selected when A/D conversion is to be performed on a single channel only. A/D conversion is started when the ADST bit is set to 1, according to the software or external trigger input. The ADST bit remains set to 1 during A/D conversion, and is automatically cleared to 0 when conversion ends.

On completion of conversion, the ADF flag is set to 1. If the ADIE bit is set to 1 at this time, an ADI interrupt request is generated. The ADF flag is cleared by writing 0 after reading ADCSR.

When the operating mode or analog input channel must be changed during analog conversion, to prevent incorrect operation, first clear the ADST bit to 0 in ADCSR to halt A/D conversion. After making the necessary changes, set the ADST bit to 1 to start A/D conversion again. The ADST bit can be set at the same time as the operating mode or input channel is changed.

Typical operations when channel 1 (AN1) is selected in single mode are described next. Figure 17-3 shows a timing diagram for this example.

- [1] Single mode is selected (SCAN = 0), input channel AN1 is selected (CH3 = 0, CH2 = 0, CH1 = 0, CH0 = 1), the A/D interrupt is enabled (ADIE = 1), and A/D conversion is started (ADST = 1).
- [2] When A/D conversion is completed, the result is transferred to ADDRB. At the same time the ADF flag is set to 1, the ADST bit is cleared to 0, and the A/D converter becomes idle.
- [3] Since ADF = 1 and ADIE = 1, an ADI interrupt is requested.
- [4] The A/D interrupt handling routine starts.
- [5] The routine reads ADCSR, then writes 0 to the ADF flag.
- [6] The routine reads and processes the connection result (ADDRB).
- [7] Execution of the A/D interrupt handling routine ends. After that, if the ADST bit is set to 1, A/D conversion starts again and steps [2] to [7] are repeated.

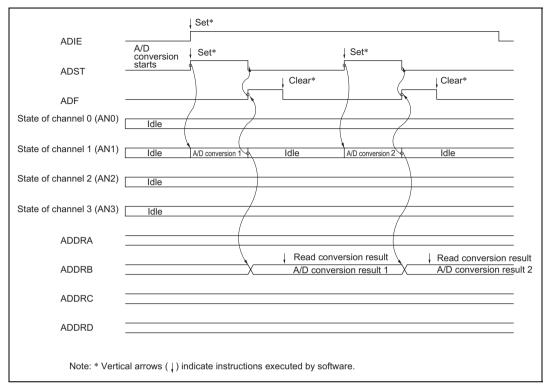


Figure 17-3 Example of A/D Converter Operation (Single Mode, Channel 1 Selected)

17.4.2 Scan Mode (SCAN = 1)

Scan mode is useful for monitoring analog inputs in a group of one or more channels. When the ADST bit is set to 1 by a software, timer or external trigger input, A/D conversion starts on the first channel in the group (AN0). When two or more channels are selected, after conversion of the first channel ends, conversion of the second channel (AN1) starts immediately. A/D conversion continues cyclically on the selected channels until the ADST bit is cleared to 0. The conversion results are transferred for storage into the ADDR registers corresponding to the channels.

When the operating mode or analog input channel must be changed during analog conversion, to prevent incorrect operation, first clear the ADST bit to 0 in ADCSR to halt A/D conversion. After making the necessary changes, set the ADST bit to 1 to start A/D conversion again from the first channel (AN0). The ADST bit can be set at the same time as the operating mode or input channel is changed.

Typical operations when three channels (AN0 to AN2) are selected in scan mode are described next. Figure 17-4 shows a timing diagram for this example.

- [1] Scan mode is selected (SCAN = 1), channel set 0 is selected (CH3 = 0), scan group 0 is selected (CH2 = 0), analog input channels AN0 to AN2 are selected (CH1 = 1, CH0 = 0), and A/D conversion is started (ADST = 1)
- [2] When A/D conversion of the first channel (AN0) is completed, the result is transferred to ADDRA. Next, conversion of the second channel (AN1) starts automatically.
- [3] Conversion proceeds in the same way through the third channel (AN2).
- [4] When conversion of all the selected channels (AN0 to AN2) is completed, the ADF flag is set to 1 and conversion of the first channel (AN0) starts again. If the ADIE bit is set to 1 at this time, an ADI interrupt is requested after A/D conversion ends.
- [5] Steps [2] to [4] are repeated as long as the ADST bit remains set to 1. When the ADST bit is cleared to 0, A/D conversion stops. After that, if the ADST bit is set to 1, A/D conversion starts again from the first channel (AN0).

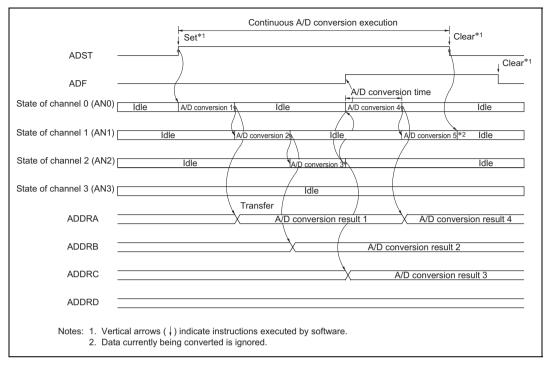


Figure 17-4 Example of A/D Converter Operation (Scan Mode, 3 Channels AN0 to AN2 Selected)

17.4.3 Input Sampling and A/D Conversion Time

The A/D converter has an on-chip sample-and-hold circuit. The A/D converter samples the analog input at a time t_D after the ADST bit is set to 1, then starts conversion. Figure 17-5 shows the A/D conversion timing. Table 17-4 indicates the A/D conversion time.

As indicated in figure 17-5, the A/D conversion time includes t_D and the input sampling time. The length of t_D varies depending on the timing of the write access to ADCSR. The total conversion time therefore varies within the ranges indicated in table 17-4.

In scan mode, the values given in table 17-4 apply to the first conversion time. The values given in table 17-5 apply to the second and subsequent conversions. In both cases, set bits CKS1 and CKS0 in ADCR to give a conversion time of at least 10 µs.

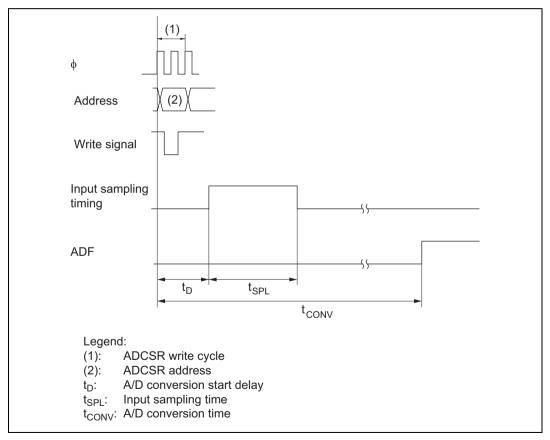


Figure 17-5 A/D Conversion Timing

Table 17-4 A/D Conversion Time (Single Mode)

		CKS1 = 0			CKS1 = 0								
		С	KS0	= 0	С	KS0	= 1	С	KS0	= 0	С	KS0	= 1
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
A/D conversion start delay	t _D	18	_	33	10	_	17	6	_	9	4	_	5
Input sampling time	t _{SPL}	_	127	_	_	63	_	_	31	_	_	15	_
A/D conversion time	t _{CONV}	515	_	530	259	_	266	131	_	134	67	_	68

Note: Values in the table are the number of states.

Table 17-5 A/D Conversion Time (Scan Mode)

CKS1	CKS0	Conversion Time (State)
0	0	512 (Fixed)
	1	256 (Fixed)
1	0	128 (Fixed)
	1	64 (Fixed)

External Trigger Input Timing 17.4.4

May 28, 2010

A/D conversion can be externally triggered. When the TRGS1 and TRGS0 bits are set to 11 in ADCR, external trigger input is enabled at the ADTRG pin. A falling edge at the ADTRG pin sets the ADST bit to 1 in ADCSR, starting A/D conversion. Other operations, in both single and scan modes, are the same as if the ADST bit has been set to 1 by software. Figure 17-6 shows the timing.

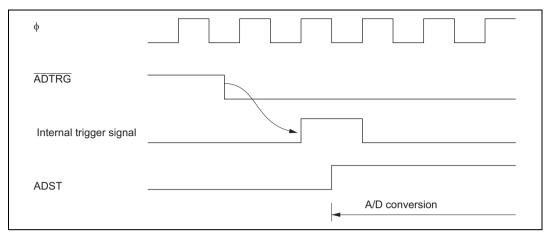


Figure 17-6 External Trigger Input Timing

17.5 Interrupts

The A/D converter generates an A/D conversion end interrupt (ADI) at the end of A/D conversion. ADI interrupt requests can be enabled or disabled by means of the ADIE bit in ADCSR.

The DTC can be activated by an ADI interrupt. Having the converted data read by the DTC in response to an ADI interrupt enables continuous conversion to be achieved without imposing a load on software.

The A/D converter interrupt source is shown in table 17-6.

Table 17-6 A/D Converter Interrupt Source

Interrupt Source	Description	DTC Activation
ADI	Interrupt due to end of conversion	Possible

17.6 Usage Notes

The following points should be noted when using the A/D converter.

Setting Range of Analog Power Supply and Other Pins:

- (1) Analog input voltage range
 - The voltage applied to analog input pin ANn during A/D conversion should be in the range $AVSS \le ANn \le Vref$.
- (2) Relation between AVCC, AVSS and VCC, VSS

 As the relationship between AVSS and VSS, set AVSS = VSS. If the A/D converter is not used, set AVCC = VCC, and do not leave the AVCC and AVSS pins open or no account.
- (3) Vref input range

The analog reference voltage input at the Vref pin set in the range Vref \leq AVCC.

If conditions (1), (2), and (3) above are not met, the reliability of the device may be adversely affected.

Notes on Board Design: In board design, digital circuitry and analog circuitry should be as mutually isolated as possible, and layout in which digital circuit signal lines and analog circuit signal lines cross or are in close proximity should be avoided as far as possible. Failure to do so may result in incorrect operation of the analog circuitry due to inductance, adversely affecting A/D conversion values.

Also, digital circuitry must be isolated from the analog input signals (AN0 to AN11), analog reference power supply (Vref), and analog power supply (AVCC) by the analog ground (AVSS). Also, the analog ground (AVSS) should be connected at one point to a stable digital ground (VSS) on the board.

Notes on Noise Countermeasures: A protection circuit connected to prevent damage due to an abnormal voltage such as an excessive surge at the analog input pins (AN0 to AN11) and analog reference power supply (Vref) should be connected between AVCC and AVSS as shown in figure 17-7.

Also, the bypass capacitors connected to AVCC and Vref and the filter capacitor connected to AN0 to AN11 must be connected to AVSS.

If a filter capacitor is connected as shown in figure 17-7, the input currents at the analog input pins (AN0 to AN11) are averaged, and so an error may arise. Also, when A/D conversion is performed frequently, as in scan mode, if the current charged and discharged by the capacitance of the

sample-and-hold circuit in the A/D converter exceeds the current input via the input impedance (R_{in}) , an error will arise in the analog input pin voltage. Careful consideration is therefore required when deciding the circuit constants.

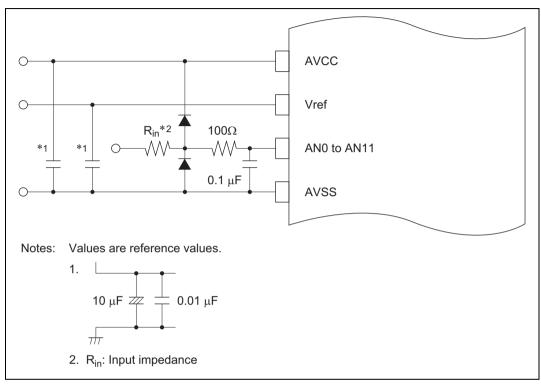


Figure 17-7 Example of Analog Input Protection Circuit

Table 17-7 Analog Pin Specifications

Item	Min	Max	Unit
Analog input capacitance	_	20	pF
Permissible signal source impedance	_	5	kΩ

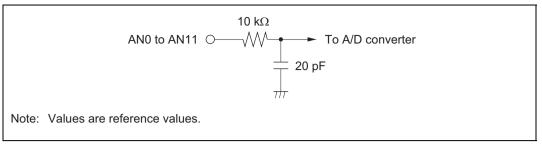


Figure 17-8 Analog Input Pin Equivalent Circuit

A/D Conversion Precision Definitions: The chip's A/D conversion precision definitions are given below.

Resolution

The number of A/D converter digital output codes

Offset error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from the minimum voltage value B'0000000000 (H'00) to B'0000000001 (H'01) (see figure 17-10).

Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from B'1111111110 (H'3E) to B'1111111111 (H'3F) (see figure 17-10).

Quantization error

The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 17-9).

Nonlinearity error

The error with respect to the ideal A/D conversion characteristic between the zero voltage and the full-scale voltage. Does not include the offset error, full-scale error, or quantization error.

Absolute precision

The deviation between the digital value and the analog input value. Includes the offset error, full-scale error, quantization error, and nonlinearity error.

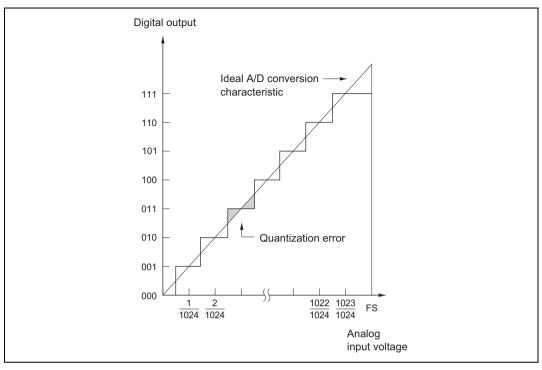


Figure 17-9 A/D Conversion Precision Definitions (1)

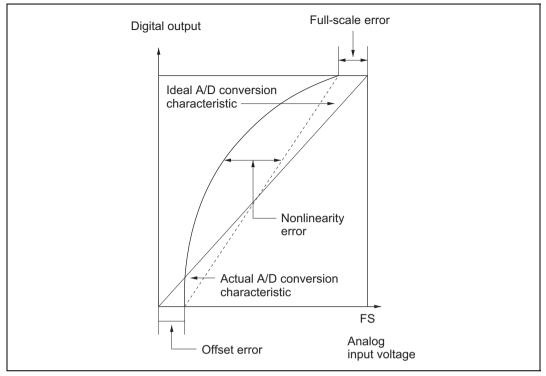


Figure 17-10 A/D Conversion Precision Definitions (2)

Permissible Signal Source Impedance: The chip's analog input is designed so that conversion precision is guaranteed for an input signal for which the signal source impedance is $10 \text{ k}\Omega$ or less. This specification is provided to enable the A/D converter's sample-and-hold circuit input capacitance to be charged within the sampling time; if the sensor output impedance exceeds $10 \text{ k}\Omega$, charging may be insufficient and it may not be possible to guarantee the A/D conversion precision.

However, if a large capacitance is provided externally, the input load will essentially comprise only the internal input resistance of $10 \text{ k}\Omega$, and the signal source impedance is ignored.

However, since a low-pass filter effect is obtained in this case, it may not be possible to follow an analog signal with a large differential coefficient (e.g., $5 \text{ mV/}\mu\text{s}$ or greater).

When converting a high-speed analog signal, a low-impedance buffer should be inserted.

Influences on Absolute Precision: Adding capacitance results in coupling with GND, and therefore noise in GND may adversely affect absolute precision. Be sure to make the connection to an electrically stable GND such as AVSS.

Care is also required to insure that filter circuits do not communicate with digital signals on the mounting board, so acting as antennas.

Figure 17-11 shows an example of analog input circuit.

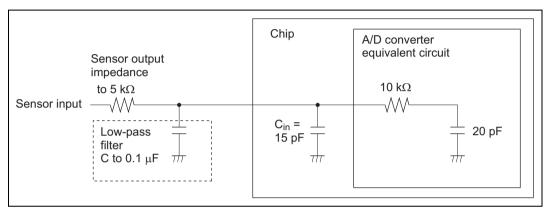


Figure 17-11 Example of Analog Input Circuit

Section 18 D/A Converter

Note: The H8S/2635 Group is not equipped with a D/A converter.

18.1 Overview

The chip has an on-chip D/A converter module with two channels.

18.1.1 Features

Features of the D/A converter module are listed below.

- Eight-bit resolution
- Two-channel output
- Maximum conversion time: 10 μs (with 20-pF load capacitance)
- Output voltage: 0 V to Vref
- D/A output retention in software standby mode
- Possible to set module stop mode

Operation of D/A converter is disenabled by initial values. It is possible to access the register by canceling module stop mode.

18.1.2 Block Diagram

Figure 18-1 shows a block diagram of the D/A converter.

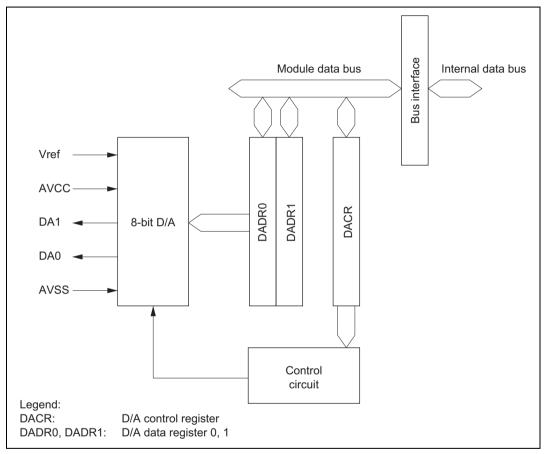


Figure 18-1 Block Diagram of D/A Converter

18.1.3 Input and Output Pins

Table 18-1 lists the input and output pins used by the D/A converter module.

Table 18-1 Input and Output Pins of D/A Converter Module

Name	Abbreviation	I/O	Function
Analog supply voltage	AVCC	Input	Power supply for analog circuits
Analog ground	AVSS	Input	Ground and reference voltage for analog circuits
Analog output 0	DA0	Output	Analog output channel 0
Analog output 1	DA1	Output	Analog output channel 1
Reference voltage	Vref	Input	Reference voltage of analog section

18.1.4 Register Configuration

Table 18-2 lists the registers of the D/A converter module.

Table 18-2 D/A Converter Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address*
0, 1	D/A data register 0	DADR0	R/W	H'00	H'FFA4
	D/A data register 1	DADR1	R/W	H'00	H'FFA5
	D/A control register 01	DACR01	R/W	H'1F	H'FFA6
All	Module stop control register A	MSTPCRA	R/W	H'3F	H'FDF8

Note: * Lower 16 bits of the address.

18.2 Register Descriptions

18.2.1 D/A Data Registers 0, 1 (DADR0, DADR1)

Bit	7	6	5	4	3	2	1	0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

D/A data registers 0, 1 (DADR0, DADR1) are 8-bit readable/writable registers that store data to be converted. When analog output is enabled, the value in the D/A data register is converted and output continuously at the analog output pin.

The D/A data registers are initialized to H'00 by a reset and in hardware standby mode.

18.2.2 D/A Control Register 01 (DACR01)

Bit	7	6	5	4	3	2	1	0
	DAOE1	DAOE0	DAE	_	_	_	_	_
Initial value	0	0	0	1	1	1	1	1
Read/Write	R/W	R/W	R/W	_	_	_	_	_

DACR01 is an 8-bit readable/writable register that controls the operation of the D/A converter module.

DACR01 is initialized to H'1F by a reset and in hardware standby mode.

Bit 7—D/A Output Enable 1 (DAOE1): Controls D/A conversion and analog output.

Bit 7 DAOE1	Description	
0	Analog output DA1 is disabled	(Initial value)
1	D/A conversion is enabled on channel 1. Analog output DA1 is enable	d

Bit 6—D/A Output Enable 0 (DAOE0): Controls D/A conversion and analog output.

Bit 6 DAOE0	Description	
0	Analog output DA0 is disabled	(Initial value)
1	D/A conversion is enabled on channel 0. Analog output DA0 is enable	ed

Bit 5—D/A Enable (DAE): Controls D/A conversion, in combination with bits DAOE0 and DAOE1. D/A conversion is controlled independently on channels 0 and 1 when DAE = 0. Channels 0 and 1 are controlled together when DAE = 1.

Output of the converted results is always controlled independently by DAOE0 and DAOE1.

Bit 7 DAOE1	Bit 6 DAOE0	Bit 5 DAE	D/A conversion
0	0	*	Disabled on channels 0 and 1
	1	0	Enabled on channel 0 Disabled on channel 1
		1	Enabled on channels 0 and 1
1	0	0	Disabled on channel 0 Enabled on channel 1
		1	Enabled on channels 0 and 1
	1	*	Enabled on channels 0 and 1

*: Don't care

If the chip enters software standby mode while D/A conversion is enabled, the D/A output is retained and the analog power supply current is the same as during D/A conversion. If it is necessary to reduce the analog power supply current in software standby mode, disable D/A output by clearing both the DAOE0 and DAOE1 bits to 0.

Bits 4 to 0—Reserved: These bits cannot be modified and are always read as 1.

18.2.3 Module Stop Control Register A (MSTPCRA)

MSTPCRA

Bit	:	7	6	5	4	3	2	1	0
		MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0
Initial value	:	0	0	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRA is an 8-bit readable/writable registers that performs module stop mode control. When the MSTPA2 is set to 1, the D/A converter halts and enters module stop mode at the end of the bus cycle. Register read/write is disenabled in module stop mode. See section 23A.5, 23B.5, Module Stop Mode, for details.

MSTPCRA is initialized to H'3F by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 2—Module Stop (MSTPA2): Specifies D/A converter (channels 0 and 1) module stop mode.

Bit 2

MSTPA2	 Description	
0	D/A converter (channels 0 and 1) module stop mode is cleared	
1	D/A converter (channels 0 and 1) module stop mode is set	(Initial value)

18.3 Operation

The D/A converter module has one on-chip D/A converter circuits that can operate independently.

D/A conversion is performed continuously whenever enabled by the D/A control register (DACR). When a new value is written in DADR0 or DADR1, conversion of the new value begins immediately. The converted result is output by setting the DAOE0 or DAOE1 bit to 1.

An example of conversion on channel 0 is given next. Figure 18-2 shows the timing.

- Software writes the data to be converted in DADR0.
- D/A conversion begins when the DAOE0 bit in DACR is set to 1. After the elapse of the conversion time, analog output appears at the DA0 pin. Contents of DADR / 256 × Vref
 This output continues until a new value is written in DADR0 or the DAOE0 bit is cleared to 0.
- If a new value is written in DADR0, conversion begins immediately. Output of the converted result begins after the conversion time.
- When the DAOE0 bit is cleared to 0, DA0 becomes an input pin.

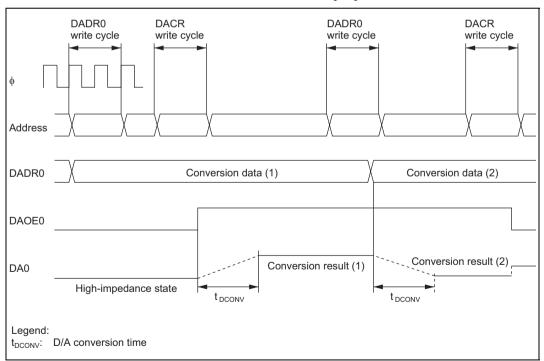


Figure 18-2 D/A Conversion (Example)

Section 19 Motor Control PWM Timer

Note: The H8S/2635 Group is not equipped with a DTC.

19.1 Overview

The chip has an on-chip motor control PWM (pulse width modulator) with a maximum capability of 16 pulse outputs.

19.1.1 Features

Features of the motor control PWM are given below.

- Maximum of 16 pulse outputs
 - Two 10-bit PWM channels, each with eight outputs.
 - Each channel is provided with a 10-bit counter (PWCNT) and cycle register (PWCYR).
 - Duty and output polarity can be set for each output.
- Buffered duty registers
 - Duty registers (PWDTR) are provided with buffer registers (PWBFR), with data transferred automatically every cycle.
 - Channel 1 has four duty registers and four buffer registers.
 - Channel 2 has eight duty registers and four buffer registers.
- 0% to 100% duty
 - A duty cycle of 0% to 100% can be set by means of a duty register setting.
- Five operating clocks
 - There is a choice of five operating clocks (ϕ , ϕ /2, ϕ /4, ϕ /8, ϕ /16).
- High-speed access via internal 16-bit-bus
 - High-speed access is possible via a 16-bit bus interface.
- Two interrupt sources
 - An interrupt can be requested independently for each channel by a cycle register compare match.
- Automatic transfer of register data
 - Block transfer and one-word data transfer are possible by activating the data transfer controller (DTC).
- Module stop mode
 - As the initial setting, PWM operation is halted. Register access is enabled by clearing module stop mode.

19.1.2 Block Diagram

Figure 19-1 shows a block diagram of PWM channel 1.

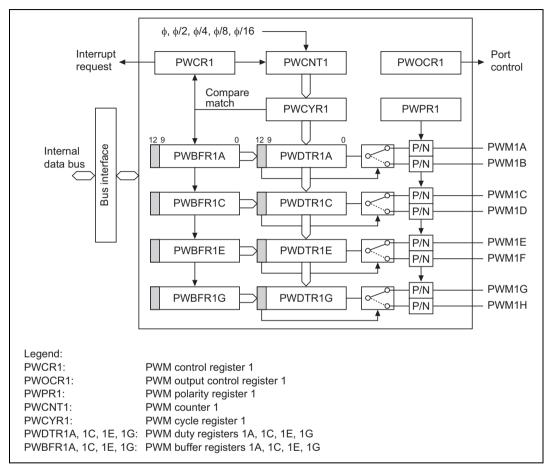


Figure 19-1 Block Diagram of PWM Channel 1

Figure 19-2 shows a block diagram of PWM channel 2.

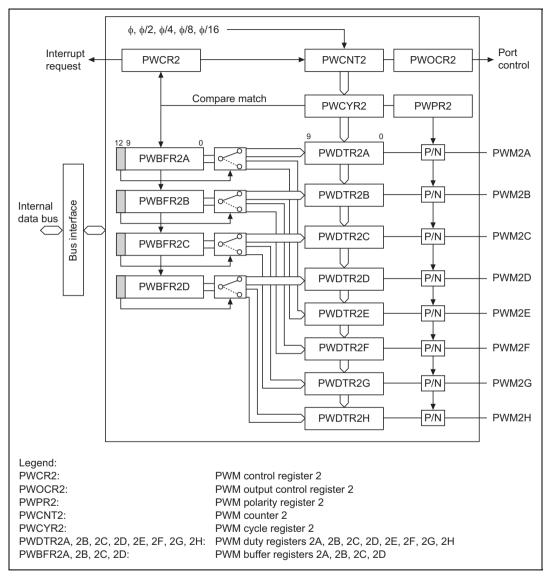


Figure 19-2 Block Diagram of PWM Channel 2

19.1.3 Pin Configuration

Table 19-1 shows the PWM pin configuration.

Table 19-1 PWM Pin Configuration

Name	Abbrev.	I/O	Function
PWM output pin 1A	PWM1A	Output	Channel 1A PWM output
PWM output pin 1B	PWM1B	Output	Channel 1B PWM output
PWM output pin 1C	PWM1C	Output	Channel 1C PWM output
PWM output pin 1D	PWM1D	Output	Channel 1D PWM output
PWM output pin 1E	PWM1E	Output	Channel 1E PWM output
PWM output pin 1F	PWM1F	Output	Channel 1F PWM output
PWM output pin 1G	PWM1G	Output	Channel 1G PWM output
PWM output pin 1H	PWM1H	Output	Channel 1H PWM output
PWM output pin 2A	PWM2A	Output	Channel 2A PWM output
PWM output pin 2B	PWM2B	Output	Channel 2B PWM output
PWM output pin 2C	PWM2C	Output	Channel 2C PWM output
PWM output pin 2D	PWM2D	Output	Channel 2D PWM output
PWM output pin 2E	PWM2E	Output	Channel 2E PWM output
PWM output pin 2F	PWM2F	Output	Channel 2F PWM output
PWM output pin 2G	PWM2G	Output	Channel 2G PWM output
PWM output pin 2H	PWM2H	Output	Channel 2H PWM output

Register Configuration 19.1.4

Table 19-2 shows the register configuration of the PWM.

Table 19-2 PWM Registers

Channel	Name	Abbrev.	R/W	Initial Value	Address*1
1	PWM control register 1	PWCR1	R/(W)*2	H'C0	H'FC00
	PWM output control register 1	PWOCR1	R/W	H'00	H'FC02
	PWM polarity register 1	PWPR1	R/W	H'00	H'FC04
	PWM cycle register 1	PWCYR1	R/W	H'FFFF	H'FC06
	PWM buffer register 1A	PWBFR1A	R/W	H'EC00	H'FC08
	PWM buffer register 1C	PWBFR1C	R/W	H'EC00	H'FC0A
	PWM buffer register 1E	PWBFR1E	R/W	H'EC00	H'FC0C
	PWM buffer register 1G	PWBFR1G	R/W	H'EC00	H'FC0E
2	PWM control register 2	PWCR2	R/(W)*2	H'C0	H'FC10
	PWM output control register 2	PWOCR2	R/W	H'00	H'FC12
	PWM polarity register 2	PWPR2	R/W	H'00	H'FC14
	PWM cycle register 2	PWCYR2	R/W	H'FFFF	H'FC16
	PWM buffer register 2A	PWBFR2A	R/W	H'EC00	H'FC18
	PWM buffer register 2B	PWBFR2B	R/W	H'EC00	H'FC1A
	PWM buffer register 2C	PWBFR2C	R/W	H'EC00	H'FC1C
	PWM buffer register 2D	PWBFR2D	R/W	H'EC00	H'FC1E
All	Module stop control register D	MSTPCRD	R/W	B'11*****	H'FC60

Notes: 1. Lower 16 bits of the address.

May 28, 2010

2. Only 0 may be written to bit 4, to clear the flag.

19.2 Register Descriptions

19.2.1 PWM Control Registers 1 and 2 (PWCR1, PWCR2)

Bit	7	6	5	4	3	2	1	0
	_	_	IE	CMF	CST	CKS2	CKS1	CKS0
Initial value	1	1	0	0	0	0	0	0
Read/Write	_	_	R/W	R/W*	R/W	R/W	R/W	R/W

Note: *Only 0 can be written, to clear the flag.

PWCR is an 8-bit read/write register that performs interrupt enabling, starting/stopping, and counter (PWCNT) clock selection. It also contains a flag that indicates a compare match with the cycle register (PWCYR). PWCR1 is the channel 1 register, and PWCR2 is the channel 2 register.

PWCR is initialized to H'C0 upon reset, and in standby mode, watch mode*, subactive mode*, subsleep mode*, and module stop mode.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions only.

These functions cannot be used with the other versions.

Bits 7 and 6—Reserved: They are always read as 1 and cannot be modified.

Bit 5—Interrupt Enable (IE): Bit 5 selects enabling or disabling of an interrupt in the event of a compare match with the PWCYR register for the corresponding channel.

Bit 5: IE	Description	
0	Interrupt disabled	(Initial value)
1	Interrupt enabled	

May 28, 2010

Bit 4—Compare Match Flag (CMF): Bit 4 indicates the occurrence of a compare match with the PWCYR register for the corresponding channel.

Bit 4: CMF	Description						
0	[Clearing conditions] (Initial val						
	 When 0 is written to CMF after reading CMF = 1 						
	 When the DTC is activated by a compare match interrupt, and the DISEL the DTC's MRB register is 0 						
1	[Setting condition]						
	When PWCNT = PWCYR						

Bit 3—Counter Start (CST): Bit 3 selects starting or stopping of the PWCNT counter for the corresponding channel.

Bit 3: CST	Description	
0	PWCNT is stopped	(Initial value)
1	PWCNT is started	

Bits 2 to 0—Clock Select (CKS): Bits 2 to 0 select the clock for the PWCNT counter in the corresponding channel.

Bit 2: CKS2	Bit 1: CKS1	Bit 0: CKS0	Description				
0	0	0	Internal clock: counts on φ/1	(Initial value)			
		1	Internal clock: counts on \$\psi/2\$	-			
	1	0	Internal clock: counts on φ/4				
		1	Internal clock: counts on φ/8				
1	*	*	Internal clock: counts on φ/16				

*: Don't care

19.2.2 PWM Output Control Registers 1 and 2 (PWOCR1, PWOCR2)

PWOCR1

Bit	7	6	5	4	3 2		1	0
	OE1H	OE1G	OE1F	OE1E	OE1D	OE1C	OE1B	OE1A
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PWOCR2

Bit	7	6 5		4	3	2	1	0
	OE2H	OE2G	OE2F	OE2E	OE2D	OE2C	OE2B	OE2A
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PWOCR is an 8-bit read/write register that enables or disables PWM output. PWOCR1 controls outputs PWM1H to PWM1A, and PWOCR2 controls outputs PWM2H to PWM2A.

PWOCR is initialized to H'00 upon reset, and in standby mode, watch mode*, subactive mode*, subsleep mode*, and module stop mode.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions.

Bits 7 to 0—Output Enable (OE): Each of these bits enables or disables the corresponding PWM output.

Bits 7 to 0:

OE	Description	
0	PWM output is disabled	(Initial value)
1	PWM output is enabled	

PWM Polarity Registers 1 and 2 (PWPR1, PWPR2) 19.2.3

PWPR1

Bit	7	6	5	4	3	2	1	0
	OPS1H	OPS1G	OPS1F	OPS1E	OPS1D	OPS1C	OPS1B	OPS1A
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W R/W		R/W	R/W	R/W

PWPR₂

Bit	7	6	5	4	3	2	1	0
	OPS2H	OPS2G	OPS2F	OPS2E	OPS2D	OPS2C	OPS2B	OPS2A
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PWPR is an 8-bit read/write register that selects the PWM output polarity. PWPR1 controls outputs PWM1H to PWM1A, and PWPR2 controls outputs PWM2H to PWM2A.

PWPR is initialized to H'00 upon reset, and in standby mode, watch mode*, subactive mode*. subsleep mode*, and module stop mode.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions.

Bits 7 to 0—Output Polarity Select (OPS): Each of these bits selects the polarity of the corresponding PWM output.

OPS	Description	
0	PWM direct output	(Initial value)
1	PWM inverse output	

19.2.4 PWM Counters 1 and 2 (PWCNT1, PWCNT2)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_					_										
Initial value	1	1	1			1						0	0	0	0	0
Read/Write	_	_	_	_	_	_		_	_	_	_	_		_	_	_

PWCNT is a 10-bit up-counter incremented by the input clock. The input clock is selected by clock select bits 2 to 0 (CKS2 to CKS0) in PWCR.

PWCNT1 is used as the channel 1 time base, and PWCNT2 as the channel 2 time base.

PWCNT is initialized to H'FC00 when the counter start bit (CST) in PWCR is cleared to 0, and also upon reset and in standby mode, watch mode*, subactive mode*, subsleep mode*, and module stop mode.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions.

May 28, 2010

19.2.5 PWM Cycle Registers 1 and 2 (PWCYR1, PWCYR2)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			_			_										
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Read/Write	_	_	_	_	_	_	R/W									

PWCYR is a 16-bit read/write register that sets the PWM conversion cycle. When a PWCYR compare match occurs, PWCNT is cleared and data is transferred from the buffer register (PWBFR) to the duty register (PWDTR). PWCYR1 is used for the channel 1 conversion cycle setting, and PWCYR2 for the channel 2 conversion cycle setting.

PWCYR should be written to only while PWCNT is stopped. A value of H'FC00 must not be set.

PWCYR is initialized to H'FFFF upon reset, and in standby mode, watch mode*, subactive mode*, subsleep mode*, and module stop mode.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions.

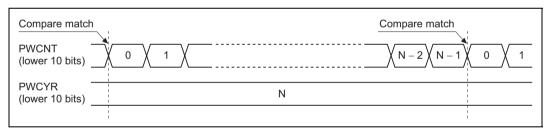


Figure 19-3 Cycle Register Compare Match

19.2.6 PWM Duty Registers 1A, 1C, 1E, 1G (PWDTR1A, 1C, 1E, 1G)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_	_	_	OTS	_	_	DT9	DT8	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0
Initial value	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0
Read/Write	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_

There are four PWDTR1x registers (PWDTR1A, 1C, 1E, 1G). PWDTR1A is used for outputs PWM1A and PWM1B, PWDTR1C for outputs PWM1C and PWM1D, PWDTR1E for outputs PWM1E and PWM1F, and PWDTR1G for outputs PWM1G and PWM1H.

PWDTR1 cannot be read or written to directly. When a PWCYR1 compare match occurs, data is transferred from buffer register 1 (PWBFR1) to PWDTR1.

PWDTR1x is initialized to H'EC00 when the counter start bit (CST) in PWCR1 is cleared to 0, and also upon reset and in standby mode, watch mode*, subactive mode*, subsleep mode*, and module stop mode.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions.

Bits 15 to 13—Reserved: These bits cannot be read from or written to.

Bit 12—Output Terminal Select (OTS): Bit 12 selects the pin used for PWM output according to the value in bit 12 in the buffer register that is transferred by a PWCYR1 compare match. Unselected pins output a low level (or a high level when the corresponding bit in PWPR1 is set to 1).

Register	Bit 12: OTS	Description	
PWDTR1A	0	PWM1A output selected	(Initial value)
	1	PWM1B output selected	
PWDTR1C	0	PWM1C output selected	(Initial value)
	1	PWM1D output selected	
PWDTR1E	0	PWM1E output selected	(Initial value)
	1	PWM1F output selected	
PWDTR1G	0	PWM1G output selected	(Initial value)
	1	PWM1H output selected	

Bits 11 and 10—Reserved: These bits cannot be read from or written to.

Bits 9 to 0—Duty (DT): Bits 9 to 0 set the PWM output duty according to the values in bits 9 to 0 in the buffer register that is transferred by a PWCYR1 compare match. A high level (or a low level when the corresponding bit in PWPR1 is set to 1) is output from the time PWCNT1 is cleared by a PWCYR1 compare match until a PWDTR1 compare match occurs. When all the bits are 0, there is no high-level output period (no low-level output period when the corresponding bit in PWPR1 is set to 1).

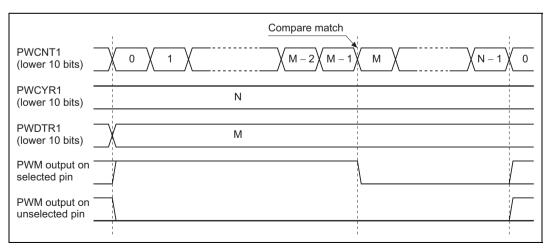


Figure 19-4 Duty Register Compare Match (OPS = 0 in PWPR1)

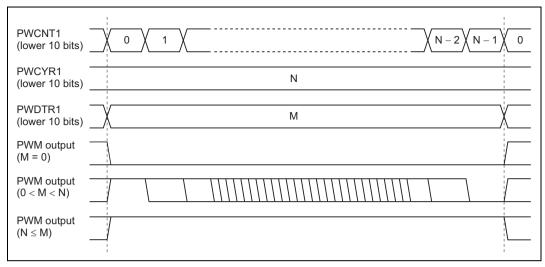
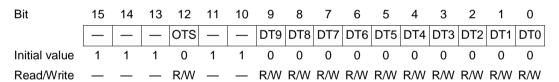



Figure 19-5 Differences in PWM Output According to Duty Register Set Value (OPS = 0 in PWPR1)

19.2.7 PWM Buffer Registers 1A, 1C, 1E, 1G (PWBFR1A, 1C, 1E, 1G)

There are four 16-bit read/write PWBFR1 registers (PWBFR1A, 1C, 1E, 1G). When a PWCYR1 compare match occurs, data is transferred from PWBFR1A to PWDTR1A, from PWBFR1C to PWDTR1C, from PWBFR1E to PWDTR1E, and from PWBFR1G to PWDTR1G.

PWBFR1 is initialized to H'EC00 upon reset, and in standby mode, watch mode*, subactive mode*, subsleep mode*, and module stop mode.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions.

Bits 15 to 13—Reserved: They are always read as 1 and cannot be modified.

Bit 12—Output Terminal Select (OTS): Bit 12 is the data transferred to bit 12 of PWDTR1.

Bits 11 and 10—Reserved: They are always read as 1 and cannot be modified.

Bits 9 to 0—Duty (DT): Bits 9 to 0 comprise the data transferred to bits 9 to 0 in PWDTR1.

19.2.8 PWM Duty Registers 2A to 2H (PWDTR2A to PWDTR2H)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_	_	_	_	_	_	DT9	DT8	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0
Initial value	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0
Read/Write	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

There are eight PWDTR2 registers (PWDTR2A to PWDTR2H). PWDTR2A is used for output PWM2A, PWDTR2B for output PWM2B, PWDTR2C for output PWM2C, PWDTR2D for output PWM2D, PWDTR2E for output PWM2E, PWDTR2F for output PWM2F, PWDTR2G for output PWM2G, and PWDTR2H for output PWM2H.

PWDTR2 cannot be read or written to directly. When a PWCYR2 compare match occurs, data is transferred from buffer register 2 (PWBFR2) to PWDTR2.

PWDTR2 is initialized to H'EC00 when the counter start bit (CST) in PWCR2 is cleared to 0, and also upon reset and in standby mode, watch mode*, subactive mode*, subsleep mode*, and module stop mode.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions.

Bits 15 to 10—Reserved: These bits cannot be read from or written to.

Bits 9 to 0—Duty (DT): Bits 9 to 0 set the PWM output duty according to the values in bits 9 to 0 in the buffer register that is transferred by a PWCYR2 compare match. A high level (or a low level when the corresponding bit in PWPR2 is set to 1) is output from the time PWCNT2 is cleared by a PWCYR2 compare match until a PWDTR2 compare match occurs. When all the bits are 0, there is no high-level output period (no low-level output period when the corresponding bit in PWPR2 is set to 1).

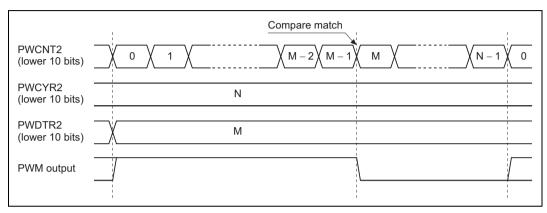


Figure 19-6 Duty Register Compare Match (OPS = 0 in PWPR2)

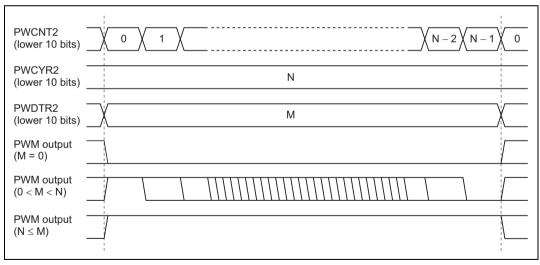


Figure 19-7 Differences in PWM Output According to Duty Register Set Value (OPS = 0 in PWPR2)

19.2.9 PWM Buffer Registers 2A to 2D (PWBFR2A to PWBFR2D)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_	_	_	TDS	_	_	DT9	DT8	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0
Initial value	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0
Read/Write	_	_	_	R/W	_	_	R/W									

There are four 16-bit read/write PWBFR2 registers (PWBFR2A to PWBFR2D). When a PWCYR2 compare match occurs, data is transferred from PWBFR2A to PWDTR2A or PWDTR2E, from PWBFR2B to PWDTR2B or PWDTR2F, from PWBFR2C to PWDTR2C or PWDTR2G, and from PWBFR2D to PWDTR2D or PWDTR2H. The transfer destination is determined by the value of the TDS bit.

PWBFR2 is initialized to H'EC00 upon reset, and in standby mode, watch mode*, subactive mode*, subsleep mode*, and module stop mode.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions.

Bits 15 to 13—Reserved: They are always read as 1 and cannot be modified.

Bit 12—Transfer Destination Select (TDS): Bit 12 selects the PWDTR2 register to which data is to be transferred.

Register	Bit 12: TDS	Description	
PWBFR2A	0	PWDTR2A selected	(Initial value)
	1	PWDTR2E selected	
PWBFR2B	0	PWDTR2B selected	(Initial value)
	1	PWDTR2F selected	
PWBFR2C	0	PWDTR2C selected	(Initial value)
	1	PWDTR2G selected	
PWBFR2D	0	PWDTR2D selected	(Initial value)
	1	PWDTR2H selected	

Bits 11 and 10—Reserved: They are always read as 1 and cannot be modified.

Bits 9 to 0—Duty (DT): Bits 9 to 0 comprise the data transferred to bits 9 to 0 in PWDTR2.

19.2.10 Module Stop Control Register D (MSTPCRD)

Bit	7	6	5	4	3	2	1	0
	MSTPD7	MSTPD6	MSTPD5	MSTPD4	MSTPD3	MSTPD2	MSTPD1	MSTPD0
Initial value	1	1	undefined	undefined	undefined	undefined	undefined	undefined
Read/Write	R/W	R/W	_	_	_	_	_	_

MSTPCRD is an 8-bit read/write register that performs module stop mode control.

When the MSTPD7 bit is set to 1, PWM timer operation is stopped at the end of the bus cycle, and module stop mode is entered. For details, see section 23A.5, 23B.5, Module Stop Mode.

MSTPCRD is initialized by a reset and in hardware standby mode. It is not initialized by a manual reset or in software standby mode.

Bit 7—Module Stop (MSTPD7): Bit 7 specifies the PWM module stop mode.

Bit 7: MSTPD7	Description	
0	PWM module stop mode is cleared	_
1	PWM module stop mode is set	(Initial value)

19.3 Bus Master Interface

19.3.1 16-Bit Data Registers

PWCYR1/2, PWBFR1A/C/E/G, and PWBFR2A/B/C/D are 16-bit registers. These registers are linked to the bus master by a 16-bit data bus, and can be read or written in 16-bit units. They cannot be read by 8-bit access; 16-bit access must always be used.

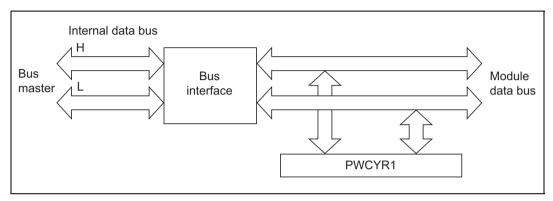


Figure 19-8 16-Bit Register Access Operation (Bus Master ↔ PWCYR1 (16 Bits))

19.3.2 8-Bit Data Registers

PWCR1/2, PWOCR1/2, and PWPR1/2 are 8-bit registers that can be read and written to in 8-bit units. These registers are linked to the bus master by a 16-bit data bus, and can be read or written by 16-bit access; in this case, the lower 8 bits will always be read as H'FF.

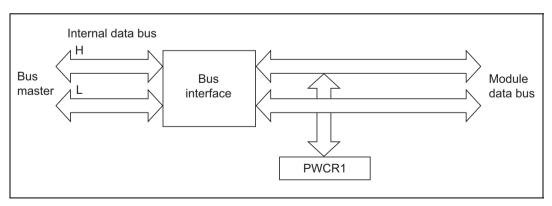


Figure 19-9 8-Bit Register Access Operation (Bus Master ↔ PWCR1 (Upper 8 Bits))

19.4 Operation

19.4.1 PWM Channel 1 Operation

PWM waveforms are output from pins PWM1A to PWM1H as shown in figure 19-10.

Initial Settings: Set the PWM output polarity in PWPR1; enable the pins for PWM output with PWOCR1; select the clock to be input to PWCNT1 with bits CKS2 to CKS0 in PWCR1; set the PWM conversion cycle in PWCYR1; and set the first frame of data in PWBFR1A, PWBFR1C, PWBFR1E, and PWBFR1G.

Activation: When the CST bit in PWCR1 is set to 1, a compare match between PWCNT1 and PWCYR1 is generated. Data is transferred from PWBFR1A to PWDTR1A, from PWBFR1C to PWDTR1C, from PWBFR1E to PWDTR1E, and from PWBFR1G to PWDTR1G. PWCNT1 starts counting up. At the same time the CMF bit in PWCR1 is set, so that, if the IE bit in PWCR1 has been set, an interrupt can be requested or the DTC can be activated.

Waveform Output: The PWM outputs selected by the OTS bits in PWDTR1A/C/E/G go high when a compare match occurs between PWCNT1 and PWCYR1. The PWM outputs not selected by the OTS bits are low. When a compare match occurs between PWCNT1 and PWDTR1A/C/E/G, the corresponding PWM output goes low. If the corresponding bit in PWPR1 is set to 1, the output is inverted.

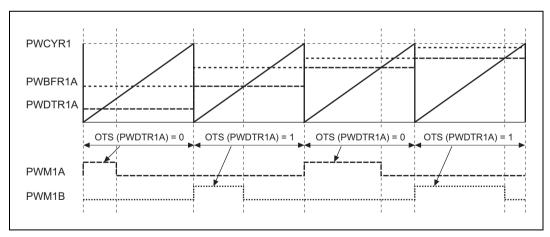


Figure 19-10 PWM Channel 1 Operation

Next Frame: When a compare match occurs between PWCNT1 and PWCYR1, data is transferred from PWBFR1A to PWDTR1A, from PWBFR1C to PWDTR1C, from PWBFR1E to PWDTR1E, and from PWBFR1G to PWDTR1G. PWCNT1 is reset and starts counting up from H'000. The CMF bit in PWCR1 is set, and if the IE bit in PWCR1 has been set, an interrupt can be requested or the DTC can be activated.

Stopping: When the CST bit in PWCR1 is cleared to 0, PWCNT1 is reset and stops. All PWM outputs go low (or high if the corresponding bit in PWPR1 is set to 1).

19.4.2 PWM Channel 2 Operation

PWM waveforms are output from pins PWM2A to PWM2H as shown in figure 19-11.

Initial Settings: Set the PWM output polarity in PWPR2; enable the pins for PWM output with PWOCR2; select the clock to be input to PWCNT2 with bits CKS2 to CKS0 in PWCR2; set the PWM conversion cycle in PWCYR2; and set the first frame of data in PWBFR2A, PWBFR2B, PWBFR2C, and PWBFR2D.

Activation: When the CST bit in PWCR2 is set to 1, a compare match between PWCNT2 and PWCYR2 is generated. Data is transferred from PWBFR2A to PWDTR2A or PWDTR2E, from PWBFR2B to PWDTR2B or PWDTR2F, from PWBFR2C to PWDTR2C or PWDTR2G, and from PWBFR2D to PWDTR2D or PWDTR2H, according to the value of the TDS bit. PWCNT2 starts counting up. At the same time the CMF bit in PWCR2 is set, so that, if the IE bit in PWCR2 has been set, an interrupt can be requested or the DTC can be activated.

Waveform Output: The PWM outputs go high when a compare match occurs between PWCNT2 and PWCYR2. When a compare match occurs between PWCNT2 and PWDTR2A to PWDTR2H, the corresponding PWM output goes low. If the corresponding bit in PWPR2 is set to 1, the output is inverted.

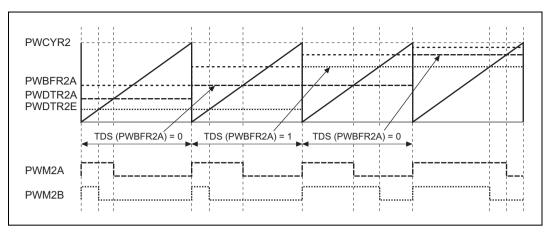


Figure 19-11 PWM Channel 2 Operation

Next Frame: When a compare match occurs between PWCNT2 and PWCYR2, data is transferred from PWBFR2A to PWDTR2A or PWDTR2E, from PWBFR2B to PWDTR2B or PWDTR2F, from PWBFR2C to PWDTR2C or PWDTR2G, and from PWBFR2D to PWDTR2D or PWDTR2H, according to the value of the TDS bit. PWCNT2 is reset and starts counting up from H'000. The CMF bit in PWCR2 is set, and if the IE bit in PWCR2 has been set, an interrupt can be requested or the DTC can be activated.

Stopping: When the CST bit in PWCR2 is cleared to 0, PWCNT2 is reset and stops. PWDTR2A to PWDTR2H are reset. All PWM outputs go low (or high if the corresponding bit in PWPR2 is set to 1).

19.5 Usage Note

Contention between Buffer Register Write and Compare Match

If a PWBFR write is performed in the state immediately after a cycle register compare match, the PWM output does not change, but as the duty register is also rewritten at the same time as the buffer register, normal PWM output will not be achieved.

If a PWBFR write is performed in the state immediately after a cycle register compare match, the buffer register and duty register are overwritten. PWM output changed by the cycle register compare match is not changed in the overwrite of the duty register due to contention. This may result in unanticipated duty output. In the case of channel 2, the duty register used as the transfer destination is selected by the TDS bit of the buffer register when an overwrite of the duty register occurs due to contention. This can also result in an unintended overwrite of the duty register.

Buffer register rewriting must be completed before automatic transfer by the DTC* (data transfer controller), exception handling due to a compare match interrupt, or the occurrence of a cycle register compare match on detection of the rise of CMF (compare match flag) in PWCR.

Note: * The DTC is not implemented in the H8S/2635 and H8S/2634.

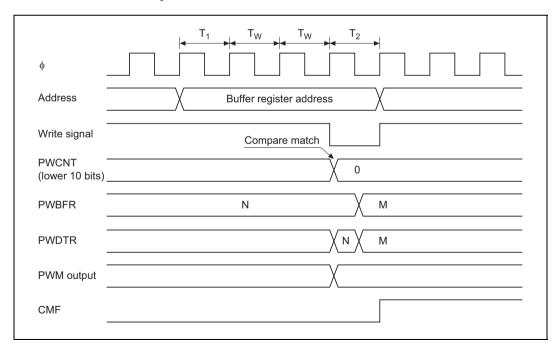


Figure 19-12 PWM Channel 1 Operation

Section 20 RAM

Note: The H8S/2635 Group is not equipped with a DTC.

20.1 Overview

The H8S/2636 has 4 kbytes, and H8S/2638, H8S/2639, and H8S/2630 have 16 kbytes of on-chip high-speed static RAM. The H8S/2635 has 6 kbytes of on-chip RAM. The RAM is connected to the CPU by a 16-bit data bus, enabling one-state access by the CPU to both byte data and word data. This makes it possible to perform fast word data transfer.

The on-chip RAM can be enabled or disabled by means of the RAM enable bit (RAME) in the system control register (SYSCR).

20.1.1 Block Diagram

Figure 20-1 shows a block diagram of the on-chip RAM.

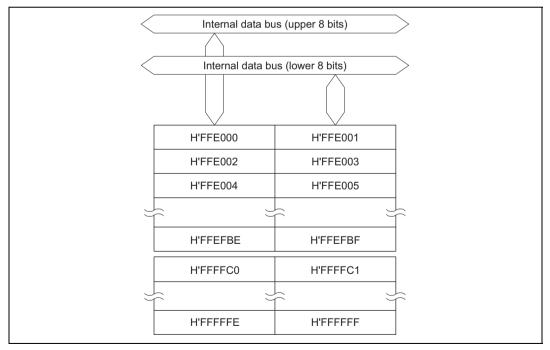


Figure 20-1 (a) Block Diagram of RAM (H8S/2636)

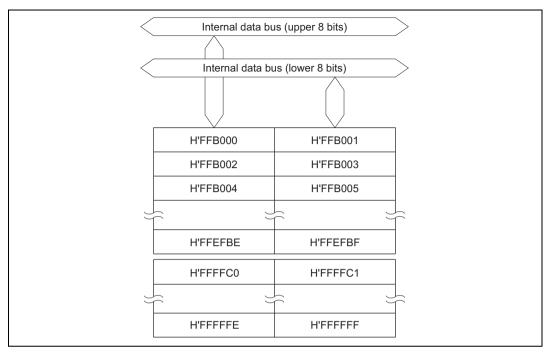


Figure 20-1 (b) Block Diagram of RAM (H8S/2638, H8S/2639, and H8S/2630)

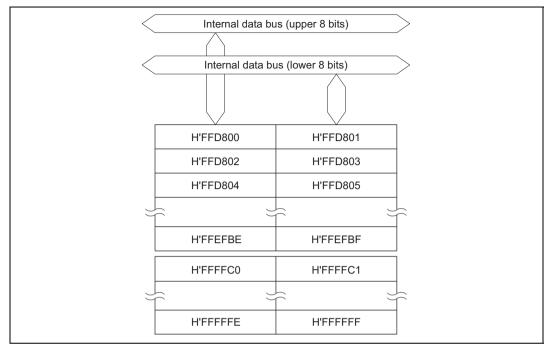


Figure 20-1 (c) Block Diagram of RAM (H8S/2635 Group)

20.1.2 Register Configuration

The on-chip RAM is controlled by SYSCR. Table 20-1 shows the address and initial value of SYSCR.

Table 20-1 RAM Register

Name	Abbreviation	R/W	Initial Value	Address*
System control register	SYSCR	R/W	H'01	H'FDE5

Note: *Lower 16 bits of the address.

20.2 Register Descriptions

20.2.1 System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
		MACS		INTM1	INTM0	NMIEG			RAME
Initial val	ue:	0	0	0	0	0	0	0	1
R/W	:	R/W		R/W	R/W	R/W	R/W		R/W

The on-chip RAM is enabled or disabled by the RAME bit in SYSCR. For details of other bits in SYSCR, see section 3.2.2, System Control Register (SYSCR).

Bit 0—RAM Enable (RAME): Enables or disables the on-chip RAM. The RAME bit is initialized when the reset state is released. It is not initialized in software standby mode.

Bit 0

RAME	Description	
0	On-chip RAM is disabled	_
1	On-chip RAM is enabled	(Initial value)

20.3 Operation

When the RAME bit is set to 1, accesses to addresses H'FFE000 to H'FFEFBF (for the H8S/2636), H'FFB000 to H'FFEFBF (for the H8S/2638, H8S/2639, and H8S/2630), H'FFD800 to H'FFEFBF (for the H8S/2635 Group), or H'FFFFC0 to H'FFFFFF in the chip are directed to the on-chip RAM. When the RAME bit is cleared to 0, the off-chip address space is accessed.

Since the on-chip RAM is connected to the CPU by an internal 16-bit data bus, it can be written to and read in byte or word units. Each type of access can be performed in one state.

Even addresses use the upper 8 bits, and odd addresses use the lower 8 bits. Word data must start at an even address.

20.4 Usage Notes

When Using the DTC: DTC register information can be located in addresses H'FFEBC0 to H'FFEFBF. When the DTC is used, the RAME bit must not be cleared to 0.

Reserved Areas: Addresses H'FFB000 to H'FFDFFF in the H8S/2636 and H'FFB000 to H'FFD7FF in the H8S/2635 Group are reserved areas that cannot be read or written to. When the RAME bit is cleared to 0, the off-chip address space is accessed.

Section 21A ROM (H8S/2636 Group)

21A.1 Overview

The H8S/2636 has 128 kbytes of on-chip flash memory, or 128 kbytes of on-chip mask ROM. The ROM is connected to the bus master via a 16-bit data bus, enabling both byte and word data to be accessed in one state. Instruction fetching is thus speeded up, and processing speed increased.

The on-chip ROM is enabled and disabled by setting the mode pins (MD2 to MD0).

The flash memory version can be erased and programmed on-board, as well as with a special-purpose PROM programmer.

21A.1.1 Block Diagram

Figure 21A-1 shows a block diagram of 128-kbyte ROM.

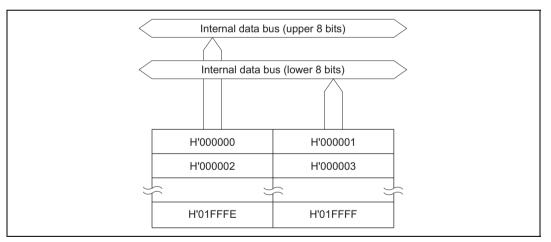


Figure 21A-1 Block Diagram of ROM (128 kbytes)

21A.1.2 Register Configuration

The H8S/2636 operating mode is controlled by the mode pins and the MDCR register. The register configuration is shown in table 21A-1.

Table 21A-1 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address*
Mode control register	MDCR	R/W	Undefined	H'FDE7

Note: * Lower 16 bits of the address

21A.2 Register Descriptions

21A.2.1 Mode Control Register (MDCR)

Bit:	7	6	5	4	3	2	1	0
	_	_	_	_	_	MDS2	MDS1	MDS0
Initial value:	1	0	0	0	0	_*	_*	_*
R/W:	R/W	_	_	_	_	R	R	R

Note: * Determined by pins MD2 to MD0.

MDCR is an 8-bit register used to monitor the current H8S/2636 Group operating mode.

Bit 7—Reserved: Only 1 should be written to these bits.

Bits 6 to 3—Reserved: These bits are always read as 0 and cannot be modified.

Bits 2 to 0—Mode Select 2 to 0 (MDS2 to MDS0): These bits indicate the input levels at pins MD2 to MD0 (the current operating mode). Bits MDS2 to MDS0 correspond to pins MD2 to MD0. MDS2 to MDS0 are read-only bits, and cannot be modified. The mode pin (MD2 to MD0) input levels are latched into these bits when MDCR is read. These latches are canceled by a reset.

21A.3 Operation

The on-chip ROM is connected to the CPU by a 16-bit data bus, and both byte and word data can be accessed in one state. Even addresses are connected to the upper 8 bits, and odd addresses to the lower 8 bits. Word data must start at an even address.

The on-chip ROM is enabled and disabled by setting the mode pins (MD2, MD1, and MD0). These settings are shown in table 21A-2.

Table 21A-2 Operating Modes and ROM (F-ZTAT Version)

			Mod			
	Operating Mode	FWE	MD2	MD1	MD0	On-Chip ROM
Mode 0	_	0	0	0	0	_
Mode 1	_				1	=
Mode 2	_			1	0	_
Mode 3	_				1	_
Mode 4	Advanced expanded mode with on-chip ROM disabled	_	1	0	0	Disabled
Mode 5	Advanced expanded mode with on-chip ROM disabled	_			1	_
Mode 6	Advanced expanded mode with on-chip ROM enabled			1	0	Enabled (128 kbytes)
Mode 7	Advanced single-chip mode	_			1	Enabled (128 kbytes)
Mode 8	_	1	0	0	0	_
Mode 9	_				1	_
Mode 10	Boot mode (advanced expanded mode with on-chip ROM enabled)*1	_		1	0	Enabled (128 kbytes)
Mode 11	Boot mode (advanced single-chip mode)*2				1	Enabled (128 kbytes)
Mode 12	_	_	1	0	0	_
Mode 13	_				1	_
Mode 14	User program mode (advanced expanded mode with on-chip ROM enabled)*1	_		1	0	Enabled (128 kbytes)
Mode 15	User program mode (advanced single-chip mode)*2	_			1	Enabled (128 kbytes)

Notes: 1. Apart from the fact that flash memory can be erased and programmed, operation is the same as in advanced expanded mode with on-chip ROM enabled.

2. Apart from the fact that flash memory can be erased and programmed, operation is the same as in advanced single-chip mode.

Table 21A-3 Operating Modes and ROM (Mask ROM Version)

			Mode P		
	Operating Mode	MD2	MD1	MD0	On-Chip ROM
Mode 0	_	0	0	0	_
Mode 1				1	
Mode 2			1	0	
Mode 3				1	
Mode 4	Advanced expanded mode with on-chip ROM disabled	1	0	0	Disabled
Mode 5	Advanced expanded mode with on-chip ROM disabled	_		1	
Mode 6	Advanced expanded mode with on-chip ROM enabled	_	1	0	Enabled (128 kbytes)
Mode 7	Advanced single-chip mode	_		1	Enabled (128 kbytes)

21A.4 Flash Memory Overview

21A.4.1 Features

The H8S/2636 has 128 kbytes of on-chip flash memory, or 128 kbytes of on-chip mask ROM. The features of the flash memory are summarized below.

- Four flash memory operating modes
 - Program mode
 - Erase mode
 - Program-verify mode
 - Erase-verify mode
- Programming/erase methods

The flash memory is programmed 128 bytes at a time. Block erase (in single-block units) can be performed. To erase the entire flash memory, each block must be erased in turn. Blocks of 1 kbyte, 8 kbytes, 16 kbytes, 28 kbytes, and 32 kbytes can be erased as required.

Programming/erase times

The flash memory programming time is 10 ms (typ.) for simultaneous 128-byte programming, equivalent to 80 µs (typ.) per byte, and the erase time is 100 ms (typ.).

Reprogramming capability

The flash memory can be reprogrammed up to 100 times.

• On-board programming modes

There are two modes in which flash memory can be programmed/erased/verified on-board:

- Boot mode
- User program mode
- Automatic bit rate adjustment

With data transfer in boot mode, the LSI's bit rate can be automatically adjusted to match the transfer bit rate of the host.

Flash memory emulation in RAM

Flash memory programming can be emulated in real time by overlapping a part of RAM onto flash memory.

Protect modes

There are two protect modes, hardware and software, which allow protected status to be designated for flash memory program/erase/verify operations.

• Programmer mode

Flash memory can be programmed/erased in programmer mode, using a PROM programmer, as well as in on-board programming mode.

21A.4.2 Block Diagram

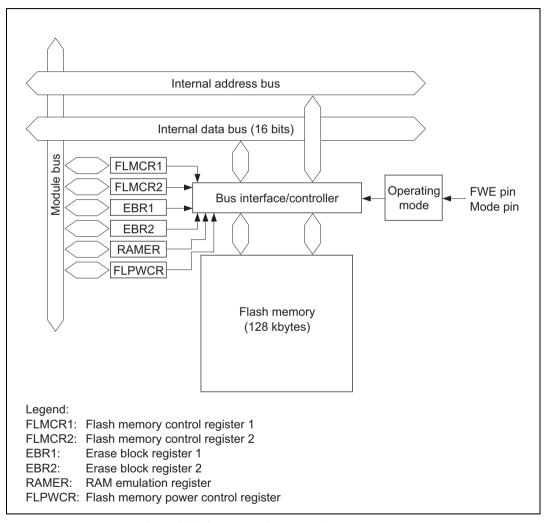


Figure 21A-2 Block Diagram of Flash Memory

21A.4.3 Mode Transitions

When the mode pins and the FWE pin are set in the reset state and a reset-start is executed, the microcomputer enters an operating mode as shown in figure 21A-3. In user mode, flash memory can be read but not programmed or erased.

The boot, user program and programmer modes are provided as modes to write and erase the flash memory.

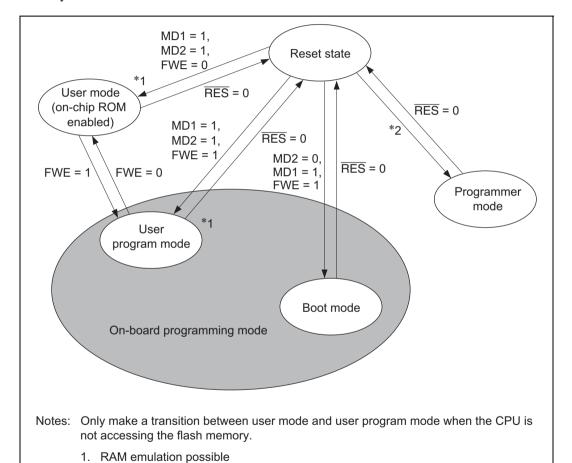
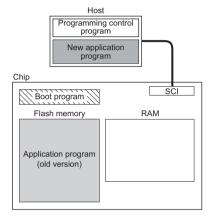
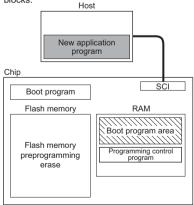


Figure 21A-3 Flash Memory State Transitions

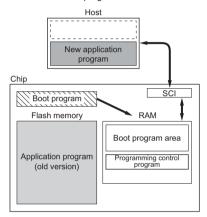

2. This LSI transits to programmer mode by using the dedicated PROM programmer.

21A.4.4 On-Board Programming Modes

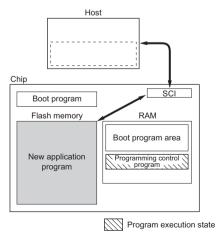
Boot Mode


1. Initial state

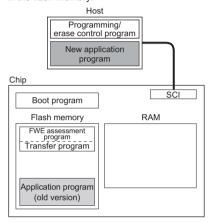
The old program version or data remains written in the flash memory. The user should prepare the programming control program and new application program beforehand in the host.

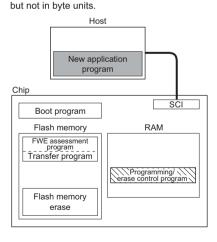


3. Flash memory initialization

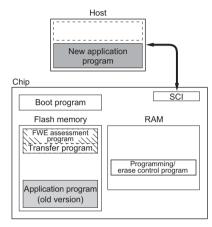

The erase program in the boot program area (in RAM) is executed, and the flash memory is initialized (to H'FF). In boot mode, total flash memory erasure is performed, without regard to blocks.

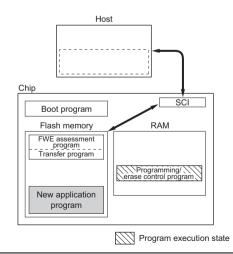
Programming control program transfer
 When boot mode is entered, the boot program in
 the chip (originally incorporated in the chip) is
 started and the programming control program in
 the host is transferred to RAM via SCI
 communication. The boot program required for
 flash memory erasing is automatically transferred
 to the RAM boot program area.


4. Writing new application program The programming control program transferred from the host to RAM is executed, and the new application program in the host is written into the flash memory.


User Program Mode

1. Initial state


The FWE assessment program that confirms that user program mode has been entered, and the program that will transfer the programming/erase control program from flash memory to on-chip RAM should be written into the flash memory by the user beforehand. The programming/erase control program should be prepared in the host or in the flash memory.


3. Flash memory initialization The programming/erase program in RAM is executed, and the flash memory is initialized (to H'FF). Erasing can be performed in block units,

2. Programming/erase control program transfer When user program mode is entered, user software confirms this fact, executes transfer program in the flash memory, and transfers the programming/erase control program to RAM.

4. Writing new application program Next, the new application program in the host is written into the erased flash memory blocks. Do not write to unerased blocks.

21A.4.5 Flash Memory Emulation in RAM

Emulation should be performed in user mode or user program mode. When the emulation block set in RAMER is accessed while the emulation function is being executed, data written in the overlap RAM is read.

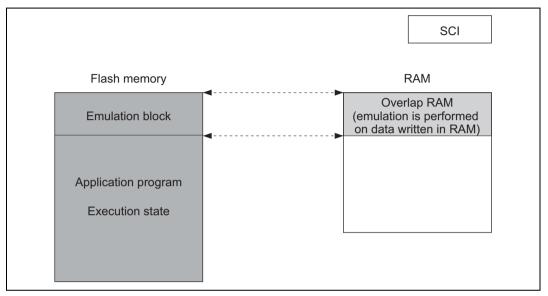


Figure 21A-4 Reading Overlap RAM Data in User Mode or User Program Mode

When overlap RAM data is confirmed, the RAMS bit is cleared, RAM overlap is released, and writes should actually be performed to the flash memory.

When the programming control program is transferred to RAM, ensure that the transfer destination and the overlap RAM do not overlap, as this will cause data in the overlap RAM to be rewritten.

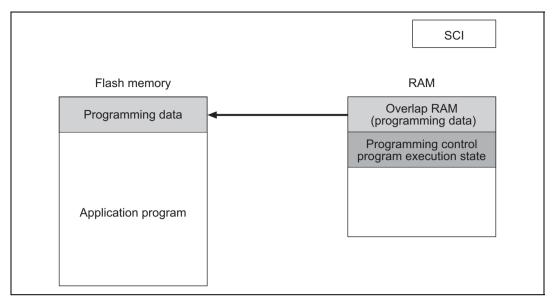


Figure 21A-5 Writing Overlap RAM Data in User Program Mode

21A.4.6 Differences between Boot Mode and User Program Mode

Table 21A-4 Differences between Boot Mode and User Program Mode

	Boot Mode	User Program Mode	
Total erase	Yes	Yes	
Block erase	No	Yes	
Programming control program*	(2)	(1) (2) (3)	

- (1) Erase/erase-verify
- (2) Program/program-verify
- (3) Emulation

Note: *To be provided by the user, in accordance with the recommended algorithm.

21A.4.7 Block Configuration

The flash memory is divided into two 32 kbytes blocks, one 28 kbytes block, one 16 kbytes block, two 8 kbytes blocks, and four 1 kbyte blocks.

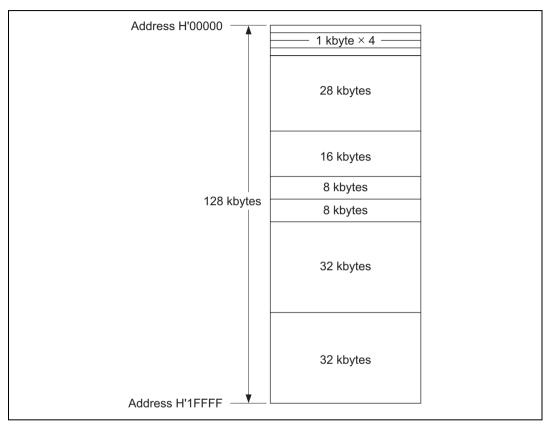


Figure 21A-6 Block Configuration

May 28, 2010

21A.5 Pin Configuration

The flash memory is controlled by means of the pins shown in table 21A-5.

Table 21A-5 Pin Configuration

Pin Name	Abbreviation	1/0	Function
Reset	RES	Input	Reset
Flash write enable	FWE	Input	Flash program/erase protection by hardware
Mode 2	MD2	Input	Sets MCU operating mode
Mode 1	MD1	Input	Sets MCU operating mode
Mode 0	MD0	Input	Sets MCU operating mode
Port F0	PF0	Input	Sets MCU operating mode in programmer mode
Port 16	P16	Input	Sets MCU operating mode in programmer mode
Port 14	P14	Input	Sets MCU operating mode in programmer mode
Transmit data	TxD1	Output	Serial transmit data output
Receive data	RxD1	Input	Serial receive data input

21A.6 Register Configuration

The registers used to control the on-chip flash memory when enabled are shown in table 21A-6.

Table 21A-6 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address*1
Flash memory control register 1	FLMCR1*4	R/W	H'00*2	H'FFA8
Flash memory control register 2	FLMCR2*4	R	H'00	H'FFA9
Erase block register 1	EBR1*4	R/W	H'00 ^{*3}	H'FFAA
Erase block register 2	EBR2*4	R/W	H'00*3	H'FFAB
RAM emulation register	RAMER*4	R/W	H'00	H'FEDB
Flash memory power control register	FLPWCR*4	R/W	H'00*3	H'FFAC

Notes: 1. Lower 16 bits of the address.

- 2. When a high level is input to the FWE pin, the initial value is H'80.
- 3. When a low level is input to the FWE pin, or if a high level is input and the SWE1 bit in FLMCR1 is not set, these registers are initialized to H'00.
- 4. FLMCR1, FLMCR2, EBR1, and EBR2, RAMER, and FLPWCR are 8-bit registers. Use byte access on these registers.

21A.7 Register Descriptions

21A.7.1 Flash Memory Control Register 1 (FLMCR1)

FLMCR1 is an 8-bit register used for flash memory operating mode control. Program-verify mode or erase-verify mode for on-chip flash memory is entered by setting SWE bit to 1 when FWE = 1, then setting the PV or EV bit. Program mode for on-chip flash memory is entered by setting SWE bit to 1 when FWE = 1, then setting the PSU bit, and finally setting the P bit. Erase mode for on-chip flash memory is entered by setting SWE bit to 1 when FWE = 1, then setting the ESU bit, and finally setting the E bit. FLMCR1 is initialized by a reset, and in hardware standby mode and software standby mode. Its initial value is H'80 when a high level is input to the FWE pin, and H'00 when a low level is input. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

Writes are enabled only in the following cases: Writes to bit SWE of FLMCR1 enabled when FWE = 1, to bits ESU, PSU, EV, and PV when FWE = 1 and SWE = 1, to bit E when FWE = 1, SWE = 1 and ESU = 1, and to bit P when FWE = 1, EVE = 1, and EVE = 1.

Bit:	7	6	5	4	3	2	1	0
	FWE	SWE	ESU	PSU	EV	PV	Е	Р
Initial value:	_*	0	0	0	0	0	0	0
R/W:	R	R/W						

Note: * Determined by the state of the FWE pin.

Bit 7—Flash Write Enable Bit (FWE): Sets hardware protection against flash memory programming/erasing.

Bit 7: FWE Description

0	When a low level is input to the FWE pin (hardware-protected state)
1	When a high level is input to the FWE pin

Bit 6—Software Write Enable Bit (SWE): Enables or disables flash memory programming and erasing. Set this bit when setting bits 5 to 0, bits 7 to 0 of EBR1, and bits 1 and 0 of EBR2.

Bit 6: SWE	Description	
0	Writes disabled	(Initial value)
1	Writes enabled	
	[Setting condition]	
	• When FWE = 1	

Bit 5—Erase Setup Bit (ESU): Prepares for a transition to erase mode. Set this bit to 1 before setting the E bit in FLMCR1 to 1. Do not set the SWE, PSU, EV, PV, E, or P bit at the same time.

Bit 5: ESU	Description		
0	Erase setup cleared	(Initial value)	
1	Erase setup		
	[Setting condition]		
	• When FWE = 1 and SWE = 1		

Bit 4—Program Setup Bit (PSU): Prepares for a transition to program mode. Set this bit to 1 before setting the P bit in FLMCR1 to 1. Do not set the SWE, ESU, EV, PV, E, or P bit at the same time.

Bit 4: PSU	Description			
0	Program setup cleared	(Initial value)		
1	Program setup			
	[Setting condition]			
	• When FWE = 1 and SWE = 1			

Bit 3—Erase-Verify (EV): Selects erase-verify mode transition or clearing. Do not set the SWE, ESU, PSU, PV, E, or P bit at the same time.

Bit 3: EV	Description	
0	Erase-verify mode cleared	(Initial value)
1	Transition to erase-verify mode	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 2—Program-Verify (PV): Selects program-verify mode transition or clearing. Do not set the SWE, ESU, PSU, EV, E, or P bit at the same time.

Bit 2: PV Description

0	Program-verify mode cleared	(Initial value)
1	Transition to program-verify mode	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 1—Erase (E): Selects erase mode transition or clearing. Do not set the SWE, ESU, PSU, EV, PV, or P bit at the same time.

Bit 1: E Description

	2000. p. 1011	
0	Erase mode cleared	(Initial value)
1	Transition to erase mode	
	[Setting condition]	
	When FWE = 1, SWE = 1, and ESU = 1	

Bit 0—Program (P): Selects program mode transition or clearing. Do not set the SWE, PSU, ESU, EV, PV, or E bit at the same time.

Bit 0: P Description

0	Program mode cleared	(Initial value)
1	Transition to program mode	
	[Setting condition]	
	When FWE = 1, SWE = 1, and PSU = 1	

21A.7.2 Flash Memory Control Register 2 (FLMCR2)

FLMCR2 is an 8-bit register used for flash memory operating mode control. FLMCR2 is initialized to H'00 by a reset, and in hardware standby mode and software standby mode. When on-chip flash memory is disabled, a read will return H'00.

Bit:	7	6	5	4	3	2	1	0
	FLER	_	_	_	_	_	_	_
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	_	_	_	_	_	_	_

Note: FLMCR2 is a read-only register, and should not be written to.

Bit 7—Flash Memory Error (FLER): Indicates that an error has occurred during an operation on flash memory (programming or erasing). When FLER is set to 1, flash memory goes to the error-protection state.

Bit 7: FLER	Description	
0	Flash memory is operating normally	(Initial value)
	Flash memory program/erase protection (error protection) is disable	ed
	[Clearing condition]	
	 Reset or hardware standby mode 	
1	An error has occurred during flash memory programming/erasing	
	Flash memory program/erase protection (error protection) is enable	d
	[Setting condition]	
	See section 21A.10.3, Error Protection	

Bits 6 to 0—Reserved: These bits always read 0.

21A.7.3 Erase Block Register 1 (EBR1)

EBR1 is an 8-bit register that specifies the flash memory erase area block by block. EBR1 is initialized to H'00 by a reset, in hardware standby mode and software standby mode, when a low level is input to the FWE pin, and when a high level is input to the FWE pin and the SWE bit in FLMCR1 is not set. When a bit in EBR1 is set to 1, the corresponding block can be erased. Other blocks are erase-protected. Only one of the bits of EBR1 and EBR2 combined can be set. Do not set more than one bit, as this will cause all the bits in both EBR1 and EBR2 to be automatically cleared to 0. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

The flash memory block configuration is shown in table 21A-6.

Bit:	7	6	5	4	3	2	1	0
	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W							

21A.7.4 Erase Block Register 2 (EBR2)

EBR2 is an 8-bit register that specifies the flash memory erase area block by block. EBR2 is initialized to H'00 by a reset, in hardware standby mode and software standby mode, when a low level is input to the FWE pin. Bit 0 will be initialized to 0 if bit SWE of FLMCR1 is not set, even though a high level is input to pin FWE. When a bit in EBR2 is set to 1, the corresponding block can be erased. Other blocks are erase-protected. Only one of the bits of EBR1 and EBR2 combined can be set. Do not set more than one bit, as this will cause all the bits in both EBR1 and EBR2 to be automatically cleared to 0. Bits 7 to 2 are reserved and must only be written with 0. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

The flash memory block configuration is shown in table 21A-7.

Bit:	7	6	5	4	3	2	1	0
		_	_	_	_	_	EB9	EB8
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W							

Table 21A-7 Flash Memory Erase Blocks (H8S/2636)

Block (Size)	Addresses
EB0 (1 kbyte)	H'000000 to H'0003FF
EB1 (1 kbyte)	H'000400 to H'0007FF
EB2 (1 kbyte)	H'000800 to H'000BFF
EB3 (1 kbyte)	H'000C00 to H'000FFF
EB4 (28 kbytes)	H'001000 to H'007FFF
EB5 (16 kbytes)	H'008000 to H'00BFFF
EB6 (8 kbytes)	H'00C000 to H'00DFFF
EB7 (8 kbytes)	H'00E000 to H'00FFFF
EB8 (32 kbytes)	H'010000 to H'017FFF
EB9 (32 kbytes)	H'018000 to H'01FFFF

21A.7.5 RAM Emulation Register (RAMER)

RAMER specifies the area of flash memory to be overlapped with part of RAM when emulating real-time flash memory programming. RAMER initialized to H'00 by a reset and in hardware standby mode. It is not initialized by software standby mode. RAMER settings should be made in user mode or user program mode.

Flash memory area divisions are shown in table 21A-8. To ensure correct operation of the emulation function, the ROM for which RAM emulation is performed should not be accessed immediately after this register has been modified. Normal execution of an access immediately after register modification is not guaranteed.

Bit:	7	6	5	4	3	2	1	0
	_	_	_	_	RAMS	RAM2	RAM1	RAM0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7 and 6—Reserved: These bits always read 0.

Bits 5 and 4—Reserved: Only 0 may be written to these bits.

Bit 3—RAM Select (RAMS): Specifies selection or non-selection of flash memory emulation in RAM. When RAMS = 1, all flash memory block are program/erase-protected.

DIT 3: KAIVIS DESCRIPTION	Bit 3:	RAMS	Description
---------------------------	--------	------	-------------

0	Emulation not selected	(Initial value)
	Program/erase-protection of all flash memory blocks is disabled	
1	Emulation selected	
	Program/erase-protection of all flash memory blocks is enabled	

Bits 2, 1 and 0—Flash Memory Area Selection: These bits are used together with bit 3 to select the flash memory area to be overlapped with RAM (See table 21A-7).

Table 21A-8 Flash Memory Area Divisions (H8S/2636)

Addresses	Block Name	RAMS	RAM2	RAM1	RAM0
H'FFE000 to H'FFE3FF	RAM area 1 kbyte	0	*	*	*
H'000000 to H'0003FF	EB0 (1 kbyte)	1	0	0	*
H'000400 to H'0007FF	EB1 (1 kbyte)	1	0	1	*
H'000800 to H'000BFF	EB2 (1 kbyte)	1	1	0	*
H'000C00 to H'000FFF	EB3 (1 kbyte)	1	1	1	*

^{*:} Don't care

21A.7.6 Flash Memory Power Control Register (FLPWCR)

Bit:	7	6	5	4	3	2	1	0
	PDWND	_	_	_	_	_	_	_
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R	R	R	R	R	R	R

FLPWCR enables or disables a transition to the flash memory power-down mode when the LSI switches to subactive mode*.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask version only.

These functions cannot be used with the other versions.

Bit 7—Power-Down Disable (PDWND): Enables or disables a transition to the flash memory power-down mode when the LSI switches to subactive mode. For details, see section 21A.14, Flash Memory and Power-Down States.

The subactive mode can be used in the U-mask version only.

When writing to this bit in other versions, be sure to write 0.

Bit 7: PDWND	Description	
0	Transition to flash memory power-down mode enabled	(Initial value)
1	Transition to flash memory power-down mode disabled	

Bits 6 to 0—Reserved: These bits always read 0.

21A.8 On-Board Programming Modes

When pins are set to on-board programming mode and a reset-start is executed, a transition is made to the on-board programming state in which program/erase/verify operations can be performed on the on-chip flash memory. There are two on-board programming modes: boot mode and user program mode. The pin settings for transition to each of these modes are shown in table 21A-9. For a diagram of the transitions to the various flash memory modes, see figure 21A-3.

Table 21A-9 Setting On-Board Programming Modes

Mode		FWE	MD2	MD1	MD0	
Boot mode	Expanded mode	1	0	1	0	
	Single-chip mode		0	1	1	
User program mode	Expanded mode	1	1	1	0	
	Single-chip mode		1	1	1	

21A.8.1 Boot Mode

When boot mode is used, the flash memory programming control program must be prepared in the host beforehand. The SCI channel to be used is set to asynchronous mode.

When a reset-start is executed after the LSI's pins have been set to boot mode, the boot program built into the LSI is started and the programming control program prepared in the host is serially transmitted to the LSI via the SCI. In the LSI, the programming control program received via the SCI is written into the programming control program area in on-chip RAM. After the transfer is completed, control branches to the start address of the programming control program area and the programming control program execution state is entered (flash memory programming is performed).

The transferred programming control program must therefore include coding that follows the programming algorithm given later.

The system configuration in boot mode is shown in figure 21A-7, and the boot mode execution procedure in figure 21A-8.

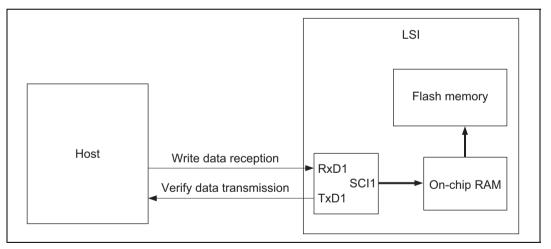


Figure 21A-7 System Configuration in Boot Mode

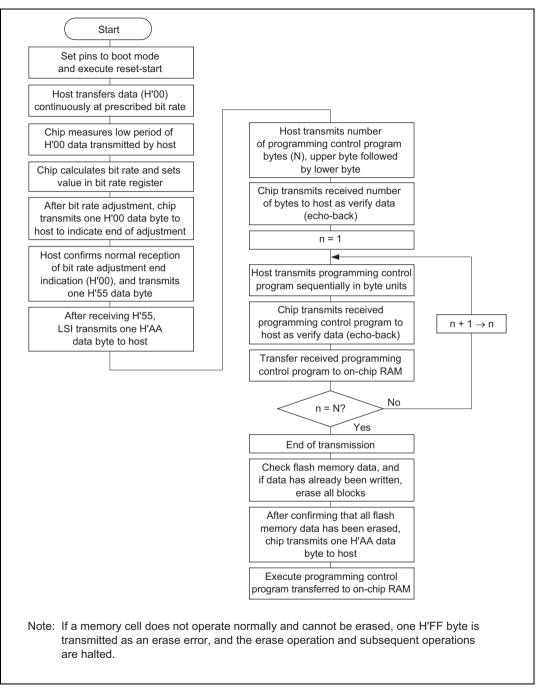
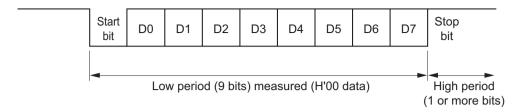



Figure 21A-8 Boot Mode Execution Procedure

Automatic SCI Bit Rate Adjustment

When boot mode is initiated, the LSI measures the low period of the asynchronous SCI communication data (H'00) transmitted continuously from the host. The SCI transmit/receive format should be set as follows: 8-bit data, 1 stop bit, no parity. The LSI calculates the bit rate of the transmission from the host from the measured low period, and transmits one H'00 byte to the host to indicate the end of bit rate adjustment. The host should confirm that this adjustment end indication (H'00) has been received normally, and transmit one H'55 byte to the LSI. If reception cannot be performed normally, initiate boot mode again (reset), and repeat the above operations. Depending on the host's transmission bit rate and the LSI's system clock frequency, there will be a discrepancy between the bit rates of the host and the LSI. Set the host transfer bit rate at 4,800, 9,600 or 19,200 bps to operate the SCI properly.

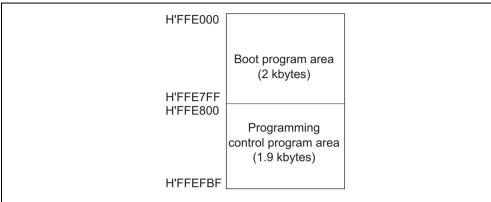

Table 21A-10 shows host transfer bit rates and system clock frequencies for which automatic adjustment of the LSI bit rate is possible. The boot program should be executed within this system clock range.

Table 21A-10 System Clock Frequencies for which Automatic Adjustment of LSI Bit Rate Is Possible

Host Bit Rate	System Clock Frequency for which Automatic Adjustment of LSI Bit Rate Is Possible
4,800 bps	4 to 20 MHz
9,600 bps	8 to 20 HHz
19,200 bps	16 to 20 MHz

Note: The system clock frequency used in boot mode is generated by an external crystal oscillator element. PLL frequency multiplication is not used.

On-Chip RAM Area Divisions in Boot Mode: In boot mode, the RAM area is divided into an area used by the boot program and an area to which the programming control program is transferred via the SCI, as shown in figure 21A-9. The boot program area cannot be used until the execution state in boot mode switches to the programming control program transferred from the host.

Note: The boot program area cannot be used until a transition is made to the execution state for the programming control program transferred to RAM. Note also that the boot program remains in this area of the on-chip RAM even after control branches to the programming control program.

Figure 21A-9 RAM Areas in Boot Mode

Notes on Use of Boot Mode:

- When the chip comes out of reset in boot mode, it measures the low-level period of the input at
 the SCI's RxD1 pin. The reset should end with RxD1 high. After the reset ends, it takes
 approximately 100 states before the chip is ready to measure the low-level period of the RxD1
 pin.
- In boot mode, if any data has been programmed into the flash memory (if all data is not 1), all
 flash memory blocks are erased. Boot mode is for use when user program mode is unavailable,
 such as the first time on-board programming is performed, or if the program activated in user
 program mode is accidentally erased.
- Interrupts cannot be used while the flash memory is being programmed or erased.
- The RxD1 and TxD1 pins should be pulled up on the board.

• Before branching to the programming control program (RAM area H'FFE800), the chip terminates transmit and receive operations by the on-chip SCI (channel 1) (by clearing the RE and TE bits in SCR to 0), but the adjusted bit rate value remains set in BRR. The transmit data output pin, TxD1, goes to the high-level output state (P33DDR = 1, P33DR = 1).

The contents of the CPU's internal general registers are undefined at this time, so these registers must be initialized immediately after branching to the programming control program. In particular, since the stack pointer (SP) is used implicitly in subroutine calls, etc., a stack area must be specified for use by the programming control program.

The initial values of other on-chip registers are not changed.

Boot mode can be entered by making the pin settings shown in table 21A-9 and executing a
reset-start.

Boot mode can be cleared by driving the reset pin low, waiting at least 20 states, then setting the FWE pin and mode pins, and executing reset release*1. Boot mode can also be cleared by a WDT overflow reset.

Do not change the mode pin input levels in boot mode, and do not drive the FWE pin low*3 while the boot program is being executed or while flash memory is being programmed or erased.

• If the mode pin input levels are changed (for example, from low to high) during a reset, the state of ports with multiplexed address functions and bus control output pins (AS, RD, HWR) will change according to the change in the microcomputer's operating mode *2.

Therefore, care must be taken to make pin settings to prevent these pins from becoming output signal pins during a reset, or to prevent collision with signals outside the microcomputer.

- Notes: 1. Mode pin and FWE pin input must satisfy the mode programming setup time ($t_{MDS} = 4$ states) with respect to the reset release timing.
 - 2. See appendix D, Pin States.
 - 3. For precautions on applying and disconnecting FWE, see section 21A.15, Flash Memory Programming and Erasing Precautions.

21A.8.2 User Program Mode

When set to user program mode, the chip can program and erase its flash memory by executing a user program/erase control program. Therefore, on-board reprogramming of the on-chip flash memory can be carried out by providing on-board means of FWE control and supply of programming data, and storing a program/erase control program in part of the program area as necessary.

To select user program mode, select a mode that enables the on-chip flash memory (mode 6 or 7), and apply a high level to the FWE pin. In this mode, on-chip supporting modules other than flash memory operate as they normally would in modes 6 and 7.

The flash memory itself cannot be read while the SWE bit is set to 1 to perform programming or erasing, so the control program that performs programming and erasing should be run in on-chip RAM or external memory. If the program is to be located in external memory, the instruction for writing to flash memory, and the following instruction, should be placed in on-chip RAM.

Figure 21A-10 shows the procedure for executing the program/erase control program when transferred to on-chip RAM.

Figure 21A-10 User Program Mode Execution Procedure

21A.9 Flash Memory Programming/Erasing

A software method, using the CPU, is employed to program and erase flash memory in the on-board programming modes. There are four flash memory operating modes: program mode, erase mode, program-verify mode, and erase-verify mode. Transitions to these modes for on-chip flash memory are made by setting the PSU, ESU, P, E, PV, and EV bits in FLMCR1.

The flash memory cannot be read while being programmed or erased. Therefore, the program (user program) that controls flash memory programming/erasing should be located and executed in on-chip RAM or external memory. If the program is to be located in external memory, the instruction for writing to flash memory, and the following instruction, should be placed in on-chip RAM. Also ensure that the DTC is not activated before or after execution of the flash memory write instruction.

In the following operation descriptions, wait times after setting or clearing individual bits in FLMCR1 are given as parameters; for details of the wait times, see section 24.1.7, Flash Memory Characteristics.

- Notes: 1. Operation is not guaranteed if setting/resetting of the SWE, ESU, PSU, EV, PV, E, and P bits in FLMCR1 is executed by a program in flash memory.
 - 2. When programming or erasing, set FWE to 1 (programming/erasing will not be executed if FWE = 0).
 - 3. Programming must be executed in the erased state. Do not perform additional programming on addresses that have already been programmed.

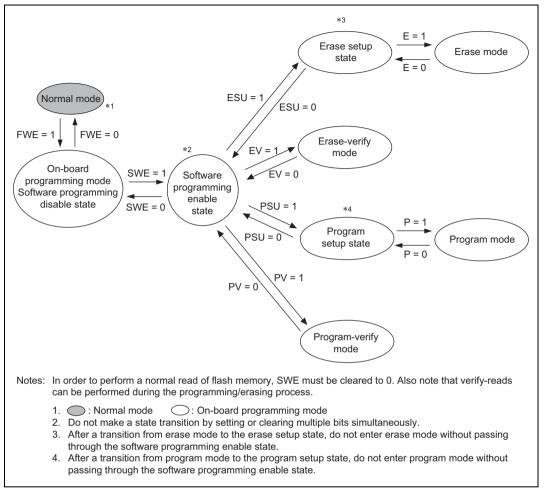


Figure 21A-11 FLMCR1 Bit Settings and State Transitions

21A.9.1 Program Mode

When writing data or programs to flash memory, the program/program-verify flowchart shown in figure 21A-12 should be followed. Performing programming operations according to this flowchart will enable data or programs to be written to flash memory without subjecting the device to voltage stress or sacrificing program data reliability. Programming should be carried out 128 bytes at a time.

The wait times after bits are set or cleared in the flash memory control register 1 (FLMCR1) and the maximum number of programming operations (N) are shown in table 24-10 in section 24.1.7, Flash Memory Characteristics.

Following the elapse of (t_{sswe}) µs or more after the SWE bit is set to 1 in FLMCR1, 128-byte data is written consecutively to the write addresses. The lower 8 bits of the first address written to must be H'00 and H'80, 128 consecutive byte data transfers are performed. The program address and program data are latched in the flash memory. A 128-byte data transfer must be performed even if writing fewer than 128 bytes; in this case, H'FF data must be written to the extra addresses.

Next, the watchdog timer (WDT) is set to prevent overprogramming due to program runaway, etc. Set a value greater than $(t_{spsu} + t_{sp} + t_{cp} + t_{cpsu})$ μs as the WDT overflow period. Preparation for entering program mode (program setup) is performed next by setting the PSU bit in FLMCR1. The operating mode is then switched to program mode by setting the P bit in FLMCR1 after the elapse of at least (t_{spsu}) μs . The time during which the P bit is set is the flash memory programming time. Make a program setting so that the time for one programming operation is within the range of (t_{sp}) μs .

The wait time after P bit setting must be changed according to the degree of progress through the programming operation. For details see "Notes on Program/Program-Verify Procedure."

21A.9.2 Program-Verify Mode

In program-verify mode, the data written in program mode is read to check whether it has been correctly written in the flash memory.

After the elapse of the given programming time, clear the P bit in FLMCR1, then wait for at least (t_{cp}) μs before clearing the PSU bit to exit program mode. After exiting program mode, the watchdog timer setting is also cleared. The operating mode is then switched to program-verify mode by setting the PV bit in FLMCR1. Before reading in program-verify mode, a dummy write of H'FF data should be made to the addresses to be read. The dummy write should be executed after the elapse of (t_{spv}) μs or more. When the flash memory is read in this state (verify data is read in 16-bit units), the data at the latched address is read. Wait at least (t_{spvr}) μs after the dummy write before performing this read operation. Next, the originally written data is compared with the verify data, and reprogram data is computed (see figure 21A-12) and transferred to RAM. After verification of 128 bytes of data has been completed, exit program-verify mode, wait for at least (t_{cpv}) μs , then clear the SWE bit in FLMCR1. If reprogramming is necessary, set program mode again, and repeat the program/program-verify sequence as before. The maximum number of repetitions of the program/program-verify sequence is indicated by the maximum programming count (N). Leave a wait time of at least (t_{cswe}) μs after clearing SWE.

Notes on Program/Program-Verify Procedure

- 1. In order to perform 128-byte-unit programming, the lower 8 bits of the write start address must be H'00 or H'80.
- 2. When performing continuous writing of 128-byte data to flash memory, byte-unit transfer should be used.
 - 128-byte data transfer is necessary even when writing fewer than 128 bytes of data. Write H'FF data to the extra addresses.
- 3. Verify data is read in word units.
- 4. The write pulse is applied and a flash memory write executed while the P bit in FLMCR1 is set. In the chip, write pulses should be applied as follows in the program/program-verify procedure to prevent voltage stress on the device and loss of write data reliability.
 - a. After write pulse application, perform a verify-read in program-verify mode and apply a write pulse again for any bits read as 1 (reprogramming processing). When all the 0-write bits in the 128-byte write data are read as 0 in the verify-read operation, the program/program-verify procedure is completed. In the chip, the number of loops in reprogramming processing is guaranteed not to exceed the maximum value of the maximum programming count (N).

b. After write pulse application, a verify-read is performed in program-verify mode, and programming is judged to have been completed for bits read as 0. The following processing is necessary for programmed bits.

When programming is completed at an early stage in the program/program-verify procedure:

If programming is completed in the 1st to 6th reprogramming processing loop, additional programming should be performed on the relevant bits. Additional programming should only be performed on bits which first return 0 in a verify-read in certain reprogramming processing.

When programming is completed at a late stage in the program/program-verify procedure: If programming is completed in the 7th or later reprogramming processing loop, additional programming is not necessary for the relevant bits.

- c. If programming of other bits is incomplete in the 128 bytes, reprogramming processing should be executed. If a bit for which programming has been judged to be completed is read as 1 in a subsequent verify-read, a write pulse should again be applied to that bit.
- 5. The period for which the P bit in FLMCR1 is set (the write pulse width) should be changed according to the degree of progress through the program/program-verify procedure. For detailed wait time specifications, see section 24.1.7, Flash Memory Characteristics.

Item	Symbol	Item	Symbol
Wait time after	t _{sp}	When reprogramming loop count (n) is 1 to 6	t _{sp30}
P bit setting		When reprogramming loop count (n) is 7 or more	t _{sp200}
		In case of additional programming processing*	t _{sp10}

Note: * Additional programming processing is necessary only when the reprogramming loop count (n) is 1 to 6.

6. The program/program-verify flowchart for the H8S/2636 is shown in figure 21A-12.
To cover the points noted above, bits on which reprogramming processing is to be executed, and bits on which additional programming is to be executed, must be determined as shown below.

Since reprogram data and additional-programming data vary according to the progress of the programming procedure, it is recommended that the following data storage areas (128 bytes each) be provided in RAM.

Reprogram Data Computation Table

(D)	Result of Verify-Read after Write Pulse Application (V)	(X) Result of Operation	Comments
0	0	1	Programming completed: reprogramming processing not to be executed
0	1	0	Programming incomplete: reprogramming processing to be executed
1	0	1	_
1	1	1	Still in erased state: no action

Legend:

(D): Source data of bits on which programming is executed

(X): Source data of bits on which reprogramming is executed

Additional-Programming Data Computation Table

(X')	Result of Verify-Read after Write Pulse Application (V)	(Y) Result of Operation	Comments
0	0	0	Programming by write pulse application judged to be completed: additional programming processing to be executed
0	1	1	Programming by write pulse application incomplete: additional programming processing not to be executed
1	0	1	Programming already completed: additional programming processing not to be executed
1	1	1	Still in erased state: no action

Legend:

(Y): Data of bits on which additional programming is executed

(X'): Data of bits on which reprogramming is executed in a certain reprogramming loop

7. It is necessary to execute additional programming processing during the course of the chip program/program-verify procedure. However, once 128-byte-unit programming is finished, additional programming should not be carried out on the same address area. When executing reprogramming, an erase must be executed first. Note that normal operation of reads, etc., is not guaranteed if additional programming is performed on addresses for which a program/program-verify operation has finished.

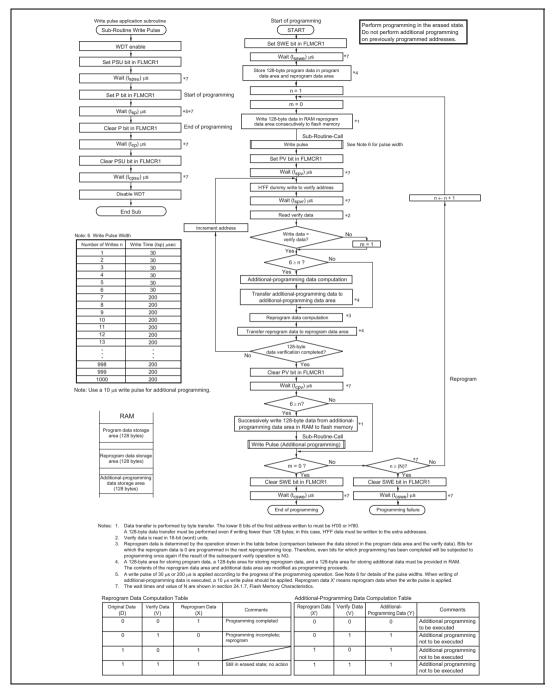


Figure 21A-12 Program/Program-Verify Flowchart

21A.9.3 Erase Mode

When erasing flash memory, the single-block erase flowchart shown in figure 21A-13 should be followed.

The wait times after bits are set or cleared in the flash memory control register 1 (FLMCR1) and the maximum number of erase operations (N) are shown in section 24.1.7, Flash Memory Characteristics.

To erase flash memory contents, make a 1-bit setting for the flash memory area to be erased in erase block register 1 and 2 (EBR1, EBR2) at least (t_{sswe}) μs after setting the SWE bit to 1 in FLMCR1. Next, the watchdog timer (WDT) is set to prevent overerasing due to program runaway, etc. Set a value of about 19.8 ms as the WDT overflow period. Preparation for entering erase mode (erase setup) is performed next by setting the ESU bit in FLMCR1. The operating mode is then switched to erase mode by setting the E bit in FLMCR1 after the elapse of at least (t_{sesu}) μs . The time during which the E bit is set is the flash memory erase time. Ensure that the erase time does not exceed (t_{se}) ms.

Note: With flash memory erasing, preprogramming (setting all memory data in the memory to be erased to all 0) is not necessary before starting the erase procedure.

21A.9.4 Erase-Verify Mode

In erase-verify mode, data is read after memory has been erased to check whether it has been correctly erased.

After the elapse of the fixed erase time, clear the E bit in FLMCR1, then wait for at least (t_{ce}) μs before clearing the ESU bit to exit erase mode. After exiting erase mode, the watchdog timer setting is also cleared. The operating mode is then switched to erase-verify mode by setting the EV bit in FLMCR1. Before reading in erase-verify mode, a dummy write of H'FF data should be made to the addresses to be read. The dummy write should be executed after the elapse of (t_{sev}) μs or more. When the flash memory is read in this state (verify data is read in 16-bit units), the data at the latched address is read. Wait at least (t_{sevr}) μs after the dummy write before performing this read operation. If the read data has been erased (all 1), a dummy write is performed to the next address, and erase-verify is performed. If the read data is unerased, set erase mode again, and repeat the erase/erase-verify sequence as before. The maximum number of repetitions of the erase/erase-verify sequence is indicated by the maximum erase count (N). When verification is completed, exit erase-verify mode, and wait for at least (t_{cev}) μs . If erasure has been completed on all the erase blocks, clear the SWE bit in FLMCR1, and leave a wait time of at least (t_{cswe}) μs .

If erasing multiple blocks, set a single bit in EBR1/EBR2 for the next block to be erased, and repeat the erase/erase-verify sequence as before.

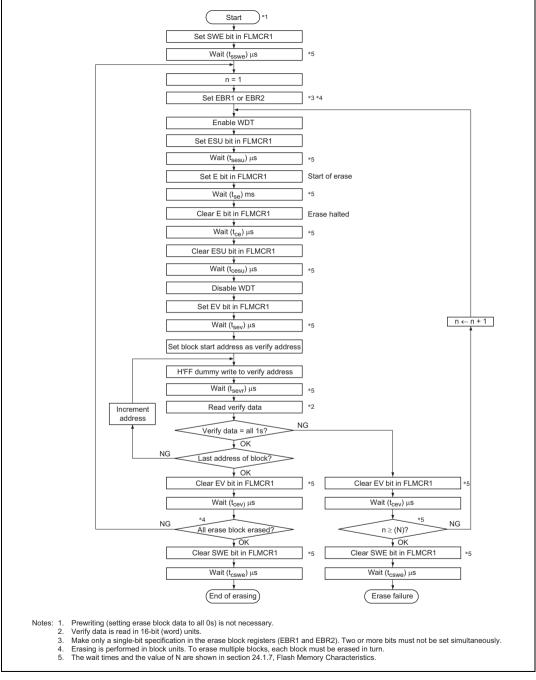


Figure 21A-13 Erase/Erase-Verify Flowchart

21A.10 Protection

There are three kinds of flash memory program/erase protection: hardware protection, software protection, and error protection.

21A.10.1 Hardware Protection

Hardware protection refers to a state in which programming/erasing of flash memory is forcibly disabled or aborted. Hardware protection is reset by settings in flash memory control register 1 (FLMCR1), flash memory control register 2 (FLMCR2), erase block register 1 (EBR1), and erase block register 2 (EBR2). The FLMCR1, FLMCR2, EBR1, and EBR2 settings are retained in the error-protected state (See table 21A-11).

Table 21A-11 Hardware Protection

	Fu	nctions	
Item	Description	Program	Erase
FWE pin protection	When a low level is input to the FWE pin, FLMCR1, FLMCR2, (except bit FLER) EBR and EBR2 are initialized, and the program/erase-protected state is entered.	Yes 1,	Yes
Reset/standby protection	In a reset (including a WDT reset) and in standby mode, FLMCR1, FLMCR2, EBR1, and EBR2 are initialized, and the program/erase-protected state is entered.	Yes	Yes
	 In a reset via the RES pin, the reset state is not entered unless the RES pin is held low until oscillation stabilizes after powering on. In the case of a reset during operation, hold the RES pin low for the RES pulse width specified in the AC Characteristics section. 		

21A.10.2 Software Protection

Software protection can be implemented by setting the SWE bit in FLMCR1, erase block register 1 (EBR1), erase block register 2 (EBR2), and the RAMS bit in the RAM emulation register (RAMER). When software protection is in effect, setting the P or E bit in flash memory control register 1 (FLMCR1), does not cause a transition to program mode or erase mode (See table 21A-12).

Table 21A-12 Software Protection

		Functions		
Item	Description	Program	Erase	
SWE bit protection	Setting bit SWE1 in FLMCR1 to 0 will place area on-chip flash memory in the program/ erase-protected state (Execute the program in the on-chip RAM, external memory).	Yes	Yes	
Block specification protection	 Erase protection can be set for individual blocks by settings in erase block register 1 (EBR1) and erase block register 2 (EBR2). 	_	Yes	
	• Setting EBR1 and EBR2 to H'00 places all blocks in the erase-protected state.			
Emulation protection	Setting the RAMS bit to 1 in the RAM emulation register (RAMER) places all block in the program/erase-protected state.	Yes s	Yes	

21A.10.3 Error Protection

In error protection, an error is detected when chip runaway occurs during flash memory programming/erasing, or operation is not performed in accordance with the program/erase algorithm, and the program/erase operation is aborted. Aborting the program/erase operation prevents damage to the flash memory due to overprogramming or overerasing.

If the chip malfunctions during flash memory programming/erasing, the FLER bit is set to 1 in FLMCR2 and the error protection state is entered. The FLMCR1, FLMCR2, EBR1, and EBR2 settings are retained, but program mode or erase mode is aborted at the point at which the error occurred. Program mode or erase mode cannot be re-entered by re-setting the P or E bit. However, PV and EV bit setting is enabled, and a transition can be made to verify mode.

FLER bit setting conditions are as follows:

- 1. When the flash memory of the relevant address area is read during programming/erasing (including vector read and instruction fetch)
- 2. Immediately after exception handling (excluding a reset) during programming/erasing
- 3. When a SLEEP instruction (including software standby) is executed during programming/erasing
- 4. When the CPU releases the bus to the DTC

Error protection is released only by a reset and in hardware standby mode.

Figure 21A-14 shows the flash memory state transition diagram.

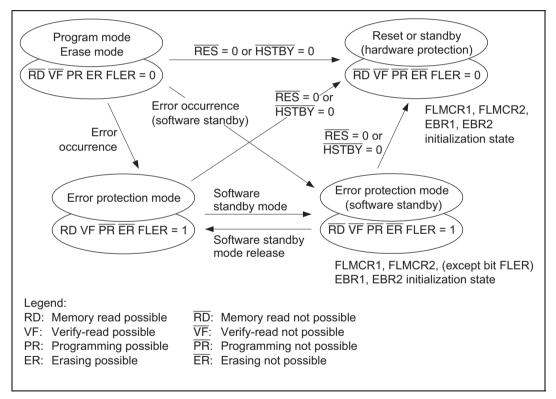


Figure 21A-14 Flash Memory State Transitions

21A.11 Flash Memory Emulation in RAM

Making a setting in the RAM emulation register (RAMER) enables part of RAM to be overlapped onto the flash memory area so that data to be written to flash memory can be emulated in RAM in real time. After the RAMER setting has been made, accesses cannot be made from the flash memory area or the RAM area overlapping flash memory. Emulation can be performed in user mode and user program mode. Figure 21A-15 shows an example of emulation of real-time flash memory programming.

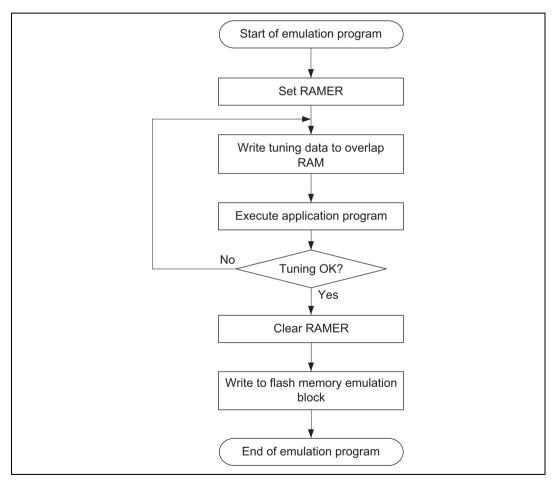


Figure 21A-15 Flowchart for Flash Memory Emulation in RAM

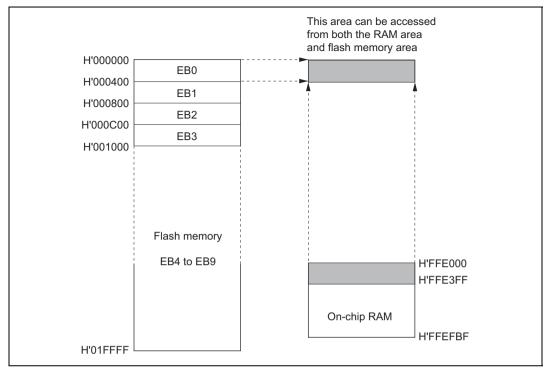


Figure 21A-16 Example of RAM Overlap Operation

Example in which Flash Memory Block Area EB0 is Overlapped

- 1. Set bits RAMS, RAM2 to RAM0 in RAMER to 1, 0, 0, 0, to overlap part of RAM onto the area (EB0) for which real-time programming is required.
- 2. Real-time programming is performed using the overlapping RAM.
- 3. After the program data has been confirmed, the RAMS bit is cleared, releasing RAM overlap.
- 4. The data written in the overlapping RAM is written into the flash memory space (EB0).
- Notes: 1. When the RAMS bit is set to 1, program/erase protection is enabled for all blocks regardless of the value of RAM2 to RAM0 (emulation protection). In this state, setting the P or E bit in flash memory control register 1 (FLMCR1), will not cause a transition to program mode or erase mode. When actually programming or erasing a flash memory area, the RAMS bit should be cleared to 0.
 - 2. A RAM area cannot be erased by execution of software in accordance with the erase algorithm while flash memory emulation in RAM is being used.
 - 3. Block area EB0 contains the vector table. When performing RAM emulation, the vector table is needed in the overlap RAM.

21A.12 Interrupt Handling when Programming/Erasing Flash Memory

All interrupts, including NMI interrupt is disabled when flash memory is being programmed or erased (when the P or E bit is set in FLMCR1), and while the boot program is executing in boot mode*1, to give priority to the program or erase operation. There are three reasons for this:

- 1. Interrupt during programming or erasing might cause a violation of the programming or erasing algorithm, with the result that normal operation could not be assured.
- 2. In the interrupt exception handling sequence during programming or erasing, the vector would not be read correctly*2, possibly resulting in MCU runaway.
- 3. If interrupt occurred during boot program execution, it would not be possible to execute the normal boot mode sequence.

For these reasons, in on-board programming mode alone there are conditions for disabling interrupt, as an exception to the general rule. However, this provision does not guarantee normal erasing and programming or MCU operation. All requests, including NMI interrupt, must therefore be restricted inside and outside the MCU when programming or erasing flash memory. NMI interrupt is also disabled in the error-protection state while the P or E bit remains set in FLMCR1.

- Notes: 1. Interrupt requests must be disabled inside and outside the MCU until the programming control program has completed programming.
 - 2. The vector may not be read correctly in this case for the following two reasons:
 - If flash memory is read while being programmed or erased (while the P or E bit is set in FLMCR1), correct read data will not be obtained (undetermined values will be returned).
 - If the interrupt entry in the vector table has not been programmed yet, interrupt exception handling will not be executed correctly.

21A.13 Programmer Mode

In programmer mode, a PROM programmer can be used to perform programming/erasing via a socket adapter, just as for a discrete flash memory. Use a PROM programmer that supports the Renesas Electronics's 128-kbyte flash memory on-chip MCU device type (FZTAT128V5A).

21A.13.1 Socket Adapter and Memory Map

In programmer mode in which the PROM writer is used, reading from memory (verification), writing, and initializing the flash memory (erasing all of its contents) are enabled. At this time, a dedicated conversion socket adapter must be used. Table 21A-13 shows the types of the socket adapters. For programmer mode on this LSI, one of the socket adapters listed in table 21A-13 should be used.

Table 21A-13 Type of Socket Adapter

Part No.	Package Type	Socket Adapter Type	Manufacturer
HD64F2636UF	128 pin QFP	ME2636ESHF1H	Minato Electronics Inc.
HD64F2636F	(FP-128B)	HF2636Q128D4001	Data I/O Japan Corporation

The memory map of on-chip ROM is shown in figure 21A-17

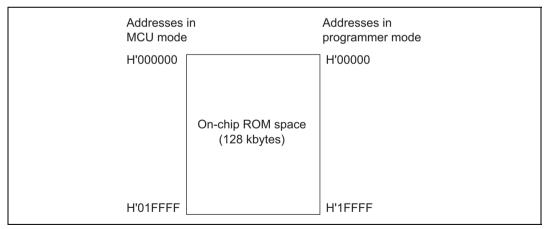


Figure 21A-17 On-Chip ROM Memory Map

21A.14 Flash Memory and Power-Down States

In addition to its normal operating state, the flash memory has power-down states in which power consumption is reduced by halting part or all of the internal power supply circuitry.

There are three flash memory operating states:

- (1) Normal operating mode: The flash memory can be read and written to.
- (2) Power-down mode: Part of the power supply circuitry is halted, and the flash memory can be read when the LSI is operating on the subclock*.
- (3) Standby mode: All flash memory circuits are halted, and the flash memory cannot be read or written to.

States (2) and (3) are flash memory power-down states. Table 21A-14 shows the correspondence between the operating states of the LSI and the flash memory.

Table 21A-14 Flash Memory Operating States

LSI Operating State	Flash Memory Operating State
High-speed mode	Normal mode (read/write)
Medium-speed mode	
Sleep mode	
Subactive mode*	When PDWND = 0: Power-down mode (read-only)
Subsleep mode*	When PDWND = 1: Normal mode (read-only)
Watch mode*	Standby mode
Software standby mode	
Hardware standby mode	

Note: *Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask version only.

These functions cannot be used with the other versions.

21A.14.1 Notes on Power-Down States

1. When the flash memory is in a power-down state, part or all of the internal power supply circuitry is halted. Therefore, a power supply circuit stabilization period must be provided when returning to normal operation. When the flash memory returns to its normal operating state from a power-down state, bits STS2 to STS0 in SBYCR must be set to provide a wait time of at least 20 µs (power supply stabilization time), even if an oscillation stabilization period is not necessary.

2. In a power-down state, FLMCR1, FLMCR2, EBR1, EBR2, RAMER, and FLPWCR cannot be read from or written to.

21A.15 Flash Memory Programming and Erasing Precautions

Precautions concerning the use of on-board programming mode, the RAM emulation function, and programmer mode are summarized below.

1. Use the specified voltages and timing for programming and erasing.

Applied voltages in excess of the rating can permanently damage the device. Use a PROM programmer that supports the Renesas Electronics microcomputer device type with 128-kbyte on-chip flash memory.

Only use the specified socket adapter. Failure to observe these points may result in damage to the device.

2. Powering on and off (see figures 21A-18 to 21A-20)

Do not apply a high level to the FWE pin until V_{CC} has stabilized. Also, drive the FWE pin low before turning off V_{CC} .

When applying or disconnecting V_{CC} power, fix the FWE pin low and place the flash memory in the hardware protection state.

The power-on and power-off timing requirements should also be satisfied in the event of a power failure and subsequent recovery.

3. FWE application/disconnection (see figures 21A-18 to 21A-20)

FWE application should be carried out when MCU operation is in a stable condition. If MCU operation is not stable, fix the FWE pin low and set the protection state.

The following points must be observed concerning FWE application and disconnection to prevent unintentional programming or erasing of flash memory:

- Apply FWE when the V_{CC} voltage has stabilized within its rated voltage range.
 Apply FWE when oscillation has stabilized (after the elapse of the oscillation settling time).
- In boot mode, apply and disconnect FWE during a reset.
- In user program mode, FWE can be switched between high and low level regardless of a reset state.
 - FWE input can also be switched during execution of a program in flash memory.
- Do not apply FWE if program runaway has occurred.

 Disconnect FWE only when the SWE, ESU, PSU, EV, PV, P, and E bits in FLMCR1 are cleared.

Make sure that the SWE, ESU, PSU, EV, PV, P, and E bits are not set by mistake when applying or disconnecting FWE.

4. Do not apply a constant high level to the FWE pin.

Apply a high level to the FWE pin only when programming or erasing flash memory. A system configuration in which a high level is constantly applied to the FWE pin should be avoided. Also, while a high level is applied to the FWE pin, the watchdog timer should be activated to prevent overprogramming or overerasing due to program runaway, etc.

5. Use the recommended algorithm when programming and erasing flash memory.

The recommended algorithm enables programming and erasing to be carried out without subjecting the device to voltage stress or sacrificing program data reliability. When setting the P or E bit in FLMCR1, the watchdog timer should be set beforehand as a precaution against program runaway, etc.

6. Do not set or clear the SWE bit during execution of a program in flash memory.

Do not set or clear the SWE bit during execution of a program in flash memory. Wait for at least $100~\mu s$ after clearing the SWE bit before executing a program or reading data in flash memory. When the SWE bit is set, data in flash memory can be rewritten, but when SWE = 1, flash memory can only be read in program-verify or erase-verify mode. Access flash memory only for verify operations (verification during programming/erasing). Do not clear the SWE bit during programming, erasing, or verifying.

Similarly, when using the RAM emulation function while a high level is being input to the FWE pin, the SWE bit must be cleared before executing a program or reading data in flash memory. However, the RAM area overlapping flash memory space can be read and written to regardless of whether the SWE bit is set or cleared.

7. Do not use interrupts while flash memory is being programmed or erased.

All interrupt requests, including NMI, should be disabled during FWE application to give priority to program/erase operations.

8. Do not perform additional programming. Erase the memory before reprogramming.

In on-board programming, perform only one programming operation on a 128-byte programming unit block. In programmer mode, also, perform only one programming operation on a 128-byte programming unit block. Further programming must only be executed after this programming unit block has been erased.

9. Before programming, check that the chip is correctly mounted in the PROM programmer.

Overcurrent damage to the device can result if the index marks on the PROM programmer socket, socket adapter, and chip are not correctly aligned.

10. Do not touch the socket adapter or chip during programming.

Touching either of these can cause contact faults and write errors.

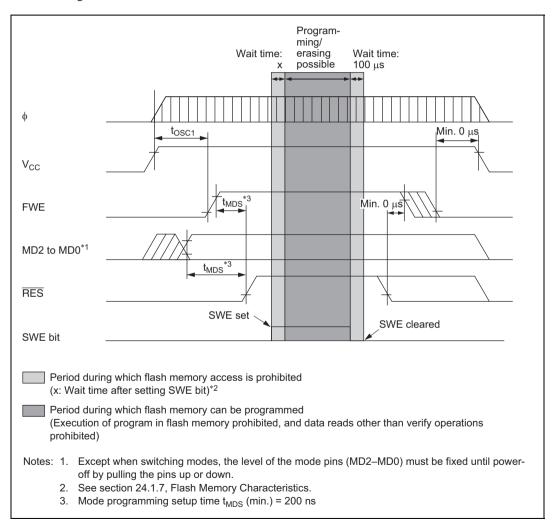


Figure 21A-18 Power-On/Off Timing (Boot Mode)

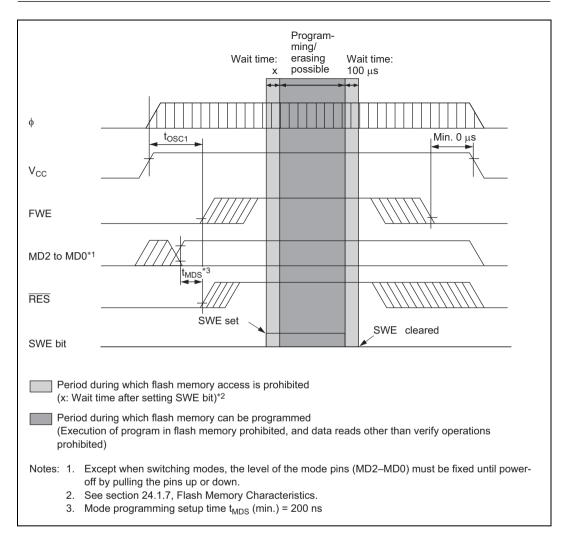


Figure 21A-19 Power-On/Off Timing (User Program Mode)

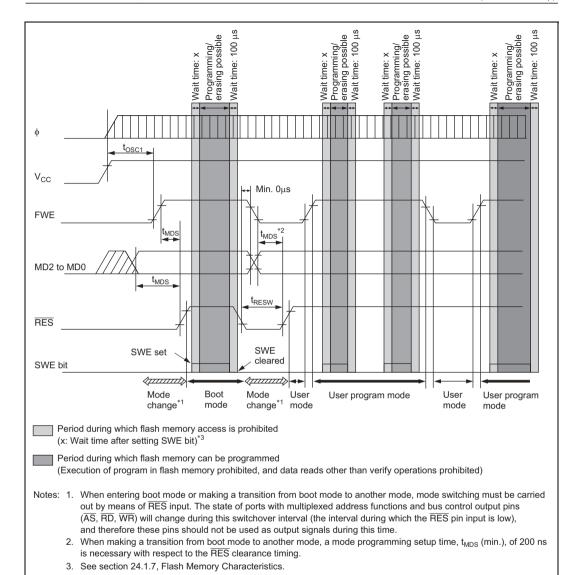


Figure 21A-20 Mode Transition Timing (Example: Boot Mode → User Mode ↔ User Program Mode)

21A.16 Note on Switching from F-ZTAT Version to Mask ROM Version

The mask ROM version does not have the internal registers for flash memory control that are provided in the F-ZTAT version. Table 21A-15 lists the registers that are present in the F-ZTAT version but not in the mask ROM version. If a register listed in table 21A-15 is read in the mask ROM version, an undefined value will be returned. Therefore, if application software developed on the F-ZTAT version is switched to a mask ROM version product, it must be modified to ensure that the registers in table 21A-15 have no effect.

Table 21A-15 Registers Present in F-ZTAT Version but Absent in Mask ROM Version

Register	Abbreviation	Address
Flash memory control register 1	FLMCR1	H'FFA8
Flash memory control register 2	FLMCR2	H'FFA9
Erase block register 1	EBR1	H'FFAA
Erase block register 2	EBR2	H'FFAB
RAM emulation register	RAMER	H'FEDB

Section 21B ROM (H8S/2638 Group, H8S/2639 Group, H8S/2630 Group)

21B.1 Overview

The H8S/2638 and H8S/2639 have 256 kbytes of on-chip flash memory, or 256 kbytes or 384 kbytes of on-chip mask ROM. The H8S/2630 has 384 kbytes of on-chip flash memory, or 384 kbytes of on-chip mask ROM. The ROM is connected to the bus master via a 16-bit data bus, enabling both byte and word data to be accessed in one state. Instruction fetching is thus speeded up, and processing speed increased.

The on-chip ROM is enabled and disabled by setting the mode pins (MD2 to MD0).

The flash memory version can be erased and programmed on-board, as well as with a special-purpose PROM programmer.

21B.1.1 Block Diagram

Figure 21B-1 shows a block diagram of 256-kbyte and 384-kbyte ROM.

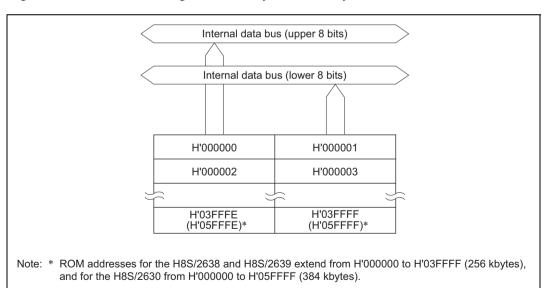


Figure 21B-1 Block Diagram of ROM 256 kbytes (384 kbytes)*

21B.1.2 Register Configuration

The H8S/2638 and H8S/2639 operating mode is controlled by the mode pins and the MDCR register. The register configuration is shown in table 21B-1.

Table 21B-1 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address*
Mode control register	MDCR	R/W	Undefined	H'FDE7

Note: * Lower 16 bits of the address.

21B.2 Register Descriptions

21B.2.1 Mode Control Register (MDCR)

Bit:	7	6	5	4	3	2	1	0
	_	_	_	_	_	MDS2	MDS1	MDS0
Initial value:	1	0	0	0	0	*	*	*
R/W:	R/W		_	_	_	R	R	R

Note: * Determined by pins MD2 to MD0.

MDCR is an 8-bit register used to monitor the current H8S/2638 Group, H8S/2639 Group, and H8S/2630 Group operating mode.

Bit 7—Reserved: Only 1 should be written to these bits.

Bits 6 to 3—Reserved: These bits are always read as 0 and cannot be modified.

Bits 2 to 0—Mode Select 2 to 0 (MDS2 to MDS0): These bits indicate the input levels at pins MD2 to MD0 (the current operating mode). Bits MDS2 to MDS0 correspond to pins MD2 to MD0. MDS2 to MDS0 are read-only bits, and cannot be modified. The mode pin (MD2 to MD0) input levels are latched into these bits when MDCR is read. These latches are canceled by a reset.

21B.3 Operation

The on-chip ROM is connected to the CPU by a 16-bit data bus, and both byte and word data can be accessed in one state. Even addresses are connected to the upper 8 bits, and odd addresses to the lower 8 bits. Word data must start at an even address.

The on-chip ROM is enabled and disabled by setting the mode pins (MD2, MD1, and MD0). These settings are shown in table 21B-2.

Table 21B-2 Operating Modes and ROM (F-ZTAT Version)

		Mode Pins				
	Operating Mode	FWE	MD2	MD1	MD0	On-Chip ROM
Mode 0	_	0	0	0	0	_
Mode 1	_				1	_
Mode 2	_			1	0	_
Mode 3	_				1	_
Mode 4	Advanced expanded mode with on-chip ROM disabled		1	0	0	Disabled
Mode 5	Advanced expanded mode with on-chip ROM disabled				1	_
Mode 6	Advanced expanded mode with on-chip ROM enabled	_		1	0	Enabled (256 kbytes/ 384 kbytes)*3
Mode 7	Advanced single-chip mode	_			1	Enabled (256 kbytes/ 384 kbytes)*3
Mode 8	_	1	0	0	0	_
Mode 9	_				1	_
Mode 10	Boot mode (advanced expanded mode with on-chip ROM enabled)*1	_		1	0	Enabled (256 kbytes/ 384 kbytes)*3
Mode 11	Boot mode (advanced single-chip mode)*2	_			1	Enabled (256 kbytes/ 384 kbytes)*3
Mode 12		_	1	0	0	_
Mode 13	_				1	_
Mode 14	User program mode (advanced expanded mode with on-chip ROM enabled)*1	_		1	0	Enabled (256 kbytes/ 384 kbytes)*3
Mode 15	User program mode (advanced single-chip mode)*2				1	Enabled (256 kbytes/ 384 kbytes)*3

Notes: 1. Apart from the fact that flash memory can be erased and programmed, operation is the same as in advanced expanded mode with on-chip ROM enabled.

2. Apart from the fact that flash memory can be erased and programmed, operation is the same as in advanced single-chip mode.

The H8S/2638 and H8S/2639 have 256 kbytes of on-chip ROM. The H8S/2630 has 384 kbytes of on-chip ROM.

Table 21B-3 Operating Modes and ROM (Mask ROM Version)

			Mode P		
	Operating Mode	MD2	MD1	MD0	On-Chip ROM
Mode 0	_	0	0	0	_
Mode 1				1	
Mode 2			1	0	
Mode 3				1	
Mode 4	Advanced expanded mode with on-chip ROM disabled	1	0	0	Disabled
Mode 5	Advanced expanded mode with on-chip ROM disabled	_		1	
Mode 6	Advanced expanded mode with on-chip ROM enabled	_	1	0	Enabled (256 kbytes/ 384 kbytes)*
Mode 7	Advanced single-chip mode	_		1	Enabled (256 kbytes/ 384 kbytes)*

Note: *The H8S/2638 and H8S/2639 have 256 kbytes of on-chip ROM. The H8S/2630 has 384 kbytes of on-chip ROM.

21B.4 Flash Memory Overview

21B.4.1 Features

The H8S/2638 and H8S/2639 have 256 kbytes of on-chip flash memory, or 256 kbytes of on-chip mask ROM. The H8S/2630 has 384 kbytes of on-chip flash memory, or 384 kbytes of on-chip mask ROM. The features of the flash memory are summarized below.

- Four flash memory operating modes
 - Program mode
 - Erase mode
 - Program-verify mode
 - Erase-verify mode
- Programming/erase methods

The flash memory is programmed 128 bytes at a time. Block erase (in single-block units) can be performed. To erase the entire flash memory, each block must be erased in turn. Block erasing can be performed as required on 4 kbytes, 32 kbytes, and 64 kbytes blocks.

• Programming/erase times

The flash memory programming time is 10 ms (typ.) for simultaneous 128-byte programming, equivalent to 80 μ s (typ.) per byte, and the erase time is 100 ms (typ.).

• Reprogramming capability

The flash memory can be reprogrammed up to 100 times.

• On-board programming modes

There are two modes in which flash memory can be programmed/erased/verified on-board:

- Boot mode
- User program mode
- Automatic bit rate adjustment

With data transfer in boot mode, the LSI's bit rate can be automatically adjusted to match the transfer bit rate of the host.

Flash memory emulation in RAM

Flash memory programming can be emulated in real time by overlapping a part of RAM onto flash memory.

Protect modes

There are three protect modes, hardware, software, and error protection, which allow protected status to be designated for flash memory program/erase/verify operations.

• Programmer mode

Flash memory can be programmed/erased in programmer mode, using a PROM programmer, as well as in on-board programming mode.

21B.4.2 Block Diagram

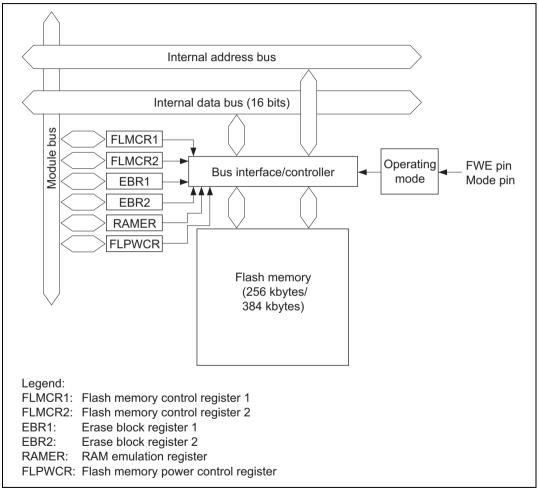
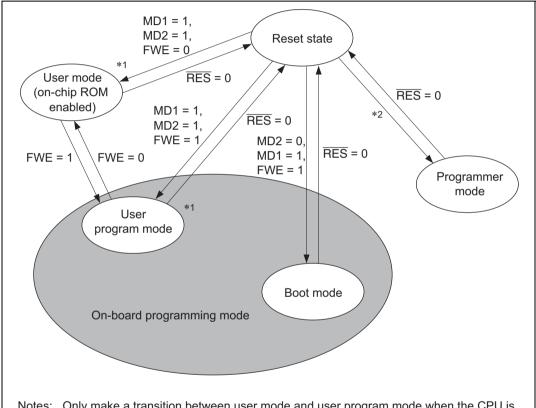



Figure 21B-2 Block Diagram of Flash Memory

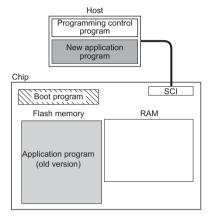
21B.4.3 Mode Transitions

When the mode pins and the FWE pin are set in the reset state and a reset-start is executed, the microcomputer enters an operating mode as shown in figure 21B-3. In user mode, flash memory can be read but not programmed or erased.

The boot, user program and programmer modes are provided as modes to write and erase the flash memory.

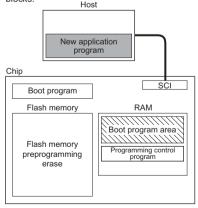
Notes: Only make a transition between user mode and user program mode when the CPU is not accessing the flash memory.

- 1. RAM emulation possible
- 2. This LSI transits to programmer mode by using the dedicated PROM programmer.

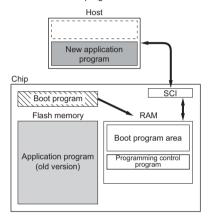

Figure 21B-3 Flash Memory State Transitions

21B.4.4 On-Board Programming Modes

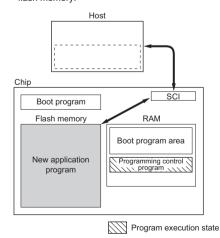
Boot Mode


1. Initial state

The old program version or data remains written in the flash memory. The user should prepare the programming control program and new application program beforehand in the host.

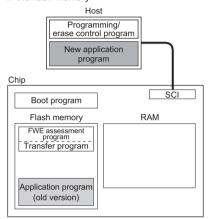


3. Flash memory initialization

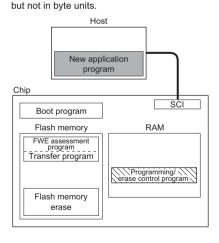

The erase program in the boot program area (in RAM) is executed, and the flash memory is initialized (to H'FF). In boot mode, total flash memory erasure is performed, without regard to blocks.

2. Programming control program transfer When boot mode is entered, the boot program in the chip (originally incorporated in the chip) is started and the programming control program in the host is transferred to RAM via SCI communication. The boot program required for flash memory erasing is automatically transferred to the RAM boot program area.

4. Writing new application program The programming control program transferred from the host to RAM is executed, and the new application program in the host is written into the flash memory.

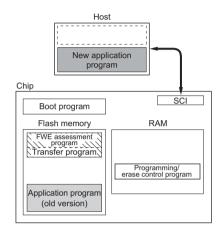


May 28, 2010

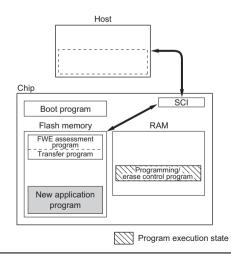

User Program Mode

1. Initial state

The FWE assessment program that confirms that user program mode has been entered, and the program that will transfer the programming/erase control program from flash memory to on-chip RAM should be written into the flash memory by the user beforehand. The programming/erase control program should be prepared in the host or in the flash memory.



3. Flash memory initialization The programming/erase program in RAM is executed, and the flash memory is initialized (to H'FF). Erasing can be performed in block units,



May 28, 2010

2. Programming/erase control program transfer When user program mode is entered, user software confirms this fact, executes transfer program in the flash memory, and transfers the programming/erase control program to RAM.

4. Writing new application program Next, the new application program in the host is written into the erased flash memory blocks. Do not write to unerased blocks.

21B.4.5 Flash Memory Emulation in RAM

Emulation should be performed in user mode or user program mode. When the emulation block set in RAMER is accessed while the emulation function is being executed, data written in the overlap RAM is read.

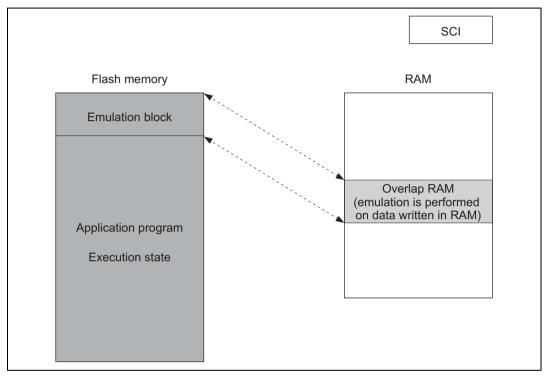


Figure 21B-4 Reading Overlap RAM Data in User Mode or User Program Mode

When overlap RAM data is confirmed, the RAMS bit is cleared, RAM overlap is released, and writes should actually be performed to the flash memory.

When the programming control program is transferred to RAM, ensure that the transfer destination and the overlap RAM do not overlap, as this will cause data in the overlap RAM to be rewritten.

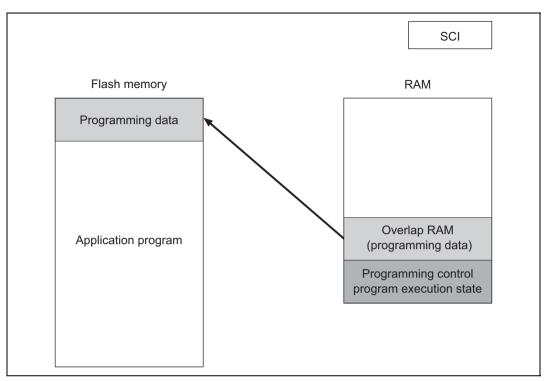


Figure 21B-5 Writing Overlap RAM Data in User Program Mode

21B.4.6 Differences between Boot Mode and User Program Mode

Table 21B-4 Differences between Boot Mode and User Program Mode

	Boot Mode	User Program Mode
Total erase	Yes	Yes
Block erase	No	Yes
Programming control program*	Program/program-verify	Erase/erase-verify
		Program/program-verify
		Emulation

Note: *To be provided by the user, in accordance with the recommended algorithm.

21B.4.7 Block Configuration

The H8S/2638 and H8S/2639 have 256 kbytes of flash memory, which is divided into three 64-kbyte blocks, one 32-kbyte block, and eight 4-kbyte blocks. The H8S/2630 has 384 kbytes of flash memory, which is divided into five 64-kbyte blocks, one 32-kbyte block, and eight 4-kbyte blocks.

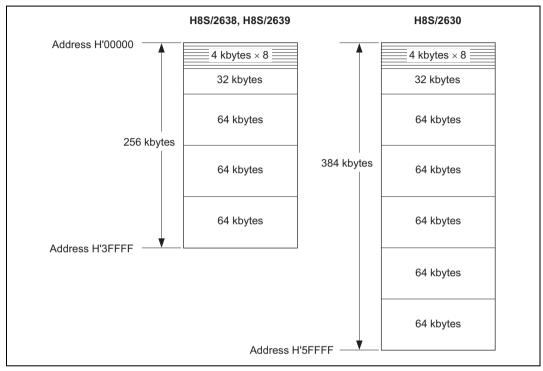


Figure 21B-6 Flash Memory Block Configuration

21B.5 Pin Configuration

The flash memory is controlled by means of the pins shown in table 21B-5.

Table 21B-5 Pin Configuration

Pin Name	Abbreviation	I/O	Function
Reset	RES	Input	Reset
Flash write enable	FWE	Input	Flash memory program/erase protection by hardware
Mode 2	MD2	Input	Sets MCU operating mode
Mode 1	MD1	Input	Sets MCU operating mode
Mode 0	MD0	Input	Sets MCU operating mode
Port F0	PF0	Input	Sets MCU operating mode in programmer mode
Port 16	P16	Input	Sets MCU operating mode in programmer mode
Port 14	P14	Input	Sets MCU operating mode in programmer mode
Transmit data	TxD1	Output	Serial transmit data output
Receive data	RxD1	Input	Serial receive data input

21B.6 Register Configuration

The registers used to control the on-chip flash memory when enabled are shown in table 21B-6.

Table 21B-6 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address*1
Flash memory control register 1	FLMCR1*4	R/W	H'00*2	H'FFA8
Flash memory control register 2	FLMCR2*4	R	H'00	H'FFA9
Erase block register 1	EBR1*4	R/W	H'00 ^{*3}	H'FFAA
Erase block register 2	EBR2*4	R/W	H'00*3	H'FFAB
RAM emulation register	RAMER*4	R/W	H'00	H'FEDB
Flash memory power control register	FLPWCR*4	R/W	H'00 ^{*3}	H'FFAC

Notes: 1. Lower 16 bits of the address.

- 2. When a high level is input to the FWE pin, the initial value is H'80.
- 3. When a low level is input to the FWE pin, or if a high level is input and the SWE1 bit in FLMCR1 is not set, these registers are initialized to H'00.
- 4. FLMCR1, FLMCR2, EBR1, and EBR2, RAMER, and FLPWCR are 8-bit registers. Use byte access on these registers.

Register Descriptions 21B.7

21B.7.1 Flash Memory Control Register 1 (FLMCR1)

FLMCR1 is an 8-bit register used for flash memory operating mode control. Program-verify mode or erase-verify mode for on-chip flash memory is entered by setting SWE bit to 1 when FWE = 1, then setting the PV or EV bit. Program mode for on-chip flash memory is entered by setting SWE bit to 1 when FWE = 1, then setting the PSU bit, and finally setting the P bit. Erase mode for onchip flash memory is entered by setting SWE bit to 1 when FWE = 1, then setting the ESU bit, and finally setting the E bit. FLMCR1 is initialized by a reset, and in hardware standby mode and software standby mode. Its initial value is H'80 when a high level is input to the FWE pin, and H'00 when a low level is input. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

Writes are enabled only in the following cases: Writes to bit SWE of FLMCR1 enabled when FWE = 1, to bits ESU, PSU, EV, and PV when FWE = 1 and SWE = 1, to bit E when FWE = 1, SWE = 1 and ESU = 1, and to bit P when FWE = 1, SWE = 1, and PSU = 1.

Bit:	7	6	5	4	3	2	1	0
	FWE	SWE	ESU	PSU	EV	PV	Е	Р
Initial value:	*	0	0	0	0	0	0	0
R/W:	R	R/W						

Note: * Determined by the state of the FWE pin.

Bit 7—Flash Write Enable Bit (FWE): Sets hardware protection against flash memory programming/erasing.

Bit 7

FWE	Description
0	When a low level is input to the FWE pin (hardware-protected state)
1	When a high level is input to the FWE pin

Bit 6—Software Write Enable Bit (SWE): This bit selects write and erase valid/invalid of the flash memory. Set it when setting bits 5 to 0, bits 7 to 0 of EBR1, and bits 5 to 0* of EBR2.

Bit 6

SWE	Description	
0	Writes disabled	(Initial value)
1	Writes enabled	
	[Setting condition]	
	• When FWE = 1	

Note: * Bits 3 to 0 of EBR2 for the H8S/2638 and H8S/2639.

Bit 5—Erase Setup Bit (ESU): Prepares for a transition to erase mode. Set this bit to 1 before setting the E bit in FLMCR1 to 1. Do not set the SWE, PSU, EV, PV, E, or P bit at the same time.

Bit 5

ESU	Description	
0	Erase setup cleared	(Initial value)
1	Erase setup	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 4—Program Setup Bit (PSU): Prepares for a transition to program mode. Set this bit to 1 before setting the P bit in FLMCR1 to 1. Do not set the SWE, ESU, EV, PV, E, or P bit at the same time.

Bit 4

PSU	Description	
0	Program setup cleared	(Initial value)
1	Program setup	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 3—Erase-Verify (EV): Selects erase-verify mode transition or clearing. Do not set the SWE, ESU, PSU, PV, E, or P bit at the same time.

Bit 3

EV	Description	
0	Erase-verify mode cleared	(Initial value)
1	Transition to erase-verify mode	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 2—Program-Verify (PV): Selects program-verify mode transition or clearing. Do not set the SWE, ESU, PSU, EV, E, or P bit at the same time.

Bit 2

PV	Description	
0	Program-verify mode cleared	(Initial value)
1	Transition to program-verify mode	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 1—Erase (E): Selects erase mode transition or clearing. Do not set the SWE, ESU, PSU, EV, PV, or P bit at the same time.

Bit 1

E	Description	
0	Erase mode cleared	(Initial value)
1	Transition to erase mode	
	[Setting condition]	
	When FWE = 1, SWE = 1, and ESU = 1	

Bit 0—Program (P): Selects program mode transition or clearing. Do not set the SWE, PSU, ESU, EV, PV, or E bit at the same time.

D	:4	Λ
D	π	U

Р	Description	
0	Program mode cleared	(Initial value)
1	Transition to program mode	
	[Setting condition]	
	When FWE = 1, SWE = 1, and PSU = 1	

21B.7.2 Flash Memory Control Register 2 (FLMCR2)

FLMCR2 is an 8-bit register used for flash memory operating mode control. FLMCR2 is initialized to H'00 by a reset, and in hardware standby mode and software standby mode. When on-chip flash memory is disabled, a read will return H'00.

Bit:	7	6	5	4	3	2	1	0
	FLER	_	_	_	_	_	_	_
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	_	_	_	_	_	_	_

Note: FLMCR2 is a read-only register, and should not be written to.

Bit 7—Flash Memory Error (FLER): Indicates that an error has occurred during an operation on flash memory (programming or erasing). When FLER is set to 1, flash memory goes to the error-protection state.

Bit 7

FLER	Description				
0	Flash memory is operating normally	(Initial value)			
	Flash memory program/erase protection (error protection) is disabled				
	[Clearing condition]				
	 Reset or hardware standby mode 				
1	An error has occurred during flash memory programming/erasing				
	Flash memory program/erase protection (error protection) is enabled				
	[Setting condition]				
	 See section 21B.10.3, Error Protection 				

Bits 6 to 0—Reserved: These bits always read 0.

21B.7.3 Erase Block Register 1 (EBR1)

EBR1 is an 8-bit register that specifies the flash memory erase area block by block. EBR1 is initialized to H'00 by a reset, in hardware standby mode and software standby mode, when a low level is input to the FWE pin, and when a high level is input to the FWE pin and the SWE bit in FLMCR1 is not set. When a bit in EBR1 is set to 1, the corresponding block can be erased. Other blocks are erase-protected. Only one of the bits of EBR1 and EBR2 combined can be set. Do not set more than one bit, as this will cause all the bits in both EBR1 and EBR2 to be automatically cleared to 0. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

The flash memory erase block configuration is shown in table 21B-7.

Bit:	7	6	5	4	3	2	1	0
	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W							

21B.7.4 Erase Block Register 2 (EBR2)

EBR2 is an 8-bit register that specifies the flash memory erase area block by block. EBR2 is initialized to H'00 by a reset, in hardware standby mode and software standby mode, when a low level is input to the FWE pin. Bit 0 will be initialized to 0 if bit SWE of FLMCR1 is not set, even though a high level is input to pin FWE. When a bit in EBR2 is set to 1, the corresponding block can be erased. Other blocks are erase-protected. Only one of the bits of EBR1 and EBR2 combined can be set. Do not set more than one bit, as this will cause all the bits in both EBR1 and EBR2 to be automatically cleared to 0. On the H8S/2638 and H8S/2639 bits 7 to 4 are reserved, and on the H8S/2630 bits 7 and 6 are reserved. Only 0 may be written to these reserved bits. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

The flash memory erase block configuration is shown in table 21B-7.

Bit:	7	6	5	4	3	2	1	0
	_	_	EB13*	EB12*	EB11	EB10	EB9	EB8
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * Valid on the H8S/2630. On the H8S/2638 and H8S/2639 these bits are reserved and only 0 may be written to them.

Table 21B-7 Flash Memory Erase Blocks

Block (Size)	Addresses
EB0 (4 kbytes)	H'000000 to H'000FFF
EB1 (4 kbytes)	H'001000 to H'001FFF
EB2 (4 kbytes)	H'002000 to H'002FFF
EB3 (4 kbytes)	H'003000 to H'003FFF
EB4 (4 kbytes)	H'004000 to H'004FFF
EB5 (4 kbytes)	H'005000 to H'005FFF
EB6 (4 kbytes)	H'006000 to H'006FFF
EB7 (4 kbytes)	H'007000 to H'007FFF
EB8 (32 kbytes)	H'008000 to H'00FFFF
EB9 (64 kbytes)	H'010000 to H'01FFFF
EB10 (64 kbytes)	H'020000 to H'02FFFF
EB11 (64 kbytes)	H'030000 to H'03FFFF
EB12 (64 kbytes)*	H'040000 to H'04FFFF
EB13 (64 kbytes))*	H'050000 to H'05FFFF

Note: *This function is not available in the H8S/2638 and H8S/2639.

21B.7.5 RAM Emulation Register (RAMER)

RAMER specifies the area of flash memory to be overlapped with part of RAM when emulating real-time flash memory programming. RAMER initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode. RAMER settings should be made in user mode or user program mode.

Flash memory area divisions are shown in table 21B-8. To ensure correct operation of the emulation function, the ROM for which RAM emulation is performed should not be accessed immediately after this register has been modified. Normal execution of an access immediately after register modification is not guaranteed.

Bit:	7	6	5	4	3	2	1	0
	_	_	_	_	RAMS	RAM2	RAM1	RAM0
Initial value:	0	0	0	0	0	0	0	0
RW:	R	R	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7 and 6—Reserved: These bits always read 0.

Bits 5 and 4—Reserved: Only 0 may be written to these bits.

Bit 3—RAM Select (RAMS): Specifies selection or non-selection of flash memory emulation in RAM. When RAMS = 1, all flash memory block are program/erase-protected.

Bit 3

May 28, 2010

RAMS	Description	
0	Emulation not selected	(Initial value)
	Program/erase-protection of all flash memory blocks is disabled	
1	Emulation selected	
	Program/erase-protection of all flash memory blocks is enabled	

Bits 2 to 0—Flash Memory Area Selection: These bits are used together with bit 3 to select the flash memory area to be overlapped with RAM. (See table 21B-8.)

Table 21B-8 Flash Memory Area Divisions

Addresses	Block Name	RAMS	RAM1	RAM1	RAM0
H'FFD000 to H'FFDFFF	RAM area 4 kbytes	0	*	*	*
H'000000 to H'000FFF	EB0 (4 kbytes)	1	0	0	0
H'001000 to H'001FFF	EB1 (4 kbytes)	1	0	0	1
H'002000 to H'002FFF	EB2 (4 kbytes)	1	0	1	0
H'003000 to H'003FFF	EB3 (4 kbytes)	1	0	1	1
H'004000 to H'004FFF	EB4 (4 kbytes)	1	1	0	0
H'005000 to H'005FFF	EB5 (4 kbytes)	1	1	0	1
H'006000 to H'006FFF	EB6 (4 kbytes)	1	1	1	0
H'007000 to H'007FFF	EB7 (4 kbytes)	1	1	1	1

*: Don't care

21B.7.6 Flash Memory Power Control Register (FLPWCR)

Bit:	7	6	5	4	3	2	1	0	
	PDWND	_	_	_	_		_	_	
Initial value:	0	0	0	0	0	0	0	0	_
R/W:	R/W	R	R	R	R	R	R	R	

FLPWCR enables or disables a transition to the flash memory power-down mode when the LSI switches to subactive mode*.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions only. These functions cannot be used with the other versions.

Bit 7—Power-Down Disable (PDWND): The subactive mode is not available in versions other than the U-mask and W-mask versions.

Only 0 should be written to this bit in the case of versions other than the U-mask and W-mask versions.

See section 21.B.14, Flash Memory and Power-Down States, for more information.

Bit 7

PDWND	Description	
0	Transition to flash memory power-down mode enabled	(Initial value)
1	Transition to flash memory power-down mode disabled	

Bits 6 to 0—Reserved: These bits always read 0.

May 28, 2010

On-Board Programming Modes 21B.8

When pins are set to on-board programming mode and a reset-start is executed, a transition is made to the on-board programming state in which program/erase/verify operations can be performed on the on-chip flash memory. There are two on-board programming modes: boot mode and user program mode. The pin settings for transition to each of these modes are shown in table 21B-9. For a diagram of the transitions to the various flash memory modes, see figure 21B-3.

Table 21B-9 Setting On-Board Programming Modes

Mode		FWE	MD2	MD1	MD0	
Boot mode	Expanded mode	1	0	1	0	
	Single-chip mode		0	1	1	
User program mode	Expanded mode	1	1	1	0	
	Single-chip mode		1	1	1	

21B.8.1 Boot Mode

When boot mode is used, the flash memory programming control program must be prepared in the host beforehand. The SCI channel to be used is set to asynchronous mode.

When a reset-start is executed after the H8S/2638', H8S/2639', and H8S/2630' pins have been set to boot mode, the boot program built into the H8S/2638, H8S/2639, and H8S/2630 are started and the programming control program prepared in the host is serially transmitted to the H8S/2638, H8S/2639, and H8S/2630 via the SCI. In the H8S/2638, H8S/2639, and H8S/2630, the programming control program received via the SCI is written into the programming control program area in on-chip RAM. After the transfer is completed, control branches to the start address of the programming control program area and the programming control program execution state is entered (flash memory programming is performed).

The transferred programming control program must therefore include coding that follows the programming algorithm given later.

The system configuration in boot mode is shown in figure 21B-7, and the boot mode execution procedure in figure 21B-8.

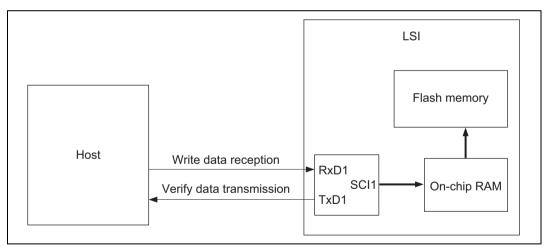


Figure 21B-7 System Configuration in Boot Mode

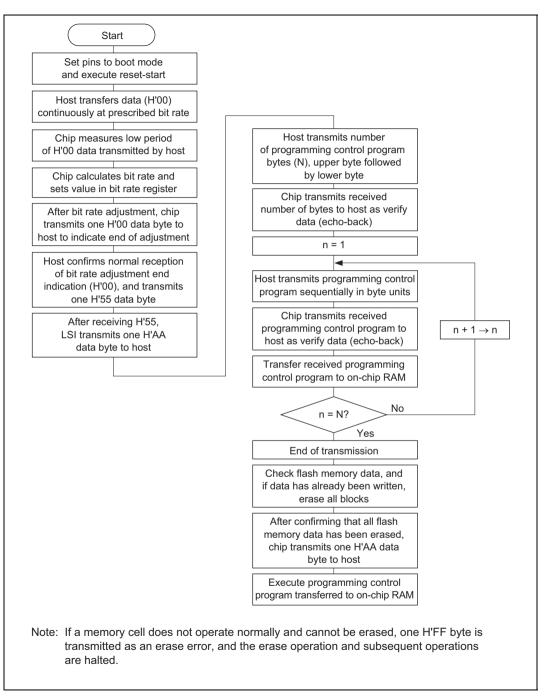
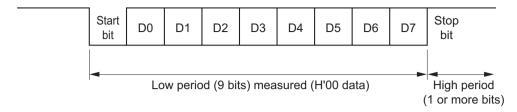



Figure 21B-8 Boot Mode Execution Procedure

Automatic SCI Bit Rate Adjustment

When boot mode is initiated, the LSI measures the low period of the asynchronous SCI communication data (H'00) transmitted continuously from the host. The SCI transmit/receive format should be set as follows: 8-bit data, 1 stop bit, no parity. The LSI calculates the bit rate of the transmission from the host from the measured low period, and transmits one H'00 byte to the host to indicate the end of bit rate adjustment. The host should confirm that this adjustment end indication (H'00) has been received normally, and transmit one H'55 byte to the LSI. If reception cannot be performed normally, initiate boot mode again (reset), and repeat the above operations. Depending on the host's transmission bit rate and the LSI's system clock frequency, there will be a discrepancy between the bit rates of the host and the LSI. Set the host transfer bit rate at 4,800, 9,600 or 19,200 bps to operate the SCI properly.

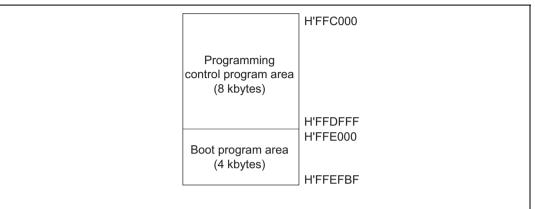

Table 21B-10 shows host transfer bit rates and system clock frequencies for which automatic adjustment of the LSI bit rate is possible. The boot program should be executed within this system clock range.

Table 21B-10 System Clock Frequencies for which Automatic Adjustment of LSI Bit Rate Is Possible

Host Bit Rate	System Clock Frequency for which Automatic Adjustment of LSI Bit Rate Is Possible
4,800 bps	4 to 20 MHz
9,600 bps	8 to 20 MHz
19,200 bps	16 to 20 MHz

Note: The system clock frequency used in boot mode is generated by an external crystal oscillator element. PLL frequency multiplication is not used.

On-Chip RAM Area Divisions in Boot Mode: In boot mode, the RAM area is divided into an area used by the boot program and an area to which the programming control program is transferred via the SCI, as shown in figure 21B-9. The boot program area cannot be used until the execution state in boot mode switches to the programming control program transferred from the host.

Note: The boot program area cannot be used until a transition is made to the execution state for the programming control program transferred to RAM. Note also that the boot program remains in this area of the on-chip RAM even after control branches to the programming control program.

Figure 21B-9 RAM Areas in Boot Mode

Notes on Use of Boot Mode:

- When the chip comes out of reset in boot mode, it measures the low-level period of the input at
 the SCI's RxD1 pin. The reset should end with RxD1 high. After the reset ends, it takes
 approximately 100 states before the chip is ready to measure the low-level period of the RxD1
 pin.
- In boot mode, if any data has been programmed into the flash memory (if all data is not 1), all
 flash memory blocks are erased. Boot mode is for use when user program mode is unavailable,
 such as the first time on-board programming is performed, or if the program activated in user
 program mode is accidentally erased.
- Interrupts cannot be used while the flash memory is being programmed or erased.
- The RxD1 and TxD1 pins should be pulled up on the board.
- Before branching to the programming control program (RAM area H'FFC000), the chip terminates transmit and receive operations by the on-chip SCI (channel 1) (by clearing the RE

and TE bits in SCR to 0), but the adjusted bit rate value remains set in BRR. The transmit data output pin, TxD1, goes to the high-level output state (P33DDR = 1, P33DR = 1).

The contents of the CPU's internal general registers are undefined at this time, so these registers must be initialized immediately after branching to the programming control program. In particular, since the stack pointer (SP) is used implicitly in subroutine calls, etc., a stack area must be specified for use by the programming control program.

The initial values of other on-chip registers are not changed.

- Boot mode can be entered by making the pin settings shown in table 21B-9 and executing a reset-start.
 - Boot mode can be cleared by driving the reset pin low, waiting at least 20 states, then setting the FWE pin and mode pins, and executing reset release*1. Boot mode can also be cleared by a WDT overflow reset.
 - Do not change the mode pin input levels in boot mode, and do not drive the FWE pin low while the boot program is being executed or while flash memory is being programmed or erased*2.
- If the mode pin input levels are changed (for example, from low to high) during a reset, the state of ports with multiplexed address functions and bus control output pins (AS, RD, HWR) will change according to the change in the microcomputer's operating mode*3.
 - Therefore, care must be taken to make pin settings to prevent these pins from becoming output signal pins during a reset, or to prevent collision with signals outside the microcomputer.
- Notes: 1. Mode pin and FWE pin input must satisfy the mode programming setup time ($t_{MDS} = 4$ states) with respect to the reset release timing.
 - 2. For precautions on applying and disconnecting FWE, see section 21B.15, Flash Memory Programming and Erasing Precautions.
 - 3. See appendix D, Pin States.

21B.8.2 User Program Mode

When set to user program mode, the chip can program and erase its flash memory by executing a user program/erase control program. Therefore, on-board reprogramming of the on-chip flash memory can be carried out by providing on-board means of FWE control and supply of programming data, and storing a program/erase control program in part of the program area as necessary.

To select user program mode, select a mode that enables the on-chip flash memory (mode 6 or 7), and apply a high level to the FWE pin. In this mode, on-chip supporting modules other than flash memory operate as they normally would in modes 6 and 7.

The flash memory itself cannot be read while the SWE bit is set to 1 to perform programming or erasing, so the control program that performs programming and erasing should be run in on-chip RAM or external memory. If the program is to be located in external memory, the instruction for writing to flash memory, and the following instruction, should be placed in on-chip RAM.

Figure 21B-10 shows the procedure for executing the program/erase control program when transferred to on-chip RAM.

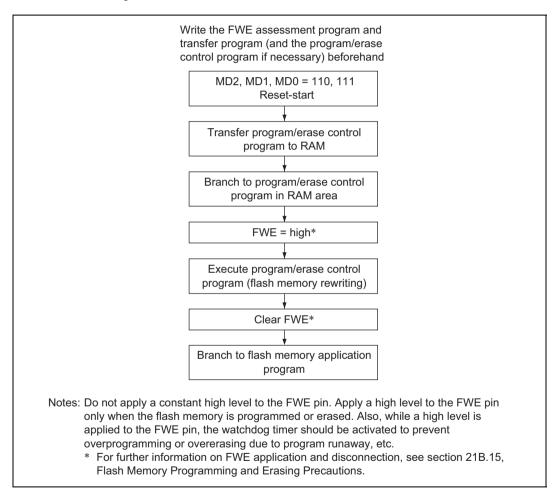


Figure 21B-10 User Program Mode Execution Procedure

21B.9 Programming/Erasing Flash Memory

A software method, using the CPU, is employed to program and erase flash memory in the on-board programming modes. There are four flash memory operating modes: program mode, erase mode, program-verify mode, and erase-verify mode. Transitions to these modes are made by setting the PSU, ESU, P, E, PV, and EV bits in FLMCR1 for on-chip flash memory.

The flash memory cannot be read while it is being written or erased. The flash memory cannot be read while being programmed or erased. Therefore, the program (user program) that controls flash memory programming/erasing should be located and executed in on-chip RAM or external memory. If the program is to be located in external memory, the instruction for writing to flash memory, and the following instruction, should be placed in on-chip RAM. Also ensure that the DTC is not activated before or after execution of the flash memory write instruction.

In the following operation descriptions, wait times after setting or clearing individual bits in FLMCR1 are given as parameters; for details of the wait times, see section 24.2.7 and 24.3.7, Flash Memory Characteristics.

- Notes: 1. Operation is not guaranteed if bits SWE, ESU, PSU, EV, PV, E, and P of FLMCR1 are set/reset by a program in flash memory in the corresponding address areas.
 - 2. When programming or erasing, set FWE to 1 (programming/erasing will not be executed if FWE = 0).
 - 3. Programming should be performed in the erased state. Do not perform additional programming on previously programmed addresses.

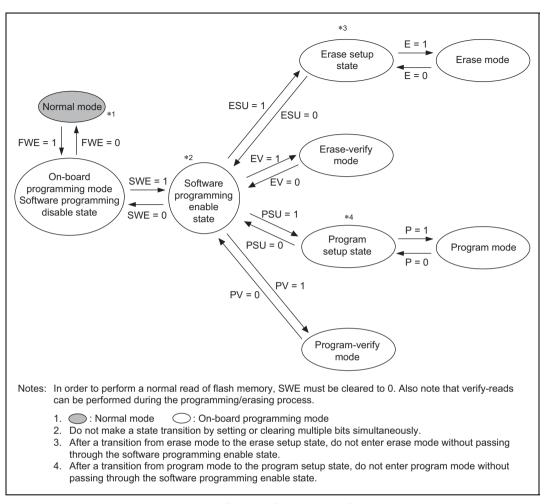


Figure 21B-11 FLMCR1 Bit Settings and State Transitions

21B.9.1 Program Mode

When writing data or programs to flash memory, the program/program-verify flowchart shown in figure 21B-12 should be followed. Performing programming operations according to this flowchart will enable data or programs to be written to flash memory without subjecting the device to voltage stress or sacrificing program data reliability. Programming should be carried out 128 bytes at a time.

The wait times after bits are set or cleared in the flash memory control register 1 (FLMCR1) and the maximum number of programming operations (N) are shown in section 24.2.7, 24.3.7, and 24.4.7, Flash Memory Characteristics.

Following the elapse of (t_{sswe}) µs or more after the SWE bit is set to 1 in FLMCR1, 128-byte data is written consecutively to the write addresses. The lower 8 bits of the first address written to must be H'00 and H'80, 128 consecutive byte data transfers are performed. The program address and program data are latched in the flash memory. A 128-byte data transfer must be performed even if writing fewer than 128 bytes; in this case, H'FF data must be written to the extra addresses.

Next, the watchdog timer (WDT) is set to prevent overprogramming due to program runaway, etc. Set a value greater than $(t_{spsu} + t_{sp} + t_{cp} + t_{cpsu})$ μs as the WDT overflow period. Preparation for entering program mode (program setup) is performed next by setting the PSU bit in FLMCR1. The operating mode is then switched to program mode by setting the P bit in FLMCR1 after the elapse of at least (t_{spsu}) μs . The time during which the P bit is set is the flash memory programming time. Make a program setting so that the time for one programming operation is within the range of (t_{sp}) μs .

The wait time after P bit setting must be changed according to the degree of progress through the programming operation. For details see "Notes on Program/Program-Verify Procedure."

21B.9.2 Program-Verify Mode

In program-verify mode, the data written in program mode is read to check whether it has been correctly written in the flash memory.

After the elapse of the given programming time, clear the P bit in FLMCR1, then wait for at least (t_{cp}) µs before clearing the PSU bit to exit program mode. After exiting program mode, the watchdog timer setting is also cleared. The operating mode is then switched to program-verify mode by setting the PV bit in FLMCR1. Before reading in program-verify mode, a dummy write of H'FF data should be made to the addresses to be read. The dummy write should be executed after the elapse of (t_{spv}) µs or more. When the flash memory is read in this state (verify data is read in 16-bit units), the data at the latched address is read. Wait at least (t_{spvr}) µs after the dummy write before performing this read operation. Next, the originally written data is compared with the verify data, and reprogram data is computed (see figure 21B-12) and transferred to RAM. After verification of 128 bytes of data has been completed, exit program-verify mode, wait for at least (t_{cpv}) µs, then clear the SWE bit in FLMCR1. If reprogramming is necessary, set program mode again, and repeat the program/program-verify sequence as before. The maximum number of repetitions of the program/program-verify sequence is indicated by the maximum programming count (N). Leave a wait time of at least (t_{cswe}) µs after clearing SWE.

Notes on Program/Program-Verify Procedure

- 1. In order to perform 128-byte-unit programming, the lower 8 bits of the write start address must be H'00 or H'80.
- 2. When performing continuous writing of 128-byte data to flash memory, byte-unit transfer should be used.
 - 128-byte data transfer is necessary even when writing fewer than 128 bytes of data. Write H'FF data to the extra addresses.
- 3. Verify data is read in word units.
- 4. The write pulse is applied and a flash memory write executed while the P bit in FLMCR1 is set. In the chip, write pulses should be applied as follows in the program/program-verify procedure to prevent voltage stress on the device and loss of write data reliability.
 - a. After write pulse application, perform a verify-read in program-verify mode and apply a write pulse again for any bits read as 1 (reprogramming processing). When all the 0-write bits in the 128-byte write data are read as 0 in the verify-read operation, the program/program-verify procedure is completed. In the chip, the number of loops in reprogramming processing is guaranteed not to exceed the maximum value of the maximum programming count (N).

b. After write pulse application, a verify-read is performed in program-verify mode, and programming is judged to have been completed for bits read as 0. The following processing is necessary for programmed bits.

When programming is completed at an early stage in the program/program-verify procedure:

If programming is completed in the 1st to 6th reprogramming processing loop, additional programming should be performed on the relevant bits. Additional programming should only be performed on bits which first return 0 in a verify-read in certain reprogramming processing.

When programming is completed at a late stage in the program/program-verify procedure: If programming is completed in the 7th or later reprogramming processing loop, additional programming is not necessary for the relevant bits.

- c. If programming of other bits is incomplete in the 128 bytes, reprogramming processing should be executed. If a bit for which programming has been judged to be completed is read as 1 in a subsequent verify-read, a write pulse should again be applied to that bit.
- 5. The period for which the P bit in FLMCR1 is set (the write pulse width) should be changed according to the degree of progress through the program/program-verify procedure. For detailed wait time specifications, see section 24.2.7, 24.3.7, and 24.4.7, Flash Memory Characteristics.

Item	Symbol	Item	Symbol
Wait time after t _{sp}		When reprogramming loop count (n) is 1 to 6	t _{sp30}
P bit setting		When reprogramming loop count (n) is 7 or more	t _{sp200}
		In case of additional programming processing*	t _{sp10}

Note: * Additional programming processing is necessary only when the reprogramming loop count (n) is 1 to 6.

6. The program/program-verify flowchart for the H8S/2638, H8S/2639, and H8S/2630 are shown in figure 21B-12.

To cover the points noted above, bits on which reprogramming processing is to be executed, and bits on which additional programming is to be executed, must be determined as shown below.

Since reprogram data and additional-programming data vary according to the progress of the programming procedure, it is recommended that the following data storage areas (128 bytes each) be provided in RAM.

Reprogram Data Computation Table

(D)	Result of Verify-Read after Write Pulse Application (V)	(X) Result of Operation	Comments
0	0	1	Programming completed: reprogramming processing not to be executed
0	1	0	Programming incomplete: reprogramming processing to be executed
1	0	1	_
1	1	1	Still in erased state: no action

Legend:

(D): Source data of bits on which programming is executed

(X): Source data of bits on which reprogramming is executed

Additional-Programming Data Computation Table

(X')	Result of Verify-Read after Write Pulse Application (V)	(Y) Result of Operation	Comments
0	0	0	Programming by write pulse application judged to be completed: additional programming processing to be executed
0	1	1	Programming by write pulse application incomplete: additional programming processing not to be executed
1	0	1	Programming already completed: additional programming processing not to be executed
1	1	1	Still in erased state: no action

Legend:

(Y): Data of bits on which additional programming is executed

(X'): Data of bits on which reprogramming is executed in a certain reprogramming loop

7. It is necessary to execute additional programming processing during the course of the chip program/program-verify procedure. However, once 128-byte-unit programming is finished, additional programming should not be carried out on the same address area. When executing reprogramming, an erase must be executed first. Note that normal operation of reads, etc., is not guaranteed if additional programming is performed on addresses for which a program/program-verify operation has finished.

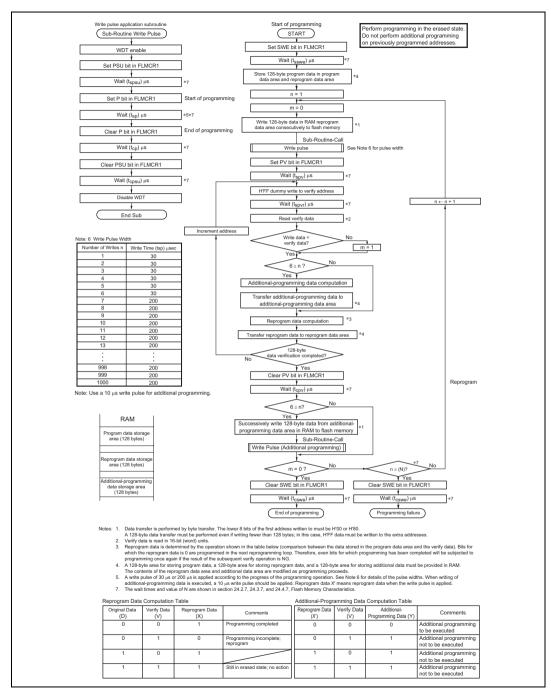


Figure 21B-12 Program/Program-Verify Flowchart

21B.9.3 Erase Mode

When erasing flash memory, the single-block erase flowchart shown in figure 21B-13 should be followed.

The wait times after bits are set or cleared in the flash memory control register 1 (FLMCR1) and the maximum number of erase operations (N) are shown in section 24.2.7 and 24.3.7, Flash Memory Characteristics.

To erase flash memory contents, make a 1-bit setting for the flash memory area to be erased in erase block register 1 and 2 (EBR1, EBR2) at least (t_{sswe}) μs after setting the SWE bit to 1 in FLMCR1. Next, the watchdog timer (WDT) is set to prevent overerasing due to program runaway, etc. Set a value of about 19.8 ms as the WDT overflow period. Preparation for entering erase mode (erase setup) is performed next by setting the ESU bit in FLMCR1. The operating mode is then switched to erase mode by setting the E bit in FLMCR1 after the elapse of at least (t_{sesu}) μs . The time during which the E bit is set is the flash memory erase time. Ensure that the erase time does not exceed (t_{se}) ms.

Note: With flash memory erasing, preprogramming (setting all memory data in the memory to be erased to all 0) is not necessary before starting the erase procedure.

21B.9.4 Erase-Verify Mode

In erase-verify mode, data is read after memory has been erased to check whether it has been correctly erased.

After the elapse of the fixed erase time, clear the E bit in FLMCR1, then wait for at least (t_{ce}) μs before clearing the ESU bit to exit erase mode. After exiting erase mode, the watchdog timer setting is also cleared. The operating mode is then switched to erase-verify mode by setting the EV bit in FLMCR1. Before reading in erase-verify mode, a dummy write of H'FF data should be made to the addresses to be read. The dummy write should be executed after the elapse of (t_{sev}) μs or more. When the flash memory is read in this state (verify data is read in 16-bit units), the data at the latched address is read. Wait at least (t_{sevr}) μs after the dummy write before performing this read operation. If the read data has been erased (all 1), a dummy write is performed to the next address, and erase-verify is performed. If the read data is unerased, set erase mode again, and repeat the erase/erase-verify sequence as before. The maximum number of repetitions of the erase/erase-verify sequence is indicated by the maximum erase count (N). When verification is completed, exit erase-verify mode, and wait for at least (t_{cev}) μs . If erasure has been completed on all the erase blocks, clear the SWE bit in FLMCR1, and leave a wait time of at least (t_{cswe}) μs .

If erasing multiple blocks, set a single bit in EBR1/EBR2 for the next block to be erased, and repeat the erase/erase-verify sequence as before.

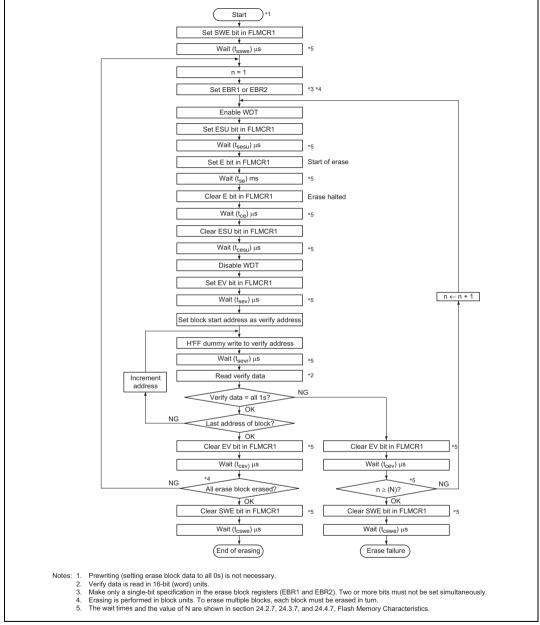


Figure 21B-13 Erase/Erase-Verify Flowchart

21B.10 Protection

May 28, 2010

There are three kinds of flash memory program/erase protection: hardware protection, software protection, and error protection.

21B.10.1 Hardware Protection

Hardware protection refers to a state in which programming/erasing of flash memory is forcibly disabled or aborted. Hardware protection is reset by settings in flash memory control register 1 (FLMCR1), flash memory control register 2 (FLMCR2), erase block register 1 (EBR1), and erase block register 2 (EBR2). The FLMCR1, FLMCR2, EBR1, and EBR2 settings are retained in the error-protected state (See table 21B-11).

Hardware Protection Table 21B-11

		Fu	nctions
Item	Description	Program	Erase
FWE pin protection	When a low level is input to the FWE pin, FLMCR1, FLMCR2, (except bit FLER) EBR and EBR2 are initialized, and the program/erase-protected state is entered.	Yes 1,	Yes
Reset/standby protection	In a reset (including a WDT reset) and in standby mode, FLMCR1, FLMCR2, EBR1, and EBR2 are initialized, and the program/erase-protected state is entered.	Yes	Yes
	 In a reset via the RES pin, the reset state is not entered unless the RES pin is held low until oscillation stabilizes after powering on. In the case of a reset during operation, hold the RES pin low for the RES pulse width specified in the AC Characteristics section. 		

21B.10.2 Software Protection

Software protection can be implemented by setting the SWE bit in FLMCR1, erase block register 1 (EBR1), erase block register 2 (EBR2), and the RAMS bit in the RAM emulation register (RAMER). When software protection is in effect, setting the P or E bit in flash memory control register 1 (FLMCR1), does not cause a transition to program mode or erase mode (See table 21B-12).

Table 21B-12 Software Protection

		Fu	nctions
Item	Description	Program	Erase
SWE bit protection	Setting bit SWE in FLMCR1 to 0 will place area on-chip flash memory in the program/ erase-protected state (Execute the program in the on-chip RAM, external memory).	Yes	Yes
Block specification protection	 Erase protection can be set for individual blocks by settings in erase block register 1 (EBR1) and erase block register 2 (EBR2). 	_	Yes
	• Setting EBR1 and EBR2 to H'00 places all blocks in the erase-protected state.		
Emulation protection	Setting the RAMS bit to 1 in the RAM emulation register (RAMER) places all block in the program/erase-protected state.	Yes	Yes

21B.10.3 Error Protection

In error protection, an error is detected when chip runaway occurs during flash memory programming/erasing, or operation is not performed in accordance with the program/erase algorithm, and the program/erase operation is aborted. Aborting the program/erase operation prevents damage to the flash memory due to overprogramming or overerasing.

If the chip malfunctions during flash memory programming/erasing, the FLER bit is set to 1 in FLMCR2 and the error protection state is entered. The FLMCR1, FLMCR2, EBR1, and EBR2 settings are retained, but program mode or erase mode is aborted at the point at which the error occurred. Program mode or erase mode cannot be re-entered by re-setting the P or E bit. However, PV and EV bit setting is enabled, and a transition can be made to verify mode.

FLER bit setting conditions are as follows:

- 1. When the flash memory of the relevant address area is read during programming/erasing (including vector read and instruction fetch)
- 2. Immediately after exception handling (excluding a reset) during programming/erasing
- 3. When a SLEEP instruction (including software standby) is executed during programming/erasing
- 4. When the CPU releases the bus to the DTC

Error protection is released only by a reset and in hardware standby mode.

Figure 21B-14 shows the flash memory state transition diagram.

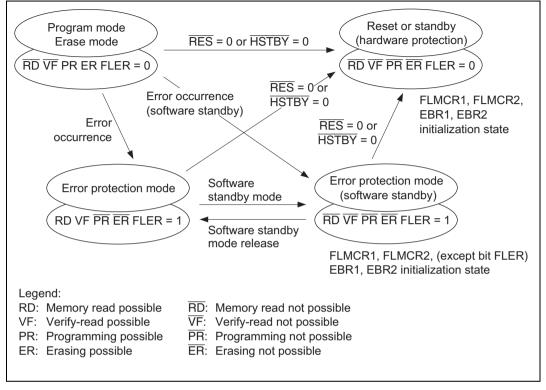


Figure 21B-14 Flash Memory State Transitions

21B.11 Flash Memory Emulation in RAM

Making a setting in the RAM emulation register (RAMER) enables part of RAM to be overlapped onto the flash memory area so that data to be written to flash memory can be emulated in RAM in real time. After the RAMER setting has been made, accesses cannot be made from the flash memory area or the RAM area overlapping flash memory. Emulation can be performed in user mode and user program mode. Figure 21B-15 shows an example of emulation of real-time flash memory programming.

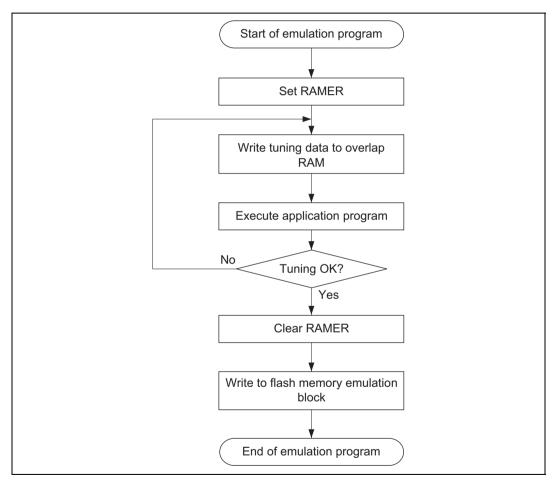


Figure 21B-15 Flowchart for Flash Memory Emulation in RAM

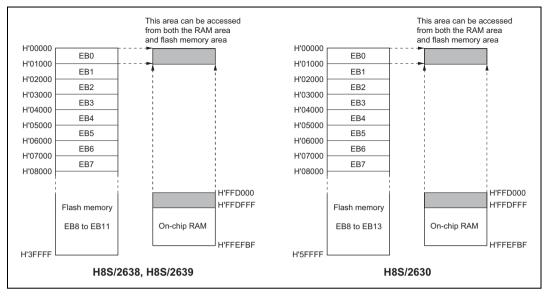


Figure 21B-16 Example of RAM Overlap Operation

Example in which Flash Memory Block Area EB0 is Overlapped

- 1. Set bits RAMS, RAM2 to RAM0 in RAMER to 1, 0, 0, 0, to overlap part of RAM onto the area (EB0) for which real-time programming is required.
- 2. Real-time programming is performed using the overlapping RAM.
- 3. After the program data has been confirmed, the RAMS bit is cleared, releasing RAM overlap.
- 4. The data written in the overlapping RAM is written into the flash memory space (EB0).
- Notes: 1. When the RAMS bit is set to 1, program/erase protection is enabled for all blocks regardless of the value of RAM2 to RAM0 (emulation protection). In this state, setting the P or E bit in flash memory control register 1 (FLMCR1), will not cause a transition to program mode or erase mode. When actually programming or erasing a flash memory area, the RAMS bit should be cleared to 0.
 - 2. A RAM area cannot be erased by execution of software in accordance with the erase algorithm while flash memory emulation in RAM is being used.
 - 3. Block area EB0 contains the vector table. When performing RAM emulation, the vector table is needed in the overlap RAM.

21B.12 Interrupt Handling when Programming/Erasing Flash Memory

All interrupts, including NMI interrupt is disabled when flash memory is being programmed or erased (when the P or E bit is set in FLMCR1), and while the boot program is executing in boot mode*1, to give priority to the program or erase operation. There are three reasons for this:

- 1. Interrupt during programming or erasing might cause a violation of the programming or erasing algorithm, with the result that normal operation could not be assured.
- 2. In the interrupt exception handling sequence during programming or erasing, the vector would not be read correctly*2, possibly resulting in MCU runaway.
- 3. If interrupt occurred during boot program execution, it would not be possible to execute the normal boot mode sequence.

For these reasons, in on-board programming mode alone there are conditions for disabling interrupt, as an exception to the general rule. However, this provision does not guarantee normal erasing and programming or MCU operation. All requests, including NMI interrupt, must therefore be restricted inside and outside the MCU when programming or erasing flash memory. NMI interrupt is also disabled in the error-protection state while the P or E bit remains set in FLMCR1.

- Notes: 1. Interrupt requests must be disabled inside and outside the MCU until the programming control program has completed programming.
 - 2. The vector may not be read correctly in this case for the following two reasons:
 - If flash memory is read while being programmed or erased (while the P or E bit is set in FLMCR1), correct read data will not be obtained (undetermined values will be returned).
 - If the interrupt entry in the vector table has not been programmed yet, interrupt exception handling will not be executed correctly.

21B.13 Programmer Mode

Programmer mode enables programming and erasing of the on-chip flash memory by using a PROM programmer via a socket adapter in the same manner as standalone flash memory. For the H8S/2638 Group and H8S/2639 Group, use a PROM programmer that supports Renesas MCU devices with 256 KB of on-chip flash memory (FZTAT256V5A). For the H8S/2630 Group, use a PROM programmer that supports Renesas MCU devices with 512 KB of on-chip flash memory (FZTAT512V5A).

21B.13.1 Socket Adapter and Memory Map

In programmer mode in which the PROM writer is used, reading from memory (verification), writing, and initializing the flash memory (erasing all of its contents) are enabled. At this time, a dedicated conversion socket adapter must be attached to a general-purpose PROM writer. Table 21B-13 shows the types of the socket adapters. For programmer mode on this LSI, one of the socket adapters listed in table 21B-13 should be used.

Table 21B-13 Type of Socket Adapter

Part No.	Package Type	Socket Adapter Type	Manufacturer
HD64F2638F	128 pin QFP	ME2636ESHF1H	Minato Electronics Inc.
HD64F2638UF	(FP-128B)	HF2636Q128D4001	Data I/O Japan Corporation
HD64F2638WF		11F2030Q120D4001	Data 1/O Japan Corporation
HD64F2639UF			
HD64F2639WF			
HD64F2630F			
HD64F2630UF			
HD64F2630WF			

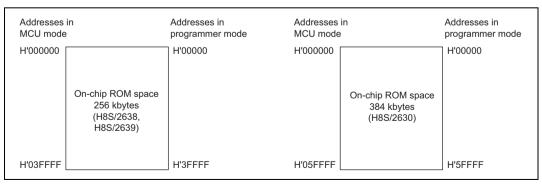


Figure 21B-17 On-Chip ROM Memory Map

21B.14 Flash Memory and Power-Down States

In addition to its normal operating state, the flash memory has power-down states in which power consumption is reduced by halting part or all of the internal power supply circuitry.

There are three flash memory operating states:

- (1) Normal operating mode: The flash memory can be read and written to.
- (2) Power-down mode: Part of the power supply circuitry is halted, and the flash memory can be read when the LSI is operating on the subclock.
- (3) Standby mode: All flash memory circuits are halted, and the flash memory cannot be read or written to.

States (2) and (3) are flash memory power-down states. Table 21B-14 shows the correspondence between the operating states of the LSI and the flash memory.

Table 21B-14 Flash Memory Operating States

LSI Operating State	Flash Memory Operating State			
High-speed mode	Normal mode (read/write)			
Medium-speed mode				
Sleep mode				
Subactive mode*	When PDWND = 0: Power-down mode (read-only)			
Subsleep mode*	When PDWND = 1: Normal mode (read-only)			
Watch mode*	Standby mode			
Software standby mode				
Hardware standby mode				

Note: *Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions only. These functions cannot be used with other versions.

21B.14.1 Notes on Power-Down States

- 1. When the flash memory is in a power-down state, part or all of the internal power supply circuitry is halted. Therefore, a power supply circuit stabilization period must be provided when returning to normal operation. When the flash memory returns to its normal operating state from a power-down state, bits STS2 to STS0 in SBYCR must be set to provide a wait time of at least 20 µs (power supply stabilization time), even if an oscillation stabilization period is not necessary.
- 2. In a power-down state, FLMCR1, FLMCR2, EBR1, EBR2, RAMER, and FLPWCR cannot be read from or written to.

21B.15 Flash Memory Programming and Erasing Precautions

Precautions concerning the use of on-board programming mode, the RAM emulation function, and programmer mode are summarized below.

Use the specified voltages and timing for programming and erasing: Applied voltages in excess of the rating can permanently damage the device. Use a PROM programmer that supports the Renesas microcomputer device type* with 256-kbyte and 512-kbyte on-chip flash memory.

Only use the specified socket adapter. Failure to observe these points may result in damage to the device.

Note: * The H8S/2638 and H8S/2639 are Renesas Electronics microcomputer devices with 256 kbytes of on-chip flash memory. The H8S/2630 is a Renesas microcomputer device with 512 kbytes of on-chip flash memory (The H8S/2630 has 384 kbytes of PROM. The area from H'60000 to H'7FFFF should be programmed as H'FF).

Powering on and off (see figures 21B-18 to 21B-20): Do not apply a high level to the FWE pin until V_{CC} has stabilized. Also, drive the FWE pin low before turning off V_{CC} .

When applying or disconnecting V_{CC} power, fix the FWE pin low and place the flash memory in the hardware protection state.

The power-on and power-off timing requirements should also be satisfied in the event of a power failure and subsequent recovery.

FWE application/disconnection (see figures 21B-18 to 21B-20): FWE application should be carried out when MCU operation is in a stable condition. If MCU operation is not stable, fix the FWE pin low and set the protection state.

The following points must be observed concerning FWE application and disconnection to prevent unintentional programming or erasing of flash memory:

- Apply FWE when the V_{CC} voltage has stabilized within its rated voltage range.
 Apply FWE when oscillation has stabilized (after the elapse of the oscillation stabilization time).
- In boot mode, apply and disconnect FWE during a reset.
- In user program mode, FWE can be switched between high and low level regardless of the reset state. FWE input can also be switched during execution of a program in flash memory.
- Do not apply FWE if program runaway has occurred.
- Disconnect FWE only when the SWE, ESU, PSU, EV, PV, P, and E bits in FLMCR1 are cleared.

Make sure that the SWE, ESU, PSU, EV, PV, P, and E bits are not set by mistake when applying or disconnecting FWE.

Do not apply a constant high level to the FWE pin: Apply a high level to the FWE pin only when programming or erasing flash memory. A system configuration in which a high level is constantly applied to the FWE pin should be avoided. Also, while a high level is applied to the FWE pin, the watchdog timer should be activated to prevent overprogramming or overerasing due to program runaway, etc.

Use the recommended algorithm when programming and erasing flash memory: The recommended algorithm enables programming and erasing to be carried out without subjecting the device to voltage stress or sacrificing program data reliability. When setting the P or E bit in FLMCR1, the watchdog timer should be set beforehand as a precaution against program runaway, etc.

Do not set or clear the SWE bit during execution of a program in flash memory: Wait for at least 100 µs after clearing the SWE bit before executing a program or reading data in flash memory. When the SWE bit is set, data in flash memory can be rewritten, but when SWE = 1, flash memory can only be read in program-verify or erase-verify mode. Access flash memory only for verify operations (verification during programming/erasing). Also, do not clear the SWE bit during programming, erasing, or verifying.

Similarly, when using the RAM emulation function while a high level is being input to the FWE pin, the SWE bit must be cleared before executing a program or reading data in flash memory.

However, the RAM area overlapping flash memory space can be read and written to regardless of whether the SWE bit is set or cleared.

Do not use interrupts while flash memory is being programmed or erased: All interrupt requests, including NMI, should be disabled during FWE application to give priority to program/erase operations.

Do not perform additional programming. Erase the memory before reprogramming: In onboard programming, perform only one programming operation on a 128-byte programming unit block. In programmer mode, too, perform only one programming operation on a 128-byte programming unit block. Programming should be carried out with the entire programming unit block erased.

Before programming, check that the chip is correctly mounted in the PROM programmer: Overcurrent damage to the device can result if the index marks on the PROM programmer socket, socket adapter, and chip are not correctly aligned.

Do not touch the socket adapter or chip during programming: Touching either of these can cause contact faults and write errors.

May 28, 2010

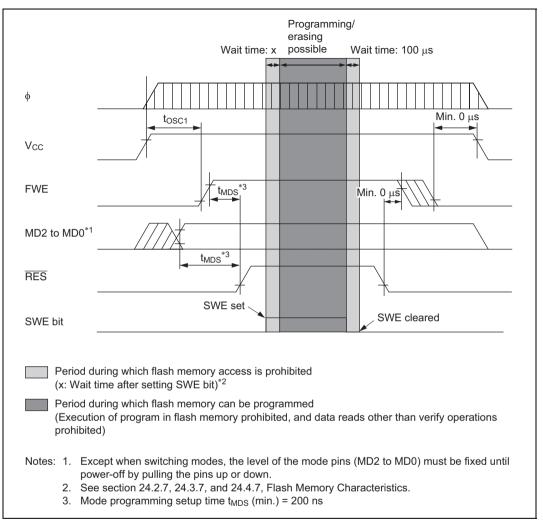


Figure 21B-18 Power-On/Off Timing (Boot Mode)

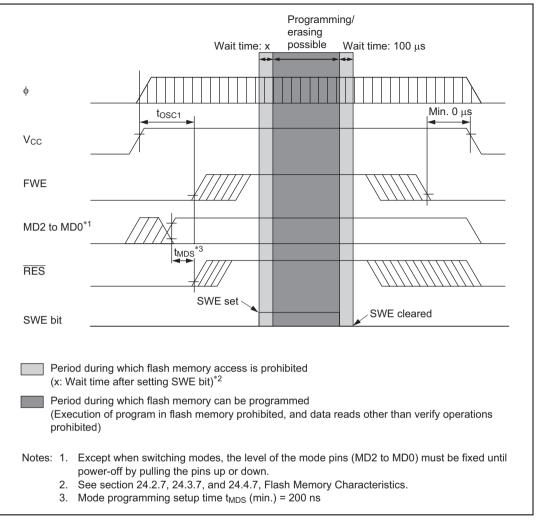


Figure 21B-19 Power-On/Off Timing (User Program Mode)

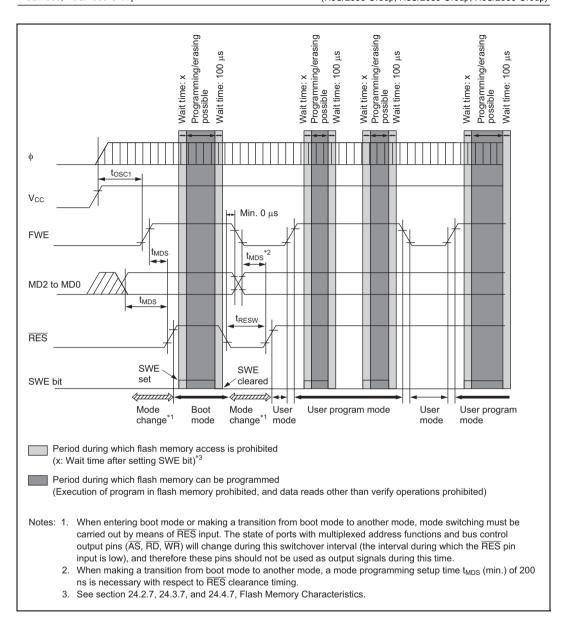


Figure 21B-20 Mode Transition Timing (Example: Boot Mode → User Mode ↔ User Program Mode)

21B.16 Note on Switching from F-ZTAT Version to Mask ROM Version

The mask ROM version does not have the internal registers for flash memory control that are provided in the F-ZTAT version. Table 21B-15 lists the registers that are present in the F-ZTAT version but not in the mask ROM version. If a register listed in table 21B-15 is read in the mask ROM version, an undefined value will be returned. Therefore, if application software developed on the F-ZTAT version is switched to a mask ROM version product, it must be modified to ensure that the registers in table 21B-15 have no effect.

Table 21B-15 Registers Present in F-ZTAT Version but Absent in Mask ROM Version

Register	Abbreviation	Address	
Flash memory control register 1	FLMCR1	H'FFA8	
Flash memory control register 2	FLMCR2	H'FFA9	
Erase block register 1	EBR1	H'FFAA	
Erase block register 2	EBR2	H'FFAB	
RAM emulation register	RAMER	H'FEDB	

Section 21C ROM (H8S/2635 Group)

21C.1 Overview

The H8S/2635 Group has 192 kbytes of on-chip flash memory, or 192 kbytes or 128 kbytes of on-chip mask ROM. The ROM is connected to the bus master via a 16-bit data bus, enabling both byte and word data to be accessed in one state. Instruction fetching is thus speeded up, and processing speed increased.

The on-chip ROM is enabled and disabled by setting the mode pins (MD2 to MD0).

The flash memory version can be erased and programmed on-board, as well as with a special-purpose PROM programmer.

21C.1.1 Block Diagram

Figure 21C-1 shows a block diagram of 192-kbyte and 128-kbyte ROM.

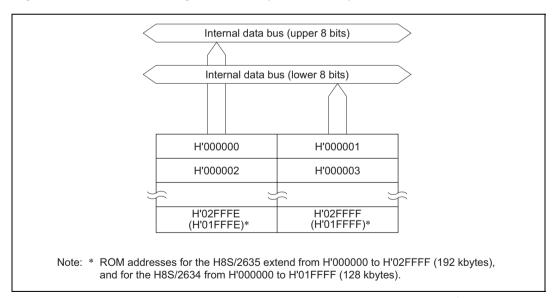


Figure 21C-1 Block Diagram of ROM 192 kbytes (128 kbytes)*

21C.1.2 Register Configuration

The H8S/2638 and H8S/2639 operating mode is controlled by the mode pins and the MDCR register. The register configuration is shown in table 21C-1.

Table 21C-1 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address*
Mode control register	MDCR	R/W	Undefined	H'FDE7

Note: * Lower 16 bits of the address.

21C.2 Register Descriptions

21C.2.1 Mode Control Register (MDCR)

Bit:	7	6	5	4	3	2	1	0
	_	_	_	_	_	MDS2	MDS1	MDS0
Initial value:	1	0	0	0	0	*	_*	*
R/W:	R/W	_		_	_	R	R	R

Note: * Determined by pins MD2 to MD0.

MDCR is an 8-bit register used to monitor the current H8S/2638 Group, H8S/2639 Group, and H8S/2630 Group operating mode.

Bit 7—Reserved: Only 1 should be written to these bits.

Bits 6 to 3—Reserved: These bits are always read as 0 and cannot be modified.

Bits 2 to 0—Mode Select 2 to 0 (MDS2 to MDS0): These bits indicate the input levels at pins MD2 to MD0 (the current operating mode). Bits MDS2 to MDS0 correspond to pins MD2 to MD0. MDS2 to MDS0 are read-only bits, and cannot be modified. The mode pin (MD2 to MD0) input levels are latched into these bits when MDCR is read. These latches are canceled by a reset.

21C.3 Operation

The on-chip ROM is connected to the CPU by a 16-bit data bus, and both byte and word data can be accessed in one state. Even addresses are connected to the upper 8 bits, and odd addresses to the lower 8 bits. Word data must start at an even address.

The on-chip ROM is enabled and disabled by setting the mode pins (MD2, MD1, and MD0). These settings are shown in table 21C-2.

Table 21C-2 Operating Modes and ROM (F-ZTAT Version)

		Mode Pins				
	Operating Mode	FWE	MD2	MD1	MD0	On-Chip ROM
Mode 0	_	0	0	0	0	_
Mode 1	_				1	_
Mode 2	_			1	0	
Mode 3	_				1	<u> </u>
Mode 4	Advanced expanded mode with on-chip ROM disabled		1	0	0	Disabled
Mode 5	Advanced expanded mode with on-chip ROM disabled	_			1	_
Mode 6	Advanced expanded mode with on-chip ROM enabled	_		1	0	Enabled (192 kbytes/ 128 kbytes)*3
Mode 7	Advanced single-chip mode	_			1	Enabled (192 kbytes/ 128 kbytes)*3
Mode 8	_	1	0	0	0	_
Mode 9	_				1	
Mode 10	Boot mode (advanced expanded mode with on-chip ROM enabled)*1			1	0	Enabled (192 kbytes/ 128 kbytes)*3
Mode 11	Boot mode (advanced single-chip mode)*2	_			1	Enabled (192 kbytes/ 128 kbytes)*3
Mode 12	_		1	0	0	_
Mode 13		_			1	
Mode 14	User program mode (advanced expanded mode with on-chip ROM enabled)*1			1	0	Enabled (192 kbytes/ 128 kbytes)*3
Mode 15	User program mode (advanced single-chip mode)*2				1	Enabled (192 kbytes/ 128 kbytes)*3

Notes: 1. Apart from the fact that flash memory can be erased and programmed, operation is the same as in advanced expanded mode with on-chip ROM enabled.

2. Apart from the fact that flash memory can be erased and programmed, operation is the same as in advanced single-chip mode.

The H8S/2635 has 192 kbytes of on-chip ROM. The H8S/2634 has 128 kbytes of onchip ROM.

Table 21C-3 Operating Modes and ROM (Mask ROM Version)

			Mode P		
	Operating Mode	MD2	MD1	MD0	On-Chip ROM
Mode 0	_	0	0	0	_
Mode 1				1	<u> </u>
Mode 2			1	0	
Mode 3				1	
Mode 4	Advanced expanded mode with on-chip ROM disabled	1	0	0	Disabled
Mode 5	Advanced expanded mode with on-chip ROM disabled	_		1	
Mode 6	Advanced expanded mode with on-chip ROM enabled	_	1	0	Enabled (192 kbytes/ 128 kbytes)*
Mode 7	Advanced single-chip mode	_		1	Enabled (192 kbytes/ 128 kbytes)*

Note: *The H8S/2635 has 192 kbytes of on-chip ROM. The H8S/2634 has 128 kbytes of on-chip ROM.

21C.4 Flash Memory Overview

21C.4.1 Features

The H8S/2635 has 192 kbytes of on-chip flash memory, or 192 kbytes or 128 kbytes of on-chip mask ROM. The features of the flash memory are summarized below.

- Four flash memory operating modes
 - Program mode
 - Erase mode
 - Program-verify mode
 - Erase-verify mode
- Programming/erase methods

The flash memory is programmed 128 bytes at a time. Block erase (in single-block units) can be performed. To erase the entire flash memory, each block must be erased in turn. Block erasing can be performed as required on 4 kbytes, 32 kbytes, and 64 kbytes blocks.

• Programming/erase times

The flash memory programming time is 10 ms (typ.) for simultaneous 128-byte programming, equivalent to 80 µs (typ.) per byte, and the erase time is 100 ms (typ.).

Reprogramming capability

The flash memory can be reprogrammed up to 100 times.

• On-board programming modes

There are two modes in which flash memory can be programmed/erased/verified on-board:

- Boot mode
- User program mode
- Automatic bit rate adjustment

With data transfer in boot mode, the LSI's bit rate can be automatically adjusted to match the transfer bit rate of the host.

Flash memory emulation in RAM

Flash memory programming can be emulated in real time by overlapping a part of RAM onto flash memory.

Protect modes

There are three protect modes, hardware, software, and error protection, which allow protected status to be designated for flash memory program/erase/verify operations.

Programmer mode

Flash memory can be programmed/erased in programmer mode, using a PROM programmer, as well as in on-board programming mode.

21C.4.2 Block Diagram

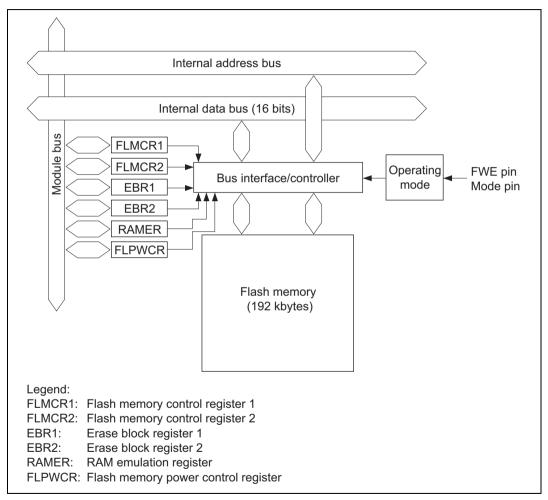
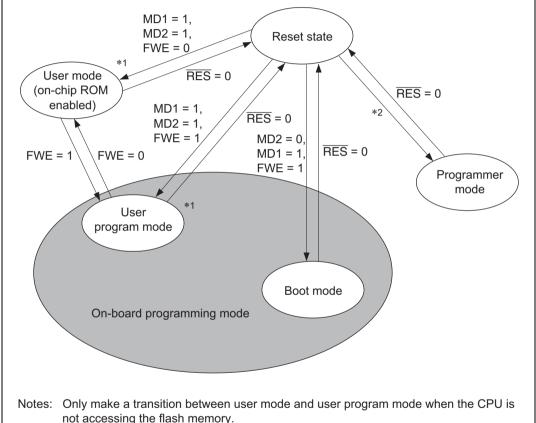



Figure 21C-2 Block Diagram of Flash Memory

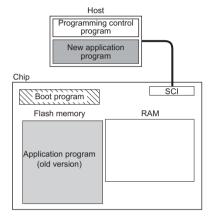
21C.4.3 Mode Transitions

When the mode pins and the FWE pin are set in the reset state and a reset-start is executed, the microcomputer enters an operating mode as shown in figure 21C-3. In user mode, flash memory can be read but not programmed or erased.

The boot, user program and programmer modes are provided as modes to write and erase the flash memory.

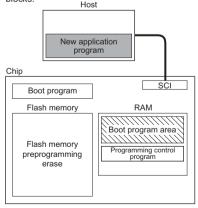
not accessing the flash memory.

- 1. RAM emulation possible
- 2. This LSI transits to programmer mode by using the dedicated PROM programmer.

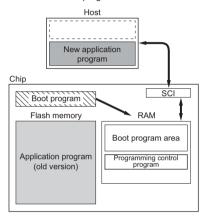

Figure 21C-3 Flash Memory State Transitions

21C.4.4 On-Board Programming Modes

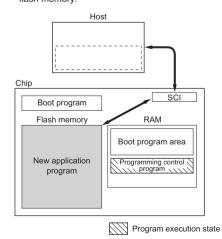
Boot Mode


1. Initial state

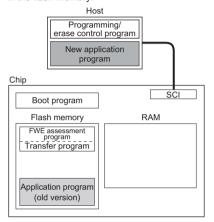
The old program version or data remains written in the flash memory. The user should prepare the programming control program and new application program beforehand in the host.

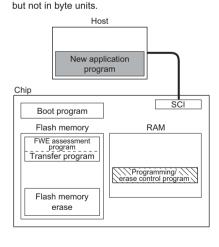


3. Flash memory initialization


The erase program in the boot program area (in RAM) is executed, and the flash memory is initialized (to H'FF). In boot mode, total flash memory erasure is performed, without regard to blocks.

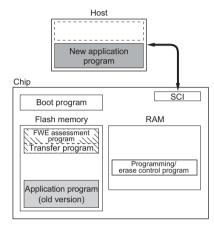
Programming control program transfer
 When boot mode is entered, the boot program in
 the chip (originally incorporated in the chip) is
 started and the programming control program in
 the host is transferred to RAM via SCI
 communication. The boot program required for
 flash memory erasing is automatically transferred
 to the RAM boot program area.


Writing new application program
 The programming control program transferred from the host to RAM is executed, and the new application program in the host is written into the flash memory.

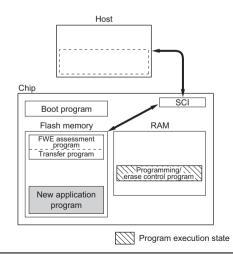

User Program Mode

1. Initial state

The FWE assessment program that confirms that user program mode has been entered, and the program that will transfer the programming/erase control program from flash memory to on-chip RAM should be written into the flash memory by the user beforehand. The programming/erase control program should be prepared in the host or in the flash memory.



3. Flash memory initialization The programming/erase program in RAM is executed, and the flash memory is initialized (to H'FF). Erasing can be performed in block units,



May 28, 2010

2. Programming/erase control program transfer When user program mode is entered, user software confirms this fact, executes transfer program in the flash memory, and transfers the programming/erase control program to RAM.

4. Writing new application program Next, the new application program in the host is written into the erased flash memory blocks. Do not write to unerased blocks.

21C.4.5 Flash Memory Emulation in RAM

Emulation should be performed in user mode or user program mode. When the emulation block set in RAMER is accessed while the emulation function is being executed, data written in the overlap RAM is read.

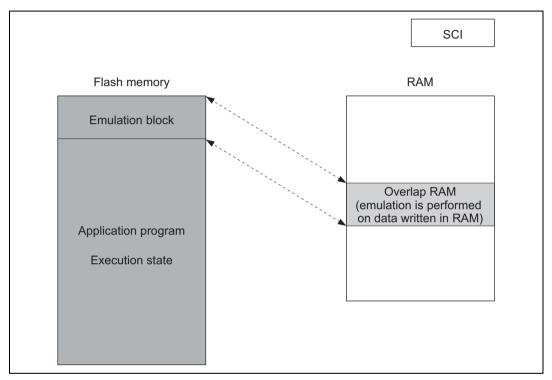


Figure 21C-4 Reading Overlap RAM Data in User Mode or User Program Mode

When overlap RAM data is confirmed, the RAMS bit is cleared, RAM overlap is released, and writes should actually be performed to the flash memory.

When the programming control program is transferred to RAM, ensure that the transfer destination and the overlap RAM do not overlap, as this will cause data in the overlap RAM to be rewritten.

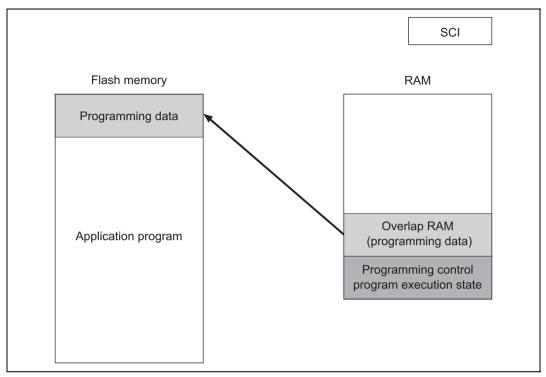


Figure 21C-5 Writing Overlap RAM Data in User Program Mode

21C.4.6 Differences between Boot Mode and User Program Mode

Table 21C-4 Differences between Boot Mode and User Program Mode

	Boot Mode	User Program Mode
Total erase	Yes	Yes
Block erase	No	Yes
Programming control program*	Program/program-verify	Erase/erase-verify
		Program/program-verify
		Emulation

Note: *To be provided by the user, in accordance with the recommended algorithm.

21C.4.7 Block Configuration

The H8S/2635 has 192 kbytes of flash memory, which is divided into two 64-kbyte blocks, one 32-kbyte block, and eight 4-kbyte blocks.

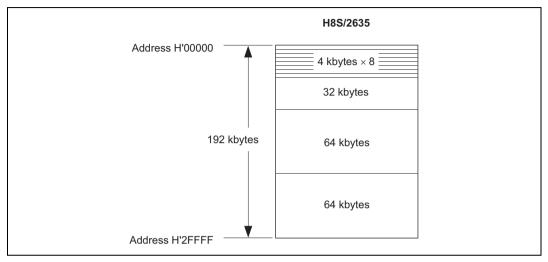


Figure 21C-6 Flash Memory Block Configuration

21C.5 Pin Configuration

The flash memory is controlled by means of the pins shown in table 21C-5.

Table 21C-5 Pin Configuration

May 28, 2010

Pin Name	Abbreviation	I/O	Function
Reset	RES	Input	Reset
Flash write enable	FWE	Input	Flash memory program/erase protection by hardware
Mode 2	MD2	Input	Sets MCU operating mode
Mode 1	MD1	Input	Sets MCU operating mode
Mode 0	MD0	Input	Sets MCU operating mode
Port F0	PF0	Input	Sets MCU operating mode in programmer mode
Port 16	P16	Input	Sets MCU operating mode in programmer mode
Port 14	P14	Input	Sets MCU operating mode in programmer mode
Transmit data	TxD1	Output	Serial transmit data output
Receive data	RxD1	Input	Serial receive data input

21C.6 Register Configuration

The registers used to control the on-chip flash memory when enabled are shown in table 21C-6.

Table 21C-6 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address*1
Flash memory control register 1	FLMCR1*4	R/W	H'00*2	H'FFA8
Flash memory control register 2	FLMCR2*4	R	H'00	H'FFA9
Erase block register 1	EBR1*4	R/W	H'00 ^{*3}	H'FFAA
Erase block register 2	EBR2*4	R/W	H'00*3	H'FFAB
RAM emulation register	RAMER*4	R/W	H'00	H'FEDB
Flash memory power control register	FLPWCR*4	R/W	H'00 ^{*3}	H'FFAC

Notes: 1. Lower 16 bits of the address.

- 2. When a high level is input to the FWE pin, the initial value is H'80.
- 3. When a low level is input to the FWE pin, or if a high level is input and the SWE1 bit in FLMCR1 is not set, these registers are initialized to H'00.
- 4. FLMCR1, FLMCR2, EBR1, and EBR2, RAMER, and FLPWCR are 8-bit registers. Use byte access on these registers.

21C.7 Register Descriptions

21C.7.1 Flash Memory Control Register 1 (FLMCR1)

FLMCR1 is an 8-bit register used for flash memory operating mode control. Program-verify mode or erase-verify mode for on-chip flash memory is entered by setting SWE bit to 1 when FWE = 1, then setting the PV or EV bit. Program mode for on-chip flash memory is entered by setting SWE bit to 1 when FWE = 1, then setting the PSU bit, and finally setting the P bit. Erase mode for on-chip flash memory is entered by setting SWE bit to 1 when FWE = 1, then setting the ESU bit, and finally setting the E bit. FLMCR1 is initialized by a reset, and in hardware standby mode and software standby mode. Its initial value is H'80 when a high level is input to the FWE pin, and H'00 when a low level is input. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

Writes are enabled only in the following cases: Writes to bit SWE of FLMCR1 enabled when FWE = 1, to bits ESU, PSU, EV, and PV when FWE = 1 and SWE = 1, to bit E when FWE = 1, SWE = 1 and ESU = 1, and to bit P when FWE = 1, SWE = 1, and PSU = 1.

Bit:	7	6	5	4	3	2	1	0
	FWE	SWE	ESU	PSU	EV	PV	Е	Р
Initial value:	*	0	0	0	0	0	0	0
R/W:	R	R/W						

Note: * Determined by the state of the FWE pin.

Bit 7—Flash Write Enable Bit (FWE): Sets hardware protection against flash memory programming/erasing.

Bit 7

FWE	Description
0	When a low level is input to the FWE pin (hardware-protected state)
1	When a high level is input to the FWE pin

Bit 6—Software Write Enable Bit (SWE): This bit selects write and erase valid/invalid of the flash memory. Set it when setting bits 5 to 0, bits 7 to 0 of EBR1, and bits 2 to 0 of EBR2.

Bit 6

SWE	Description	
0	Writes disabled	(Initial value)
1	Writes enabled	
	[Setting condition]	
	When FWE = 1	

Bit 5—Erase Setup Bit (ESU): Prepares for a transition to erase mode. Set this bit to 1 before setting the E bit in FLMCR1 to 1. Do not set the SWE, PSU, EV, PV, E, or P bit at the same time.

Bit 5

ESU	Description	
0	Erase setup cleared	(Initial value)
1	Erase setup	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 4—Program Setup Bit (PSU): Prepares for a transition to program mode. Set this bit to 1 before setting the P bit in FLMCR1 to 1. Do not set the SWE, ESU, EV, PV, E, or P bit at the same time.

Bit 4

PSU	Description	
0	Program setup cleared	(Initial value)
1	Program setup	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 3—Erase-Verify (EV): Selects erase-verify mode transition or clearing. Do not set the SWE, ESU, PSU, PV, E, or P bit at the same time.

Bit 3

EV	Description	
0	Erase-verify mode cleared	(Initial value)
1	Transition to erase-verify mode	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 2—Program-Verify (PV): Selects program-verify mode transition or clearing. Do not set the SWE, ESU, PSU, EV, E, or P bit at the same time.

Bit 2

PV	Description	
0	Program-verify mode cleared	(Initial value)
1	Transition to program-verify mode	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 1—Erase (E): Selects erase mode transition or clearing. Do not set the SWE, ESU, PSU, EV, PV, or P bit at the same time.

Bit 1

E	Description	
0	Erase mode cleared	(Initial value)
1	Transition to erase mode	
	[Setting condition]	
	When FWE = 1, SWE = 1, and ESU = 1	

Bit 0—Program (P): Selects program mode transition or clearing. Do not set the SWE, PSU, ESU, EV, PV, or E bit at the same time.

D	:4	Λ
D	π	u

Р	Description	
0	Program mode cleared	(Initial value)
1	Transition to program mode	
	[Setting condition]	
	When FWE = 1, SWE = 1, and PSU = 1	

21C.7.2 Flash Memory Control Register 2 (FLMCR2)

FLMCR2 is an 8-bit register used for flash memory operating mode control. FLMCR2 is initialized to H'00 by a reset, and in hardware standby mode and software standby mode. When on-chip flash memory is disabled, a read will return H'00.

Bit:	7	6	5	4	3	2	1	0
	FLER	_	_	_	_		_	_
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	_	_	_	_	_	_	_

Note: FLMCR2 is a read-only register, and should not be written to.

Bit 7—Flash Memory Error (FLER): Indicates that an error has occurred during an operation on flash memory (programming or erasing). When FLER is set to 1, flash memory goes to the error-protection state.

Bit 7

FLER	Description					
0	Flash memory is operating normally	(Initial value)				
	Flash memory program/erase protection (error protection) is dis	abled				
	[Clearing condition]					
	Reset or hardware standby mode					
1	An error has occurred during flash memory programming/erasin	ıg				
	Flash memory program/erase protection (error protection) is enabled					
	[Setting condition]					
	 See section 21C.10.3, Error Protection 					

Bits 6 to 0—Reserved: These bits always read 0.

21C.7.3 Erase Block Register 1 (EBR1)

EBR1 is an 8-bit register that specifies the flash memory erase area block by block. EBR1 is initialized to H'00 by a reset, in hardware standby mode and software standby mode, when a low level is input to the FWE pin, and when a high level is input to the FWE pin and the SWE bit in FLMCR1 is not set. When a bit in EBR1 is set to 1, the corresponding block can be erased. Other blocks are erase-protected. Only one of the bits of EBR1 and EBR2 combined can be set. Do not set more than one bit, as this will cause all the bits in both EBR1 and EBR2 to be automatically cleared to 0. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

The flash memory erase block configuration is shown in table 21C-7.

Bit:	7	6	5	4	3	2	1	0
	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W							

21C.7.4 Erase Block Register 2 (EBR2)

EBR2 is an 8-bit register that specifies the flash memory erase area block by block. EBR2 is initialized to H'00 by a reset, in hardware standby mode and software standby mode, when a low level is input to the FWE pin. Bit 0 will be initialized to 0 if bit SWE of FLMCR1 is not set, even though a high level is input to pin FWE. When a bit in EBR2 is set to 1, the corresponding block can be erased. Other blocks are erase-protected. Only one of the bits of EBR1 and EBR2 combined can be set. Do not set more than one bit, as this will cause all the bits in both EBR1 and EBR2 to be automatically cleared to 0. On the H8S/2635 bits 7 to 3 are reserved. Only 0 may be written to these reserved bits. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

The flash memory erase block configuration is shown in table 21C-7.

Bit:	7	6	5	4	3	2	1	0
	_	_	_	_	_	EB10	EB9	EB8
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: Bits 7 to 3 are reserved and only 0 may be written to them.

Table 21C-7 Flash Memory Erase Blocks

Block (Size)	Addresses
EB0 (4 kbytes)	H'000000 to H'000FFF
EB1 (4 kbytes)	H'001000 to H'001FFF
EB2 (4 kbytes)	H'002000 to H'002FFF
EB3 (4 kbytes)	H'003000 to H'003FFF
EB4 (4 kbytes)	H'004000 to H'004FFF
EB5 (4 kbytes)	H'005000 to H'005FFF
EB6 (4 kbytes)	H'006000 to H'006FFF
EB7 (4 kbytes)	H'007000 to H'007FFF
EB8 (32 kbytes)	H'008000 to H'00FFFF
EB9 (64 kbytes)	H'010000 to H'01FFFF
EB10 (64 kbytes)	H'020000 to H'02FFFF

21C.7.5 RAM Emulation Register (RAMER)

RAMER specifies the area of flash memory to be overlapped with part of RAM when emulating real-time flash memory programming. RAMER initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode. RAMER settings should be made in user mode or user program mode.

Flash memory area divisions are shown in table 21C-8. To ensure correct operation of the emulation function, the ROM for which RAM emulation is performed should not be accessed immediately after this register has been modified. Normal execution of an access immediately after register modification is not guaranteed.

Bit:	7	6	5	4	3	2	1	0
	_	_	_	_	RAMS	RAM2	RAM1	RAM0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R/W	R/W	R/W	R/W	R/W	R/W

Bits 7 and 6—Reserved: These bits always read 0.

Bits 5 and 4—Reserved: Only 0 may be written to these bits.

Bit 3—RAM Select (RAMS): Specifies selection or non-selection of flash memory emulation in RAM. When RAMS = 1, all flash memory block are program/erase-protected.

Bit 3

May 28, 2010

RAMS	Description	
0	Emulation not selected	(Initial value)
	Program/erase-protection of all flash memory blocks is disabled	
1	Emulation selected	
	Program/erase-protection of all flash memory blocks is enabled	

Bits 2 to 0—Flash Memory Area Selection: These bits are used together with bit 3 to select the flash memory area to be overlapped with RAM. (See table 21C-8.)

Table 21C-8 Flash Memory Area Divisions

Addresses	Block Name	RAMS	RAM1	RAM1	RAM0
H'FFD800 to H'FFE7FF	RAM area 4 kbytes	0	*	*	*
H'000000 to H'000FFF	EB0 (4 kbytes)	1	0	0	0
H'001000 to H'001FFF	EB1 (4 kbytes)	1	0	0	1
H'002000 to H'002FFF	EB2 (4 kbytes)	1	0	1	0
H'003000 to H'003FFF	EB3 (4 kbytes)	1	0	1	1
H'004000 to H'004FFF	EB4 (4 kbytes)	1	1	0	0
H'005000 to H'005FFF	EB5 (4 kbytes)	1	1	0	1
H'006000 to H'006FFF	EB6 (4 kbytes)	1	1	1	0
H'007000 to H'007FFF	EB7 (4 kbytes)	1	1	1	1

*: Don't care

21C.7.6 Flash Memory Power Control Register (FLPWCR)

Bit:	7	6	5	4	3	2	1	0
	PDWND	_	_	_	_	_	_	_
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R	R	R	R	R	R	R

FLPWCR enables or disables a transition to the flash memory power-down mode when the LSI switches to subactive mode.

Bit 7—Power-Down Disable (PDWND): The subactive mode is not available in versions other than the U-mask and W-mask versions.

Only 0 should be written to this bit in the case of versions other than the U-mask and W-mask versions.

See section 21.B.14, Flash Memory and Power-Down States, for more information.

Bit 7

PDWND	Description	
0	Transition to flash memory power-down mode enabled	(Initial value)
1	Transition to flash memory power-down mode disabled	

Bits 6 to 0—Reserved: These bits always read 0.

May 28, 2010

21C.8 On-Board Programming Modes

When pins are set to on-board programming mode and a reset-start is executed, a transition is made to the on-board programming state in which program/erase/verify operations can be performed on the on-chip flash memory. There are two on-board programming modes: boot mode and user program mode. The pin settings for transition to each of these modes are shown in table 21C-9. For a diagram of the transitions to the various flash memory modes, see figure 21C-3.

Table 21C-9 Setting On-Board Programming Modes

Mode		FWE	MD2	MD1	MD0	
Boot mode	Expanded mode	1	0	1	0	_
	Single-chip mode		0	1	1	
User program mode	Expanded mode	1	1	1	0	
	Single-chip mode		1	1	1	

21C.8.1 Boot Mode

When boot mode is used, the flash memory programming control program must be prepared in the host beforehand. The SCI channel to be used is set to asynchronous mode.

When a reset-start is executed after the H8S/2635 Group's pins have been set to boot mode, the boot program built into the H8S/2635 Group are started and the programming control program prepared in the host is serially transmitted to the H8S/2635 Group via the SCI. In the H8S/2635 Group, the programming control program received via the SCI is written into the programming control program area in on-chip RAM. After the transfer is completed, control branches to the start address of the programming control program area and the programming control program execution state is entered (flash memory programming is performed).

The transferred programming control program must therefore include coding that follows the programming algorithm given later.

The system configuration in boot mode is shown in figure 21C-7, and the boot mode execution procedure in figure 21C-8.

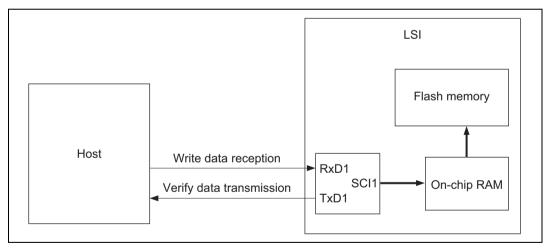


Figure 21C-7 System Configuration in Boot Mode

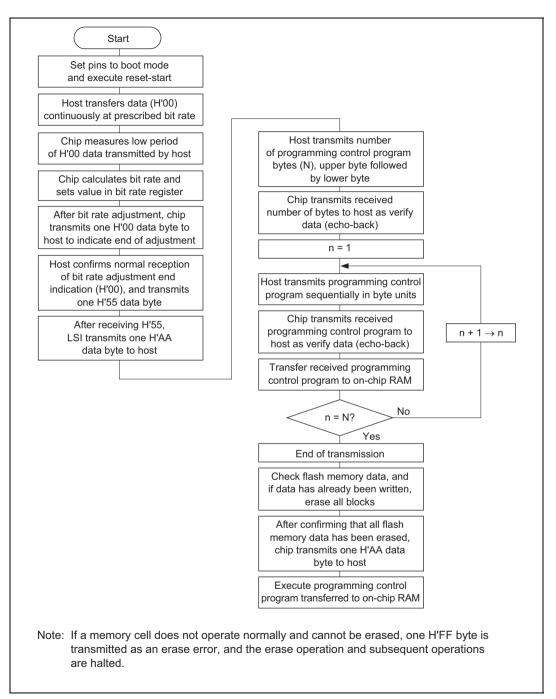
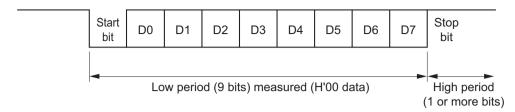



Figure 21C-8 Boot Mode Execution Procedure

Automatic SCI Bit Rate Adjustment

When boot mode is initiated, the LSI measures the low period of the asynchronous SCI communication data (H'00) transmitted continuously from the host. The SCI transmit/receive format should be set as follows: 8-bit data, 1 stop bit, no parity. The LSI calculates the bit rate of the transmission from the host from the measured low period, and transmits one H'00 byte to the host to indicate the end of bit rate adjustment. The host should confirm that this adjustment end indication (H'00) has been received normally, and transmit one H'55 byte to the LSI. If reception cannot be performed normally, initiate boot mode again (reset), and repeat the above operations. Depending on the host's transmission bit rate and the LSI's system clock frequency, there will be a discrepancy between the bit rates of the host and the LSI. Set the host transfer bit rate at 4,800, 9,600 or 19,200 bps to operate the SCI properly.

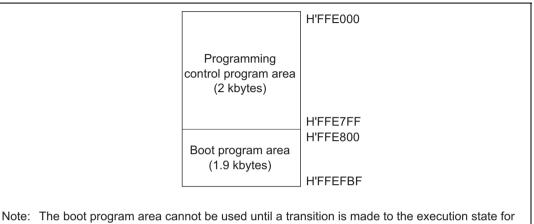

Table 21C-10 shows host transfer bit rates and system clock frequencies for which automatic adjustment of the LSI bit rate is possible. The boot program should be executed within this system clock range.

Table 21C-10 System Clock Frequencies for which Automatic Adjustment of LSI Bit Rate Is Possible

Host Bit Rate	System Clock Frequency for which Automatic Adjustment of LSI Bit Rate Is Possible
4,800 bps	4 to 20 MHz
9,600 bps	8 to 20 MHz
19,200 bps	16 to 20 MHz

Note: The system clock frequency used in boot mode is generated by an external crystal oscillator element. PLL frequency multiplication is not used.

On-Chip RAM Area Divisions in Boot Mode: In boot mode, the RAM area is divided into an area used by the boot program and an area to which the programming control program is transferred via the SCI, as shown in figure 21C-9. The boot program area cannot be used until the execution state in boot mode switches to the programming control program transferred from the host.

the programming control program transferred to RAM. Note also that the boot program remains in this area of the on-chip RAM even after control branches to the programming control program.

Figure 21C-9 RAM Areas in Boot Mode

Notes on Use of Boot Mode:

- When the chip comes out of reset in boot mode, it measures the low-level period of the input at the SCI's RxD1 pin. The reset should end with RxD1 high. After the reset ends, it takes approximately 100 states before the chip is ready to measure the low-level period of the RxD1 pin.
- In boot mode, if any data has been programmed into the flash memory (if all data is not 1), all
 flash memory blocks are erased. Boot mode is for use when user program mode is unavailable,
 such as the first time on-board programming is performed, or if the program activated in user
 program mode is accidentally erased.
- Interrupts cannot be used while the flash memory is being programmed or erased.
- The RxD1 and TxD1 pins should be pulled up on the board.

• Before branching to the programming control program (RAM area H'FFE000), the chip terminates transmit and receive operations by the on-chip SCI (channel 1) (by clearing the RE and TE bits in SCR to 0), but the adjusted bit rate value remains set in BRR. The transmit data output pin, TxD1, goes to the high-level output state (P33DDR = 1, P33DR = 1).

The contents of the CPU's internal general registers are undefined at this time, so these registers must be initialized immediately after branching to the programming control program. In particular, since the stack pointer (SP) is used implicitly in subroutine calls, etc., a stack area must be specified for use by the programming control program.

The initial values of other on-chip registers are not changed.

Boot mode can be entered by making the pin settings shown in table 21C-9 and executing a
reset-start.

Boot mode can be cleared by driving the reset pin low, waiting at least 20 states, then setting the FWE pin and mode pins, and executing reset release*1. Boot mode can also be cleared by a WDT overflow reset.

Do not change the mode pin input levels in boot mode, and do not drive the FWE pin low while the boot program is being executed or while flash memory is being programmed or erased*².

• If the mode pin input levels are changed (for example, from low to high) during a reset, the state of ports with multiplexed address functions and bus control output pins (AS, RD, HWR) will change according to the change in the microcomputer's operating mode *3.

Therefore, care must be taken to make pin settings to prevent these pins from becoming output signal pins during a reset, or to prevent collision with signals outside the microcomputer.

- Notes: 1. Mode pin and FWE pin input must satisfy the mode programming setup time ($t_{MDS} = 4$ states) with respect to the reset release timing.
 - 2. For precautions on applying and disconnecting FWE, see section 21C.15, Flash Memory Programming and Erasing Precautions.
 - 3. See appendix D, Pin States.

21C.8.2 User Program Mode

When set to user program mode, the chip can program and erase its flash memory by executing a user program/erase control program. Therefore, on-board reprogramming of the on-chip flash memory can be carried out by providing on-board means of FWE control and supply of programming data, and storing a program/erase control program in part of the program area as necessary.

To select user program mode, select a mode that enables the on-chip flash memory (mode 6 or 7), and apply a high level to the FWE pin. In this mode, on-chip supporting modules other than flash memory operate as they normally would in modes 6 and 7.

The flash memory itself cannot be read while the SWE bit is set to 1 to perform programming or erasing, so the control program that performs programming and erasing should be run in on-chip RAM or external memory. If the program is to be located in external memory, the instruction for writing to flash memory, and the following instruction, should be placed in on-chip RAM.

Figure 21C-10 shows the procedure for executing the program/erase control program when transferred to on-chip RAM.

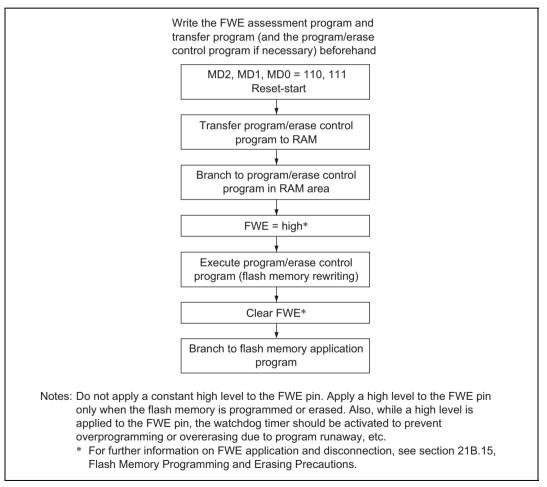


Figure 21C-10 User Program Mode Execution Procedure

21C.9 Programming/Erasing Flash Memory

A software method, using the CPU, is employed to program and erase flash memory in the on-board programming modes. There are four flash memory operating modes: program mode, erase mode, program-verify mode, and erase-verify mode. Transitions to these modes are made by setting the PSU, ESU, P, E, PV, and EV bits in FLMCR1 for on-chip flash memory.

The flash memory cannot be read while it is being written or erased. The flash memory cannot be read while being programmed or erased. Therefore, the program (user program) that controls flash memory programming/erasing should be located and executed in on-chip RAM or external memory. If the program is to be located in external memory, the instruction for writing to flash memory, and the following instruction, should be placed in on-chip RAM. Also ensure that the DTC is not activated before or after execution of the flash memory write instruction.

In the following operation descriptions, wait times after setting or clearing individual bits in FLMCR1 are given as parameters; for details of the wait times, see section 24.2.7 and 24.3.7, Flash Memory Characteristics.

- Notes: 1. Operation is not guaranteed if bits SWE, ESU, PSU, EV, PV, E, and P of FLMCR1 are set/reset by a program in flash memory in the corresponding address areas.
 - 2. When programming or erasing, set FWE to 1 (programming/erasing will not be executed if FWE = 0).
 - 3. Programming should be performed in the erased state. Do not perform additional programming on previously programmed addresses.

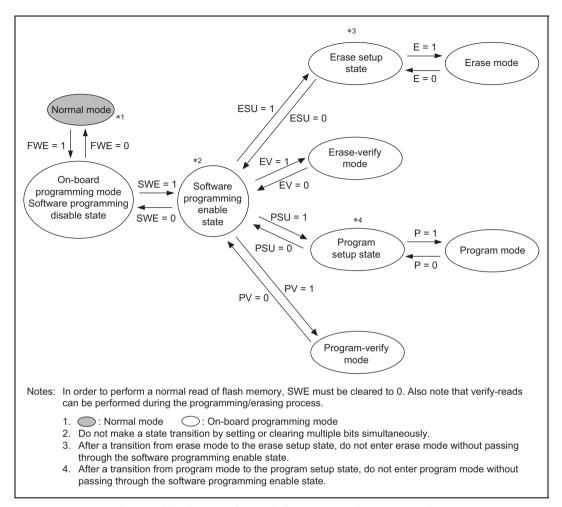


Figure 21C-11 FLMCR1 Bit Settings and State Transitions

21C.9.1 Program Mode

When writing data or programs to flash memory, the program/program-verify flowchart shown in figure 21C-12 should be followed. Performing programming operations according to this flowchart will enable data or programs to be written to flash memory without subjecting the device to voltage stress or sacrificing program data reliability. Programming should be carried out 128 bytes at a time.

The wait times after bits are set or cleared in the flash memory control register 1 (FLMCR1) and the maximum number of programming operations (N) are shown in section 24.2.7, 24.3.7, and 24.4.7, Flash Memory Characteristics.

Following the elapse of (t_{sswe}) µs or more after the SWE bit is set to 1 in FLMCR1, 128-byte data is written consecutively to the write addresses. The lower 8 bits of the first address written to must be H'00 and H'80, 128 consecutive byte data transfers are performed. The program address and program data are latched in the flash memory. A 128-byte data transfer must be performed even if writing fewer than 128 bytes; in this case, H'FF data must be written to the extra addresses.

Next, the watchdog timer (WDT) is set to prevent overprogramming due to program runaway, etc. Set a value greater than $(t_{spsu} + t_{sp} + t_{cp} + t_{cpsu})$ μs as the WDT overflow period. Preparation for entering program mode (program setup) is performed next by setting the PSU bit in FLMCR1. The operating mode is then switched to program mode by setting the P bit in FLMCR1 after the elapse of at least (t_{spsu}) μs . The time during which the P bit is set is the flash memory programming time. Make a program setting so that the time for one programming operation is within the range of (t_{sp}) μs .

The wait time after P bit setting must be changed according to the degree of progress through the programming operation. For details see "Notes on Program/Program-Verify Procedure."

21C.9.2 Program-Verify Mode

In program-verify mode, the data written in program mode is read to check whether it has been correctly written in the flash memory.

After the elapse of the given programming time, clear the P bit in FLMCR1, then wait for at least (t_{cp}) µs before clearing the PSU bit to exit program mode. After exiting program mode, the watchdog timer setting is also cleared. The operating mode is then switched to program-verify mode by setting the PV bit in FLMCR1. Before reading in program-verify mode, a dummy write of H'FF data should be made to the addresses to be read. The dummy write should be executed after the elapse of (t_{spv}) µs or more. When the flash memory is read in this state (verify data is read in 16-bit units), the data at the latched address is read. Wait at least (t_{spvr}) µs after the dummy write before performing this read operation. Next, the originally written data is compared with the verify data, and reprogram data is computed (see figure 21C-12) and transferred to RAM. After verification of 128 bytes of data has been completed, exit program-verify mode, wait for at least (t_{cpv}) µs, then clear the SWE bit in FLMCR1. If reprogramming is necessary, set program mode again, and repeat the program/program-verify sequence as before. The maximum number of repetitions of the program/program-verify sequence is indicated by the maximum programming count (N). Leave a wait time of at least (t_{cswe}) µs after clearing SWE.

Notes on Program/Program-Verify Procedure

- 1. In order to perform 128-byte-unit programming, the lower 8 bits of the write start address must be H'00 or H'80.
- 2. When performing continuous writing of 128-byte data to flash memory, byte-unit transfer should be used.
 - 128-byte data transfer is necessary even when writing fewer than 128 bytes of data. Write H'FF data to the extra addresses.
- 3. Verify data is read in word units.
- 4. The write pulse is applied and a flash memory write executed while the P bit in FLMCR1 is set. In the chip, write pulses should be applied as follows in the program/program-verify procedure to prevent voltage stress on the device and loss of write data reliability.
 - a. After write pulse application, perform a verify-read in program-verify mode and apply a write pulse again for any bits read as 1 (reprogramming processing). When all the 0-write bits in the 128-byte write data are read as 0 in the verify-read operation, the program/program-verify procedure is completed. In the chip, the number of loops in reprogramming processing is guaranteed not to exceed the maximum value of the maximum programming count (N).

b. After write pulse application, a verify-read is performed in program-verify mode, and programming is judged to have been completed for bits read as 0. The following processing is necessary for programmed bits.

When programming is completed at an early stage in the program/program-verify procedure:

If programming is completed in the 1st to 6th reprogramming processing loop, additional programming should be performed on the relevant bits. Additional programming should only be performed on bits which first return 0 in a verify-read in certain reprogramming processing.

When programming is completed at a late stage in the program/program-verify procedure: If programming is completed in the 7th or later reprogramming processing loop, additional programming is not necessary for the relevant bits.

- c. If programming of other bits is incomplete in the 128 bytes, reprogramming processing should be executed. If a bit for which programming has been judged to be completed is read as 1 in a subsequent verify-read, a write pulse should again be applied to that bit.
- 5. The period for which the P bit in FLMCR1 is set (the write pulse width) should be changed according to the degree of progress through the program/program-verify procedure. For detailed wait time specifications, see section 24.2.7, 24.3.7, and 24.4.7, Flash Memory Characteristics.

Item	Symbol	Item	Symbol
Wait time after	·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·	When reprogramming loop count (n) is 1 to 6	t _{sp30}
P bit setting		When reprogramming loop count (n) is 7 or more	t _{sp200}
		In case of additional programming processing*	t _{sp10}

Note: * Additional programming processing is necessary only when the reprogramming loop count (n) is 1 to 6.

6. The program/program-verify flowchart for the H8S/2638, H8S/2639, and H8S/2630 are shown in figure 21C-12.

To cover the points noted above, bits on which reprogramming processing is to be executed, and bits on which additional programming is to be executed, must be determined as shown below.

Since reprogram data and additional-programming data vary according to the progress of the programming procedure, it is recommended that the following data storage areas (128 bytes each) be provided in RAM.

Reprogram Data Computation Table

(D)	Result of Verify-Read after Write Pulse Application (V)	(X) Result of Operation	Comments
0	0	1	Programming completed: reprogramming processing not to be executed
0	1	0	Programming incomplete: reprogramming processing to be executed
1	0	1	_
1	1	1	Still in erased state: no action

Legend:

(D): Source data of bits on which programming is executed

(X): Source data of bits on which reprogramming is executed

Additional-Programming Data Computation Table

(X')	Result of Verify-Read after Write Pulse Application (V)	(Y) Result of Operation	Comments
0	0	0	Programming by write pulse application judged to be completed: additional programming processing to be executed
0	1	1	Programming by write pulse application incomplete: additional programming processing not to be executed
1	0	1	Programming already completed: additional programming processing not to be executed
1	1	1	Still in erased state: no action

Legend:

(Y): Data of bits on which additional programming is executed

(X'): Data of bits on which reprogramming is executed in a certain reprogramming loop

7. It is necessary to execute additional programming processing during the course of the chip program/program-verify procedure. However, once 128-byte-unit programming is finished, additional programming should not be carried out on the same address area. When executing reprogramming, an erase must be executed first. Note that normal operation of reads, etc., is not guaranteed if additional programming is performed on addresses for which a program/program-verify operation has finished.

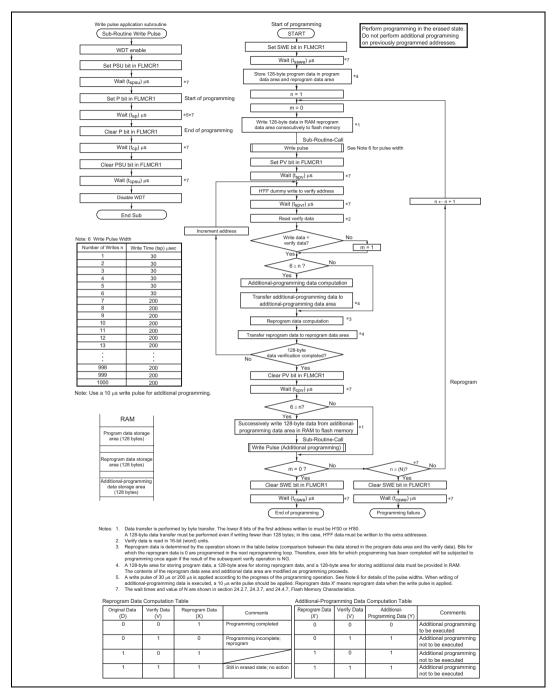


Figure 21C-12 Program/Program-Verify Flowchart

21C.9.3 Erase Mode

When erasing flash memory, the single-block erase flowchart shown in figure 21C-13 should be followed.

The wait times after bits are set or cleared in the flash memory control register 1 (FLMCR1) and the maximum number of erase operations (N) are shown in section 24.2.7 and 24.3.7, Flash Memory Characteristics.

To erase flash memory contents, make a 1-bit setting for the flash memory area to be erased in erase block register 1 and 2 (EBR1, EBR2) at least (t_{sswe}) μs after setting the SWE bit to 1 in FLMCR1. Next, the watchdog timer (WDT) is set to prevent overerasing due to program runaway, etc. Set a value of about 19.8 ms as the WDT overflow period. Preparation for entering erase mode (erase setup) is performed next by setting the ESU bit in FLMCR1. The operating mode is then switched to erase mode by setting the E bit in FLMCR1 after the elapse of at least (t_{sesu}) μs . The time during which the E bit is set is the flash memory erase time. Ensure that the erase time does not exceed (t_{se}) ms.

Note: With flash memory erasing, preprogramming (setting all memory data in the memory to be erased to all 0) is not necessary before starting the erase procedure.

21C.9.4 Erase-Verify Mode

In erase-verify mode, data is read after memory has been erased to check whether it has been correctly erased.

After the elapse of the fixed erase time, clear the E bit in FLMCR1, then wait for at least (t_{ce}) μs before clearing the ESU bit to exit erase mode. After exiting erase mode, the watchdog timer setting is also cleared. The operating mode is then switched to erase-verify mode by setting the EV bit in FLMCR1. Before reading in erase-verify mode, a dummy write of H'FF data should be made to the addresses to be read. The dummy write should be executed after the elapse of (t_{sev}) μs or more. When the flash memory is read in this state (verify data is read in 16-bit units), the data at the latched address is read. Wait at least (t_{sevr}) μs after the dummy write before performing this read operation. If the read data has been erased (all 1), a dummy write is performed to the next address, and erase-verify is performed. If the read data is unerased, set erase mode again, and repeat the erase/erase-verify sequence as before. The maximum number of repetitions of the erase/erase-verify sequence is indicated by the maximum erase count (N). When verification is completed, exit erase-verify mode, and wait for at least (t_{cev}) μs . If erasure has been completed on all the erase blocks, clear the SWE bit in FLMCR1, and leave a wait time of at least (t_{cswe}) μs .

If erasing multiple blocks, set a single bit in EBR1/EBR2 for the next block to be erased, and repeat the erase/erase-verify sequence as before.

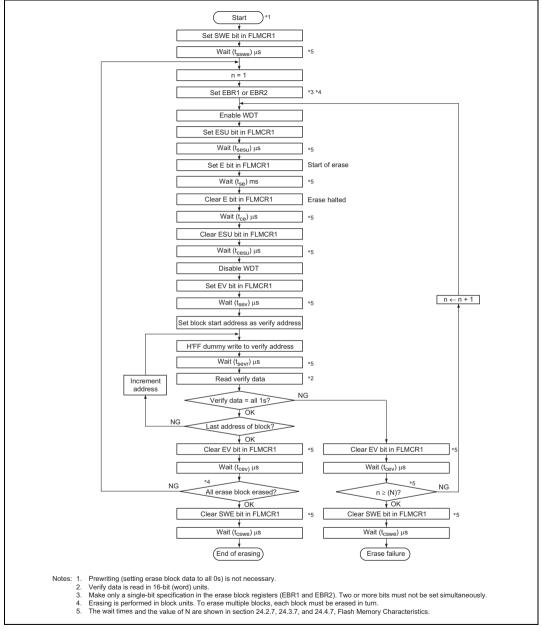


Figure 21C-13 Erase/Erase-Verify Flowchart

21C.10 Protection

There are three kinds of flash memory program/erase protection: hardware protection, software protection, and error protection.

21C.10.1 Hardware Protection

Hardware protection refers to a state in which programming/erasing of flash memory is forcibly disabled or aborted. Hardware protection is reset by settings in flash memory control register 1 (FLMCR1), flash memory control register 2 (FLMCR2), erase block register 1 (EBR1), and erase block register 2 (EBR2). The FLMCR1, FLMCR2, EBR1, and EBR2 settings are retained in the error-protected state (See table 21C-11).

Hardware Protection Table 21C-11

		Functions			
Item	Description	Program	Erase		
FWE pin protection	When a low level is input to the FWE pin, FLMCR1, FLMCR2, (except bit FLER) EBR and EBR2 are initialized, and the program/erase-protected state is entered.	Yes 1,	Yes		
Reset/standby protection	 In a reset (including a WDT reset) and in standby mode, FLMCR1, FLMCR2, EBR1, and EBR2 are initialized, and the program/erase-protected state is entered. 	Yes	Yes		
	 In a reset via the RES pin, the reset state is not entered unless the RES pin is held low until oscillation stabilizes after powering on. In the case of a reset during operation, hold the RES pin low for the RES pulse width specified in the AC Characteristics section. 				

21C.10.2 Software Protection

Software protection can be implemented by setting the SWE bit in FLMCR1, erase block register 1 (EBR1), erase block register 2 (EBR2), and the RAMS bit in the RAM emulation register (RAMER). When software protection is in effect, setting the P or E bit in flash memory control register 1 (FLMCR1), does not cause a transition to program mode or erase mode (See table 21C-12).

Table 21C-12 Software Protection

		Fu	nctions
Item	Description	Program	Erase
SWE bit protection	Setting bit SWE in FLMCR1 to 0 will place area on-chip flash memory in the program/ erase-protected state (Execute the program in the on-chip RAM, external memory).	Yes	Yes
Block specification protection	 Erase protection can be set for individual blocks by settings in erase block register 1 (EBR1) and erase block register 2 (EBR2). Setting EBR1 and EBR2 to H'00 places all 	_	Yes
	blocks in the erase-protected state.		
Emulation protection	Setting the RAMS bit to 1 in the RAM emulation register (RAMER) places all block in the program/erase-protected state.	Yes s	Yes

21C.10.3 Error Protection

In error protection, an error is detected when chip runaway occurs during flash memory programming/erasing, or operation is not performed in accordance with the program/erase algorithm, and the program/erase operation is aborted. Aborting the program/erase operation prevents damage to the flash memory due to overprogramming or overerasing.

If the chip malfunctions during flash memory programming/erasing, the FLER bit is set to 1 in FLMCR2 and the error protection state is entered. The FLMCR1, FLMCR2, EBR1, and EBR2 settings are retained, but program mode or erase mode is aborted at the point at which the error occurred. Program mode or erase mode cannot be re-entered by re-setting the P or E bit. However, PV and EV bit setting is enabled, and a transition can be made to verify mode.

FLER bit setting conditions are as follows:

- 1. When the flash memory of the relevant address area is read during programming/erasing (including vector read and instruction fetch)
- 2. Immediately after exception handling (excluding a reset) during programming/erasing
- 3. When a SLEEP instruction (including software standby) is executed during programming/erasing

Error protection is released only by a reset and in hardware standby mode.

Figure 21C-14 shows the flash memory state transition diagram.

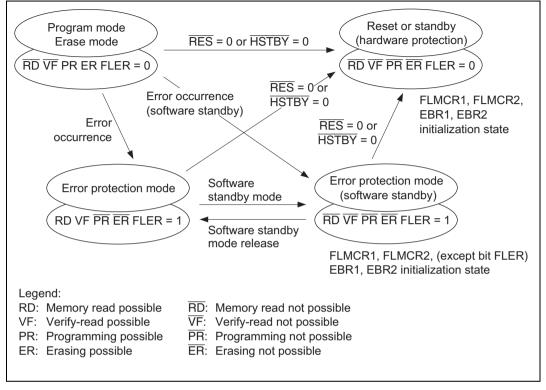


Figure 21C-14 Flash Memory State Transitions

21C.11 Flash Memory Emulation in RAM

Making a setting in the RAM emulation register (RAMER) enables part of RAM to be overlapped onto the flash memory area so that data to be written to flash memory can be emulated in RAM in real time. After the RAMER setting has been made, accesses cannot be made from the flash memory area or the RAM area overlapping flash memory. Emulation can be performed in user mode and user program mode. Figure 21C-15 shows an example of emulation of real-time flash memory programming.

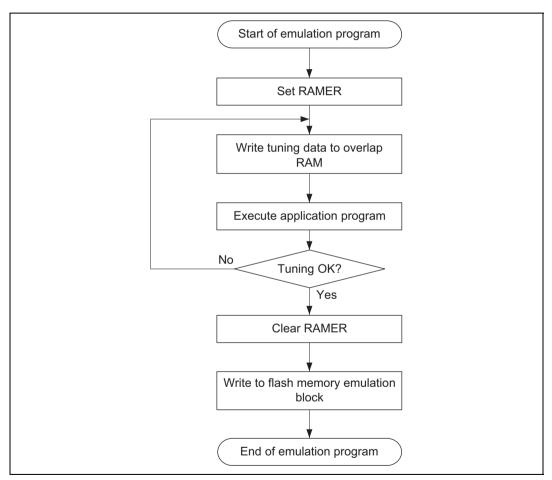


Figure 21C-15 Flowchart for Flash Memory Emulation in RAM

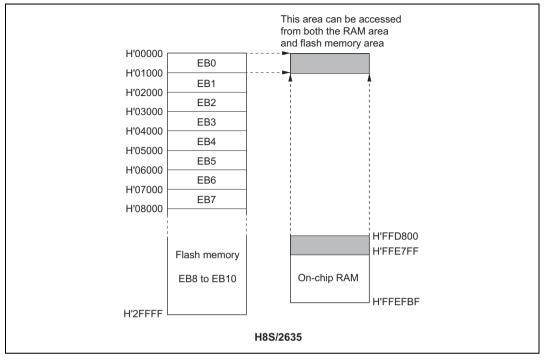


Figure 21C-16 Example of RAM Overlap Operation

Example in which Flash Memory Block Area EB0 is Overlapped

- 1. Set bits RAMS, RAM2 to RAM0 in RAMER to 1, 0, 0, 0, to overlap part of RAM onto the area (EB0) for which real-time programming is required.
- 2. Real-time programming is performed using the overlapping RAM.
- 3. After the program data has been confirmed, the RAMS bit is cleared, releasing RAM overlap.
- 4. The data written in the overlapping RAM is written into the flash memory space (EB0).
- Notes: 1. When the RAMS bit is set to 1, program/erase protection is enabled for all blocks regardless of the value of RAM2 to RAM0 (emulation protection). In this state, setting the P or E bit in flash memory control register 1 (FLMCR1), will not cause a transition to program mode or erase mode. When actually programming or erasing a flash memory area, the RAMS bit should be cleared to 0.
 - 2. A RAM area cannot be erased by execution of software in accordance with the erase algorithm while flash memory emulation in RAM is being used.
 - 3. Block area EB0 contains the vector table. When performing RAM emulation, the vector table is needed in the overlap RAM.

21C.12 Interrupt Handling when Programming/Erasing Flash Memory

All interrupts, including NMI interrupt is disabled when flash memory is being programmed or erased (when the P or E bit is set in FLMCR1), and while the boot program is executing in boot mode*1, to give priority to the program or erase operation. There are three reasons for this:

- 1. Interrupt during programming or erasing might cause a violation of the programming or erasing algorithm, with the result that normal operation could not be assured.
- 2. In the interrupt exception handling sequence during programming or erasing, the vector would not be read correctly*2, possibly resulting in MCU runaway.
- 3. If interrupt occurred during boot program execution, it would not be possible to execute the normal boot mode sequence.

For these reasons, in on-board programming mode alone there are conditions for disabling interrupt, as an exception to the general rule. However, this provision does not guarantee normal erasing and programming or MCU operation. All requests, including NMI interrupt, must therefore be restricted inside and outside the MCU when programming or erasing flash memory. NMI interrupt is also disabled in the error-protection state while the P or E bit remains set in FLMCR1.

- Notes: 1. Interrupt requests must be disabled inside and outside the MCU until the programming control program has completed programming.
 - 2. The vector may not be read correctly in this case for the following two reasons:
 - If flash memory is read while being programmed or erased (while the P or E bit is set in FLMCR1), correct read data will not be obtained (undetermined values will be returned).
 - If the interrupt entry in the vector table has not been programmed yet, interrupt exception handling will not be executed correctly.

21C.13 Programmer Mode

In programmer mode, a PROM programmer can be used to perform programming/erasing via a socket adapter, just as for a discrete flash memory. Use a PROM programmer that supports the Renesas Electronics's 256-kbyte flash memory on-chip MCU device type (FZTAT256V5A).

21C.13.1 Socket Adapter and Memory Map

In programmer mode in which the PROM writer is used, reading from memory (verification), writing, and initializing the flash memory (erasing all of its contents) are enabled. At this time, a dedicated conversion socket adapter must be attached to a general-purpose PROM writer. Table 21C-13 shows the types of the socket adapters. For programmer mode on this LSI, one of the socket adapters listed in table 21C-13 should be used.

Table 21C-13 Type of Socket Adapter

Part No.	Package Type	Socket Adapter Type	Manufacturer
HD64F2635F	128 pin QFP	ME2636ESHF1H	Minato Electronics Inc.
	(FP-128B)	HF2636Q128D4001	Data I/O Japan Corporation

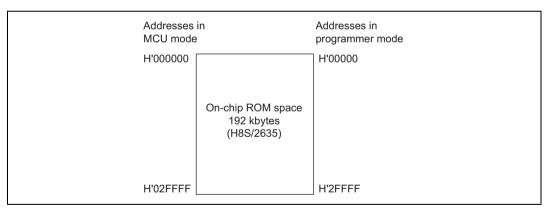


Figure 21C-17 On-Chip ROM Memory Map

21C.14 Flash Memory and Power-Down States

In addition to its normal operating state, the flash memory has power-down states in which power consumption is reduced by halting part or all of the internal power supply circuitry.

There are three flash memory operating states:

- (1) Normal operating mode: The flash memory can be read and written to.
- (2) Power-down mode: Part of the power supply circuitry is halted, and the flash memory can be read when the LSI is operating on the subclock.
- (3) Standby mode: All flash memory circuits are halted, and the flash memory cannot be read or written to.

States (2) and (3) are flash memory power-down states. Table 21C-14 shows the correspondence between the operating states of the LSI and the flash memory.

Table 21C-14 Flash Memory Operating States

LSI Operating State	Flash Memory Operating State
High-speed mode	Normal mode (read/write)
Medium-speed mode	
Sleep mode	
Subactive mode	When PDWND = 0: Power-down mode (read-only)
Subsleep mode	When PDWND = 1: Normal mode (read-only)
Watch mode	Standby mode
Software standby mode	
Hardware standby mode	

21C.14.1 Notes on Power-Down States

- 1. When the flash memory is in a power-down state, part or all of the internal power supply circuitry is halted. Therefore, a power supply circuit stabilization period must be provided when returning to normal operation. When the flash memory returns to its normal operating state from a power-down state, bits STS2 to STS0 in SBYCR must be set to provide a wait time of at least 20 µs (power supply stabilization time), even if an oscillation stabilization period is not necessary.
- 2. In a power-down state, FLMCR1, FLMCR2, EBR1, EBR2, RAMER, and FLPWCR cannot be read from or written to.

21C.15 Flash Memory Programming and Erasing Precautions

Precautions concerning the use of on-board programming mode, the RAM emulation function, and programmer mode are summarized below.

Use the specified voltages and timing for programming and erasing: Applied voltages in excess of the rating can permanently damage the device. Use a PROM programmer that supports the Renesas microcomputer device type* with 256-kbyte on-chip flash memory.

Only use the specified socket adapter. Failure to observe these points may result in damage to the device.

Note: * The H8S/2635 is Renesas Electronics microcomputer devices with 256 kbytes of on-chip flash memory. (The H8S/2635 has 192 kbytes of PROM. The area from H'30000 to H'3FFFF should be programmed as H'FF.)

Powering on and off (see figures 21C-18 to 21C-20): Do not apply a high level to the FWE pin until V_{CC} has stabilized. Also, drive the FWE pin low before turning off V_{CC} .

When applying or disconnecting V_{CC} power, fix the FWE pin low and place the flash memory in the hardware protection state.

The power-on and power-off timing requirements should also be satisfied in the event of a power failure and subsequent recovery.

FWE application/disconnection (see figures 21C-18 to 21C-20): FWE application should be carried out when MCU operation is in a stable condition. If MCU operation is not stable, fix the FWE pin low and set the protection state.

The following points must be observed concerning FWE application and disconnection to prevent unintentional programming or erasing of flash memory:

- Apply FWE when the V_{CC} voltage has stabilized within its rated voltage range.
 Apply FWE when oscillation has stabilized (after the elapse of the oscillation stabilization time).
- In boot mode, apply and disconnect FWE during a reset.
- In user program mode, FWE can be switched between high and low level regardless of the reset state. FWE input can also be switched during execution of a program in flash memory.
- Do not apply FWE if program runaway has occurred.
- Disconnect FWE only when the SWE, ESU, PSU, EV, PV, P, and E bits in FLMCR1 are cleared.

Make sure that the SWE, ESU, PSU, EV, PV, P, and E bits are not set by mistake when applying or disconnecting FWE.

Do not apply a constant high level to the FWE pin: Apply a high level to the FWE pin only when programming or erasing flash memory. A system configuration in which a high level is constantly applied to the FWE pin should be avoided. Also, while a high level is applied to the FWE pin, the watchdog timer should be activated to prevent overprogramming or overerasing due to program runaway, etc.

Use the recommended algorithm when programming and erasing flash memory: The recommended algorithm enables programming and erasing to be carried out without subjecting the device to voltage stress or sacrificing program data reliability. When setting the P or E bit in FLMCR1, the watchdog timer should be set beforehand as a precaution against program runaway, etc.

Do not set or clear the SWE bit during execution of a program in flash memory: Wait for at least $100~\mu s$ after clearing the SWE bit before executing a program or reading data in flash memory. When the SWE bit is set, data in flash memory can be rewritten, but when SWE = 1, flash memory can only be read in program-verify or erase-verify mode. Access flash memory only for verify operations (verification during programming/erasing). Also, do not clear the SWE bit during programming, erasing, or verifying.

Similarly, when using the RAM emulation function while a high level is being input to the FWE pin, the SWE bit must be cleared before executing a program or reading data in flash memory.

However, the RAM area overlapping flash memory space can be read and written to regardless of whether the SWE bit is set or cleared.

Do not use interrupts while flash memory is being programmed or erased: All interrupt requests, including NMI, should be disabled during FWE application to give priority to program/erase operations.

Do not perform additional programming. Erase the memory before reprogramming: In onboard programming, perform only one programming operation on a 128-byte programming unit block. In programmer mode, too, perform only one programming operation on a 128-byte programming unit block. Programming should be carried out with the entire programming unit block erased.

Before programming, check that the chip is correctly mounted in the PROM programmer: Overcurrent damage to the device can result if the index marks on the PROM programmer socket, socket adapter, and chip are not correctly aligned.

Do not touch the socket adapter or chip during programming: Touching either of these can cause contact faults and write errors.

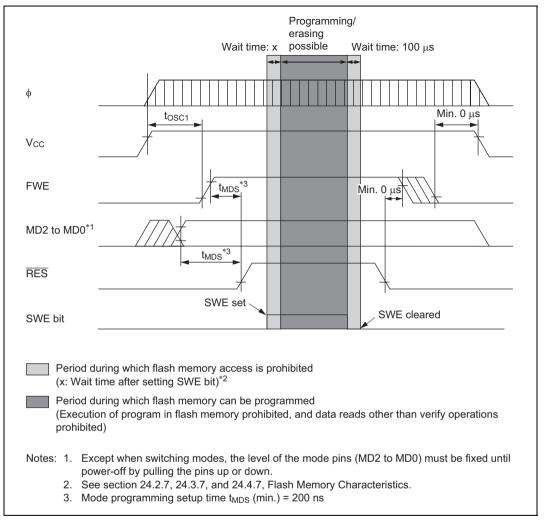


Figure 21C-18 Power-On/Off Timing (Boot Mode)

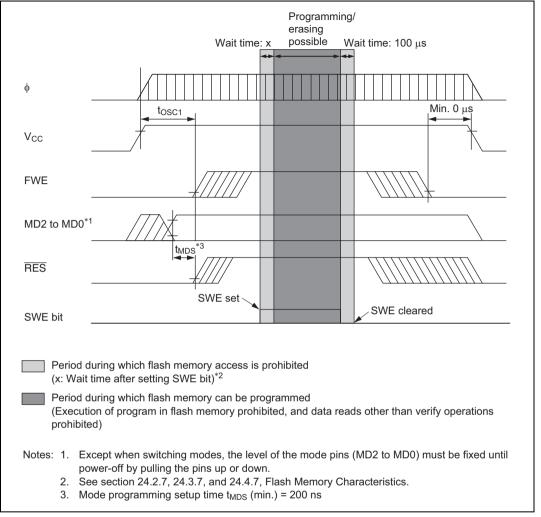


Figure 21C-19 Power-On/Off Timing (User Program Mode)

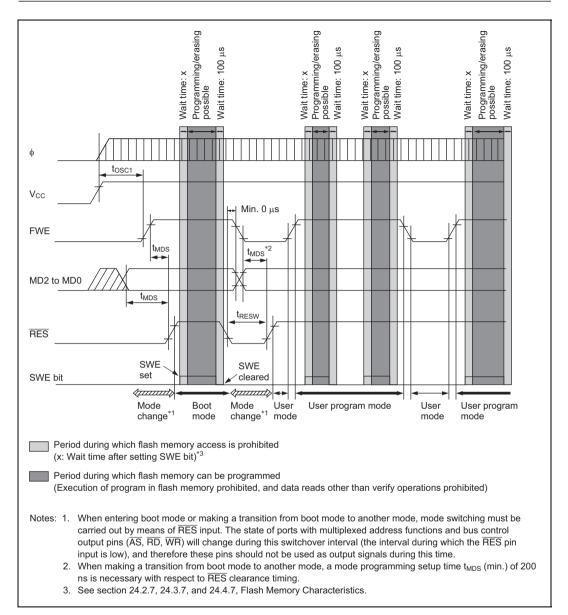


Figure 21C-20 Mode Transition Timing (Example: Boot Mode → User Mode ↔ User Program Mode)

21C.16 Note on Switching from F-ZTAT Version to Mask ROM Version

The mask ROM version does not have the internal registers for flash memory control that are provided in the F-ZTAT version. Table 21C-15 lists the registers that are present in the F-ZTAT version but not in the mask ROM version. If a register listed in table 21C-15 is read in the mask ROM version, an undefined value will be returned. Therefore, if application software developed on the F-ZTAT version is switched to a mask ROM version product, it must be modified to ensure that the registers in table 21C-15 have no effect.

Table 21C-15 Registers Present in F-ZTAT Version but Absent in Mask ROM Version

Register	Abbreviation	Address
Flash memory control register 1	FLMCR1	H'FFA8
Flash memory control register 2	FLMCR2	H'FFA9
Erase block register 1	EBR1	H'FFAA
Erase block register 2	EBR2	H'FFAB
RAM emulation register	RAMER	H'FEDB

Section 22A Clock Pulse Generator (H8S/2636 Group, H8S/2638 Group, H8S/2630 Group)

22A.1 Overview

The chip has a built-in clock pulse generator (CPG) that generates the system clock (ϕ), the bus master clock, and internal clocks.

The clock pulse generator consists of an oscillator, PLL (phase-locked loop) circuit, clock selection circuit, medium-speed clock divider, bus master clock selection circuit, subclock oscillator, and waveform shaping circuit. The frequency can be changed by means of the PLL circuit in the CPG. Frequency changes are performed by software by means of settings in the system clock control register (SCKCR) and low-power control register (LPWRCR).

22A.1.1 Block Diagram

Figure 22A-1 shows a block diagram of the clock pulse generator.

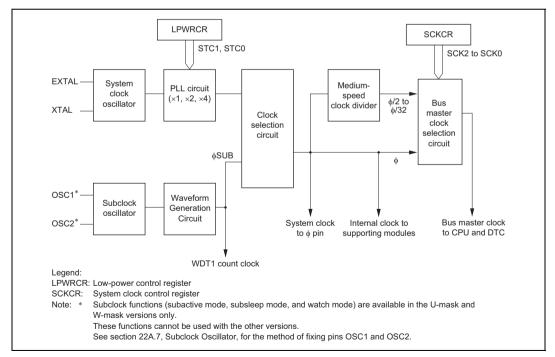


Figure 22A-1 Block Diagram of Clock Pulse Generator

22A.1.2 Register Configuration

The clock pulse generator is controlled by SCKCR and LPWRCR. Table 22A-1 shows the register configuration.

Table 22A-1 Clock Pulse Generator Register

Name	Abbreviation	R/W	Initial Value	Address*
System clock control register	SCKCR	R/W	H'00	H'FDE6
Low-power control register	LPWRCR	R/W	H'00	H'FDEC

Note: * Lower 16 bits of the address.

22A.2 Register Descriptions

22A.2.1 System Clock Control Register (SCKCR)

Bit	:	7	6	5	4	3	2	1	0	
		PSTOP	_	_	_	STCS	SCK2	SCK1	SCK0	
Initial va	alue:	0	0	0	0	0	0	0	0	
R/W	:	R/W	_	_	_	R/W	R/W	R/W	R/W	

SCKCR is an 8-bit readable/writable register that performs ϕ clock output control and medium-speed mode control, selection of operation when the PLL circuit frequency multiplication factor is changed, and medium-speed mode control.

SCKCR is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—φ Clock Output Disable (PSTOP): In combination with the DDR of the applicable port, this bit controls φ output. See section 23A.8, 23B.12, φ Clock Output Disable Function for details.

		200	op	
Bit 7	Normal Operating		Software	Hardware
PSTOP	State	Sleep Mode	Standby Mode	Standby Mode
0	φ output (initial value)	φ output	Fixed high	High impedance
1	Fixed high	Fixed high	Fixed high	High impedance

Description

Bits 6 to 4—Reserved: These bits are always read as 0 and cannot be modified.

Bit 3—Frequency Multiplication Factor Switching Mode Select (STCS): Selects the operation when the PLL circuit frequency multiplication factor is changed.

Bit 3

STCS	Description	
0	Specified multiplication factor is valid after transition to software standby mode, watch mode * , and subactive mode * (Initial value)	e)
1	Specified multiplication factor is valid immediately after STC bits are rewritten	

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions only.

These functions cannot be used with the other versions.

Bits 2 to 0—System Clock Select 2 to 0 (SCK2 to SCK0): These bits select the bus master clock.

Bit 2	Bit 1	Bit 0		
SCK2	SCK1	SCK0	 Description	
0	0	0	Bus master is in high-speed mode	(Initial value)
		1	Medium-speed clock is φ/2	
	1	0	Medium-speed clock is φ/4	
		1	Medium-speed clock is φ/8	
1	0	0	Medium-speed clock is φ/16	
		1	Medium-speed clock is φ/32	
	1	_	_	

22A.2.2 Low-Power Control Register (LPWRCR)

Bit	7	6	5	4	3	2	1	0
	DTON	LSON	NESEL	SUBSTP	RFCUT	_	STC1	STC0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

LPWRCR is an 8-bit readable/writable register that performs power-down mode control. The following pertains to bits 1 and 0. For details of the other bits, see section 23A.2.3, 23B.2.3, Low Power Control Register (LPWRCR). LPWRCR is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 1 and 0—Frequency Multiplication Factor (STC1, STC0): The STC bits specify the frequency multiplication factor of the PLL circuit.

Bit 1	Bit 0		
STC1	STC0	 Description	
0	0	×1	(Initial value)
	1	×2	
1	0	×4	
	1	Setting prohibited	

Note: The multiplication factor should be set so that the clock frequency following multiplication does not exceed the maximum operating frequency of the LSI. It is possible to reduce power consumption and noise by using a setting of PLL x4 for this function and lowering the external clock frequency.

22A.3 Oscillator

Clock pulses may be supplied either by connecting a crystal oscillator or inputting an external clock. In the latter case, the input clock frequency should be between 4 MHz and 20 MHz.

22A.3.1 Connecting a Crystal Resonator

Circuit Configuration: A crystal resonator can be connected as shown in the example in figure 22A-2. Select the damping resistance R_d according to table 22A-2. An AT-cut parallel-resonance crystal should be used.



Figure 22A-2 Connection of Crystal Resonator (Example)

Table 22A-2 Damping Resistance Value

Frequency (MHz)	4	8	12	16	20
$R_d(\Omega)$	500	200	0	0	0

May 28, 2010

Crystal Resonator: Figure 22A-3 shows the equivalent circuit of the crystal resonator. Use a crystal resonator that has the characteristics shown in table 22A-3. The crystal resonator frequency should not exceed 20 MHz.

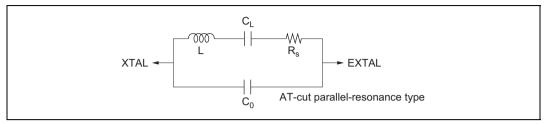


Figure 22A-3 Crystal Resonator Equivalent Circuit

Table 22A-3 Crystal Resonator Parameters

Frequency (MHz)	4	8	12	16	20
R _S max (Ω)	120	80	60	50	40
C ₀ max (pF)	7	7	7	7	7

Note on Board Design: When a crystal resonator is connected, the following points should be noted:

Other signal lines should be routed away from the oscillator circuit to prevent induction from interfering with correct oscillation. See figure 22A-4.

When designing the board, place the crystal resonator and its load capacitors as close as possible to the XTAL and EXTAL pins.

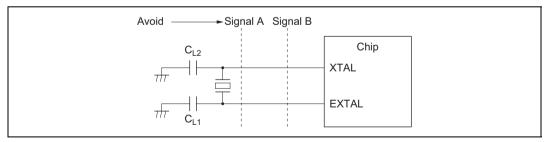


Figure 22A-4 Example of Incorrect Board Design

External circuitry such as that shown below is recommended around the PLL.

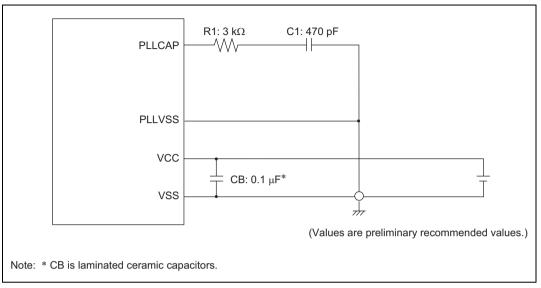


Figure 22A-5 Points for Attention when Using PLL Oscillation Circuit

Place oscillation stabilization capacitor C1 and resistor R1 close to the PLLCAP pin, and ensure that no other signal lines cross this line. Supply the C1 ground from PLLVSS.

Separate PLLVSS from the other VCC and VSS lines at the board power supply source, and be sure to insert bypass capacitors CB close to the pins.

22A.3.2 External Clock Input

Circuit Configuration

May 28, 2010

An external clock signal can be input as shown in the examples in figure 22A-6. If the XTAL pin is left open, make sure that stray capacitance is no more than 10 pF.

In example (b), make sure that the external clock is held high in standby mode.

In this case, the input clock frequency should be between 4 MHz and 20 MHz.

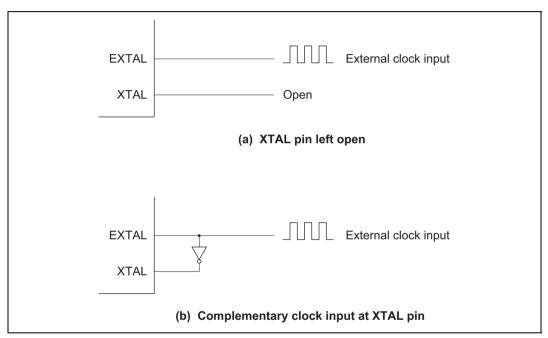


Figure 22A-6 External Clock Input (Examples)

External Clock

Table 22A-4 and figure 22A-7 show the input conditions for the external clock.

Table 22A-4 External Clock Input Conditions

Vcc =	5.0	V ±	10%
-------	-----	-----	-----

Item	Symbol	Min.	Max.	Unit	Test Conditions
External clock input low pulse width	t _{EXL}	15	_	ns	Figure 22A-7
External clock input high pulse width	t _{EXH}	15	_	ns	_
External clock rise time	t _{EXr}	_	5	ns	_
External clock fall time	t _{EXf}	_	5	ns	_

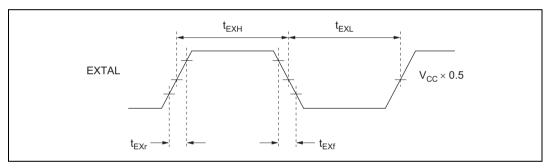


Figure 22A-7 External Clock Input Timing

22A.4 PLL Circuit

The PLL circuit has the function of multiplying the frequency of the clock from the oscillator by a factor of 1, 2, or 4. The multiplication factor is set with the STC bits in SCKCR. The phase of the rising edge of the internal clock is controlled so as to match that at the EXTAL pin.

When the multiplication factor of the PLL circuit is changed, the operation varies according to the setting of the STCS bit in SCKCR.

When STCS = 0 (initial value), the setting becomes valid after a transition to software standby mode, watch mode*, or subactive mode*. The transition time count is performed in accordance with the setting of bits STS2 to STS0 in SBYCR.

- [1] The initial PLL circuit multiplication factor is 1.
- [2] A value is set in bits STS2 to STS0 to give the specified transition time.
- [3] The target value is set in STC1 and STC0, and a transition is made to software standby mode, watch mode*, or subactive mode*.
- [4] The clock pulse generator stops and the value set in STC1 and STC0 becomes valid.
- [5] Software standby mode, watch mode*, or subactive mode* is cleared, and a transition time is secured in accordance with the setting in STS2 to STS0.
- [6] After the set transition time has elapsed, the LSI resumes operation using the target multiplication factor.

If a PC break is set for the SLEEP instruction that causes a transition to software standby mode in [1], software standby mode is entered and break exception handling is executed after the oscillation stabilization time. In this case, the instruction following the SLEEP instruction is executed after execution of the RTE instruction.

When STCS = 1, the LSI operates on the changed multiplication factor immediately after bits STC1 and STC0 are rewritten.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions only.

These functions cannot be used with the other versions.

22A.5 Medium-Speed Clock Divider

The medium-speed clock divider divides the system clock to generate $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, and $\phi/32$.

22A.6 Bus Master Clock Selection Circuit

The bus master clock selection circuit selects the system clock (ϕ) or one of the medium-speed clocks (ϕ /2, ϕ /4, or ϕ /8, ϕ /16, and ϕ /32) to be supplied to the bus master, according to the settings of the SCK2 to SCK0 bits in SCKCR.

22A.7 Subclock Oscillator

Connecting 32.768kHz Quartz Oscillator (U Mask, W Mask): To supply a clock to the subclock divider, connect a 32.768kHz quartz oscillator, as shown in figure 22A-8. See section 22A.3.1, "Notes on Board Design" for notes on connecting quartz oscillators.

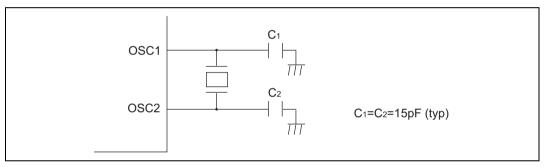


Figure 22A-8 Example Connection of 32.768kHz Quartz Oscillator

Figure 22A-9 shows the equivalence circuit for a 32.768kHz oscillator.

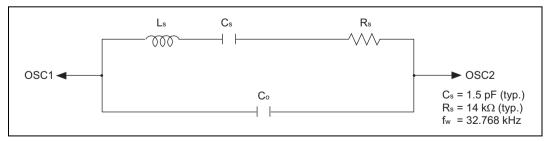


Figure 22A-9 Equivalence Circuit for 32.768kHz Oscillator

Handling Pins when Subclock not Required: If no subclock is required, connect the OSC1 pin to VSS and leave OSC2 open, as shown in figure 22A-10.

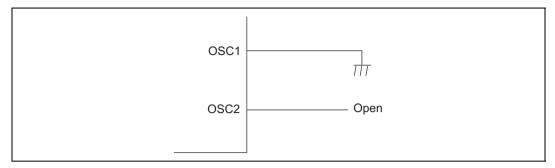


Figure 22A-10 Pin Handling when Subclock not Required

22A.8 Subclock Waveform Generation Circuit

To eliminate noise from the subclock input to OSCI, the subclock is sampled using the dividing clock φ. The sampling frequency is set using the NESEL bit of LPWRCR. For details, see section 23A.2.3, 23B.2.3, Low Power Control Register (LPWRCR).

No sampling is performed in subactive mode*, subsleep mode*, or watch mode*.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions only.

These functions cannot be used with the other versions.

22A.9 Note on Crystal Resonator

Since various characteristics related to the crystal resonator are closely linked to the user's board design, thorough evaluation is necessary on the user's part, for both the mask versions and F-ZTAT versions, using the resonator connection examples shown in this section as a guide. As the resonator circuit ratings will depend on the floating capacitance of the resonator and the mounting circuit, the ratings should be determined in consultation with the resonator manufacturer. The design must ensure that a voltage exceeding the maximum rating is not applied to the oscillator pin.

May 28, 2010

Section 22B Clock Pulse Generator (H8S/2639 Group, H8S/2635 Group)

22B.1 Overview

The chip has a built-in clock pulse generator (CPG) that generates the system clock (ϕ), the bus master clock, and internal clocks.

The clock pulse generator consists of an oscillator, PLL (phase-locked loop) circuit, system clock selection circuit, medium-speed clock divider, bus master clock selection circuit, and subclock divider. The frequency can be changed by means of the PLL circuit in the CPG. Frequency changes are performed by software by means of settings in the system clock control register (SCKCR) and low-power control register (LPWRCR).

22B.1.1 Block Diagram

Figure 22B-1 shows a block diagram of the clock pulse generator.

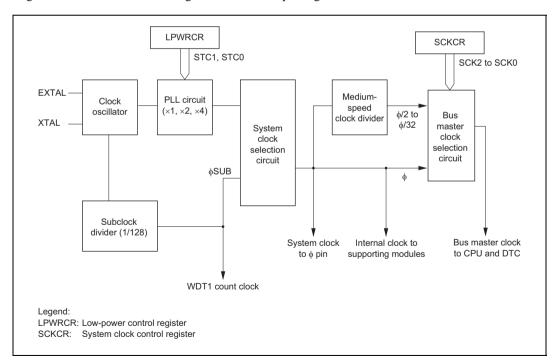


Figure 22B-1 Block Diagram of Clock Pulse Generator

22B.1.2 Register Configuration

The clock pulse generator is controlled by SCKCR and LPWRCR. Table 22B-1 shows the register configuration.

Table 22B-1 Clock Pulse Generator Register

Name	Abbreviation	R/W	Initial Value	Address*
System clock control register	SCKCR	R/W	H'00	H'FDE6
Low-power control register	LPWRCR	R/W	H'00	H'FDEC

Note: * Lower 16 bits of the address.

22B.2 Register Descriptions

22B.2.1 System Clock Control Register (SCKCR)

Bit	:	7	6	5	4	3	2	1	0
		PSTOP	_	_	_	STCS	SCK2	SCK1	SCK0
Initial va	alue:	0	0	0	0	0	0	0	0
R/W	:	R/W				R/W	R/W	R/W	R/W

SCKCR is an 8-bit readable/writable register that performs ϕ clock output control and medium-speed mode control, selection of operation when the PLL circuit frequency multiplication factor is changed, and medium-speed mode control.

SCKCR is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—φ Clock Output Disable (PSTOP): In combination with the DDR of the applicable port, this bit controls φ output. See section 23B.12, φ Clock Output Disable Function for details.

Descri	ption
Descri	puon

Bit 7 PSTOP	_Normal Operating State Sleep Mode		Software Standby Mode	Hardware Standby Mode	
0	φ output (initial value)	φ output	Fixed high	High impedance	
1	Fixed high	Fixed high	Fixed high	High impedance	

Bits 6 to 4—Reserved: These bits are always read as 0 and cannot be modified.

Bit 3—Frequency Multiplication Factor Switching Mode Select (STCS): Selects the operation when the PLL circuit frequency multiplication factor is changed.

Bit 3

STCS	Description			
0	Specified multiplication factor is valid after transition to software stawatch mode, and subactive mode	andby mode, (Initial value)		
1	Specified multiplication factor is valid immediately after STC bits are rewritten			

Bits 2 to 0—System Clock Select 2 to 0 (SCK2 to SCK0): These bits select the bus master clock.

Bit 2	Bit 1	Bit 0		
SCK2	SCK1	SCK0	 Description	
0 0		0	Bus master is in high-speed mode	(Initial value)
		1	Medium-speed clock is φ/2	
	1	0	Medium-speed clock is φ/4	
		1	Medium-speed clock is φ/8	
1	0	0	Medium-speed clock is φ/16	
		1	Medium-speed clock is φ/32	
	1	_	_	

22B.2.2 Low-Power Control Register (LPWRCR)

Bit :	7	6	5	4	3	2	1	0
	DTON	LSON	NESEL	SUBSTP	RFCUT	_	STC1	STC0
Initial value :	0	0	0	0	0	0	0	0
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

LPWRCR is an 8-bit readable/writable register that performs power-down mode control. The following pertains to bits 1 and 0. For details of the other bits, see section 23B.2.3, Low Power Control Register (LPWRCR). LPWRCR is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 1 and 0—Frequency Multiplication Factor (STC1, STC0): The STC bits specify the frequency multiplication factor of the PLL circuit.

Bit 1	Bit 0		
STC1	STC0	 Description	
0	0	×1	(Initial value)
	1	×2	
1	0	×4	
	1	Setting prohibited	

Note: A system clock frequency multiplied by the multiplication factor (STC1 and STC0) should not exceed the maximum operating frequency defined in section 24, Electrical Characteristics.

22B.3 Oscillator

Clock pulses may be supplied either by connecting a crystal oscillator or inputting an external clock. In the latter case, the input clock frequency should be between 4 MHz and 5 MHz.

22B.3.1 Connecting a Crystal Resonator

Circuit Configuration: A crystal resonator can be connected as shown in the example in figure 22B-2. Select the damping resistance R_d according to table 22B-2. An AT-cut parallel-resonance crystal should be used.

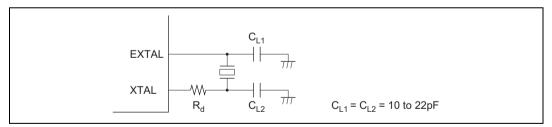


Figure 22B-2 Connection of Crystal Resonator (Example)

Table 22B-2 Damping Resistance Value

Frequency (MHz)	4	5
R _d (Ω)	500	200

May 28, 2010

Crystal Resonator: Figure 22B-3 shows the equivalent circuit of the crystal resonator. Use a crystal resonator that has the characteristics shown in table 18-3. The crystal resonator frequency should not exceed 5 MHz.

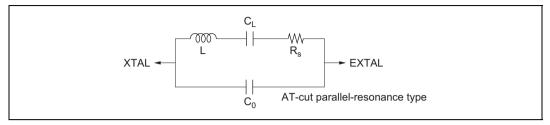


Figure 22B-3 Crystal Resonator Equivalent Circuit

Table 22B-3 Crystal Resonator Parameters

Frequency (MHz)	4	5
R _S max (Ω)	120	80
C ₀ max (pF)	7	7

Note on Board Design: When a crystal resonator is connected, the following points should be noted:

Other signal lines should be routed away from the oscillator circuit to prevent induction from interfering with correct oscillation. See figure 22B-4.

When designing the board, place the crystal resonator and its load capacitors as close as possible to the XTAL and EXTAL pins.

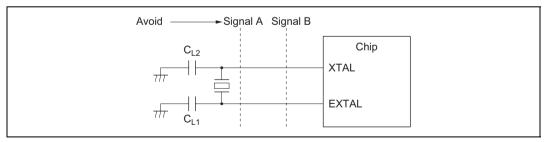


Figure 22B-4 Example of Incorrect Board Design

External circuitry such as that shown below is recommended around the PLL.

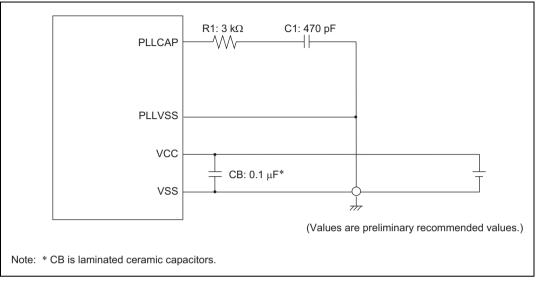


Figure 22B-5 Points for Attention when Using PLL Oscillation Circuit

Place oscillation stabilization capacitor C1 and resistor R1 close to the PLLCAP pin, and ensure that no other signal lines cross this line. Supply the C1 ground from PLLVSS.

Separate PLLVSS from the other VCC and VSS lines at the board power supply source, and be sure to insert bypass capacitors CB close to the pins.

22B.3.2 External Clock Input

Circuit Configuration

An external clock signal can be input as shown in the examples in figure 22B-6. If the XTAL pin is left open, make sure that stray capacitance is no more than 10 pF.

In example (b), make sure that the external clock is held high in standby mode.

In this case, the input clock frequency should be between 4 MHz and 5 MHz.

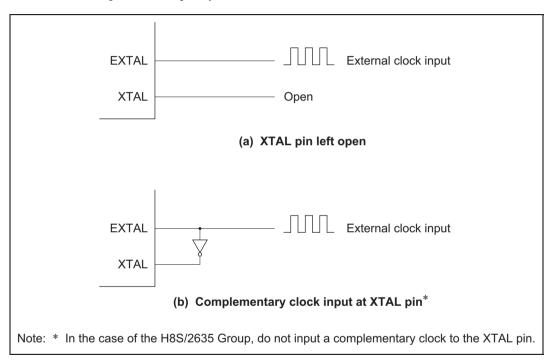


Figure 22B-6 External Clock Input (Examples)

External Clock

Table 22B-4 and figure 22B-7 show the input conditions for the external clock.

Table 22B-4 External Clock Input Conditions

Vcc	=	5	O	V	+1	O	10/	<u>′</u>

Item	Symbol	Min.	Max.	Unit	Test Conditions
External clock input low pulse width	t _{EXL}	50	_	ns	Figure 22B-7
External clock input high pulse width	t _{EXH}	50	_	ns	-
External clock rise time	t _{EXr}	_	5	ns	_
External clock fall time	t _{EXf}	_	5	ns	_

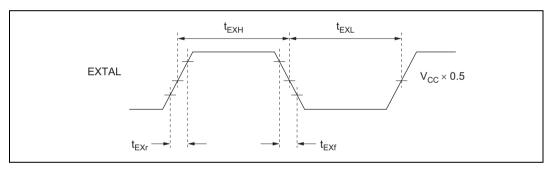


Figure 22B-7 External Clock Input Timing

22B.4 PLL Circuit

The PLL circuit has the function of multiplying the frequency of the clock from the oscillator by a factor of 1, 2, or 4. The multiplication factor is set with the STC bits in SCKCR. The phase of the rising edge of the internal clock is controlled so as to match that at the EXTAL pin.

When the multiplication factor of the PLL circuit is changed, the operation varies according to the setting of the STCS bit in SCKCR.

When STCS = 0 (initial value), the setting becomes valid after a transition to software standby mode, watch mode, or subactive mode. The transition time count is performed in accordance with the setting of bits STS2 to STS0 in SBYCR.

- [1] The initial PLL circuit multiplication factor is 1.
- [2] A value is set in bits STS2 to STS0 to give the specified transition time.
- [3] The target value is set in STC1 and STC0, and a transition is made to software standby mode, watch mode, or subactive mode.
- [4] The clock pulse generator stops and the value set in STC1 and STC0 becomes valid.
- [5] Software standby mode, watch mode, or subactive mode is cleared, and a transition time is secured in accordance with the setting in STS2 to STS0.
- [6] After the set transition time has elapsed, the LSI resumes operation using the target multiplication factor.

If a PC break is set for the SLEEP instruction that causes a transition to software standby mode in [1], software standby mode is entered and break exception handling is executed after the oscillation stabilization time. In this case, the instruction following the SLEEP instruction is executed after execution of the RTE instruction.

When STCS = 1, the LSI operates on the changed multiplication factor immediately after bits STC1 and STC0 are rewritten.

22B.5 Medium-Speed Clock Divider

The medium-speed clock divider divides the system clock to generate $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, and $\phi/32$.

22B.6 Bus Master Clock Selection Circuit

The bus master clock selection circuit selects the system clock (ϕ) or one of the medium-speed clocks (ϕ /2, ϕ /4, or ϕ /8, ϕ /16, and ϕ /32) to be supplied to the bus master, according to the settings of the SCK2 to SCK0 bits in SCKCR.

22B.7 Subclock Divider

The subclock divider divides the input clock into 1/128 to generate \$\phi SUB\$.

22B.8 Note on Resonator

Since various characteristics related to the resonator are closely linked to the user's board design, thorough evaluation is necessary on the user's part, for both the mask versions and F-ZTAT versions, using the resonator connection examples shown in this section as a guide. As the resonator circuit ratings will depend on the floating capacitance of the resonator and the mounting circuit, the ratings should be determined in consultation with the resonator manufacturer. The design must ensure that a voltage exceeding the maximum rating is not applied to the oscillator pin.

Section 23A Power-Down Modes [HD64F2636F, HD64F2638F, HD6432636F, HD6432638F, HD64F2630F, HD6432630F, HD64F2635F, HD6432635F, HD6432634F]

Subclock functions are not available in the HD64F2636F, HD64F2638F, HD6432636F, HD6432630F, and HD6432630F.

23A.1 Overview

In addition to the normal program execution state, the chip has nine power-down modes in which operation of the CPU and oscillator is halted and power dissipation is reduced. Low-power operation can be achieved by individually controlling the CPU, on-chip supporting modules, and so on.

The chip operating modes are as follows:

- (1) High-speed mode
- (2) Medium-speed mode
- (3) Sleep mode
- (4) Module stop mode
- (5) Software standby mode
- (6) Hardware standby mode
- (2) to (6) are low power dissipation states. Sleep mode is CPU states, medium-speed mode is a CPU and bus master state, and module stop mode is an internal peripheral function (including bus masters other than the CPU) state. Some of these states can be combined.

After a reset, the LSI is in high-speed mode with modules other than the DTC in module stop mode.

- Notes: 1. Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group.

 These functions cannot be used with the other versions.
 - 2. See section 22A.7, Subclock Oscillator, for the method of fixing pins OSC1 and OSC2 when not used.

Table 23A-1 shows the internal state of the LSI in the respective modes. Table 23A-2 shows the conditions for shifting between the low power dissipation modes.

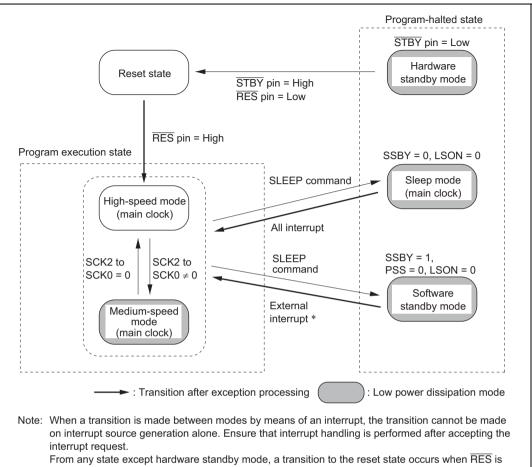

Figure 23A-1 is a mode transition diagram.

Table 23A-1 LSI Internal States in Each Mode

Function		High- Speed	Medium- Speed	Sleep	Module Stop	Software Standby	Hardware Standby
System cloc generator	k pulse	Functioning	Functioning	Functioning	Functioning	Halted	Halted
CPU	Instructions Registers	Functioning	Medium-speed operation	Halted (retained)	High/medium- speed operation	Halted (retained)	Halted (undefined)
External	NMI	Functioning	Functioning	Functioning	Functioning	Functioning	Halted
interrupts	IRQ0 to IRQ5	=					
Peripheral functions	WDT1	Functioning	Functioning	Functioning	_	Halted (retained)	Halted (reset)
	WDT0	Functioning	Functioning	Functioning	_	Halted (retained)	Halted (reset)
	DTC	Functioning	Medium-speed operation	Functioning	Halted (retained)	Halted (retained)	Halted (reset)
	PBC	Functioning	Medium-speed operation	Functioning	Halted (retained)	Halted (retained)	Halted (reset)
	TPU	Functioning	Functioning	Functioning	Halted	Halted	Halted (reset)
	PPG	=			(retained)	(retained)	
	D/A0, 1	=					
	SCI0	Functioning	Functioning	Functioning	Halted (reset)	Halted (reset)	Halted (reset)
	SCI1	=					
	SCI2	=					
	PWM	=					
	A/D	=					
	RAM	Functioning	Functioning	Functioning (DTC)	Functioning	Retained	Retained
	I/O	Functioning	Functioning	Functioning	Functioning	Retained	High impedance
	HCAN	Functioning	Functioning	Functioning	Halted (reset)	Halted (reset)	Halted (reset)

Note: "Halted (retained)" means that internal register values are retained. The internal state is "operation suspended."

"Halted (reset)" means that internal register values and internal states are initialized. In module stop mode, only modules for which a stop setting has been made are halted (reset or retained).

From any state except hardware standby mode, a transition to the reset state occurs when RES is driven low.

From any state, a transition to hardware standby mode occurs when STBY is driven low.

* NMI and IRQ0 to IRQ5

Figure 23A-1 Mode Transition Diagram

Table 23A.2 Low Power Dissipation Mode Transition Conditions

Pre-Transition	Trancition				State after Transition Invoked by SLEEP	State after Transition Back from Low Power Mode Invoked by	
State	SSBY	PSS	LSON	DTON	Command	Interrupt	
High-speed/ Medium-speed	0	*	0	*	Sleep	High-speed/Medium- speed	
	0	*	1	*	_	_	
	1	0	0	*	Software standby	High-speed/Medium- speed	
	1	0	1	*	_	_	
	1	1	0	0	_	_	
	1	1	1	0	_	_	
	1	1	0	1	_	_	
	1	1	1	1	_	_	
Subactive	0	0	*	*	_	_	
	0	1	0	*	_	_	
	0	1	1	*	_	_	
	1	0	*	*	_	_	
	1	1	0	0	_	High-speed	
	1	1	1	0	_	_	
	1	1	0	1	High-speed	_	
	1	1	1	1	_	_	

Legend:

*: Don't care

-: Do not set

23A.1.1 Register Configuration

Power-down modes are controlled by the SBYCR, SCKCR, LPWRCR, TCSR (WDT1), and MSTPCR registers. Table 23A-3 summarizes these registers.

Table 23A-3 Power-Down Mode Registers

Name	Abbreviation	R/W	Initial Value	Address*1
Standby control register	SBYCR	R/W	H'58	H'FDE4
System clock control register	SCKCR	R/W	H'00	H'FDE6
Low-power control register	LPWRCR	R/W	H'00	H'FDEC
Timer control/status register	TCSR	R/W	H'00	H'FFA2
Module stop control register	MSTPCRA	R/W	H'3F	H'FDE8
A, B, C, D	MSTPCRB	R/W H'58 H' R/W H'00 H' R/W H'00 H' R/W H'00 H' R/W H'00 H' R/W H'5F H R/W H'FF H	H'FDE9	
	MSTPCRC	R/W	H'FF	H'FDEA
	MSTPCRD	R/W	B'11*****	H'FC60

Note: 1. Lower 16 bits of the address.

23A.2 Register Descriptions

23A.2.1 Standby Control Register (SBYCR)

Bit	:	7	6	5	4	3	2	1	0	
		SSBY	STS2	STS1	STS0	OPE	_		_	
Initial value	:	0	1	0	1	1	0	0	0	_
R/W	:	R/W	R/W	R/W	R/W	R/W				

SBYCR is an 8-bit readable/writable register that performs power-down mode control.

SBYCR is initialized to H'58 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Software Standby (SSBY): When making a low power dissipation mode transition by executing the SLEEP instruction, the operating mode is determined in combination with other control bits.

Note that the value of the SSBY bit does not change even when shifting between modes using interrupts.

Bit 7

SSBY	Description	
0	Shifts to sleep mode when the SLEEP instruction is executed mode or medium-speed mode.	d in high-speed (Initial value)
1	Shifts to software standby mode when the SLEEP instruction speed mode or medium-speed mode.	n is executed in high-

Bits 6 to 4—Standby Timer Select 2 to 0 (STS2 to STS0): These bits select the MCU wait time for clock stabilization when shifting to high-speed mode or medium-speed mode by using a specific interrupt or command to cancel software standby mode. With a quartz oscillator (Table 23A-5), select a wait time of 8ms (oscillation stabilization time) or more, depending on the operating frequency. With an external clock, select a standby time of 2 ms or more (PLL oscillator settling time), based on the operating frequency.

Bit 6	Bit 5	Bit 4		
STS2	STS1	STS0	 Description	
0	0	0	Standby time = 8192 states	
		1	Standby time = 16384 states	
	1	0	Standby time = 32768 states	
		1	Standby time = 65536 states	
1	0	0	Standby time = 131072 states	
		1	Standby time = 262144 states	(Initial value)
	1	0	Reserved	
		1	Standby time = 16 states (Setting prohibited)	

Bit 3—Output Port Enable (OPE): This bit specifies whether the output of the address bus and bus control signals $(\overline{AS}, \overline{RD}, \overline{HWR}, \overline{LWR})$ is retained or set to high-impedance state in the software standby mode.

Bit 3

OPE	Description
0	In software standby mode, address bus and bus control signals are high-impedance.
1	In software standby mode, the output state of the address bus and bus control signals is retained. (Initial value)

Bits 2 to 0—Reserved: These bits always return 0 when read, and cannot be written to.

23A.2.2 System Clock Control Register (SCKCR)

Bit	:	7	6	5	4	3	2	1	0
		PSTOP	_	_	_	STCS	SCK2	SCK1	SCK0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	_	_	_	R/W	R/W	R/W	R/W

SCKCR is an 8-bit readable/writable register that performs ϕ clock output control and medium-speed mode control.

SCKCR is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—φ Clock Output Disable (PSTOP): In combination with the DDR of the applicable port, this bit controls φ output. See section 23A.8, φ Clock Output Disable Function for details.

Description

Bit 7 PSTOP	_ High-Speed Mode, Medium-Speed Mode	Sleep Mode	Software Standby Mode	Hardware Standby Mode
0	φ output (initial value)	φ output	Fixed high	High impedance
1	Fixed high	Fixed high	Fixed high	High impedance

Bits 6 to 4—Reserved: These bits are always read as 0 and cannot be modified.

Bit 3—Frequency Multiplication Factor Switching Mode Select (STCS): Selects the operation when the PLL circuit frequency multiplication factor is changed.

Bit 3

STCS	Description
0	Specified multiplication factor is valid after transition to software standby mode (Initial value)
1	Specified multiplication factor is valid immediately after STC bits are rewritten

Bits 2 to 0—System Clock Select (SCK2 to SCK0): These bits select the bus master clock in high-speed mode, and medium-speed mode.

Bit 2	Bit 1	Bit 0		
SCK2	SCK1	SCK0	 Description	
0	0	0	Bus master in high-speed mode	(Initial value)
		1	Medium-speed clock is φ/2	
	1	0	Medium-speed clock is $\phi/4$	
		1	Medium-speed clock is φ/8	
1	0	0	Medium-speed clock is $\phi/16$	
		1	Medium-speed clock is φ/32	
	1	_	_	

23A.2.3 Low-Power Control Register (LPWRCR)

Bit	:	7	6	5	4	3	2	1	0
		DTON	LSON	NESEL	SUBSTP	RFCUT	_	STC1	STC0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

The LPWRCR is an 8-bit read/write register that controls the low power dissipation modes.

The LPWRCR is initialized to H'00 at a reset and when in hardware standby mode. It is not initialized in software standby mode. The following describes bits 7 to 2. For details of other bits, see section 22A.2.2, Low-Power Control Register (LPWRCR).

Bits 7 to 3—Reserved: Bits DTON, LSON, NESEL, SUBSTP and RFCUT must always be written with 0, as this version does not support subclock operation.

Bit 2—Reserved: Only write 0 to this bit.

23A.2.4 Timer Control/Status Register (TCSR)

Bit	:	7	6	5	4	3	2	1	0
		OVF	WT/ IT	TME	PSS	RST/NMI	CKS2	CKS1	CKS0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: *Only write 0 to clear the flag.

TCSR is an 8-bit read/write register that selects the clock input to WDT1 TCNT and the mode.

Here, we describe bit 4. For details of the other bits in this register, see section 12.2.2, Timer Control/Status Register (TCSR).

The TCSR is initialized to H'00 at a reset and when in hardware standby mode. It is not initialized in software standby mode.

Bit 4—Reserved: The PSS bit must always be written with 0 since no subclock functions are available in versions other than the U-mask and W-mask versions.

23A.2.5 Module Stop Control Register (MSTPCR)

М	SI	ГΡ	C	R A	١

Bit	:	7	6	5	4	3	2	1	0
		MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0
Initial value:		0	0	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRB

Bit	:	7	6	5 4		3	3 2		0
		MSTPB7	MSTPB6	MSTPB5	MSTPB4	MSTPB3	MSTPB2	MSTPB1	MSTPB0
Initial value :		1	1	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRC

Bit	t :		6	5	4	3	2	1	0
		MSTPC7	MSTPC6	MSTPC5	MSTPC4	MSTPC3	MSTPC2	MSTPC1	MSTPC0
Initial value:		1	1	1	1	1	1	1	1
R/W :		R/W							

MSTPCRD

Bit	: 7 6 5		5	5 4		3 2		0	
		MSTPD7	MSTPD6	MSTPD5	MSTPD4	MSTPD3	MSTPD2	MSTPD1	MSTPD0
Initial valu	ie:	1	1	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
R/W	:	R/W	R/W	_	_	_	_	_	

MSTPCR, comprising four 8-bit readable/writable registers, performs module stop mode control.

MSTPCRA to MSTPCRC are initialized to H'3FFFFF by a reset and in hardware standby mode. MSTPCRD is initialized to B'11***** by a reset and in hardware standby mode. They are not initialized in software standby mode.

MSTPCRA/MSTPCRB/MSTPCRC Bits 7 to 0, MSTPCRD Bits 7 and 6—Module Stop (MSTPA7 to MSTPA0, MSTPB7 to MSTPB0, MSTPC7 to MSTPC0, MSTPD7 and

MSTPD6): These bits specify module stop mode. See table 23A-4 for the method of selecting the on-chip peripheral functions.

MSTPCRA/MSTPCRB/ MSTPCRC Bits 7 to 0, MSTPCRD Bits 7 and 6

MSTPA7 to MSTPA0, MSTPB7 to MSTPB0, MSTPC7 to MSTPC0. MSTPD7 and MSTPD6 Description

0	Module stop mode is cleared (initial value of MSTPA7 and MSTPA6)
1	Module stop mode is set (initial value of MSTPA5-0, MSTPB7-0, MSTPC7-0, and MSTPC7, 6)

23A.3 Medium-Speed Mode

In high-speed mode, when the SCK2 to SCK0 bits in SCKCR are set to 1, the operating mode changes to medium-speed mode as soon as the current bus cycle ends. In medium-speed mode, the CPU operates on the operating clock (ϕ /2, ϕ /4, ϕ /8, ϕ /16, or ϕ /32) specified by the SCK2 to SCK0 bits. The bus masters other than the CPU (DTC) also operate in medium-speed mode. On-chip supporting modules other than the bus masters always operate on the high-speed clock (ϕ).

In medium-speed mode, a bus access is executed in the specified number of states with respect to the bus master operating clock. For example, if $\phi/4$ is selected as the operating clock, on-chip memory is accessed in 4 states, and internal I/O registers in 8 states.

Medium-speed mode is cleared by clearing all of bits SCK2 to SCK0 to 0. A transition is made to high-speed mode and medium-speed mode is cleared at the end of the current bus cycle.

If a SLEEP instruction is executed when the SSBY bit in SBYCR is cleared to 0, and LSON bit in LPWRCR is cleared to 0, a transition is made to sleep mode. When sleep mode is cleared by an interrupt, medium-speed mode is restored.

When the SLEEP instruction is executed with the SSBY bit = 1, LPWRCR LSON bit = 0, and TCSR (WDT1) PSS bit = 0, operation shifts to the software standby mode. When software standby mode is cleared by an external interrupt, medium-speed mode is restored.

When the RES pin is set low and medium-speed mode is cancelled, operation shifts to the reset state. The same applies in the case of a reset caused by overflow of the watchdog timer.

When the STBY pin is driven low, a transition is made to hardware standby mode.

Figure 23A-2 shows the timing for transition to and clearance of medium-speed mode.

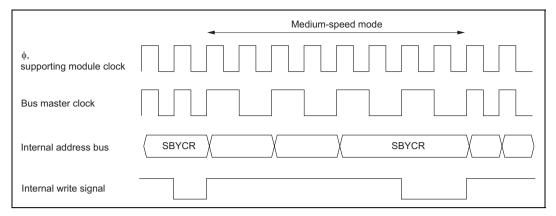


Figure 23A-2 Medium-Speed Mode Transition and Clearance Timing

23A.4 Sleep Mode

23A.4.1 Sleep Mode

When the SLEEP instruction is executed when the SBYCR SSBY bit = 0 and the LPWRCR LSON bit = 0, the CPU enters the sleep mode. In sleep mode, CPU operation stops but the contents of the CPUs internal registers are retained. Other supporting modules do not stop.

23A.4.2 Exiting Sleep Mode

Sleep mode is exited by any interrupt, or signals at the \overline{RES} , or \overline{STBY} pins.

Exiting Sleep Mode by Interrupts: When an interrupt occurs, sleep mode is exited and interrupt exception processing starts. Sleep mode is not exited if the interrupt is disabled, or interrupts other than NMI are masked by the CPU.

Exiting Sleep Mode by RES pin: Setting the RES pin level Low selects the reset state. After the stipulated reset input duration, driving the RES pin High starts the CPU performing reset exception processing.

Exiting Sleep Mode by STBY Pin: When the STBY pin level is driven Low, a transition is made to hardware standby mode.

23A.5 Module Stop Mode

23A.5.1 Module Stop Mode

Module stop mode can be set for individual on-chip supporting modules.

When the corresponding MSTP bit in MSTPCR is set to 1, module operation stops at the end of the bus cycle and a transition is made to module stop mode. The CPU continues operating independently.

Table 23A-4 shows MSTP bits and the corresponding on-chip supporting modules.

When the corresponding MSTP bit is cleared to 0, module stop mode is cleared and the module starts operating at the end of the bus cycle. In module stop mode, the internal states of modules other than the SCI, Motor control PWM, A/D converter and HCAN are retained.

After reset clearance, all modules other than DTC are in module stop mode.

When an on-chip supporting module is in module stop mode, read/write access to its registers is disabled.

Table 23A-4 MSTP Bits and Corresponding On-Chip Supporting Modules

Register	Bit	Module
MSTPCRA	MSTPA6	Data transfer controller (DTC)
	MSTPA5	16-bit timer pulse unit (TPU)
	MSTPA3	Programmable pulse generator (PPG)
	MSTPA2	D/A converter (channel 0, 1)
	MSTPA1	A/D converter
	MSTPA0*1	
MSTPCRB	MSTPB7	Serial communication interface 0 (SCI0)
	MSTPB6	Serial communication interface 1 (SCI1)
	MSTPB5	Serial communication interface 2 (SCI2)
	MSTPB4*2	
	MSTPB3*2	
	MSTPB0*1	
MSTPCRC	MSTPC4	PC break controller (PBC)
	MSTPC3	HCAN0
	MSTPC2	HCAN1
	MSTPC1*1	
	MSTPC0*1	
MSTPCRD	MSTPD7	Motor control PWM (PWM)
	MSTPD6*1	

Notes: 1. MSTPA0, MSTPB0 and MSTPC1 to MSTPC0 and MSTPD6 are readable/writable bits with an initial value of 1.

2. The I²C bus interface is available as an option in the H8S/2638 and H8S/2630. In the H8S/2636, MSTB4 and MSTB3 are readable and writable bits that have 1 as their initial value.

23A.5.2 Usage Notes

DTC Module Stop: Depending on the operating status of the DTC, the MSTPA7 and MSTPA6 bits may not be set to 1. Setting of the DTC module stop mode should be carried out only when the respective module is not activated.

For details, refer to section 8, Data Transfer Controller (DTC).

On-Chip Supporting Module Interrupt: Relevant interrupt operations cannot be performed in module stop mode. Consequently, if module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source or the DTC activation source. Interrupts should therefore be disabled before entering module stop mode.

Writing to MSTPCR: MSTPCR should only be written to by the CPU.

23A.6 Software Standby Mode

23A.6.1 Software Standby Mode

A transition is made to software standby mode when the SLEEP instruction is executed when the SBYCR SSBY bit = 1 and the LPWRCR LSON bit = 0, and the TCSR (WDT1) PSS bit = 0. In this mode, the CPU, on-chip supporting modules, and oscillator all stop. However, the contents of the CPU's internal registers, RAM data, and the states of on-chip supporting modules other than the SCI, A/D converter, Motor control, PWM, HCAN and I/O ports, are retained. Whether the address bus and bus control signals are placed in the high-impedance state.

In this mode the oscillator stops, and therefore power dissipation is significantly reduced.

23A.6.2 Clearing Software Standby Mode

Software standby mode is cleared by an external interrupt (NMI pin, or pins $\overline{IRQ0}$ to $\overline{IRQ5}$), or by means of the \overline{RES} pin or \overline{STBY} pin.

- Clearing with an interrupt
 - When an NMI or IRQ0 to IRQ5 interrupt request signal is input, clock oscillation starts, and after the elapse of the time set in bits STS2 to STS0 in SYSCR, stable clocks are supplied to the entire chip, software standby mode is cleared, and interrupt exception handling is started. When clearing software standby mode with an IRQ0 to IRQ5 interrupt, set the corresponding enable bit to 1 and ensure that no interrupt with a higher priority than interrupts IRQ0 to IRQ5 is generated. Software standby mode cannot be cleared if the interrupt has been masked on the CPU side or has been designated as a DTC activation source.
- Clearing with the RES pin
 When the RES pin is driven low, clock oscillation is started. At the same time as clock
 oscillation starts, clocks are supplied to the entire chip. Note that the RES pin must be held low
 until clock oscillation stabilizes. When the RES pin goes high, the CPU begins reset exception
 handling.

Clearing with the STBY pin
 When the STBY pin is driven low, a transition is made to hardware standby mode.

23A.6.3 Setting Oscillation Stabilization Time after Clearing Software Standby Mode

Bits STS2 to STS0 in SBYCR should be set as described below.

Using a Crystal Oscillator: Set bits STS2 to STS0 so that the standby time is at least 8 ms (the oscillation stabilization time).

Table 23A-5 shows the standby times for different operating frequencies and settings of bits STS2 to STS0.

Table 23A-5 Oscillation Stabilization Time Settings

STS2	STS1	STS0	Standby Time	20 MHz	16 MHz	12 MHz	10 MHz	8 MHz	6 MHz	4 MHz	Unit
0	0	0	8192 states	0.41	0.51	0.68	0.8	1.0	1.3	2.0	ms
		1	16384 states	0.82	1.0	1.3	1.6	2.0	2.7	4.1	_
	1	0	32768 states	1.6	2.0	2.7	3.3	4.1	5.5	8.2	
		1	65536 states	3.3	4.1	5.5	6.6	8.2	10.9	16.4	
1	0	0	131072 states	6.6	8.2	10.9	13.1	16.4	21.8	32.8	
		1	262144 states	13.1	16.4	21.8	26.2	32.8	43.6	65.6	_
	1	0	Reserved	_	_	_	_	_	_	_	μs
		1	16 states (Setting prohibited)	0.8	1.0	1.3	1.6	2.0	2.6	4.0	_

: Recommended time setting

Using a External Clock: The PLL circuit requires time to stabilize, so the standby time should be set to a value of 2 ms or more.

23A.6.4 Software Standby Mode Application Example

Figure 23A-3 shows an example in which a transition is made to software standby mode at the falling edge on the NMI pin, and software standby mode is cleared at the rising edge on the NMI pin.

In this example, an NMI interrupt is accepted with the NMIEG bit in SYSCR cleared to 0 (falling edge specification), then the NMIEG bit is set to 1 (rising edge specification), the SSBY bit is set to 1, and a SLEEP instruction is executed, causing a transition to software standby mode.

Software standby mode is then cleared at the rising edge on the NMI pin.

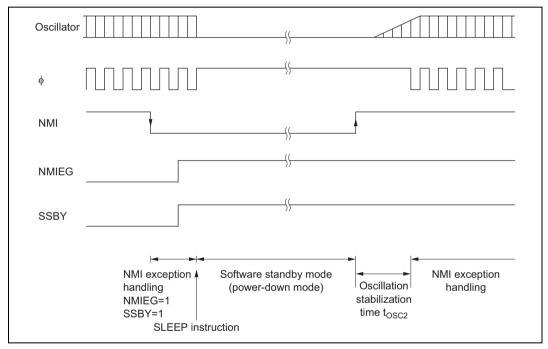


Figure 23A-3 Software Standby Mode Application Example

23A.6.5 Usage Notes

I/O Port Status: In software standby mode, I/O port states are retained. If the OPE bit is set to 1, the address bus and bus control signal output is also retained. Therefore, there is no reduction in current dissipation for the output current when a high-level signal is output.

Current Dissipation during Oscillation Stabilization Wait Period: Current dissipation increases during the oscillation stabilization wait period.

Write Data Buffer Function: The write data buffer function and software standby mode cannot be used at the same time. When the write data buffer function is used, the WDBE bit in BCRL should be cleared to 0 to cancel the write data buffer function before entering software standby mode. Also check that external writes have finished, by reading external addresses, etc., before executing a SLEEP instruction to enter software standby mode. See section 7.7, Write Data Buffer Function, for details of the write data buffer function.

23A.7 Hardware Standby Mode

23A.7.1 Hardware Standby Mode

When the STBY pin is driven low, a transition is made to hardware standby mode from any mode.

In hardware standby mode, all functions enter the reset state and stop operation, resulting in a significant reduction in power dissipation. As long as the prescribed voltage is supplied, on-chip RAM data is retained. I/O ports are set to the high-impedance state.

In order to retain on-chip RAM data, the RAME bit in SYSCR should be cleared to 0 before driving the \overline{STBY} pin low.

Do not change the state of the mode pins (MD2 to MD0) while the chip is in hardware standby mode.

Hardware standby mode is cleared by means of the \overline{STBY} pin and the \overline{RES} pin. When the \overline{STBY} pin is driven high while the \overline{RES} pin is low, the reset state is set and clock oscillation is started. Ensure that the \overline{RES} pin is held low until the clock oscillator stabilizes (at least 8 ms—the oscillation stabilization time—when using a crystal oscillator). When the \overline{RES} pin is subsequently driven high, a transition is made to the program execution state via the reset exception handling state.

23A.7.2 Hardware Standby Mode Timing

Figure 23A-4 shows an example of hardware standby mode timing.

When the \overline{STBY} pin is driven low after the \overline{RES} pin has been driven low, a transition is made to hardware standby mode. Hardware standby mode is cleared by driving the \overline{STBY} pin high, waiting for the oscillation stabilization time, then changing the \overline{RES} pin from low to high.

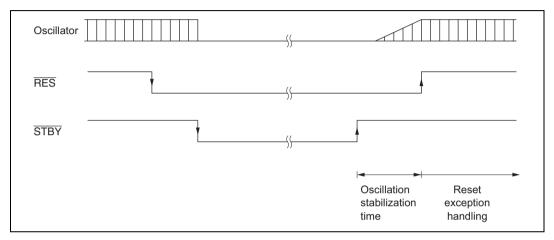


Figure 23A-4 Hardware Standby Mode Timing

\phi Clock Output Disabling Function

Output of the ϕ clock can be controlled by means of the PSTOP bit in SCKCR, and DDR for the corresponding port. When the PSTOP bit is set to 1, the ϕ clock stops at the end of the bus cycle, and ϕ output goes high. ϕ clock output is enabled when the PSTOP bit is cleared to 0. When DDR for the corresponding port is cleared to 0, ϕ clock output is disabled and input port mode is set. Table 23A-6 shows the state of the ϕ pin in each processing state.

Using the on-chip PLL circuit to lower the oscillator frequency or prohibiting external ϕ clock output also have the effect of reducing unwanted electromagnetic interference*. Therefore, consideration should be given to these options when deciding on system board settings.

Note: * Electromagnetic interference: EMI (Electro Magnetic Interference)

Table 23A-6 ♦ Pin State in Each Processing State

DDR	0	1	1
PSTOP	_	0	1
Hardware standby mode	High impedance	High impedance	High impedance
Software standby	High impedance	Fixed high	Fixed high
Sleep mode	High impedance	φ output	Fixed high
High-speed mode, medium-speed mode	High impedance	φ output	Fixed high

May 28, 2010

Section 23B Power-Down Modes
[HD64F2636UF, HD6432636UF,
HD64F2638UF, HD6432638UF, HD64F2638WF,
HD6432638WF, HD64F2639UF, HD6432639UF,
HD64F2639WF, HD6432639WF,
HD64F2630UF, HD6432630UF,
HD64F2630WF, HD6432630WF,
HD6432635F, HD64F2635F, HD6432634F]

Note: The DTC, PBC, PPB, and D/A converter are not implemented in the H8S/2635 Group.

23B.1 Overview

In addition to the normal program execution state, the chip has nine power-down modes in which operation of the CPU and oscillator is halted and power dissipation is reduced. Low-power operation can be achieved by individually controlling the CPU, on-chip supporting modules, and so on.

The chip operating modes are as follows:

- (1) High-speed mode
- (2) Medium-speed mode
- (3) Subactive mode* (U-mask, W-mask version, H8S/2635 Group only)
- (4) Sleep mode
- (5) Subsleep mode* (U-mask, W-mask version, H8S/2635 Group only)
- (6) Watch mode* (U-mask, W-mask version, H8S/2635 Group only)
- (7) Module stop mode
- (8) Software standby mode
- (9) Hardware standby mode
- (2) to (9) are low power dissipation states. Sleep mode and subsleep mode are CPU states, medium-speed mode is a CPU and bus master state, subactive mode is a CPU and bus master and internal peripheral function state, and module stop mode is an internal peripheral function (including bus masters other than the CPU) state. Some of these states can be combined.

After a reset, the LSI is in high-speed mode with modules other than the DTC in module stop mode.

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions.

Tables 23B-1 and 23B-2 show the internal state of the LSI in the respective modes. Table 23B-3 shows the conditions for shifting between the low power dissipation modes.

Figure 23B-1 is a mode transition diagram.

Table 23B-1 LSI Internal States in Each Mode (H8S/2636, H8S/2638, H8S/2630)

Function		High- Speed	Medium- Speed	Sleep	Module Stop	Watch	Sub- active	Subsleep	Software Standby	Hardware Standby
System clo generator	ock pulse	Function- ing	Function- ing	Function- ing	Function- ing	Halted	Halted	Halted	Halted	Halted
Subclock p generator	oulse	Function- ing*1	Function- ing*1	Function- ing*1	Function- ing*1	Function- ing*1	Function- ing*1	Function- ing*1	Function- ing*1	Halted
CPU	Instructions Registers	Function- ing	Medium- speed operation	Halted (retained)	High/ medium- speed operation	Halted (retained)	Subclock operation	Halted (retained)	Halted (retained)	Halted (undefined)
External	NMI	Function-	Function-	Function-	Function-	Function-	Function-	Function-	Function-	Halted
interrupts	IRQ0 to IRQ5	ing	ing	ing	ing	ing	ing	ing	ing	
Peripheral functions	WDT1	Function- ing	Function- ing	Function- ing	_	Subclock operation	Subclock operation	Subclock operation	Halted (retained)	Halted (reset)
	WDT0	Function- ing	Function- ing	Function- ing	_	Halted (retained)	Subclock operation	Subclock operation	Halted (retained)	Halted (reset)
	DTC	Function- ing	Medium- speed operation	Function- ing	Halted (retained)	Halted (retained)	Halted (retained)	Halted (retained)	Halted (retained)	Halted (reset)
	PBC	Function- ing	Medium- speed operation	Function- ing	Halted (retained)	Halted (retained)	Subclock operation	Halted (retained)	Halted (retained)	Halted (reset)
	TPU	Function-	Function-	Function-	Halted	Halted	Halted	Halted	Halted	Halted
	IIC0*2	ing	ing	ing	(retained)	(retained)	(retained)	(retained)	(retained)	(reset)
	IIC1*2	•								
	PPG	•								
	D/A0, 1									
	SCI0	Function-	Function-	Function-	Halted	Halted	Halted	Halted	Halted	Halted
	SCI1	ing	ing	ing	(reset)	(reset)	(reset)	(reset)	(reset)	(reset)
	SCI2	Ξ.								
	PWM	Ξ.								
	A/D									
	RAM	Function- ing	Function- ing	Function- ing (DTC)	Function- ing	Retained	Function- ing	Retained	Retained	Retained
	I/O	Function- ing	Function- ing	Function- ing	Function- ing	Retained	Function- ing	Retained	Retained	High impedance
	HCAN	Function- ing	Function- ing	Function- ing	Halted (reset)	Halted (reset)	Halted (reset)	Halted (reset)	Halted (reset)	Halted (reset)

Notes: "Halted (retained)" means that internal register values are retained. The internal state is "operation suspended."

In module stop mode, only modules for which a stop setting has been made are halted (reset or retained).

[&]quot;Halted (reset)" means that internal register values and internal states are initialized.

^{1.} Halted if the SUBSTP bit in LPWRCR is set to 1.

The I²C bus interface is available as an option in the H8S/2638, H8S/2639, and H8S/2630. The product equipped with the I²C bus interface is the W-mask version.

Table 23B-2 LSI Internal States in Each Mode (H8S/2639 Group, H8S/2635 Group)

Function		High- Speed	Medium- Speed	Sleep	Module Stop	Watch	Sub- active	Subsleep		Hardware Standby
System clo	ock (ø)	Function- ing	Function- ing	Function- ing	Function- ing	Halted	Halted	Halted	Halted	Halted
Clock puls	e generator	Function- ing	Function- ing	Function- ing	Function- ing	Function- ing*1	Function- ing*1	Function- ing*1	Function- ing*1	Halted
Subclock (φSub)	Function- ing*1	Function- ing*1	Function- ing*1	Function- ing*1	Function- ing*1	Function- ing*1	Function- ing*1	Function- ing*1	Halted
CPU	Instructions Registers	Function- ing	Medium- speed operation	Halted (retained)	High/ medium- speed operation	Halted (retained)	Subclock operation	Halted (retained)	Halted (retained)	Halted (undefined)
External	NMI	Function-	Function-	Function-	Function-	Function-	Function-	Function-	Function-	Halted
interrupts	IRQ0 to IRQ5	ing	ing	ing	ing	ing	ing	ing	ing	
Peripheral functions	WDT1	Function- ing	Function- ing	Function- ing	_	Subclock operation	Subclock operation	Subclock operation	Halted (retained)	Halted (reset)
,	WDT0	Function- ing	Function- ing	Function- ing	_	Halted (retained)	Subclock operation	Subclock operation	Halted (retained)	Halted (reset)
	DTC*3	Function- ing	Medium- speed operation	Function- ing	Halted (retained)	Halted (retained)	Halted (retained)	Halted (retained)	Halted (retained)	Halted (reset)
	TPU		Function-	Function- ing	Halted	Halted	Halted	Halted	Halted	Halted
	IIC0*2	ing	ing		(retained)	(retained)	ed) (retained)	(retained)	(retained)	(reset)
	IIC1*2	-								
	PBC*3	-								
	PPG*3	=' =.								
	D/A0, 1*3									
	SCI0	Function-	Function-	Function-	Halted	Halted	Halted	Halted	Halted	Halted
	SCI1	ing	ing	ing	(reset)	(reset)	(reset)	(reset)	(reset)	(reset)
	SCI2	<u>-</u>								
	PWM	-								
	A/D									
	RAM	Function- ing	Function- ing	Function- ing (DTC)	Function- ing	Retained	Function- ing	Retained	Retained	Retained
	I/O	Function- ing	Function- ing	Function- ing	Function- ing	Retained	Function- ing	Retained	Retained	High impedance
	HCAN	Function- ing	Function- ing	Function- ing	Halted (reset)	Halted (reset)	Halted (reset)	Halted (reset)	Halted (reset)	Halted (reset)

Notes: "Halted (retained)" means that internal register values are retained. The internal state is "operation suspended."

[&]quot;Halted (reset)" means that internal register values and internal states are initialized.

In module stop mode, only modules for which a stop setting has been made are halted (reset or retained).

^{1.} Halted if the SUBSTP bit in LPWRCR is set to 1.

The I²C bus interface is available as an option in the H8S/2638, H8S/2639, and H8S/2630. The product equipped with the I²C bus interface is the W-mask version.

^{3.} The DTC, PBC, PPG, DA0, and DA1 are not implemented in the H8S/2635 Group.

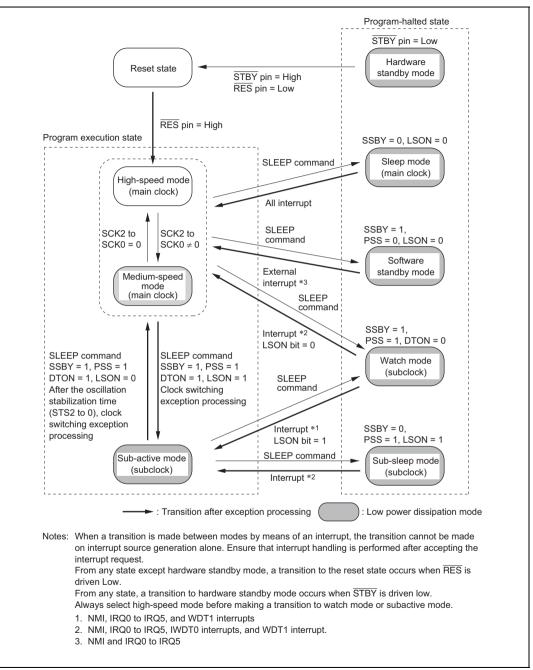


Figure 23B-1 Mode Transition Diagram

Table 23B.3 Low Power Dissipation Mode Transition Conditions

	Stat		ontrol sition	Bit at	State after Transition	State after Transition Back from Low Power		
Pre-Transition State	SSBY	PSS	PSS LSON I		Invoked by SLEEP Command	Mode Invoked by Interrupt		
High-speed/ Medium-speed	0	*	0	*	Sleep	High-speed/Medium- speed		
	0	*	1	*	_	_		
	1	0	0	*	Software standby	High-speed/Medium- speed		
	1	0	1	*	_	_		
	1	1	0	0	Watch	High-speed		
	1	1	1	0	Watch	Subactive		
	1	1	0	1	_	_		
	1	1	1	1	Subactive	_		
Subactive	0	0	*	*	_	_		
	0	1	0	*	_	_		
	0	1	1	*	Subsleep	Subactive		
	1	0	*	*	_	_		
	1	1	0	0	Watch	High-speed		
	1	1	1	0	Watch	Subactive		
	1	1	0	1	High-speed	_		
	1	1	1	1	_	_		

Legend:

*: Don't care

-: Do not set

23B.1.1 Register Configuration

Power-down modes are controlled by the SBYCR, SCKCR, LPWRCR, TCSR (WDT1), and MSTPCR registers. Table 23B-4 summarizes these registers.

Table 23B-4 Power-Down Mode Registers

Name	Abbreviation	R/W	Initial Value	Address*1
Standby control register	SBYCR	R/W	H'58	H'FDE4
System clock control register	SCKCR	R/W	H'00	H'FDE6
Low-power control register	LPWRCR	R/W	H'00	H'FDEC
Timer control/status register	TCSR	R/W	H'00	H'FFA2
Module stop control register	MSTPCRA	R/W	H'3F	H'FDE8
A, B, C, D	MSTPCRB	R/W	H'FF	H'FDE9
	MSTPCRC	R/W	H'FF	H'FDEA
	MSTPCRD	R/W	B'11*****	H'FC60

Note: 1. Lower 16 bits of the address.

23B.2 Register Descriptions

23B.2.1 Standby Control Register (SBYCR)

Bit	:	7	6	5	4	3	2	1	0	
		SSBY	STS2	STS1	STS0	OPE	_	_	_	
Initial value	:	0	1	0	1	1	0	0	0	
R/W	:	R/W	R/W	R/W	R/W	R/W	_	_	_	

SBYCR is an 8-bit readable/writable register that performs power-down mode control.

SBYCR is initialized to H'58 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Software Standby (SSBY): When making a low power dissipation mode transition by executing the SLEEP instruction, the operating mode is determined in combination with other control bits.

Note that the value of the SSBY bit does not change even when shifting between modes using interrupts.

D	:4	7
D	π	1

	<u></u>
SSBY	Description
0	Shifts to sleep mode when the SLEEP instruction is executed in high-speed mode or medium-speed mode. Shifts to subsleep mode when the SLEEP instruction is executed in
	subactive mode. (Initial value)
1	Shifts to software standby mode, subactive mode, and watch mode when the SLEEP instruction is executed in high-speed mode or medium-speed mode. Shifts to watch mode or high-speed mode when the SLEEP instruction is executed in subactive mode.

Bits 6 to 4—Standby Timer Select 2 to 0 (STS2 to STS0): These bits select the MCU wait time for clock stabilization when shifting to high-speed mode or medium-speed mode by using a specific interrupt or command to cancel software standby mode, watch mode, or subactive mode. With a quartz oscillator (Table 23B-6), select a wait time of 8ms (oscillation stabilization time) or more, depending on the operating frequency. With an external clock, select a standby time of 2 ms or more (PLL oscillator settling time), based on the operating frequency.

Bit 6	Bit 5	Bit 4		
STS2	STS1	STS0	 Description	
0	0	0	Standby time = 8192 states	
		1	Standby time = 16384 states	
	1	0	Standby time = 32768 states	
		1	Standby time = 65536 states	
1 0		0	Standby time = 131072 states	
		1	Standby time = 262144 states	(Initial value)
	1	0	Reserved	
		1	Standby time = 16 states (Setting prohibited)	

Bit 3—Output Port Enable (OPE): This bit specifies whether the output of the address bus and bus control signals (AS, RD, HWR, LWR) is retained or set to high-impedance state in the software standby mode, watch mode, and when making a direct transition.

Bit 3

OPE	Description	
0	In software standby mode, watch mode, and when making a direct trar bus and bus control signals are high-impedance.	nsition, address
1	In software standby mode, watch mode, and when making a direct trar output state of the address bus and bus control signals is retained.	nsition, the (Initial value)

Bits 2 to 0—Reserved: These bits always return 0 when read, and cannot be written to.

23B.2.2 System Clock Control Register (SCKCR)

Bit :		7	6	5	4	3	2	1	0
		PSTOP	_	_	_	STCS	SCK2	SCK1	SCK0
Initial value:	_	0	0	0	0	0	0	0	0
R/W :		R/W	_	_	_	R/W	R/W	R/W	R/W

SCKCR is an 8-bit readable/writable register that performs ϕ clock output control and mediumspeed mode control.

SCKCR is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—\$\phi\$ Clock Output Disable (PSTOP): In combination with the DDR of the applicable port, this bit controls ϕ output. See section 23B.12, ϕ Clock Output Disable Function for details.

Description

Bit 7 PSTOP	High-Speed Mode, Medium-Speed Mode, Subactive Mode	Sleep Mode, Subsleep Mode	Software Standby Mode, Watch Mode, Direct Transition	Hardware Standby Mode
0	φ output (initial value)	φ output	Fixed high	High impedance
1	Fixed high	Fixed high	Fixed high	High impedance

Bits 6 to 4—Reserved: These bits are always read as 0 and cannot be modified.

Bit 3—Frequency Multiplication Factor Switching Mode Select (STCS): Selects the operation when the PLL circuit frequency multiplication factor is changed.

Bit 3

STCS	Description				
0	Specified multiplication factor is valid after transition to software standby mode, watch mode, or subactive mode (Initial value)				
1	Specified multiplication factor is valid immediately after STC bits are rewritten				

Bits 2 to 0—System Clock Select (SCK2 to SCK0): These bits select the bus master clock in high-speed mode, medium-speed mode, and subactive mode.

Set SCK2 to SCK0 all to 0 when shifting to operation in watch mode or subactive mode.

Bit 2	Bit 1	Bit 0		
SCK2	SCK1	SCK0	 Description	
0	0	0	Bus master in high-speed mode	(Initial value)
		1	Medium-speed clock is φ/2	
	1	0	Medium-speed clock is φ/4	
		1	Medium-speed clock is φ/8	
1 0	0	0	Medium-speed clock is φ/16	
		1	Medium-speed clock is φ/32	
	1	_	_	

23B.2.3 Low-Power Control Register (LPWRCR)

Bit	:	7	6	5	4	3	2	1	0	_
		DTON*	LSON*	NESEL*	SUBSTP*	RFCUT*	_	STC1	STC0	
Initial val	lue :	0	0	0	0	0	0	0	0	-
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Note: *Bits 7 to 3 in LPWRCR are valid in the U-mask and W-mask versions, and H8S/2635 Group; they are reserved bits in all other versions.

See section 23A.2.3, Low-Power Control Register (LPWRCR), for more information.

The LPWRCR is an 8-bit read/write register that controls the low power dissipation modes.

The LPWRCR is initialized to H'00 at a reset and when in hardware standby mode. It is not initialized in software standby mode. The following describes bits 7 to 2. For details of other bits, see sections 22A.2.2, 22B.2.2, Low-Power Control Register (LPWRCR).

Bit 7—Direct Transition ON Flag (DTON): When shifting to low power dissipation mode by executing the SLEEP instruction, this bit specifies whether or not to make a direct transition between high-speed mode or medium-speed mode and the subactive modes. The selected operating mode after executing the SLEEP instruction is determined by the combination of other control bits.

Bit 7

DTON Description When the SLEEP instruction is executed in high-speed mode or medium-speed mode, operation shifts to sleep mode, software standby mode, or watch mode*. When the SLEEP instruction is executed in subactive mode, operation shifts to subsleep mode or watch mode. (Initial value) When the SLEEP instruction is executed in high-speed mode or medium-speed mode, operation shifts directly to subactive mode*, or shifts to sleep mode or software standby mode. When the SLEEP instruction is executed in subactive mode, operation shifts directly to high-speed mode, or shifts to subsleep mode.

Note: * Always set high-speed mode when shifting to watch mode or subactive mode.

Bit 6—Low-Speed ON Flag (LSON): When shifting to low power dissipation mode by executing the SLEEP instruction, this bit specifies the operating mode, in combination with other control bits. This bit also controls whether to shift to high-speed mode or subactive mode when watch mode is cancelled.

Bit 6

	-		
LSON	Description		
0	 When the SLEEP instruction is executed in high-speed mode or medium-speed mode, operation shifts to sleep mode, software standby mode, or watch mode*. 		
	 When the SLEEP instruction is executed in subactive mode, operation shifts to watch mode or shifts directly to high-speed mode. 		
	Operation shifts to high-speed mode when watch mode is cancelled. (Initial value)		
1	When the SLEEP instruction is executed in high-speed mode, operation shifts to watch mode or subactive mode.		
	 When the SLEEP instruction is executed in subactive mode, operation shifts to subsleep mode or watch mode. 		
	Operation shifts to subactive mode when watch mode is cancelled.		

Note: * Always set high-speed mode when shifting to watch mode or subactive mode.

Bit 5—Noise Elimination Sampling Frequency Select (NESEL): This bit selects the sampling frequency of the subclock (ϕ SUB) generated by the subclock oscillator is sampled by the clock (ϕ) generated by the system clock oscillator. Set this bit to 0 when ϕ =5MHz or more. This setting is disabled in subactive mode, subsleep mode, and watch mode.

Bit 5

NESEL	Description	
0	Sampling using $1/32 \times \phi$	(Initial value)
1	Sampling using $1/4 \times \phi$	

Bit 4—Subclock Enable (SUBSTP): This bit enables/disables subclock generation.

Bit 4

SUBSTP Description			
0	Enables subclock generation	(Initial value)	
1	Disables subclock generation		

Bit 3—Oscillation Circuit Feedback Resistance Control Bit (RFCUT): This bit turns the internal feedback resistance of the main clock oscillation circuit ON/OFF.

Bit 3

RFCUT	Description	
0	When the main clock is oscillating, sets the feedback resistance ON. V clock is stopped, sets the feedback resistance OFF.	Vhen the main (Initial value)
1	Sets the feedback resistance OFF.	

Bit 2—Reserved: Only write 0 to this bit.

23B.2.4 Timer Control/Status Register (TCSR)

Bit	:	7	6	5	4	3	2	1	0
		OVF	WT/IT	TME	PSS*2	RST/NMI	CKS2	CKS1	CKS0
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/(W)*1	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Notes: 1. Only write 0 to clear the flag.

 Bit 4 (PSS) in TCSR of WDT1 is valid in the U-mask and W-mask versions, and H8S/2635 Group. In versions other than the U-mask and W-mask versions, and H8S/2635 Group, however, the PSS bit must always be written with 0 since no subclock functions are available.

TCSR is an 8-bit read/write register that selects the clock input to WDT1 TCNT and the mode.

Here, we describe bit 4. For details of the other bits in this register, see section 12.2.2, Timer Control/Status Register (TCSR).

The TCSR is initialized to H'00 at a reset and when in hardware standby mode. It is not initialized in software standby mode.

Bit 4—Prescaler Select (PSS): This bit selects the clock source input to WDT1 TCNT.

It also controls operation when shifting low power dissipation modes. The operating mode selected after the SLEEP instruction is executed is determined in combination with other control bits

For details, see the description for clock selection in section 12.2.2, Timer Control/Status Register (TCSR), and this section.

Bit 4

PSS	
0	• TCNT counts the divided clock from the ϕ -based prescaler (PSM).
	 When the SLEEP instruction is executed in high-speed mode or medium-speed mode, operation shifts to sleep mode or software standby mode. (Initial value)
1	 TCNT counts the divided clock from the φsubclock-based prescaler (PSS).
	 When the SLEEP instruction is executed in high-speed mode or medium-speed mode, operation shifts to sleep mode, watch mode*1 *2, or subactive mode*1 *2.
	 When the SLEEP instruction is executed in subactive mode*2, operation shifts to subsleep mode*2, watch mode*2, or high-speed mode.

Notes: 1. Always set high-speed mode when shifting to watch mode or subactive mode.

2. Bit 4 (PSS) in TCSR of WDT1 is valid in the U-mask and W-mask versions, and H8S/2635 Group. In versions other than the U-mask and W-mask versions, and H8S/2635 Group, however, the PSS bit must always be written with 0 since no subclock functions are available.

MCTDCDA

May 28, 2010

23B.2.5 Module Stop Control Register (MSTPCR)

MSTPCRA								
Bit :	7	6	5	4	3	2	1	0
	MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0
Initial value:	0	0	1	1	1	1	1	1
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MSTPCRB								
Bit :	7	6	5	4	3	2	1	0
	MSTPB7	MSTPB6	MSTPB5	MSTPB4	MSTPB3	MSTPB2	MSTPB1	MSTPB0
Initial value :	1	1	1	1	1	1	1	1
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MSTPCRC								
Bit :	7	6	5	4	3	2	1	0
	MSTPC7	MSTPC6	MSTPC5	MSTPC4	MSTPC3	MSTPC2	MSTPC1	MSTPC0
Initial value:	1	1	1	1	1	1	1	1
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MSTPCRD								
Bit :	7	6	5	4	3	2	1	0
ы .	MSTPD7	-		MSTPD4				_
Initial value :	1	1	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
R/W :	R/W	R/W	_	_	_	_	_	

MSTPCR, comprising four 8-bit readable/writable registers, performs module stop mode control.

MSTPCRA to MSTPCRC are initialized to H'3FFFFF by a reset and in hardware standby mode. MSTPCRD is initialized to B'11***** by a reset and in hardware standby mode. They are not initialized in software standby mode.

MSTPCRA/MSTPCRB/MSTPCRC Bits 7 to 0, MSTPCRD Bits 7 and 6—Module Stop (MSTPA7 to MSTPA0, MSTPB7 to MSTPB0, MSTPC7 to MSTPC0, MSTPD7 and

MSTPD6): These bits specify module stop mode. See table 23B-5 for the method of selecting the on-chip peripheral functions.

MSTPCRA/MSTPCRB/ MSTPCRC Bits 7 to 0, MSTPCRD Bits 7 and 6

MSTPA7 to MSTPA0, MSTPB7 to MSTPB0, MSTPC7 to MSTPC0,

MSTPD7 and MSTPD6 Description

0	Module stop mode is cleared (initial value of MSTPA7 and MSTPA6)
1	Module stop mode is set (initial value of MSTPA5-0, MSTPB7-0, MSTPC7-0, and MSTPC7, 6)

23B.3 Medium-Speed Mode

In high-speed mode, when the SCK2 to SCK0 bits in SCKCR are set to 1, the operating mode changes to medium-speed mode as soon as the current bus cycle ends. In medium-speed mode, the CPU operates on the operating clock ($\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, or $\phi/32$) specified by the SCK2 to SCK0 bits. The bus masters other than the CPU (DTC) also operate in medium-speed mode. On-chip supporting modules other than the bus masters always operate on the high-speed clock (ϕ).

In medium-speed mode, a bus access is executed in the specified number of states with respect to the bus master operating clock. For example, if $\phi/4$ is selected as the operating clock, on-chip memory is accessed in 4 states, and internal I/O registers in 8 states.

Medium-speed mode is cleared by clearing all of bits SCK2 to SCK0 to 0. A transition is made to high-speed mode and medium-speed mode is cleared at the end of the current bus cycle.

If a SLEEP instruction is executed when the SSBY bit in SBYCR is cleared to 0, and LSON bit in LPWRCR is cleared to 0, a transition is made to sleep mode. When sleep mode is cleared by an interrupt, medium-speed mode is restored.

When the SLEEP instruction is executed with the SSBY bit = 1, LPWRCR LSON bit = 0, and TCSR (WDT1) PSS bit = 0, operation shifts to the software standby mode. When software standby mode is cleared by an external interrupt, medium-speed mode is restored.

When the \overline{RES} pin is set low and medium-speed mode is cancelled, operation shifts to the reset state. The same applies in the case of a reset caused by overflow of the watchdog timer.

When the STBY pin is driven low, a transition is made to hardware standby mode.

Figure 23B-2 shows the timing for transition to and clearance of medium-speed mode.

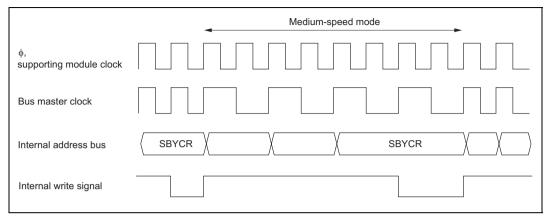


Figure 23B-2 Medium-Speed Mode Transition and Clearance Timing

23B.4 Sleep Mode

23B.4.1 Sleep Mode

When the SLEEP instruction is executed when the SBYCR SSBY bit = 0 and the LPWRCR LSON bit = 0, the CPU enters the sleep mode. In sleep mode, CPU operation stops but the contents of the CPUs internal registers are retained. Other supporting modules do not stop.

23B.4.2 Exiting Sleep Mode

Sleep mode is exited by any interrupt, or signals at the \overline{RES} , or \overline{STBY} pins.

Exiting Sleep Mode by Interrupts: When an interrupt occurs, sleep mode is exited and interrupt exception processing starts. Sleep mode is not exited if the interrupt is disabled, or interrupts other than NMI are masked by the CPU.

Exiting Sleep Mode by \overline{RES} pin: Setting the RES pin level Low selects the reset state. After the stipulated reset input duration, driving the \overline{RES} pin High starts the CPU performing reset exception processing.

Exiting Sleep Mode by STBY Pin: When the STBY pin level is driven Low, a transition is made to hardware standby mode.

23B.5 Module Stop Mode

23B.5.1 Module Stop Mode

Module stop mode can be set for individual on-chip supporting modules.

When the corresponding MSTP bit in MSTPCR is set to 1, module operation stops at the end of the bus cycle and a transition is made to module stop mode. The CPU continues operating independently.

Table 23B-5 shows MSTP bits and the corresponding on-chip supporting modules.

When the corresponding MSTP bit is cleared to 0, module stop mode is cleared and the module starts operating at the end of the bus cycle. In module stop mode, the internal states of modules other than the SCI, Motor control PWM, A/D converter and HCAN are retained.

After reset clearance, all modules other than DTC are in module stop mode.

When an on-chip supporting module is in module stop mode, read/write access to its registers is disabled.

May 28, 2010

Table 23B-5 MSTP Bits and Corresponding On-Chip Supporting Modules

Register	Bit	Module
MSTPCRA	MSTPA6	Data transfer controller (DTC)*3
	MSTPA5	16-bit timer pulse unit (TPU)
	MSTPA3	Programmable pulse generator (PPG)*3
	MSTPA2	D/A converter (channel 0, 1)*3
	MSTPA1	A/D converter
	MSTPA0*1	
MSTPCRB	MSTPB7	Serial communication interface 0 (SCI0)
	MSTPB6	Serial communication interface 1 (SCI1)
	MSTPB5	Serial communication interface 2 (SCI2)
	MSTPB4	I ² C bus interface 0 (IIC0)*2
	MSTPB3	I ² C bus interface 1 (IIC1)*2
	MSTPB0*1	
MSTPCRC	MSTPC4	PC break controller (PBC)*3
	MSTPC3	HCAN0
	MSTPC2	HCAN1*3
	MSTPC1*1	
	MSTPC0*1	
MSTPCRD	MSTPD7	Motor control PWM (PWM)
	MSTPD6*1	

Notes: 1. MSTPA0, MSTPB0 and MSTPC1 to MSTPC0 and MSTPD6 are readable/writable bits with an initial value of 1.

- 2. The I²C bus interface is available as an option in the H8S/2638, H8S/2639, and H8S/2630. The product equipped with the I²C bus interface is the W-mask version. When this optional feature is not used or in H8S/2636, MSTB4 and MSTB3 are readable and writable bits that have 1 as their initial value.
- 3. The DTC, PPG, D/A converter, PBC, and HCAN1 are not implemented in the H8S/2635 and H8S/2634. MSTPA6, MSTPA3, MSTPA2, MSTPC4, and MSTPC2 are readable/writable bits, but only 1 should be written to them.

23B.5.2 Usage Notes

Note: The DTC is not implemented in the H8S/2635 Group.

DTC Module Stop: Depending on the operating status of the DTC, the MSTPA7 and MSTPA6 bits may not be set to 1. Setting of the DTC module stop mode should be carried out only when the respective module is not activated.

For details, refer to section 8, Data Transfer Controller (DTC).

On-Chip Supporting Module Interrupt: Relevant interrupt operations cannot be performed in module stop mode. Consequently, if module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source or the DTC activation source. Interrupts should therefore be disabled before entering module stop mode.

Writing to MSTPCR: MSTPCR should only be written to by the CPU.

23B.6 Software Standby Mode

23B.6.1 Software Standby Mode

A transition is made to software standby mode when the SLEEP instruction is executed when the SBYCR SSBY bit = 1 and the LPWRCR LSON bit = 0, and the TCSR (WDT1) PSS bit = 0. In this mode, the CPU, on-chip supporting modules, and oscillator all stop*. However, the contents of the CPU's internal registers, RAM data, and the states of on-chip supporting modules other than the SCI, A/D converter, Motor control PWM, HCAN and I/O ports, are retained. Whether the address bus and bus control signals are placed in the high-impedance state.

In this mode the oscillator stops*, and therefore power dissipation is significantly reduced.

Note: * The subclock (\$\phi SUB\$) operates if the SUBSTP bit in LPWRCR is set to 0.

23B.6.2 Clearing Software Standby Mode

Software standby mode is cleared by an external interrupt (NMI pin, or pins $\overline{IRQ0}$ to $\overline{IRQ5}$), or by means of the \overline{RES} pin or \overline{STBY} pin.

- Clearing with an interrupt
 - When an NMI or IRQ0 to IRQ5 interrupt request signal is input, clock oscillation starts, and after the elapse of the time set in bits STS2 to STS0 in SYSCR, stable clocks are supplied to the entire chip, software standby mode is cleared, and interrupt exception handling is started. When clearing software standby mode with an IRQ0 to IRQ5 interrupt, set the corresponding enable bit to 1 and ensure that no interrupt with a higher priority than interrupts IRQ0 to IRQ5 is generated. Software standby mode cannot be cleared if the interrupt has been masked on the CPU side or has been designated as a DTC activation source.
- Clearing with the RES pin

When the \overline{RES} pin is driven Low, clock oscillation is started. At the same time as clock oscillation starts, clocks are supplied to the entire chip. Note that the \overline{RES} pin must be held Low until clock oscillation stabilizes. When the \overline{RES} pin goes high, the CPU begins reset exception handling.

Clearing with the STBY pin
 When the STBY pin is driven Low, a transition is made to hardware standby mode.

23B.6.3 Setting Oscillation Stabilization Time after Clearing Software Standby Mode

Bits STS2 to STS0 in SBYCR should be set as described below.

Using a Crystal Oscillator:

1. Setting for H8S/2636, H8S/2638, H8S/2639, H8S/2630

Set bits STS2 to STS0 so that the standby time is at least 8 ms (the oscillation stabilization time).

Table 23B-6 shows the standby times for different operating frequencies and settings of bits STS2 to STS0.

Table 23B-6 Oscillation Stabilization Time Settings

STS2	STS1	STS0	Standby Time	20 MHz	16 MHz	12 MHz	10 MHz	8 MHz	6 MHz	5 MHz	4 MHz	Unit
0	0	0	8192 states	0.41	0.51	0.68	8.0	1.0	1.3	1.6	2.0	ms
		1	16384 states	0.82	1.0	1.3	1.6	2.0	2.7	3.2	4.1	_
	1	0	32768 states	1.6	2.0	2.7	3.3	4.1	5.5	6.5	8.2]
		1	65536 states	3.3	4.1	5.5	6.6	8.2	10.9	13.1	16.4	_
1	0	0	131072 states	6.6	8.2	10.9	13.1	16.4	21.8	26.2	32.8	=
		1	262144 states	13.1	16.4	21.8	26.2	32.8	43.6	52.4	65.6	_
	1	0	Reserved	_	_	_	_	_	_	_	_	μs
		1	16 states (Setting prohibited)	8.0	1.0	1.3	1.6	2.0	2.6	3.2	4.0	

: Recommended time setting

2. Setting for H8S/2635, H8S/2634

Set bits STS2 to STS0 so that the standby time is at least 12 ms (the oscillation stabilization time).

Table 23B-7 shows the standby times for different operating frequencies and settings of bits STS2 to STS0.

Table 23B-7 Oscillation Stabilization Time Settings

STS2	STS1	STS0	Standby Time	20 MHz	16 MHz	10 MHz	8 MHz	5 MHz	4 MHz	Unit
0	0	0	8192 states	0.41	0.51	0.8	1.0	1.6	2.0	ms
		1	16384 states	0.82	1.0	1.6	2.0	3.2	4.1	
	1	0	32768 states	1.6	2.0	3.3	4.1	6.5	8.2	_
		1	65536 states	3.3	4.1	6.6	8.2	13.1	16.4	
1	0	0	131072 states	6.6	8.2	13.1	16.4	26.2	32.8	
		1	262144 states	13.1	16.4	26.2	32.8	52.4	65.6	
	1	0	Reserved	_	_	_	_	_	_	μs
		1	16 states (Setting prohibited)	0.8	1.0	1.6	2.0	3.2	4.0	

: Recommended time setting

Using an External Clock: The PLL circuit requires time to stabilize, so the standby time should be set to a value of 2 ms or more.

23B.6.4 Software Standby Mode Application Example

Figure 23B-3 shows an example in which a transition is made to software standby mode at the falling edge on the NMI pin, and software standby mode is cleared at the rising edge on the NMI pin.

In this example, an NMI interrupt is accepted with the NMIEG bit in SYSCR cleared to 0 (falling edge specification), then the NMIEG bit is set to 1 (rising edge specification), the SSBY bit is set to 1, and a SLEEP instruction is executed, causing a transition to software standby mode.

Software standby mode is then cleared at the rising edge on the NMI pin.

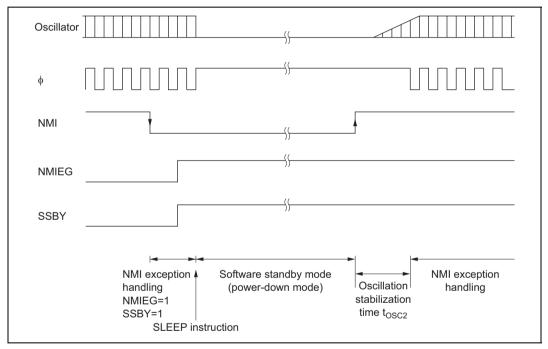


Figure 23B-3 Software Standby Mode Application Example

23B.6.5 Usage Notes

I/O Port Status: In software standby mode, I/O port states are retained. If the OPE bit is set to 1, the address bus and bus control signal output is also retained. Therefore, there is no reduction in current dissipation for the output current when a high-level signal is output.

Current Dissipation during Oscillation Stabilization Wait Period: Current dissipation increases during the oscillation stabilization wait period.

Write Data Buffer Function: The write data buffer function and software standby mode cannot be used at the same time. When the write data buffer function is used, the WDBE bit in BCRL should be cleared to 0 to cancel the write data buffer function before entering software standby mode. Also check that external writes have finished, by reading external addresses, etc., before executing a SLEEP instruction to enter software standby mode. See section 7.7, Write Data Buffer Function, for details of the write data buffer function.

23B.7 Hardware Standby Mode

23B.7.1 Hardware Standby Mode

When the STBY pin is driven low, a transition is made to hardware standby mode from any mode.

In hardware standby mode, all functions enter the reset state and stop operation, resulting in a significant reduction in power dissipation. As long as the prescribed voltage is supplied, on-chip RAM data is retained. I/O ports are set to the high-impedance state.

In order to retain on-chip RAM data, the RAME bit in SYSCR should be cleared to 0 before driving the \overline{STBY} pin low.

Do not change the state of the mode pins (MD2 to MD0) while the chip is in hardware standby mode.

Hardware standby mode is cleared by means of the \overline{STBY} pin and the \overline{RES} pin. When the \overline{STBY} pin is driven high while the \overline{RES} pin is low, the reset state is set and clock oscillation is started. Ensure that the \overline{RES} pin is held low until the clock oscillator stabilizes (at least 8 ms—the oscillation stabilization time—when using a crystal oscillator). When the \overline{RES} pin is subsequently driven high, a transition is made to the program execution state via the reset exception handling state.

23B.7.2 Hardware Standby Mode Timing

Figure 23B-4 shows an example of hardware standby mode timing.

When the \overline{STBY} pin is driven low after the \overline{RES} pin has been driven low, a transition is made to hardware standby mode. Hardware standby mode is cleared by driving the STBY pin high, waiting for the oscillation stabilization time, then changing the RES pin from low to high.

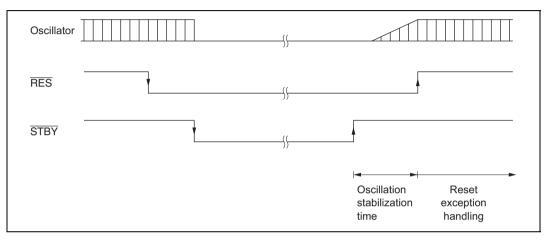


Figure 23B-4 Hardware Standby Mode Timing

Watch Mode (U-Mask, W-Mask Version, H8S/2635 Group Only) 23B.8

23B.8.1 Watch Mode

May 28, 2010

CPU operation makes a transition to watch mode when the SLEEP instruction is executed in highspeed mode or subactive mode with SBYCR SSBY=1, LPWRCR DTON = 0, and TCSR (WDT1) PSS = 1.

In watch mode, the CPU is stopped and supporting modules other than WDT1 are also stopped. The contents of the CPU's internal registers, the data in internal RAM, and the statuses of the internal supporting modules (excluding the SCI, ADC, HCAN, and Motor control PWM) and I/O ports are retained.

23B.8.2 Exiting Watch Mode

Watch mode is exited by any interrupt (WOVI interrupt, NMI pin, or $\overline{IRQ0}$ to $\overline{IRQ5}$), or signals at the \overline{RES} , or \overline{STBY} pins.

(1) Exiting Watch Mode by Interrupts

When an interrupt occurs, watch mode is exited and a transition is made to high-speed mode or medium-speed mode when the LPWRCR LSON bit = 0 or to subactive mode when the LSON bit = 1. When a transition is made to high-speed mode, a stable clock is supplied to all LSI circuits and interrupt exception processing starts after the time set in SBYCR STS2 to STS0 has elapsed. In the case of IRQ0 to IRQ5 interrupts, no transition is made from watch mode if the corresponding enable bit has been cleared to 0, and, in the case of interrupts from the internal supporting modules, the interrupt enable register has been set to disable the reception of that interrupt, or is masked by the CPU.

See section 23B.6.3, Setting Oscillation Stabilization Time after Clearing Software Standby Mode for how to set the oscillation stabilization time when making a transition from watch mode to high-speed mode.

(2) Exiting Watch Mode by RES pins

For exiting watch mode by the \overline{RES} pins, see, Clearing with the \overline{RES} pins in section 23B.6.2, Clearing Software Standby Mode.

(3) Exiting Watch Mode by STBY pin

When the STBY pin level is driven Low, a transition is made to hardware standby mode.

23B.8.3 Notes

(1) I/O Port Status

The status of the I/O ports is retained in watch mode. Also, when the OPE bit is set to 1, the address bus and bus control signals continue to be output. Therefore, when a High level is output, the current consumption is not diminished by the amount of current to support the High level output.

(2) Current Consumption when Waiting for Oscillation Stabilization

The current consumption increases during stabilization of oscillation.

23B.9 Subsleep Mode (U-Mask, W-Mask Version, H8S/2635 Group Only)

23B.9.1 Subsleep Mode

When the SLEEP instruction is executed with the SBYCR SSBY bit = 0, LPWRCR LSON bit = 1, and TCSR (WDT1) PSS bit = 1, CPU operation shifts to subsleep mode.

In subsleep mode, the CPU is stopped. Supporting modules other than WDT0, and WDT1 are also stopped. The contents of the CPU's internal registers, the data in internal RAM, and the statuses of the internal supporting modules (excluding the SCI, ADC, HCAN, and Motor control PWM) and I/O ports are retained.

23B.9.2 Exiting Subsleep Mode

Subsleep mode is exited by an interrupt (interrupts from internal supporting modules, NMI pin, or $\overline{IRQ0}$ to $\overline{IRQ5}$), or signals at the \overline{RES} or \overline{STBY} pins.

(1) Exiting Subsleep Mode by Interrupts

When an interrupt occurs, subsleep mode is exited and interrupt exception processing starts.

In the case of IRQ0 to IRQ5 interrupts, subsleep mode is not cancelled if the corresponding enable bit has been cleared to 0, and, in the case of interrupts from the internal supporting modules, the interrupt enable register has been set to disable the reception of that interrupt, or is masked by the CPU.

(2) Exiting Subsleep Mode by RES

For exiting subsleep mode by the RES pins, see, Clearing with the RES pins in section 23B.6.2, Clearing Software Standby Mode.

(3) Exiting Subsleep Mode by STBY Pin

When the STBY pin level is driven Low, a transition is made to hardware standby mode.

23B.10 Subactive Mode (U-Mask, W-Mask Version, H8S/2635 Group Only)

23B.10.1 Subactive Mode

When the SLEEP instruction is executed in high-speed mode with the SBYCR SSBY bit = 1, LPWRCR DTON bit = 1, LSON bit = 1, and TCSR (WDT1) PSS bit = 1, CPU operation shifts to subactive mode. When an interrupt occurs in watch mode, and if the LSON bit of LPWRCR is 1, a transition is made to subactive mode. And if an interrupt occurs in subsleep mode, a transition is made to subactive mode.

In subactive mode, the CPU operates at low speed on the subclock, and the program is executed step by step. Supporting modules other than WDT0, and WDT1 are also stopped.

When operating the CPU in subactive mode, the SCKCR SCK2 to SCK0 bits must be set to 0.

23B.10.2 Exiting Subactive Mode

Subactive mode is exited by the SLEEP instruction or the \overline{RES} or \overline{STBY} pins.

(1) Exiting Subactive Mode by SLEEP Instruction

When the SLEEP instruction is executed with the SBYCR SSBY bit = 1, LPWRCR DTON bit = 0, and TCSR (WDT1) PSS bit = 1, the CPU exits subactive mode and a transition is made to watch mode. When the SLEEP instruction is executed with the SBYCR SSBY bit = 0, LPWRCR LSON bit = 1, and TCSR (WDT1) PSS bit = 1, a transition is made to subsleep mode. Finally, when the SLEEP instruction is executed with the SBYCR SSBY bit = 1, LPWRCR DTON bit = 1, LSON bit = 0, and TCSR (WDT1) PSS bit = 1, a direct transition is made to high-speed mode (SCK0 to SCK2 all 0).

See section 23B.11, Direct Transitions for details of direct transitions.

(2) Exiting Subactive Mode by RES Pins

For exiting subactive mode by the \overline{RES} pins, see, Claering with the \overline{RES} pins in section 23B.6.2, Clearing Software Standby Mode.

(3) Exiting Subactive Mode by STBY Pin

When the STBY pin level is driven Low, a transition is made to hardware standby mode.

23B.11 Direct Transitions (U-Mask, W-Mask Version, H8S/2635 Group Only)

23B.11.1 Overview of Direct Transitions

There are three modes, high-speed, medium-speed, and subactive, in which the CPU executes programs. When a direct transition is made, there is no interruption of program execution when shifting between high-speed and subactive modes. Direct transitions are enabled by setting the LPWRCR DTON bit to 1, then executing the SLEEP instruction. After a transition, direct transition interrupt exception processing starts.

(1) Direct Transitions from High-Speed Mode to Subactive Mode

Execute the SLEEP instruction in high-speed mode when the SBYCR SSBY bit = 1, LPWRCR LSON bit = 1, and DTON bit = 1, and TSCR (WDT1) PSS bit = 1 to make a transition to subactive mode.

(2) Direct Transitions from Subactive Mode to High-Speed Mode

Execute the SLEEP instruction in subactive mode when the SBYCR SSBY bit = 1, LPWRCR LSON bit = 0, and DTON bit = 1, and TSCR (WDT1) PSS bit = 1 to make a direct transition to high-speed mode after the time set in SBYCR STS2 to STS0 has elapsed.

Output of the ϕ clock can be controlled by means of the PSTOP bit in SCKCR, and DDR for the corresponding port. When the PSTOP bit is set to 1, the ϕ clock stops at the end of the bus cycle, and ϕ output goes high. ϕ clock output is enabled when the PSTOP bit is cleared to 0. When DDR for the corresponding port is cleared to 0, ϕ clock output is disabled and input port mode is set. Table 23B-8 shows the state of the ϕ pin in each processing state.

Using the on-chip PLL circuit to lower the oscillator frequency or prohibiting external ϕ clock output also have the effect of reducing unwanted electromagnetic interference*. Therefore, consideration should be given to these options when deciding on system board settings.

Note: * Electromagnetic interference: EMI (Electro Magnetic Interference)

Table 23B-8 ♦ **Pin State in Each Processing State**

DDR	0	1	1
PSTOP	_	0	1
Hardware standby mode	High impedance	High impedance	High impedance
Software standby mode, watch mode*, and direct transition	High impedance	Fixed high	Fixed high
Sleep mode and subsleep mode*	High impedance	φ output	Fixed high
High-speed mode, medium-speed mode, and subactive mode*	High impedance	φ output	Fixed high
Subactive mode	High impedance	φ _{SUB} output	Fixed high

Note: *Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions.

23B.13 Usage Notes

- 1. When making a transition to subactive mode or watch mode, set the DTC to enter module stop mode (write 1 to the relevant bits in MSTPCR), and then read the relevant bits to confirm that they are set to 1 before mode transition. Do not clear module stop mode (write 0 to the relevant bits in MSTPCR) until a transition from subactive mode to high-speed mode or medium-speed mode has been performed.
 - If a DTC activation source occurs in subactive mode, the DTC will be activated only after module stop mode has been cleared and high-speed mode or medium-speed mode has been entered
- 2. The on-chip peripheral modules (DTC and TPU) which halt operation in subactive mode cannot clear an interrupt in subactive mode. Therefore, if a transition is made to subactive mode while an interrupt is requested, the CPU interrupt source cannot be cleared. Disable the interrupts of each on-chip peripheral module before executing a SLEEP instruction to enter subactive mode or watch mode.
- 3. A 1 is always returned when an attempt is made to read the pin status of I/O ports 1, 4, 9, or F during operation in subactive mode. (In the case of port 1, pins 13 to 10 are readable.) In addition, the ports may be used as output ports (except for ports 4 and 9). The procedure for determining the pin status during operation in subactive mode is as follows.
 - [1] Use ports 3, A, B, C, D, E, H, and J as input ports.
 - [2] Use external interrupt inputs (IRQ0 to IRQ5). (If the level sense setting has been selected for the IRQ pins, an interrupt request is generated by a low-level input.)
- 4. Operation cannot be guaranteed if a transition is made to the subactive mode, subsleep mode, or watch mode when the SUBSTP bit in LPWRCR is set to 1 (subclock generation prohibited). To prevent problems, it should be confirmed that the SUBSTP bit has been cleared to 0 before transitioning to the subactive mode, subsleep mode, or watch mode.
- 5. (H8S/2639 Group, H8S/2635 Group only) The subclock (φSUB) is frequency divided internally, so the clock oscillator does not halt even if a transition to the software standby mode occurs when the SUBSTP bit in LPWRCR is cleared to 0. The SUBSTP bit in LPWRCR should be set to 1 before transitioning to the software standby mode.

Section 24 Electrical Characteristics

24.1 H8S/2636 Group Electrical Characteristics

24.1.1 Absolute Maximum Ratings

Table 24-1 lists the absolute maximum ratings.

Table 24-1 Absolute Maximum Ratings

Item	Symbol	Value	Unit
Power supply voltage	Vcc	-0.3 to +7.0	V
Input voltage (OSC1, OSC2)	V _{in}	-0.3 +4.3	V
Input voltage (XTAL, EXTAL)	V _{in}	-0.3 to V _{CC} +0.3	V
Input voltage (ports 4 and 9)	V _{in}	-0.3 to AV _{CC} +0.3	V
Input voltage (ports H and J)	V _{in}	-0.3 to PWMV _{CC} +0.3	V
Input voltage (except XTAL, EXTAL, OSC1, OSC2, ports 4, 9, H and J)	V _{in}	-0.3 to V _{CC} +0.3	V
Reference voltage	V_{ref}	-0.3 to AV _{CC} +0.3	V
Analog power supply voltage	AV _{CC}	-0.3 to +7.0	V
Analog input voltage	V_{AN}	-0.3 to AV _{CC} +0.3	V
Operating temperature	T _{opr}	Regular specifications: -20 to +75	°C
		Wide-range specifications: -40 to +85	°C
Storage temperature	T _{stg}	-55 to +125	°C

Caution: Permanent damage to the chip may result if absolute maximum rating are exceeded.

24.1.2 Power Supply Voltage and Operating Frequency Range

Power supply voltage and operating frequency ranges (shaded areas) are shown in figure 24-1.

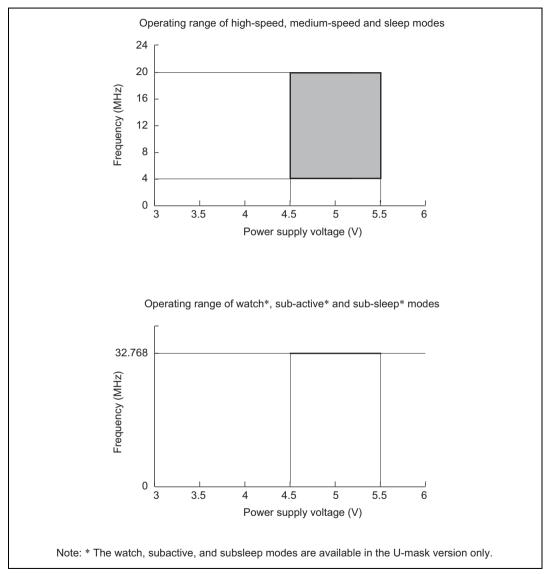


Figure 24-1 Power Supply Voltage and Operating Ranges

24.1.3 **DC** Characteristics

Table 24-2 lists the DC characteristics. Table 24-3 lists the permissible output currents.

Table 24-2 DC Characteristics

May 28, 2010

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}C$ to $+75^{\circ}C$

(regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)**1**6

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt	IRQ0 to IRQ5	V _T	1.0	_	_	V	
trigger input voltage		V_T^+	_	_	$V_{\text{CC}}\times 0.7$	_	
voitage		$V_T^+ - V_T^-$	0.4	_	_	_	
Input high voltage	RES, STBY, NMI, FWE, MD2 to MD0	V _{IH}	V _{CC} - 0.7	_	V _{CC} + 0.3	V	
	EXTAL	_	$V_{CC} \times 0.7$	_	$V_{CC} + 0.3$	_	
	Ports 1, 3, F	=	2.2	_	V _{CC} + 0.3	_	
	Ports A to E	=	$V_{CC} \times 0.8$	_	V _{CC} + 0.3	_	
	Ports H, J	_	PWMV _{CC} × 0.8	_	PWMV _{CC} +	_	
	HRxD0, HRxD1	_	2.2	_	V _{CC} + 0.3		
	Ports 4 and 9	=	$AV_{CC} \times 0.7$	_	AV _{CC} + 0.3	_	
Input low voltage	RES, STBY, NMI, FWE, MD2 to MD0	V _{IL}	-0.3	_	0.5	V	
	EXTAL	_	-0.3	_	0.8	_	
	Ports 1, 3, F	_	-0.3	_	0.8		
	Ports A to E	_	-0.3	_	$V_{CC}\!\times 0.2$	_	
	Ports H, J	_	-0.3	_	PWMV _{CC} × 0.2		
	HRxD0, HRxD1	_	-0.3	_	$V_{\text{CC}} \times 0.2$		
	Ports 4, 9	_	-0.3	_	AV _{CC} × 0.2	_	

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Output high voltage	Ports 1, 3, A to F, H,J	V _{OH}	V _{CC} - 0.5	_	_	V	$I_{OH} = -200 \ \mu A$	
	HTxD0, HTxD1		3.5	_	_		I _{OH} = -1 mA	
	PWM1A to PWM1H, PWM2A to PWM2H	-	PWMV _{CC} – 0.5		-		I _{OH} = -15 mA	
Output low voltage	All output pins except PWM1A to PWM1H, PWM2A to PWM2H	VoL	_	_	0.4	V	I _{OL} = 1.6 mA	
	PWM1A to PWM1H, PWM2A to PWM2H	-	_	_	0.5	V	I _{OL} = 15 mA	
Input leakage	RES	I _{in}	_	_	1.0	μΑ	V _{in} = 0.5 V to	
current	STBY, NMI, MD2 to MD0		_	_	1.0		V _{CC} – 0.5 V	
	HRxD0, HRxD1, FWE	_	_	_	1.0			
	Ports 4, 9	_	_	_	1.0		$V_{in} = 0.5 \text{ V to}$ $AV_{CC} - 0.5 \text{ V}$	
Three-state leakage current (off state)	Ports 1, 3, A to F, H, J HTxD0, HTxD1	I _{TSI}	_		1.0	μА	$V_{in} = 0.5 \text{ V to}$ $V_{CC} - 0.5 \text{ V}$	
MOS input pull-up current	Ports A to E	-I _P	50		300	μА	$V_{in} = 0 V$	
Input	RES	C _{in}	_	_	30	pF	$V_{in} = 0 V$	
capacitance	NMI	=	_	_	30		f = 1 MHz	
	All input pins except RES and NMI		_	_	15	_	T _a = 25°C	

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Current dissipation*2	Normal operation	I _{CC} *4	_	75	90	mA	f = 20 MHz
	Sleep mode	=	_	65	80		
	All modules stopped	_	_	57	_	mA	f = 20 MHz (reference value)
	Medium- speed mode (\phi/32)	_	_	49	_		
	Subactive mode*5	_	_	130	220	μΑ	Using 32.768 kHz crystal resonator
	Subsleep mode*5	_	_	80	160		
	Watch mode ^{*5}	_	_	30	60		
	Standby	_	_	2.0	5.0	μA	$T_a \le 50^{\circ}C$
	mode*3		_	_	20		50°C < T _a
Analog power supply current	During A/D and D/A conversion	Alcc		1.0	2.0	mA	AV _{CC} = 5.0 V
	Idle	_	_	0.1	5.0	μΑ	
Reference current	During A/D and D/A conversion	Alcc	_	4.0	5.0	mA	V _{ref} = 5.0 V
	Idle	=	_	0.1	5.0	μΑ	
RAM standby	voltage	V_{RAM}	2.0	_	_	V	

Notes: 1. If the A/D and D/A converters are not used, do not leave the AV_{CC}, V_{ref} , and AV_{SS} pins open. Apply a voltage between 4.5 V and 5.5 V to the AV_{CC} and V_{ref} pins by connecting them to V_{CC} , for instance. Set $V_{ref} \le AV_{CC}$.

- 2. Current dissipation values are for V_{IH} (min.) = $V_{CC} 0.5$ V, V_{IL} (max.) = 0.5 V with all output pins unloaded and the on-chip pull-up resistors in the off state.
- 3. The values are for $V_{RAM} \le V_{CC} < 3.0 \text{ V}$, V_{IH} (min.) = $V_{CC} \times 0.9$, and V_{IL} (max.) = 0.3 V.
- 4. I_{CC} depends on V_{CC} and f as follows:

$$I_{CC}$$
 (max.) = 30 (mA) + 0.54 (mA/(MHz × V)) × V_{CC} × f (normal operation)
 I_{CC} (max.) = 30 (mA) + 0.45 (mA/(MHz × V)) × V_{CC} × f (sleep mode)

- 5. The watch, subactive, and subsleep modes are available in the U-mask version only. See section 22A.7, Subclock Oscillator, for the method of fixing pins OSC1 and OSC2.
- If the motor-control PWM timer is not used, do not leave the PMWV_{CC}, or PMWV_{SS} pins open. If the motor-control PWM timer is not used, apply a voltage of between 4.5 and 5.5 V to the PWMV_{CC} pin, for instance, by connecting it to V_{CC}.

Test

Table 24-3 Permissible Output Currents

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V, $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $V_{a} = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $V_{a} = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Item		Symbol	Min.	Тур.	Max.	Unit	lest condition
Permissible output low current (per	All output pins except PWM1A to PWM1H, PWM2A to PWM2H	I _{OL}	_	_	10	mA	
pin)	PWM1A to PWM1H,	I _{OL}	_	_	25	mA	T _a = 85°C
	PWM2A to PWM2H			_	30	mA	$T_a = 25^{\circ}C$
			_	_	40	mΑ	$T_a = -40$ °C
Permissible output low current (total)	Total of all output pins excepting PWM1A to PWM1H, and PWM2A to PWM2H	Σlol	_	_	80	mA	
	Total of PWM1A to PWM1H,	\sum I _{OL}	_	_	150	mA	T _a = 85°C
	and PWM2A to PWM2H		_	_	180	mA	$T_a = 25^{\circ}C$
			_	_	220	mΑ	T _a = -40°C
Permissible output high current (per	All output pins except PWM1A to PWM1H, PWM2A to PWM2H	-I _{OH}	_	_	2.0	mA	
pin)	PWM1A to PWM1H, PWM2A to PWM2H	-I _{OH}	_	_	25	mΑ	T _a = 85°C
			_	_	30	mA	$T_a = 25^{\circ}C$
			_	_	40	mA	$T_a = -40$ °C
Permissible output high current (total)	Total of all output pins excepting PWM1A to PWM1H, and PWM2A to PWM2H	∑-l _{OH}	_	_	40	mA	
	Total of PWM1A to PWM1H,	Σ –I _{OH}	_	_	150	mA	T _a = 85°C
	and PWM2A to PWM2H		_	_	180	mA	T _a = 25°C
			_	_	220	mΑ	T _a = -40°C

Note: To protect chip reliability, do not exceed the output current values in table 24-3.

24.1.4 AC Characteristics

Figure 24-2 show, the test conditions for the AC characteristics.

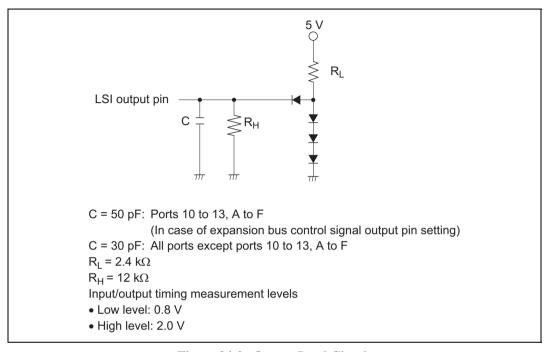


Figure 24-2 Output Load Circuit

(1) Clock Timing

Table 24-4 lists the clock timing

Table 24-4 Clock Timing

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

		Cor	dition		
		20	MHz		
Item	Symbol	Min.	Max.	Unit	Test Conditions
Clock cycle time	t _{cyc}	50	250	ns	Figure 24-9
Clock high pulse width	t _{CH}	15	_	ns	
Clock low pulse width	t _{CL}	15	_	ns	
Clock rise time	t _{Cr}	_	10	ns	
Clock fall time	t _{Cf}	_	10	ns	
Clock oscillator settling time at reset (crystal)	t _{OSC1}	20	_	ms	Figure 24-10
Clock oscillator settling time in software standby (crystal)	t _{OSC2}	8	_	ms	Figure 23A-3 Figure 23B-3
External clock output stabilization delay time	t _{DEXT}	2	_	ms	Figure 24-10
32-kHz clock oscillation settling time	t _{OSC3}	_	2	S	
Subclock oscillator frequency	f _{SUB}	32.768		kHz	
Subclock (\$\phi_{SUB}\$) cycle time	t _{SUB}	30.5		μS	

(2) Control Signal Timing

Table 24-5 lists the control signal timing.

Table 24-5 Control Signal Timing

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

		Coi	ndition		
Item	Symbol	Min.	Max.	Unit	Test Conditions
RES setup time	t _{RESS}	200	_	ns	Figure 24-11
RES pulse width	t _{RESW}	20	_	t _{cyc}	_
NMI setup time	t _{NMIS}	150	_	ns	Figure 24-12
NMI hold time	t _{NMIH}	10	_	_	
NMI pulse width (exiting software standby mode)	t _{NMIW}	200	_	ns	_
IRQ setup time	t _{IRQS}	150	_	ns	_
IRQ hold time	t _{IRQH}	10	_	ns	_
IRQ pulse width (exiting software standby mode)	t _{IRQW}	200	_	ns	_

(3) Bus Timing

Table 24-6 lists the bus timing.

Table 24-6 Bus Timing

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

Condition

Item	Symbol	Min.	Max.	Unit	Test Conditions
Address delay time	t _{AD}	_	35	ns	Figure 24-13 to
Address setup time	t _{AS}	$0.5 \times t_{\text{cyc}} - 20$	_	ns	Figure 24-17
Address hold time	t _{AH}	$0.5 \times t_{\text{cyc}} - 15$	_	ns	_
AS delay time	t _{ASD}	_	20	ns	_
RD delay time 1	t _{RSD1}	_	20	ns	_
RD delay time 2	t _{RSD2}	_	20	ns	_
Read data setup time	t _{RDS}	20	_	ns	_
Read data hold time	t _{RDH}	0	_	ns	_
Read data access time1	t _{ACC1}	_	$1.0 \times t_{\text{cyc}} - 48$	ns	_
Read data access time2	t _{ACC2}	_	$1.5 \times t_{\text{cyc}} - 45$	ns	_
Read data access time3	t _{ACC3}	_	$2.0 \times t_{\text{cyc}} - 45$	ns	_
Read data access time 4	t _{ACC4}	_	$2.5 \times t_{\text{cyc}} - 45$	ns	_
Read data access time 5	t _{ACC5}	_	$3.0 \times t_{\text{cyc}} - 50$	ns	_
WR delay time 1	t _{WRD1}	_	20	ns	_
WR delay time 2	t _{WRD2}	_	20	ns	_
WR pulse width 1	t _{WSW1}	$1.0 \times t_{\text{cyc}} - 20$	_	ns	_
WR pulse width 2	t _{WSW2}	$1.5 \times t_{cyc} - 20$	_	ns	_
Write data delay time	t _{WDD}	_	30	ns	_
Write data setup time	t _{WDS}	$0.5 \times t_{\text{cyc}} - 20$	_	ns	_
Write data hold time	t _{WDH}	$0.5 imes t_{cyc} - 10$	_	ns	_

(4) Timing of On-Chip Supporting Modules

Table 24-7 lists the timing of on-chip supporting modules.

Table 24-7 Timing of On-Chip Supporting Modules

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

				Co	ndition		
Item			Symbol	Min.	Max.	Unit	Test Conditions
I/O port	Output data o	delay time	t _{PWD}	_	50	ns	Figure 24-18
	Output data of	delay time 2	t _{PWD2}	_	50		Figure 24-19
	Input data se	tup time	t _{PRS}	30	_		
	Input data ho	ld time	t _{PRH}	30	_		
PPG	Pulse output	delay time	t _{POD}	_	50	ns	Figure 24-20
TPU	Timer output	delay time	t _{TOCD}	_	50	ns	Figure 24-21
	Timer input s	etup time	t _{TICS}	30	_		
	Timer clock in	nput setup time	t _{TCKS}	30	_	ns	Figure 24-22
	Timer clock	Single edge	t _{TCKWH}	1.5	_	t _{cyc}	
	pulse width	Both edges	t _{TCKWL}	2.5	_		
PWM	Pulse output	delay time	t _{MPWMOD}	_	50	ns	Figure 24-23
SCI	Input clock	Asynchronous	t _{Scyc}	4	_	t _{cyc}	Figure 24-24
	cycle	Synchronous	_	6	_		
	Input clock po	ulse width	t _{SCKW}	0.4	0.6	t_{Scyc}	
	Input clock ris	se time	t _{SCKr}	_	1.5	t_{cyc}	
	Input clock fa	III time	t _{SCKf}	_	1.5		
	Transmit data	a delay time	t_{TXD}	_	50	ns	Figure 24-25
	Receive data (synchronous	•	t _{RXS}	50	_		
	Receive data (synchronous		t _{RXH}	50	_		
A/D converter	Trigger input	setup time	t _{TRGS}	50	_	ns	Figure 24-26

			Co	ndition		
Item		Symbol	Min.	Max.	Unit	Test Conditions
HCAN*	Transmit data delay time	t _{HTXD}	_	100	ns	Figure 24-27
	Receive data setup time	t _{HRXS}	100	_		
	Receive data hold time	t _{HRXH}	100	_		

Note: *The HCAN input signal is asynchronous. However, its state is judged to have changed at the leading edge (two clock cycles) of the CK clock signal shown in figure 24-27. The HCAN output signal is also asynchronous. Its state changes based on the leading edge (two clock cycles) of the CK clock signal shown in figure 24-27.

24.1.5 A/D Conversion Characteristics

Table 24-8 lists the A/D conversion characteristics.

Table 24-8 A/D Conversion Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V, $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

		Conditi	on		
Item	Min.	Тур.	Max.	Unit	
Resolution	10	10	10	bits	
Conversion time	10	_	_	μs	
Analog input capacitance	_	_	20	pF	
Permissible signal-source impedance	_	_	5	kΩ	
Nonlinearity error	_	_	±3.5	LSB	
Offset error	_	_	±3.5	LSB	
Full-scale error	_	_	±3.5	LSB	
Quantization	_	±0.5	_	LSB	
Absolute accuracy	_	_	±4.0	LSB	

Candition

May 28, 2010

24.1.6 **D/A Conversion Characteristics**

Table 24-9 shows the D/A conversion characteristics.

Table 24-9 D/A Conversion Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

Condition

Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	8	8	8	bits	
Conversion time	_	_	10	μs	20-pF capacitive load
Absolute accuracy	_	± 1.5	± 2.0	LSB	2-MΩ resistive load
	_	_	± 1.5	LSB	4-MΩ resistive load

24.1.7 Flash Memory Characteristics

Table 24-10 shows the flash memory characteristics.

Table 24-10 Flash Memory Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS}$, $AV_{SS} = 0 \text{ V}$

 $T_a = 0$ to +75°C (Programming/erasing operating temperature range: regular

specification)

Item		Symbol	Min.	Тур.	Max.	Unit	Test Condition
Programming		t _P	_	10	200	ms/ 128 bytes	
Erase time*1 *	3 *5	t _E	_	100	1200	ms/block	
Reprogrammir	ng count	N _{WEC}	_	_	100	Times	
Programming	Wait time after SWE bit setting*1	t _{sswe}	1	1	_	μs	
	Wait time after PSU bit setting*1	t _{spsu}	50	50	_	μs	
	Wait time after P bit setting*1 *4	t _{sp30}	28	30	32	μs	Programming time wait
		t _{sp200}	198	200	202	μs	Programming time wait
		t _{sp10}	8	10	12	μs	Additional- programming time wait
	Wait time after P bit clear*1	t _{cp}	5	5	_	μs	
	Wait time after PSU bit clear*1	t _{cpsu}	5	5	_	μs	
	Wait time after PV bit setting*1	t _{spv}	4	4	_	μs	
	Wait time after H'FF dummy write*1	t _{spvr}	2	2	_	μs	
	Wait time after PV bit clear*1	t _{cpv}	2	2	_	μs	
	Wait time after SWE bit clear*1	t _{cswe}	100	100	_	μs	
	Maximum programming count*1 *4	N	_	_	1000	Times	
Erase	Wait time after SWE bit setting*1	t _{sswe}	1	1	_	μs	
	Wait time after ESU bit setting*1	t _{sesu}	100	100	_	μs	
	Wait time after E bit setting*1 *5	t _{se}	10	10	100	ms	Erase time wait
	Wait time after E bit clear*1	t _{ce}	10	10	_	μs	
	Wait time after ESU bit clear*1	t _{cesu}	10	10	_	μs	
	Wait time after EV bit setting*1	t _{sev}	20	20	_	μs	

Item		Symbol	Min.	Тур.	Max.	Unit	Test Condition
Erase	Wait time after H'FF dummy write*1	t _{sevr}	2	2	_	μs	
	Wait time after EV bit clear*1	t _{cev}	4	4	_	μs	
	Wait time after SWE bit clear*1	t _{cswe}	100	100	_	μs	
	Maximum erase count*1 *5	N	12	_	120	Times	

Notes: 1. Make each time setting in accordance with the program/program-verify flowchart or erase/erase-verify flowchart.

- Programming time per 128 bytes (Shows the total period for which the P-bit in the flash memory control register (FLMCR1) is set. It does not include the programming verification time)
- Block erase time (Shows the total period for which the E-bit in FLMCR1 is set. It does not include the erase verification time)
- 4. To specify the maximum programming time value (tp (max.)) in the 128-byte programming algorithm, set the max. value (1000) for the maximum programming count (N).

The wait time after P bit setting should be changed as follows according to the value of the programming counter (n).

Programming counter (n) = 1 to 6: $t_{sp30} = 30 \mu s$ Programming counter (n) = 7 to 1000: $t_{sp200} = 200 \mu s$

[In additional programming]

Programming counter (n)= 1 to 6: $t_{sp10} = 10 \mu s$

5. For the maximum erase time (t_E (max.), the following relationship applies between the wait time after E bit setting (t_{se}) and the maximum erase count (N):

 t_E (max.) = Wait time after E bit setting (t_{se}) x maximum erase count (N)

To set the maximum erase time, the values of (t_{se}) and (N) should be set so as to satisfy the above formula.

Examples: When $t_{se} = 100$ [ms], N = 12 times When $t_{se} = 10$ [ms], N = 120 times

Page 994 of 1458

24.2 H8S/2638 Group Electrical Characteristics

24.2.1 Absolute Maximum Ratings

Table 24-11 lists the absolute maximum ratings.

Table 24-11 Absolute Maximum Ratings

Item	Symbol	Value	Unit
Power supply voltage	Vcc	-0.3 to +7.0	V
Input voltage (OSC1, OSC2)	Vin	-0.3 +4.3	V
Input voltage (XTAL, EXTAL)	V _{in}	-0.3 to V _{CC} +0.3	V
Input voltage (ports 4 and 9)	V _{in}	-0.3 to AV _{CC} +0.3	V
Input voltage (ports H and J)	Vin	-0.3 to PWMV _{CC} +0.3	V
Input voltage (except XTAL, EXTAL, OSC1, OSC2, ports 4, 9, H and J)	V _{in}	-0.3 to V _{CC} +0.3	V
Reference voltage	V_{ref}	-0.3 to AV _{CC} +0.3	V
Analog power supply voltage	AV _{CC}	-0.3 to +7.0	V
Analog input voltage	V_{AN}	-0.3 to AV _{CC} +0.3	V
Operating temperature	T _{opr}	Regular specifications: -20 to +75	°C
		Wide-range specifications: -40 to +85	°C
Storage temperature	T _{stg}	-55 to +125	°C

Caution: Permanent damage to the chip may result if absolute maximum rating are exceeded.

24.2.2 Power Supply Voltage and Operating Frequency Range

Power supply voltage and operating frequency ranges (shaded areas) are shown in figure 24-3.

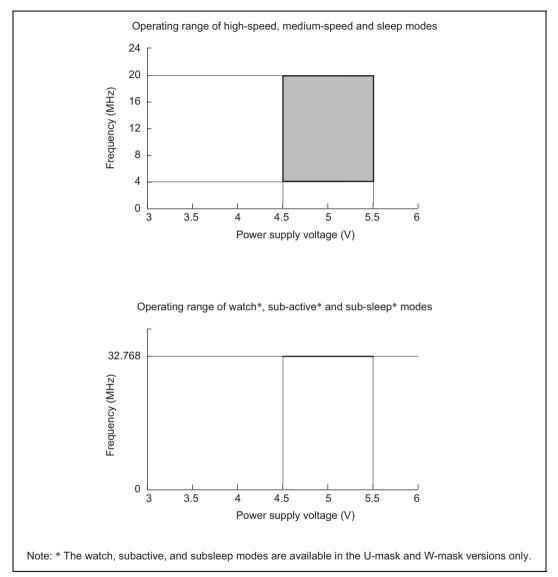


Figure 24-3 Power Supply Voltage and Operating Ranges

24.2.3 **DC** Characteristics

Table 24-12 lists the DC characteristics. Table 24-13 lists the permissible output currents.

Table 24-12 DC Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}C$ to $+75^{\circ}C$

(regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)*1 *6

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt	IRQ0 to IRQ5	V _T	1.0	_	_	V	
trigger input voltage		V_T^+	_	_	$V_{\text{CC}} \times 0.7$	_	
voitage		$V_T^+ - V_T^-$	0.4		_	-	
Input high voltage	RES, STBY, NMI, FWE, MD2 to MD0	V _{IH}	V _{CC} - 0.7	_	V _{CC} + 0.3	V	
	EXTAL	=	$V_{CC} \times 0.7$	_	V _{CC} + 0.3	_	
	Ports 1, 3, F	=	2.2	_	V _{CC} + 0.3	_	
	Ports A to E	_	$V_{CC} \times 0.8$	_	$V_{CC} + 0.3$	-	
	Ports H, J	_	PWMV _{CC} × 0.8	_	PWMV _{CC} +	_	
	HRxD0, HRxD1	_	2.2	_	V _{CC} + 0.3	_	
	Ports 4 and 9	_	$AV_{CC} \times 0.7$	_	AV _{CC} + 0.3	-	
Input low voltage	RES, STBY, NMI, FWE, MD2 to MD0	V _{IL}	-0.3	_	0.5	V	
	EXTAL	=	-0.3	_	0.8	_	
	Ports 1, 3, F	_	-0.3		0.8	_	
	Ports A to E	_	-0.3	_	V _{CC} × 0.2		
	Ports H, J	_	-0.3	_	PWMV _{CC} × 0.2	_	
	HRxD0, HRxD1	_	-0.3	_	V _{CC} × 0.2	_	
	Ports 4, 9	_	-0.3	_	$AV_{CC}\times 0.2$	_	

May 28, 2010

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Output high voltage	Ports 1, 3, A to F, H,J HTxD0, HTxD1 (excluding P34 and P35*7)	V _{OH}	V _{CC} - 0.5	_	_	V	I _{OH} = -200 μA
	P34, P35*7		V _{CC} – 2.5	_	_		$I_{OH} = -100 \ \mu A$
	Ports 1, 3, A to F, H, J HTxD0, HTxD1 (excluding P34 and P35*7)		3.5	_	_		I _{OH} = -1 mA
	PWM1A to PWM1H, PWM2A to PWM2H		PWMV _{CC} – 0.5		_		I _{OH} = -15 mA
Output low voltage	All output pins except PWM1A to PWM1H, PWM2A to PWM2H	V _{OL}	_	_	0.4	V	I _{OL} = 1.6 mA
	PWM1A to PWM1H, PWM2A to PWM2H		_	_	0.5	V	I _{OL} = 15 mA
Input leakage	RES	I _{in}	_	_	1.0	μΑ	V _{in} = 0.5 V to
current	STBY, NMI, MD2 to MD0		_	_	1.0		V _{CC} – 0.5 V
	HRxD0, HRxD1, FWE		_	_	1.0		
	Ports 4, 9		_	_	1.0		$V_{in} = 0.5 \text{ V to}$ $AV_{CC} - 0.5 \text{ V}$
Three-state leakage current (off state)	Ports 1, 3, A to F, H, J HTxD0, HTxD1	I _{TSI}	_		1.0	μА	$V_{in} = 0.5 \text{ V to}$ $V_{CC} - 0.5 \text{ V}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
MOS input pull-up current	Ports A to E	−l _P	50		300	μΑ	$V_{in} = 0 V$
Input	RES	C _{in}	_	_	30	pF	$V_{in} = 0 V$
capacitance	NMI	-	_	_	30		f = 1 MHz
	All input pins except RES and NMI	-	_	_	15		T _a = 25°C
Current dissipation*2	Normal operation	I _{CC} *4	_	75	90	mA	f = 20 MHz
	Sleep mode	-	_	65	80		
	All modules stopped	-	_	57	_	mA	f = 20 MHz (reference value)
	Medium-speed mode (φ/32)		_	49	_		
	Subactive mode*5	-	_	130	220	μΑ	Using 32.768 kHz crystal resonator
	Subsleep mode*5	=	_	80	160		
	Watch mode*5	-	_	30	60		
	Standby	-	_	2.0	5.0	μΑ	$T_a \leq 50^{\circ}C$
	mode*3		_	_	20		50°C < T _a
Analog power supply current	During A/D and D/A conversion	Al _{CC}	_	1.0	2.0	mA	AV _{CC} = 5.0 V
	Idle	-	_	0.1	5.0	μΑ	
Reference current	During A/D and D/A conversion	Alcc	_	4.0	5.0	mA	V _{ref} = 5.0 V
	Idle	-	_	0.1	5.0	μΑ	
RAM standby	voltage	V_{RAM}	2.0	_	_	V	

Notes: 1. If the A/D and D/A converters are not used, do not leave the AV_{CC}, V_{ref} , and AV_{SS} pins open. Apply a voltage between 4.5 V and 5.5 V to the AV_{CC} and V_{ref} pins by connecting them to V_{CC} , for instance. Set $V_{ref} \le AV_{CC}$.

- 2. Current dissipation values are for V_{IH} (min.) = $V_{CC} 0.5$ V, V_{IL} (max.) = 0.5 V with all output pins unloaded and the on-chip pull-up resistors in the off state.
- 3. The values are for $V_{RAM} \le V_{CC} < 3.0 \text{ V}$, V_{IH} (min.) = $V_{CC} \times 0.9$, and V_{IL} (max.) = 0.3 V.

- 4. Icc depends on Vcc and f as follows:
 - I_{CC} (max.) = 30 (mA) + 0.54 (mA/(MHz × V)) × V_{CC} × f (normal operation)
 - I_{CC} (max.) = 30 (mA) + 0.45 (mA/(MHz × V)) × V_{CC} × f (sleep mode)
- 5. The watch, subactive, and subsleep modes are available in the U-mask and W-mask versions only.
 - See section 22A.7, Subclock Oscillator, for the method of fixing pins OSC1 and OSC2.
- If the motor-control PWM timer is not used, do not leave the PMWV_{CC}, or PMWV_{SS} pins open. If the motor-control PWM timer is not used, apply a voltage of between 4.5 and 5.5 V to the PWMV_{CC} pin, for instance, by connecting it to V_{CC}.
- 7. The characteristics of pins 34 and 35 apply to the W-mask version.

Table 24-13 Permissible Output Currents

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V, $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $V_{a} = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $V_{a} = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Item		Symbol	Min.	Тур.	Max.	Unit	Test condition
Permissible output low current (per	All output pins except PWM1A to PWM1H, PWM2A to PWM2H	I _{OL}	_	_	10	mA	
pin)	PWM1A to PWM1H,	I _{OL}	_	_	25	mA	T _a = 85°C
	PWM2A to PWM2H		_	_	30	mΑ	$T_a = 25^{\circ}C$
			_	_	40	mΑ	$T_a = -40$ °C
Permissible output low current (total)	Total of all output pins excepting PWM1A to PWM1H, and PWM2A to PWM2H	Σ lol	_	_	80	mA	
	Total of PWM1A to PWM1H,	\sum I _{OL}	_	_	150	mA	T _a = 85°C
	and PWM2A to PWM2H		_	_	180	mA	$T_a = 25^{\circ}C$
			_	_	220	mA	T _a = -40°C
Permissible output high current (per	All output pins except PWM1A to PWM1H, PWM2A to PWM2H	-l _{OH}	_	_	2.0	mA	
pin)	PWM1A to PWM1H,	-I _{OH}	_	_	25	mΑ	T _a = 85°C
	PWM2A to PWM2H		_	_	30	mA	$T_a = 25^{\circ}C$
			_	_	40	mA	T _a = -40°C
Permissible output high current (total)	Total of all output pins excepting PWM1A to PWM1H, and PWM2A to PWM2H	–Σ I _{OH}	_	_	40	mA	
	Total of PWM1A to PWM1H, and PWM2A to PWM2H	−∑ I _{OH}	_	_	150	mA	$T_a = 85^{\circ}C$
			_	_	180	mA	$T_a = 25^{\circ}C$
			_	_	220	mΑ	T _a = -40°C

Note: To protect chip reliability, do not exceed the output current values in table 24-13.

Table 24-14 Bus Drive Characteristics [Option]*

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$

(regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Applicable Pins: SCL1-0, SDA1-0

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input	V _T	1.0	_	_	V	
voltage	V _T ⁺	_	_	$V_{\text{CC}} \times 0.7$	_	
	$V_T^+ - V_T^-$	0.4	_	_	_	V _{CC} = 4.5 V to 5.5 V
Input high voltage	V _{IH}	$V_{\text{CC}} \times 0.7$	_	V _{CC} + 0.5	V	
Input low voltage	V _{IL}	- 0.5	_	$V_{\text{CC}} \times 0.3$	V	
Output low voltage	V _{OL}	_	_	0.7	V	I _{OL} = 8 mA, V _{CC} = 4.5 V to 5.5 V
		_	_	0.4		$I_{OL} = 3 \text{ mA},$ $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$
		_	_	0.4	_	I _{OL} = 1.6 mA, V _{CC} = 3.3 V to 5.5 V
Input capacitance	C _{in}	_	_	20	pF	$V_{in} = 0 \text{ V, f} = 1 \text{ MHz,}$ $T_a = 25 \text{ °C}$
Three-state leakage current (off state)	I _{TSI}	_	_	1.0	μА	V _{in} = 0.5 V to V _{CC} - 5.5 V
SCL, SDA, output fall time	t _{of}	20 + 0.1Cb	_	250	ns	

Note: * Available when using I²C bus interface (the W-mask version only).

24.2.4 AC Characteristics

Figure 24-4 show, the test conditions for the AC characteristics.

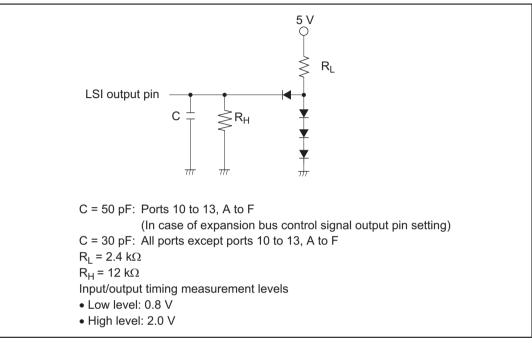


Figure 24-4 Output Load Circuit

(1) Clock Timing

Table 24-15 lists the clock timing

Table 24-15 Clock Timing

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V to } AV_{CC}, V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V},$

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

		Condition 20MHz				
Item	Symbol	Min.	Max.	Unit	Test Conditions	
Clock cycle time	t _{cyc}	50	250	ns	Figure 24-9	
Clock high pulse width	t _{CH}	15	_	ns	<u> </u>	
Clock low pulse width	t _{CL}	15	_	ns	<u> </u>	
Clock rise time	t _{Cr}	_	10	ns	<u> </u>	
Clock fall time	t _{Cf}	_	10	ns	<u> </u>	
Clock oscillator settling time at reset (crystal)	t _{OSC1}	20	_	ms	Figure 24-10	
Clock oscillator settling time in software standby (crystal)	t _{OSC2}	8	_	ms	Figure 23A-3 Figure 23B-3	
External clock output stabilization delay time	t _{DEXT}	2	_	ms	Figure 24-10	
32-kHz clock oscillation settling time	t _{OSC3}	_	2	S		
Subclock oscillator frequency	f _{SUB}	32.768		kHz		
Subclock (\$\phi_{SUB}\$) cycle time	t _{SUB}	30.5		μS		

(2) Control Signal Timing

Table 24-16 lists the control signal timing.

Table 24-16 Control Signal Timing

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

		Con	dition		
Item	Symbol	Min.	Max.	Unit	Test Conditions
RES setup time	t _{RESS}	200	_	ns	Figure 24-11
RES pulse width	t _{RESW}	20	_	t_{cyc}	_
NMI setup time	t _{NMIS}	150	_	ns	Figure 24-12
NMI hold time	t _{NMIH}	10	_		
NMI pulse width (exiting software standby mode)	t _{NMIW}	200	_	ns	_
IRQ setup time	t _{IRQS}	150	_	ns	_
IRQ hold time	t_{IRQH}	10	_	ns	
IRQ pulse width (exiting software standby mode)	t _{IRQW}	200	_	ns	_

(3) Bus Timing

Table 24-17 lists the bus timing.

Table 24-17 Bus Timing

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

Condition

Item	Symbol	Min.	Max.	Unit	Test Conditions
Address delay time	t _{AD}	_	35	ns	Figure 24-13 to
Address setup time	t _{AS}	$0.5 \times t_{\text{cyc}} - 20$	_	ns	Figure 24-17
Address hold time	t _{AH}	$0.5 imes t_{cyc} - 15$	_	ns	_
AS delay time	t _{ASD}	_	20	ns	_
RD delay time 1	t _{RSD1}	_	20	ns	_
RD delay time 2	t _{RSD2}	_	20	ns	_
Read data setup time	t _{RDS}	20		ns	_
Read data hold time	t _{RDH}	0		ns	_
Read data access time1	t _{ACC1}	_	$1.0 \times t_{\text{cyc}} - 48$	ns	_
Read data access time2	t _{ACC2}	_	$1.5 \times t_{\text{cyc}} - 45$	ns	_
Read data access time3	t _{ACC3}	_	$2.0 \times t_{\text{cyc}} - 45$	ns	_
Read data access time 4	t _{ACC4}	_	$2.5 \times t_{\text{cyc}} - 45$	ns	_
Read data access time 5	t _{ACC5}	_	$3.0 \times t_{\text{cyc}} - 50$	ns	_
WR delay time 1	t _{WRD1}	_	20	ns	_
WR delay time 2	t _{WRD2}	_	20	ns	_
WR pulse width 1	t _{WSW1}	$1.0 \times t_{\text{cyc}} - 20$	_	ns	_
WR pulse width 2	t _{WSW2}	$1.5 \times t_{\text{cyc}} - 20$	_	ns	_
Write data delay time	t _{WDD}	_	30	ns	_
Write data setup time	t _{WDS}	$0.5 \times t_{\text{cyc}} - 20$	_	ns	_
Write data hold time	t _{WDH}	$0.5 \times t_{\text{cyc}} - 10$		ns	_

(4) Timing of On-Chip Supporting Modules

Table 24-18 lists the timing of on-chip supporting modules.

Table 24-18 Timing of On-Chip Supporting Modules

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

				Co	ndition		
Item			Symbol	Min.	Max.	Unit	Test Conditions
I/O port	Output data of	delay time	t _{PWD}	_	50	ns	Figure 24-18
	Output data of	delay time 2	t _{PWD2}	_	50		Figure 24-19
	Input data se	tup time	t _{PRS}	30	_		
	Input data hold time		t _{PRH}	30	_		
PPG	Pulse output	Pulse output delay time		_	50	ns	Figure 24-20
TPU	Timer output	delay time	t _{TOCD}	_	50	ns	Figure 24-21
	Timer input setup time		t _{TICS}	30	_		
	Timer clock in	nput setup time	t _{TCKS}	30	_	ns	Figure 24-22
	Timer clock pulse width	Single edge	t _{TCKWH}	1.5	_	t _{cyc}	
		Both edges	t _{TCKWL}	2.5	_		
PWM	Pulse output	delay time	t _{MPWMOD}	_	50	ns	Figure 24-23
SCI	Input clock	Asynchronous	t _{Scyc}	4	_	t _{cyc}	Figure 24-24
	cycle	Synchronous	_	6	_		
	Input clock po	ulse width	t _{SCKW}	0.4	0.6	t _{Scyc}	
	Input clock ris	se time	t _{SCKr}	_	1.5	t _{cyc}	
	Input clock fa	ıll time	t _{SCKf}	_	1.5		
	Transmit data	a delay time	t _{TXD}	_	50	ns	Figure 24-25
	Receive data setup time (synchronous)		t _{RXS}	50	_		
	Receive data (synchronous		t _{RXH}	50	_		
A/D converter	Trigger input	setup time	t _{TRGS}	50		ns	Figure 24-26

			Co	ndition		
Item		Symbol	Min.	Max.	Unit	Test Conditions
HCAN*	Transmit data delay time	t _{HTXD}	_	100	ns	Figure 24-27
	Receive data setup time	t _{HRXS}	100	_		
	Receive data hold time	t _{HRXH}	100	_		

Note: *The HCAN input signal is asynchronous. However, its state is judged to have changed at the leading edge (two clock cycles) of the CK clock signal shown in figure 24-27. The HCAN output signal is also asynchronous. Its state changes based on the leading edge (two clock cycles) of the CK clock signal shown in figure 24-27.

Table 24-19 I²C Bus Timing [Option]*1

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V, $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 5 \text{ MHz}$ to maximum operating frequency, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

			Conditi			
Item	Symbol	Min.	ո. Typ. Max.		Unit	Notes
SCL input cycle time	t _{SCL}	12 t _{cyc}	_	_	ns	Figure 24-28
SCL input high pulse width	t _{SCLH}	3 t _{cyc}	_	_	ns	<u> </u>
SCL input low pulse width	t _{SCLL}	5 t _{cyc}	_	_	ns	
SCL, SDA input rise time	t _{Sr}	_	_	7.5 t _{cyc} *2	ns	<u> </u>
SCL, SDA input fall time	t _{Sf}	_	_	300	ns	<u> </u>
SCL, SDA input spike pulse elimination time	t _{SP}	_	_	1 t _{cyc}	ns	
SDA input bus free time	t _{BUF}	5 t _{cyc}	_	_	ns	<u> </u>
Start condition input hold time	t _{STAH}	3 t _{cyc}	_	_	ns	
Retransmission start condition input setup time	tstas	3 t _{cyc}	_	_	ns	
Stop condition input setup time	t _{STOS}	3 t _{cyc}	_	_	ns	
Data input setup time	t _{SDAS}	0.5 t _{cyc}	_	_	ns	<u> </u>
Data input hold time	t _{SDAH}	0	_	_	ns	
SCL, SDA capacitive load	Сь	_	_	400	pF	<u> </u>

Notes: 1. Available when using I²C bus interface (the W-mask version only).

2. 17.5 t_{cyc} can be set according to the clock selected for use by the I²C module. For details, see section 15.4, Usage Notes.

24.2.5 A/D Conversion Characteristics

Table 24-20 lists the A/D conversion characteristics.

Table 24-20 A/D Conversion Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

Condition

Item	Min.	Тур.	Max.	Unit
Resolution	10	10	10	bits
Conversion time	10	_	_	μs
Analog input capacitance	_	_	20	pF
Permissible signal-source impedance	_	_	5	kΩ
Nonlinearity error	_	_	±3.5	LSB
Offset error	_	_	±3.5	LSB
Full-scale error	_	_	±3.5	LSB
Quantization	_	±0.5	_	LSB
Absolute accuracy	_	_	±4.0	LSB

May 28, 2010

24.2.6 **D/A Conversion Characteristics**

Table 24-21 shows the D/A conversion characteristics.

Table 24-21 D/A Conversion Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

Condition

Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	8	8	8	bits	_
Conversion time	_	_	10	μs	20-pF capacitive load
Absolute accuracy	_	± 1.5	± 2.0	LSB	2-M Ω resistive load
	_	_	± 1.5	LSB	4-MΩ resistive load

24.2.7 **Flash Memory Characteristics**

Table 24-22 shows the flash memory characteristics.

Table 24-22 Flash Memory Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS}$, $AV_{SS} = 0 \text{ V}$

 $T_a = 0$ to +75°C (Programming/erasing operating temperature range: regular

specification)

Item		Symbol	Min.	Тур.	Max.	Unit	Test Condition
Programming		t _P	_	10	200	ms/ 128 bytes	
Erase time*1 *	Erase time*1 *3 *5		_	100	1200	ms/block	
Reprogrammir	ng count	N_{WEC}		_	100	Times	
Programming	Wait time after SWE bit setting*1	t _{sswe}	1	1	_	μs	
	Wait time after PSU bit setting*1	t _{spsu}	50	50	_	μs	
	Wait time after P bit setting*1 *4	t _{sp30}	28	30	32	μs	Programming time wait
		t _{sp200}	198	200	202	μs	Programming time wait
		t _{sp10}	8	10	12	μs	Additional- programming time wait
	Wait time after P bit clear*1	t _{cp}	5	5	_	μs	
	Wait time after PSU bit clear*1	t _{cpsu}	5	5	_	μs	
	Wait time after PV bit setting*1	t _{spv}	4	4	_	μs	
	Wait time after H'FF dummy write*1	t _{spvr}	2	2	_	μs	
	Wait time after PV bit clear*1	t _{cpv}	2	2	_	μs	
	Wait time after SWE bit clear*1	t _{cswe}	100	100	_	μs	
	Maximum programming count*1 *4	N		_	1000	Times	
Erase	Wait time after SWE bit setting*1	t _{sswe}	1	1	_	μs	
	Wait time after ESU bit setting*1	t _{sesu}	100	100	_	μs	
	Wait time after E bit setting*1 *5	t _{se}	10	10	100	ms	Erase time wait
	Wait time after E bit clear*1	t _{ce}	10	10	_	μs	
	Wait time after ESU bit clear*1	t _{cesu}	10	10	_	μs	
	Wait time after EV bit setting*1	t _{sev}	20	20	_	μs	

May 28, 2010

Item		Symbol	Min.	Тур.	Max.	Unit	Test Condition
Erase	Wait time after H'FF dummy write*1	t _{sevr}	2	2	_	μs	
	Wait time after EV bit clear*1	t_{cev}	4	4	_	μs	
	Wait time after SWE bit clear*1	t _{cswe}	100	100	_	μs	
	Maximum erase count*1 *5	N	12	_	120	Times	

Notes: 1. Make each time setting in accordance with the program/program-verify flowchart or erase/erase-verify flowchart.

- 2. Programming time per 128 bytes (Shows the total period for which the P-bit in the flash memory control register (FLMCR1) is set. It does not include the programming verification time)
- 3. Block erase time (Shows the total period for which the E-bit in FLMCR1 is set. It does not include the erase verification time)
- To specify the maximum programming time value (t_P (max.)) in the 128-byte programming algorithm, set the max. value (1000) for the maximum programming count (N).

The wait time after P bit setting should be changed as follows according to the value of the programming counter (n).

Programming counter (n) = 1 to 6: t_{sp30} = 30 μs Programming counter (n) = 7 to 1000: t_{sp200} = 200 μs

[In additional programming]

Programming counter (n)= 1 to 6: $t_{sp10} = 10 \mu s$

5. For the maximum erase time (t_E (max.)), the following relationship applies between the wait time after E bit setting (t_{se}) and the maximum erase count (N):

 t_E (max.) = Wait time after E bit setting (t_{se}) x maximum erase count (N)

To set the maximum erase time, the values of (t_{se}) and (N) should be set so as to satisfy the above formula.

Examples: When $t_{se} = 100$ [ms], N = 12 times When $t_{se} = 10$ [ms], N = 120 times

24.3 H8S/2639 Group, H8S/2635 Group Electrical Characteristics

24.3.1 Absolute Maximum Ratings

Table 24-23 lists the absolute maximum ratings.

Table 24-23 Absolute Maximum Ratings

Item	Symbol	Value	Unit
Power supply voltage	Vcc	-0.3 to +7.0	V
Input voltage (XTAL*, EXTAL)	V _{in}	-0.3 to V _{CC} +0.3	V
Input voltage (ports 4 and 9)	V _{in}	-0.3 to AV _{CC} +0.3	V
Input voltage (ports H and J)	V _{in}	-0.3 to PWMV _{CC} +0.3	V
Input voltage (except XTAL, EXTAL, ports 4, 9, H and J)	V _{in}	-0.3 to V _{CC} +0.3	V
Reference voltage	V_{ref}	-0.3 to AV _{CC} +0.3	V
Analog power supply voltage	AV _{CC}	-0.3 to +7.0	V
Analog input voltage	V_{AN}	-0.3 to AV _{CC} +0.3	V
Operating temperature	T _{opr}	Regular specifications: -20 to +75	°C
		Wide-range specifications: -40 to +85	°C
Storage temperature	T _{stg}	-55 to +125	°C

Caution: Permanent damage to the chip may result if absolute maximum rating are exceeded.

Note: * In the case of the H8S/2635 Group, do not input a signal to the XTAL pin.

24.3.2 Power Supply Voltage and Operating Frequency Range

Power supply voltage and operating frequency ranges (shaded areas) are shown in figure 24-5.

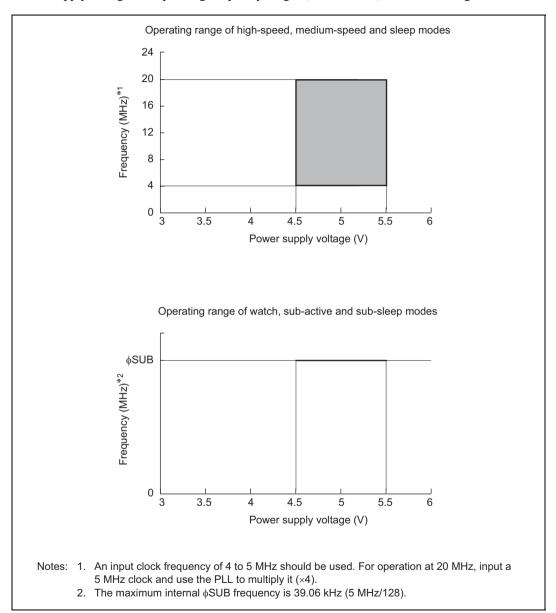


Figure 24-5 Power Supply Voltage and Operating Ranges

24.3.3 DC Characteristics

Table 24-24 lists the DC characteristics. Table 24-25 lists the permissible output currents.

Table 24-24 DC Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$

(regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications) *1 *5

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt	IRQ0 to IRQ5	V _T	1.0	_	_	V	
trigger input voltage		V _T ⁺	_	_	$V_{\text{CC}} \times 0.7$	_	
voitage		$V_T^+ - V_T^-$	0.4	_	_	_	
Input high voltage	RES, STBY, NMI, FWE, MD2 to MD0	V _{IH}	V _{CC} - 0.7	_	V _{CC} + 0.3	V	
	EXTAL	=	$V_{CC} \times 0.7$	_	V _{CC} + 0.3	_	
	Ports 1, 3, F	=	2.2	_	V _{CC} + 0.3	_	
	Ports A to E	=	$V_{CC} \times 0.8$	_	V _{CC} + 0.3	_	
	Ports H, J	_	PWMV _{CC} × 0.8	_	PWMV _{CC} +	_	
	HRxD0, HRxD1 ^{*7}	_	2.2	_	V _{CC} + 0.3		
	Ports 4 and 9	=	$\overline{\text{AV}_{\text{CC}} \times 0.7}$	_	AV _{CC} + 0.3	_	
Input low voltage	RES, STBY, NMI, FWE, MD2 to MD0	V _{IL}	-0.3	_	0.5	V	
	EXTAL	-	-0.3	_	0.8	_	
	Ports 1, 3, F	=	-0.3	_	0.8	_	
	Ports A to E	=	-0.3	_	$V_{\text{CC}} \times 0.2$	_	
	Ports H, J	_	-0.3	_	PWMV _{CC} × 0.2	_	
	HRxD0, HRxD1*7	-	-0.3	_	$V_{\text{CC}} \times 0.2$	_	
	Ports 4, 9	_	-0.3	_	$\text{AV}_{\text{CC}} \times 0.2$	-	

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Output high voltage	Ports 1, 3, A to F, H,J HTxD0, HTxD1* ⁷ (excluding P34 and P35* ⁶)	V _{OH}	V _{CC} - 0.5	_	_	V	I _{OH} = -200 μA
	P34, P35*6		V _{CC} – 2.5	_	_		$I_{OH} = -100 \ \mu A$
	Ports 1, 3, A to F, H, J HTxD0, HTxD1* ⁷ (excluding P34 and P35* ⁶)		3.5	_	_		I _{OH} = -1 mA
	PWM1A to PWM1H, PWM2A to PWM2H		PWMV _{CC} – 0.5	_	_		I _{OH} = -15 mA
Output low voltage	All output pins except PWM1A to PWM1H, PWM2A to PWM2H	V _{OL}	_	_	0.4	V	I _{OL} = 1.6 mA
	PWM1A to PWM1H, PWM2A to PWM2H		_	_	0.5	V	I _{OL} = 15 mA
Input leakage	RES	I _{in}	_	_	1.0	μΑ	$V_{in} = 0.5 \text{ V to}$
current	STBY, NMI, MD2 to MD0		_	_	1.0		V _{CC} – 0.5 V
	HRxD0, HRxD1* ⁷ , FWE		_	_	1.0		
	Ports 4, 9		_	_	1.0		$V_{in} = 0.5 \text{ V to}$ $AV_{CC} - 0.5 \text{ V}$
Three-state leakage current (off state)	Ports 1, 3, A to F, H, J HTxD0, HTxD1*7	I _{TSI}	_	_	1.0	μА	V_{in} =0.5 V to V_{CC} – 0.5 V

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
MOS input pull-up current	Ports A to E	−l _P	50	_	300	μА	$V_{in} = 0 V$	
Input	RES	C _{in}	_	_	30	pF	V _{in} = 0 V	
capacitance	NMI	-	_	_	30		f = 1 MHz	
	All input pins except RES and NMI		_	_	15		T _a = 25°C	
Current dissipation*2	Normal operation	I _{CC} *4	_	75	90	mA	f = 20 MHz	
(H8S/2639 Group)	Sleep mode	=	_	65	80			
Group)	All modules stopped	-	_	57	_	mA	f = 20 MHz (reference value)	
	Medium-speed mode (φ/32)	- -	_	49	_			
	Subactive mode	=	_	0.7	1.0	mA	Subclock (using 4.19 MHz crystal oscillator)	
	Subsleep mode	-	_	0.7	1.0			
	Watch mode	-	_	0.6	1.0			
	Standby mode*3	=	_	2.0	5.0	μΑ	$T_a \le 50^{\circ}C$	
			_	_	20		50°C < T _a	
Current dissipation*2	Normal operation	I _{CC} *8	_	60	65	mA	f = 20 MHz	
(H8S/2635 Group)	Sleep mode	=	_	50	55			
Group)	All modules stopped	-	_	40	_	mA	f = 20 MHz (reference value)	
	Medium- speed mode (φ/32)	-	_	45	_			
	Subactive mode	-	_	0.35	0.4	mA	Subclock (using 5.0 MHz crystal	
	Subsleep mode	-	_	0.3	0.35		oscillator)	
	Watch mode	-	_	0.25	0.3			
	Standby	-	_	2.0	5.0	μΑ	$T_a \le 50^{\circ}C$	
	mode		_	_	20		50°C < T _a	

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Analog power supply current	During A/D and D/A* ⁷ conversion	Alcc	_	1.0	2.0	mA	$AV_{CC} = 5.0 V$
	Idle		_	0.1	5.0	μA	
Reference current	During A/D and D/A* ⁷ conversion	Alcc	_	4.0	5.0	mA	V _{ref} = 5.0 V
	Idle		_	0.1	5.0	μA	
RAM standby	voltage	V_{RAM}	2.0	_	_	V	

- Notes: 1. If the A/D and D/A converters are not used, do not leave the AV_{CC}, V_{ref}, and AV_{SS} pins open. Apply a voltage between 4.5 V and 5.5 V to the AV_{CC} and V_{ref} pins by connecting them to V_{CC} , for instance. Set $V_{ref} \leq AV_{CC}$.
 - 2. Current dissipation values are for V_{IH} (min.) = $V_{CC} 0.5 \text{ V}$, V_{IL} (max.) = 0.5 V with all output pins unloaded and the on-chip pull-up resistors in the off state.
 - 3. The values are for $V_{RAM} \le V_{CC} < 3.0 \text{ V}$, V_{IH} (min.) = $V_{CC} \times 0.9$, and V_{IL} (max.) = 0.3 V.
 - 4. Icc depends on Vcc and f as follows:
 - I_{CC} (max.) = 30 (mA) + 0.54 (mA/(MHz × V)) × V_{CC} × f (normal operation) I_{CC} (max.) = 30 (mA) + 0.45 (mA/(MHz × V)) × V_{CC} × f (sleep mode)
 - 5. If the motor-control PWM timer is not used, do not leave the PMWV_{CC}, or PMWV_{SS} pins open. If the motor-control PWM timer is not used, apply a voltage of between 4.5 and 5.5 V to the PWMV_{CC} pin, for instance, by connecting it to V_{CC} .
 - 6. The characteristics of pins 34 and 35 apply to the W-mask version.
 - 7. The HTxD1, HRxD1 pins, and D/A converter are not available in the H8S/2635 Group.
 - 8. Icc depends on Vcc and f as follows:
 - I_{CC} (max.) = 17 (mA) + 0.43 (mA/(MHz × V)) × V_{CC} × f (normal operation) I_{CC} (max.) = 17 (mA) + 0.34 (mA/(MHz × V)) × V_{CC} × f (sleep mode)

Table 24-25 Permissible Output Currents

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V, $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $V_{a} = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $V_{a} = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Item		Symbol	Min.	Тур.	Max.	Unit	Test condition
Permissible output low current (per	All output pins except PWM1A to PWM1H, PWM2A to PWM2H	I _{OL}	_	_	10	mA	
pin)	PWM1A to PWM1H, PWM2A to PWM2H	l _{OL}	_	_	25	mA	T _a = 85°C
			_	_	30	mΑ	$T_a = 25$ °C
			_	_	40	mΑ	$T_a = -40$ °C
Permissible output low current (total)	Total of all output pins excepting PWM1A to PWM1H, and PWM2A to PWM2H	\sum I _{OL}	_	_	80	mA	
	Total of PWM1A to PWM1H,	Σ I _{OL}	_	_	150	mΑ	$T_a = 85^{\circ}C$
	and PWM2A to PWM2H		_	_	180	mΑ	$T_a = 25$ °C
			_	_	220	mΑ	T _a = -40°C
Permissible output high current (per	All output pins except PWM1A to PWM1H, PWM2A to PWM2H	-I _{OH}	_	_	2.0	mA	
pin)	PWM1A to PWM1H,	-I _{OH}	_	_	25	mA	T _a = 85°C
	PWM2A to PWM2H		_	_	30	mΑ	T _a = 25°C
			_	_	40	mΑ	T _a = -40°C
Permissible output high current (total)	Total of all output pins excepting PWM1A to PWM1H, and PWM2A to PWM2H	–Σ I _{OH}	_	_	40	mA	
	Total of PWM1A to PWM1H,	–∑ I _{OH}			150	mΑ	T _a = 85°C
	and PWM2A to PWM2H				180	mA	T _a = 25°C
			_	_	220	mΑ	T _a = -40°C

Note: To protect chip reliability, do not exceed the output current values in table 24-25.

Table 24-26 Bus Drive Characteristics [Option]*

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$

(regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Applicable Pins: SCL1 to 0, SDA1 to 0

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input	V _T	1.0	_	_	V	
voltage	V_T^+	_	_	$V_{\text{CC}} \times 0.7$		
	$V_T^+ - V_T^-$	0.4	_	_		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$
Input high voltage	V _{IH}	$V_{\text{CC}} \times 0.7$	_	V _{CC} + 0.5	V	
Input low voltage	V_{IL}	- 0.5	_	$V_{\text{CC}} \times 0.3$	V	
Output low voltage V _{OL}	V _{OL}	_	_	0.7	V	$I_{OL} = 8 \text{ mA},$ $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$
		_	_	0.4		$I_{OL} = 3 \text{ mA},$ $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$
		_	_	0.4		I_{OL} = 1.6 mA, V_{CC} = 3.3 V to 5.5 V
Input capacitance	C _{in}	_	_	20	pF	$V_{in} = 0 \text{ V, } f = 1 \text{MHz,}$ $T_a = 25 \text{ °C}$
Three-state leakage current (off state)	I _{TSI}	_	_	1.0	μΑ	V _{in} = 0.5 V to V _{CC} - 5.5 V
SCL, SDA, output fall time	t _{of}	20 + 0.1Cb	_	250	ns	

Note: * Available when using the I²C bus interface (the W-mask version only).

24.3.4 AC Characteristics

Figure 24-6 show, the test conditions for the AC characteristics.

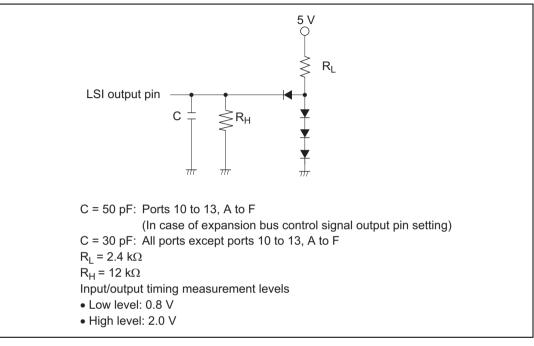


Figure 24-6 Output Load Circuit

(1) Clock Timing

Table 24-27 lists the clock timing

Table 24-27 Clock Timing

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

		Condition			
		2	20MHz		
Item	Symbol	Min.	Max.	Unit	Test Conditions
Clock cycle time	t _{cyc}	50	250	ns	Figure 24-9
Clock high pulse width	t _{CH}	15	_	ns	<u> </u>
Clock low pulse width	t _{CL}	15	_	ns	<u> </u>
Clock rise time	t _{Cr}	_	10	ns	<u> </u>
Clock fall time	t _{Cf}	_	10	ns	<u> </u>
Clock oscillator settling time at reset (crystal)	t _{OSC1}	20	_	ms	Figure 24-10
Clock oscillator settling time in software standby (crystal) (H8S/2639 Group)	t _{OSC2}	8	_	ms	Figure 23A-3 Figure 23B-3
Clock oscillator settling time in software standby (crystal) (H8S/2635 Group)	_	12	_		
External clock output stabilization delay time	t _{DEXT}	2	_	ms	Figure 24-10
Subclock oscillator frequency	f _{SUB}	31.25	39.6	kHz	
Subclock (\$\phi_{SUB}\$) cycle time	t _{SUB}	25.6	32.0	μS	

(2) Control Signal Timing

Table 24-28 lists the control signal timing.

Table 24-28 Control Signal Timing

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

		Condition			
Item	Symbol	Min.	Max.	Unit	Test Conditions
RES setup time	t _{RESS}	200	_	ns	Figure 24-11
RES pulse width	t _{RESW}	20	_	t_{cyc}	
NMI setup time	t _{NMIS}	150	_	ns	Figure 24-12
NMI hold time	t _{NMIH}	10	_		
NMI pulse width (exiting software standby mode)	t _{NMIW}	200	_	ns	_
IRQ setup time	t _{IRQS}	150	_	ns	
IRQ hold time	t_{IRQH}	10	_	ns	_
IRQ pulse width (exiting software standby mode)	t _{IRQW}	200	_	ns	_

(3) Bus Timing

Table 24-29 lists the bus timing.

Table 24-29 Bus Timing

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

Condition

Item	Symbol	Min.	Max.	_ Unit	Test Conditions
Address delay time	t _{AD}	_	35	ns	Figure 24-13 to
Address setup time	t _{AS}	$0.5 \times t_{\text{cyc}} - 20$		ns	Figure 24-17
Address hold time	t _{AH}	$0.5 imes t_{cyc} - 15$	_	ns	_
AS delay time	t _{ASD}	_	20	ns	_
RD delay time 1	t _{RSD1}	_	20	ns	_
RD delay time 2	t _{RSD2}	_	20	ns	_
Read data setup time	t _{RDS}	20	_	ns	_
Read data hold time	t _{RDH}	0	_	ns	_
Read data access time1	t _{ACC1}	_	$1.0 \times t_{\text{cyc}} - 48$	ns	_
Read data access time2	t _{ACC2}	_	$1.5 \times t_{cyc} - 45$	ns	_
Read data access time3	t _{ACC3}	_	$2.0 \times t_{\text{cyc}} - 45$	ns	_
Read data access time 4	t _{ACC4}	_	$2.5 \times t_{cyc} - 45$	ns	_
Read data access time 5	t _{ACC5}	_	$3.0 \times t_{\text{cyc}} - 50$	ns	_
WR delay time 1	t _{WRD1}	_	20	ns	_
WR delay time 2	t _{WRD2}	_	20	ns	_
WR pulse width 1	t _{WSW1}	$1.0 \times t_{\text{cyc}} - 20$	_	ns	_
WR pulse width 2	t _{WSW2}	$1.5 \times t_{\text{cyc}} - 20$	_	ns	_
Write data delay time	t _{WDD}	_	30	ns	_
Write data setup time	t _{WDS}	$0.5 \times t_{\text{cyc}} - 20$	_	ns	_
Write data hold time	t _{WDH}	$0.5 imes t_{\text{cyc}} - 10$	_	ns	_

(4) Timing of On-Chip Supporting Modules

Table 24-30 lists the timing of on-chip supporting modules.

Table 24-30 Timing of On-Chip Supporting Modules

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

				Co	ndition		
Item			Symbol	Min.	Max.	Unit	Test Conditions
I/O port	Output data o	lelay time	t _{PWD}	_	50	ns	Figure 24-18
	Output data o	lelay time 2	t _{PWD2}	_	50		Figure 24-19
	Input data se	tup time	t _{PRS}	30	_		
	Input data ho	ld time	t _{PRH}	30	_		
PPG*1	Pulse output	Pulse output delay time		_	50	ns	Figure 24-20
TPU	Timer output	delay time	t _{TOCD}	_	50	ns	Figure 24-21
	Timer input s	etup time	t _{TICS}	30	_		
	Timer clock input setup time		t _{TCKS}	30	_	ns	Figure 24-22
	Timer clock pulse width	Single edge	t _{TCKWH}	1.5	_	t _{cyc}	
		Both edges	t _{TCKWL}	2.5	_		
PWM	Pulse output	delay time	t _{MPWMOD}	_	50	ns	Figure 24-23
SCI	Input clock	Asynchronous	t _{Scyc}	4	_	t _{cyc}	Figure 24-24
	cycle	Synchronous		6	_		
	Input clock pu	ulse width	t _{SCKW}	0.4	0.6	t_{Scyc}	
	Input clock rise time		t _{SCKr}	_	1.5	t _{cyc}	
	Input clock fa	Input clock fall time		_	1.5		
	Transmit data	a delay time	t_{TXD}	_	50	ns	Figure 24-25
	Receive data (synchronous	•	t _{RXS}	50	_		
	Receive data (synchronous		t _{RXH}	50	_		
A/D converter	Trigger input	setup time	t _{TRGS}	50	_	ns	Figure 24-26

			Co	ndition		
Item		Symbol	Min.	Max.	Unit	Test Conditions
HCAN*2	Transmit data delay time	t _{HTXD}	_	100	ns	Figure 24-27
	Receive data setup time	t _{HRXS}	100	_		
	Receive data hold time	t _{HRXH}	100	_		

Notes: 1. The PPG output is not available in the H8S2635 Group.

2. The HCAN input signal is asynchronous. However, its state is judged to have changed at the leading edge (two clock cycles) of the CK clock signal shown in figure 24-27. The HCAN output signal is also asynchronous. Its state changes based on the leading edge (two clock cycles) of the CK clock signal shown in figure 24-27.

Table 24-31 I²C Bus Timing [Option]*1

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V, $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 5$ MHz to maximum operating frequency, $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40^{\circ}$ C to $+85^{\circ}$ C (wide-range specifications)

			Condit	ion	_	Notes
Item	Symbol	Min.	Тур.	Max.	Unit	
SCL input cycle time	t _{SCL}	12 t _{cyc}	_	_	ns	Figure 24-28
SCL input high pulse width	t _{SCLH}	3 t _{cyc}	_	_	ns	
SCL input low pulse width	t _{SCLL}	5 t _{cyc}	_	_	ns	<u> </u>
SCL, SDA input rise time	t _{Sr}	_	_	7.5 t _{cyc} *2	ns	
SCL, SDA input fall time	t _{Sf}	_	_	300	ns	<u>—</u>
SCL, SDA input spike pulse elimination time	t _{SP}	_	_	1 t _{cyc}	ns	
SDA input bus free time	t _{BUF}	5 t _{cyc}	_	_	ns	
Start condition input hold time	t _{STAH}	3 t _{cyc}	_	_	ns	
Retransmission start condition input setup time	t _{STAS}	3 t _{cyc}	_	_	ns	
Stop condition input setup time	t _{STOS}	3 t _{cyc}	_	_	ns	
Data input setup time	t _{SDAS}	0.5 t _{cyc}	_	_	ns	
Data input hold time	t _{SDAH}	0	_	_	ns	
SCL, SDA capacitive load	C _b	_	_	400	pF	

Notes: 1. Available when using I²C bus interface (the W-mask version only).

2. 17.5 t_{cvc} can be set according to the clock selected for use by the I²C module. For details, see section 15.4, Usage Notes.

24.3.5 A/D Conversion Characteristics

Table 24-32 lists the A/D conversion characteristics.

Table 24-32 A/D Conversion Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

Condition

Min.	Тур.	Max.	Unit
10	10	10	bits
10	_	_	μs
_	_	20	pF
_	_	5	kΩ
_	_	±3.5	LSB
_	_	±3.5	LSB
_	_	±3.5	LSB
_	±0.5	_	LSB
_	_	±4.0	LSB
	10	10 10 10 — — — — — — — — — — — — —	10 10 10 10 — — 20 — 5 — ±3.5 — ±3.5 — ±0.5 —

24.3.6 D/A Conversion Characteristics*

Table 24-33 shows the D/A conversion characteristics.

Note: * The D/A conversion is not implemented in the H8S/2635 and H8S/2634.

Table 24-33 D/A Conversion Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20^{\circ}$ C to $+75^{\circ}$ C (regular specifications), $T_a = -40^{\circ}$ C to $+85^{\circ}$ C (wide-range

specifications)

Condition

Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	8	8	8	bits	
Conversion time	_	_	10	μs	20-pF capacitive load
Absolute accuracy	_	± 1.5	± 2.0	LSB	2-MΩ resistive load
	_	_	± 1.5	LSB	4-M Ω resistive load

24.3.7 Flash Memory Characteristics

Table 24-34 shows the flash memory characteristics.

Table 24-34 Flash Memory Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS}$, $AV_{SS} = 0 \text{ V}$

 $T_a = 0$ to +75°C (Programming/erasing operating temperature range: regular

specification)

Item		Symbol	Min.	Тур.	Max.	Unit	Test Condition
Programming time*1*2*4		t _P	_	10	200	ms/ 128 bytes	
Erase time*1 *	Erase time*1 *3 *5		_	100	1200	ms/block	
Reprogramming count		N _{WEC}	_	_	100	Times	
Programming	Wait time after SWE bit setting*1	t _{sswe}	1	1	_	μs	
	Wait time after PSU bit setting*1	t _{spsu}	50	50	_	μs	
	Wait time after P bit setting*1 *4	t _{sp30}	28	30	32	μs	Programming time wait
		t _{sp200}	198	200	202	μs	Programming time wait
		t _{sp10}	8	10	12	μs	Additional- programming time wait
	Wait time after P bit clear*1	t _{cp}	5	5	_	μs	
	Wait time after PSU bit clear*1	t _{cpsu}	5	5	_	μs	
	Wait time after PV bit setting*1	t _{spv}	4	4	_	μs	
	Wait time after H'FF dummy write*1	t _{spvr}	2	2	_	μs	
	Wait time after PV bit clear*1	t _{cpv}	2	2	_	μs	
	Wait time after SWE bit clear*1	t _{cswe}	100	100	_	μs	
	Maximum programming count*1 *4	N	_	_	1000	Times	
Erase	Wait time after SWE bit setting*1	t _{sswe}	1	1	_	μs	
	Wait time after ESU bit setting*1	t _{sesu}	100	100	_	μs	
	Wait time after E bit setting*1 *5	t _{se}	10	10	100	ms	Erase time wait
	Wait time after E bit clear*1	t _{ce}	10	10	_	μs	
	Wait time after ESU bit clear*1	t _{cesu}	10	10	_	μs	
	Wait time after EV bit setting*1	t _{sev}	20	20	_	μs	

Item		Symbol	Min.	Тур.	Max.	Unit	Test Condition
Erase	Wait time after H'FF dummy write*1	t _{sevr}	2	2	_	μs	
	Wait time after EV bit clear*1	t _{cev}	4	4	_	μs	<u> </u>
	Wait time after SWE bit clear*1	t _{cswe}	100	100	_	μs	
	Maximum erase count*1 *5	N	12	_	120	Times	

Notes: 1. Make each time setting in accordance with the program/program-verify flowchart or erase/erase-verify flowchart.

- Programming time per 128 bytes (Shows the total period for which the P-bit in the flash memory control register (FLMCR1) is set. It does not include the programming verification time)
- Block erase time (Shows the total period for which the E-bit in FLMCR1 is set. It does not include the erase verification time)
- To specify the maximum programming time value (t_P (max.)) in the 128-byte programming algorithm, set the max. value (1000) for the maximum programming count (N).

The wait time after P bit setting should be changed as follows according to the value of the programming counter (n).

Programming counter (n) = 1 to 6: $t_{sp30} = 30 \ \mu s$ Programming counter (n) = 7 to 1000: $t_{sp200} = 200 \ \mu s$

[In additional programming]

Programming counter (n)= 1 to 6: $t_{sp10} = 10 \mu s$

 For the maximum erase time (t_E (max.)), the following relationship applies between the wait time after E bit setting (t_{se}) and the maximum erase count (N):

 t_E (max.) = Wait time after E bit setting (t_{se}) x maximum erase count (N)

To set the maximum erase time, the values of (t_{se}) and (N) should be set so as to satisfy the above formula.

Examples: When $t_{se} = 100$ [ms], N = 12 times When $t_{se} = 10$ [ms], N = 120 times

24.4 H8S/2630 Group Electrical Characteristics

24.4.1 Absolute Maximum Ratings

Table 24-35 lists the absolute maximum ratings.

Table 24-35 Absolute Maximum Ratings

Item	Symbol	Value	Unit
Power supply voltage	Vcc	-0.3 to +7.0	V
Input voltage (OSC1, OSC2)	V _{in}	-0.3 +4.3	V
Input voltage (XTAL, EXTAL)	V _{in}	-0.3 to V _{CC} +0.3	V
Input voltage (ports 4 and 9)	V _{in}	-0.3 to AV _{CC} +0.3	V
Input voltage (ports H and J)	V _{in}	-0.3 to PWMV _{CC} +0.3	V
Input voltage (except XTAL, EXTAL, OSC1, OSC2, ports 4, 9, H and J)	V _{in}	-0.3 to V _{CC} +0.3	V
Reference voltage	V _{ref}	-0.3 to AV _{CC} +0.3	V
Analog power supply voltage	AV_{CC}	-0.3 to +7.0	V
Analog input voltage	V_{AN}	-0.3 to AV _{CC} +0.3	V
Operating temperature	T _{opr}	Regular specifications: -20 to +75	°C
		Wide-range specifications: -40 to +85	°C
Storage temperature	T _{stg}	-55 to +125	°C

Caution: Permanent damage to the chip may result if absolute maximum rating are exceeded.

24.4.2 Power Supply Voltage and Operating Frequency Range

Power supply voltage and operating frequency ranges (shaded areas) are shown in figure 24-7.

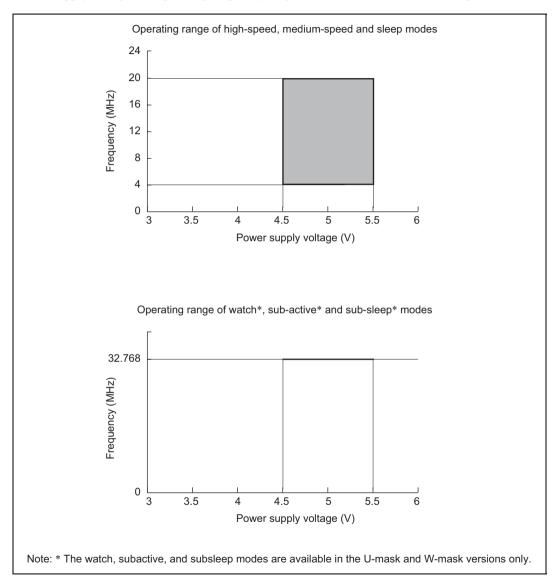


Figure 24-7 Power Supply Voltage and Operating Ranges

DC Characteristics 24.4.3

Table 24-36 lists the DC characteristics. Table 24-36 lists the permissible output currents.

Table 24-36 DC Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}C$ to $+75^{\circ}C$

(regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)*1 *6

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt	IRQ0 to IRQ5	V _T	1.0	_	_	V	
trigger input voltage		V _T ⁺	_	_	$V_{\text{CC}}\times 0.7$	_	
voitage		$V_T^+ - V_T^-$	0.4	_	_	_	
Input high voltage	RES, STBY, NMI, FWE, MD2 to MD0	V _{IH}	V _{CC} - 0.7	_	V _{CC} + 0.3	V	
	EXTAL	=	$V_{CC} \times 0.7$	_	$V_{CC} + 0.3$	_	
	Ports 1, 3, F	=	2.2	_	$V_{CC} + 0.3$	_	
	Ports A to E	=	$V_{CC} \times 0.8$	_	$V_{CC} + 0.3$	_	
	Ports H, J	_	PWMV _{CC} × 0.8	_	PWMV _{CC} +	_	
	HRxD0, HRxD1	_	2.2	_	V _{CC} + 0.3	_	
	Ports 4 and 9	-	$AV_{CC} \times 0.7$	_	AV _{CC} + 0.3	_	
Input low voltage	RES, STBY, NMI, FWE, MD2 to MD0	V _{IL}	-0.3	_	0.5	V	
	EXTAL	_	-0.3	_	0.8	_	
	Ports 1, 3, F	=	-0.3	_	0.8	_	
	Ports A to E	=	-0.3	_	$V_{CC} \times 0.2$	_	
	Ports H, J	_	-0.3	_	PWMV _{CC} × 0.2	_	
	HRxD0, HRxD1	-	-0.3	_	$V_{\text{CC}} \times 0.2$	_	
	Ports 4, 9	=	-0.3	_	$AV_{CC}\times 0.2$	_	

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Output high voltage	Ports 1, 3, A to F, H,J HTxD0, HTxD1 (excluding P34 and P35*7)	V _{OH}	V _{CC} – 0.5	_	_	V	I _{OH} = -200 μA
	P34, P35*7		V _{CC} – 2.5	_	_		$I_{OH} = -100 \mu A$
	Ports 1, 3, A to F, H, J HTxD0, HTxD1 (excluding P34 and P35*7)		3.5	_	_		I _{OH} = -1 mA
	PWM1A to PWM1H, PWM2A to PWM2H		PWMV _{CC} – 0.5	_	_		I _{OH} = -15 mA
Output low voltage	All output pins except PWM1A to PWM1H, PWM2A to PWM2H	V _{OL}	_	_	0.4	V	I _{OL} = 1.6 mA
	PWM1A to PWM1H, PWM2A to PWM2H		_	_	0.5	V	I _{OL} = 15 mA
Input leakage	RES	I _{in}	_	_	1.0	μΑ	$V_{in} = 0.5 \text{ V to}$
current	STBY, NMI, MD2 to MD0		_	_	1.0		V _{CC} – 0.5 V
	HRxD0, HRxD1, FWE		_	_	1.0		
	Ports 4, 9		_	_	1.0		$V_{in} = 0.5 \text{ V to}$ $AV_{CC} - 0.5 \text{ V}$
Three-state leakage current (off state)	Ports 1, 3, A to F, H, J HTxD0, HTxD1	I _{TSI}	_	_	1.0	μА	$V_{in} = 0.5 \text{ V to}$ $V_{CC} - 0.5 \text{ V}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
MOS input pull-up current	Ports A to E	−I _P	50	_	300	μА	$V_{in} = 0 V$
Input	RES	C _{in}	_	_	30	pF	$V_{in} = 0 V$
capacitance	NMI	-	_	_	30		f = 1 MHz
	All input pins except RES and NMI	-	_	_	15		T _a = 25°C
Current dissipation*2	Normal operation	Icc*4	_	75	90	mA	f = 20 MHz
	Sleep mode	=	_	65	80		
	All modules stopped	-	_	57	_	mA	f = 20 MHz (reference value)
	Medium-speed mode (φ/32)		_	49	_		
	Subactive mode*5	-	_	130	220	μΑ	Using 32.768 kHz crystal resonator
	Subsleep mode ^{*5}	=	_	80	160		
	Watch mode*5	-	_	30	60		
	Standby	-	_	2.0	5.0	μΑ	$T_a \leq 50^{\circ}C$
	mode*3		_	_	20		50°C < T _a
Analog power supply current	During A/D and D/A conversion	Alcc	_	1.0	2.0	mA	AV _{CC} = 5.0 V
	Idle	-	_	0.1	5.0	μΑ	
Reference current	During A/D and D/A conversion	Alcc	_	4.0	5.0	mA	$V_{ref} = 5.0 \text{ V}$
	Idle	-	_	0.1	5.0	μΑ	
RAM standby	voltage	V _{RAM}	2.0	_	_	V	

Notes: 1. If the A/D and D/A converters are not used, do not leave the AV_{CC}, V_{ref} , and AV_{SS} pins open. Apply a voltage between 4.5 V and 5.5 V to the AV_{CC} and V_{ref} pins by connecting them to V_{CC} , for instance. Set $V_{ref} \le AV_{CC}$.

- 2. Current dissipation values are for V_{IH} (min.) = $V_{CC} 0.5$ V, V_{IL} (max.) = 0.5 V with all output pins unloaded and the on-chip pull-up resistors in the off state.
- 3. The values are for $V_{RAM} \le V_{CC} < 3.0 \text{ V}$, V_{IH} (min.) = $V_{CC} \times 0.9$, and V_{IL} (max.) = 0.3 V.

4. I_{CC} depends on V_{CC} and f as follows:

$$I_{CC}$$
 (max.) = 30 (mA) + 0.54 (mA/(MHz × V)) × V_{CC} × f (normal operation)
 I_{CC} (max.) = 30 (mA) + 0.45 (mA/(MHz × V)) × V_{CC} × f (sleep mode)

- 5. The watch, subactive, and subsleep modes are available in the U-mask and W-mask versions only.
 - See section 22A.7, Subclock Oscillator, for the method of fixing pins OSC1 and OSC2.
- If the motor-control PWM timer is not used, do not leave the PMWV_{CC}, or PMWV_{SS} pins open. If the motor-control PWM timer is not used, apply a voltage of between 4.5 and 5.5 V to the PWMV_{CC} pin, for instance, by connecting it to V_{CC}.
- 7. The characteristics of pins 34 and 35 apply to the W-mask version.

Table 24-37 Permissible Output Currents

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V, $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $V_{a} = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $V_{a} = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Item		Symbol	Min.	Тур.	Max.	Unit	Test condition
Permissible output low current (per	All output pins except PWM1A to PWM1H, PWM2A to PWM2H	I _{OL}	_	_	10	mA	
pin)	PWM1A to PWM1H,	I _{OL}	_	_	25	mA	T _a = 85°C
	PWM2A to PWM2H		_	_	30	mΑ	$T_a = 25^{\circ}C$
			_	_	40	mΑ	$T_a = -40$ °C
Permissible output low current (total)	Total of all output pins excepting PWM1A to PWM1H, and PWM2A to PWM2H	Σ lol	_	_	80	mA	
	Total of PWM1A to PWM1H,	\sum I _{OL}	_	_	150	mA	T _a = 85°C
	and PWM2A to PWM2H		_	_	180	mA	$T_a = 25^{\circ}C$
			_	_	220	mA	T _a = -40°C
Permissible output high current (per	All output pins except PWM1A to PWM1H, PWM2A to PWM2H	-l _{OH}	_	_	2.0	mA	
pin)	PWM1A to PWM1H,	-I _{OH}	_	_	25	mΑ	T _a = 85°C
	PWM2A to PWM2H		_	_	30	mA	$T_a = 25^{\circ}C$
			_	_	40	mA	T _a = -40°C
Permissible output high current (total)	Total of all output pins excepting PWM1A to PWM1H, and PWM2A to PWM2H	-∑ I _{OH}	_	_	40	mA	
	Total of PWM1A to PWM1H, and PWM2A to PWM2H	−∑ I _{OH}	_	_	150	mA	$T_a = 85^{\circ}C$
			_	_	180	mA	$T_a = 25^{\circ}C$
			_	_	220	mΑ	T _a = -40°C

Note: To protect chip reliability, do not exceed the output current values in table 24-37.

Table 24-38 Bus Drive Characteristics [Option]*

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \ V \ to \ AV_{CC}, \ V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \ V, \ T_a = -20^{\circ}C \ to \ +75^{\circ}C$

(regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Applicable Pins: SCL1-0, SDA1-0

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input	V _T	1.0	_	_	V	
voltage	V_T^+	_	_	$V_{\text{CC}} \times 0.7$	_	
	$V_T^+ - V_T^-$	0.4	_	_	_	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$
Input high voltage	V _{IH}	$V_{\text{CC}} \times 0.7$	_	V _{CC} + 0.5	V	
Input low voltage	V_{IL}	- 0.5	_	$V_{\text{CC}} \times 0.3$	V	
Output low voltage	V_{OL}	_		0.7	V	I _{OL} = 8 mA, V _{CC} = 4.5 V to 5.5 V
		_		0.4	_	I _{OL} = 3 mA, V _{CC} = 4.5 V to 5.5 V
		_	_	0.4	_	I _{OL} = 1.6 mA, V _{CC} = 3.3 V to 5.5 V
Input capacitance	C _{in}	_	_	20	pF	$V_{in} = 0 \text{ V, f} = 1 \text{ MHz,}$ $T_a = 25 \text{ °C}$
Three-state leakage current (off state)	I _{TSI}	_	_	1.0	μА	$V_{in} = 0.5 \text{ V to V}_{CC} - 5.5 \text{ V}$
SCL, SDA, output fall time	t _{of}	20 + 0.1Cb	_	250	ns	

Note: *Available when using I²C bus interface (the W-mask version only).

24.4.4 AC Characteristics

Figure 24-8 show, the test conditions for the AC characteristics.

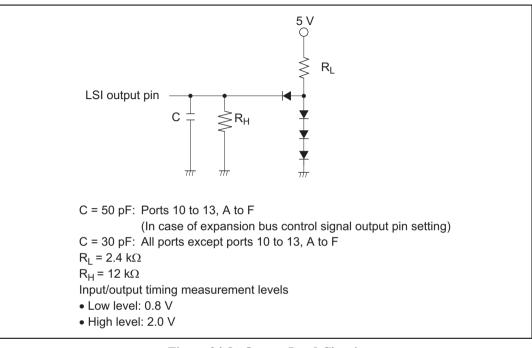


Figure 24-8 Output Load Circuit

(1) Clock Timing

Table 24-39 lists the clock timing

Table 24-39 Clock Timing

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

		Con	dition			
		20	MHz			
Item	Symbol	Min.	Max.	Unit	Test Conditions	
Clock cycle time	t _{cyc}	50	250	ns	Figure 24-9	
Clock high pulse width	t _{CH}	15	_	ns	<u>—</u>	
Clock low pulse width	t _{CL}	15	_	ns	<u>—</u>	
Clock rise time	t _{Cr}	_	10	ns	<u>—</u>	
Clock fall time	t _{Cf}	_	10	ns	<u> </u>	
Clock oscillator settling time at reset (crystal)	t _{OSC1}	20	_	ms	Figure 24-10	
Clock oscillator settling time in software standby (crystal)	t _{OSC2}	8	_	ms	Figure 23A-3 Figure 23B-3	
External clock output stabilization delay time	t _{DEXT}	2	_	ms	Figure 24-10	
32-kHz clock oscillation settling time	t _{OSC3}	_	2	S		
Subclock oscillator frequency	f _{SUB}	32.768		kHz		
Subclock (ϕ_{SUB}) cycle time	t _{SUB}	30.5		μS		

(2) Control Signal Timing

Table 24-40 lists the control signal timing.

Table 24-40 Control Signal Timing

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

		Condition			
Item	Symbol	Min.	Max.	Unit	Test Conditions
RES setup time	t _{RESS}	200	_	ns	Figure 24-11
RES pulse width	t _{RESW}	20	_	t_{cyc}	_
NMI setup time	t _{NMIS}	150	_	ns	Figure 24-12
NMI hold time	t _{NMIH}	10	_		
NMI pulse width (exiting software standby mode)	t _{NMIW}	200	_	ns	_
IRQ setup time	t _{IRQS}	150	_	ns	_
IRQ hold time	t_{IRQH}	10	_	ns	
IRQ pulse width (exiting software standby mode)	t _{IRQW}	200	_	ns	_

(3) Bus Timing

Table 24-41 lists the bus timing.

Table 24-41 Bus Timing

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

Condition

Item	Symbol	Min.	Max.	_ Unit	Test Conditions
Address delay time	t _{AD}	_	35	ns	Figure 24-13 to
Address setup time	t _{AS}	$0.5 \times t_{\text{cyc}} - 20$	_	ns	Figure 24-17
Address hold time	t _{AH}	$0.5 \times t_{\text{cyc}} - 15$	_	ns	_
AS delay time	t _{ASD}	_	20	ns	_
RD delay time 1	t _{RSD1}	_	20	ns	_
RD delay time 2	t _{RSD2}	_	20	ns	_
Read data setup time	t _{RDS}	20	_	ns	_
Read data hold time	t _{RDH}	0	_	ns	
Read data access time1	t _{ACC1}	_	$1.0 \times t_{\text{cyc}} - 48$	ns	
Read data access time2	t _{ACC2}	_	$1.5 \times t_{\text{cyc}} - 45$	ns	_
Read data access time3	t _{ACC3}	_	$2.0 \times t_{\text{cyc}} - 45$	ns	
Read data access time 4	t _{ACC4}	_	$2.5 \times t_{\text{cyc}} - 45$	ns	_
Read data access time 5	t _{ACC5}	_	$3.0 \times t_{\text{cyc}} - 50$	ns	
WR delay time 1	t _{WRD1}	_	20	ns	
WR delay time 2	t _{WRD2}	_	20	ns	_
WR pulse width 1	t _{WSW1}	$1.0 \times t_{cyc} - 20$	_	ns	_
WR pulse width 2	t _{WSW2}	$1.5 \times t_{cyc} - 20$	_	ns	_
Write data delay time	t _{WDD}	_	30	ns	_
Write data setup time	t _{WDS}	$0.5 \times t_{\text{cyc}} - 20$	_	ns	_
Write data hold time	t _{WDH}	$0.5 imes t_{cyc} - 10$		ns	_

(4) Timing of On-Chip Supporting Modules

Table 24-42 lists the timing of on-chip supporting modules.

Table 24-42 Timing of On-Chip Supporting Modules

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

				Co	Condition		
Item			Symbol	Min.	Max.	Unit	Test Conditions
I/O port	Output data of	delay time	t _{PWD}	_	50	ns	Figure 24-18
	Output data of	delay time 2	t _{PWD2}	_	50		Figure 24-19
	Input data se	tup time	t _{PRS}	30	_		
	Input data ho	ld time	t _{PRH}	30	_		
PPG	Pulse output	Pulse output delay time		_	50	ns	Figure 24-20
TPU	Timer output	delay time	t _{TOCD}	_	50	ns	Figure 24-21
	Timer input setup time		t _{TICS}	30	_		
	Timer clock in	nput setup time	t _{TCKS}	30	_	ns	Figure 24-22
	Timer clock pulse width	Single edge	t _{TCKWH}	1.5	_	t _{cyc}	
		Both edges	t _{TCKWL}	2.5	_		
PWM	Pulse output	delay time	t _{MPWMOD}	_	50	ns	Figure 24-23
SCI	Input clock	Asynchronous	t _{Scyc}	4	_	t _{cyc}	Figure 24-24
	cycle	Synchronous	_	6	_		
	Input clock po	ulse width	tsckw	0.4	0.6	t _{Scyc}	
	Input clock ris	se time	t _{SCKr}	_	1.5	t _{cyc}	
	Input clock fa	ıll time	t _{SCKf}	_	1.5		
	Transmit data	a delay time	t _{TXD}	_	50	ns	Figure 24-25
	Receive data setup time (synchronous)		t _{RXS}	50	_		
	Receive data (synchronous		t _{RXH}	50	_		
A/D converter	Trigger input	setup time	t _{TRGS}	50		ns	Figure 24-26

			Co	ndition		
Item		Symbol	Min.	Max.	Unit	Test Conditions
HCAN*	Transmit data delay time	t _{HTXD}	_	100	ns	Figure 24-27
	Receive data setup time	t _{HRXS}	100	_		
	Receive data hold time	t _{HRXH}	100	_		

Note: *The HCAN input signal is asynchronous. However, its state is judged to have changed at the leading edge (two clock cycles) of the CK clock signal shown in figure 24-27. The HCAN output signal is also asynchronous. Its state changes based on the leading edge (two clock cycles) of the CK clock signal shown in figure 24-27.

Table 24-43 I²C Bus Timing [Option]*1

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V, $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 5 \text{ MHz}$ to maximum operating frequency, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

			Conditi			
Item	Symbol	Min.	Тур.	Max.	Unit	Notes
SCL input cycle time	t _{SCL}	12 t _{cyc}	_	_	ns	Figure 24-28
SCL input high pulse width	t _{SCLH}	3 t _{cyc}	_	_	ns	
SCL input low pulse width	t _{SCLL}	5 t _{cyc}	_	_	ns	
SCL, SDA input rise time	t _{Sr}	_	_	7.5 t _{cyc} *2	ns	
SCL, SDA input fall time	t _{Sf}	_	_	300	ns	
SCL, SDA input spike pulse elimination time	t _{SP}	_	_	1 t _{cyc}	ns	
SDA input bus free time	t _{BUF}	5 t _{cyc}	_	_	ns	
Start condition input hold time	t _{STAH}	3 t _{cyc}	_	_	ns	
Retransmission start condition input setup time	t _{STAS}	3 t _{cyc}	_	_	ns	
Stop condition input setup time	t _{STOS}	3 t _{cyc}	_	_	ns	
Data input setup time	t _{SDAS}	$0.5 t_{cyc}$	_	_	ns	
Data input hold time	t _{SDAH}	0	_	_	ns	
SCL, SDA capacitive load	Сь	_	_	400	pF	

Notes: 1. Available when using I²C bus interface (the W-mask version only).

2. 17.5 t_{cyc} can be set according to the clock selected for use by the I²C module. For details, see section 15.4, Usage Notes.

24.4.5 A/D Conversion Characteristics

Table 24-44 lists the A/D conversion characteristics.

Table 24-44 A/D Conversion Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

Condition

Item	Min.	Тур.	Max.	Unit
Resolution	10	10	10	bits
Conversion time	10	_	_	μs
Analog input capacitance	_	_	20	pF
Permissible signal-source impedance	_	_	5	kΩ
Nonlinearity error	_	_	±3.5	LSB
Offset error	_	_	±3.5	LSB
Full-scale error	_	_	±3.5	LSB
Quantization	_	±0.5	_	LSB
Absolute accuracy	_	_	±4.0	LSB

24.4.6 D/A Conversion Characteristics

Table 24-45 shows the D/A conversion characteristics.

Table 24-45 D/A Conversion Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS} = AV_{SS} = 0 \text{ V}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range

specifications)

Condition

Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	8	8	8	bits	_
Conversion time	_	_	10	μs	20-pF capacitive load
Absolute accuracy	_	± 1.5	± 2.0	LSB	2-M Ω resistive load
	_	_	± 1.5	LSB	4-MΩ resistive load

24.4.7 Flash Memory Characteristics

Table 24-46 shows the flash memory characteristics.

Table 24-46 Flash Memory Characteristics

Conditions: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $PWMV_{CC} = 4.5 \text{ V}$ to 5.5 V, $AV_{CC} = 4.5 \text{ V}$ to 5.5 V,

 $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = PWMV_{SS} = PLLV_{SS}$, $AV_{SS} = 0 \text{ V}$

 $T_a = 0$ to +75°C (Programming/erasing operating temperature range: regular

specification)

Item		Symbol	Min.	Тур.	Max.	Unit	Test Condition
Programming		t _P	_	10	200	ms/ 128 bytes	
Erase time*1 *	3 *5	t _E	_	100	1200	ms/block	
Reprogrammir	ng count	N _{WEC}	_	_	100	Times	
Programming	Wait time after SWE bit setting*1	t _{sswe}	1	1	_	μs	
	Wait time after PSU bit setting*1	t _{spsu}	50	50	_	μs	
	Wait time after P bit setting*1 *4	t _{sp30}	28	30	32	μs	Programming time wait
		t _{sp200}	198	200	202	μs	Programming time wait
		t _{sp10}	8	10	12	μs	Additional- programming time wait
	Wait time after P bit clear*1	t _{cp}	5	5	_	μs	
	Wait time after PSU bit clear*1	t _{cpsu}	5	5	_	μs	
	Wait time after PV bit setting*1	t _{spv}	4	4	_	μs	
	Wait time after H'FF dummy write*1	t _{spvr}	2	2	_	μs	
	Wait time after PV bit clear*1	t _{cpv}	2	2	_	μs	
	Wait time after SWE bit clear*1	t _{cswe}	100	100	_	μs	
	Maximum programming count*1 *4	N	_	_	1000	Times	
Erase	Wait time after SWE bit setting*1	t _{sswe}	1	1	_	μs	
	Wait time after ESU bit setting*1	t _{sesu}	100	100	_	μs	
	Wait time after E bit setting*1 *5	t _{se}	10	10	100	ms	Erase time wait
	Wait time after E bit clear*1	t _{ce}	10	10	_	μs	
	Wait time after ESU bit clear*1	t _{cesu}	10	10	_	μs	
	Wait time after EV bit setting*1	t _{sev}	20	20	_	μs	

Item		Symbol	Min.	Тур.	Max.	Unit	Test Condition
Erase	Wait time after H'FF dummy write*1	t _{sevr}	2	2	_	μs	
	Wait time after EV bit clear*1	t _{cev}	4	4	_	μs	
	Wait time after SWE bit clear*1	t _{cswe}	100	100	_	μs	
	Maximum erase count*1 *5	N	12	_	120	Times	

Notes: 1. Make each time setting in accordance with the program/program-verify flowchart or erase/erase-verify flowchart.

- Programming time per 128 bytes (Shows the total period for which the P-bit in the flash memory control register (FLMCR1) is set. It does not include the programming verification time)
- 3. Block erase time (Shows the total period for which the E-bit in FLMCR1 is set. It does not include the erase verification time)
- To specify the maximum programming time value (t_P (max.)) in the 128-byte programming algorithm, set the max. value (1000) for the maximum programming count (N).

The wait time after P bit setting should be changed as follows according to the value of the programming counter (n).

Programming counter (n) = 1 to 6: $t_{sp30} = 30 \mu s$ Programming counter (n) = 7 to 1000: $t_{sp200} = 200 \mu s$

[In additional programming]

Programming counter (n)= 1 to 6: $t_{sp10} = 10 \mu s$

5. For the maximum erase time (t_E (max.)), the following relationship applies between the wait time after E bit setting (t_{se}) and the maximum erase count (N):

t_E (max.) = Wait time after E bit setting (t_{se}) x maximum erase count (N)

To set the maximum erase time, the values of (t_{se}) and (N) should be set so as to satisfy the above formula.

Examples: When $t_{se} = 100$ [ms], N = 12 times When $t_{se} = 10$ [ms], N = 120 times

24.5 Operation Timing

The operation timing is shown below.

24.5.1 Clock Timing

The clock timing is shown below.

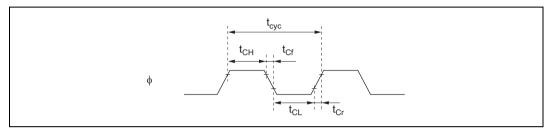


Figure 24-9 System Clock Timing

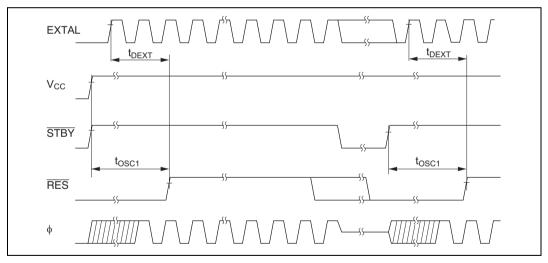


Figure 24-10 Oscillator Settling Timing

May 28, 2010

Control Signal Timing 24.5.2

The control signal timing is shown below.

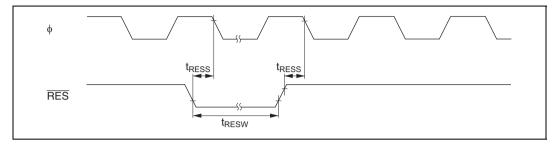
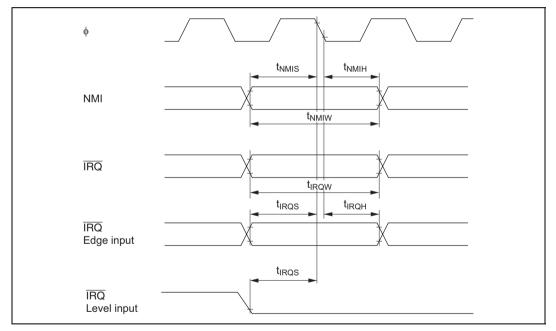



Figure 24-11 Reset Input Timing

Figure 24-12 Interrupt Input Timing

24.5.3 Bus Timing

The bus timing is shown below.

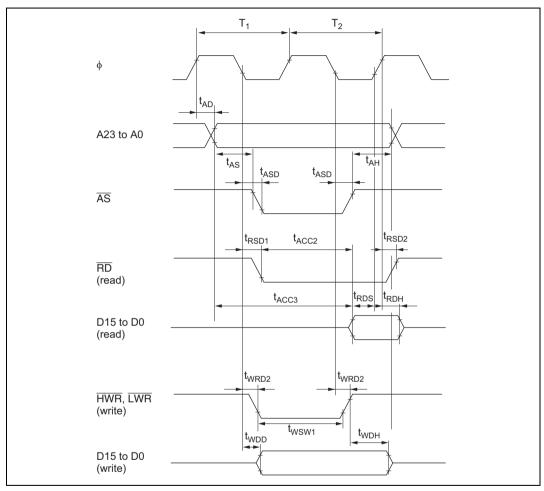


Figure 24-13 Basic Bus Timing (Two-State Access)

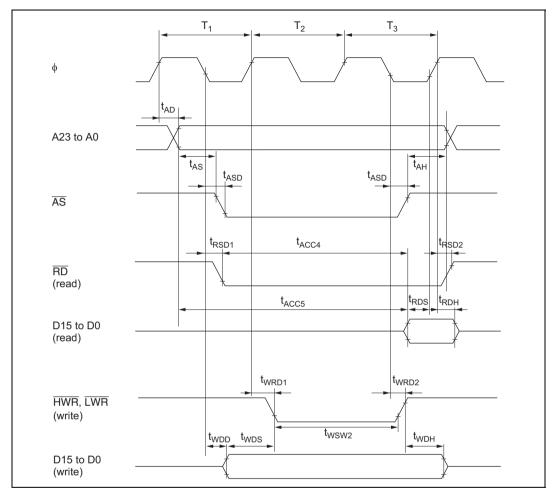


Figure 24-14 Basic Bus Timing (Three-State Access)

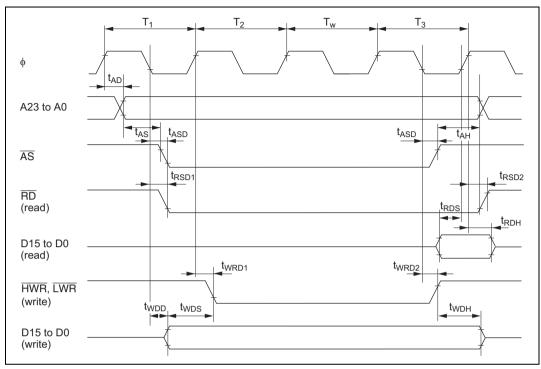


Figure 24-15 Basic Bus Timing (Three-State Access with One Wait State)

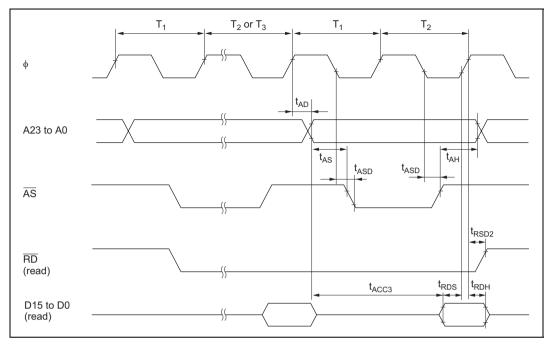


Figure 24-16 Burst ROM Access Timing (Two-State Access)

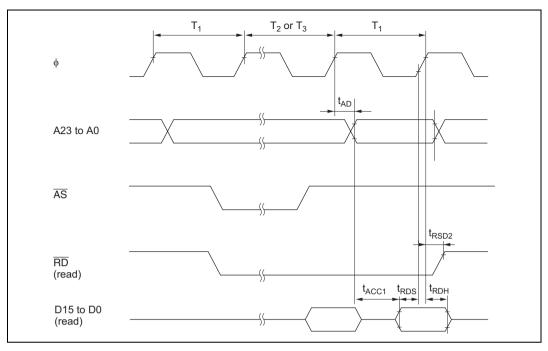


Figure 24-17 Burst ROM Access Timing (One-State Access)

24.5.4 On-Chip Supporting Module Timing

The on-chip supporting module timing is shown below.



Figure 24-18 I/O Port Input/Output Timing (Ports 1, 3, 4, 9, A to F)

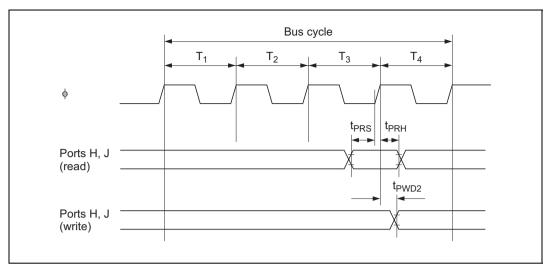


Figure 24-19 I/O Port (Ports H and J) Input/Output Timing

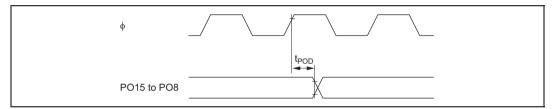


Figure 24-20 PPG Output Timing*

Note: * The PPG output is not implemented in the H8S/2635 Group.

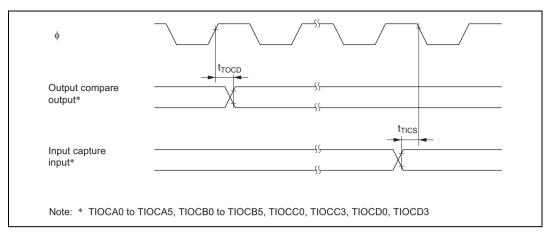


Figure 24-21 TPU Input/Output Timing

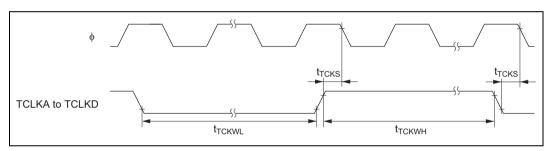


Figure 24-22 TPU Clock Input Timing

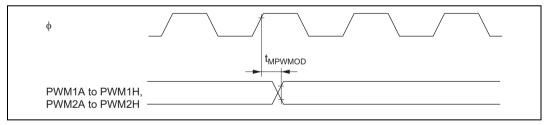


Figure 24-23 Motor Control PWM Output Timing

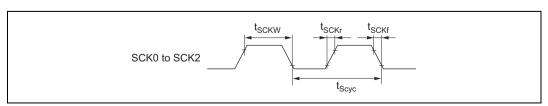


Figure 24-24 SCK Clock Input Timing

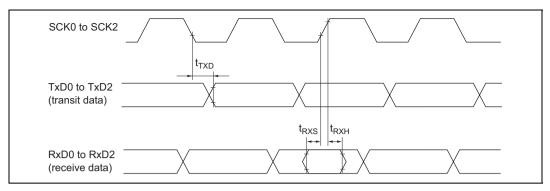


Figure 24-25 SCI Input/Output Timing (Clock Synchronous Mode)

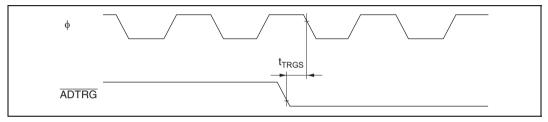


Figure 24-26 A/D Converter External Trigger Input Timing

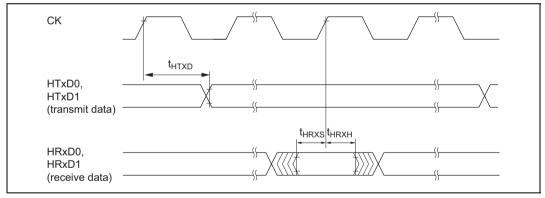


Figure 24-27 HCAN Input/Output Timing

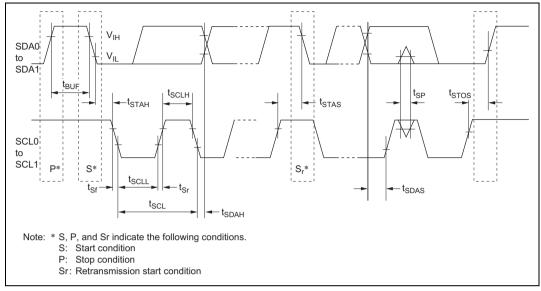


Figure 24-28 I²C Bus Interface Input/Output Timing (Option)*

Note: * I²C bus interface is available a an option in the H8S/2638, H8S/2639, and H8S/2630 only.

24.6 Usage Note

Although both the F-ZTAT and mask ROM versions fully meet the electrical specifications listed in this manual, there may be differences in the actual values of the electrical characteristics, operating margins, noise margins, and so forth, due to differences in the fabrication process, the on-chip ROM, and the layout patterns.

Therefore, if a system is evaluated using the F-ZTAT version, a similar evaluation should also be performed using the mask ROM version.

Appendix A Instruction Set

A.1 Instruction List

Operand Notation

General register (destination)*
General register (source)*
General register*
General register (32-bit register)
Multiply-and-accumulate register (32-bit register)
Destination operand
Source operand
Extended control register
Condition-code register
N (negative) flag in CCR
Z (zero) flag in CCR
V (overflow) flag in CCR
C (carry) flag in CCR
Program counter
Stack pointer
Immediate data
Displacement
Add
Subtract
Multiply
Divide
Logical AND
Logical OR
Logical exclusive OR
Transfer from the operand on the left to the operand on the right, or transition from the state on the left to the state on the right
Logical NOT (logical complement)
Contents of operand
8-, 16-, 24-, or 32-bit length

Note: * General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (R0 to R7, E0 to E7), and 32-bit registers (ER0 to ER7).

Condition Code Notation

Symbol

	Changes according to the result of instruction	
*	Undetermined (no guaranteed value)	
0	Always cleared to 0	
1	Always set to 1	
_	Not affected by execution of the instruction	

Table A-1 Instruction Set

(1) Data Transfer Instructions

			100	Ado	Ires	ing	Addressing Mode/	de/	9						
			2	בות בו	5	Le	o li	2	(S)						
		erand Size		Вп	(nЯ∃,t	ERn/@ERn+	100/	1,PC)			Co	difi	on O	Condition Code	No. of States*1
	Mnemonic		XX#	<u>®</u> Е Ви		-@	100 100		_	Operation		z	Z	ပ >	Advanced
MOV	MOV.B #xx:8,Rd	В	7							#xx:8→Rd8	H	\leftrightarrow	\leftrightarrow	0	1
	MOV.B Rs,Rd	В		7						Rs8→Rd8		\leftrightarrow	\leftrightarrow	0	1
	MOV.B @ERs,Rd	В		2						@ERs→Rd8		↔	\leftrightarrow	0	2
	MOV.B @(d:16,ERs),Rd	В			4					@(d:16,ERs)→Rd8		\leftrightarrow	\leftrightarrow	0	3
	MOV.B @(d:32,ERs),Rd	В			∞					@(d:32,ERs)→Rd8	1	\leftrightarrow	\leftrightarrow	0	5
	MOV.B @ERs+,Rd	В		_		7				@ERs→Rd8,ERs32+1→ERs32	1	\leftrightarrow	\leftrightarrow	0	3
	MOV.B @aa:8,Rd	В					2			@aa:8→Rd8		↔	\leftrightarrow	0	2
	MOV.B @aa:16,Rd	В					4			@aa:16→Rd8		\leftrightarrow	\leftrightarrow	0	3
	MOV.B @aa:32,Rd	В					9			@aa:32→Rd8		\leftrightarrow	\leftrightarrow	<u> </u>	4
	MOV.B Rs,@ERd	В		2						Rs8→@ERd		\leftrightarrow	\leftrightarrow	<u> </u>	2
	MOV.B Rs,@(d:16,ERd)	В			4					Rs8→@(d:16,ERd)		↔	\leftrightarrow	0	3
	MOV.B Rs,@(d:32,ERd)	В			8					Rs8→@(d:32,ERd)		↔	\leftrightarrow	0	5
	MOV.B Rs,@-ERd	В				2				ERd32-1→ERd32,Rs8→@ERd	1	\leftrightarrow	\leftrightarrow	0	3
	MOV.B Rs,@aa:8	В					7			Rs8→@aa:8	1	\leftrightarrow	\leftrightarrow	0	2
	MOV.B Rs,@aa:16	В					4			Rs8→@aa:16	1	\leftrightarrow	\leftrightarrow	0	3
	MOV.B Rs,@aa:32	В					9			Rs8→@aa:32		\leftrightarrow	\leftrightarrow	0	4
	MOV.W #xx:16,Rd	×	4							#xx:16→Rd16	1	\leftrightarrow	\leftrightarrow	0	2
	MOV.W Rs,Rd	>	-	2						Rs16→Rd16	1	\leftrightarrow	\leftrightarrow	0	1
	MOV.W @ERs,Rd	>	\dashv	7						@ERs→Rd16		\leftrightarrow	\leftrightarrow	0	2

			lust	Addressing Mode/ Instruction Length (Bytes)	dre	Addressing Mode/ ruction Length (By	g W	By (B)	rtes									
		erand Size		иЯ	nA∃,t	ERn/@ERn+	9	(Ja,	BBQ			Ö	Condition Code	iţi	ŭ	ode	No. of States*1	*es*
	Mnemonic		xx#	Вn @E			ரு)(ව)	_	Operation	_	I	z	Z	ر د	Advanced	-
MOV	MOV.W @(d:16,ERs),Rd	>		\vdash	4					Ö	@(d:16,ERs)→Rd16			\leftrightarrow	\leftrightarrow	0	3	
	MOV.W @(d:32,ERs),Rd	>			∞					Ö	@(d:32,ERs)→Rd16			\leftrightarrow	\leftrightarrow	0	- 2	
	MOV.W @ERs+,Rd	>				2				@ E	@ERs→Rd16,ERs32+2→ERs32			\leftrightarrow	\leftrightarrow	0	က	
	MOV.W @aa:16,Rd	>					4			@ 9	@aa:16→Rd16			\leftrightarrow	\leftrightarrow	0	8	
	MOV.W @aa:32,Rd	>					9			(G)	@aa:32→Rd16			\leftrightarrow	\leftrightarrow	0	4	
	MOV.W Rs,@ERd	>		2						Rs1	Rs16→@ERd			\leftrightarrow	\leftrightarrow	0	- 2	
	MOV.W Rs,@(d:16,ERd)	>			4					Rs1	Rs16→@(d:16,ERd)			\leftrightarrow	\leftrightarrow	0	က	
	MOV.W Rs,@(d:32,ERd)	>			00					Rs1	Rs16→@(d:32,ERd)			\leftrightarrow	\leftrightarrow	0	- 2	
	MOV.W Rs,@-ERd	>				2				ER	ERd32-2→ERd32,Rs16→@ERd			\leftrightarrow	\leftrightarrow	0	3	
	MOV.W Rs,@aa:16	>					4			Rs1	Rs16→@aa:16			\leftrightarrow	\leftrightarrow	0	3	
	MOV.W Rs,@aa:32	>					9			Rs1	Rs16→@aa:32			\leftrightarrow	\leftrightarrow	0	4	
	MOV.L #xx:32,ERd	_	9							XX#	#xx:32→ERd32			\leftrightarrow	\leftrightarrow	0	8	
	MOV.L ERS,ERd	_		2						ER	ERs32→ERd32			\leftrightarrow	\leftrightarrow	0	-	
	MOV.L @ERS,ERd	_		4						@E	@ERs→ERd32			\leftrightarrow	\leftrightarrow	0	4	
	MOV.L @(d:16,ERs),ERd	_			9)@(c	@(d:16,ERs)→ERd32			\leftrightarrow	\leftrightarrow	_ 0	- 2	
	MOV.L @(d:32,ERs),ERd	_			10					@	@(d:32,ERs)→ERd32			\leftrightarrow	\leftrightarrow	0	- 2	
	MOV.L @ERs+,ERd	_				4				@E	@ERs→ERd32,ERs32+4→ERs32	2		\leftrightarrow	\leftrightarrow	0	- 2	
	MOV.L @aa:16,ERd	_					9			@ 9	@aa:16→ERd32			\leftrightarrow	\leftrightarrow	0	- 2	
	MOV.L @aa:32,ERd	_		-			8			@ 9	@aa:32→ERd32			\leftrightarrow	\leftrightarrow	0	9	

May 28, 2010

			Inst	Add	Addressing Mode/ Instruction Length (Bytes)	ing eng	Mod th (E	e/ 3yte	(S						
		erand Size		Вп	(nЯ∃,t	ERn/@ERn+	i,PC)				Condi	ition	Condition Code		No. of States*1
	Mnemonic		#xx#	3®	@ (c		@(c @(c	00	_	Operation	т -	N	>	C Adva	Advanced
MOV	MOV.L ERs,@ERd	_		4						ERs32→@ERd		\leftrightarrow	0		4
	MOV.L ERs,@(d:16,ERd)	_			9					ERs32→@(d:16,ERd)		\leftrightarrow	0		5
	MOV.L ERs,@(d:32,ERd)				10					ERs32→@(d:32,ERd)		\leftrightarrow	0		7
	MOV.L ERs,@-ERd	_				4				ERd32-4→ERd32,ERs32→@ERd		\leftrightarrow	0		5
	MOV.L ERs,@aa:16	_				9				ERs32→@aa:16		$\leftrightarrow $	0		5
	MOV.L ERs,@aa:32	_				00				ERs32→@aa:32		\leftrightarrow	0		9
POP	POP.W Rn	≥							7	@SP→Rn16,SP+2→SP		\leftrightarrow	0		3
	POP.L ERn	_							4	@SP→ERn32,SP+4→SP	I	\leftrightarrow	0		5
PUSH	PUSH.W Rn	>							7	SP-2→SP,Rn16→@SP		\leftrightarrow	0	ı	3
	PUSH.L ERn	_							4	SP-4→SP,ERn32→@SP		\leftrightarrow	0	ı	5
LDM*4	LDM @SP+,(ERm-ERn)	_							4	(@SP→ERn32,SP+4→SP)	İ	+		/6/2	7/9/11 [1]
										Repeated for each register restored					
STM*4	STM (ERm-ERn),@-SP	_							4	(SP-4→SP,ERn32→@SP)	İ	+		/6//	7/9/11 [1]
										Repeated for each register saved					
MOVFPE	MOVFPE @aa:16,Rd	Can	not	be u	Cannot be used in this LSI	n thi	s LS	_						_	[2]
MOVTPE	MOVTPE Rs,@aa:16	Can	not	be u	Cannot be used in this LSI	n thi	s LS	_						_	[2]

(2) Arithmetic Instructions

			آ =	stru	Addressing Mode/ Instruction Length (Bytes)	essi	ng / eng	Mod th (E	Byte	ŝ							
		erand Size			пЯ	teph@epn+	a ERn/@ERn+	(DAʻr	999			S	diti	Condition Code	ပိ	<u>o</u>	No. of States*1
	Mnemonic	οdΟ	xx#	Вη	∃@		_@ _@			_	Operation	-	z	Z	>	ပ	Advanced
ADD	ADD.B #xx:8,Rd	ω	2								Rd8+#xx:8→Rd8	<> 	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	F
	ADD.B Rs,Rd	Ω		2							Rd8+Rs8→Rd8	<>	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	-
	ADD.W #xx:16,Rd	≥	4								Rd16+#xx:16→Rd16	=		\leftrightarrow	\leftrightarrow	\leftrightarrow	2
	ADD.W Rs,Rd	≥		7							Rd16+Rs16→Rd16		⊕	\leftrightarrow	\leftrightarrow	\leftrightarrow	-
	ADD.L #xx:32,ERd	_	9								ERd32+#xx:32→ERd32	4	<u>4</u>	\leftrightarrow	\leftrightarrow	\leftrightarrow	8
	ADD.L ERs,ERd	_		2							ERd32+ERs32→ERd32	4	<u>4</u>	\leftrightarrow	\leftrightarrow	\leftrightarrow	-
ADDX	ADDX #xx:8,Rd	В	2								Rd8+#xx:8+C→Rd8	<>	\leftrightarrow	[2]	\leftrightarrow	\leftrightarrow	-
	ADDX Rs,Rd	В		2							Rd8+Rs8+C→Rd8	↔ 	\leftrightarrow	[2]	\leftrightarrow	\leftrightarrow	1
ADDS	ADDS #1,ERd			2							ERd32+1→ERd32						1
	ADDS #2,ERd			2							ERd32+2→ERd32					Ι	1
	ADDS #4,ERd			2							ERd32+4→ERd32						-
INC	INC.B Rd	В		2							Rd8+1→Rd8		\leftrightarrow	\leftrightarrow	\leftrightarrow		1
	INC.W #1,Rd	>		2							Rd16+1→Rd16		\leftrightarrow	\leftrightarrow	\leftrightarrow		1
	INC.W #2,Rd	8		2							Rd16+2→Rd16		\leftrightarrow	\leftrightarrow	\leftrightarrow	Ι	1
	INC.L #1,ERd			2							ERd32+1→ERd32		\leftrightarrow	\leftrightarrow	\leftrightarrow		1
	INC.L #2,ERd			2							ERd32+2→ERd32		\leftrightarrow	\leftrightarrow	\leftrightarrow		1
DAA	DAA Rd	В		2							Rd8 decimal adjust→Rd8	*	↔	\leftrightarrow	*	\leftrightarrow	1
SUB	SUB.B Rs,Rd	В		2							Rd8-Rs8→Rd8	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	SUB.W #xx:16,Rd	≯	4								Rd16-#xx:16→Rd16	<u>의</u>	\$ [3]	\leftrightarrow	\leftrightarrow	\leftrightarrow	2

May 28, 2010

			Inst	Addressing Mode/ Instruction Length (Bytes)	dres	Addressing Mode/ ruction Length (By	gt Mo	de/ By	tes)								
		erand Size	2	иЯ	n93,t	ERn/@ERn+		JPC)	999		ပ	ono	litic	Condition Code	bo	Φ.	No. of States*1
	Mnemonic	dO	XX#	Bn ©E		- @	100 100		 മമ	Operation	_	Ξ	z	Ν	>	ပ	Advanced
SUB	SUB.W Rs,Rd	≥	1	2			\vdash	\vdash	\vdash	Rd16-Rs16→Rd16	\perp	[3]	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	F
	SUB.L #xx:32,ERd	_	9							ERd32-#xx:32→ERd32		4	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	8
	SUB.L ERs,ERd	_	(4	7						ERd32-ERs32→ERd32		4	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	F
SUBX	SUBX #xx:8,Rd	В	7							Rd8-#xx:8-C→Rd8		\leftrightarrow	\leftrightarrow	[2]	\leftrightarrow	\leftrightarrow	1
	SUBX Rs,Rd	В	N	2						Rd8-Rs8-C→Rd8		\leftrightarrow	\leftrightarrow	[2]	\leftrightarrow	\leftrightarrow	1
SUBS	SUBS #1,ERd	_	I.V	7						ERd32-1→ERd32				İ	İ		-
	SUBS #2,ERd	_	I V	7					_	ERd32-2→ERd32				İ	Ť		-
	SUBS #4,ERd	7	N	2						ERd32-4→ERd32				İ	Ť	П	1
DEC	DEC.B Rd	В	N	2						Rd8-1→Rd8		Ī	\leftrightarrow	\leftrightarrow	\leftrightarrow	П	1
	DEC.W #1,Rd	≥	1.V	2						Rd16-1→Rd16			\leftrightarrow	\leftrightarrow	\leftrightarrow		-
	DEC.W #2,Rd	≥	I.V	7						Rd16-2→Rd16			\leftrightarrow	\leftrightarrow	\leftrightarrow		-
	DEC.L #1,ERd	7	· · ·	2						ERd32-1→ERd32			\leftrightarrow	\leftrightarrow	\leftrightarrow		1
	DEC.L #2,ERd	Г	N	2						ERd32-2→ERd32		Ī	\leftrightarrow	\leftrightarrow	\leftrightarrow	П	1
DAS	DAS Rd	В	(1	2						Rd8 decimal adjust→Rd8		*	\leftrightarrow	\leftrightarrow	*	П	1
MULXU	MULXU.B Rs,Rd	В	(1	2						Rd8×Rs8→Rd16 (unsigned multiplication)				İ	Ť		12
	MULXU.W Rs,ERd	≥	(1	2						Rd16×Rs16→ERd32			Ī	İ	Ť	Т	20
										(unsigned multiplication)							
MULXS	MULXS.B Rs,Rd	В	4	4						Rd8×Rs8→Rd16 (signed multiplication)		Ī	\leftrightarrow	\leftrightarrow	Ť	П	13
	MULXS.W Rs,ERd	≥	4	4						Rd16×Rs16→ERd32			\leftrightarrow	\leftrightarrow	Ť		21
			-	\dashv			\dashv	\dashv	\dashv	(signed multiplication)							

			l su	A A	ddre	Addressing Mode/ Instruction Length (Bytes)	g Mc	By (By	tes)						
		erand Size			Rn hERn)	ERn/@ERn+	9	JPC)	ee@		Condition Code	Aitio	ů E	ope	No. of States*1
	Mnemonic		xx#	Вn		-@	@ 9			Operation	н –	z	Z	C >	Advanced
DIVXU	DIVXU.B Rs,Rd	В		7						Rd16÷Rs8→Rd16 (RdH: remainder,		[9]	E	\perp	12
										RdL: quotient) (unsigned division)					
	DIVXU.W Rs,ERd	≥		7						ERd32÷Rs16→ERd32 (Ed: remainder, –		[9]	[6]		20
										Rd: quotient) (unsigned division)					
DIVXS	divxs.B Rs,Rd	В	-	4						Rd16÷Rs8→Rd16 (RdH: remainder,		8	Ē	\perp	13
										RdL: quotient) (signed division)					
	DIVXS.W Rs, ERd	≥		4						ERd32÷Rs16→ERd32 (Ed: remainder,		[8][7]	E		21
										Rd: quotient) (signed division)					
CMP	CMP.B #xx:8,Rd	a	7							Rd8-#xx:8	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
	CMP.B Rs,Rd	Ф		2						Rd8-Rs8	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
	CMP.W #xx:16,Rd	≥	4							Rd16-#xx:16	[3]	\leftrightarrow	\leftrightarrow	\leftrightarrow	2
	CMP.W Rs,Rd	≥		7						Rd16-Rs16	[3]	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
	CMP.L #xx:32,ERd	_	9							ERd32-#xx:32	[4]	\leftrightarrow	\leftrightarrow	\leftrightarrow	3
	CMP.L ERS,ERd	٦		2						ERd32-ERs32	— [4]	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
NEG	NEG.B Rd	В		2						0-Rd8→Rd8	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
	NEG.W Rd	>		2						0-Rd16→Rd16	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	NEG.L ERd	٦		2						0-ERd32→ERd32	↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
EXTU	EXTU.W Rd	>		2						0→(<bit 15="" 8="" to=""> of Rd16)</bit>		0	\leftrightarrow	0	1
	EXTU.L ERd	_		7	\dashv	\Box		\dashv		0→(<bit 16="" 31="" to=""> of ERd32)</bit>	$\frac{\parallel}{\parallel}$	0	\leftrightarrow	0	1

		_	nstı	Add	Addressing Mode/ ruction Length (By	ing eng	Mod th (E	Addressing Mode/ Instruction Length (Bytes)	<u>@</u>						
		erand Size		Вп	(nA∃,t	EKn/@EKn+	l,PC)	999		3	Cond	ition	Condition Code	No. of States *1	tates*1
	Mnemonic		#xx	3®	@ (c		60 (03)		_	Operation	Ξ	Z	z v C	Advanced	ced
EXTS	EXTS.W Rd	≥	2			_				(<bit 7=""> of Rd16)→</bit>		\leftrightarrow	 0	-	
										(<bit 15="" 8="" to=""> of Rd16)</bit>					
	EXTS.L ERd	_	2							(<bit 15=""> of ERd32)→</bit>		\leftrightarrow	0 \$	_	
										(<bit 16="" 31="" to=""> of ERd32)</bit>					
TAS	TAS @ERd *3	В		4						@ERd-0→CCR set, (1)→		\leftrightarrow	0	4	
										(<bit 7=""> of @ERd)</bit>					
MAC	MAC @ERn+,@ERm+					4				@ERn×@ERm+MAC→MAC —	İ			4	
										(signed multiplication)		[10]	10] [10] [10]		
										ERn+2→ERn,ERm+2→ERm					
CLRMAC	CLRMAC	Ι							7	0→MACH,MACL	İ			2 [11]	_
LDMAC	LDMAC ERS, MACH		2							ERS→MACH —		\perp		2 [11]	1]
	LDMAC ERS, MACL	٦	2							ERs→MACL —	İ			- 2[11]	1]
STMAC	STMAC MACH, ERd	_	2							MACH→ERd —		\leftrightarrow	→	1 [11]	1]
	STMAC MACL,ERd	_	7			\dashv				MACL→ERd —		\leftrightarrow		1 [11]	[]

(3) Logical Instructions

			آق	stru A	Addressing Mode/ Instruction Length (Bytes)	ssii	ng N	Node h (E	e/	(s							
		erand Size			Rn R	hERn)	a ERn/@ERn+	(Daʻr	ee@			Con	ij	o e	Condition Code		No. of States*1
	Mnemonic	ďΟ	XX#	Вn			@9 @9	(e)	00	_	Operation	-	z	Z	>	ပ	Advanced
AND	AND.B #xx:8,Rd	В	2								Rd8∧#xx:8→Rd8		\leftrightarrow	\leftrightarrow	0		1
	AND.B Rs,Rd	Ω		7							Rd8∧Rs8→Rd8		\leftrightarrow	\leftrightarrow	0		-
	AND.W #xx:16,Rd	≥	4								Rd16∧#xx:16→Rd16		\leftrightarrow	\leftrightarrow	0		2
	AND.W Rs,Rd	≥		7							Rd16∧Rs16→Rd16		\leftrightarrow	\leftrightarrow	0		_
	AND.L #xx:32,ERd	_	9								ERd32∧#xx:32→ERd32		\leftrightarrow	\leftrightarrow	0		3
	AND.L ERS,ERd	_		4							ERd32∧ERs32→ERd32		\leftrightarrow	\leftrightarrow	0		2
OR	OR.B #xx:8,Rd	В	2								Rd8∨#xx:8→Rd8		\leftrightarrow	\leftrightarrow	0		1
	OR.B Rs,Rd	В		2							Rd8∨Rs8→Rd8		\leftrightarrow	\leftrightarrow	0		1
	OR.W #xx:16,Rd	×	4								Rd16√#xx:16→Rd16		\leftrightarrow	\leftrightarrow	0	_	2
	OR.W Rs,Rd	≥		7							Rd16∨Rs16→Rd16		\leftrightarrow	\leftrightarrow	0		_
	OR.L #xx:32,ERd	_	9								ERd32√#xx:32→ERd32		\leftrightarrow	\leftrightarrow	0		3
	OR.L ERs, ERd	_		4							ERd32∨ERs32→ERd32		\leftrightarrow	\leftrightarrow	0		2
XOR	XOR.B #xx:8,Rd	В	2								Rd8⊕#xx:8→Rd8		\leftrightarrow	\leftrightarrow	0		1
	XOR.B Rs,Rd	В		2							Rd8⊕Rs8→Rd8		\leftrightarrow	\leftrightarrow	0		1
	XOR.W #xx:16,Rd	>	4								Rd16⊕#xx:16→Rd16		\leftrightarrow	\leftrightarrow	0		2
	XOR.W Rs,Rd	>		2							Rd16⊕Rs16→Rd16		\leftrightarrow	\leftrightarrow	0		1
	XOR.L #xx:32,ERd	٦	9								ERd32⊕#xx:32→ERd32		\leftrightarrow	\leftrightarrow	0		3
	XOR.L ERs,ERd	L		4							ERd32⊕ERs32→ERd32		\leftrightarrow	\leftrightarrow	0		2
NOT	NOT.B Rd	В		2							¬ Rd8→Rd8		\leftrightarrow	\leftrightarrow	0	_	1
	NOT.W Rd	>		2							¬ Rd16→Rd16		\leftrightarrow	\leftrightarrow	0		1
	NOT.L ERd	٦		7							⊐ ERd32→ERd32		\leftrightarrow	\leftrightarrow	0		-

(4) Shift Instructions

			nsti	Addressing Mode/ Instruction Length (Bytes)	ress	sing Len(g g	de/ By	tes)									
		erand Size	,	иЯ	(nA3,t	ERn/@ERn+	9	JPC)	ee (0	buo	<u>ā</u>	ŭ	Condition Code	No. of States*1
	Mnemonic		#xx	∃@	((a		60 60)M			Operation	uo	_	I	z	7	ک >	Advanced
SHAL	SHAL.B Rd	В	2				\vdash								\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	SHAL.B #2,Rd	В	7							[-	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	SHAL.W Rd	>	2				\vdash		_	<u> </u>		0		1	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
	SHAL.W #2,Rd	8	2							O	MSB *	— LSB		Τ	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	SHAL.L ERd		2				\vdash		$\vdash \vdash$					Τ	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	SHAL.L #2,ERd		2												\leftrightarrow	\leftrightarrow	\leftrightarrow	1
SHAR	SHAR.B Rd	В	2											Π	\leftrightarrow	\leftrightarrow	↔ 0	1
	SHAR.B #2,Rd	В	2												\leftrightarrow	(♦ 0	1
	SHAR.W Rd	>	2									A			\leftrightarrow	\leftrightarrow	↔ 0	1
	SHAR.W #2,Rd	>	2				\vdash		\vdash	_	MSB	LSB C		Τ	\leftrightarrow	\leftrightarrow	↔ 0	1
	SHAR.L ERd		2												\leftrightarrow	\leftrightarrow	↔ 0	1
	SHAR.L #2,ERd	Г	2												\leftrightarrow	(♦ 0	1
SHLL	SHLL.B Rd	В	2											Τ	\leftrightarrow	\leftrightarrow	↔ 0	1
	SHLL.B #2,Rd	В	2				\vdash		\vdash					Τ	\leftrightarrow	\leftrightarrow	↔ 0	1
	SHLL.W Rd	>	7				\dashv		-	<u>*</u>					\leftrightarrow	\leftrightarrow	<> 0	1
	SHLL.W #2,Rd	>	7						-	O	MSB *	— LSB			\leftrightarrow	\leftrightarrow	<> 0	_
	SHLL.L ERd		2											Τ	\leftrightarrow	→	♦ 0	1
	SHLL.L #2,ERd	_	7	_			\dashv	\dashv	\dashv					Π	\leftrightarrow	\leftrightarrow	↔	_

		_=	nstr	Addressing Mode/ Instruction Length (Bytes)	ress on L	ing	₩ 1 1 1 1 1 1 1 1 1	B de	es)						
		erand Size			h,ERn)	ERn/@ERn+	(Ddʻi	66 (0.1,tr			Condition Code	ifion	ပိ	ge	No. of States*1
	Mnemonic	xx#	пЯ	@ E	(o)		1)(U) 12(D)		_	Operation	т -	z	7	O	Advanced
SHLR	SHLR.B Rd	В	7									0	o ↔	\leftrightarrow	1
	SHLR.B #2,Rd	В	2									0	0 \$	\leftrightarrow	1
	SHLR.W Rd	8	2							1		0	0 \$	\leftrightarrow	1
	SHLR.W #2,Rd	8	2							MSB — LSB C		0	0 \$	\leftrightarrow	1
	SHLR.L ERd		2									0	0 \$	\leftrightarrow	1
	SHLR.L #2,ERd	_	2									0	0 \$	\leftrightarrow	1
ROTXL	ROTXL.B Rd	В	2									\leftrightarrow	0 \$	\leftrightarrow	1
	ROTXL.B #2,Rd	В	2									\leftrightarrow	0 \$	\leftrightarrow	1
	ROTXL.W Rd	8	2									\leftrightarrow	0 \$	\leftrightarrow	1
	ROTXL.W #2,Rd	>	2							C MSB + LSB		\leftrightarrow	0 \$	\leftrightarrow	1
	ROTXL.L ERd	_	7									\leftrightarrow	o	\leftrightarrow	1
	ROTXL.L #2,ERd	_	2									\leftrightarrow	0 \$	\leftrightarrow	1
ROTXR	ROTXR.B Rd	В	2									\leftrightarrow	0 \$	\leftrightarrow	1
	ROTXR.B #2,Rd	В	2									\leftrightarrow	0	\leftrightarrow	1
	ROTXR.W Rd	>	7				-					\leftrightarrow	o	\leftrightarrow	1
	ROTXR.W #2,Rd	≥	7							MSB — SB C		\leftrightarrow	o ↔	\leftrightarrow	_
	ROTXR.L ERd	_	7									\leftrightarrow	o ↔	\leftrightarrow	_
	ROTXR.L #2,ERd	\exists	7		-	\dashv	\dashv	_				\leftrightarrow	o	\leftrightarrow	_

			Inst	Addressing Mode/ Instruction Length (Bytes)	lres	sing	Addressing Mode/ ruction Length (By	de/	tes)			
		erand Size		Rn	(n Я ∃'p	ERn/@ERn+		d,PC)	86@		Condition Code	No. of States*1
	Mnemonic		CX#	₩ 10E)@	-@	100 100 100		120	Operation	I H N Z V C	Advanced
ROTL	ROTL.B Rd	В	(1	2								l
	ROTL.B #2,Rd	В	2	01								1
	ROTL.W Rd	≥	N	2							↔ 0 ↔ ← ⊢ ⊢	1
	ROTL.W #2,Rd	>	(1	2						C MSB - LSB		1
	ROTL.L ERd	٦	N	2								l
	ROTL.L #2,ERd	_	2	01								1
ROTR	ROTR.B Rd	В	(1	2								1
	ROTR.B #2,Rd	В	2	0'								1
	ROTR.W Rd	8	N	2								l
	ROTR.W #2,Rd	>	(1	2						MSB TSB C		1
	ROTR.L ERd	_	(1	2								1
	ROTR.L #2,ERd		(4	2			\vdash	\vdash	$\vdash\vdash$		\$\display 0 \display	1

(5) Bit-Manipulation Instructions

			Inst	Add	Addressing Mode/ Instruction Length (Bytes)	ing eng	Mod Th (le/ Byte	<u>s</u>					
		erand Size		пЯ	(nЯ∃,b	ERn/@ERn+	()A(p	B 88			Con	dition	Condition Code	No. of States*1
	Mnemonic		κx#		@(-@	60 (03		_	Operation	-	z	z v c	Advanced
BSET	BSET #xx:3,Rd	В	2						Ŭ	(#xx:3 of Rd8)←1				1
	BSET #xx:3,@ERd	В		4						(#xx:3 of @ERd)←1				4
	BSET #xx:3,@aa:8	В				4				(#xx:3 of @aa:8)←1				4
	BSET #xx:3,@aa:16	В				9			_	(#xx:3 of @aa:16)←1				5
	BSET #xx:3,@aa:32	В				00				(#xx:3 of @aa:32)←1				9
	BSET Rn,Rd	В	2						_	(Rn8 of Rd8)←1				1
	BSET Rn,@ERd	В		4						(Rn8 of @ERd)←1				4
	BSET Rn,@aa:8	В				4				(Rn8 of @aa:8)←1				4
	BSET Rn,@aa:16	В				9			_	(Rn8 of @aa:16)←1				5
	BSET Rn,@aa:32	В				∞			_	(Rn8 of @aa:32)←1				9
BCLR	BCLR #xx:3,Rd	В	2						_	(#xx:3 of Rd8)←0				1
	BCLR #xx:3,@ERd	В		4		\dashv				(#xx:3 of @ERd)←0				4
	BCLR #xx:3,@aa:8	В				4			_	(#xx:3 of @aa:8)←0				4
	BCLR #xx:3,@aa:16	В				9				(#xx:3 of @aa:16)←0				5
	BCLR #xx:3,@aa:32	В				∞				(#xx:3 of @aa:32)←0				9
	BCLR Rn,Rd	В	2						_	(Rn8 of Rd8)←0				1
	BCLR Rn,@ERd	В		4					_	(Rn8 of @ERd)←0				4
	BCLR Rn,@aa:8	В				4	_		_	(Rn8 of @aa:8)←0				4
	BCLR Rn,@aa:16	В				9	_		$\overline{}$	(Rn8 of @aa:16)←0				5

			nstr	Addressing Mode/ Instruction Length (Bytes)	essi on L	ng N	lode h (Bj	/ ytes			
		eziS bns1		Кп	I,ERn)	BRn/@ERn+	()PC)	86(Cond	Condition Code	No. of States ^{*1}
	Mnemonic		#xx#	3 @		@ss	o)@	00	Operation I H	N Z V C	Advanced
BCLR	BCLR Rn,@aa:32	В				8			(Rn8 of @aa:32)←0 ———		9
BNOT	BNOT #xx:3,Rd	В	7						(#xx:3 of Rd8)←[¬ (#xx:3 of Rd8)] — —		_
	BNOT #xx:3,@ERd	В		4					(#xx:3 of @ERd)←		4
									[¬ (#xx:3 of @ERd)]		
	BNOT #xx:3,@aa:8	Ф				4			(#xx:3 of @aa:8)←		4
									[¬ (#xx:3 of @aa:8)]		
	BNOT #xx:3,@aa:16	Ф				9			(#xx:3 of @aa:16)←		5
									[¬ (#xx:3 of @aa:16)]		
	BNOT #xx:3,@aa:32	В				∞			(#xx:3 of @aa:32)← ———		9
									[¬ (#xx:3 of @aa:32)]		
	BNOT Rn,Rd	В	2						(Rn8 of Rd8)←[¬ (Rn8 of Rd8)] ———		1
	BNOT Rn,@ERd	В		4					(Rn8 of @ERd) ←[¬ (Rn8 of @ERd)] ———		4
	BNOT Rn,@aa:8	В				4			(Rn8 of @aa:8)←[¬ (Rn8 of @aa:8)] —		4
	BNOT Rn,@aa:16	Ф				9			(Rn8 of @aa:16)← ——		5
									[¬ (Rn8 of @aa:16)]		
	BNOT Rn,@aa:32	В				∞			(Rn8 of @aa:32)← ——		9
									[¬ (Rn8 of @aa:32)]		
BTST	BTST #xx:3,Rd	В	7						¬ (#xx:3 of Rd8)→Z	 ↔	1
	BTST #xx:3,@ERd	Ф		4					(#xx:3 of @ERd)→Z	 -	3
	BTST #xx:3,@aa:8	В				4			¬ (#xx:3 of @aa:8)→Z	 ↔	3
	BTST #xx:3,@aa:16	В				9			¬ (#xx:3 of @aa:16)→Z		4

		-	ıstr	Addressing Mode/ Instruction Length (Bytes)	essii	ng N	lode B. (B.	ytes)							
		erand Size		Вn	hERn)	a ERn/@ERn+	(Jaʻr	ee		0	Sono	litio	Condition Code	e q	No. of States*1
	Mnemonic	dO xx#	пЯ	∃@		_@ @9	((c	00	Operation	_	I	z	Z	ပ	Advanced
BTST	BTST #xx:3,@aa:32	В				8			¬ (#xx:3 of @aa:32)→Z				 ↔		5
	BTST Rn,Rd	В	2						¬ (Rn8 of Rd8)→Z		I		→		1
	BTST Rn,@ERd	В		4					¬ (Rn8 of @ERd)→Z				 ↔		3
	BTST Rn,@aa:8	В				4			¬ (Rn8 of @aa:8)→Z				 ↔		3
	BTST Rn,@aa:16	В				9			¬ (Rn8 of @aa:16)→Z		I		 ↔		4
	BTST Rn,@aa:32	В				8			¬ (Rn8 of @aa:32)→Z				 ↔		5
BLD	BLD #xx:3,Rd	В	2						(#xx:3 of Rd8)→C		\Box			\leftrightarrow	1
	BLD #xx:3,@ERd	В		4					(#xx:3 of @ERd)→C					\leftrightarrow	3
	BLD #xx:3,@aa:8	В				4			(#xx:3 of @aa:8)→C				\Box	\leftrightarrow	3
	BLD #xx:3,@aa:16	В				9			(#xx:3 of @aa:16)→C					\leftrightarrow	4
	BLD #xx:3,@aa:32	В				∞			(#xx:3 of @aa:32)→C					\leftrightarrow	5
BILD	BILD #xx:3,Rd	В	2						¬ (#xx:3 of Rd8)→C					\leftrightarrow	1
	BILD #xx:3,@ERd	В		4					¬ (#xx:3 of @ERd)→C					\leftrightarrow	3
	BILD #xx:3,@aa:8	В				4			_ (#xx:3 of @aa:8)→C		\perp		$\frac{\perp}{\parallel}$	\leftrightarrow	3
	BILD #xx:3,@aa:16	В				9			¬ (#xx:3 of @aa:16)→C		\perp		$\frac{\perp}{\parallel}$	\leftrightarrow	4
	BILD #xx:3,@aa:32	В				∞		\dashv	¬ (#xx:3 of @aa:32)→C		I		$\frac{\parallel}{\parallel}$	\leftrightarrow	5
BST	BST #xx:3,Rd	В	2						C→(#xx:3 of Rd8)		\Box				1
	BST #xx:3,@ERd	В		4					C→(#xx:3 of @ERd24)		\Box		$\frac{\perp}{\parallel}$		4
	BST #xx:3,@aa:8	В				4			C→(#xx:3 of @aa:8)						4

		=	nstr	Addressing Mode/ Instruction Length (Bytes)	ress on L	ing eng	Mo fi	Byte	(Sé				
	·	erand Size x		ERn	(d,ERn)	ERn/@ERn+	(P)	©99			Conditi	Condition Code	No. of States *1
	Mnemonic	dO	nЯ	\rightarrow	@	@	@ @		\equiv	Operation	z I –	Z V C	Advanced
BST	BST #xx:3,@aa:16	В				_	9			C→(#xx:3 of @aa:16)			- 2
	BST #xx:3,@aa:32	В				~	8			C→(#xx:3 of @aa:32)			9
BIST	BIST #xx:3,Rd	В	2							¬ C→(#xx:3 of Rd8)			1
	BIST #xx:3,@ERd	В		4						¬ C→(#xx:3 of @ERd24)			4
	BIST #xx:3,@aa:8	В				7	4			¬ C→(#xx:3 of @aa:8)		<u> </u>	4
	BIST #xx:3,@aa:16	В				-	9			¬ C→(#xx:3 of @aa:16)			- 2
	BIST #xx:3,@aa:32	В				~	8			¬ C→(#xx:3 of @aa:32)			9
BAND	BAND #xx:3,Rd	В	2							C∧(#xx:3 of Rd8)→C		↔	1
	BAND #xx:3,@ERd	В		4			_			C∧(#xx:3 of @ERd24)→C		↔	3
	BAND #xx:3,@aa:8	В				7	4			C∧(#xx:3 of @aa:8)→C		↔	3
	BAND #xx:3,@aa:16	В				-	9			C∧(#xx:3 of @aa:16)→C		↔	4
	BAND #xx:3,@aa:32	В				~	8			C∧(#xx:3 of @aa:32)→C		↔	5
BIAND	BIAND #xx:3,Rd	В	2				\vdash			C∧[¬ (#xx:3 of Rd8)]→C		<u></u>	. 1
	BIAND #xx:3,@ERd	В		4			-			C∧[¬ (#xx:3 of @ERd24)]→C		↔	8
	BIAND #xx:3,@aa:8	В				,	4			C∧[¬ (#xx:3 of @aa:8)]→C		 	B
	BIAND #xx:3,@aa:16	В				-	9			C∧[¬ (#xx:3 of @aa:16)]→C		↔	4
	BIAND #xx:3,@aa:32	В				~	8			C∧[¬ (#xx:3 of @aa:32)]→C		↔	5
BOR	BOR #xx:3,Rd	В	7				_			C√(#xx:3 of Rd8)→C		←	-
	BOR #xx:3,@ERd	В		4			\dashv			C√(#xx:3 of @ERd24)→C		↔	3

Page 1076 of 1458

		=	nstr	Addı	Addressing Mode/ Instruction Length (Bytes)	ing	Mod th (E	3yte	ŝ					
	Mamonic	Perand Size	uչ	©EKn	@(d,ERn)		(a,PC)	00039		Oneration	Condi	ition v	Condition Code	No. of States *1
BOR	@aa:8		_	_					Ī	C∨(#xx:3 of @aa:8)→C	+ :	++	Ţ	\perp
	(0	В				9	15			C∨(#xx:3 of @aa:16)→C	İ		↔	4
		В				00				C∨(#xx:3 of @aa:32)→C		$\frac{1}{1}$	↔	2
BIOR	BIOR #xx:3,Rd	B	7							C∨[¬ (#xx:3 of Rd8)]→C			↔	_
	BIOR #xx:3,@ERd	<u> </u>		4						C√[¬ (#xx:3 of @ERd24)]→C	İ		↔	3
	BIOR #xx:3,@aa:8	В				4				C∨[¬ (#xx:3 of @aa:8)]→C			↔	3
	BIOR #xx:3,@aa:16	В				9				C∨[¬ (#xx:3 of @aa:16)]→C	İ		↔	4
	BIOR #xx:3,@aa:32	В				∞				C√[¬ (#xx:3 of @aa:32)]→C	İ		↔	2
BXOR	BXOR #xx:3,Rd	В	2							C⊕(#xx:3 of Rd8)→C			<>	_
	BXOR #xx:3,@ERd	В		4						C⊕(#xx:3 of @ERd24)→C	İ		<>	3
	BXOR #xx:3,@aa:8	В				4				C⊕(#xx:3 of @aa:8)→C			↔	3
	BXOR #xx:3,@aa:16	В				9				C⊕(#xx:3 of @aa:16)→C	İ		↔	4
	BXOR #xx:3,@aa:32	<u> </u>				∞				C⊕(#xx:3 of @aa:32)→C	İ		↔	5
BIXOR	BIXOR #xx:3,Rd	В	2							C⊕[¬ (#xx:3 of Rd8)]→C			↔	_
	BIXOR #xx:3,@ERd	В		4						C⊕[¬ (#xx:3 of @ERd24)]→C			↔	3
	BIXOR #xx:3,@aa:8	В				4				C⊕[¬ (#xx:3 of @aa:8)]→C	İ		↔	ဇ
	BIXOR #xx:3,@aa:16	В				9				C⊕[¬ (#xx:3 of @aa:16)]→C			↔	4
	BIXOR #xx:3,@aa:32	В				8				C⊕[¬ (#xx:3 of @aa:32)]→C		\Box	↔	5

(6) Branch Instructions

		Inst	Addressing Mode/ Instruction Length (Bytes)	ress on L	ing	Moc th	le/ Byte	(\$								
	əzi& bn		ı	(u <u>Ŋ</u>	+u\3@\n	(O			Operation		<u></u>	Condition Code	ion	Cod	Φ	No. of States*1
Mnemonic	Opera	xx#	©EКu Ku	∃,b)@		@ggg (q,p)	.(z)@			Branching Condition	_	I	N Z	>	ပ	Advanced
BRA d:8(BT d:8)	Т					2			if condition is true then	Always	Π			Ţ		2
BRA d:16(BT d:16)						4			PC←PC+d							8
BRN d:8(BF d:8)						2			else next;	Never	Τ		$\frac{\parallel}{\parallel}$	Ţ		2
BRN d:16(BF d:16)						4					Π		1	I	-	3
BHI d:8						2				C~Z=0	Τ		1	Ţ	-	2
BHI d:16						4					Π		1	Ţ		3
BLS d:8						2				C∨Z=1	Τ		$\frac{ }{ }$	Ţ		2
BLS d:16						4					Τ		<u> </u>	\Box		3
BCC d:B(BHS d:8)						2				C=0	Τ		1		-	2
BCC d:16(BHS d:16)						4					Τ		1	Ţ	-	3
BCS d:8(BLO d:8)						2				C=1	Τ		<u> </u>	Ţ		2
BCS d:16(BLO d:16)						4					Τ		<u> </u>	\Box		3
BNE d:8						2				Z=0	Ι		1		-	2
BNE d:16						4					Τ		1	Ţ	-	3
BEQ d:8						7				Z=1	П			Ц		2
BEQ d:16						4						1				3
BVC d:8						7				N=0						2
BVC d:16						4							<u> </u>			ო

			nsti	Add	res	sing Len	Addressing Mode/ ruction Length (By	Addressing Mode/ Instruction Length (Bytes)	es)								
		əzi8 bri		·	(u)	+nA3@\n	(3)			Operation		Ö	ndit	ion	Condition Code	Ф	No. of States*1
	Mnemonic		HXX	@EBn	∃,b)@	@_ER	@99 @99	q,b) <u>ത</u> ടെത്ര <u>ത</u>	_		Branching Condition	=	I	N	>	ပ	Advanced
Bcc	BVS d:8						<u> </u>	2		if condition is true then V=1	V=1	\vdash		\vdash	İ	П	2
	BVS d:16						7	4		PC←PC+d		\vdash		\perp	İ	П	3
	BPL d:8	\vdash						2		else next;	0=N	\vdash		\perp	İ		2
	BPL d:16						-	4				H		\vdash	İ	П	ဇ
	BMI d:8	Τ						2			N=1	$^{\perp}$	<u> </u>		İ	Т	2
	BMI d:16						7	4			-				İ	Т	3
	BGE d:8	\Box					- 1	2			N⊕V=0				İ		2
	BGE d:16						-	4				\vdash		\perp	İ		ဇ
	BLT d:8	Т					- 1	2			N⊕V=1	+	 		İ		2
	BLT d:16	Т					7	4			-				İ	Т	3
	BGT d:8	\Box					- 1	2			Z~(N⊕V)=0				İ		2
	BGT d:16	\top					7	4							İ		3
	BLE d:8	Т					- 1	2			Z~(N⊕V)=1	+			İ	1	2
	BLE d:16	\dashv						4							İ		3

			nstr	Addr	Addressing Mode/ Instruction Length (Bytes)	ng N engti	lode 1 (Β)	ytes						
		perand Size	u xx	ERn	(d,ERn))⊐ERn/@ERn+)⊐ERn/@ERn+	(a,PC)	90099		:	§်	Zition (e o	No. of States*1
	Mnemonic		ъ,щ В	0		@ @	®	0	\dashv	Operation		N N H	ပ >	Advanced
JMP	JMP @ERn	П		2					-	PC←ERn				2
	JMP @aa:24	1				4				PC←aa:24				3
	JMP @@aa:8	$\overline{}$						2		PC←@aa:8				5
BSR	BSR d:8	Т					2			PC→@-SP,PC←PC+d:8				4
	BSR d:16	П					4			PC→@-SP,PC←PC+d:16				5
JSR	JSR @ERn			2						PC→@-SP,PC←ERn				4
	JSR @aa:24					4			_	PC→@-SP,PC←aa:24				5
	JSR @@aa:8	Т						7		PC→@-SP,PC←@aa:8				9
RTS	RTS	Т							2 F	PC←@SP+				5

(7) System Control Instructions

			<u>ü</u>	A DI	Addressing Mode/ Instruction Length (Bytes)	ssi n L	ng N	lode h (B	yte	(s								
		erand Size				1,ERn)	a ERn/@ERn+	(Jati	999				Condition Code	Ę.	on (р О	Φ	No. of States *1
	Mnemonic	odO	xx#	Вn	9E		@99	_		=	Operation	_	エ	z	N	>	ပ	Advanced
TRAPA	TRAPA #xx:2										PC→@-SP,CCR→@-SP,	_		Ш				[6] 8
											EXR→@-SP, <vector>→PC</vector>							
RTE	RTE										EXR←@SP+,CCR←@SP+,	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	[6] 9
											PC←@SP+							
SLEEP	SLEEP										Transition to power-down state		1				Т	2
LDC	LDC #xx:8,CCR	В	2								#xx:8→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	LDC #xx:8,EXR	В	4								#xx:8→EXR		1				T	2
	LDC Rs,CCR	В		7							Rs8→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
	LDC Rs,EXR	В		7			_				Rs8→EXR		+	Щ			Т	1
	LDC @ERs, CCR	≥			4		_				@ERs→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	3
	LDC @ERs, EXR	>			4						@ERs→EXR						T	3
	LDC @(d:16,ERs),CCR	≯				9					@(d:16,ERs)→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	4
	LDC @(d:16,ERs),EXR	>				9					@(d:16,ERs)→EXR						1	4
	LDC @(d:32,ERs),CCR	>				10					@(d:32,ERs)→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	9
	LDC @(d:32,ERs),EXR	≥			_	10					@(d:32,ERs)→EXR	-	1	1			Τ	9
	LDC @ERs+,CCR	>				7	4				@ERs→CCR,ERs32+2→ERs32	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	4
	LDC @ERs+,EXR	>				7	4				@ERs→EXR,ERs32+2→ERs32		\perp				Т	4
	LDC @aa:16,CCR	≥					9				@aa:16→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	4
	LDC @aa:16,EXR	W					9				@aa:16→EXR	-						4
	LDC @aa:32,CCR	≥					∞				@aa:32→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	5
	LDC @aa:32,EXR	≥					∞				@aa:32→EXR		<u> </u>	\perp				2

			lus	Truc	ddre	ssii	Addressing Mode/ Instruction Length (Bytes)	lode h (B	e/	s)								
		erand Size				1,ERn)	a ERn/@ERn+	(Jati	999			ŭ	jpuc	Ē	ŭ	Condition Code		No. of States*1
	Mnemonic		xx#	Вn	J@		@99			_	Operation	_	I	z	Z	>	ပ	Advanced
STC	STC CCR,Rd	В		7		_					CCR→Rd8		Ιİ	ΙĖ	H	\vdash		_
	STC EXR,Rd	В		7							EXR→Rd8		İ	Ϊ́Τ		\vdash		_
	STC CCR,@ERd	>		_	4						CCR→@ERd		Ħ	Ħ	H	\vdash		3
	STC EXR,@ERd	>		-	4						EXR→@ERd		İ	İ		$\frac{1}{1}$	I	8
	STC CCR,@(d:16,ERd)	>			٤	9					CCR→@(d:16,ERd)		Ħ	Ħ	\dagger	\dashv		4
	STC EXR,@(d:16,ERd)	>			٤	9					EXR→@(d:16,ERd)		İ	Τ		$\frac{1}{1}$	I	4
	STC CCR,@(d:32,ERd)	>			<u></u>	10					CCR→@(d:32,ERd)		İ	Ħ				9
	STC EXR,@(d:32,ERd)	>			<u></u>	10					EXR→@(d:32,ERd)		İ	Ť	+			9
	STC CCR,@-ERd	>				4					ERd32-2→ERd32,CCR→@ERd		İ	Ť	\dagger	$^{\perp}$		4
	STC EXR,@-ERd	≥				4					ERd32-2→ERd32,EXR→@ERd		Ħ	Ħ	\dagger	$^{+}$	\dashv	4
	STC CCR,@aa:16	>					9				CCR→@aa:16		İ	Ħ				4
	STC EXR,@aa:16	>					9				EXR→@aa:16		İ	Ť	+			4
	STC CCR,@aa:32	>					8				CCR→@aa:32		İ	Ť		\perp		5
	STC EXR,@aa:32	≥					∞				EXR <i>→@</i> aa:32		Ħ	Ħ	\dagger	$^+$	-	5
ANDC	ANDC #xx:8,CCR	В	7		\dashv						CCR\\#xx:8→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
	ANDC #xx:8,EXR	В	4								EXR√#xx:8→EXR		İ	Ť				2
ORC	ORC #xx:8,CCR	В	7								CCR√#xx:8→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
	ORC #xx:8,EXR	В	4								EXR∨#xx:8→EXR		İ	İ		1		2
XORC	XORC #xx:8,CCR	В	7	\dashv							CCR⊕#xx:8→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	_
	XORC #xx:8,EXR	В	4	\dashv	\dashv						EXR⊕#xx:8→EXR		Ħ	Ħ	\dagger	\dashv	\dashv	2
NOP	NOP		\dashv	\dashv	\dashv	\dashv	_			7	PC←PC+2		Ħ	\dagger	\dagger	+	\dashv	_

(8) Block Transfer Instructions

		=	Addressing Mode/ Instruction Length (Bytes)	ddre	essii on Le	Addressing Mode/ ruction Length (Byt	ode⁄ η (By	res)			
	Mnemonic	Operand Size #xx	Rn	@ERn	@(d,ERn) @_ERn/@ERn+	@99 @_EKU\@EKU\	(Jq,b)@	66@@ —	Operation	Condition Code	No. of States*1
EEPMOV	EEPMOV.B EEPMOV.W							4 4	# # # # # # # # # # # # # # # # # # #		- 4+2n *2

The number of states is the number of states required for execution when the instruction and its operands are located in on-chip memory. Notes:

- Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction. n is the initial value of R4L or R4
- Seven states for saving or restoring two registers, nine states for three registers, or eleven states for four registers. Only register ER0 to ER6 should be used when using the STM/LDM instruction.
 - Cannot be used in this LSI.
 - Set to 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.
- Set to 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.
- Retains its previous value when the result is zero; otherwise cleared to 0. Set to 1 when the divisor is negative; otherwise cleared to 0.
 - Set to 1 when the divisor is zero; otherwise cleared to 0.
- One additional state is required for execution when EXR is valid. Set to 1 when the quotient is negative; otherwise cleared to 0.
- 10]MAC instruction results are indicated in the flags when the STMAC instruction is executed.
- MAC instruction. For example, if there is a one-state instruction (such as NOP) between a MAC instruction and one of these instructions, (11) A maximum of three additional states are required for execution of one of these instructions within three states after execution of a that instruction will be two states longer.

A.2 Instruction Codes

Table A-2 shows the instruction codes.

Table A-2 Instruction Codes

Instruc-	Managaric	ä						Instruction Format	n Format				
tion		Size	1st byte	yte	2nd byte	3rd byte	e 4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
ADD	ADD.B #xx:8,Rd	ш	ω	Б	MMI								
	ADD.B Rs,Rd	ш	0	80	rs								
	ADD.W #xx:16,Rd	≥	7	6	- 5		MM						
	ADD.W Rs,Rd	≥	0	6	rs D								
	ADD.L #xx:32,ERd	_	7	∢	1 0 erd	75	2	IMM					
	ADD.L ERS,ERd	_	0	4	1 ers 0 erd	-							
ADDS	ADDS #1,ERd	_	0	В	0 0 erd	-							
	ADDS #2,ERd	_	0	В	8 0 erd	-							
	ADDS #4,ERd	_	0	В	9 0 erd	-							
ADDX	ADDX #xx:8,Rd	В	6	rd	MMI								
	ADDX Rs,Rd	В	0	ш	rs								
AND	AND.B #xx:8,Rd	В	Ш	Þ	IMM								
	AND.B Rs,Rd	В	-	9	rs L								
	AND.W #xx:16,Rd	≥	7	6	9		IMM						
	AND.W Rs,Rd	8	9	9	rs rd								
	AND.L #xx:32,ERd	_	7	4	6 0 erd	-	N	IMM					
	AND.L ERS,ERd	_	0	1	F 0	9	6 0 ers 0 erd						
ANDC	ANDC #xx:8,CCR	В	0	9	IMM								
	ANDC #xx:8,EXR	В	0	1	4 1	0	6 IMM						
BAND	BAND #xx:3,Rd	В	7	9	0 IMM rd								
	BAND #xx:3,@ERd	В	7	ပ	0 erd 0	7 (6 0 IMM 0						
	BAND #xx:3,@aa:8	В	7	ш	abs	2	0 MMI 0 9						
	BAND #xx:3,@aa:16	В	9	А	1 0		abs	9 /	0 MMI 0				
	BAND #xx:3,@aa:32	В	9	Α	3 0		g	abs		7 6	0 IMM 0		
Bcc	BRA d:8 (BT d:8)	1	4	0	disp								
	BRA d:16 (BT d:16)		2	8	0 0		disp						
	BRN d:8 (BF d:8)	1	4	-	disp								
	BRN d:16 (BF d:16)	1	2	8	1 0		dsip						

Instruc-								Instruction	Instruction Format				
tion		Size	1st byte	yte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
Bcc	BHI d:8		4	2	dsib								
	BHI d:16	1	2	80	2 0	dsib	Q.						
	BLS d:8	Ι	4	3	disp								
	BLS d:16		2	8	3 0	disp	d						
	BCC d:8 (BHS d:8)		4	4	disp								
	BCC d:16 (BHS d:16)		2	80	4 0	dsib	C.						
	BCS d:8 (BLO d:8)		4	2	disp								
	BCS d:16 (BLO d:16)		2	8	5 0	dsip	d						
	BNE d:8		4	9	disp								
	BNE d:16		2	8	0 9	disp	Q						
	BEQ d:8		4	7	disp								
	BEQ d:16		2	8	0 2	dsip	d						
	BVC d:8		4	8	disp								
	BVC d:16		2	8	8 0	dsip	d						
	BVS d:8		4	6	disp								
	BVS d:16		2	8	0 6	disp	d						
	BPL d:8		4	4	disp								
	BPL d:16		2	8	A 0	disp	d						
	BMI d:8		4	В	disp								
	BMI d:16		2	8	B 0	disp	Q						
	BGE d:8		4	O	disp								
	BGE d:16		2	80	0 0	disb	Q.						
	BLT d:8		4	O	disp								
	BLT d:16		2	8	0 O	disp	d						
	BGT d:8		4	ш	disp								
	BGT d:16		2	8	Е 0	disp	d						
	BLE d:8	1	4	ш	disp								
	BLE d:16		2	8	0	disb	a						

Single S	Instruc-	Mpemonic							Instruction	Instruction Format				
BCLR #xx.3, Geratic B 7 2 0 0 0 0 0 0 0 0 0	tion		Size	1st b	yte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
BCLR #xxx3.@aax9 B 7 F abs 7 2 0iMM 0 A 1 B A 1 B A 1 B A 1 B A 1 B A 1 B A 1 B A 1 B A 1 B A 1 B A	BCLR	BCLR #xx:3,Rd	В	7										
BCLR #xx.3.@aa:9 B 7 F abs 7 2 0iMM 0 A 1 B A 1 B A 1 B A 1 B A 1 B A 1 B A 1 B A 1 B A A B B C A A B B C A			В	7										
BCLR #xx.3.@aa:16 B 6 A 3 8 A 4		BCLR #xx:3,@aa:8	В	7	ш	abs								
BCLR Rn, Rcd		BCLR #xx:3,@aa:16	В	9	4			squ						
BCLR Rn,Rd B 6 2 m rd m rd m rd m rd m rd m rd m rd m rd m rd m rd m rd m rd m rd m rd m rd		BCLR #xx:3,@aa:32	В	9	⋖			at	SC					
BCLR Rh,@ea:8 B 7 F abs 6 2 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m m 0 m 0 m m 0 m		BCLR Rn,Rd	В	9	2									
BCLR Rn,@aa;8 B 7 F abs 6 2 m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m 0 m m		BCLR Rn,@ERd	В	7										
BCLR Rn,@aa:16 B A 1 8 abs 6 2 m 0 A BCLR Rn,@aa:32 B 6 A 3 8 A 1 A 3 8 A		BCLR Rn,@aa:8	В	7	ш	abs								
BIAND #xx:3,Rd			В	9	4			squ						
BIAND #xx:3,@aa:36		BCLR Rn,@aa:32	В	9	Α			ak	SC					
BIAND #xx:3,@aa:16 B	BIAND	BIAND #xx:3,Rd	В	7										
BIAND #xx:3,@aa:16 B 6 A 1 0 abs 7 6 1 1 1 1 1 1 1 1 1		BIAND #xx:3,@ERd	В	7										
BIAND #xx:3.@aa:16 B 6 A 1 0 A 1		BIAND #xx:3,@aa:8	В	7	ш	abs								
BILD #xx.3.@aa:32 B 6 A 3 0 A 1		BIAND #xx:3,@aa:16	В	9	Α		٥	squ						
BILD #xx3,@ERd		BIAND #xx:3,@aa:32	В	9	A			ak	38					
BILD #xx.3.@ERd B 7 C 0 rd 7 7 1MM 0 A 1 A	BILD	BILD #xx:3,Rd	В	7										
BILD #xx.3,@aa:8 B 7 E abs 7 7 1 MM 0 abs 7 7 1 MM 0 abs 7 7 1 MM 0 Abs		BILD #xx:3,@ERd	В	7										
BILD #xxx3,@aa:16 B 6 A 1 0 abs 7 7 7 1 MM 0 7 1 MM 0 7 1 MM 0 7 1 MM 0 7 1 MM 0 7 1 MM 0 7 1 MM 0 7 1 MM 0 7 1 MM 0 7 1 MM 0 1 MM		BILD #xx:3,@aa:8	В	7	ш	aps								
BILD #xxx3,@aa:32 B 6 A 3 0 abs 7 7 1 iMM BIOR #xx3,@aa:8 B 7 4 1 iMM rd <td< td=""><td></td><td>BILD #xx:3,@aa:16</td><td>В</td><td>9</td><td>∢</td><td></td><td>٠٠</td><td>squ</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		BILD #xx:3,@aa:16	В	9	∢		٠٠	squ						
BIOR #xx.3,@ERd B 7 4 1 iMM rd 4 1 iMM 0 7 4 1 iMM 0 7 4 1 iMM 0 7 4 1 iMM 0 7 4 1 iMM 0 7 4 1 iMM 0 7 4 1 iMM 0 7 4 1 iMM 0 7 4 1 iMM 0 7 4 1 iMM 0 7 4 1 iMM 0 7 4 1 iMM 0 7 4 1 iMM 0 7 4 1 iMM 0 7 4 1 iMM 0 1 0		BILD #xx:3,@aa:32	В	9	A			ak	38					
B 7 C 0 erd 0 7 4 1 iMM 0 1 4 1 iMM 0 1 1 0 1 0 1 0 1 0 <	BIOR	BIOR #xx:3,Rd	В	7										
B 7 E abs 7 4 1 iMM 0 abs 7 4 1 iMM 0 B 6 A 3 0 abs 7 4 1 iMM 0 7 4 1 iMM		BIOR #xx:3,@ERd	В	7										
B 6 A 1 0 abs 7 4 1 1 MM 0 B 6 A 3 0 abs 7 4 1 1 1 MM 7 1 1 MM		BIOR #xx:3,@aa:8	В	7	ш	abs								
B 6 A 3 0 abs 7 4 1 IMM		BIOR #xx:3,@aa:16	В	9	Α		٥	squ						
		BIOR #xx:3,@aa:32	В	9	4			ak	38		4			

Instruc-	Magazic	į							Instruc	Instruction Format				
tion		Size	1st byte	yte	2nd byte	yte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
BIST	BIST #xx:3,Rd	В	9	7	1 IMM	2								
	BIST #xx:3,@ERd	В	7	٥	0 erd	0	6 7	1 IMM 0						
	BIST #xx:3,@aa:8	В	7	ш	abs	s	2 9	1 IMM 0						
	BIST #xx:3,@aa:16	В	9	∢	·	80	a	abs	2 9	1 IMM 0				
	BIST #xx:3,@aa:32	В	9	∢	က	80		ซิ	abs		2 9	1 IMM 0		
BIXOR	BIXOR #xx:3,Rd	В	7	2	1 IMM	p								
	BIXOR #xx:3,@ERd	В	7	O	0 erd	0	7 5	1 IMM 0						
	BIXOR #xx:3,@aa:8	В	7	ш	abs	s	7 5	1 IMM 0						
	BIXOR #xx:3,@aa:16	В	9	⋖	Ψ	0	ä	abs	7 5	1 IMM 0				
	BIXOR #xx:3,@aa:32	В	9	٨	3	0		ä	abs		7 5	1 IMM 0		
BLD	BLD #xx:3,Rd	В	7	7	MMI 0	p								
	BLD #xx:3,@ERd	В	7	O	0 erd	0	7 7	0 MMI 0						
	BLD #xx:3,@aa:8	В	7	ш	abs	s	7 7	0 MMI 0						
	BLD #xx:3,@aa:16	В	9	A	1	0	al	abs	2 2	0 MMI 0				
	BLD #xx:3,@aa:32	В	9	A	3	0		ä	abs		7 7	0 IMM 0		
BNOT	BNOT #xx:3,Rd	В	7	1	о імм	p								
	BNOT #xx:3,@ERd	В	7	Ω	0 erd	0	7 1	0 MMI 0						
	BNOT #xx:3,@aa:8	В	7	ш	abs	s	7 1	0 MMI 0						
	BNOT #xx:3,@aa:16	В	9	A	1	8	al	abs	1 2	0 MMI 0				
	BNOT #xx:3,@aa:32	В	9	4	3	8		ซิ	abs		7 1	0 MMI 0		
	BNOT Rn,Rd	В	9	1	E	ъ								
	BNOT Rn,@ERd	В	7	٥	0 erd	0	6 1	rn 0						
	BNOT Rn,@aa:8	В	7	ш	abs	S	6 1	o L						
	BNOT Rn,@aa:16	В	9	A		8	al	abs	6 1	0 m				
	BNOT Rn,@aa:32	В	9	4	3	8		ู้ ช	abs		6 1	rn 0		

Instruc-	Mnemonic	į								Instru	ction	Instruction Format				
tion		Size	1st byte	yte	2nd byte		3rd byte	4th byte	byte	5th byte	9	6th byte	7th byte	8th byte	9th byte	10th byte
BOR	BOR #xx:3,Rd	В	7	4	0 IMM rd	70										
	BOR #xx:3,@ERd	В	7	С	0 erd 0		7 4	0 IMM	0							
	BOR #xx:3,@aa:8	В	7	Ш	abs		7 4	0 IMM	0							
	BOR #xx:3,@aa:16	В	9	Α	1 0	0		abs		, , ,	4 0	0 MMI 0				
	BOR #xx:3,@aa:32	В	9	Α	3 0	0			aţ	abs			7 4	0 IMM 0		
BSET	BSET #xx:3,Rd	В	7	0	0 IMM rd	-										
	BSET #xx:3,@ERd	В	7	D	0 erd 0		0 /	0 IMM	0							
	BSET #xx:3,@aa:8	В	7	ш	abs		7 0	0 IMM	0							
	BSET #xx:3,@aa:16	В	9	⋖	8	ω		abs)	0 0	0 MMI 0				
	BSET #xx:3,@aa:32	В	9	٨	8 €	8			aţ	abs			7 0	0 MMI 0		
	BSET Rn,Rd	В	9	0	pu uu	70										
	BSET Rn,@ERd	В	7	D	0 erd 0		0 9	L	0							
	BSET Rn,@aa:8	В	7	ш	abs		0 9	E	0							
	BSET Rn,@aa:16	В	9	٧	1 8	8		abs) 9	0	0 m				
	BSET Rn,@aa:32	В	9	Α	3 8	8			at	abs			0 9	ш П		
BSR	BSR d:8	1	2	5	disp											
	BSR d:16	Ι	2	С	0	0		dsib								
BST	BST #xx:3,Rd	В	9	7	0 IMM rd	Б										
	BST #xx:3,@ERd	В	7	D	0 erd 0	0	6 7	ОІММ	0							
	BST #xx:3,@aa:8	В	7	ч	abs		2 9	ОІММ	0							
	BST #xx:3,@aa:16	В	9	Α	1 8	8		abs		9	7 0	0 IMM 0				
	BST #xx:3,@aa:32	В	9	Α	3	8			aţ	abs			2 9	0 IMM 0		
BTST	BTST #xx:3,Rd	Ф	7	က	0 IMM rd	70										
	BTST #xx:3,@ERd	М	7	O	0 erd 0		7 3	0 IMM	0							
	BTST #xx:3,@aa:8	В	7	ш	aps		7 3	0 IMM	0							
	BTST #xx:3,@aa:16	ш	9	⋖	1	0		abs		, ,	3 0	0 IMM 0				
	BTST #xx:3,@aa:32	В	9	⋖	3	0			ä	abs			7 3	0 MMI 0		
	BTST Rn,Rd	В	9	3	rn rd	Б										
	BTST Rn,@ERd	В	7	С	0 erd C	0	6 3	rı	0							

Instruc-	Momonio	[Instruction	Instruction Format				
tion		Size	1st byte	yte	2nd byte	oyte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
BTST	BTST Rn,@aa:8	В	7	Ш	abs	S	9	0						
	BTST Rn,@aa:16	В	9	Α	1	0	a	abs	6 3	0 m				
	BTST Rn,@aa:32	В	9	Α	3	0			abs		6 3	m 0		
BXOR	BXOR #xx:3,Rd	В	7	5	о імм	Þ								
	BXOR #xx:3,@ERd	В	7	O	0 erd	0	7 5	0 IMM 0						
	BXOR #xx:3,@aa:8	В	7	ш	abs	S	7 5	0 MMI 0						
	BXOR #xx:3,@aa:16	В	9	Α	1	0	a	abs	7 5	0 MMI 0				
	BXOR #xx:3,@aa:32	В	9	∢	က	0			abs		7 5	0 MMI 0		
CLRMAC	CLRMAC CLRMAC		0	1	∢	0								
CMP	CMP.B #xx:8,Rd	В	⋖	г	IMM	Σ								
	CMP.B Rs,Rd	В	1	С	LS	p								
	CMP.W #xx:16,Rd	Ν	7	6	2	р	۸II	IMM						
	CMP.W Rs,Rd	8	-	٥	rs	Þ								
	CMP.L #xx:32,ERd	٦	7	Α	5	0 erd			IMM					
	CMP.L ERS,ERd	٦	1	Ь	1 ers	0 erd								
DAA	DAA Rd	В	0	Ь	0	p								
DAS	DAS Rd	В	1	F	0	rd								
DEC	DEC.B Rd	В	1	Α	0	p								
	DEC.W #1,Rd	≥	-	В	2	ē								
	DEC.W #2,Rd	≥	1	В	Δ	Ð								
	DEC.L #1,ERd	_	_	В	7	0 erd								
	DEC.L #2,ERd	Г	1	В	ч	0 erd								
DIVXS	DIVXS.B Rs,Rd	В	0	1	Ω	0	5 1	rs rd						
	DIVXS.W Rs,ERd	8	0	1	Ω	0	5 3	rs 0 erd	7					
DIVXU	DIVXU.B Rs,Rd	В	2	1	LS	Þ								
	DIVXU.W Rs,ERd	≥	2	က	<u>د</u>	0 erd								
EEPMOV	EEPMOV EEPMOV.B		7	В	2	ပ	2	8						
	EEPMOV.W	I	7	В	Ω	4	5 9	8 F						

Instriic-										lns	truction	Instruction Format	Ļ				
tion	Мпетопіс	Size	1st k	1st byte	2nd	2nd byte	3rd byte		4th byte	5th	5th byte	6th byte		7th byte	8th byte	9th byte	10th byte
EXTS	EXTS.W Rd	8	1	7	О	ъ											
	EXTS.L ERd	Г	1	7	Н	0 erd											
EXTU	EXTU.W Rd	W	1	7	2	ъ											
	EXTU.L ERd	Г	1	7	7	0 erd											
INC	INC.B Rd	В	0	A	0	2											
	INC.W #1,Rd	≥	0	В	2	5											
	INC.W #2,Rd	>	0	В	Ω	Б											
	INC.L #1,ERd	٦	0	В	7	0 erd											
	INC.L #2,ERd	Г	0	В	Н	0 erd											
JMP	JMP @ERn		2	6	mə 0	0											
	JMP @aa:24		2	A			abs										
	JMP @@aa:8	Ι	2	В	at	abs											
JSR	JSR @ERn		2	D	0 em	0											
	JSR @aa:24		2	Ш			abs										
	JSR @@aa:8		2	Ь	at	abs											
LDC	LDC #xx:8,CCR	В	0	7	2	IMM											
	LDC #xx:8,EXR	В	0	-	4	-	0	7	IMM								
	LDC Rs,CCR	В	0	3	0	Z.											
	LDC Rs,EXR	ш	0	3	-	ত											
	LDC @ERs,CCR	≥	0	-	4	0	9	0	ers 0								
	LDC @ERs,EXR	≥	0	-	4	-	9	0	ers 0								
	LDC @(d:16,ERs),CCR	≥	0	-	4	0	9	-0	ers 0		disp	۵					
	LDC @(d:16,ERs),EXR	≥	0	-	4	-	9	0	0 ers 0		disp	Ω					
	LDC @(d:32,ERs),CCR	≥	0	-	4	0	7	8	ers 0	9	В	7	0		disp	ds	
	LDC @(d:32,ERs),EXR	>	0	1	4	-	7	8	ers 0	9	В	2	0		disp	ds	
	LDC @ERs+,CCR	≥	0	-	4	0	9	0	0 ers 0								
	LDC @ERs+,EXR	≥	0	_	4	-	9	0	ers 0								
	LDC @aa:16,CCR	≥	0	-	4	0	9	В	0 0		abs	cs.					
	LDC @aa:16,EXR	≥	0	-	4	-	9	В	0 0		abs	_ω					

Instruc-											Instructic	Instruction Format				
tion	Mnemonic	Size	1st byte	yte	2nd byte	oyte	3rd byte	yte	4th byte	oyte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
ГРС	LDC @aa:32,CCR	>	0	1	4	0	9	В	2	0		abs	S			
	LDC @aa:32,EXR	>	0	1	4	1	9	В	2	0		abs	S			
LDM*3	LDM.L @SP+, (ERn-ERn+1)	_	0	1	-	0	9	۵	7	0:em+1						
	LDM.L @SP+, (ERn-ERn+2)	٦	0	1	2	0	9	D	7	0 ern+2						
	LDM.L @SP+, (ERn-ERn+3)	٦	0	1	3	0	9	D	7	0:em+3						
LDMAC	LDMAC ERS,MACH	Г	0	3	2	0 ers										
	LDMAC ERS,MACL	٦	0	3	3	0 ers										
MAC	MAC @ERn+,@ERm+		0	1	9	0	9	0) ern	0 ern 0 erm						
MOV	MOV.B #xx:8,Rd	В	ш	rd	IMM	Σ										
	MOV.B Rs,Rd	В	0	C	LS	Б										
	MOV.B @ERs,Rd	В	9	8	0 ers	гd										
	MOV.B @(d:16,ERs),Rd	В	9	Е	0 ers	rd		disp	р							
	MOV.B @(d:32,ERs),Rd	В	7	8	0 ers	0	9	A	2	ъ		dsib	d			
	MOV.B @ERs+,Rd	В	9	С	0 ers	rd										
	MOV.B @aa:8,Rd	В	7	rd	abs	ş										
	MOV.B @aa:16,Rd	В	9	A	0	Б		abs	S							
	MOV.B @aa:32,Rd	В	9	Α	2	Б				abs	S					
	MOV.B Rs,@ERd	В	9	8	1 erd	rs										
	MOV.B Rs,@(d:16,ERd)	В	9	Ш	1: erd	rs.		disp	۵							
	MOV.B Rs,@(d:32,ERd)	В	7	8	0 erd	0	9	4	∢	2		dsip	d			
	MOV.B Rs,@-ERd	В	9	O	1 erd	rs.										
	MOV.B Rs,@aa:8	В	က	હ	abs	ş										
	MOV.B Rs,@aa :16	В	9	Α	8	rs		aps	S							
	MOV.B Rs,@aa:32	В	9	۷	⋖	r _S				abs	s					
	MOV.W #xx:16,Rd	>	7	6	0	Б		IMM	5							
	MOV.W Rs,Rd	8	0	D	rs	rd										
	MOV.W @ERs,Rd	>	9	6	0 ers	Б										
	MOV.W @(d:16,ERs),Rd	>	9	F	0 ers	Б		disp	а							
	MOV.W @(d:32,ERs),Rd	>	7	8	0 ers	0	9	В	2	2		disp	d			

Instruc-	Momorio	_;									Instruction	Instruction Format				
tion	2	Size	1st byte	oyte	2nd byte	oyte	3rd byte		4th byte		5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
MOV	MOV.W @ERs+,Rd	>	9	٥	0 ers	5										
	MOV.W @aa:16,Rd	8	9	В	0	ъ		abs								
	MOV.W @aa:32,Rd	>	9	В	7	Þ				abs						
	MOV.W Rs,@ERd	≥	9	6	1 erd	S.										
	MOV.W Rs,@(d:16,ERd)	>	9	ш	1 erd	rs.		disp								
	MOV.W Rs,@(d:32,ERd)	≥	7	80	0 erd	0	9	В	∢	rs		di di	disp			
	MOV.W Rs,@-ERd	>	9	O	1 erd	rs										
	MOV.W Rs,@aa:16	>	9	В	80	rs		abs								
	MOV.W Rs,@aa:32	>	9	В	Α	rs				abs						
	MOV.L #xx:32,Rd	_	7	A	0	0 erd				IMM						
	MOV.L ERS,ERd	_	0	ш	1 ers	0 erd										
	MOV.L @ERs,ERd	٦	0	1	0	0	9	0 6	0 ers 0 erd	erd						
	MOV.L @(d:16,ERs),ERd	_	0	1	0	0	9	ь о	0 ers 0 erd	erd	di	dsib				
	MOV.L @(d:32,ERs),ERd	٦	0	1	0	0	7	8	ers	0	6 B	2 0 erd		dis	disp	
	MOV.L @ERs+,ERd	٦	0	-	0	0	9	о О	0 ers 0 erd	erd						
	MOV.L @aa:16 ,ERd	_	0	_	0	0	9	В	0	0 erd	Ø	abs				
	MOV.L @aa:32 ,ERd	_	0	-	0	0	9	В	2 0	0 erd		ä	abs			
	MOV.L ERs,@ERd	_	0	-	0	0	9	9	1 erd 0 ers	ers						
	MOV.L ERs,@(d:16,ERd)	_	0	-	0	0	9	т	1 erd 0	ers	ġ	dsip				
	MOV.L ERs,@(d:32,ERd)*1	٦	0	_	0	0	7	8	0 erd	0	6 B	A 0 ers		dis	disp	
	MOV.L ERs,@-ERd	_	0	_	0	0		7	1 erd 0 ers	ers						
	MOV.L ERs,@aa:16	٦	0	_	0	0	9	В	8	0 ers	ak	abs				
	MOV.L ERs,@aa:32	_	0	-	0	0	9	В	0	ers		ä	abs			
MOVFPE	MOVFPE MOVFPE @aa:16,Rd	В	Canı	not be	Cannot be used in this LS	this LS	_									
MOVTPE	MOVTPE MOVTPE Rs,@aa:16	В														
MULXS	MULXS.B Rs,Rd	В	0	-	O	0	2	0	S.	Ð						
	MULXS.W Rs,ERd	≥	0	-	O	0	2	2	rs 0	0 erd						
MULXU	MULXU.B Rs,Rd	ш	2	0	δ.	5										
	MULXU.W Rs,ERd	≥	2	2	δ	0 erd										

Instruc-	Mooring								Instruction Format	n Format				
tion		Size	1st byte	oyte	2nd byte	byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
NEG	NEG.B Rd	В	1	7	8	Þ								
	NEG.W Rd	8	-	7	6	ъ								
	NEG.L ERd	Г	1	7	В	0 erd								
NOP	NOP	Ι	0	0	0	0								
NOT	NOT.B Rd	В	-	7	0	Þ								
	NOT.W Rd	≥	-	7	-	Þ								
	NOT.L ERd	_	-	7	3	0 erd								
OR	OR.B #xx:8,Rd	В	ပ	rd	IMM	M								
	OR.B Rs,Rd	В	-	4	ফ	Þ								
	OR.W #xx:16,Rd	>	7	6	4	Þ	2	IMM						
	OR.W Rs,Rd	8	9	4	ফ	Þ								
	OR.L #xx:32,ERd	٦	7	A	4	0 erd		N	IMM					
	OR.L ERS,ERd	Г	0	1	ч	0	6 4	0 ers 0 erd						
ORC	ORC #xx:8,CCR	В	0	4	IM	IMM								
	ORC #xx:8,EXR	В	0	1	4	1	0 4	IMM						
POP	POP.W Rn	Ν	9	D	7	E								
	POP.L ERn	_	0	_	0	0	O 9	7 0 ern						
PUSH	PUSH.W Rn	>	9	٥	ъ	E								
	PUSH.L ERn	Г	0	1	0	0	О 9	F 0 ern						
ROTL	ROTL.B Rd	В	-	2	8	2								
	ROTL.B #2, Rd	В	-	2	O	ē								
	ROTL.W Rd	>	-	2	6	Þ								
	ROTL.W #2, Rd	>	-	2	Ω	Þ								
	ROTL.L ERd	_	_	2	В	0 erd								
	ROTL.L #2, ERd	٦	-	7	ш	0 erd								

Instruc-	Maganic	ä							Instruction Format	n Format				
tion		Size	1st byte	yte	2nd byte	yte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
ROTR	ROTR.B Rd	В	-	က		Þ								
	ROTR.B #2, Rd	В	-	3	ပ	p								
	ROTR.W Rd	>	τ-	е	 б	p								
	ROTR.W #2, Rd	8	_	8		Þ								
	ROTR.L ERd	_	-	3	В.	0 erd								
	ROTR.L #2, ERd	_	-	3	 L	0 erd								
ROTXL	ROTXL.B Rd	В	1	2	0	nd								
	ROTXL.B #2, Rd	В	-	2	4	Þ								
	ROTXL.W Rd	8	_	2	<u> </u>	Þ								
	ROTXL.W #2, Rd	8	-	2	2	p								
	ROTXL.L ERd	_	-	2	3	0 erd								
	ROTXL.L #2, ERd	Г	1	2	7 C	0 erd								
ROTXR	ROTXR.B Rd	В	-	3	0	p								
	ROTXR.B #2, Rd	В	1	3	4	p								
	ROTXR.W Rd	8	-	3		p								
	ROTXR.W #2, Rd	8	1	3	2	p								
	ROTXR.L ERd	_	_	3	3	0 erd								
	ROTXR.L #2, ERd	_	_	3	2 2	0 erd								
RTE	RTE	1	2	9	7	0								
RTS	RTS		2	4	7	0								
SHAL	SHAL.B Rd	В	_	0	∞	p								
	SHAL.B #2, Rd	В	_	0	ပ	p								
	SHAL.W Rd	≥	–	0	6	Þ								
	SHAL.W #2, Rd	≥	_	0		Б								
	SHAL.L ERd	_	—	0	<u>о</u> В	0 erd								
	SHAL.L #2, ERd	_		0		0 erd								

Instruc-	o in our or M	_;								Inst	ruction	Instruction Format				
tion		Size	1st byte	yte	2nd	2nd byte	3rd byte	4th byte	oyte	5th byte	yte	6th byte	7th byte	8th byte	9th byte	10th byte
SHAR	SHAR.B Rd	В	-	_	∞	Þ										
	SHAR.B #2, Rd	В	_	_	O	Þ										
	SHAR.W Rd	8	-	1	6	Þ										
	SHAR.W #2, Rd	8	1	1	D	Þ										
	SHAR.L ERd	_	-	_	В	0 erd										
	SHAR.L #2, ERd	_	-	-	ш	0 erd										
SHLL	SHLL.B Rd	В	_	0	0	Þ										
	SHLL.B #2, Rd	В	<u>_</u>	0	4	Þ										
	SHLL.W Rd	>	-	0	_	5										
	SHLL.W #2, Rd	>	-	0	2	5										
	SHLL.L ERd	_	<u>_</u>	0	8	0 erd										
	SHLL.L #2, ERd	Г	1	0	7	0 erd										
SHLR	SHLR.B Rd	В	1	1	0	Þ										
	SHLR.B #2, Rd	В	-	1	4	Б										
	SHLR.W Rd	>	-	_	-	5										
	SHLR.W #2, Rd	8	1	1	2	Þ										
	SHLR.L ERd	_	-	_	3	0 erd										
	SHLR.L #2, ERd	_	-	1	7	0 erd										
SLEEP	SLEEP	I	0	-	∞	0										
STC	STC.B CCR,Rd	В	0	2	0	Б										
	STC.B EXR,Rd	В	0	2	_	Б										
	STC.W CCR,@ERd	≥	0	-	4	0	9	1 erd	0							
	STC.W EXR,@ERd	≥	0	-	4	-	6 9	1 erd	0							
	STC.W CCR,@(d:16,ERd)	>	0	1	4	0	6	1 erd	0		disp					
	STC.W EXR,@(d:16,ERd)	>	0	-	4	-	9	1 erd	0		disp					
	STC.W CCR,@(d:32,ERd)	≥	0	-	4	0	7 8	0 erd	0	9	В	0 V		ij	disp	
	STC.W EXR,@(d:32,ERd)	>	0	_	4	-	7 8	0 erd	0	9	В	0 V		di	disp	
	STC.W CCR,@-ERd	>	0	1	4	0	9 9	1 erd	0							
	STC.W EXR,@-ERd	≥	0	_	4	-	9	1 erd	0							

Instruc-	Monor										Instruction	Instruction Format				
tion		Size	1st byte	yte	2nd byte	oyte	3rd byte	yte	4th byte	byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
STC	STC.W CCR,@aa:16	>	0	-	4	0	9	М	∞	0	, a	abs				
	STC.W EXR,@aa:16	>	0	-	4	-	9	В	∞	0	, a	abs				
	STC.W CCR,@aa:32	>	0	-	4	0	9	В	∢	0		abs	S			
	STC.W EXR,@aa:32	M	0	-	4	1	9	В	٧	0		abs	s			
STM*3	STM.L(ERn-ERn+1), @-SP	٦	0	1	1	0	9	Q	ь	0 ern						
	STM.L (ERn-ERn+2), @-SP		0	-	2	0	9	O	Ь	0 ern						
	STM.L (ERn-ERn+3), @-SP	_	0	-	က	0	9	۵	ш	0 ern						
STMAC	STMAC MACH,ERd	7	0	2	7	0 ers										
	STMAC MACL, ERd	_	0	2	က	0 ers										
SUB	SUB.B Rs,Rd	В	-	8	ร	p										
	SUB.W #xx:16,Rd	>	7	6	က	p		IMM	∑							
	SUB.W Rs,Rd	N	1	6	rs	rd										
	SUB.L #xx:32,ERd	_	7	⋖	8	0 erd				IMM	>					
	SUB.L ERS,ERd	Г	1	A	1 ers 0 erd	0 erd										
SUBS	SUBS #1,ERd	٦	-	В	0	0 erd										
	SUBS #2,ERd	_	-	В	8	0 erd										
	SUBS #4,ERd	٦	1	В	6	0 erd										
SUBX	SUBX #xx:8,Rd	В	В	rd	IMM	Σ										
	SUBX Rs,Rd	В	1	В	rs	rd										
TAS	TAS @ERd*2	В	0	-	Ш	0	7	В	0 erd	ပ						
TRAPA	TRAPA #x:2	П	2	7 (00 IMM	0										
XOR	XOR.B #xx:8,Rd	В	Ω	rd	IMM	Σ										
	XOR.B Rs,Rd	В	-	2		Б										
	XOR.W #xx:16,Rd	>	7	6	2	р		IMM	Z							
	XOR.W Rs,Rd	>	9	2	LS.	p										
	XOR.L #xx:32,ERd	_	7	A	2	0 erd				IMM	>					
	XOR.L ERS,ERd	_	0	-	ш	0	9	2	0 ers 0 erd	0 erd						

Instruc-	Mnemonic	ا					Instructio	nstruction Format				
tion		əzic	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
XORC	XORC #xx:8,CCR	В	0 5	IMMI								
	XORC #xx:8,EXR	В	0	4	0	IMM						

Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction. Bit 7 of the 4th byte of the MOV.L ERs, @(d:32,ERd) instruction can be either 1 or 0. Notes: 1.

Only register ER0 to ER6 should be used when using the STM/LDM instruction. 2 6

-egend:

MM

abs:

Absolute address (8, 16, 24, or 32 bits) Immediate data (2, 3, 8, 16, or 32 bits) Displacement (8, 16, or 32 bits)

Register field (4 bits specifying an 8-bit or 16-bit register. The symbols rs, rd, and rn correspond to operand symbols Rs, Rd,and Rn) ers, erd, ern, erm: rs, rd, rn: disp:

Register field (3 bits specifying an address register or 32-bit register. The symbols ers, erd, em, and em correspond to operand symbols ERs, ERd, ERn, and ERm)

The register fields specify general registers as follows.

))			
Address Regist 32-Bit Register	Address Register 32-Bit Register	16-Bit	16-Bit Register	8-Bit	8-Bit Register
Register Field	General Register	Register Field	General Register	Register Field	General Register
000	ER0	0000	RO	0000	ROH
100	ER1	0001	R1	0001	R1H
111	ER7	0111	R7	0111	R7H
		1000	E0	1000	ROL
		1001	E1	1001	R1L
		1111	E7	1111	R7L

A.3 Operation Code Map

Table A-3 shows the operation code map.

Instruction when most significant bit of BH is 0. Instruction when most significant bit of BH is 1.

Table A-3 Operation Code Map (1)

2nd byte BH BL

Instruction code

ΑH

	-	ω /	Table A.3(2)		BRN	DIVXU		E RNC								
-	2		Table A.3(2)		BHI	MULXU	0	BCLK								
	က	DC LDMAC	Table A.3(2)		BLS	DIVXU		2 2								
, [4	ORC	OR		BCC	RTS	~	BOR BIOR								
	2	XORC	XOR		BCS	BSR		3XOR BIXOR								
	9	ANDC	AND		BNE	RTE	AND	BAND BIAND								
	7	ГРС	Table A.3(2)	MOV:B	BEQ	TRAPA	BST BIST		ΑΓ	ADDX	C	SUBX	0	×	A	MOV
	8	ΑΓ	SI	э Э	BVC	Table A.3(2)	W	MOV	ADD	X	CMP	BX	OR	XOR	AND	^(
	6	ADD	SUB		BVS		MOV	Table A.3(2)								
	⋖	Table A.3(2)	Table A.3(2)		BPL	JMP	Table A.3(2)	Table A.3(2)								
	ш	Table A.3(2)	Table A.3(2)		BMI			EEPMOV								
	O	W	Ö		BGE	BSR										
	۵	MOV	CMP		BLT		MOV	Tab								
	ш	ADDX	SUBX		BGT	JSR		Table A.3(3)								
	ш	Table A.3(2)	Table A.3(2)		BLE											

Table A-3 Operation Code Map (2)

Instruction code	1st	1st byte	2nd	2nd byte
	АН	AL	ВН	BL

AH AL	0	-	2	ю	4	2	9	7	80	6	4	В	O	٥	ш	ш
01	MOV	LDM		STM	LDC		MAC		SLEEP		CLRMAC		Table A.3(3)	Table A.3(3)	TAS	Table A.3(3)
0A	INC											A	ADD			
0B	ADDS					S		INC	ADDS	SC				NC		NC
0F	DAA											M	MOV			
19	SHLL				SHLL			SHLL	SHAL	٩L			SHAL			SHAL
11	SHLR	<u> </u>			SHLR			SHLR	SHAR	4R			SHAR			SHAR
12	ROTXL	¥			ROTXL			ROTXL	ROTL	7			ROTL			ROTL
13	ROTXR	XR			ROTXR			ROTXR	ROTR	TR			ROTR			ROTR
17	NOT	Т		NOT		EXTU		EXTU	NEG	ŋ		NEG		EXTS		EXTS
1A	DEC											เร	SUB			
<u>@</u>	SUBS					DEC		DEC	SUBS	38				DEC		DEC
1F	DAS											C	CMP			
28	BRA	BRN	BHI	BLS	BCC	BCS	BNE	BEQ	BVC	BVS	BPL	BMI	BGE	BLT	BGT	BLE
6A	MOV	Table A.3(4)	MOV	Table A.3(4)	MOVFPE*				MOV		MOV		MOVTPE*			
79	MOV	ADD	CMP	SUB	OR	XOR	AND									
7A	MOV	ADD	CMP	SUB	NO	XOR	AND									

Note: * Cannot be used in this LSI.

Table A-3 Operation Code Map (3)

yte	DL	
4th byte	DH	
3rd byte	CL	
3rd	СН	
2nd byte	BL	
2nd	ВН	
1st byte	AL	
1st	AH	
Instruction code		

Instruction when most significant bit of DH is 0. Instruction when most significant bit of DH is 1.

Г												
	ш											
	ш											
	D											
	С											
	В											
	А											
	9											
	8											
	7					BLD NO BILD	BST BIST			BLD	BST BIST	
	6			AND		SAND				3AND BIAN		
	5			XOR		3XOR BIXOF				3XOR BIXOF		
	4			OR		BOR				BOR		
	3		DIVXS		BTST	BTST			BTST	BTST		
	2	MULXS					BCLR	BCLR			BCLR	BCLR
	-		DIVXS				BNOT	BNOT			BNOT	BNOT
	0	MULXS					BSET	BSET			BSET	BSET
	AH AL BH BL CH	01C05	01D05	01F06	7Cr06 *1	7Cr07 *1	7Dr06 *1	7Dr07 *1	7Eaa6 *2	7Eaa7 *2	7Faa6 *2	7Faa7 *2

Notes: 1. r is the register specification field. 2. aa is the absolute address specific

aa is the absolute address specification.

Table A-3 Operation Code Map (4)

Instruction code		1st byte	2nd byte	yte	3rd b	3rd byte	4th byte	yte	5th byte	yte	6th byte	/te						
	AH	AL	ВН	BL	CH	ر ا	품	Ы	표	핍	표	급						
														Instructio	on when r	nost signi nost signi	 Instruction when most significant bit of FH is 0 Instruction when most significant bit of FH is 1 	fFH is 0. fFH is 1.
AHALBHBLCHCLDHDLEH	0	_	2	ю		4	2	9	7	8	0,	6	<	В	O	٥	ш	ш
6A10aaaa6*																		
6A10aaaa7*				200	<u>8</u> /	SIOR /	OR BIXOR	RIOR BIXOR BIAND BILD	BLD BILE									
6A18aaaa6*	Taba	FONG	2						BST BIST									
6A18aaaa7*	1 1 1 1		BIACI															

8th byte	로	
60	王 —	
byte	GL	
7th b	GH	
6th byte	FL	
eth	FH	
5th byte	EL	
	ЕН	
4th byte	DL	
4th I	Ы	
3rd byte	CL	
3rd	СН	
2nd byte	BL	
	ВН	
st byte	AL	
1st	АН	
Instruction code		

Instruction when most significant bit of HH is 0. Instruction when most significant bit of HH is 1.

Н				
Е				
D				
C				
В				
А				
6				
8				
7		BAND BLD BILD	BST BIST	
9		BAND OR BIAND		
5		OR BIXOR		
4		BOR BX		
3	BTST			
2			2	ארוטם
1			FO	DIA
0			BSET	
AHALBHBL FHFLGH	6A30aaaaaaaa6*	6A30aaaaaaa7*	6A38aaaaaaaa6*	6A38aaaaaaa7*

Note: * aa is the absolute address specification.

A.4 Number of States Required for Instruction Execution

The tables in this section can be used to calculate the number of states required for instruction execution by the CPU. Table A-5 indicates the number of instruction fetch, data read/write, and other cycles occurring in each instruction. Table A-4 indicates the number of states required for each cycle. The number of states required for execution of an instruction can be calculated from these two tables as follows:

Execution states =
$$I \times S_I + J \times S_J + K \times S_K + L \times S_L + M \times S_M + N \times S_N$$

Examples: Advanced mode, program code and stack located in external memory, on-chip supporting modules accessed in two states with 8-bit bus width, external devices accessed in three states with one wait state and 16-bit bus width.

1. BSET #0, @FFFFC7:8

From table A-5:

$$I = L = 2$$
, $J = K = M = N = 0$

From table A-4:

$$S_I=4, \quad S_L=2$$

Number of states required for execution = $2 \times 4 + 2 \times 2 = 12$

2. JSR @@30

From table A-5:

$$I = J = K = 2$$
, $L = M = N = 0$

From table A-4:

$$S_I = S_I = S_K = 4$$

Number of states required for execution = $2 \times 4 + 2 \times 4 + 2 \times 4 = 24$

Table A-4 Number of States per Cycle

				Access Conditions								
			On-Chi	On-Chip Supporting Module		External Devi						
		On-Chip Memory				8-Bit Bus		it Bus				
Cycle			8-Bit Bus	16-Bit Bus		3-State Access	_					
Instruction fetch	Sı	1	4	2	4	6 + 2m	2	3 + m				
Branch address read	S_{J}	_										
Stack operation	S_K	_										
Byte data access	S_L	_	2		2	3 + m	=					
Word data access	S_M	_	4		4	6 + 2m	=					
Internal operation	S_N	1	1	1	1	1	1	1				

Legend:

m: Number of wait states inserted into external device access

Table A-5 Number of Cycles in Instruction Execution

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
ADD	ADD.B #xx:8,Rd	1					
	ADD.B Rs,Rd	1					
	ADD.W #xx:16,Rd	2					
	ADD.W Rs,Rd	1					
	ADD.L #xx:32,ERd	3					
	ADD.L ERs,ERd	1					
ADDS	ADDS #1/2/4,ERd	1					
ADDX	ADDX #xx:8,Rd	1					
	ADDX Rs,Rd	1					
AND	AND.B #xx:8,Rd	1					
	AND.B Rs,Rd	1					
	AND.W #xx:16,Rd	2					
	AND.W Rs,Rd	1					
	AND.L #xx:32,ERd	3					
	AND.L ERs,ERd	2					
ANDC	ANDC #xx:8,CCR	1					
	ANDC #xx:8,EXR	2					
BAND	BAND #xx:3,Rd	1					
	BAND #xx:3,@ERd	2			1		
	BAND #xx:3,@aa:8	2			1		
	BAND #xx:3,@aa:16	3			1		
	BAND #xx:3,@aa:32	4			1		
Bcc	BRA d:8 (BT d:8)	2					
	BRN d:8 (BF d:8)	2					
	BHI d:8	2					
	BLS d:8	2					
	BCC d:8 (BHS d:8)	2					
	BCS d:8 (BLO d:8)	2					
	BNE d:8	2					
	BEQ d:8	2					
	BVC d:8	2					

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
Всс	BVS d:8	2					
	BPL d:8	2					
	BMI d:8	2					
	BGE d:8	2					
	BLT d:8	2					
	BGT d:8	2					
	BLE d:8	2					
	BRA d:16 (BT d:16)	2					1
	BRN d:16 (BF d:16)	2					1
	BHI d:16	2					1
	BLS d:16	2					1
	BCC d:16 (BHS d:16)	2					1
	BCS d:16 (BLO d:16)	2					1
	BNE d:16	2					1
	BEQ d:16	2					1
	BVC d:16	2					1
	BVS d:16	2					1
	BPL d:16	2					1
	BMI d:16	2					1
	BGE d:16	2					1
	BLT d:16	2					1
	BGT d:16	2					1
	BLE d:16	2					1
BCLR	BCLR #xx:3,Rd	1					
	BCLR #xx:3,@ERd	2			2		
	BCLR #xx:3,@aa:8	2			2		
	BCLR #xx:3,@aa:16	3			2		
	BCLR #xx:3,@aa:32	4			2		
	BCLR Rn,Rd	1					
	BCLR Rn,@ERd	2			2		
	BCLR Rn,@aa:8	2			2		
	BCLR Rn,@aa:16	3			2		
	BCLR Rn,@aa:32	4			2		

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
BIAND	BIAND #xx:3,Rd	1					
	BIAND #xx:3,@ERd	2			1		
	BIAND #xx:3,@aa:8	2			1		
	BIAND #xx:3,@aa:16	3			1		
	BIAND #xx:3,@aa:32	4			1		
BILD	BILD #xx:3,Rd	1					
	BILD #xx:3,@ERd	2			1		
	BILD #xx:3,@aa:8	2			1		
	BILD #xx:3,@aa:16	3			1		
	BILD #xx:3,@aa:32	4			1		
BIOR	BIOR #xx:8,Rd	1					
	BIOR #xx:8,@ERd	2			1		
	BIOR #xx:8,@aa:8	2			1		
	BIOR #xx:8,@aa:16	3			1		
	BIOR #xx:8,@aa:32	4			1		
BIST	BIST #xx:3,Rd	1					
	BIST #xx:3,@ERd	2			2		
	BIST #xx:3,@aa:8	2			2		
	BIST #xx:3,@aa:16	3			2		
	BIST #xx:3,@aa:32	4			2		
BIXOR	BIXOR #xx:3,Rd	1					
	BIXOR #xx:3,@ERd	2			1		
	BIXOR #xx:3,@aa:8	2			1		
	BIXOR #xx:3,@aa:16	3			1		
	BIXOR #xx:3,@aa:32	4			1		
BLD	BLD #xx:3,Rd	1					
	BLD #xx:3,@ERd	2			1		
	BLD #xx:3,@aa:8	2			1		
	BLD #xx:3,@aa:16	3			1		
	BLD #xx:3,@aa:32	4			1		

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
BNOT	BNOT #xx:3,Rd	1					
	BNOT #xx:3,@ERd	2			2		
	BNOT #xx:3,@aa:8	2			2		
	BNOT #xx:3,@aa:16	3			2		
	BNOT #xx:3,@aa:32	4			2		
	BNOT Rn,Rd	1					
	BNOT Rn,@ERd	2			2		
	BNOT Rn,@aa:8	2			2		
	BNOT Rn,@aa:16	3			2		
	BNOT Rn,@aa:32	4			2		
BOR	BOR #xx:3,Rd	1					
	BOR #xx:3,@ERd	2			1		
	BOR #xx:3,@aa:8	2			1		
	BOR #xx:3,@aa:16	3			1		
	BOR #xx:3,@aa:32	4			1		
BSET	BSET #xx:3,Rd	1					
	BSET #xx:3,@ERd	2			2		
	BSET #xx:3,@aa:8	2			2		
	BSET #xx:3,@aa:16	3			2		
	BSET #xx:3,@aa:32	4			2		
	BSET Rn,Rd	1					
	BSET Rn,@ERd	2			2		
	BSET Rn,@aa:8	2			2		
	BSET Rn,@aa:16	3			2		
	BSET Rn,@aa:32	4			2		
BSR	BSR d:8	2		2			
	BSR d:16	2		2			1
BST	BST #xx:3,Rd	1					
	BST #xx:3,@ERd	2			2		
	BST #xx:3,@aa:8	2			2		
	BST #xx:3,@aa:16	3			2		
	BST #xx:3,@aa:32	4			2		

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
BTST	BTST #xx:3,Rd	1					
	BTST #xx:3,@ERd	2			1		
	BTST #xx:3,@aa:8	2			1		
	BTST #xx:3,@aa:16	3			1		
	BTST #xx:3,@aa:32	4			1		
	BTST Rn,Rd	1					
	BTST Rn,@ERd	2			1		
	BTST Rn,@aa:8	2			1		
	BTST Rn,@aa:16	3			1		
	BTST Rn,@aa:32	4			1		
BXOR	BXOR #xx:3,Rd	1					
	BXOR #xx:3,@ERd	2			1		
	BXOR #xx:3,@aa:8	2			1		
	BXOR #xx:3,@aa:16	3			1		
	BXOR #xx:3,@aa:32	4			1		
CLRMAC	CLRMAC	1					1*3
CMP	CMP.B #xx:8,Rd	1					
	CMP.B Rs,Rd	1					
	CMP.W #xx:16,Rd	2					
	CMP.W Rs,Rd	1					
	CMP.L #xx:32,ERd	3					
	CMP.L ERs,ERd	1					
DAA	DAA Rd	1					
DAS	DAS Rd	1					
DEC	DEC.B Rd	1					
	DEC.W #1/2,Rd	1					
	DEC.L #1/2,ERd	1					
DIVXS	DIVXS.B Rs,Rd	2					11
	DIVXS.W Rs,ERd	2					19
DIVXU	DIVXU.B Rs,Rd	1					11
	DIVXU.W Rs,ERd	1					19

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	Ī	J	K	L	М	N
EEPMOV	EEPMOV.B	2			2n+2*2		
	EEPMOV.W	2			2n+2*2		
EXTS	EXTS.W Rd	1					
	EXTS.L ERd	1					
EXTU	EXTU.W Rd	1					
	EXTU.L ERd	1					
INC	INC.B Rd	1					
	INC.W #1/2,Rd	1					
	INC.L #1/2,ERd	1					
JMP	JMP @ERn	2					
	JMP @aa:24	2					1
	JMP @@aa:8	2	2				1
JSR	JSR @ERn	2		2			
	JSR @aa:24	2		2			1
	JSR @@aa:8	2	2	2			
LDC	LDC #xx:8,CCR	1					
	LDC #xx:8,EXR	2					
	LDC Rs,CCR	1					
	LDC Rs,EXR	1					
	LDC @ERs,CCR	2				1	
	LDC @ERs,EXR	2				1	
	LDC @(d:16,ERs),CCR	3				1	
	LDC @(d:16,ERs),EXR	3				1	
	LDC @(d:32,ERs),CCR	5				1	
	LDC @(d:32,ERs),EXR	5				1	
	LDC @ERs+,CCR	2				1	1
	LDC @ERs+,EXR	2				1	1
	LDC @aa:16,CCR	3				1	
	LDC @aa:16,EXR	3				1	
	LDC @aa:32,CCR	4				1	
	LDC @aa:32,EXR	4				1	

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
LDM	LDM.L @SP+, (ERn-ERn+1)	2		4			1
	LDM.L @SP+, (ERn-ERn+2)	2		6			1
	LDM.L @SP+, (ERn-ERn+3)	2		8			1
LDMAC	LDMAC ERs,MACH	1					1*3
	LDMAC ERs,MACL	1					1*3
MAC	MAC @ERn+,@ERm+	2				2	
MOV	MOV.B #xx:8,Rd	1					
	MOV.B Rs,Rd	1					
	MOV.B @ERs,Rd	1			1		
	MOV.B @(d:16,ERs),Rd	2			1		
	MOV.B @(d:32,ERs),Rd	4			1		
	MOV.B @ERs+,Rd	1			1		1
	MOV.B @aa:8,Rd	1			1		
	MOV.B @aa:16,Rd	2			1		
	MOV.B @aa:32,Rd	3			1		
	MOV.B Rs,@ERd	1			1		
	MOV.B Rs,@(d:16,ERd)	2			1		
	MOV.B Rs,@(d:32,ERd)	4			1		1
	MOV.B Rs,@-ERd	1			1		
	MOV.B Rs,@aa:8	1			1		
	MOV.B Rs,@aa:16	2			1		
	MOV.B Rs,@aa:32	3			1		
	MOV.W #xx:16,Rd	2					
	MOV.W Rs,Rd	1				1	
	MOV.W @ERs,Rd	1				1	
	MOV.W @(d:16,ERs),Rd	2				1	1
	MOV.W @(d:32,ERs),Rd	4				1	
	MOV.W @ERs+,Rd	1				1	
	MOV.W @aa:16,Rd	2				1	
	MOV.W @aa:32,Rd	3				1	
	MOV.W Rs,@ERd	1				1	1

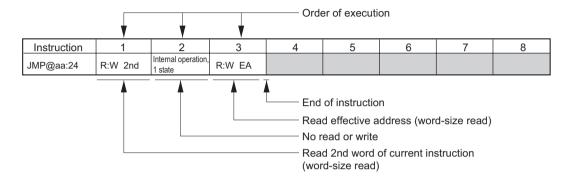
		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
MOV	MOV.W Rs,@(d:16,ERd)	2				1	
	MOV.W Rs,@(d:32,ERd)	4				1	
	MOV.W Rs,@-ERd	1				1	
	MOV.W Rs,@aa:16	2				1	
	MOV.W Rs,@aa:32	3					
	MOV.L #xx:32,ERd	3					
	MOV.L ERs,ERd	1					
	MOV.L @ERs,ERd	2				2	
	MOV.L @(d:16,ERs),ERd	3				2	
	MOV.L @(d:32,ERs),ERd	5				2	
	MOV.L @ERs+,ERd	2				2	1
	MOV.L @aa:16,ERd	3				2	
	MOV.L @aa:32,ERd	4				2	
	MOV.L ERs,@ERd	2				2	
	MOV.L ERs,@(d:16,ERd)	3				2	
	MOV.L ERs,@(d:32,ERd)	5				2	
	MOV.L ERs,@-ERd	2				2	1
	MOV.L ERs,@aa:16	3				2	
	MOV.L ERs,@aa:32	4				2	
MOVFPE	MOVFPE @:aa:16,Rd	Can not be u	sed in this	LSI			
MOVTPE	MOVTPE Rs,@:aa:16	_					
MULXS	MULXS.B Rs,Rd	2					2
	MULXS.W Rs,ERd	2					3
MULXU	MULXU.B Rs,Rd	1					2
	MULXU.W Rs,ERd	1					3
NEG	NEG.B Rd	1					
	NEG.W Rd	1					
	NEG.L ERd	1					
NOP	NOP	1					
NOT	NOT.B Rd	1					
	NOT.W Rd	1					
	NOT.L ERd	1					

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
OR	OR.B #xx:8,Rd	1					
	OR.B Rs,Rd	1					
	OR.W #xx:16,Rd	2					
	OR.W Rs,Rd	1					
	OR.L #xx:32,ERd	3					
	OR.L ERs,ERd	2					
ORC	ORC #xx:8,CCR	1					
	ORC #xx:8,EXR	2					
POP	POP.W Rn	1				1	1
	POP.L ERn	2				2	1
PUSH	PUSH.W Rn	1				1	1
	PUSH.L ERn	2				2	1
ROTL	ROTL.B Rd	1					
	ROTL.B #2,Rd	1					
	ROTL.W Rd	1					
	ROTL.W #2,Rd	1					
	ROTL.L ERd	1					
	ROTL.L #2,ERd	1					
ROTR	ROTR.B Rd	1					
	ROTR.B #2,Rd	1					
	ROTR.W Rd	1					
	ROTR.W #2,Rd	1					
	ROTR.L ERd	1					
	ROTR.L #2,ERd	1					
ROTXL	ROTXL.B Rd	1					
	ROTXL.B #2,Rd	1					
	ROTXL.W Rd	1					
	ROTXL.W #2,Rd	1					
	ROTXL.L ERd	1					
	ROTXL.L #2,ERd	1					

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
ROTXR	ROTXR.B Rd	1					
	ROTXR.B #2,Rd	1					
	ROTXR.W Rd	1					
	ROTXR.W #2,Rd	1					
	ROTXR.L ERd	1					
	ROTXR.L #2,ERd	1					
RTE	RTE	2		2/3*1			1
RTS	RTS	2		2			1
SHAL	SHAL.B Rd	1					
	SHAL.B #2,Rd	1					
	SHAL.W Rd	1					
	SHAL.W #2,Rd	1					
	SHAL.L ERd	1					
	SHAL.L #2,ERd	1					
SHAR	SHAR.B Rd	1					
	SHAR.B #2,Rd	1					
	SHAR.W Rd	1					
	SHAR.W #2,Rd	1					
	SHAR.L ERd	1					
	SHAR.L #2,ERd	1					
SHLL	SHLL.B Rd	1					
	SHLL.B #2,Rd	1					
	SHLL.W Rd	1					
	SHLL.W #2,Rd	1					
	SHLL.L ERd	1					
	SHLL.L #2,ERd	1					
SHLR	SHLR.B Rd	1					
	SHLR.B #2,Rd	1					
	SHLR.W Rd	1					
	SHLR.W #2,Rd	1					
	SHLR.L ERd	1					
	SHLR.L #2,ERd	1					
SLEEP	SLEEP	1					1

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
STC	STC.B CCR,Rd	1					
	STC.B EXR,Rd	1					
	STC.W CCR,@ERd	2				1	
	STC.W EXR,@ERd	2				1	
	STC.W CCR,@(d:16,ERd)	3				1	
	STC.W EXR,@(d:16,ERd)	3				1	
	STC.W CCR,@(d:32,ERd)	5				1	
	STC.W EXR,@(d:32,ERd)	5				1	
	STC.W CCR,@-ERd	2				1	1
	STC.W EXR,@-ERd	2				1	1
	STC.W CCR,@aa:16	3				1	
	STC.W EXR,@aa:16	3				1	
	STC.W CCR,@aa:32	4				1	
	STC.W EXR,@aa:32	4				1	
STM	STM.L (ERn-ERn+1), @-SP	2		4			1
	STM.L (ERn-ERn+2), @-SP	2		6			1
	STM.L (ERn-ERn+3), @-SP	2		8			1
STMAC	STMAC MACH,ERd	1					0*3
	STMAC MACL,ERd	1					0*3
SUB	SUB.B Rs,Rd	1					
	SUB.W #xx:16,Rd	2					
	SUB.W Rs,Rd	1					
	SUB.L #xx:32,ERd	3					
	SUB.L ERs,ERd	1					
SUBS	SUBS #1/2/4,ERd	1					
SUBX	SUBX #xx:8,Rd	1					
	SUBX Rs,Rd	1					
TAS*4	TAS @ERd	2			2		
TRAPA	TRAPA #x:2	2	2	2/3*1			2

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
XOR	XOR.B #xx:8,Rd	1					
	XOR.B Rs,Rd	1					
	XOR.W #xx:16,Rd	2					
	XOR.W Rs,Rd	1					
	XOR.L #xx:32,ERd	3					
	XOR.L ERs,ERd	2					
XORC	XORC #xx:8,CCR	1					
	XORC #xx:8,EXR	2					


Notes: 1. 2 when EXR is invalid, 3 when EXR is valid.

- 2. When n bytes of data are transferred.
- 3. An internal operation may require between 0 and 3 additional states, depending on the preceding instruction.
- 4. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

A.5 Bus States during Instruction Execution

Table A-6 indicates the types of cycles that occur during instruction execution by the CPU. See table A-4 for the number of states per cycle.

How to Read the Table:

Legend

_090	
R:B	Byte-size read
R:W	Word-size read
W:B	Byte-size write
W:W	Word-size write
:M	Transfer of the bus is not performed immediately after this cycle
2nd	Address of 2nd word (3rd and 4th bytes)
3rd	Address of 3rd word (5th and 6th bytes)
4th	Address of 4th word (7th and 8th bytes)
5th	Address of 5th word (9th and 10th bytes)
NEXT	Address of next instruction
EA	Effective address
VEC	Vector address

Figure A-1 shows timing waveforms for the address bus and the \overline{RD} , \overline{HWR} , and \overline{LWR} signals during execution of the above instruction with an 8-bit bus, using three-state access with no wait states.

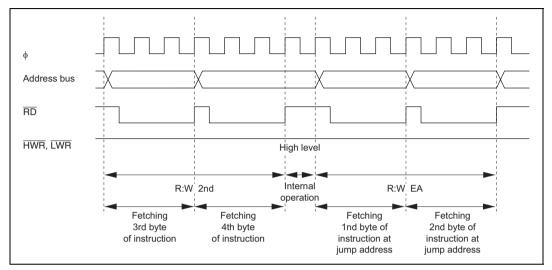


Figure A-1 Address Bus, RD, HWR, and LWR Timing (8-Bit Bus, Three-State Access, No Wait States)

Cycles
Execution
nstruction
I 9-V
Fable.

Rd 3d	-	7		_	Ľ	ď	^	α	σ
	D-W NEXT		,						,
	R-W NEXT								
	R:W 2nd	R:W NEXT							
	R:W NEXT								
	R:W 2nd	R:W 3rd	R:W NEXT						
	R:W NEXT								
	R:W NEXT								
ADDX #xx:8,Rd R:W	R:W NEXT								
ADDX Rs,Rd R:W	R:W NEXT								
AND.B #xx:8,Rd R:W	R:W NEXT								
AND.B Rs,Rd R:W	R:W NEXT								
AND.W #xx:16,Rd R:W	R:W 2nd	R:W NEXT							
AND.W Rs,Rd R:W	R:W NEXT								
AND.L #xx:32,ERd R:W	R:W 2nd	R:W 3rd	R:W NEXT						
AND.L ERS,ERd R:W	R:W 2nd	R:W NEXT							
ANDC #xx:8,CCR R:W	R:W NEXT								
ANDC #xx:8,EXR R:W	R:W 2nd	R:W NEXT							
BAND #xx:3,Rd R:W	R:W NEXT								
BAND #xx:3,@ERd R:W	R:W 2nd	R:B EA	R:W:M NEXT						
BAND #xx:3,@aa:8 R:W	R:W 2nd	R:B EA	R:W:M NEXT						
BAND #xx:3,@aa:16 R:W	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BAND #xx:3,@aa:32 R:W	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BRA d:8 (BT d:8) R:W	R:W NEXT	R:W EA							
(BF d:8)	R:W NEXT	R:W EA							
BHI d:8 R:W	R:W NEXT	R:W EA							
BLS d:8 R:W	R:W NEXT	R:W EA							
BCC d:8 (BHS d:8) R:M	R:W NEXT	R:W EA							
BCS d:8 (BLO d:8) R:M	R:W NEXT	R:W EA							
BNE d:8 R:W	R:W NEXT	R:W EA							
BEQ d:8 R:W	R:W NEXT	R:W EA							
BVC d:8 R:W	R:W NEXT	R:W EA							
BVS d:8 R:W	R:W NEXT	R:W EA							
BPL d:8 R:W	R:W NEXT	R:W EA							
BMI d:8 R:W		R:W EA							
	R:W NEXT	R:W EA							
		R:W EA							
BGT d:8 R:M	R:W NEXT	R:W EA							

Instruction	-	2	3	4	5	9	7	8	6
BLE d:8	R:W NEXT	R:W EA							
BRA d:16 (BT d:16)	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BRN d:16 (BF d:16)	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BHI d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BLS d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BCC d:16 (BHS d:16)	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BCS d:16 (BLO d:16)	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BNE d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BEQ d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BVC d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BVS d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BPL d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BMI d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BGE d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BLT d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BGT d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BLE d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BCLR #xx:3,Rd	R:W NEXT								
BCLR #xx:3,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BCLR #xx:3,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	<u> </u>	L C				
BCLR #XX.3, @dd: 10	R.W ZIIG	N.W SIG		\ \ \ \ \ \ \ \ \ \ \ \ \	W.D EA				

Instruction	-	2	8	4	2	9	7	8	6
BCLR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT W:B EA	W:B EA			
BCLR Rn,Rd	R:W NEXT								
BCLR Rn,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BCLR Rn,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BCLR Rn,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BCLR Rn,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT W:B EA	W:B EA			
BIAND #xx:3,Rd	R:W NEXT								
BIAND #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BIAND #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BIAND #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BIAND #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BILD #xx:3,Rd	R:W NEXT								
BILD #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BILD #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BILD #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BILD #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BIOR #xx:3,Rd	R:W NEXT								
BIOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BIOR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BIOR #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BIOR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BIST #xx:3,Rd	R:W NEXT								
BIST #xx:3,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BIST #xx:3,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BIST #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA				
BIST #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT W:B EA	W:B EA			
BIXOR #xx:3,Rd	R:W NEXT								
BIXOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BIXOR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BIXOR #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BIXOR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BLD #xx:3,Rd	R:W NEXT								
BLD #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BLD #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BLD #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BLD #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BNOT #xx:3,Rd	R:W NEXT								

Instruction	_	2	3	4	5	9	7	8	6
BNOT #xx:3,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BNOT #xx:3,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BNOT #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA				
BNOT #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT W:B EA	W:B EA			
BNOT Rn,Rd	R:W NEXT								
BNOT Rn,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BNOT Rn,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BNOT Rn,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA				
BNOT Rn,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT W:B EA	W:B EA			
BOR #xx:3,Rd	R:W NEXT								
BOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BOR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BOR #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BOR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BSET #xx:3,Rd	R:W NEXT								
BSET #xx:3,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BSET #xx:3,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BSET #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BSET #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT W:B EA	W:B EA			
BSET Rn,Rd	R:W NEXT								
BSET Rn,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BSET Rn,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BSET Rn,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA				
BSET Rn,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT W:B EA	W:B EA			
BSR d:8	R:W NEXT	R:W EA	W:W:M stack (H) W:W stack (L)	W:W stack (L)					
BSR d:16	R:W 2nd	Internal operation, R:W EA	R:W EA	W:W:M stack (H) W:W stack (L)	W:W stack (L)				
		1 state							
BST #xx:3,Rd	R:W NEXT								
BST #xx:3,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BST #xx:3,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BST #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BST #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT W:B EA	W:B EA			
BTST #xx:3,Rd	R:W NEXT								
BTST #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						

Г																																					
6																																					
80																																					
7																																					
9																															R:W NEXT	R:W NEXT					
2			R:W:M NEXT					R:W:M NEXT					R:W:M NEXT																		W:B EAd*2	W:B EAd*2	Repeated n times*2 →				
4		R:W:M NEXT	R:B EA				R:W:M NEXT	R:B EA				R:W:M NEXT	R:B EA														ion, 11 states	ion, 19 states			R:B EAs*2	R:B EAs*2	← Repeated				
3	R:W:M NEXT	R:B EA	R:W 4th		R:W:M NEXT	R:W:M NEXT	R:B EA	R:W 4th		R:W:M NEXT	R:W:M NEXT	R:B EA	R:W 4th							R:W NEXT							Internal operation, 11 states	Internal operation, 19 states	Internal operation, 11 states	tion, 19 states	R:B EAd*1	R:B EAd*1					
2	R:B EA	R:W 3rd	R:W 3rd		R:B EA	R:B EA	R:W 3rd	R:W 3rd		R:B EA	R:B EA	R:W 3rd	R:W 3rd	Internal operation,	1 state			R:W NEXT		R:W 3rd							R:W NEXT	R:W NEXT	Internal operat	Internal operation, 19 states	R:B EAs*1	R:B EAs*1					
-	R:W 2nd	R:W 2nd	R:W 2nd	R:W NEXT	R:W 2nd	R:W 2nd	R:W 2nd	R:W 2nd	R:W NEXT	R:W 2nd	R:W 2nd	R:W 2nd	R:W 2nd	R:W NEXT		R:W NEXT	R:W NEXT	R:W 2nd	R:W NEXT	R:W 2nd	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W 2nd	R:W 2nd	R:W NEXT	R:W NEXT	R:W 2nd	R:W 2nd	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT	R:W NEXT
Instruction	BTST #xx:3,@aa:8	BTST #xx:3,@aa:16	BTST #xx:3,@aa:32	BTST Rn, Rd	BTST Rn,@ERd	BTST Rn,@aa:8	BTST Rn,@aa:16	BTST Rn,@aa:32	BXOR #xx:3,Rd	BXOR #xx:3,@ERd	BXOR #xx:3,@aa:8	BXOR #xx:3,@aa:16	BXOR #xx:3,@aa:32	CLRMAC		CMP.B #xx:8,Rd	CMP.B Rs,Rd	CMP.W #xx:16,Rd	CMP.W Rs,Rd	CMP.L #xx:32,ERd	CMP.L ERS,ERd	DAA Rd	DAS Rd	DEC.B Rd	DEC.W #1/2,Rd	DEC.L #1/2,ERd	DIVXS.B Rs,Rd	DIVXS.W Rs, ERd	DIVXU.B Rs,Rd	DIVXU.W Rs,ERd	EEPMOV.B	EEPMOV.W	EXTS.W Rd	EXTS.L ERd	EXTU.W Rd	EXTU.L ERd	INC.B Rd

-	2	3	4	2	9	7	8	6
R:W EA								
Internal operation, R:W EA 1 state	ation,	R:W EA						
R:W:M aa:8	φ.	R:W aa:8	Internal operation, R:W EA 1 state	R:W EA				
R:W EA		W:W:M stack (H) W:W stack (L)	W:W stack (L)					
Internal operation, R:W EA 1 state	tion,	R:W EA	W:W:M stack (H) W:W stack (L)	W:W stack (L)				
R:W:M aa:8	89	R:W aa:8	W:W:M stack (H) W:W stack (L)	W:W stack (L)	R:W EA			
R:W NEXT								
R:W NEXT		R:W EA						
R:W NEXT		R:W EA						
R:W 3rd		R:W NEXT	R:W EA					
R:W 3rd		R:W NEXT	R:W EA					
R:W 3rd		R:W 4th	R:W 5th	R:W NEXT	R:W EA			
R:W 3rd		R:W 4th	R:W 5th	R:W NEXT	R:W EA			
R:W NEXT		Internal operation, R:W EA 1 state	R:W EA					
R:W NEXT		Internal operation, R:W EA	R:W EA					
R:W 3rd		R:W NEXT	R:W FA					
R:W 3rd		R:W NEXT	R:W EA					
R:W 3rd		R:W 4th	R:W NEXT	R:W EA				
R:W 3rd		R:W 4th	R:W NEXT	R:W EA				
R:W:M NE	×	R:W:M NEXT Internal operation, 1 state	R:W:M stack (H)*3 R:W stack (L)*3	R:W stack (L)*3				
R:W NEXT		Internal operation, 1 state	Internal operation, R:W:M stack (H) *3 R:W stack (L) *3 1 state	R:W stack (L)*3				
R:W NEXT		Internal operation, 1 state	Internal operation, R:W:M stack (H)*3 R:W stack (L)*3 1 state	R:W stack (L)*3				
Internal operation, 1 state	n,		←Repeated n times *3→	*3				

6																																					
80																																					
7																																					
9																																					
2								R:B EA								W:B EA										R:W EA							W:W EA				
4			R:W EAm					R:W NEXT					R:B EA			R:W NEXT					W:B EA					R:W NEXT				R:B EA			R:W NEXT				W:W EA
က			R:W EAh				R:B EA	R:W 4th	R:B EA			R:B EA	R:W NEXT		W:B EA	R:W 4th	W:B EA			W:B EA	R:W NEXT				R:W EA	R:W 4th	R:W EA		R:W EA	R:W NEXT		W:W EA	R:E 4th	W:W EA		W:W EA	R:W NEXT
2	Internal operation,	1 state	R:W NEXT			R:B EA	R:W NEXT	R:W 3rd	Internal operation,	1 state	R:B EA	R:W NEXT	R:W 3rd	W:B EA	R:W NEXT	R:W 3rd	Internal operation, W:B EA	1 state	W:B EA	R:W NEXT	R:W 3rd	R:W NEXT		R:W EA	R:W NEXT	R:W 3rd	Internal operation, R:W EA	1 state	R:W NEXT	R:W 3rd	W:W EA	R:W NEXT	R:W 3rd	Internal operation, W:W EA	1 state	R:W NEXT	R:W 3rd
-	R:W NEXT		R:W 2nd	R:W NEXT	R:W NEXT	R:W NEXT	R:W 2nd	R:W 2nd	R:W NEXT		R:W NEXT	R:W 2nd	R:W 2nd	R:W NEXT	R:W 2nd	R:W 2nd	R:W NEXT		R:W NEXT	R:W 2nd	R:W 2nd	R:W 2nd	R:W NEXT	R:W NEXT	R:W 2nd	R:W 2nd	R:W NEXT		R:W 2nd	R:W 2nd	R:W NEXT	R:W 2nd	R:W 2nd	R:W NEXT		R:W 2nd	R:W 2nd
Instruction	LDMAC ERS, MACL		MAC @ERn+,@ERm+	MOV.B #xx:8,Rd	MOV.B Rs,Rd	MOV.B @ERs,Rd	MOV.B @(d:16,ERs),Rd	MOV.B @(d:32,ERs),Rd	MOV.B @ERs+,Rd		MOV.B @aa:8,Rd	MOV.B @aa:16,Rd	MOV.B @aa:32,Rd	MOV.B Rs,@ERd	MOV.B Rs,@(d:16,ERd)	MOV.B Rs,@(d:32,ERd)	MOV.B Rs,@-ERd		MOV.B Rs,@aa:8	MOV.B Rs,@aa:16	MOV.B Rs,@aa:32	MOV.W #xx:16,Rd	MOV.W Rs,Rd	MOV.W @ERs,Rd	MOV.W @(d:16,ERs),Rd	MOV.W @(d:32,ERs),Rd	MOV.W @ERs+, Rd		MOV.W @aa:16,Rd	MOV.W @aa:32,Rd	MOV.W Rs,@ERd	MOV.W Rs,@(d:16,ERd)	MOV.W Rs,@(d:32,ERd)	MOV.W Rs,@-ERd		MOV.W Rs,@aa:16	MOV.W Rs,@aa:32

Instruction	1	2	8	4	5	9	7	8	6
MOV.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
MOV.L ERS,ERd	R:W NEXT								
MOV.L @ERS,ERd	R:W 2nd	R:W:M NEXT	R:W:M EA	R:W EA+2					
MOV.L @(d:16,ERs),ERd	R:W 2nd	R:W:M 3rd	R:W NEXT	R:W:M EA	R:W EA+2				
MOV.L @(d:32,ERs),ERd	R:W 2nd	R:W:M 3rd	R:W:M 4th	R:W 5th	R:W NEXT	R:W:M EA	R:W EA+2		
MOV.L @ERs+,ERd	R:W 2nd	R:W:M NEXT	Internal operation, R:W:M EA	R:W:M EA	R:W EA+2				
			1 state						
MOV.L @aa:16,ERd	R:W 2nd	R:W:M 3rd	R:W NEXT	R:W:M EA	R:W EA+2				
MOV.L @aa:32,ERd	R:W 2nd	R:W:M 3rd	R:W 4th	R:W NEXT	R:W:M EA	R:W EA+2			
MOV.L ERS,@ERd	R:W 2nd	R:W:M NEXT	W:W:M EA	W:W EA+2					
MOV.L ERs,@(d:16,ERd)	R:W 2nd	R:W:M 3rd	R:W NEXT	W:W:M EA	W:W EA+2				
MOV.L ERs,@(d:32,ERd)	R:W 2nd	R:W:M 3rd	R:W:M 4th	R:W 5th	R:W NEXT	W:W:M EA	W:W EA+2		
MOV.L ERs,@-ERd	R:W 2nd	R:W:M NEXT	Internal operation, W:W:M EA	W:W:M EA	W:W EA+2				
			1 state						
MOV.L ERs,@aa:16	R:W 2nd	R:W:M 3rd	R:W NEXT	W:W:M EA	W:W EA+2				
MOV.L ERs,@aa:32	R:W 2nd	R:W:M 3rd	R:W 4th	R:W NEXT	W:W:M EA	W:W EA+2			
MOVFPE @aa:16,Rd	Cannot be used in this LSI	d in this LSI							
MOVTPE Rs,@aa:16									
MULXS.B Rs,Rd	R:W 2nd	R:W NEXT	Internal operation, 2 states	on, 2 states					
MULXS.W Rs,ERd	R:W 2nd	R:W NEXT	Internal operation, 3 states	on, 3 states					
MULXU.B Rs,Rd	R:W NEXT	Internal operation, 2 states	ion, 2 states						
MULXU.W Rs,ERd	R:W NEXT	Internal operation, 3 states	ion, 3 states						
NEG.B Rd	R:W NEXT								
NEG.W Rd	R:W NEXT								
NEG.L ERd	R:W NEXT								
don	R:W NEXT								
NOT.B Rd	R:W NEXT								
NOT.W Rd	R:W NEXT								
NOT.L ERd	R:W NEXT								
OR.B #xx:8,Rd	R:W NEXT								
OR.B Rs,Rd	R:W NEXT								
OR.W #xx:16,Rd	R:W 2nd	R:W NEXT							
OR.W Rs,Rd	R:W NEXT								
OR.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
OR.L ERS,ERd	R:W 2nd	R:W NEXT							
ORC #xx:8,CCR	R:W NEXT								
ORC #xx:8,EXR	R:W 2nd	R:W NEXT							

Instruction	_	2	က	4	2	9	7	8	6
POP.W Rn	R:W NEXT	Internal operation, R:W EA	R:W EA						
		1 state							
POP.L ERn	R:W 2nd	R:W:M NEXT	R:W:M NEXT Internal operation, R:W:M EA 1 state	R:W:M EA	R:W EA+2				
PUSH.W Rn	R:W NEXT	Internal operation, W:W EA	W:W EA						
PUSH.L ERn	R:W 2nd	R:W:M NEXT	R:W:M NEXT Internal operation, W:W:M EA 1 state	W:W:M EA	W:W EA+2				
ROTL.B Rd	R:W NEXT								
ROTL.B #2,Rd	R:W NEXT								
ROTL.W Rd	R:W NEXT								
ROTL.W #2,Rd	R:W NEXT								
ROTL.L ERd	R:W NEXT								
ROTL.L #2,ERd	R:W NEXT								
ROTR.B Rd	R:W NEXT								
ROTR.B #2,Rd	R:W NEXT								
ROTR.W Rd	R:W NEXT								
ROTR.W #2,Rd	R:W NEXT								
ROTR.L ERd	R:W NEXT								
ROTR.L #2,ERd	R:W NEXT								
ROTXL.B Rd	R:W NEXT								
ROTXL.B #2,Rd	R:W NEXT								
ROTXL.W Rd	R:W NEXT								
ROTXL.W #2,Rd	R:W NEXT								
ROTXL.L ERd	R:W NEXT								
ROTXL.L #2,ERd	R:W NEXT								
ROTXR.B Rd	R:W NEXT								
ROTXR.B #2,Rd	R:W NEXT								
ROTXR.W Rd	R:W NEXT								
ROTXR.W #2,Rd	R:W NEXT								
ROTXR.L ERd	R:W NEXT								
ROTXR.L #2,ERd	R:W NEXT								
RTE	R:W NEXT	R:W stack (EXR)	R:W stack (H)	R:W stack (L)	Internal operation, R:W*4 1 state	R:W*4			
RTS	R:W NEXT	R:W:M stack (H)	R:W stack (L) 1 state	Internal operation, R:W*4	R:W*4				
SHAL.B Rd	R:W NEXT								

Instruction	1	2	8	4	5	9	7	8	6
SHAL.B #2,Rd	R:W NEXT								
SHAL.W Rd	R:W NEXT								
SHAL.W #2,Rd	R:W NEXT								
SHAL.L ERd	R:W NEXT								
SHAL.L #2,ERd	R:W NEXT								
SHAR.B Rd	R:W NEXT								
SHAR.B #2,Rd	R:W NEXT								
SHAR.W Rd	R:W NEXT								
SHAR.W #2,Rd	R:W NEXT								
SHAR.L ERd	R:W NEXT								
SHAR.L #2,ERd	R:W NEXT								
SHLL.B Rd	R:W NEXT								
SHLL.B #2,Rd	R:W NEXT								
SHLL.W Rd	R:W NEXT								
SHLL.W #2,Rd	R:W NEXT								
SHLL.L ERd	R:W NEXT								
SHLL.L #2,ERd	R:W NEXT								
SHLR.B Rd	R:W NEXT								
SHLR.B #2,Rd	R:W NEXT								
SHLR.W Rd	R:W NEXT								
SHLR.W #2,Rd	R:W NEXT								
SHLR.L ERd	R:W NEXT								
SHLR.L #2,ERd	R:W NEXT								
SLEEP	R:W NEXT	Internal operation:M							
STC CCR,Rd	R:W NEXT								
STC EXR,Rd	R:W NEXT								
STC CCR,@ERd	R:W 2nd	R:W NEXT	W:W EA						
STC EXR,@ERd	R:W 2nd	R:W NEXT	W:W EA						
STC CCR,@(d:16,ERd)	R:W 2nd	R:W 3rd	R:W NEXT	W:W EA					
STC EXR,@(d:16,ERd)	R:W 2nd	R:W 3rd	R:W NEXT	W:W EA					
STC CCR,@(d:32,ERd)	R:W 2nd	R:W 3rd	R:W 4th	R:W 5th	R:W NEXT	W:W EA			
STC EXR,@(d:32,ERd)	R:W 2nd	R:W 3rd	R:W 4th	R:W 5th	R:W NEXT	W:W EA			
STC CCR,@-ERd	R:W 2nd	R:W NEXT	Internal operation,	W:W EA					
			State						
STC EXR,@-ERd	R:W 2nd	R:W NEXT	Internal operation, W:W EA	W:W EA					
STC CCD @22:16	D-1/V 2 p.d	D-1/1/ 3rd	D-W NEXT	V - W - W					
31 C C C C (N. W ZIIG	N.W. 010	T	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
STC EXR,@aa:16	R:W 2nd	R:W 3rd	R:W NEXT	W:W EA					

Instruction	-	2	3	4	2	9	7	8	6
STC CCR,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	W:W EA				
STC EXR,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	W:W EA				
STM.L(ERn-ERn+1), @-SP*9		R:W:M NEXT	R:W:M NEXT Internal operation, W:W:M stack (H)*3 W:W stack (L)*3	W:W:M stack (H)*3	W:W stack (L)*3				
			1 state						
STM.L(ERn-ERn+2),@-SP*9	R:W 2nd	R:W:M NEXT	R:W:M NEXT Internal operation, W:W:M stack (H)*3 W:W stack (L)*3 1 state	W:W:M stack (H)*3	W:W stack (L)*3				
STM.L(ERn-ERn+3),@-SP*9 R:W 2nd	R:W 2nd	R:W:M NEXT	R:W:M NEXT Internal operation, W:W:M stack (H)*3 W:W stack (L)*3	W:W:M stack (H)*3	W:W stack (L)*3				
			1 state						
STMAC MACH,ERd	R:W NEXT								
STMAC MACL, ERd	R:W NEXT								
SUB.B Rs,Rd	R:W NEXT								
SUB.W #xx:16,Rd	R:W 2nd	R:W NEXT							
SUB.W Rs,Rd	R:W NEXT								
SUB.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
SUB.L ERs,ERd	R:W NEXT								
SUBS #1/2/4,ERd	R:W NEXT								
SUBX #xx:8,Rd	R:W NEXT								
SUBX Rs,Rd	R:W NEXT								
TAS @ERd*8	R:W 2nd	R:W NEXT	R:B:M EA	W:B EA					
TRAPA #x:2	R:W NEXT	Internal operation, W:W stack (L)		W:W stack (H)	W:W stack (EXR) R:W:M VEC	R:W:M VEC	R:W VEC+2	Internal operation, R:W*7	R:W*7
		1 state						1 state	
XOR.B #xx8,Rd	R:W NEXT								
XOR.B Rs,Rd	R:W NEXT								
XOR.W #xx:16,Rd	R:W 2nd	R:W NEXT							
XOR.W Rs,Rd	R:W NEXT								
XOR.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
XOR.L ERS,ERd	R:W 2nd	R:W NEXT							
XORC #xx:8,CCR	R:W NEXT								
XORC #xx:8,EXR	R:W 2nd	R:W NEXT							

nstruction	1	2	3	4	9	9	2	8	6
—	Reset exception handling R:W VEC	R:W VEC+2 Internal operation, R:W*5	Internal operation,	R:W*5					
			1 state						
	Interrupt exception handling R:W*6	Internal operation,	W:W stack (L)	N:W stack (H	W:W stack (EXR)) W:W stack (EXR) R:W:M VEC R:W VEC+2 Internal operation, R:W*7	R:W VEC+2	Internal operation,	R:W*7
		1 state						1 state	

EAd is the contents of ER6. EAs is the contents of ER5. Notes:

EAd is the contents of ER6. Both registers are incremented by 1 after execution of the instruction. n is the initial value of R4L or R4. If n = 0, these bus cycles are not executed. EAs is the contents of ER5.

Repeated two times to save or restore two registers, three times for three registers, or four times for four registers.

Start address after return. ю. 4.

Start address of the program.

Prefetch address, equal to two plus the PC value pushed onto the stack. In recovery from sleep mode or software standby mode the read 6.5

Start address of the interrupt-handling routine. operation is replaced by an internal operation.

Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction. √. 8. 9.

Only register ER0 to ER6 should be used when using the STM/LDM instruction.

A.6 Condition Code Modification

This section indicates the effect of each CPU instruction on the condition code. The notation used in the table is defined below.

$$m = \begin{cases} 31 \text{ for longword operands} \\ 15 \text{ for word operands} \end{cases}$$

$$7 \text{ for byte operands}$$

- Si The i-th bit of the source operand
- Di The i-th bit of the destination operand
- Ri The i-th bit of the result
- Dn The specified bit in the destination operand
- Not affected
- Modified according to the result of the instruction (see definition)
- 0 Always cleared to 0
- 1 Always set to 1
- * Undetermined (no guaranteed value)
- Z' Z flag before instruction execution
- C' C flag before instruction execution

Condition Code Modification Table A-7

Instruction	Н	N	Z	٧	С	Definition
ADD	\$	\$	\$	\$	\(\)	$H = Sm-4 \cdot Dm-4 + Dm-4 \cdot \overline{Rm-4} + Sm-4 \cdot \overline{Rm-4}$
						N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						$V = Sm \cdot Dm \cdot \overline{Rm} + \overline{Sm} \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot Dm + Dm \cdot \overline{Rm} + Sm \cdot \overline{Rm}$
ADDS	_	_	_	_	_	
ADDX	\$	\$	\$	\$	\$	$H = Sm-4 \cdot Dm-4 + Dm-4 \cdot \overline{Rm-4} + Sm-4 \cdot \overline{Rm-4}$
						N = Rm
						$Z = Z' \cdot \overline{Rm} \cdot \cdots \cdot \overline{R0}$
						$V = Sm \cdot Dm \cdot \overline{Rm} + \overline{Sm} \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot Dm + Dm \cdot \overline{Rm} + Sm \cdot \overline{Rm}$
AND	_	\$	\$	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
ANDC	\$	\$	\$	\$	\$	Stores the corresponding bits of the result.
						No flags change when the operand is EXR.
BAND	_	_	_	_	\$	$C = C' \cdot Dn$
Bcc	_	_	_	_		
BCLR	_	_	_	_	_	
BIAND	_	—	_	_	\$	$C = C' \cdot \overline{Dn}$
BILD	_	_	_	_	\$	$C = \overline{Dn}$
BIOR	_	_	_	_	\$	$C = C' + \overline{Dn}$
BIST	_	_	_	_	_	
BIXOR	_	_	_	_	\$	$C = C' \cdot Dn + \overline{C'} \cdot \overline{Dn}$
BLD	_	_	_	_	\$	C = Dn
BNOT	_	_	_	_	_	
BOR	_	_	_	_	\$	C = C' + Dn
BSET	_	_	_	_	_	
BSR	_	_	_	_	_	
BST	_	_	_	_		
BTST	_	_	\$	_		$Z = \overline{Dn}$
BXOR	_	_	_	_	\$	$C = C' \cdot \overline{Dn} + \overline{C'} \cdot Dn$

Instruction	Н	N	Z	٧	С	Definition
CLRMAC	_	_	_	_	_	
СМР	\$	\$	\$	\$	\(\)	$H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$ $N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$ $V = \overline{Sm} \cdot \overline{Dm} \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$ $C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$
DAA	*	\$	\$	*	\$	$N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ C: decimal arithmetic carry
DAS	*	\$	\$	*	\$	$N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ C: decimal arithmetic borrow
DEC	_	\$	\$	\$	_	$N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$ $V = Dm \cdot \overline{Rm}$
DIVXS	_	\$	\$	_	_	$N = Sm \cdot \overline{Dm} + \overline{Sm} \cdot Dm$ $Z = \overline{Sm} \cdot \overline{Sm-1} \cdot \dots \cdot \overline{S0}$
DIVXU	_	\$	\$	_	_	$N = Sm$ $Z = \overline{Sm} \cdot \overline{Sm-1} \cdot \dots \cdot \overline{S0}$
EEPMOV	_	_	_	_	_	
EXTS	_	\$	\$	0	_	$N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
EXTU	_	0	\$	0	_	$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
INC	_	\$	\$	\$	_	$N = Rm$ $Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$ $V = \overline{Dm} \cdot Rm$
JMP	_	_	_	_	_	
JSR	_	_	_	_	_	
LDC	\$	\$	\$	\$	\$	Stores the corresponding bits of the result. No flags change when the operand is EXR.
LDM	_	_	_	_	_	
LDMAC	_	_	_	_	_	
MAC	_	_	_	_	_	

Instruction	Н	N	Z	٧	С	Definition
MOV	_	\$	\$	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
MOVFPE						Can not be used in this LSI.
MOVTPE						
MULXS	_	\$	\$	_	_	N = R2m
						$Z = \overline{R2m} \cdot \overline{R2m-1} \cdot \cdots \cdot \overline{R0}$
MULXU	_	_	_	_	_	
NEG	\$	\$	\$	\$	\$	H = Dm-4 + Rm-4
						N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
						$V = Dm \cdot Rm$
						C = Dm + Rm
NOP	_	_	_	_	_	
NOT	_	\$	\$	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
OR	_	\(\)	\$	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
ORC	\(\)	\$	\$	\$	\$	Stores the corresponding bits of the result.
						No flags change when the operand is EXR.
POP	_	\$	\$	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
PUSH	_	\$	\$	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
ROTL	_	\$	\$	0	\$	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)
ROTR	_	\(\)	\$	0	\$	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \cdots \cdot \overline{R0}$
						C = D0 (1-bit shift) or $C = D1$ (2-bit shift)

Instruction	н	N	Z	٧	С	Definition
ROTXL	_	\$	\$	0	\$	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)
ROTXR	_	\$	\$	0	\$	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
						C = D0 (1-bit shift) or $C = D1$ (2-bit shift)
RTE	\$	\$	\$	\$	\$	Stores the corresponding bits of the result.
RTS		_	_			
SHAL	_	\$	\$	\$	\$	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						$V = \overline{Dm \cdot Dm - 1 + \overline{Dm} \cdot \overline{Dm - 1}} $ (1-bit shift)
						$V = \overline{Dm \cdot Dm - 1 \cdot Dm - 2 \cdot \overline{Dm} \cdot \overline{Dm - 1} \cdot \overline{Dm - 2}} (2-bit shift)$
						C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)
SHAR		\$	\$	0	\$	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = D0 (1-bit shift) or $C = D1$ (2-bit shift)
SHLL	_	\$	\$	0	\$	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)
SHLR	_	0	\$	0	\$	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = D0 (1-bit shift) or $C = D1$ (2-bit shift)
SLEEP	_	_	_	_	_	
STC	_	_	_	_	_	
STM	_	_	_	_	_	
STMAC	_	\$	\$	\$	_	N = 1 if MAC instruction resulted in negative value in MAC register
						Z = 1 if MAC instruction resulted in zero value in MAC register
						V = 1 if MAC instruction resulted in overflow

Instruction	Н	N	Z	٧	С	Definition
SUB	\$	\$	\$	\$	\$	$H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$
						N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \cdots \cdot \overline{R0}$
						$V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$
SUBS	_	_	_	_	_	
SUBX	\$	\$	\$	\$	\$	$H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$
						N = Rm
						$Z = Z' \cdot \overline{Rm} \cdot \cdots \cdot \overline{R0}$
						$V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$
TAS	_	\$	\$	0	_	N = Dm
						$Z = \overline{Dm} \cdot \overline{Dm} - \overline{1} \cdot \cdots \cdot \overline{D0}$
TRAPA	_	_	_	_	_	
XOR	_	\$	\$	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot \overline{R0}$
XORC	\$	\$	\$	\$	\$	Stores the corresponding bits of the result.
						No flags change when the operand is EXR.

Appendix B Internal I/O Register

B.1 Address

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'EBC0 to	MRA	SM1	SM0	DM1	DM0	MD1	MD0	DTS	Sz	DTC*7	8/16/32
H'EFBF	MRB	CHNE	DISEL	_	_	_	_	_	_		
	SAR									_	
										_	
		·								_	
	DAR	-								<u> </u>	
		-								<u> </u>	
	CRA									_	
										_	
	CRB										
H'F800	MCR0	MCR7	_	MCR5	_	_	MCR2	MCR1	MCR0	HCAN0	8/16
H'F801	GSR0	_	_	_	_	GSR3	GSR2	GSR1	GSR0	_	
H'F802	BCR0	BCR7	BCR6	BCR5	BCR4	BCR3	BCR2	BCR1	BCR0	_	
H'F803		BCR15	BCR14	BCR13	BCR12	BCR11	BCR10	BCR9	BCR8	_	
H'F804	MBCR	MBCR7	MBCR6	MBCR5	MBCR4	MBCR3	MBCR2	MBCR1	_	_	
H'F805		MBCR15	MBCR14	MBCR13	MBCR12	MBCR11	MBCR10	MBCR9	MBCR8	_	
H'F806	TXPR	TXPR7	TXPR6	TXPR5	TXPR4	TXPR3	TXPR2	TXPR1	_	_	
H'F807		TXPR15	TXPR14	TXPR13	TXPR12	TXPR11	TXPR10	TXPR9	TXPR8	_	
H'F808	TXCR	TXCR7	TXCR6	TXCR5	TXCR4	TXCR3	TXCR2	TXCR1	_		
H'F809		TXCR15	TXCR14	TXCR13	TXCR12	TXCR11	TXCR10	TXCR9	TXCR8		
H'F80A	TXACK	TXACK7	TXACK6	TXACK5	TXACK4	TXACK3	TXACK2	TXACK1	_		
H'F80B		TXACK15	TXACK14	TXACK13	TXACK12	TXACK11	TXACK10	TXACK9	TXACK8		
H'F80C	ABACK	ABACK7	ABACK6	ABACK5	ABACK4	ABACK3	ABACK2	ABACK1	_		
H'F80D		ABACK15	ABACK14	ABACK13	ABACK12	ABACK11	ABACK10	ABACK9	ABACK8		
H'F80E	RXPR	RXPR7	RXPR6	RXPR5	RXPR4	RXPR3	RXPR2	RXPR1	RXPR0		
H'F80F		RXPR15	RXPR14	RXPR13	RXPR12	RXPR11	RXPR10	RXPR9	RXPR8		
H'F810	RFPR	RFPR7	RFPR6	RFPR5	RFPR4	RFPR3	RFPR2	RFPR1	RFPR0	HCAN0	8/16
H'F811		RFPR15	RFPR14	RFPR13	RFPR12	RFPR11	RFPR10	RFPR9	RFPR8		
H'F812	IRR _	IRR7	IRR6	IRR5	IRR4	IRR3	IRR2	IRR1	IRR0		
H'F813		_	_	_	IRR12	_	_	IRR9	IRR8		
H'F814	MBIMR	MBIMR7	MBIMR6	MBIMR5	MBIMR4	MBIMR3	MBIMR2	MBIMR1	MBIMR0	_	
H'F815		MBIMR15	MBIMR14	MBIMR13	MBIMR12	MBIMR11	MBIMR10	MBIMR9	MBIMR8	_	
H'F816	IMR	IMR7	IMR6	IMR5	IMR4	IMR3	IMR2	IMR1		_	
H'F817		_	_	_	IMR12	_	_	IMR9	IMR8		
H'F818	REC										
H'F819	TEC										

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'F81A	UMSR	UMSR7	UMSR6	UMSR5	UMSR4	UMSR3	UMSR2	UMSR1	UMSR0	HCAN0	8/16
H'F81B	_	UMSR15	UMSR14	UMSR13	UMSR12	UMSR11	UMSR10	UMSR9	UMSR8	_	
H'F81C	LAFML	LAFML7	LAFML6	LAFML5	LAFML4	LAFML3	LAFML2	LAFML1	LAFML0	_	
H'F81D	_	LAFML15	LAFML14	LAFML13	LAFML12	LAFML11	LAFML10	LAFML9	LAFML8	_	
H'F81E	LAFMH	LAFMH7	LAFMH6	LAFMH5	_	_	_	LAFMH1	LAFMH0	_	
H'F81F	_	LAFMH15	LAFMH14	LAFMH13	LAFMH12	LAFMH11	LAFMH10	LAFMH9	LAFMH8	_	
H'F820	MC0[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN0	8/16
H'F821	MC0[2]	_	_	_	_	_	_	_	_	_	
H'F822	MC0[3]	_	_	_	_	_	_	_	_	_	
H'F823	MC0[4]	_	_	_	_	_	_	_	_	_	
H'F824	MC0[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'F825	MC0[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'F826	MC0[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'F827	MC0[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'F828	MC1[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	_	
H'F829	MC1[2]	_	_	_	_	_	_	_	_	_	
H'F82A	MC1[3]	_	_	_	_	_	_	_	_	_	
H'F82B	MC1[4]	_	_	_	_	_	_	_	_	_	
H'F82C	MC1[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'F82D	MC1[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'F82E	MC1[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'F82F	MC1[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'F830	MC2[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN0	8/16
H'F831	MC2[2]	_	_	_	_	_	_	_	_	_	
H'F832	MC2[3]	_	_	_	_	_	_	_	_	_	
H'F833	MC2[4]	_	_	_	_	_	_	_	_	_	
H'F834	MC2[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'F835	MC2[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'F836	MC2[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'F837	MC2[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'F838	MC3[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN0	8/16
H'F839	MC3[2]	_	_	_	_	_	_	_	_	_	
H'F83A	MC3[3]	_	_	_	_	_	_	_	_	=	
H'F83B	MC3[4]	_	_	_	_	_	_	_	_	=	
H'F83C	MC3[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	=	
H'F83D	MC3[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	=	
H'F83E	MC3[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'F83F	MC3[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'F840	MC4[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN0	8/16
H'F841	MC4[2]	_	_	_	_	_	_	_	_	=	
H'F842	MC4[3]	_	_	_	_	_	_	_	_	=	
H'F843	MC4[4]	_	_	_	_	_	_	_	_	_	
H'F844	MC4[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	=	
H'F845	MC4[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'F846	MC4[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'F847	MC4[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'F848	MC5[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN0	8/16
H'F849	MC5[2]	_	_	_	_	_	_	_	_	-	
H'F84A	MC5[3]	_	_	_	_	_	_	_	_	_	
H'F84B	MC5[4]	_	_	_	_	_	_	_	_	_	
H'F84C	MC5[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'F84D	MC5[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'F84E	MC5[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'F84F	MC5[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'F850	MC6[1]	_	=	_	_	DLC3	DLC2	DLC1	DLC0	HCAN0	8/16
H'F851	MC6[2]	_	_	_	_	_	_	_	_	_	
H'F852	MC6[3]	_	_	_	_	_	_	_	_	_	
H'F853	MC6[4]	_	_	_	_	_	_	_	_	_	
H'F854	MC6[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'F855	MC6[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'F856	MC6[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'F857	MC6[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'F858	MC7[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	_	
H'F859	MC7[2]	_	_	_	_	_	_	_	_	=	
H'F85A	MC7[3]	_	_	_	_	_	_	_	_	=	
H'F85B	MC7[4]	_	_	_	_	_	_	_	_	=	
H'F85C	MC7[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	=	
H'F85D	MC7[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'F85E	MC7[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	=	
H'F85F	MC7[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	=	
H'F860	MC8[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN0	8/16
H'F861	MC8[2]	_	_	_	_	_	_	_	_	=	
H'F862	MC8[3]	_	_	_	_	_	_	_	_	=	
H'F863	MC8[4]	_	_	_	_	_	_	_	_	=	
H'F864	MC8[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	-	
H'F865	MC8[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	-	
H'F866	MC8[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	-	
H'F867	MC8[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	-	

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'F868	MC9[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN0	8/16
H'F869	MC9[2]	_	_	_	_	_	_	_	_	_	
H'F86A	MC9[3]	_	_	_	_	_	_	_	_	_	
H'F86B	MC9[4]	_	_	_	_	_	_	_	_	=	
H'F86C	MC9[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'F86D	MC9[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'F86E	MC9[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'F86F	MC9[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	=	
H'F870	MC10[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN0	8/16
H'F871	MC10[2]	_	_	_	_	_	_	_	_	_	
H'F872	MC10[3]	_	_	_	_	_	_	_	_	_	
H'F873	MC10[4]	_	_	_	_	_	_	_	_	_	
H'F874	MC10[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'F875	MC10[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'F876	MC10[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'F877	MC10[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'F878	MC11[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	_	
H'F879	MC11[2]	_	_	_	_	_	_	_	_	_	
H'F87A	MC11[3]	_	_	_	_	_	_	_	_	_	
H'F87B	MC11[4]	_	_	_	_	_	_	_	_	_	
H'F87C	MC11[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'F87D	MC11[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	=	
H'F87E	MC11[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	=	
H'F87F	MC11[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	=	
H'F880	MC12[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN0	8/16
H'F881	MC12[2]	_	_	_	_	_	_	_	_	=	
H'F882	MC12[3]	_	_	_	_	_	_	_	_	=	
H'F883	MC12[4]	_	_	_	_	_	_	_	_	=	
H'F884	MC12[5]	STD ID2	STD ID1	STD ID0	RTR	IDE	_	EXD ID17	EXD_ID16	=	
H'F885	MC12[6]	STD_ID10	STD ID9	STD ID8	STD_ID7	STD_ID6	STD ID5	STD ID4	STD_ID3	=	
H'F886	MC12[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	=	
H'F887	MC12[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	=	
H'F888	MC13[1]		_			DLC3	DLC2	DLC1	DLC0	HCAN0	8/16
H'F889	MC13[2]	_	_	_	_	_	_	_	_	_	
H'F88A	MC13[3]	_	_	_	_	_	_	_	_	_	
H'F88B	MC13[4]	_	_	_	_	_	_	_	_	_	
H'F88C	MC13[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'F88D	MC13[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'F88E	MC13[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
	MC13[8]	EXD ID15	EXD ID14	EXD ID13	EXD ID12	EXD ID11	EXD ID10	EXD ID9	EXD ID8	_	

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'F890	MC14[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN0	8/16
H'F891	MC14[2]	_	_	_	_	_	_	_	_	-	
H'F892	MC14[3]	_	_	_	_	_	_	_	_	-	
H'F893	MC14[4]	_	_	_	_	_	_	_	_	-	
H'F894	MC14[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	-	
H'F895	MC14[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	-	
H'F896	MC14[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	-	
H'F897	MC14[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	-	
H'F898	MC15[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	-	
H'F899	MC15[2]	_	_	_	_	_	_	_	_	-	
H'F89A	MC15[3]	_	_	_	_	_	_	_	_	-	
H'F89B	MC15[4]	_	_	_	_	_	_	_	_	-	
H'F89C	MC15[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	-	
H'F89D	MC15[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	-	
H'F89E	MC15[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	-	
H'F89F	MC15[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	-	
H'F8B0	MD01									HCAN0	8/16
H'F8B1	MD02									_	
H'F8B2	MD03									_	
H'F8B3	MD04									_	
H'F8B4	MD05									_	
H'F8B5	MD06									_	
H'F8B6	MD07									_	
H'F8B7	MD08										
H'F8B8	MD11									HCAN0	8/16
H'F8B9	MD12									_	
H'F8BA	MD13									_	
H'F8BB	MD14									_	
H'F8BC	MD15									_	
H'F8BD	MD16									_	
H'F8BE	MD17									_	
H'F8BF	MD18										
H'F8C0	MD21									HCAN0	8/16
H'F8C1	MD22									_	
H'F8C2	MD23									_	
H'F8C3	MD24									_	
H'F8C4	MD25									_	
H'F8C5	MD26									_	
H'F8C6	MD27									_	
H'F8C7	MD28										

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'F8C8	MD31									HCAN0	8/16
H'F8C9	MD32										
H'F8CA	MD33										
H'F8CB	MD34										
H'F8CC	MD35										
H'F8CD	MD36										
H'F8CE	MD37										
H'F8CF	MD38										
H'F8D0	MD41									HCAN0	8/16
H'F8D1	MD42										
H'F8D2	MD43										
H'F8D3	MD44										
H'F8D4	MD45										
H'F8D5	MD46										
H'F8D6	MD47										
H'F8D7	MD48										
H'F8D8	MD51									HCAN0	8/16
H'F8D9	MD52										
H'F8DA	MD53										
H'F8DB	MD54										
H'F8DC	MD55										
H'F8DD	MD56										
H'F8DE	MD57										
H'F8DF	MD58										
H'F8E0	MD61									HCAN0	8/16
H'F8E1	MD62										
H'F8E2	MD63										
H'F8E3	MD64										
H'F8E4	MD65										
H'F8E5	MD66										
H'F8E6	MD67										
H'F8E7	MD68										
H'F8E8	MD71									HCAN0	8/16
H'F8E9	MD72										
H'F8EA	MD73									_	
H'F8EB	MD74									_	
H'F8EC	MD75										
H'F8ED	MD76										
H'F8EE	MD77										
H'F8EF	MD78										

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'F8F0	MD81									HCAN0	8/16
H'F8F1	MD82									_	
H'F8F2	MD83									_	
H'F8F3	MD84									_	
H'F8F4	MD85									_	
H'F8F5	MD86										
H'F8F6	MD87										
H'F8F7	MD88									_	
H'F8F8	MD91									HCAN0	8/16
H'F8F9	MD92									_	
H'F8FA	MD93									_	
H'F8FB	MD94										
H'F8FC	MD95										
H'F8FD	MD96										
H'F8FE	MD97										
H'F8FF	MD98										
H'F900	MD101									HCAN0	8/16
H'F901	MD102										
H'F902	MD103										
H'F903	MD104										
H'F904	MD105										
H'F905	MD106										
H'F906	MD107									_	
H'F907	MD108									_	
H'F908	MD111									HCAN0	8/16
H'F909	MD112										
H'F90A	MD113									_	
H'F90B	MD114									_	
H'F90C	MD115										
H'F90D	MD116										
H'F90E	MD117										
H'F90F	MD118									_	
H'F910	MD121									HCAN0	8/16
H'F911	MD122									_	
H'F912	MD123										
H'F913	MD124										
H'F914	MD125										
H'F915	MD126										
H'F916	MD127										
H'F917	MD128										

HF919 MD131 HF919 MD133 HF9118 MD134 HF910 MD136 HF910 MD136 HF9118 MD137 HF9118 MD137 HF9119 MD138 HF9119 MD137 HF9119 MD138 HF920 MD141 HF920 MD142 HF922 MD143 HF922 MD143 HF922 MD144 HF922 MD145 HF922 MD145 HF928 MD155 HF928 MD156 HF928 MD151 HF929 MD157 HF929 MD150 HF929 MD150 HF920 MD150	Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
HF91A MD133 HF91B MD134 HF91C MD135 HF91E MD137 HF91E MD137 HF91F MD138 HF920 MD141 HF920 MD141 HF921 MD142 HF922 MD143 HF922 MD144 HF922 MD145 HF923 MD144 HF924 MD145 HF928 MD145 HF928 MD155 HF928 MD151 HF928 MD151 HF928 MD151 HF928 MD150 HF928 MD150 HF928 MD150 HF928 MD150 HF928 MD150 HF928 MD150 HF928 MD150 HF928 MD156 HF928 MD156 HF928 MD156 HF928 MD156 HF928 MD156 HF928 MD158 HF928 MD156 HF928	H'F918	MD131									HCAN0	8/16
HF91B MD134 HF91C MD135 HF91D MD136 HF91F MD138 HF92P MD138 HF92Q MD141 HF921 MD142 HF922 MD143 HF923 MD144 HF923 MD145 HF928 MD145 HF928 MD146 HF928 MD147 HF928 MD150 HF928 MD151 HF928 MD152 HF928 MD152 HF928 MD152 HF928 MD150 HF928 MD150 HF928 MD150 HF929 MD150 HF929 MD150 HF929 MD150 HF920 MD150 HF920 MD156 HF920	H'F919	MD132									_	
HF91C MD135 HF91F MD137 HF91F MD138 HF920 MD141 HF920 MD141 HF921 MD142 HF922 MD143 HF923 MD144 HF923 MD144 HF923 MD145 HF926 MD147 HF926 MD147 HF927 MD148 HF928 MD150 HF928 MD151 HF929 MD152 HF929 MD150 HF920	H'F91A	MD133									_	
HF91D MD136 HF91E MD137 HF91F MD138 HF920 MD141 HF921 MD142 HF922 MD143 HF923 MD144 HF924 MD145 HF928 MD146 HF928 MD146 HF928 MD146 HF928 MD157 HF928 MD150 HF928 MD151 HF929 MD152 HF929 MD152 HF929 MD152 HF920 MD158 HF920 MCR7 — MCR5 — — MCR2 MCR1 MCR0 HF920 MCR7 — MCR1 MCR0 MCR7 — MCR0 MCR1 MCR0 MCR0 MCR0 MCR0 MCR0 MCR0 MCR0 MCR0	H'F91B	MD134									_	
HF91E M0138 HF920 M0141 HF921 M0142 HF922 M0143 HF923 M0144 HF924 M0145 HF926 M0146 HF926 M0147 HF927 M0148 HF928 M0150 HF928 M0151 HF928 M0152 HF928 M0153 HF928 M0153 HF928 M0153 HF928 M0154 HF929 M0156 HF920	H'F91C	MD135									_	
HF91F MD138 HF920 MD141 HF921 MD142 HF923 MD143 HF922 MD143 HF922 MD145 HF928 MD145 HF928 MD146 HF928 MD146 HF928 MD151 HF928 MD151 HF928 MD151 HF928 MD152 HF928 MD153 HF928 MD155 HF928 MD156 HF928 MD156 HF928 MD156 HF928 MD157 HF928 MD158 HF928 MD156 HF928 MD157 HF928 MD158 HF928 MD156 HF928 MD157 HF928 MD157 HF928 MD158 HF928 MD157 HF928 MD158 HF928 MD156 HF928 MD157 HF928 MD158 HF928 MD157 HF928 MD158 HF928 MD157 HF928 MD158 HF928 MD157 HF928 MD158 HF928 MD157 HF928 MD158 HF928 MD158 HF928 MD157 HF928 MD158 HF928	H'F91D	MD136									_	
HF920 MD142 MD142 MD143 MD143 MD143 MD144 MD145 MD145 MD145 MD146 MD145 MD146 MD146 MD147 MD148 MD147 MD148 MD147 MD148 MD151 MD152 MD153 MD153 MD153 MD153 MD153 MD156 MD156 MD156 MD156 MD157 MD156 MD157 MD158 MD159 MD158 MD159 MD15	H'F91E	MD137									_	
HF921 MD142 HF922 MD143 HF923 MD144 HF924 MD145 HF926 MD146 HF926 MD147 HF927 MD148 HF928 MD151 HF928 MD152 HF928 MD152 HF928 MD153 HF928 MD155 HF920 MD155 HF920 MD156 HF920 MD156 HF920 MD156 HF920 MD157 HF927 MD168 HF920 MD156 HF920 MD156 HF920 MD157 HF920 MD156 HF920 MD157 HF920 MD156 HF920 MD156 HF920 MD156 HF920 MD157 HF920 MD156 HF920 MD156 HF920 MD156 HF920 MD156 HF920 MD156 HF920 MD156 HF920 MD156 HF920 MD156 HF920 MD156 HF920 MD156 HF920 MD157 HF920 MD156 HF920	H'F91F	MD138									_	
HF922 MD143 HF923 MD144 HF924 MD145 HF925 MD146 HF926 MD147 HF927 MD148 HF928 MD151 HF928 MD151 HF928 MD152 HF928 MD153 HF928 MD153 HF928 MD154 HF928 MD154 HF928 MD156 HF928 MD156 HF928 MD156 HF928 MD157 HF928 MD158 HF928 MD156 HF928 MD156 HF928 MD157 HF928 MD158 HF928 MD158 HF928 MD158 HF928 MD158 HF928 MD158 HF929 MD158 HF929 MD158 HF929 MD158 HF929 MD158 HF929 MD159 HF929 HF92	H'F920	MD141									HCAN0	8/16
HF924 MD145 HF925 MD146 HF926 MD147 HF927 MD148 HF928 MD151 HF928 MD152 HF928 MD153 HF928 MD153 HF928 MD155 HF928 MD155 HF928 MD156 HF928 MD157 HF928 MD157 HF928 MD157 HF928 MD158 HF928 MD158 HF928 MD158 HF928 MD158 HF928 MD157 HF928 MD158 HF928 MD158 HF928 MD159 HF928 HF92	H'F921	MD142									_	
HF924 MD145 HF925 MD146 HF925 MD146 HF926 MD148 HF927 MD148 HF927 MD148 HF928 MD151 HF928 MD152 HF928 MD153 HF928 MD154 HF928 MD155 HF920 MD156 HF920 MD156 HF920 MD156 HF920 MD157 HF928 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD159 HF920 HF920 MD159 HF920 HF92	H'F922	MD143									_	
HF926 MD146 HF927 MD148 HF928 MD151 HF928 MD152 HF928 MD153 HF928 MD153 HF928 MD154 HF928 MD155 HF920 MD156 HF920 MD156 HF920 MD156 HF920 MD157 HF920 MD158 HF920 MD157 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MCR MCR7 — MCR5 — — MCR2 MCR1 MCR0 MCR0 MCR1 MCR1 MCR0 MCR1 MCR0 MCR1 MCR1 MCR0 MCR1 MCR1 MCR0 MCR1 MCR1 MCR1 MCR1 MCR1 MCR1 MCR1 MCR1	H'F923	MD144									_	
HF926 MD147 HF927 MD148 HF928 MD151 HF928 MD152 HF928 MD153 HF928 MD154 HF928 MD155 HF928 MD155 HF928 MD156 HF920 MD156 HF920 MD156 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MD158 HF920 MCR MCR7 — MCR5 — — MCR2 MCR1 MCR0 MCR0 MCR0 MCR0 MCR0 MCR0 MCR0 MCR0	H'F924	MD145									_	
HF927 MD148 HF928 MD151 HF929 MD152 HF920 MD153 HF928 MD154 HF920 MD155 HF920 MD155 HF920 MD156 HF920 MD156 HF920 MD156 HF920 MD157 HF920 MD157 HF920 MD157 HF920 MD157 HF920 MD158 HF920 MD158 HF920 MD157 HF920 MD158 HF920 MD157 HF920 MD158 HF920 MD158 HF920 MD157 HF920 MD158 HF920 MD157 HF920 MD158 HF920 MD158 HF920 MCR MCR7 — MCR5 — — MCR2 MCR1 MCR0 HF920 MCR MCR7 — MCR5 — — GSR3 GSR2 GSR1 GSR0 HF920 MCR MCR MCR7 — MCR5 MCR1 MCR0 HF920 MCR MCR7 — MCR5 MCR1 MCR0 HF920 MCR MCR7 — MCR5 MCR1 MCR0 HF401 GSR — — — — GSR3 GSR2 GSR1 GSR0 HF402 BCR1 BCR1 BCR1 BCR1 BCR0 BCR1 BCR1 BCR1 BCR1 BCR1 BCR0 BCR1 BCR1 BCR1 BCR1 BCR1 BCR0 BCR1 MBCR1 MBCR1 MBCR1 MBCR1 MBCR1 MBCR1 MBCR1 MBCR1 MBCR1 — HF406 MBCR3 MBCR2 MBCR1 — TXPR1 TXPR1 TXPR1 TXPR1 TXPR1 TXPR1 TXPR8 HF400 TXPR TXCR6 TXCR5 TXCR4 TXCR3 TXCR2 TXCR1 — TXCR1 TXCR1 TXCR1 TXCR1 TXCR1 TXCR1 TXCR1 TXCR1 TXCR1 TXCR1 TXCR1 TXCR1 TXCR1 TXCR1 TXCR1 TXCR1 TXACK1 TXA	H'F925	MD146									_	
HF928 MD151 HF929 MD152 HF92A MD153 HF92B MD164 HF92C MD155 HF92C MD155 HF92C MD156 HF92C MD157 HF92E MD157 HF92E MD157 HF92F MD158 HF92C	H'F926	MD147									_	
HF929 MD152 HF928 MD153 HF928 MD154 HF920 MD155 HF920 MD156 HF921 MD157 HF927 MD158 HF928 MD157 HF928 MD157 HF929 MD158 HF400 MCR MCR7 — MCR5 — — MCR2 MCR1 MCR0 HCAN1*7 8/16 HF401 GSR — — — — GSR3 GSR2 GSR1 GSR0 HF402 BCR BCR7 BCR6 BCR5 BCR4 BCR3 BCR2 BCR1 BCR0 HF403 BCR15 BCR14 BCR13 BCR12 BCR11 BCR10 BCR9 BCR8 HF404 MBCR MBCR7 MBCR6 MBCR5 MBCR4 MBCR3 MBCR2 MBCR1 — HF405 MBCR15 MBCR14 MBCR13 MBCR12 MBCR11 MBCR10 MBCR9 MBCR8 HF406 TXPR TXPR7 TXPR6 TXPR4 TXPR3 TXPR1 TXPR10 TXPR9 TXPR8 HF406 TXCR TXCR1 TXCR6 TXCR5 TXCR4 TXCR3 TXCR2 TXCR1 — HF408 TXCR15 TXCR14 TXCR13 TXCR12 TXCR11 TXCR10 TXCR9 TXCR8 HF400 TXACK15 TXACK14 TXACK13 TXACK12 TXACK10 TXACK9 TXACK8 HF400 ABACK1 ABAC	H'F927	MD148									_	
HF92A MD153 HF92B MD154 HF92C MD155 HF92D MD156 HF92E MD157 HF92F MD158 HF400 MCR MCR7 — MCR5 — — MCR2 MCR1 MCR0 HF401 GSR — — — — GSR3 GSR2 GSR1 GSR0 HF402 BCR BCR7 BCR6 BCR5 BCR4 BCR3 BCR2 BCR1 BCR0 HF403 BCR15 BCR14 BCR13 BCR12 BCR11 BCR10 BCR9 BCR8 HF404 MBCR MBCR7 MBCR6 MBCR5 MBCR4 MBCR3 MBCR2 MBCR1 — HF405 MBCR15 MBCR14 MBCR13 MBCR12 MBCR11 MBCR10 MBCR9 MBCR8 HF406 TXPR TXPR7 TXPR6 TXPR5 TXPR4 TXPR3 TXPR2 TXPR1 — HF408 TXCR TXCR7 TXCR6 TXCR5 TXCR4 TXCR3 TXCR2 TXCR1 — HF409 TXCR15 TXCR14 TXCR13 TXCR12 TXCR11 TXCR10 TXCR9 TXCR8 HF408 TXACK TXACK7 TXACK6 TXACK5 TXACK4 TXACK3 TXACK2 TXACK1 — HF409 TXACK15 TXACK14 TXACK13 TXACK12 TXACK11 TXACK10 TXACK9 TXACK8 HF400 ABACK ABACK7 ABACK6 ABACK5 ABACK1 ABACK10 ABACK10 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK1 ABACK10 ABACK8 ABACK8 ABACK8 ABACK10 ABACK10 ABACK8 ABACK8 ABACK8 ABACK10 ABACK10 ABACK8 ABACK8 ABACK8 ABACK10 ABACK10 ABACK8 ABACK8 ABACK8 ABACK10 ABACK10 ABACK8 ABACK8 ABACK10 ABACK10 ABACK10 ABACK8 ABACK	H'F928	MD151									_	
HF92B MD154	H'F929	MD152									_	
HF92C MD155 HF92D MD156 HF92E MD157 HF92F MD158 HF900 MCR MCR7	H'F92A	MD153									_	
HF92D MD156	H'F92B	MD154									_	
HF92E MD157	H'F92C	MD155									_	
Hifa00 MCR MCR7 — MCR5 — — MCR2 MCR1 MCR0 MCR1 MCCR1 M	H'F92D	MD156									_	
Hifa00 MCR MCR7 — MCR5 — — MCR2 MCR1 MCR0 HCAN1*7 8/16 Hifa01 GSR — — — — GSR3 GSR2 GSR1 GSR0 Hifa02 BCR BCR7 BCR6 BCR5 BCR4 BCR3 BCR2 BCR1 BCR0 Hifa03 BCR15 BCR14 BCR13 BCR12 BCR11 BCR10 BCR9 BCR8 Hifa04 MBCR MBCR7 MBCR6 MBCR5 MBCR4 MBCR3 MBCR2 MBCR1 — Hifa05 MBCR15 MBCR14 MBCR13 MBCR12 MBCR11 MBCR10 MBCR9 MBCR8 Hifa06 TXPR TXPR7 TXPR6 TXPR5 TXPR4 TXPR3 TXPR2 TXPR1 — Hifa07 TXPR15 TXPR14 TXPR13 TXPR12 TXPR11 TXPR10 TXPR9 TXPR8 Hifa08 TXCR TXCR7 TXCR6 TXCR5 TXCR4 TXCR3 TXCR2 TXCR1 — Hifa09 TXACK TXACK7 TXACK6 TXACK5 TXACK4 TXACK3 TXACK2 TXACK1 — Hifa00 TXACK TXACK7 TXACK6 TXACK5 TXACK4 TXACK3 TXACK2 TXACK1 — Hifa00 ABACK ABACK6 ABACK5 ABACK4 ABACK3 ABACK2 ABACK1 — Hifa00 ABACK15 ABACK14 ABACK13 ABACK12 ABACK11 ABACK10 ABACK9 ABACK8 Hifa00 RXPR RXPR7 RXPR6 RXPR5 RXPR4 RXPR3 RXPR2 RXPR1 RXPR0	H'F92E	MD157									_	
H'FA01 GSR — — — — GSR3 GSR2 GSR1 GSR0 H'FA02 BCR BCR7 BCR6 BCR5 BCR4 BCR3 BCR2 BCR1 BCR0 H'FA03 BCR15 BCR14 BCR13 BCR12 BCR11 BCR10 BCR9 BCR8 H'FA04 MBCR MBCR7 MBCR6 MBCR5 MBCR4 MBCR3 MBCR2 MBCR1 — H'FA05 MBCR15 MBCR14 MBCR13 MBCR12 MBCR11 MBCR10 MBCR9 MBCR8 H'FA06 TXPR TXPR7 TXPR6 TXPR5 TXPR4 TXPR3 TXPR2 TXPR1 — H'FA07 TXPR15 TXPR14 TXPR13 TXPR12 TXPR11 TXPR9 TXPR8 H'FA08 TXCR TXCR7 TXCR6 TXCR5 TXCR4 TXCR3 TXCR2 TXCR1 — H'FA08 TXACK1 TXACK6 TXACK5 TXACK4 TXACK3 TXACK2 </td <td>H'F92F</td> <td>MD158</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>	H'F92F	MD158									_	
Hifa02	H'FA00	MCR	MCR7	_	MCR5	_	_	MCR2	MCR1	MCR0	HCAN1*7	8/16
BCR15 BCR14 BCR13 BCR12 BCR11 BCR10 BCR9 BCR8 H'FA04 MBCR MBCR7 MBCR6 MBCR5 MBCR4 MBCR3 MBCR2 MBCR1 — H'FA05 MBCR15 MBCR14 MBCR13 MBCR12 MBCR10 MBCR9 MBCR8 H'FA06 TXPR	H'FA01	GSR	_	_	_	_	GSR3	GSR2	GSR1	GSR0	_	
H'FA04 MBCR MBCR7 MBCR6 MBCR5 MBCR4 MBCR3 MBCR2 MBCR1 — H'FA05 MBCR15 MBCR14 MBCR13 MBCR12 MBCR11 MBCR10 MBCR9 MBCR8 H'FA06 TXPR TXPR7 TXPR6 TXPR5 TXPR4 TXPR3 TXPR2 TXPR1 — H'FA07 TXPR15 TXPR14 TXPR13 TXPR12 TXPR11 TXPR10 TXPR9 TXPR8 H'FA08 TXCR TXCR7 TXCR6 TXCR5 TXCR4 TXCR3 TXCR2 TXCR1 — H'FA09 TXACK15 TXCR14 TXCR13 TXCR12 TXCR11 TXCR10 TXCR9 TXCR8 H'FA00A TXACK TXACK6 TXACK5 TXACK4 TXACK3 TXACK2 TXACK1 — H'FA0B TXACK15 TXACK14 TXACK13 TXACK12 TXACK11 TXACK10 TXACK8 H'FA0C ABACK15 ABACK14 ABACK13 ABACK12 ABACK11	H'FA02	BCR	BCR7	BCR6	BCR5	BCR4	BCR3	BCR2	BCR1	BCR0	_	
H'FA05 MBCR15 MBCR14 MBCR13 MBCR12 MBCR11 MBCR10 MBCR9 MBCR8 H'FA06 TXPR TXPR7 TXPR6 TXPR5 TXPR4 TXPR3 TXPR2 TXPR1 — H'FA07 TXPR15 TXPR14 TXPR13 TXPR12 TXPR11 TXPR9 TXPR8 H'FA08 TXCR TXCR7 TXCR6 TXCR5 TXCR4 TXCR3 TXCR2 TXCR1 — H'FA09 TXACK15 TXCR14 TXCR13 TXCR12 TXCR11 TXCR9 TXCR8 H'FA00 TXACK TXACK6 TXACK5 TXACK4 TXACK3 TXACK2 TXACK1 TXACK8 H'FA00 ABACK15 TXACK14 TXACK13 TXACK12 TXACK11 TXACK9 TXACK8 H'FA00 ABACK15 ABACK14 ABACK13 ABACK12 ABACK11 ABACK10 ABACK8 H'FA00 RXPR RXPR6 RXPR5 RXPR4 RXPR3 RXPR2 RXPR1 RXPR0	H'FA03		BCR15	BCR14	BCR13	BCR12	BCR11	BCR10	BCR9	BCR8	_	
H'FA06 TXPR TXPR7 TXPR6 TXPR5 TXPR4 TXPR3 TXPR2 TXPR1 — H'FA07 TXPR15 TXPR14 TXPR13 TXPR12 TXPR11 TXPR10 TXPR9 TXPR8 H'FA08 TXCR TXCR7 TXCR6 TXCR5 TXCR4 TXCR3 TXCR2 TXCR1 — H'FA09 TXACK15 TXCR14 TXCR13 TXCR12 TXCR11 TXCR10 TXCR9 TXCR8 H'FA00 TXACK TXACK6 TXACK5 TXACK4 TXACK3 TXACK2 TXACK1 — H'FA00 ABACK15 TXACK14 TXACK13 TXACK12 TXACK11 TXACK3 TXACK3 TXACK3 TXACK4 TXACK10 TXACK4 TXACK6 H'FA00 ABACK15 ABACK6 ABACK5 ABACK4 ABACK11 ABACK10 ABACK6 ABACK6 H'FA00 ABACK15 ABACK13 ABACK12 ABACK11 ABACK10 ABACK9 ABACK8 H'FA00 ABACK15 <	H'FA04	MBCR	MBCR7	MBCR6	MBCR5	MBCR4	MBCR3	MBCR2	MBCR1	_	=	
H'FA07 TXPR15 TXPR14 TXPR13 TXPR12 TXPR11 TXPR10 TXPR9 TXPR8 H'FA08 TXCR TXCR7 TXCR6 TXCR5 TXCR4 TXCR3 TXCR2 TXCR1 — H'FA09 TXACK15 TXCR14 TXCR13 TXCR12 TXCR11 TXCR10 TXCR9 TXCR8 H'FA00 TXACK TXACK6 TXACK5 TXACK4 TXACK3 TXACK2 TXACK1 TXACK1 — H'FA00 ABACK ABACK6 ABACK5 ABACK1 ABACK13 ABACK12 ABACK11 ABACK10 ABACK3 ABACK1 ABACK1 H'FA00 ABACK15 ABACK14 ABACK13 ABACK12 ABACK11 ABACK10 ABACK8 ABACK8 H'FA00 RXPR RXPR7 RXPR6 RXPR5 RXPR4 RXPR3 RXPR2 RXPR1 RXPR0	H'FA05	_	MBCR15	MBCR14	MBCR13	MBCR12	MBCR11	MBCR10	MBCR9	MBCR8	_	
H'FA08 TXCR TXCR7 TXCR6 TXCR5 TXCR4 TXCR3 TXCR2 TXCR1 — H'FA09 TXCR15 TXCR14 TXCR13 TXCR12 TXCR11 TXCR10 TXCR9 TXCR8 H'FA0A TXACK1 TXACK6 TXACK5 TXACK4 TXACK3 TXACK2 TXACK1 TXACK1 — H'FA0B TXACK15 TXACK14 TXACK13 TXACK12 TXACK11 TXACK10 TXACK9 TXACK8 H'FA0C ABACK ABACK1 ABACK13 ABACK4 ABACK1	H'FA06	TXPR	TXPR7	TXPR6	TXPR5	TXPR4	TXPR3	TXPR2	TXPR1	_	=	
TXCR15	H'FA07	_	TXPR15	TXPR14	TXPR13	TXPR12	TXPR11	TXPR10	TXPR9	TXPR8	_	
H'FA0A TXACK TXACK7 TXACK6 TXACK5 TXACK4 TXACK3 TXACK2 TXACK1 — H'FA0B TXACK15 TXACK14 TXACK13 TXACK12 TXACK11 TXACK10 TXACK9 TXACK8 H'FA0C ABACK1 ABACK6 ABACK5 ABACK4 ABACK3 ABACK1 ABACK1 ABACK1 H'FA0D RXPR RXPR7 RXPR6 RXPR5 RXPR4 RXPR3 RXPR2 RXPR1 RXPR0	H'FA08	TXCR	TXCR7	TXCR6	TXCR5	TXCR4	TXCR3	TXCR2	TXCR1	_	_	
H'FA0B TXACK15 TXACK14 TXACK13 TXACK12 TXACK11 TXACK10 TXACK9 TXACK8 H'FA0C ABACK7 ABACK6 ABACK5 ABACK4 ABACK3 ABACK2 ABACK1 — H'FA0D ABACK15 ABACK14 ABACK13 ABACK12 ABACK10 ABACK9 ABACK8 H'FA0E RXPR RXPR7 RXPR6 RXPR5 RXPR4 RXPR3 RXPR2 RXPR1 RXPR0	H'FA09	_	TXCR15	TXCR14	TXCR13	TXCR12	TXCR11	TXCR10	TXCR9	TXCR8	_	
H'FA0C ABACK ABACK7 ABACK6 ABACK5 ABACK4 ABACK3 ABACK2 ABACK1 — H'FA0D ABACK15 ABACK14 ABACK13 ABACK12 ABACK11 ABACK10 ABACK9 ABACK8 H'FA0E RXPR RXPR7 RXPR6 RXPR5 RXPR4 RXPR3 RXPR2 RXPR1 RXPR0	H'FA0A	TXACK	TXACK7	TXACK6	TXACK5	TXACK4	TXACK3	TXACK2	TXACK1	_	_	
H'FA0D ABACK15 ABACK14 ABACK13 ABACK12 ABACK11 ABACK10 ABACK9 ABACK8 H'FA0E RXPR RXPR7 RXPR6 RXPR5 RXPR4 RXPR3 RXPR2 RXPR1 RXPR0	H'FA0B	<u> </u>	TXACK15	TXACK14	TXACK13	TXACK12	TXACK11	TXACK10	TXACK9	TXACK8	_	
H'FA0E RXPR RXPR7 RXPR6 RXPR5 RXPR4 RXPR3 RXPR2 RXPR1 RXPR0	H'FA0C	ABACK	ABACK7	ABACK6	ABACK5	ABACK4	ABACK3	ABACK2	ABACK1	_	_	
	H'FA0D	<u> </u>	ABACK15	ABACK14	ABACK13	ABACK12	ABACK11	ABACK10	ABACK9	ABACK8	_	
	H'FA0E	RXPR	RXPR7	RXPR6	RXPR5	RXPR4	RXPR3	RXPR2	RXPR1	RXPR0	_	
	H'FA0F	<u> </u>	RXPR15	RXPR14	RXPR13	RXPR12				RXPR8	_	

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FA10	RFPR	RFPR7	RFPR6	RFPR5	RFPR4	RFPR3	RFPR2	RFPR1	RFPR0	HCAN1*7	8/16
H'FA11	_	RFPR15	RFPR14	RFPR13	RFPR12	RFPR11	RFPR10	RFPR9	RFPR8	_	
H'FA12	IRR	IRR7	IRR6	IRR5	IRR4	IRR3	IRR2	IRR1	IRR0	_	
H'FA13	_	_	_	_	IRR12	_	_	IRR9	IRR8	_	
H'FA14	MBIMR	MBIMR7	MBIMR6	MBIMR5	MBIMR4	MBIMR3	MBIMR2	MBIMR1	MBIMR0	=	
H'FA15	_	MBIMR15	MBIMR14	MBIMR13	MBIMR12	MBIMR11	MBIMR10	MBIMR9	MBIMR8	=	
H'FA16	IMR	IMR7	IMR6	IMR5	IMR4	IMR3	IMR2	IMR1	IMR0	_	
H'FA17	_	_	_	_	IMR12	_	_	IMR9	IMR8	_	
H'FA18	REC									_	
H'FA19	TEC									_	
H'FA1A	UMSR	UMSR7	UMSR6	UMSR5	UMSR4	UMSR3	UMSR2	UMSR1	UMSR0	_	
H'FA1B	_	UMSR15	UMSR14	UMSR13	UMSR12	UMSR11	UMSR10	UMSR9	UMSR8	_	
H'FA1C	LAFML	LAFML7	LAFML6	LAFML5	LAFML4	LAFML3	LAFML2	LAFML1	LAFML0	_	
H'FA1D	_	LAFML15	LAFML14	LAFML13	LAFML12	LAFML11	LAFML10	LAFML9	LAFML8	_	
H'FA1E	LAFMH	LAFMH7	LAFMH6	LAFMH5	_	_	_	LAFMH1	LAFMH0	_	
H'FA1F	_	LAFMH15	LAFMH14	LAFMH13	LAFMH12	LAFMH11	LAFMH10	LAFMH9	LAFMH8	_	
H'FA20	MC0[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN1*7	8/16
H'FA21	MC0[2]	_	_	_	_	_	_	_	_	_	
H'FA22	MC0[3]	_	_	_	_	_	_	_	_	_	
H'FA23	MC0[4]	_	_	_	_	_	_	_	_	=	
H'FA24	MC0[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	=	
H'FA25	MC0[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'FA26	MC0[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'FA27	MC0[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'FA28	MC1[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	_	
H'FA29	MC1[2]	_	_	_	_	_	_	_	_	=	
H'FA2A	MC1[3]	_	_	_	_	_	_	_	_	=	
H'FA2B	MC1[4]	_	_	_	_	_	_	_	_	=	
H'FA2C	MC1[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	=	
H'FA2D	MC1[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	=	
H'FA2E	MC1[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	=	
H'FA2F	MC1[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	=	
H'FA30	MC2[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN1*7	8/16
H'FA31	MC2[2]	_	_	_	_	_	_	_	_	=	
H'FA32	MC2[3]	_	_	_	_	_	_	_	_	=	
H'FA33	MC2[4]	_	_	_	_	_	_	_	_	=	
H'FA34	MC2[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	-	
H'FA35	MC2[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	-	
H'FA36	MC2[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	-	
H'FA37	MC2[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'FA38	MC3[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	_	
H'FA39	MC3[2]	_	_	_	_	_	_	-	_	=	

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FA3A	MC3[3]	_	_	_	_	_	_	_	_	HCAN1*7	8/16
H'FA3B	MC3[4]	_	_	_	_	_	_	_	_	_	
H'FA3C	MC3[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'FA3D	MC3[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'FA3E	MC3[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'FA3F	MC3[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'FA40	MC4[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN1*7	8/16
H'FA41	MC4[2]	_	_	_	_	_	_	_	_	_	
H'FA42	MC4[3]	_	=	_	_	=	_	_	_	_	
H'FA43	MC4[4]	_	_	_	_	_	_	_	_	_	
H'FA44	MC4[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'FA45	MC4[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'FA46	MC4[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'FA47	MC4[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'FA48	MC5[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	_	
H'FA49	MC5[2]	_	_	_	_	_	_	_	_	_	
H'FA4A	MC5[3]	_	_	_	_	_	_	_	_	_	
H'FA4B	MC5[4]	_	_	_	_	_	_	_	_	_	
H'FA4C	MC5[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'FA4D	MC5[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'FA4E	MC5[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'FA4F	MC5[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'FA50	MC6[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN1*7	8/16
H'FA51	MC6[2]	_	_	_	_	_	_	_	_	_	
H'FA52	MC6[3]	_	=	_	_	=	_	_	_	_	
H'FA53	MC6[4]	_	_	_	_	_	_	_	_	_	
H'FA54	MC6[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'FA55	MC6[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'FA56	MC6[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'FA57	MC6[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'FA58	MC7[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	_	
H'FA59	MC7[2]	_	=	_	_	=	_	_	_	_	
H'FA5A	MC7[3]	_	=	_	_	=	_	_	_	_	
H'FA5B	MC7[4]	_	_	_	_	_	_	_	_	_	
H'FA5C	MC7[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'FA5D	MC7[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	=	
H'FA5E	MC7[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'FA5F	MC7[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	

	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FA60	MC8[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN1*7	8/16
H'FA61	MC8[2]	_	_	_	_	_	_	_	_	_	
H'FA62	MC8[3]	_	_	_	_	_	_	_	_	_	
H'FA63	MC8[4]	_	_	_	_	_	_	_	_	_	
H'FA64	MC8[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'FA65	MC8[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'FA66	MC8[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'FA67	MC8[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'FA68	MC9[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	_	
H'FA69	MC9[2]	_	_	_	_	_	_	_	_	_	
H'FA6A	MC9[3]	_	_	_	_	_	_	_	_	_	
H'FA6B	MC9[4]	_	_	_	_	_	_	_	_	_	
H'FA6C	MC9[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'FA6D	MC9[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	=	
H'FA6E	MC9[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	=	
H'FA6F	MC9[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	=	
H'FA70	MC10[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN1*7	8/16
H'FA71	MC10[2]	_	_	_	_	_	_	_	_	=	
H'FA72	MC10[3]	_	_	_	_	_	_	_	_	=	
H'FA73	MC10[4]	_	_	_	_	_	_	_	_	=	
H'FA74	MC10[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	=	
H'FA75	MC10[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	=	
H'FA76	MC10[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	=	
H'FA77	MC10[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	=	
H'FA78	MC11[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	=	
H'FA79	MC11[2]	_	_	_	_	_	_	_	_	=	
H'FA7A	MC11[3]	_	_	_	_	_	_	_	_	=	
H'FA7B	MC11[4]	_	_	_	_	_	_	_	_	=	
H'FA7C	MC11[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	=	
H'FA7D	MC11[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	=	
H'FA7E	MC11[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	=	
H'FA7F	MC11[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	=	
H'FA80	MC12[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN1*7	8/16
H'FA81	MC12[2]	_	_	_	_	_	_	_	_	=	
H'FA82	MC12[3]	_	_	_	_	_	_	_	_	-	
H'FA83	MC12[4]	_	_	_	_	_	_	_	_	_	
H'FA84	MC12[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'FA85	MC12[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'FA86	MC12[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	=	
	MC12[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	=	
	MC13[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	=	
H'FA89	MC13[2]	_	_	_	_	_	_	_	_	_	

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FA8A	MC13[3]	_	_	_	_	_	_	_	_	HCAN1*7	8/16
H'FA8B	MC13[4]	_	_	_	_	_	_	_	_	=	
H'FA8C	MC13[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	=	
H'FA8D	MC13[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	=	
H'FA8E	MC13[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	=	
H'FA8F	MC13[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	=	
H'FA90	MC14[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	HCAN1*7	8/16
H'FA91	MC14[2]	_	_	_	_	_	_	_	_	=	
H'FA92	MC14[3]	_	_	_	_	_	_	_	_	=	
H'FA93	MC14[4]	_	_	_	_	_	_	_	_	_	
H'FA94	MC14[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	_	
H'FA95	MC14[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	_	
H'FA96	MC14[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	_	
H'FA97	MC14[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	_	
H'FA98	MC15[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0	=	
H'FA99	MC15[2]	_	_	_	_	_	_	_	_	=	
H'FA9A	MC15[3]	_	_	_	_	_	_	_	_	=	
H'FA9B	MC15[4]	_	_	_	_	_	_	_	_	=	
H'FA9C	MC15[5]	STD_ID2	STD_ID1	STD_ID0	RTR	IDE	_	EXD_ID17	EXD_ID16	=	
H'FA9D	MC15[6]	STD_ID10	STD_ID9	STD_ID8	STD_ID7	STD_ID6	STD_ID5	STD_ID4	STD_ID3	=	
H'FA9E	MC15[7]	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	=	
H'FA9F	MC15[8]	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	=	
H'FAB0	MD01									HCAN1*7	8/16
H'FAB1	MD02									_	
H'FAB2	MD03									_	
H'FAB3	MD04									_	
H'FAB4	MD05									_	
H'FAB5	MD06									_	
H'FAB6	MD07									_	
H'FAB7	MD08									_	
H'FAB8	MD11									=	
H'FAB9	MD12									_	
H'FABA	MD13									=	
H'FABB	MD14									=	
H'FABC	MD15									=	
H'FABD	MD16									=	
H'FABE	MD17									=	
H'FABF	MD18									=	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FAC0	MD21									HCAN1*7	8/16
H'FAC1	MD22									_	
H'FAC2	MD23									_	
H'FAC3	MD24									_	
H'FAC4	MD25									_	
H'FAC5	MD26									_	
H'FAC6	MD27									_	
H'FAC7	MD28									_	
H'FAC8	MD31									_	
H'FAC9	MD32									_	
H'FACA	MD33									_	
H'FACB	MD34									_	
H'FACC	MD35									_	
H'FACD	MD36									_	
H'FACE	MD37									_	
H'FACF	MD38									_	
H'FAD0	MD41									HCAN1*7	8/16
H'FAD1	MD42									-	
H'FAD2	MD43									-	
H'FAD3	MD44									-	
H'FAD4	MD45									_	
H'FAD5	MD46									-	
H'FAD6	MD47									-	
H'FAD7	MD48									-	
H'FAD8	MD51									_	
H'FAD9	MD52									_	
H'FADA	MD53									-	
H'FADB	MD54									-	
H'FADC	MD55									_	
H'FADD	MD56									-	
H'FADE	MD57									_	
H'FADF	MD58									-	
H'FAE0	MD61									HCAN1*7	8/16
H'FAE1	MD62									_	
H'FAE2	MD63									_	
H'FAE3	MD64									_	
H'FAE4	MD65									_	
H'FAE5	MD66									_	
H'FAE6	MD67									_	
H'FAE7	MD68									_	
H'FAE8	MD71									_	
H'FAE9	MD72									_	

H'FAEB MD74 H'FAEC MD75 H'FAED MD76 H'FAEE MD77 H'FAEF MD78		Width
H'FAEC MD75 H'FAED MD76 H'FAEE MD77 H'FAEF MD78 H'FAF0 MD81 HCA H'FAF1 MD82 H'FAF2 MD83 H'FAF3 MD84 H'FAF4 MD85 H'FAF4 MD85 H'FAF5 MD86 H'FAF6 MD87 H'FAF7 MD88 H'FAF8 MD91 H'FAF9 MD92	N1* ⁷	8/16
H'FAED MD76 H'FAEE MD77 H'FAEF MD78 H'FAFO MD81 HCA H'FAF1 MD82 H'FAF2 MD83 H'FAF3 MD84 H'FAF4 MD85 H'FAF4 MD85 H'FAF5 MD86 H'FAF6 MD87 H'FAF7 MD88 H'FAF8 MD91 H'FAF9 MD92		
H'FAEE MD77 H'FAEF MD78 H'FAFO MD81 HCA H'FAF1 MD82 H'FAF2 MD83 H'FAF3 MD84 H'FAF4 MD85 H'FAF4 MD85 H'FAF5 MD86 H'FAF6 MD87 H'FAF7 MD88 H'FAF8 MD91 H'FAF9 MD92		
H'FAEF MD78 H'FAF0 MD81 HCA H'FAF1 MD82 H'FAF2 MD83 H'FAF3 MD84 H'FAF4 MD85 H'FAF5 MD86 H'FAF6 MD87 H'FAF7 MD88 H'FAF8 MD91 H'FAF9 MD92		
H'FAF0 MD81 H'FAF1 MD82 H'FAF2 MD83 H'FAF3 MD84 H'FAF4 MD85 H'FAF5 MD86 H'FAF6 MD87 H'FAF7 MD88 H'FAF8 MD91 H'FAF9 MD92		
H'FAF1 MD82 H'FAF2 MD83 H'FAF3 MD84 H'FAF4 MD85 H'FAF5 MD86 H'FAF6 MD87 H'FAF7 MD88 H'FAF8 MD91 H'FAF9 MD92		
H'FAF2 MD83 H'FAF3 MD84 H'FAF4 MD85 H'FAF5 MD86 H'FAF6 MD87 H'FAF7 MD88 H'FAF8 MD91 H'FAF9 MD92	N1* ⁷	8/16
H'FAF3 MD84 H'FAF4 MD85 H'FAF5 MD86 H'FAF6 MD87 H'FAF7 MD88 H'FAF8 MD91 H'FAF9 MD92		
H'FAF4 MD85 H'FAF5 MD86 H'FAF6 MD87 H'FAF7 MD88 H'FAF8 MD91 H'FAF9 MD92		
H'FAF5 MD86 H'FAF6 MD87 H'FAF7 MD88 H'FAF8 MD91 H'FAF9 MD92		
H'FAF6 MD87 H'FAF7 MD88 H'FAF8 MD91 H'FAF9 MD92		
H'FAF7 MD88 H'FAF8 MD91 H'FAF9 MD92		
H'FAF8 MD91 H'FAF9 MD92		
H'FAF9 MD92		
H'FAFA MD93		
H'FAFB MD94		
H'FAFC MD95		
H'FAFD MD96		
H'FAFE MD97		
H'FAFF MD98		
H'FB00 MD101 HCA	N1* ⁷	8/16
H'FB01 MD102		
H'FB02 MD103		
H'FB03 MD104		
H'FB04 MD105		
H'FB05 MD106		
H'FB06 MD107		
H'FB07 MD108		
H'FB08 MD111		
H'FB09 MD112		
H'FB0A MD113		
H'FB0B MD114		
H'FB0C MD115		
H'FB0D MD116		
H'FB0E MD117		
H'FB0F MD118		

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FB10	MD121									HCAN1*7	8/16
H'FB11	MD122										
H'FB12	MD123										
H'FB13	MD124										
H'FB14	MD125									_	
H'FB15	MD126									_	
H'FB16	MD127										
H'FB17	MD128										
H'FB18	MD131										
H'FB19	MD132										
H'FB1A	MD133										
H'FB1B	MD134										
H'FB1C	MD135										
H'FB1D	MD136										
H'FB1E	MD137										
H'FB1F	MD138										
H'FB20	MD141									HCAN1*7	8/16
H'FB21	MD142										
H'FB22	MD143										
H'FB23	MD144									_	
H'FB24	MD145										
H'FB25	MD146										
H'FB26	MD147									_	
H'FB27	MD148										
H'FB28	MD151										
H'FB29	MD152										
H'FB2A	MD153										
H'FB2B	MD154										
H'FB2C	MD155									_	
H'FB2D	MD156									_	
H'FB2E	MD157									_	
H'FB2F	MD158									_	

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FC00	PWCR1	_	_	IE	CMF	CST	CKS2	CKS1	CKS0	Motor	16
H'FC02	PWOCR1	OE1H	OE1G	OE1F	OE1E	OE1D	OE1C	OE1B	OE1A	— control PWM timer	
H'FC04	PWPR1	OPS1H	OPS1G	OPS1F	OPS1E	OPS1D	OPS1C	OPS1B	OPS1A	- 1	
H'FC06	PWCYR1	_	_	_	_	_	_			- -	
H'FC08	PWBFR1A	_	_	_	OTS	_	_	DT9	DT8	_	
		DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0	_	
H'FC0A	PWBFR1C	_	_	_	OTS	_	_	DT9	DT8		
		DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0	_	
H'FC0C	PWBFR1E	_	_	_	OTS	_	_	DT9	DT8		
		DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0	=	
H'FC0E	PWBFR1G	_	_	_	OTS	_	_	DT9	DT8		
		DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0	=	
H'FC10	PWCR2	_	_	IE	CMF	CST	CKS2	CKS1	CKS0	Motor — control	16
H'FC12	PWOCR2	OE2H	OE2G	OE2F	OE2E	OE2D	OE2C	OE2B	OE2A	PWM timer	
H'FC14	PWPR2	OPS2H	OPS2G	OPS2F	OPS2E	OPS2D	OPS2C	OPS2B	OPS2A	-2	
H'FC16	PWCYR2	_	_	_	_	_	_			- -	
H'FC18	PWBFR2A	_	_	_	TDS	_	_	DT9	DT8	_	
		DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0	_	
H'FC1A	PWBFR2B	_	_	_	TDS	_	_	DT9	DT8	_	
		DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0	_	
H'FC1C	PWBFR2C	_	_	_	TDS	_	_	DT9	DT8		
		DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0	_	
H'FC1E	PWBFR2D	_	_	_	TDS	_	_	DT9	DT8	_	
		DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0	_	
H'FC20	PHDDR	PH7DDR	PH6DDR	PH5DDR	PH4DDR	PH3DDR	PH2DDR	PH1DDR	PH0DDR	PORT	16
H'FC21	PJDDR	PJ7DDR	PJ6DDR	PJ5DDR	PJ4DDR	PJ3DDR	PJ2DDR	PJ1DDR	PJ0DDR	_	
H'FC24	PHDR	PH7DR	PH6DR	PH5DR	PH4DR	PH3DR	PH2DR	PH1DR	PH0DR	_	
H'FC25	PJDR	PJ7DR	PJ6DR	PJ5DR	PJ4DR	PJ3DR	PJ2DR	PJ1DR	PJ0DR	_	
H'FC28	PORTH	PH7	PH6	PH5	PH4	PH3	PH2	PH1	PH0	_	
H'FC29	PORTJ	PJ7	PJ6	PJ5	PJ4	PJ3	PJ2	PJ1	PJ0		

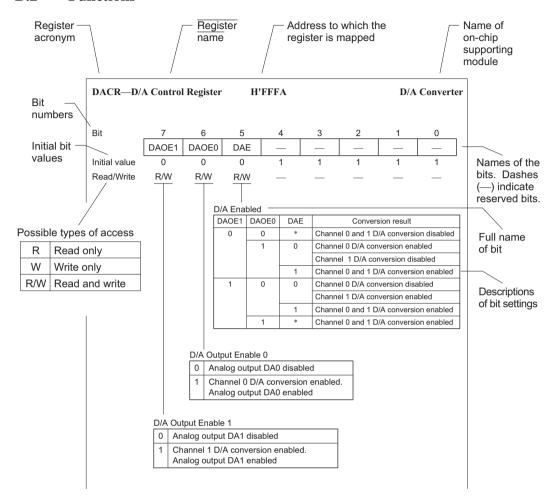
Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FC60	MSTPCRD	MSTPD7	_	_	_	_	_	_	_	SYSTEM	8
H'FDB4	SCRX	_	IICX1	IICX0	IICE	_	_	_	_	IIC*4	8
H'FDB5	DDCSWR*	4	_	_	_	CLR3	CLR2	CLR1	CLR0	-	
H'FDE4	SBYCR	SSBY	STS2	STS1	STS0	OPE	_	_	_	SYSTEM	8
H'FDE5	SYSCR	MACS	_	INTM1	INTM0	NMIEG	_	_	RAME		
H'FDE6	SCKCR	PSTOP	_	_	_	STCS	SCK2	SCK1	SCK0	_	
H'FDE7	MDCR	_	_	_	_	_	MDS2	MDS1	MDS1	_	
H'FDE8	MSTPCRA	MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0	_	
H'FDE9	MSTPCRB	MSTPB7	MSTPB6	MSTPB5	MSTPB4	MSTPB3	MSTPB2	MSTPB1	MSTPB0	_	
H'FDEA	MSTPCRC	MSTPC7	MSTPC6	MSTPC5	MSTPC4	MSTPC3	MSTPC2	MSTPC1	MSTPC0	_	
H'FDEB	PFCR	_	_	_	_	AE3	AE2	AE1	AE0	_	
H'FDEC	LPWRCR	DTON*3	LSON*3	NESEL*3	SUBSTP*3	RFCUT*3	_	STC1	STC0	_	
H'FE00	BARA	_	_	_	_	_	_	_	_	PBC*7	8
H'FE01	_	BAA23	BAA22	BAA21	BAA20	BAA19	BAA18	BAA17	BAA16	_	
H'FE02	_	BAA15	BAA14	BAA13	BAA12	BAA11	BAA10	BAA9	BAA8	_	
H'FE03	_	BAA7	BAA6	BAA5	BAA4	BAA3	BAA2	BAA1	BAA0	_	
H'FE04	BARB	_	_	_	_	_	_	_	_	_	
H'FE05	_	BAA23	BAA22	BAA21	BAA20	BAA19	BAA18	BAA17	BAA16	_	
H'FE06	_	BAA15	BAA14	BAA13	BAA12	BAA11	BAA10	BAA9	BAA8	_	
H'FE07	_	BAA7	BAA6	BAA5	BAA4	BAA3	BAA2	BAA1	BAA0	_	
H'FE08	BCRA	CMFA	CDA	BAMRA2	BAMRA1	BAMRA0	CSELA1	CSELA0	BIEA	_	
H'FE09	BCRB	CMFA	CDA	BAMRA2	BAMRA1	BAMRA0	CSELA1	CSELA0	BIEA	_	
H'FE12	ISCRH	_	_	_	_	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA	INT	8
H'FE13	ISCRL	IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA	_	
H'FE14	IER	_	_	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E	_	
H'FE15	ISR	_	_	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F	_	
H'FE16	DTCERA	DTCEA7	DTCEA6	DTCEA5	DTCEA4	DTCEA3	DTCEA2	DTCEA1	DTCEA0	DTC*7	8
H'FE17	DTCERB	DTCEB7	DTCEB6	DTCEB5	DTCEB4	DTCEB3	DTCEB2	DTCEB1	DTCEB0	_	
H'FE18	DTCERC	DTCEC7	DTCEC6	DTCEC5	DTCEC4	DTCEC3	DTCEC2	DTCEC1	DTCEC0	_	
H'FE19	DTCERD	DTCED7	DTCED6	DTCED5	DTCED4	DTCED3	DTCED2	DTCED1	DTCED0	_	
H'FE1A	DTCERE	DTCEE7	DTCEE6	DTCEE5	DTCEE4	DTCEE3	DTCEE2	DTCEE1	DTCEE0	_	
H'FE1B	DTCERF	DTCEF7	DTCEF6	DTCEF5	DTCEF4	DTCEF3	DTCEF2	DTCEF1	DTCEF0	_	
H'FE1C	DTCERG	DTCEG7	DTCEG6	DTCEG5	DTCEG4	DTCEG3	DTCEG2	DTCEG1	DTCEG0	_	
H'FE1F	DTVECR	SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVEC0	_	
H'FE26	PCR	G3CMS1	G3CMS0	G2CMS1	G2CMS0	G1CMS1	G1CMS0	G0CMS1	G0CMS0	PPG*7	8
H'FE27	PMR	G3INV	G2INV	G1INV	G0INV	G3NOV	G2NOV	G1NOV	G0NOV	_	
H'FE28	NDERH	NDER15	NDER14	NDER13	NDER12	NDER11	NDER10	NDER9	NDER8	_	
H'FE29	NDERL	NDER7	NDER6	NDER5	NDER4	NDER3	NDER2	NDER1	NDER0	_	
H'FE2A	PODRH	POD15	POD14	POD13	POD12	POD11	POD10	POD9	POD8	=	
H'FE2B	PODRL	POD7	POD6	POD5	POD4	POD3	POD2	POD1	POD0	=	
H'FE2C	NDRH	NDR15	NDR14	NDR13	NDR12	NDR11	NDR10	NDR9	NDR8	=	
H'FE2D	NDRL	NDR7	NDR6	NDR5	NDR4	NDR3	NDR2	NDR1	NDR0	_	

May 28, 2010

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FE2E	NDRH	_	_	_	_	NDR11	NDR10	NDR9	NDR8	PPG*7	8
H'FE2F	NDRL	_	_	_	_	NDR3	NDR2	NDR1	NDR0	_	
H'FE30	P1DDR	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR	PORT	8
H'FE32	P3DDR	_	_	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR	_	
H'FE39	PADDR	_	_	_	_	PA3DDR	PA2DDR	PA1DDR	PA0DDR	_	
H'FE3A	PBDDR	PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR	_	
H'FE3B	PCDDR	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR	_	
H'FE3C	PDDDR	PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR	_	
H'FE3D	PEDDR	PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR	_	
H'FE3E	PFDDR	PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	_	_	PF0DDR	_	
H'FE40	PAPCR	_	_	_	_	PA3PCR	PA2PCR	PA1PCR	PA0PCR	PORT	8
H'FE41	PBPCR	PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR	_	
H'FE42	PCPCR	PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PC0PCR	_	
H'FE43	PDPCR	PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR	_	
H'FE44	PEPCR	PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR	_	
H'FE46	P3ODR	_	_	P35ODR	P34ODR	P33ODR	P32ODR	P31ODR	P30ODR	_	
H'FE47	PAODR	_	_	_	_	PA3ODR	PA2ODR	PA10DR	PA0ODR	_	
H'FE48	PBODR	PB7ODR	PB6ODR	PB5ODR	PB4ODR	PB3ODR	PB2ODR	PB1ODR	PB0ODR	_	
H'FE49	PCODR	PC7ODR	PC6ODR	PC5ODR	PC4ODR	PC3ODR	PC2ODR	PC10DR	PC0ODR	_	
H'FE80	TCR3	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU3	8/16
H'FE81	TMDR3	_	_	BFB	BFA	MD3	MD2	MD1	MD0	_	
H'FE82	TIOR3H	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FE83	TIOR3L	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0	_	
H'FE84	TIER3	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA	_	
H'FE85	TSR3	_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA	_	
H'FE86	TCNT3									_	
H'FE87	_	-								_	
H'FE88	TGR3A									_	
H'FE89	_	-								_	
H'FE8A	TGR3B									_	
H'FE8B	_	-								_	
H'FE8C	TGR3C									_	
H'FE8D	_	-								_	
H'FE8E	TGR3D									_	
H'FE8F	_	-								_	
H'FE90	TCR4	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU4	8/16
H'FE91	TMDR4	_	_	_	_	MD3	MD2	MD1	MD0	_	
H'FE92	TIOR4	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FE94	TIER4	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA	_	
H'FE95	TSR4	TCFD	_	TCFU	TCFV			TGFB	TGFA	_	

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FE96	TCNT4									TPU4	8/16
H'FE97	_	-								_	
H'FE98	TGR4A									_	
H'FE99	_	-								_	
H'FE9A	TGR4B									_	
H'FE9B	_									_	
H'FEA0	TCR5	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU5	8/16
H'FEA1	TMDR5	_	_	_	_	MD3	MD2	MD1	MD0	_	
H'FEA2	TIOR5	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FEA4	TIER5	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA	_	
H'FEA5	TSR5	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA	_	
H'FEA6	TCNT5									_	
H'FEA7	_	-								_	
H'FEA8	TGR5A									_	
H'FEA9	_	-								_	
H'FEAA	TGR5B									_	
H'FEAB	_	-								_	
H'FEB0	TSTR	_	_	CST5	CST4	CST3	CST2	CST1	CST0	TPU All	8
H'FEB1	TSYR	_	_	SYNC5	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	_	
H'FEC0	IPRA	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	INT	8
H'FEC1	IPRB	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_	
H'FEC2	IPRC	_	_	_	_	_	IPR2*7	IPR1*7	IPR0*7	_	
H'FEC3	IPRD	_	IPR6	IPR5	IPR4	_	_	_		_	
H'FEC4	IPRE	_	IPR6*7	IPR5*7	IPR4*7	_	IPR2	IPR1	IPR0	_	
H'FEC5	IPRF	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_	
H'FEC6	IPRG	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_	
H'FEC7	IPRH	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_	
H'FEC9	IPRJ	_	_	_	_	_	IPR2	IPR1	IPR0	_	
H'FECA	IPRK	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_	
H'FECC	IPRM	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_	
H'FECE	Reserved										
H'FED0	ABWCR	ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0	Bus	8
H'FED1	ASTCR	AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0	controller	
H'FED2	WCRH	W71	W70	W61	W60	W51	W50	W41	W40	_	
H'FED3	WCRL	W31	W30	W21	W20	W11	W10	W01	W00	_	
H'FED4	BCRH	ICIS1	ICIS0	BRSTRM	BRSTS1	BRSTS0	_	_	_	_	
H'FED5	BCRL	_	_	_	_	_	_	WDBE	_	<u> </u>	
H'FEDB	RAMER	_	_	_	_	RAMS	RAM2	RAM1	RAM0	ROM	8
H'FF00	P1DR	P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR	PORT	8
H'FF02	P3DR	_		P35DR	P34DR	P33DR	P32DR	P31DR	P30DR	_	
H'FF09	PADR	_		_	_	PA3DR	PA2DR	PA1DR	PA0DR	_	

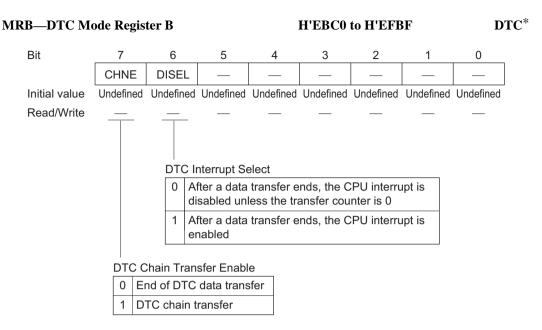
Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FF0A	PBDR	PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR	PORT	8
H'FF0B	PCDR	PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR	_	
H'FF0C	PDDR	PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR		
H'FF0D	PEDR	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR		
H'FF0E	PFDR	PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	_	_	PF0DR		
H'FF10	TCR0	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU0	8/16
H'FF11	TMDR0	_	_	BFB	BFA	MD3	MD2	MD1	MD0		
H'FF12	TIOR0H	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FF13	TIOR0L	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0	_	
H'FF14	TIER0	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA		
H'FF15	TSR0	_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA		
H'FF16	TNCT0										
H'FF17	_										
H'FF18	TGR0A									_	
H'FF19	_	-								_	
H'FF1A	TGR0B									_	
H'FF1B	_	-								_	
H'FF1C	TGR0C										
H'FF1D	_	-								_	
H'FF1E	TGR0D										
H'FF1F	_	-								_	
H'FF20	TCR1	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU1	8/16
H'FF21	TMDR1	_	_	_	_	MD3	MD2	MD1	MD0		
H'FF22	TIOR1	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0		
H'FF24	TIER1	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA		
H'FF25	TSR1	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA		
H'FF26	TNCT1										
H'FF27	_	-								_	
H'FF28	TGR1A										
H'FF29	_	-								_	
H'FF2A	TGR1B										
H'FF2B	_	-									
H'FF30	TCR2	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU2	8/16
H'FF31	TMDR2	_	_	_	_	MD3	MD2	MD1	MD0	_	
H'FF32	TIOR2	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FF34	TIER2	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA	_	
H'FF35	TSR2	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA	_	
H'FF36	TNCT2									_	
H'FF37	_									_	
H'FF38	TGR2A									_	
H'FF39	_	-								_	
H'FF3A	TGR2B									_	
H'FF3B	_									_	

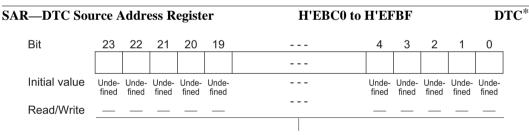

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FF74 (read/write)	TCSR0	OVF	WT/ĪT	TME	_	_	CKS2	CKS1	CKS0	WDT0	8
H'FF75 (read)	TCNT0									-	
H'FF76	_	_	_	_	_	_	_	_	_	-	
H'FF77 (read)	RSTCSR0	WOVF	RSTE	_	_	=	_	=	_	=	
H'FF78	SMR0	C/A	CHR	PE	O/E	STOP	MP	CKS1	CKS0	SCI0, -IIC0*4,	8
	SMR0	GM	BLK	PE	O/E	BCP1	BCP0	CKS1	CKS0	Smart card	
	ICCR0*4	ICE	IEIC	MST	TRS	ACKE	BBSY	IRIC	SCP	interface 0	
H'FF79	BRR0									-	
	ICSR0*4	ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB	-	
H'FF7A	SCR0	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	=	
H'FF7B	TDR0									=	
H'FF7C	SSR0	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	=	
	SSR0	TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT	-	
H'FF7D	RDR0									_	
H'FF7E	SCMR0	_	_	_	_	SDIR	SINV	_	SMIF	=	
	ICDR0/ SARX0*4	ICDR7/ SVAX6	ICDR6/ SVAX5	ICDR5/ SVAX4	ICDR4/ SVAX3	ICDR3/ SVAX2	ICDR2/ SVAX1	ICDR1/ SVAX0	ICDR0/FSX	-	
H'FF7F	ICMR0/ SAR0	MLS/ SVA6	WAIT/ SVA5	CKS2/ SVA4	CKS1/ SVA3	CKS0/ SVA2	BC2/ SVA1	BC1/ SVA0	BC0/FS	IIC0*4	=
H'FF80	SMR1	C/A	CHR	PE	O/E	STOP	MP	CKS1	CKS0	SCI1,	8
	SMR1	GM	BLK	PE	O/E	BCP1	BCP0	CKS1	CKS0	IIC1* ⁴ , Smart card	
	ICCR1*4	ICE	IEIC	MST	TRS	ACKE	BBSY	IRIC	SCP	interface 1	
H'FF81	BRR1									=	
	ICSR1*4	ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB	=	
H'FF82	SCR1	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	=	
H'FF83	TDR1									=	
H'FF84	SSR1	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	=	
	SSR1	TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT	=	
H'FF85	RDR1									=	
H'FF86	SCMR1	_	_	_	_	SDIR	SINV	_	SMIF	=	
	ICDR1/ SARX1*4	ICDR7/ SVARX6	ICDR6/ SVARX5	ICDR5/ SVARX4	ICDR4/ SVARX3	ICDR3/ SVARX2	ICDR2/ SVARX1	ICDR1/ SVARX0	ICDR0/FSX	=	
H'FF87	ICMR1/ SAR1*4	MLS/ SVA6	WAIT/ SVA5	CKS2/ SVA4	CKS1/ SVA3	CKS0/ SVA2	BC2/ SVA1	BC1/ SVA0	BC0/FS	IIC1*4	=
H'FF88	SMR2	C/Ā	CHR	PE	O/E	STOP	MP	CKS1	CKS0	SCI2,	8
	SMR2	GM	BLK	PE	O/E	BCP1	BCP0	CKS1	CKS0	Smart card interface 2	
H'FF89	BRR2										
H'FF8A	SCR2	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_	
H'FF8B	TDR2									-	
H'FF8C	SSR2	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	=	
	SSR2	TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT	=	
H'FF8D	RDR2									=	
H'FF8E	SCMR2	_	_	_	_	SDIR	SINV	_	SMIF	-	

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FF90	ADDRAH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	A/D	8
H'FF91	ADDRAL	AD1	AD0	_	_	_	_	_	_		
H'FF92	ADDRBH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	_	
H'FF93	ADDRBL	AD1	AD0	_	_	_	_	_	_		
H'FF94	ADDRCH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2		
H'FF95	ADDRCL	AD1	AD0	_	_	_	_	_	_		
H'FF96	ADDRDH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2		
H'FF97	ADDRDL	AD1	AD0	_	_	_	_	_	_		
H'FF98	ADCSR	ADF	ADIE	ADST	SCAN	CH3	CH2	CH1	CH0		
H'FF99	ADCR	TRGS1	TRGS0	_	_	CKS1	CKS0	_	_		
H'FFA2 (read/write	TCSR1	OVF	WT/IT	TME	PSS*1	RST/NMI	CKS2	CKS1	CKS0	WDT1	16
H'FFA3 (read)	TCNT1										
H'FFA4	DADR0									D/A0, 1	8
H'FFA5	DADR1									_	
H'FFA6	DACR01	DAOE1	DAOE0	DAE	_	_	_	_	_		
H'FFA8	FLMCR1	FWE	SWE	ESU	PSU	EV	PV	E	Р	FLASH	8
H'FFA9	FLMCR2	FLER	=	_	_	_	_	_	_		
H'FFAA	EBR1	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0		
H'FFAB	EBR2	_	=	EB13*8	EB12*8	EB11*6	EB10*5	EB9	EB8		
H'FFAC	FLPWCR	PDWND*2	=	_	_	_	_	_	_		
H'FFB0	PORT1	P17	P16	P15	P14	P13	P12	P11	P10	PORT	8
H'FFB2	PORT3	_	_	P35	P34	P33	P32	P31	P30		
H'FFB3	PORT4	P47	P46	P45	P44	P43	P42	P41	P40		
H'FFB8	PORT9	_	=	_	_	P93	P92	P91	P90		
H'FFB9	PORTA	_	=	_	_	PA3	PA2	PA1	PA0		
H'FFBA	PORTB	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0		
H'FFBB	PORTC	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0		
H'FFBC	PORTD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0		
H'FFBD	PORTE	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0		
H'FFBE	PORTF	PF7	PF6	PF5	PF4	PF3	_	_	PF0		

Notes: 1. Bit 4 (PSS) in TCSR of WDT1 is valid in the U-mask and W-mask versions, and H8S/2635 Group. In versions other than the U-mask and W-mask versions, and H8S/2635 Group, however, the PSS bit must always be written with 0 since no subclock functions are available.

- Subclock functions (subactive mode, subsleep mode, and watch mode) are not available in versions other than the U-mask and W-mask versions, and H8S/2635 Group.
 Subclock functions may be used with the U-mask and W-mask versions, and H8S/2635 Group.
- Bits DTON, LSON, NESEL, and SUBSTP in LPWRCR are valid in the U-mask and W-mask versions, and H8S/2635
 Group. In versions other than the U-mask and W-mask versions, and H8S/2635 Group, however, these bits must
 always be written with 0 since no subclock functions are available.
- An I²C bus interface can only be added to the H8S/2638, H8S/2639, and H8S/2630. Therefore, IIC related registers are valid only in the H8S/2638, H8S/2639, and H8S/2630.
- This bit is reserved in the H8S/2636.
- 6. This bit is reserved in the H8S/2636 and H8S/2635.
- 7. These bits are not available in the H8S/2635 Group.
- 8. These bits are reserved in the H8S/2636, H8S/2638, H8S/2639, and H8S/2635. These bits are valid in the H8S/2630 only.


B.2 Functions


MRA—DTC Mode Register A H'EBC0 to H'EFBF DTC* Bit 7 6 5 4 3 2 1 0 SM1 SMO DM1 DMO MD1 MD0 DTS Sz Initial value Undefined Undefined Undefined Undefined Undefined Undefined Undefined Read/Write DTC Data Transfer Size Byte-size transfer 1 Word-size transfer **DTC Transfer Mode Select** Destination side is repeat area or block area Source side is repeat area or block area DTC Mode 0 0 Normal mode Repeat mode Block transfer mode 1 1 **Destination Address Mode** DAR is fixed DAR is incremented after a transfer 1 (by +1 when Sz = 0; by +2 when Sz = 1) DAR is decremented after a transfer (by -1 when Sz = 0; by -2 when Sz = 1) Source Address Mode 0 SAR is fixed 1 0 SAR is incremented after a transfer (by +1 when Sz = 0; by +2 when Sz = 1)

Note: * This register is not available in the H8S/2635 Group.

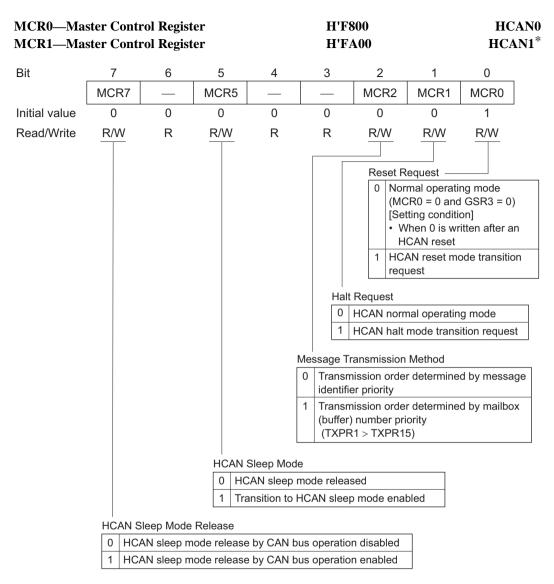
SAR is decremented after a transfer (by -1 when Sz = 0; by -2 when Sz = 1)

Note: * This register is not available in the H8S/2635 Group.

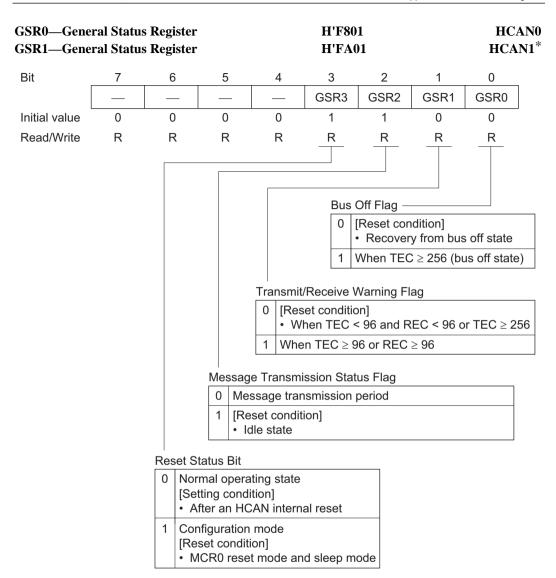
Specify DTC transfer data source address

Note: * This register is not available in the H8S/2635 Group.

DAR—DTC De	stinat	tion A	Addr	ess R	egiste	r H'EBC0 to	H'EF	BF			D	TC*
Bit	23	22	21	20	19		4	3	2	1	0	
Initial value	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined		Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	-
Read/Write	_	_	_	_			_	_	_	_		
Read/Write		_			_							


Specify DTC transfer data destination address

CRA—DTO	C Tra	nsfer	Cou	nt Re	giste	r A			H'EI	3C0 t	o H'E	EFBF			I	OTC*
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined
Read/Write	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
	<u> </u>			CR	АН			_	—			CR	RAL			


Specify the number of DTC data transfers

CRB—DTO	C Tra	nsfer	Cou	nt Re	giste	r B			H'EI	CO to	o H'E	EFBF			I	OTC*
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined
Read/Write	_	_	_	_	_	_	_	_	_	_	_	_	_	_		

Specify the number of DTC block data transfers

Note: * This register is not available in the H8S/2635 Group.

Note: * This register is not available in the H8S/2635 Group.

				_		ion Registe ion Registe					'F8 'F <i>A</i>						HCAN0 HCAN1*
В	it		_	1	5	14	13	12			11			10		9	8
				ВС	R7	BCR6	BCR5	BCR4		В	CR	3	В	CR2		BCR1	BCR0
In	itial	value	€	()	0	0	0		•	0	•		0		0	0
R	ead	/Write	Э	R/	W/	R/W	R/W	R/W		F	R/W	'	R	/W		R/W	R/W
Re	sync	hron	iza	tion .	Jum	o Width			E	Baud	d R	ate	Pre	sca	ler		
0	0	Bits	syn	chro	niza	tion width =	1 time qu	antum		0	0	0	0	0	0	2 × syst	em clock
	1	Bit s	syn	chro	niza	tion width =	2 time qu	anta	Ī	0	0	0	0	0	1	4 × syst	em clock
1	0	Bits	syn	chro	niza	tion width =	3 time qu	anta		0	0	0	0	1	0	6 × syst	em clock
	1 Bit synchronization width = 4 time quanta : : : : : : : : : : : : : : : : : :																
										1	1	1	1	1	1	128 × s	ystem clock
В	Bit 7 6 5 4 3 2 1 0																
				BCI	R15	BCR14	BCR13	BCR12	2	BC	CR1	1	ВС	R10)	BCR9	BCR8
In	itial	value	9	()	0	0	0			0			0		0	0
R	ead	/Write	Э	R/	W/	R/W	R/W	R/W		F	R/W	'	R	/W		R/W	R/W
			Tin	ne Se	egm	ent 2 ——				Tim	ne S	Seg	mer	nt 1			
			0	0	0	Setting pro	hibited			0	0	0	0	S	etti	ng prohib	ited
					1	TSEG2 = 2	time qua	nta		0	0	0	1	S	etti	ng prohib	ited
				1	0	TSEG2 = 3				0	0	1	0	S	etti	ng prohib	ited
					1	TSEG2 = 4	I time qua	nta		0	0	1	1	_			ne quanta
			1	0	0	TSEG2 = 5	•			0	1				SE	G1 = 5 tir	ne quanta
					1	TSEG2 = 6				:	:		_	_		:	
				1	0	TSEG2 = 7	•			1	1	1	1		SE	G1 = 16 t	ime quanta
	1 TSEG2 = 8 time quanta																
Bit S	Sam	ple P	oin	t													
0	Bit	samp	ling	g at c	ne	point (end c	of time seg	ment 1	Τ)	SEC	31)))					

1

time quanta)

Bit sampling at three points (end of time segment 1 (TSEG1) and preceding and following

MBCR0—Mai MBCR1—Mai		U	C		H'F804 H'FA04	ļ		HCAN0 HCAN1*			
Bit	15	14	13	12	11	10	9	8			
	MBCR7	MBCR6	MBCR5	MBCR4	MBCR3	MBCR2	MBCR1	_			
Initial value	0	0	0	0	0	0	0	1			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R			
Bit	7	6	3	2	1	0					
	MBCR15	MBCR14	MBCR13	MBCR12	MBCR11	MBCR10	MBCR9	MBCR8			
Initial value	0	0	0	0	0	0	0	0			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
			Ma	ailbox Sett	ing Regist	ter					
0 Corresponding mailbox is set for transmis											
			1	Corres	onding m	ailbox is s	et for rece	ption			

Note: * This register is not available in the H8S/2635 Group.

TXPR0—Tran TXPR1—Tran		U			H'F806 H'FA06			HCAN0 HCAN1*	
Bit	15	14	13	12	11	10	9	8	
	TXPR7	TXPR6	TXPR5	TXPR4	TXPR3	TXPR2	TXPR1	_	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	
Bit	7	7 6 5 4 3 2 1							
	TXPR15	TXPR15 TXPR14 TXPR13 TXPR12 TXPR11 TXPR10 TXPR9 1						TXPR8	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	Tra	ansmit Wa	it Register						
	0	Transmit message idle state in corresponding mailbox [Clearing condition] Message transmission completion and cancellation completion							
	1								

Note: * This register is not available in the H8S/2635 Group.

TXCR0—Tran TXCR1—Tran			C			HCA			
Bit	15	14	13	12	11	10	9	8	_
	TXCR7	TXCR6	TXCR5	TXCR4	TXCR3	TXCR2	TXCR1	_	
Initial value	0	0	0	0	0	0	0	0	_
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	
Bit	7	6	5	4	3	2	1	0	7
	TXCR15	TXCR14	TXCR13	TXCR12	TXCR11	TXCR10	TXCR9	TXCR8	
Initial value	0	0	0	0	0	0	0	0	-
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	0 T	ransmit m Clearing co Completion (when tra	ondition] on of TXPI nsmit mes red for cor	ancellation	inceled no		onding ma	ailbox	

Note: * This register is not available in the H8S/2635 Group.

TXACK0—Tra	nsmit Ac	knowledg	e Registe	r	H'F80A	\		HC	AN0
TXACK1—Tra	nsmit Ac	knowledg	e Registe	r	H'FA04	ı		HCA	N1*
Bit	15	14	13	12	11	10	9	8	
	TXACK7	TXACK6	TXACK5	TXACK4	TXACK3	TXACK2	TXACK1		
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	
Bit	7	6	5	4	3	2	1	0	
	TXACK15	TXACK14	TXACK13	TXACK12	TXACK11	TXACK10	TXACK9	TXACK8	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	Transmit Acknowledge Register 0 [Clearing condition] • Writing 1 1 Completion of message transmission for								
		corresponding mailbox							

Note: * This register is not available in the H8S/2635 Group.

ABACK0—Abo ABACK1—Abo		U	O		HCAN HCAN1				
Bit	15	14	13	12	11	10	9	8	
	ABACK7	ABACK6	ABACK5	ABACK4	ABACK3	ABACK2	ABACK1	_	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	
Bit	7	6	5	4	3	2	1	0	
	ABACK15	ABACK14	ABACK13	ABACK12	ABACK11	ABACK10	ABACK9	ABACK8	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	Abort Acknowledge Register								
		0 [Clearing condition]							
		• Writing 1							

Completion of transmit message cancellation

for corresponding mailbox

Note: * This register is not available in the H8S/2635 Group.

_	ete Regis ete Regis			HCAN HCAN1			
15	14	13	12	11	10	9	8
RXPR7	RXPR6	RXPR5	RXPR4	RXPR3	RXPR2	RXPR1	RXPR0
0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
7	6	5	4	3	2	1	0
RXPR15	RXPR14	RXPR13	RXPR12	RXPR11	RXPR10	RXPR9	RXPR8
0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W_
Receive Complete Register 0 [Clearing condition] • Writing 1 1 Completion of message (data frame or remo							
	15 RXPR7 0 R/W 7 RXPR15	15 14 RXPR7 RXPR6 0 0 R/W R/W 7 6 RXPR15 RXPR14 0 0	RXPR7 RXPR6 RXPR5 0 0 0 R/W R/W R/W 7 6 5 RXPR15 RXPR14 RXPR13 0 0 0 R/W R/W R/W	15 14 13 12 RXPR7 RXPR6 RXPR5 RXPR4 0 0 0 0 0 R/W R/W R/W R/W 7 6 5 4 RXPR15 RXPR14 RXPR13 RXPR12 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W Receive Com 0 [Clearing • Writing 1 Complet	15 14 13 12 11 RXPR7 RXPR6 RXPR5 RXPR4 RXPR3 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W 7 6 5 4 3 RXPR15 RXPR14 RXPR13 RXPR12 RXPR11 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W REceive Complete Region O [Clearing condition on Writing 1] 1 Completion of mess	15 14 13 12 11 10 RXPR7 RXPR6 RXPR5 RXPR4 RXPR3 RXPR2 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W 7 6 5 4 3 2 RXPR15 RXPR14 RXPR13 RXPR12 RXPR11 RXPR10 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W REceive Complete Register 0 [Clearing condition] • Writing 1 1 Completion of message (data	15 14 13 12 11 10 9 RXPR7 RXPR6 RXPR5 RXPR4 RXPR3 RXPR2 RXPR1 0 0 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W 7 6 5 4 3 2 1 RXPR15 RXPR14 RXPR13 RXPR12 RXPR11 RXPR10 RXPR9 0 0 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W REceive Complete Register 0 [Clearing condition] • Writing 1

Note: * This register is not available in the H8S/2635 Group.

-	U			HCAN0 HCAN1*			
15	14	13	12	11	10	9	8
RFPR7	RFPR6	RFPR5	RFPR4	RFPR3	RFPR2	RFPR1	RFPR0
0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
7	6	5	4	3	2	1	0
RFPR15	RFPR14	RFPR13	RFPR12	RFPR11	RFPR10	RFPR9	RFPR8
0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Remote Request Register 0 [Clearing condition] • Writing 1 1 Completion of remote frame reception in							
	15 RFPR7 0 R/W 7 RFPR15	15 14 RFPR7 RFPR6 0 0 R/W R/W 7 6 RFPR15 RFPR14 0 0	RFPR7 RFPR6 RFPR5 0 0 0 R/W R/W R/W 7 6 5 RFPR15 RFPR14 RFPR13 0 0 0 R/W R/W R/W	15 14 13 12 RFPR7 RFPR6 RFPR5 RFPR4 0 0 0 0 0 0 R/W R/W R/W R/W 7 6 5 4 RFPR15 RFPR14 RFPR13 RFPR12 0 0 0 0 0 R/W R/W R/W R/W RFPR15 RFPR14 RFPR13 RFPR12 0 0 0 0 0 R/W R/W R/W R/W Remote Requestry 0 [Clearing • Writing 1 Complet	Ote Request Register H'FA10 15 14 13 12 11 RFPR7 RFPR6 RFPR5 RFPR4 RFPR3 0 0 0 0 0 R/W R/W R/W R/W R/W 7 6 5 4 3 RFPR15 RFPR14 RFPR13 RFPR12 RFPR11 0 0 0 0 0 R/W R/W R/W R/W Remote Request Regis 0 [Clearing condition of Writing 1] 1 Completion of rem	te Request Register H'FA10 15 14 13 12 11 10 RFPR7 RFPR6 RFPR5 RFPR4 RFPR3 RFPR2 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W 7 6 5 4 3 2 RFPR15 RFPR14 RFPR13 RFPR12 RFPR11 RFPR10 0 0 0 0 0 0 R/W R/W R/W R/W R/W Remote Request Register 0 [Clearing condition] • Writing 1	te Request Register H'FA10 15 14 13 12 11 10 9 RFPR7 RFPR6 RFPR5 RFPR4 RFPR3 RFPR2 RFPR1 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W 7 6 5 4 3 2 1 RFPR15 RFPR14 RFPR13 RFPR12 RFPR11 RFPR10 RFPR9 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

IRR0—Interrupt Register IRR1—Interrupt Register

H'F812 H'FA12

HCAN0 HCAN1*

Note: * This register is not available in the H8S/2635 Group. Bit 15 14 13 12 10 9 8 IRR7 IRR6 IRR5 IRR4 IRR3 IRR2 IRR1 IRR0 0 0 0 0 0 0 0 1 Initial value Read/Write R/W R/W R/W R/W R/W R R R/W Reset Interrupt Flag [Clearing condition] Writing 1 Hardware reset (HCAN module stop*, software standby) [Setting condition] · When reset processing is completed after a hardware reset (HCAN module stop*, software standby) Note: * After reset or hardware standby release, the module stop bit is initialized to 1, and so the HCAN enters the module stop state. Receive Message Interrupt Flag 0 [Clearing condition] Clearing of all bits in RXPR (receive complete register) of mailbox for which receive interrupt requests are enabled by MBIMR Data frame or remote frame received and stored in mailbox [Setting condition] When data frame or remote frame reception is completed, when corresponding MBIMR = 0 Remote Frame Request Interrupt Flag [Clearing condition] Clearing of all bits in RFPR (remote request register) of mailbox for which receive interrupt requests are enabled by MBIMR Remote frame received and stored in mailbox [Setting condition] When remote frame reception is completed, when corresponding MBIMR = 0 Transmit Overload Warning Interrupt Flag [Clearing condition] Writing 1 Error warning state caused by transmit error [Setting condition] When TEC ≥ 96 Receive Overload Warning Interrupt Flag [Clearing condition] • Writing 1 Error warning state caused by receive error [Setting condition] When REC ≥ 96 Error Passive Interrupt Flag [Clearing condition] Writing 1 Error passive state caused by transmit/receive error [Setting condition] When TEC ≥ 128 or REC ≥ 128 Bus Off Interrupt Flag [Clearing condition] Writing 1 Bus off state caused by transmit error [Setting condition] When TEC ≥ 256 Overload Frame Interrupt Flag [Clearing condition] Writing 1 Overload frame transmission [Setting condition]

Overload frame is transmitted

Bit	7	6	5	4	3	2	1	0
	_	_	_	IRR12	_	_	IRR9	IRR8
Initial value	0	0	0	0	0	0	0	0
Read/Write		_		R/W	_	_	R	R/W

Mailbox	Empty	Interrupt	Flag _
Mailbox	Lilipty	michiapi	i lag –

- 0 [Clearing condition]
 - Writing 1
- 1 Transmit message has been transmitted or aborted, and new message can be stored

[Setting condition]

 When TXPR (transmit wait register) is cleared by completion of transmission or completion of transmission abort

Unread Interrupt Flag

- 0 [Clearing condition]
 - · Clearing of all bits in UMSR (unread message status register)
- 1 Unread message overwrite [Setting condition]
 - When UMSR (unread message status register) is set

Bus Operation Interrupt Flag

- 0 CAN bus idle state [Clearing condition]
 - Writing 1
- 1 CAN bus operation in HCAN sleep mode [Setting condition]
 - Bus operation (dominant bit detection) in HCAN sleep mode

MBIMR0—Mailbox Interrupt Mask Register H'F814									
Iailbox Int	errupt M	ask Regis	ter	H'FA14			HCAN	1 *	
15	14	13	12	11	10	9	8		
MBIMR7	MBIMR6	MBIMR5	MBIMR4	MBIMR3	MBIMR2	MBIMR1	MBIMR0		
1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
7	6	5	4	3	2	1	0		
MBIMR15	MBIMR14	MBIMR13	MBIMR12	MBIMR11	MBIMR10	MBIMR9	MBIMR8		
1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	Interrupt request to CPU due to TXPR clearing [Receiving] Interrupt request to CPU due to RXPR setting								
	Interrupt requests to CPU disabled								
	15 MBIMR7 1 R/W 7 MBIMR15	15 14 MBIMR7 MBIMR6 1	15	15	15	15	15	15	

IMR0—Interrupt Mask Register HCAN0 **HCAN1*** IMR1—Interrupt Mask Register H'FA16 Note: * This register is not available in the H8S/2635 Group. 15 14 13 12 10 Rit 11 8 IMR7 IMR₆ IMR5 IMR4 IMR3 IMR₂ IMR1 Initial value 1 1 1 1 1 1 1 0 Read/Write R/W R/W R/W R/W R/W R/W R/W R Receive Message Interrupt Mask Message reception interrupt request (RM1) to CPU by IRR1 enabled Message reception interrupt request (RM1) to CPU by IRR1 disabled Remote Frame Request Interrupt Mask Remote frame reception interrupt request (OVR0) to CPU by IRR2 enabled Remote frame reception interrupt request (OVR0) to CPU by IRR2 disabled Transmit Overload Warning Interrupt Mask TEC error warning interrupt request (OVR0) to CPU by IRR3 enabled TEC error warning interrupt request (OVR0) to CPU by IRR3 disabled Receive Overload Warning Interrupt Mask REC error warning interrupt request (OVR0) to CPU by IRR4 enabled REC error warning interrupt request (OVR0) to CPU by IRR4 disabled Error Passive Interrupt Mask Error passive interrupt request to CPU by IRR5 enabled Error passive interrupt request to CPU by IRR5 disabled Bus Off Interrupt Mask Bus off interrupt request to CPU by IRR6 enabled Bus off interrupt request to CPU by IRR6 disabled Overload Frame/Bus Off Recovery Interrupt Mask Overload frame/bus off recovery interrupt request to CPU by IRR7 enabled Overload frame/bus off recovery interrupt request to CPU by IRR7 disabled

H'F816

Bit	7	6	5	4	3	2	1	0
	_	_	_	IMR12	_	_	IMR9	IMR8
Initial value	1	1	1	1	1	1	1	1
Read/Write	R	R	R	R/W	R	R	R/W	R/W
		Unread	0 Ma	ailbox empty	nterrupt requ	, ,	o CPU by IRR	
		0 U	nread messag	e overwrite in	terrupt reque	est (OVR0) to	CPU by IRR	9 enabled
		1 U	nread messag	e overwrite in	terrupt reque	est (OVR0) to	CPU by IRR	9 disabled

Bus Operation Interrupt Mask

- Bus operation interrupt request (OVR0) to CPU by IRR12 enabled
- Bus operation interrupt request (OVR0) to CPU by IRR12 disabled

REC0—Receive REC1—Receive		HCAN0 HCAN1*							
Bit	7	6	5	4	3	2	1	0	1
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R	R	R	R	R	R	R	R	

TEC0—Transm TEC1—Transm		H'F819 H'FA19		HCAN0 HCAN1*					
Bit	7	6	5	4	3	2	1	0	7
Initial value	0	0	0	0	0	0	0	0	-
Read/Write	R	R	R	R	R	R	R	R	

Note: * This register is not available in the H8S/2635 Group.

UMSR0—Unread Message Status Register UMSR1—Unread Message Status Register				H'F81A H'FA1A				HCAN0 HCAN1*1	
Bit	15	14	13	12	11	10	9	8	
	UMSR7	UMSR6	UMSR5	UMSR4	UMSR3	UMSR2	UMSR1	UMSR0	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/(W)*2	R/(W)*2	R/(W)*2	R/(W)*2	R/(W)*2	R/(W)*2	R/(W)*2	R/(W)*2	
Bit	7	6	5	4	3	2	1	0	
	UMSR15	UMSR14	UMSR13	UMSR12	UMSR11	UMSR10	UMSR9	UMSR8	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/(W)*2	R/(W)*2	R/(W)*2	R/(W)*2	R/(W)*2	R/(W)*2	R/(W)*2	R/(W)*2	
	Unread Message Status Flags 0 [Clearing condition] • Writing 1								
		Unread receive message is overwritten by a new message [Setting condition] • When a new message is received before RXPR is cleared							

Notes: 1. This register is not available in the H8S/2635 Group.

2. Only 1 can be written, to clear the flag to 0.

LAFML0—Local Acceptance Filter Masks L

LAFMH0—Local Acceptance Filter Masks H

HCAN0

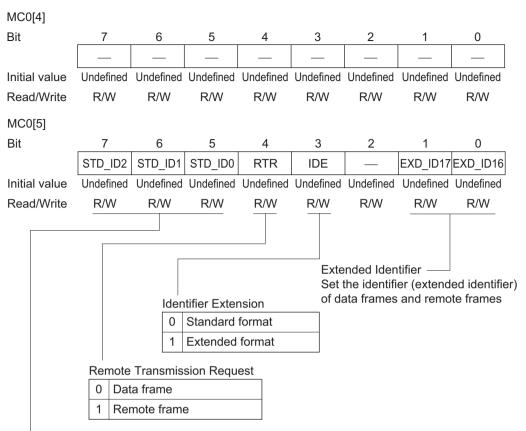
HCANO

	LAFML1—Local Acceptance Filter Masks L H'FA1C HCAN1* LAFMH1—Local Acceptance Filter Masks H H'FA1E HCAN1*													
Bit	15	14	13	12	11	10	9	8						
	LAFML7	LAFML6	LAFML5	LAFML4	LAFML3	LAFML2	LAFML1	LAFML0						
Initial value	0	0	0	0	0	0	0	0						
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						
Bit	7	6	5	4	3	2	1	0						
	LAFML15	LAFML14	LAFML13	LAFML12	LAFML11	LAFML10	LAFML9	LAFML8						
Initial value	0	0	0	0	0	0	0	0						
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						
LAFMH														
Bit	15	14	13	12	11	10	9	8						
	LAFMH7	LAFMH6	LAFMH5	_	_	_	LAFMH1	LAFMH0						
Initial value	0	0	0	0	0	0	0	0						
Read/Write	R/W	R/W	R/W	R	R	R	R/W	R/W						
Bit	7	6	5	4	3	2	1	0						
	LAFMH15	LAFMH14	LAFMH13	LAFMH12	LAFMH11	LAFMH10	LAFMH9	LAFMH8						
Initial value	0	0	0	0	0	0	0	0						
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						

H'F81C

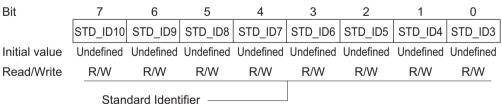
H'F81E

LAFMH Bits 7 to 0 and 15 to 13-11-Bit Identifier Filter

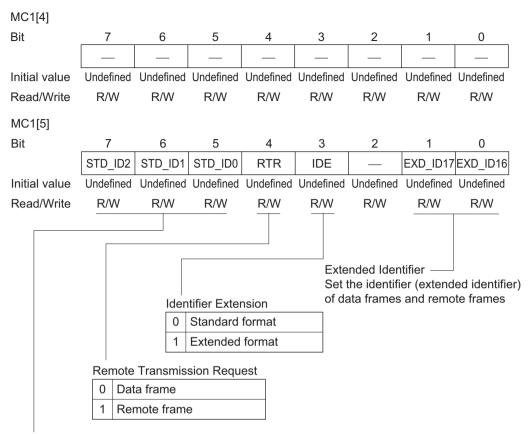

0	Stored in MC0 and MD0 (receive-only mailbox) depending on bit match
	between MC0 message identifier and receive message identifier (Care)
1	Stored in MC0 and MD0 (receive-only mailbox) regardless of bit match
	between MC0 message identifier and receive message identifier
	(Don't Care)

LAFMH Bits 9 and 8, LAFML bits 15 to 0—18-Bit Identifier Filter

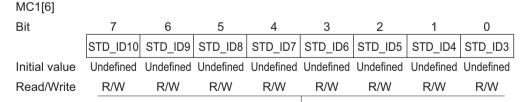
0	Stored in MC0 (receive-only mailbox) depending on bit match between MC0 message identifier and receive message identifier (Care)
1	Stored in MC0 (receive-only mailbox) regardless of bit match between MC0 message identifier and receive message identifier (Don't Care)


Note: * These registers are not available in the H8S/2635 Group.

MC0[1]—Mess MC0[2]—Mess MC0[3]—Mess MC0[4]—Mess MC0[5]—Mess MC0[6]—Mess MC0[7]—Mess MC0[8]—Mess	sage Cont sage Cont sage Cont sage Cont sage Cont sage Cont	rol 0[2] rol 0[3] rol 0[4] rol 0[5] rol 0[6] rol 0[7]	H'F820 HC H'F821 HC H'F822 HC H'F823 HC H'F824 HC H'F825 HC H'F826 HC								
MC0[1]											
Bit	7	6	5		4		3	2	1	0	
	_		—		_		DLC3	DLC2	DLC1	DLC0	
Initial value	Undefined	Undefined	Undefined	Un	define	d	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	F	R/W		R/W	R/W	R/W	R/W	
			Da	ta L	engtl	n C	Code —				
			0						ytes		
						1	Data le	ength = 1 b	yte		
					1	0	Data le	ength = 2 b	ytes		
						1	Data le	ength = 3 b	ytes		
				1	0	0	Data le	ength = 4 b	ytes		
						1	Data le	ength = 5 k	ytes		
					1	0	Data le	ength = 6 b	ytes		
						1	Data le	ength = 7 b	ytes		
			1	0/1	0/1	0/	1 Data length = 8 bytes				
MC0[2]											
Bit	7	6	5		4		3	2	1	0	
	_	_	_		_		_	_	_	_	
Initial value	Undefined	Undefined	Undefined	Un	define	d	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	F	R/W		R/W	R/W	R/W	R/W	
MC0[3]											
Bit	7	6	5		4		3	2	1	0	
Dit		_				Т		_			
Initial value	Undefined	Undefined	Undefined	Un	define	'd	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W		3011110 R/W	J	R/W	R/W	R/W	R/W	

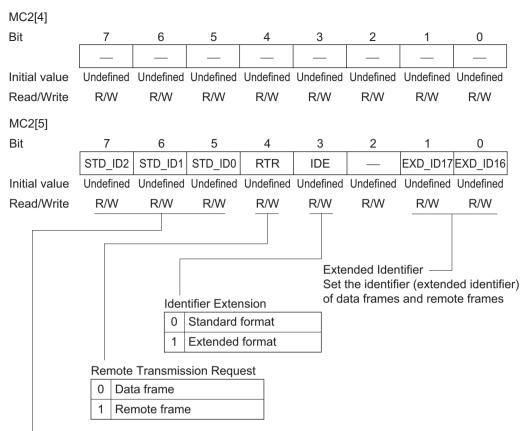

Set the identifier (standard identifier) of data frames and remote frames

MC0[6]

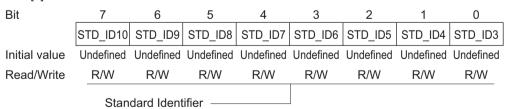


MC0[7]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Extended Identifier ————————————————————————————————————											
MC0[8]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
		nded Iden he identifie	er) of data	frames an	id remote	frames					

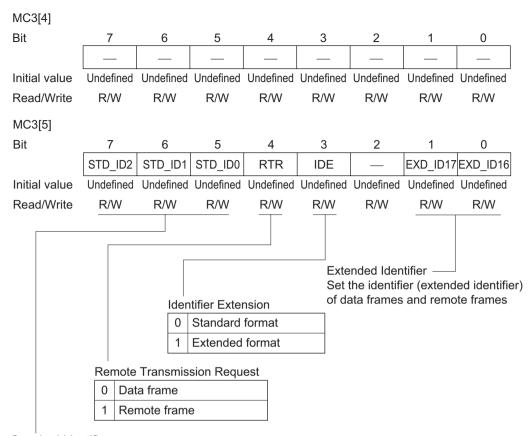
MC1[1]—Message Control 1[1] H'F828 MC1[2]—Message Control 1[2] H'F829 MC1[3]—Message Control 1[3] H'F82A MC1[4]—Message Control 1[4] H'F82B MC1[5]—Message Control 1[5] H'F82C MC1[6]—Message Control 1[6] H'F82D MC1[7]—Message Control 1[7] H'F82E MC1[8]—Message Control 1[8] H'F82F											HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0
MC1[1]											
Bit	7	6	5			4	_	3	2	1	0
	_	—		_		_		DLC3	DLC2	DLC1	DLC0
Initial value	Undefined		Undefir	ned			J L			Undefined	Undefined
Read/Write	R/W	R/W	R/W	/	F	R/W		R/W	R/W	R/W	R/W
				Dat	a Le	ength	С	ode —			
				0						ytes	
						1 Data length = 1 byt		yte			
						1	0	Data le	ength = 2 b	ytes	
							1	Data le	ength = 3 b	ytes	
					1	0	0	Data le	ength = 4 b	ytes	
							1	Data le	ength = 5 b	ytes	
						1	0	Data le	ength = 6 b	ytes	
							1	Data le	ength = 7 b	ytes	
				1	0/1	0/1 (0/1	Data le	ength = 8 b	ytes	
MC1[2]			'								
Bit	7	6	5			4		3	2	1	0
	_	_	_		-			_	_	_	_
Initial value	Undefined	Undefined	Undefir	ned	Und	efined	JL	Indefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	/	F	R/W		R/W	R/W	R/W	R/W
MC1[3]											
Bit	7	6	5			4		3	2	1	0
	_	_				_			_	_	
Initial value	Undefined	Undefined	Undefir	ned	Und	efined	 L	Indefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W			R/W		R/W	R/W	R/W	R/W

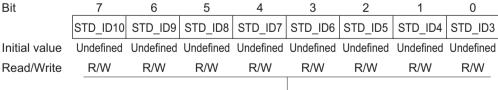

Set the identifier (standard identifier) of data frames and remote frames

Standard Identifier -


MC1[7]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Extended Identifier ————————————————————————————————————											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
		nded Iden he identifi	er) of data	frames an	d remote	frames					

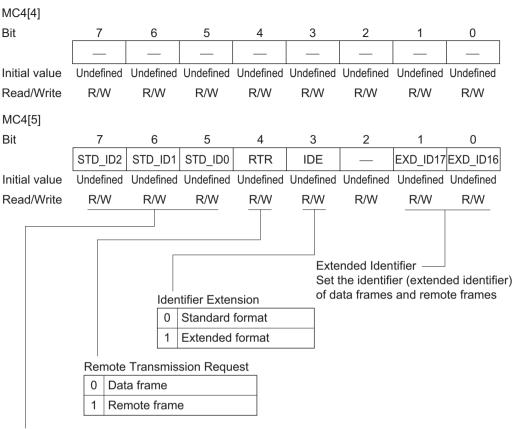
MC2[1]—Mes MC2[2]—Mes MC2[3]—Mes MC2[4]—Mes MC2[5]—Mes MC2[6]—Mes MC2[7]—Mes	sage Cont sage Cont sage Cont sage Cont sage Cont sage Cont	rol 2[2] rol 2[3] rol 2[4] rol 2[5] rol 2[6] rol 2[7]	H'F830 HO H'F831 HO H'F832 HO H'F833 HO H'F834 HO H'F835 HO H'F836 HO							
MC2[1]										
Bit	7	6	5		4	_	3	2	1	0
		_	_		_		DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefined	Und	lefined	d L	Jndefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	F	R/W		R/W	R/W	R/W	R/W
			Data Length Code							
			0							
						1		ength = 1 b	-	
						0	Data le	ength = 2 b	ytes	
						1		ength = 3 b		
				1	0	0	Data le	ength = 4 b	ytes	
						1	Data le	ength = 5 b	ytes	
					1	0	Data le	ength = 6 b	ytes	
						1	Data le	ength = 7 b	ytes	
			1	0/1	0/1	0/1	Data le	ength = 8 b	ytes	
MC2[2]										
Bit	7	6	5		4		3	2	1	0
	_	_					_	_	_	_
Initial value	Undefined	Undefined	Undefined	Und	lefined	d L	Jndefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	F	R/W		R/W	R/W	R/W	R/W
MC2[3]										
Bit	7	6	5		4		3	2	1	0
Dit					-	Τ			<u> </u>	
Initial value	Lindefined	Lindefined	Undefined	Lind	lofino	4 I	Indefined	Undefined	LIndefined	Lindefined
iiiiiai value	Juguinea	Juguida	Juguinea	UIIU		u	- Indellined	JIIGGIIIGG	JIIUGIIIIGU	JIIUGIIIIGU


Set the identifier (standard identifier) of data frames and remote frames

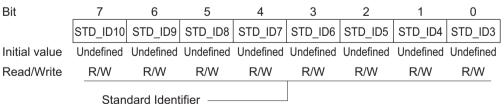

MC2[7]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Extended Identifier ————————————————————————————————————											
MC2[8]	_		_								
Bit	7	6	5	4	3	2	1	0			
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
		nded Iden he identifi	er) of data	frames an	id remote	frames					

MC3[1]—Mess MC3[2]—Mess MC3[3]—Mess MC3[4]—Mess MC3[5]—Mess MC3[6]—Mess MC3[7]—Mess MC3[8]—Mess	sage Cont sage Cont sage Cont sage Cont sage Cont sage Cont	rol 3[2] rol 3[3] rol 3[4] rol 3[5] rol 3[6] rol 3[7]				HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0					
MC3[1]											
Bit	7	6	5			4	_	3	2	1	0
		_	_		-	_		DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefir	ned	Und	efined	J	Indefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	/	F	R/W		R/W	R/W	R/W	R/W
				Dat	ta Length Code						
						0	0		ength = 0 b	ytes	
							1	Data le	ength = 1 b	yte	
						1	0		ength = 2 b		
						-	1	Data le	ength = 3 b	ytes	
					1	0	0		ength = 4 b	-	
							1	Data le	ength = 5 b	ytes	
						1	0	Data le	ength = 6 b	ytes	
							1		ength = 7 b		
				1	0/1	0/1 (0/1	Data le	ength = 8 b	ytes	
MC3[2]			ļ		1			ı		<u>-</u>	
Bit	7	6	5			4		3	2	1	0
	_	_	_		-			_	_	_	_
Initial value	Undefined	Undefined	Undefir	ned	Und	efined	J L	Indefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	/	F	R/W		R/W	R/W	R/W	R/W
MC3[3]											
Bit	7	6	5			4		3	2	1	0
		_	_					_	_	_	_
Initial value	Undefined	Undefined	Undefir	ned	Und	efined	J L	Indefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	/	F	R/W		R/W	R/W	R/W	R/W

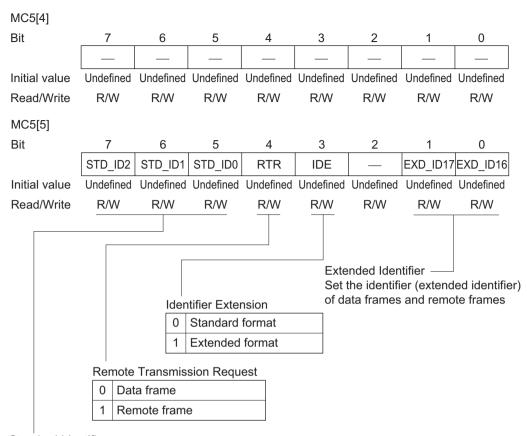
Set the identifier (standard identifier) of data frames and remote frames

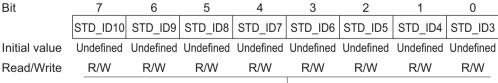


Standard Identifier -


MC3[7]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Extended Identifier ————————————————————————————————————											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
		nded Iden he identifi	er) of data	frames ar	nd remote	frames					

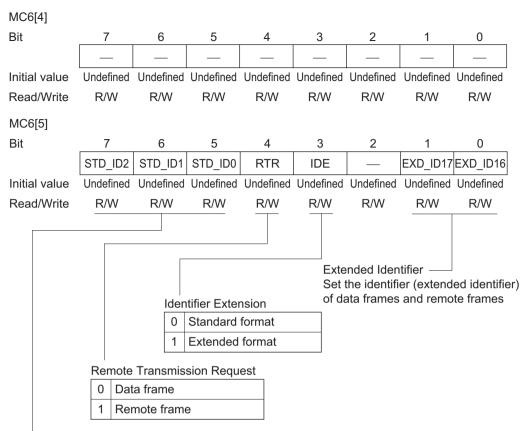
MC4[1]—Mess MC4[2]—Mess MC4[3]—Mess MC4[4]—Mess MC4[5]—Mess MC4[6]—Mess MC4[7]—Mess MC4[8]—Mess	rol 4[2] rol 4[3] rol 4[4] rol 4[5] rol 4[6] rol 4[7]	H'F841 HCA H'F842 HCA H'F843 HCA H'F844 HCA H'F845 HCA								HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0	
MC4[1]											
Bit	7	6	5	_		4		3	2	1	0
	_	_			-	_		DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefine	ed	Und	efine	d I	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	2/W		R/W	R/W	R/W	R/W
			С	at	ata Length Code ————						
				0	0	0	0		ength = 0 b	ytes	
							1	_	ength = 1 b	-	
						1	0		ength = 2 b	-	
							1		ength = 3 b	-	
					1	0	0	Data le	ength = 4 b	ytes	
							1		ength = 5 b	-	
						1	0		ength = 6 b	-	
							1		ength = 7 b	-	
				1	0/1	0/1	0/1				
MC4[2]			L					1		,,	
Bit	7	6	5			4		3	2	1	0
	_	_	_			_					
Initial value	Undefined	Undefined	Undefine	ed	Und	efine	d I	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	2/W		R/W	R/W	R/W	R/W
MC4[3]											
Bit	7	6	5			4		3	2	1	0
DIL	1	0	5	П		4	Т	J		ı	U
Initial value					ام سال		ا لہ		I Indofinati	I Indofinati	I Indofined
Initial value	Undefined			ea			a I		Undefined		
Read/Write	R/W	R/W	R/W		R	Z/W		R/W	R/W	R/W	R/W


Set the identifier (standard identifier) of data frames and remote frames

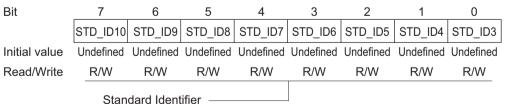

MC4[7]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Extended Identifier ————————————————————————————————————											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Extended Identifier Set the identifier (extended identifier) of data frames and remote frames											

MC5[1]—Mess MC5[2]—Mess MC5[3]—Mess MC5[4]—Mess MC5[5]—Mess MC5[6]—Mess MC5[7]—Mess MC5[8]—Mess	H'F848 H'F849 H'F84A H'F84B H'F84C H'F84D H'F84E H'F84F							HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0			
MC5[1]											
Bit	7	6	5			4	_	3	2	1	0
	_	—			-	_		DLC3	DLC2	DLC1	DLC0
Initial value	Undefined		Undefir	ned			J L	Jndefined		Undefined	Undefined
Read/Write	R/W	R/W	R/W	/	F	R/W		R/W	R/W	R/W	R/W
				Dat	a Le	ength	С	ode —			
				0		0	0	Data le			
							1	Data le	ength = 1 b	yte	
						1	0	Data le	ength = 2 b	ytes	
							1	Data le	ength = 3 b	ytes	
					1	0	0	Data le	ength = 4 b	ytes	
							1	Data le	ength = 5 b	ytes	
						1	0	Data le	ength = 6 b	ytes	
							1	Data le	ength = 7 b	ytes	
				1	0/1	0/1	0/1	Data le	ength = 8 b	ytes	
MC5[2]			'								
Bit	7	6	5			4		3	2	1	0
	_	_	_			_		_	_	_	
Initial value	Undefined	Undefined	Undefir	ned	Und	efined	JL	Jndefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	/	F	R/W		R/W	R/W	R/W	R/W
MC5[3]											
Bit	7	6	5	5		4		3	2	1	0
-	_	_							_	_	
Initial value	Undefined	Undefined	Undefir	ned	Und	efined	J b	Jndefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	/	R	R/W		R/W	R/W	R/W	R/W

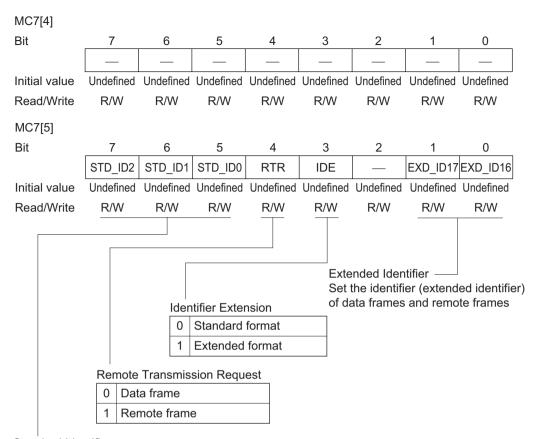
Set the identifier (standard identifier) of data frames and remote frames



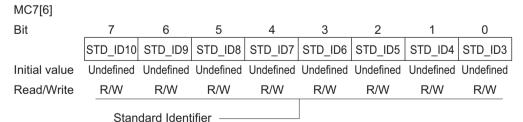
Standard Identifier -


MC5[7]													
Bit	7	6	5	4	3	2	1	0					
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0					
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined					
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
MC5[8]	Extended Identifier ————————————————————————————————————												
Bit	7	6	5	4	3	2	1	0					
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8					
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined					
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Extended Identifier ————————————————————————————————————													

MC6[1]—Mess MC6[2]—Mess MC6[3]—Mess MC6[4]—Mess MC6[5]—Mess MC6[6]—Mess MC6[7]—Mess MC6[8]—Mess	H'F850 H'F851 H'F852 H'F853 H'F854 H'F855 H'F856 H'F856 H'F857 HCA										
MC6[1]											
Bit	7	6	5			4		3	2	1	0
	_	_	_					DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefin	Undefined		efine	d I	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	1	F	R/W		R/W	R/W	R/W	R/W
				Dat	a Le	enath	ո C	code —			
				0	0	0	0		Data length = 0 bytes		
							1	Data length = 1 byte			
						1	0	Data le	ength = 2 b	ytes	
							1	Data le	ength = 3 b	oytes	
					1	0	0	Data le			
							1	Data le	ngth = 5 bytes		
						1	0	Data le	ength = 6 b	ytes	
							1	Data le	ength = 7 b	oytes	
				1	0/1	0/1	0/	1 Data le	ength = 8 b	ytes	
1010014			l		1						
MC6[2]	7	0	_			4		0	0	4	0
Bit	7	6	5			4	Т	3	2	1	0
leitiel velve					ام مدالا	-6					
Initial value							a ı		Undefined		
Read/Write	R/W	R/W	R/W		r	R/W		R/W	R/W	R/W	R/W
MC6[3]											
Bit	7	6	5			4		3	2	1	0
	_	_	_			_		_	_	_	_
Initial value	Undefined	Undefined	Undefin	ned	Und	efine	d l	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	R/W		R/W		R/W	R/W	R/W	R/W

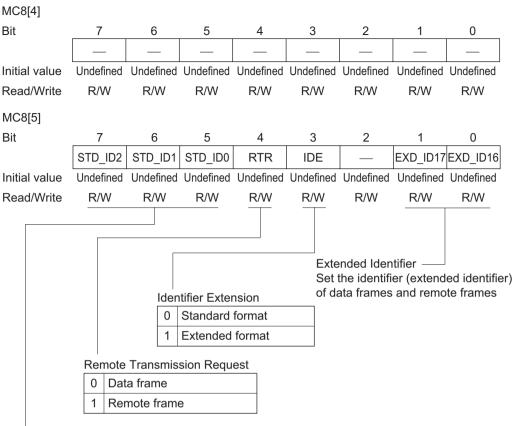

Set the identifier (standard identifier) of data frames and remote frames

MC6[6]

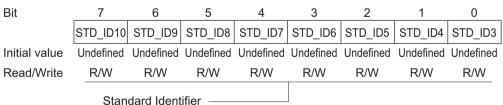


MC6[7]												
Bit	7	XD_ID7 EXD_ID6 EXD_ID			3	2	1	0				
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0				
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined				
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
MC6[8]	Extended Identifier ————————————————————————————————————											
Bit	7	6	5	4	3	2	1	0				
DIL								0				
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8				
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined				
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
		nded Iden	er) of data	frames an	nd remote	frames						

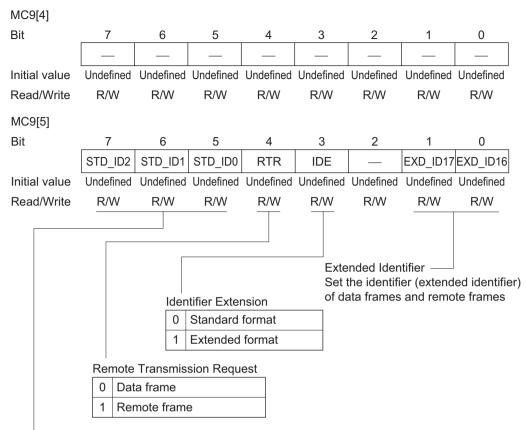
MC7[1]—Mess MC7[2]—Mess MC7[3]—Mess MC7[4]—Mess MC7[5]—Mess MC7[6]—Mess MC7[7]—Mess MC7[8]—Mess				HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0							
MC7[1]	-	0	_		4			0	0	4	0
Bit	7	6	5			4	\top	3	2	1	0
leitiel velve					امصلا		اام	DLC3	DLC2	DLC1	DLC0
Initial value Read/Write	Undefined R/W	Undefined R/W	R/W			ieiine R/W	a t	R/W	Undefined R/W	R/W	R/W
Read/white	FC/VV	FK/VV	K/VV		г	K/ V V		F/VV	PC/VV	FK/VV	
			Dat			ength					
				0	0	0	0		ength = 0 b		
							1		ength = 1 b	-	
						1	0		ength = 2 b	-	
							1		ength = 3 b		
					1	0	0		ength = 4 b		
							1		ta length = 5 bytes		
						1	0		ength = 6 b		
			•				1		ength = 7 b	-	
				1	0/1	0/1	0/1	Data le	ength = 8 b	oytes	
MC7[2]											
Bit	7	6	5			4		3	2	1	0
	_	_	_					_	_	_	_
Initial value	Undefined	Undefined	Undefin	ed	Und	lefine	d l	Jndefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	,	F	R/W		R/W	R/W	R/W	R/W
MC7[3]											
Bit	7	6	5			4		3	2	1	0
	_	_	_		-			_	_		_
Initial value	Undefined	Undefined	Undefin	ed	Und	lefine	d l	Jndefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	Undefined R/W		R/W		R/W	R/W	R/W	R/W



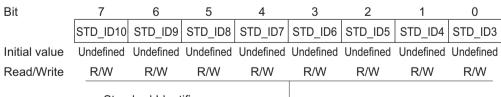
Set the identifier (standard identifier) of data frames and remote frames


MC7[7]												
Bit	7	6	5	4	3	2	1	0				
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0				
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined				
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Extended Identifier ————————————————————————————————————												
Bit	7	6	5	4	3	2	1	0				
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8				
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined				
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Extended Identifier ————————————————————————————————————												

MC8[1]—Mess MC8[2]—Mess MC8[3]—Mess MC8[4]—Mess MC8[5]—Mess MC8[6]—Mess MC8[7]—Mess MC8[8]—Mess	rol 8[2] rol 8[3] rol 8[4] rol 8[5] rol 8[6] rol 8[7]	H'F860 HCA H'F861 HCA H'F862 HCA H'F863 HCA H'F864 HCA H'F865 HCA H'F865 HCA H'F866 HCA									
MC8[1]											
Bit	7	6	5			4	_	3	2	1	0
		_				_		DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefin	Undefined		efine	d l	Jndefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	R/W		R/W		R/W	R/W	R/W	R/W
			Data		a Le	enath	ı C	ode —			
				0	0	0	0		ength = 0 b	ytes	
							1	Data le	ength = 1 b	oyte	
						1	0		ength = 2 k	-	
							1		ength = 3 b	-	
					1	0	0		ength = 4 b	-	
							1		ength = 5 bytes		
						1	0		ength = 6 k	-	
							1		ength = 7 k	-	
				1	0/1	0/1	0/1		ength = 8 k	-	
MC8[2]			l						<u> </u>	,	
Bit	7	6	5			4		3	2	1	0
Z.K						<u> </u>	T				
Initial value	Undefined	Undefined	Undefin	ned	Und	efine	d l	Jndefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W			R/W		R/W	R/W	R/W	R/W
MC8[3]											
Bit	7	6	5			4		3	2	1	0
Dit	_		J			_	Т				
Initial value	Undefined	Lindofined	Lindofin	, od	Hnd	ofino	4 I	Indefined	Lindefined	Undefined	Lindefined
							u (Undefined Undefined			
Read/Write	R/W	R/W	R/W	1	r	R/W		R/W	R/W	R/W	R/W

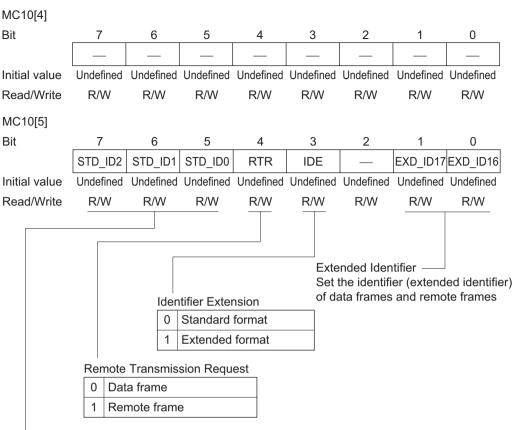

Set the identifier (standard identifier) of data frames and remote frames

MC8[6]

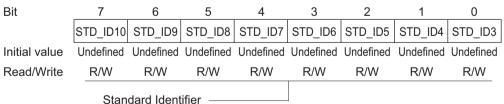

MC8[7]												
Bit	7	XD_ID7 EXD_ID6 EXD_ID			3	2	1	0				
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0				
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined				
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
MC8[8]	Extended Identifier ————————————————————————————————————											
Bit	7	6	5	4	3	2	1	0				
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8				
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined				
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
		nded Iden	\	f		f						

MC9[1]—Mess MC9[2]—Mess MC9[3]—Mess MC9[4]—Mess MC9[5]—Mess MC9[6]—Mess MC9[7]—Mess MC9[8]—Mess		H'F868 H'F869 H'F86A H'F86B H'F86C H'F86D H'F86E H'F86F										
MC9[1]												
Bit	7	6	5			4	_	3	2	1	0	
	_	_	_		-			DLC3	DLC2	DLC1	DLC0	
Initial value	Undefined	Undefined	Undefine	ed	Und	efine	ed l	Jndefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W		F	R/W		R/W	R/W	R/W	R/W	
			С	Dat	a Le	enatl	h C	ode —				
				0	0	0	0	1	ength = 0 b	ytes		
							1	Data le	Data length = 1 b			
						1	0	Data le	ength = 2 b	ytes		
							1	Data le	ength = 3 b	ytes		
					1	0	0	Data le	ength = 4 b	ytes		
							1	Data length = 5 bytes				
						1	0	Data le	ength = 6 b	ytes		
							1	Data le	ength = 7 b	ytes		
				1	0/1	0/1	0/1		ength = 8 b	-		
1400101			L		l							
MC9[2]	7	0	_			4		0	0	4	0	
Bit	7	6	5			4	Т	3	2	1	0	
Initial value	Undefined		Lindofina		Llnd	ofino	-d 1		Undefined	Undefined		
Read/Write	R/W	R/W		∌u		eime R/W	eu (R/W			
Read/write	K/VV	K/VV	R/W		r	K/ V V		R/W	R/VV	R/W	R/W	
MC9[3]												
Bit	7	6	5	5		4		3	2	1	0	
				_								
Initial value	Undefined	Undefined	Undefine	Undefined		efine	d l	Jndefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W			R/W		R/W	R/W	R/W	R/W	

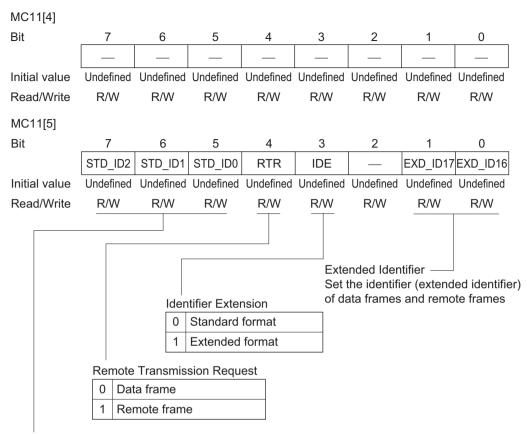
Set the identifier (standard identifier) of data frames and remote frames



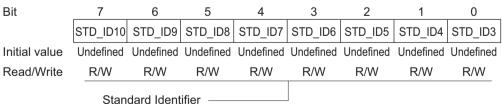
Standard Identifier -


MC9[7]												
Bit	7	6	5	4	3	2	1	0				
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0				
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined				
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Extended Identifier ————————————————————————————————————												
Bit	7	6	5	4	3	2	1	0				
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8				
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined				
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Extended Identifier ————————————————————————————————————												

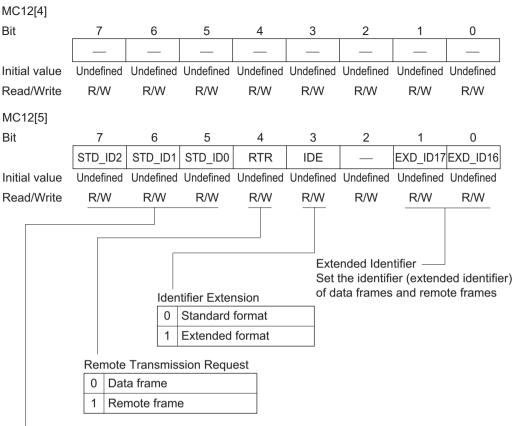
MC10[1]—Me MC10[2]—Me MC10[3]—Me MC10[4]—Me MC10[5]—Me MC10[6]—Me MC10[7]—Me MC10[8]—Me		H'F870 H'F871 H'F872 H'F873 H'F874 H'F875 H'F876 H'F877										
MC10[1]												
Bit	7	6	5			4	_	3	2	1	0	
	_	—	_		-			DLC3	DLC2	DLC1	DLC0	
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	d l	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W		R	2/W		R/W	R/W	R/W	R/W	
			[Dat	a Le	enath	n C	ode —				
			Ī	0	0	0	0		Data length = 0 bytes			
							1		ength = 1 b	-		
						1	0	Data length = 2 bytes				
							1		ength = 3 b	-		
					1	0	0	Data length = 4 bytes				
							1	Data le	ength = 5 b	ytes		
						1	0	Data le	ength = 6 b	ytes		
							1	Data le	ength = 7 b	ytes		
				1	0/1	0/1	0/1	1 Data le	ength = 8 b	ytes		
MC10[2]			L									
Bit	7	6	5			4		3	2	1	0	
Dit.						<u> </u>						
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	d l	Indefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W			2/W	u ,	R/W	R/W	R/W	R/W	
		1 4 * *										
MC10[3]	_		_					_				
Bit	7	6	5			4	_	3	2	1	0	
					-		\perp					
Initial value							d l		Undefined			
Read/Write	R/W	R/W	R/W		R	2/W		R/W	R/W	R/W	R/W	

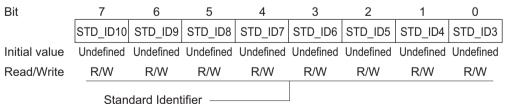

Set the identifier (standard identifier) of data frames and remote frames

MC10[6]

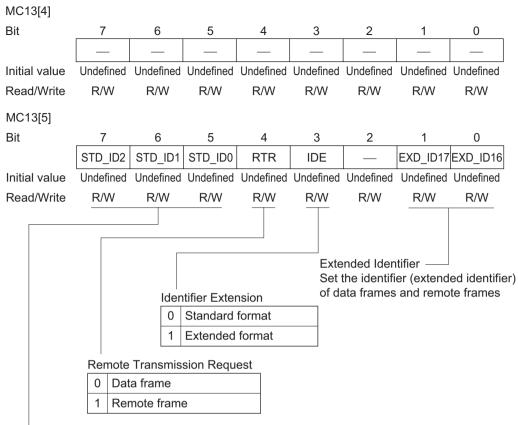

MC10[7]									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Extended Identifier ————————————————————————————————————									
Bit	7	6 5		4	3	2	1	0	
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Extended Identifier ————————————————————————————————————					er) of data	frames an	d remote	frames	

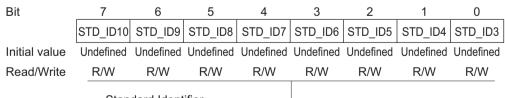
MC11[1]—Message Control 11[1] MC11[2]—Message Control 11[2] MC11[3]—Message Control 11[3] MC11[4]—Message Control 11[4] MC11[5]—Message Control 11[5] MC11[6]—Message Control 11[6] MC11[7]—Message Control 11[7] MC11[8]—Message Control 11[8]				H'F878 H'F879 H'F87A H'F87B H'F87C H'F87D H'F87E H'F87F							HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0	
MC11[1]												
Bit	7	6	5		4		_	3	2	1	0	
	_	_	_					DLC3	DLC2	DLC1	DLC0	
Initial value	Undefined						d			Undefined		
Read/Write	R/W	R/W	R/W	R/W		R/W		R/W	R/W	R/W	R/W	
				Dat	a Le	ength	gth Code ————					
				0	0	0	0	Data le	Data length = 0 bytes			
							1	Data length = 1 byte		oyte		
						1	0	Data le	ength = 2 b	oytes		
							1	Data le	ength = 3 b	oytes		
					1	0	0	Data length = 4 byte		oytes		
							1			oytes		
						1	0	Data le	ength = 6 b	oytes		
							1	Data le	ength = 7 b	oytes		
				1	0/1	0/1	0/	1 Data le	ength = 8 b	oytes		
MC11[2]											<u>.</u>	
Bit	7	6	5	5		4		3	2	1	0	
			_		_			_	_	_	_	
Initial value	Undefined	Undefined	Undefir	ned	Undefined R/W		d	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	/				R/W	R/W	R/W	R/W	
MC11[3]												
Bit	7	6	5		4			3	2	1	0	
		_	_				Ī		_			
Initial value	Undefined	Undefined	Undefir	ned	Undefined		d	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	/	R/W			R/W	R/W	R/W	R/W	


Set the identifier (standard identifier) of data frames and remote frames

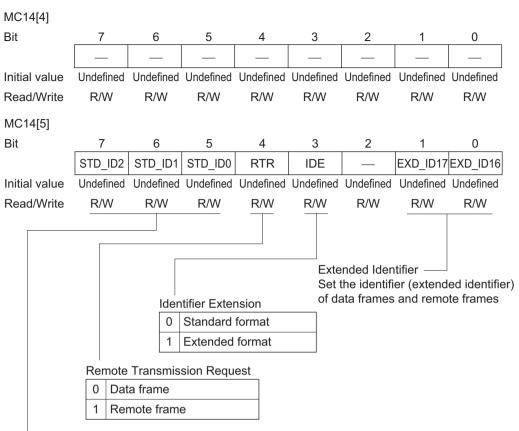

MC11[7]									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Extended Identifier ————————————————————————————————————									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		nded Iden he identifi	er) of data	frames an	d remote	frames			

MC12[1]—Message Control 12[1] MC12[2]—Message Control 12[2] MC12[3]—Message Control 12[3] MC12[4]—Message Control 12[4] MC12[5]—Message Control 12[5] MC12[6]—Message Control 12[6] MC12[7]—Message Control 12[7] MC12[8]—Message Control 12[8]								H'F880 H'F881 H'F882 H'F883 H'F884 H'F885 H'F886			HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0
MC12[1]											
Bit	7	6	5			4	_	3	2	1	0
	_	_	_					DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefin	ned	Und	efine	d l	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	1	F	R/W		R/W	R/W	R/W	R/W
				Data Length Code —							
				0 0 0 0 Data length = 0 by				ytes			
				1 Data length = 1 by			oyte				
				1 0 Data length = 2 b		-					
							1		ength = 3 k	-	
					1	0	0	Data le	ength = 4 k	oytes	
							1	Data le	ength = 5 k	oytes	
						1	0		ength = 6 k	-	
							1		ength = 7 k	-	
				1	0/1	0/1	0/1	_	ength = 8 k	-	
MO40503			l							-	
MC12[2]	7	0	_			4		0	0	4	0
Bit	7	6	5			4	Т	3	2	1	0
leitiel valve					ام مدالا	-6	ا اہ				
Initial value							a ı		Undefined		
Read/Write	R/W	R/W	R/W		r	R/W		R/W	R/W	R/W	R/W
MC12[3]											
Bit	7	6	5			4	_	3	2	1	0
	_	_	_			_		_	_	_	_
Initial value	Undefined	Undefined	Undefin	ned	Und	efine	d l	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	1	F	R/W		R/W	R/W	R/W	R/W

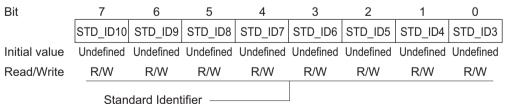

Set the identifier (standard identifier) of data frames and remote frames


MC12[7]									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Extended Identifier ————————————————————————————————————									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		nded Iden he identifi	er) of data	frames an	id remote	frames			

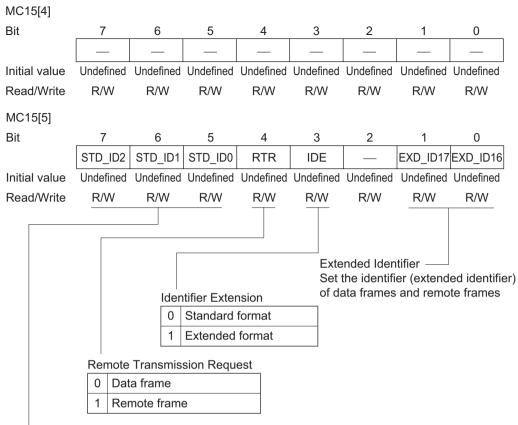
MC13[1]—Mes MC13[2]—Mes MC13[3]—Mes MC13[4]—Mes MC13[5]—Mes MC13[6]—Mes MC13[7]—Mes MC13[8]—Mes						H'F888 H'F889 H'F88A H'F88C H'F88C H'F88E H'F88E			HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0		
MC13[1]											
Bit	7	6	5			4	_	3	2	1	0
	_	_	_		-			DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	d l	Indefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		F	R/W		R/W	R/W	R/W	R/W
			[Data Length Code							
				0 0 0 0 Data length = 0 b				ytes			
				1 Data length = 1 b			yte				
				1 0 Data length = 2 b			ytes				
						1 Data length = 3 b			ength = 3 b	ytes	
				1 0 0 Data length = 4 byt				ytes			
							1	Data le	ength = 5 b	ytes	
						1	0	Data le	ength = 6 b	ytes	
							1	Data le	ength = 7 b	ytes	
				1	0/1	0/1	0/1	Data le	ength = 8 b	ytes	
MC13[2]								1			
Bit	7	6	5			4		3	2	1	0
Бit									_		
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	d l	Indefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W			R/W		R/W	R/W	R/W	R/W
MC13[3]											
Bit	7	6	5			4		3	2	1	0
Dit						_	\top				
Initial value	Undefined	Undefined	Lindafin		Und	ofino	4 I	Indefined	Undefined	Undefined	L Indefined
Read/Write	R/W	R/W	R/W			eille VW	u (R/W	R/W	R/W	R/W
reau/wille	FX/ V V	FX/VV	IT./ V V		Г	./ V V		17/VV	FX/ V V	F\/ V V	FX/ V V

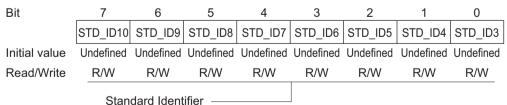

Set the identifier (standard identifier) of data frames and remote frames

MC13[6]


MC13[7]										
Bit	7	6	5	4	3	2	1	0		
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0		
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
MC13[8]	Extended Identifier ————————————————————————————————————									
Bit	7	6	5	4	3	2	1	0		
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8		
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
		nded Iden he identifi	er) of data	frames an	nd remote	frames				

MC14[1]—Message Control 14[1] MC14[2]—Message Control 14[2] MC14[3]—Message Control 14[3] MC14[4]—Message Control 14[4] MC14[5]—Message Control 14[5] MC14[6]—Message Control 14[6] MC14[7]—Message Control 14[7] MC14[8]—Message Control 14[8]								H'F890 H'F891 H'F892 H'F893 H'F894 H'F895 H'F896			HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0
MC14[1]											
Bit	7	6	5			4		3	2	1	0
	_	—	_					DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefir	ned	Und	efine	d l	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	1	F	R/W		R/W	R/W	R/W	R/W
				Data Length Code —							
				0 0 0 Data length = 0 by					ytes		
				1 Data length = 1 by			oyte				
				1 0 Data length = 2 b			oytes				
							1	Data le	ength = 3 b	oytes	
					1	0	0	Data le	ength = 4 b	ytes	
							1	Data le	ength = 5 k	ytes	
						1	0	Data le	ength = 6 b	ytes	
							1	Data le	ength = 7 b	ytes	
				1	0/1	0/1	0/1	1 Data le	ength = 8 b	ytes	
MC14[2]			'					'			
Bit	7	6	5			4		3	2	1	0
	_	_	_					_	_	_	_
Initial value	Undefined	Undefined	Undefir	ned	Und	efine	d l	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	/	F	R/W		R/W	R/W	R/W	R/W
MC14[3]											
Bit	7	6	5			4		3	2	1	0
	_	_							_		_
Initial value	Undefined	Undefined	Undefir	ned	Und	efine	d l	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	/	F	R/W		R/W	R/W	R/W	R/W


Set the identifier (standard identifier) of data frames and remote frames


MC14[7]									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Extended Identifier ————————————————————————————————————									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		nded Iden he identifi	er) of data	frames an	id remote	frames			

MC15[1]—Message Control 15[1] MC15[2]—Message Control 15[2] MC15[3]—Message Control 15[3] MC15[4]—Message Control 15[4] MC15[5]—Message Control 15[5] MC15[6]—Message Control 15[6] MC15[7]—Message Control 15[7] MC15[8]—Message Control 15[8]								H'F898 H'F899 H'F89A H'F89B H'F89C H'F89D H'F89E	! !		HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0 HCAN0
MC15[1]											
Bit	7	6	5			4	_	3	2	1	0
	_	_	_					DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefir	ned	Und	lefine	d l	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	/	R	R/W		R/W	R/W	R/W	R/W
				Data Length Cod					ode —		
				0 0 0 0 Data length = 0 by			ytes				
							1	Data le	ength = 1 k	oyte	
						1	0	Data le	ength = 2 k	oytes	
							1	Data le	ength = 3 k	oytes	
					1	0	0	Data le	ength = 4 k	oytes	
							1	Data le	ength = 5 b	oytes	
						1	0	Data le	ength = 6 b	oytes	
							1	Data le	ength = 7 b	oytes	
				1	0/1	0/1	0/1	1 Data le	ength = 8 b	oytes	
MC15[2]											<u>.</u>
Bit	7	6	5			4		3	2	1	0
	_	_	_			_		_	_	_	_
Initial value	Undefined	Undefined	Undefir	ned	Und	lefine	d l	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	/	F	R/W		R/W	R/W	R/W	R/W
MC15[3]											
Bit	7	6	5			4		3	2	1	0
	_	_	_					_	_	_	_
Initial value	Undefined	Undefined	Undefir	ned	Und	lefine	d l	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	/	F	R/W		R/W	R/W	R/W	R/W

Set the identifier (standard identifier) of data frames and remote frames

MC15[6]

MC15[7]									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Extended Identifier Set the identifier (extended identifier) of data frames and remote frames MC15[8]									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		nded Iden he identifi	er) of data	frames an	id remote	frames			

MD0[1]—Message Data 0[1]	H'F8B0	HCAN0
MD0[2]—Message Data 0[2]	H'F8B1	HCAN0
MD0[3]—Message Data 0[3]	H'F8B2	HCAN0
MD0[4]—Message Data 0[4]	H'F8B3	HCAN0
MD0[5]—Message Data 0[5]	H'F8B4	HCAN0
MD0[6]—Message Data 0[6]	H'F8B5	HCAN0
MD0[7]—Message Data 0[7]	H'F8B6	HCAN0
MD0[8]—Message Data 0[8]	H'F8B7	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD1[1]—Message Data 1[1]	H'F8B8	HCAN0
MD1[2]—Message Data 1[2]	H'F8B9	HCAN0
MD1[3]—Message Data 1[3]	H'F8BA	HCAN0
MD1[4]—Message Data 1[4]	H'F8BB	HCAN0
MD1[5]—Message Data 1[5]	H'F8BC	HCAN0
MD1[6]—Message Data 1[6]	H'F8BD	HCAN0
MD1[7]—Message Data 1[7]	H'F8BE	HCAN0
MD1[8]—Message Data 1[8]	H'F8BF	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD2[1]—Message Data 2[1]	H'F8C0	HCAN0
MD2[2]—Message Data 2[2]	H'F8C1	HCAN0
MD2[3]—Message Data 2[3]	H'F8C2	HCAN0
MD2[4]—Message Data 2[4]	H'F8C3	HCAN0
MD2[5]—Message Data 2[5]	H'F8C4	HCAN0
MD2[6]—Message Data 2[6]	H'F8C5	HCAN0
MD2[7]—Message Data 2[7]	H'F8C6	HCAN0
MD2[8]—Message Data 2[8]	H'F8C7	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD3[1]—Message Data 3[1]	H'F8C8	HCAN0
MD3[2]—Message Data 3[2]	H'F8C9	HCAN0
MD3[3]—Message Data 3[3]	H'F8CA	HCAN0
MD3[4]—Message Data 3[4]	H'F8CB	HCAN0
MD3[5]—Message Data 3[5]	H'F8CC	HCAN0
MD3[6]—Message Data 3[6]	H'F8CD	HCAN0
MD3[7]—Message Data 3[7]	H'F8CE	HCAN0
MD3[8]—Message Data 3[8]	H'F8CF	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD4[1]—Message Data 4[1]	H'F8D0	HCAN0
MD4[2]—Message Data 4[2]	H'F8D1	HCAN0
MD4[3]—Message Data 4[3]	H'F8D2	HCAN0
MD4[4]—Message Data 4[4]	H'F8D3	HCAN0
MD4[5]—Message Data 4[5]	H'F8D4	HCAN0
MD4[6]—Message Data 4[6]	H'F8D5	HCAN0
MD4[7]—Message Data 4[7]	H'F8D6	HCAN0
MD4[8]—Message Data 4[8]	H'F8D7	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD5[1]—Message Data 5[1]	H'F8D8	HCAN0
MD5[2]—Message Data 5[2]	H'F8D9	HCAN0
MD5[3]—Message Data 5[3]	H'F8DA	HCAN0
MD5[4]—Message Data 5[4]	H'F8DB	HCAN0
MD5[5]—Message Data 5[5]	H'F8DC	HCAN0
MD5[6]—Message Data 5[6]	H'F8DD	HCAN0
MD5[7]—Message Data 5[7]	H'F8DE	HCAN0
MD5[8]—Message Data 5[8]	H'F8DF	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD6[1]—Message Data 6[1]	H'F8E0	HCAN0
MD6[2]—Message Data 6[2]	H'F8E1	HCAN0
MD6[3]—Message Data 6[3]	H'F8E2	HCAN0
MD6[4]—Message Data 6[4]	H'F8E3	HCAN0
MD6[5]—Message Data 6[5]	H'F8E4	HCAN0
MD6[6]—Message Data 6[6]	H'F8E5	HCAN0
MD6[7]—Message Data 6[7]	H'F8E6	HCAN0
MD6[8]—Message Data 6[8]	H'F8E7	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD7[1]—Message Data 7[1]	H'F8E8	HCAN0
MD7[2]—Message Data 7[2]	H'F8E9	HCAN0
MD7[3]—Message Data 7[3]	H'F8EA	HCAN0
MD7[4]—Message Data 7[4]	H'F8EB	HCAN0
MD7[5]—Message Data 7[5]	H'F8EC	HCAN0
MD7[6]—Message Data 7[6]	H'F8ED	HCAN0
MD7[7]—Message Data 7[7]	H'F8EE	HCAN0
MD7[8]—Message Data 7[8]	H'F8EF	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD8[1]—Message Data 8[1]	H'F8F0	HCAN0
MD8[2]—Message Data 8[2]	H'F8F1	HCAN0
MD8[3]—Message Data 8[3]	H'F8F2	HCAN0
MD8[4]—Message Data 8[4]	H'F8F3	HCAN0
MD8[5]—Message Data 8[5]	H'F8F4	HCAN0
MD8[6]—Message Data 8[6]	H'F8F5	HCAN0
MD8[7]—Message Data 8[7]	H'F8F6	HCAN0
MD8[8]—Message Data 8[8]	H'F8F7	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD9[1]—Message Data 9[1]	H'F8F8	HCAN0
MD9[2]—Message Data 9[2]	H'F8F9	HCAN0
MD9[3]—Message Data 9[3]	H'F8FA	HCAN0
MD9[4]—Message Data 9[4]	H'F8FB	HCAN0
MD9[5]—Message Data 9[5]	H'F8FC	HCAN0
MD9[6]—Message Data 9[6]	H'F8FD	HCAN0
MD9[7]—Message Data 9[7]	H'F8FE	HCAN0
MD9[8]—Message Data 9[8]	H'F8FF	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	[
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD10[1]—Message Data 10[1]	H'F900	HCAN0
MD10[2]—Message Data 10[2]	H'F901	HCAN0
MD10[3]—Message Data 10[3]	H'F902	HCAN0
MD10[4]—Message Data 10[4]	H'F903	HCAN0
MD10[5]—Message Data 10[5]	H'F904	HCAN0
MD10[6]—Message Data 10[6]	H'F905	HCAN0
MD10[7]—Message Data 10[7]	H'F906	HCAN0
MD10[8]—Message Data 10[8]	H'F907	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD11[1]—Message Data 11[1]	H'F908	HCAN0
MD11[2]—Message Data 11[2]	H'F909	HCAN0
MD11[3]—Message Data 11[3]	H'F90A	HCAN0
MD11[4]—Message Data 11[4]	H'F90B	HCAN0
MD11[5]—Message Data 11[5]	H'F90C	HCAN0
MD11[6]—Message Data 11[6]	H'F90D	HCAN0
MD11[7]—Message Data 11[7]	H'F90E	HCAN0
MD11[8]—Message Data 11[8]	H'F90F	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD12[1]—Message Data 12[1]	H'F910	HCAN0
MD12[2]—Message Data 12[2]	H'F911	HCAN0
MD12[3]—Message Data 12[3]	H'F912	HCAN0
MD12[4]—Message Data 12[4]	H'F913	HCAN0
MD12[5]—Message Data 12[5]	H'F914	HCAN0
MD12[6]—Message Data 12[6]	H'F915	HCAN0
MD12[7]—Message Data 12[7]	H'F916	HCAN0
MD12[8]—Message Data 12[8]	H'F917	HCAN0

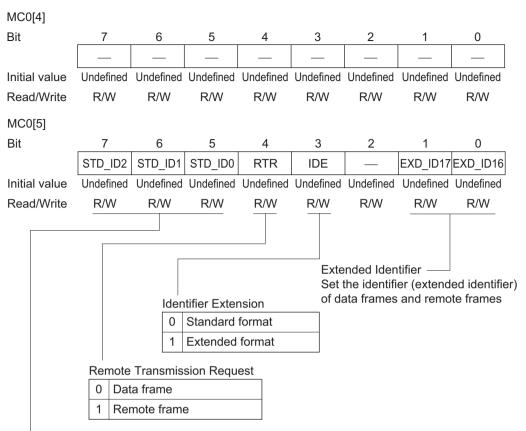
MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD13[1]—Message Data 13[1]	H'F918	HCAN0
MD13[2]—Message Data 13[2]	H'F919	HCAN0
MD13[3]—Message Data 13[3]	H'F91A	HCAN0
MD13[4]—Message Data 13[4]	H'F91B	HCAN0
MD13[5]—Message Data 13[5]	H'F91C	HCAN0
MD13[6]—Message Data 13[6]	H'F91D	HCAN0
MD13[7]—Message Data 13[7]	H'F91E	HCAN0
MD13[8]—Message Data 13[8]	H'F91F	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

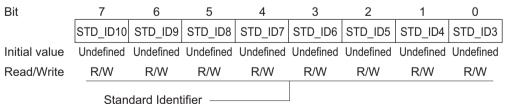
MD14[1]—Message Data 14[1]	H'F920	HCAN0
MD14[2]—Message Data 14[2]	H'F921	HCAN0
MD14[3]—Message Data 14[3]	H'F922	HCAN0
MD14[4]—Message Data 14[4]	H'F923	HCAN0
MD14[5]—Message Data 14[5]	H'F924	HCAN0
MD14[6]—Message Data 14[6]	H'F925	HCAN0
MD14[7]—Message Data 14[7]	H'F926	HCAN0
MD14[8]—Message Data 14[8]	H'F927	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W


MD15[1]—Message Data 15[1]	H'F928	HCAN0
MD15[2]—Message Data 15[2]	H'F929	HCAN0
MD15[3]—Message Data 15[3]	H'F92A	HCAN0
MD15[4]—Message Data 15[4]	H'F92B	HCAN0
MD15[5]—Message Data 15[5]	H'F92C	HCAN0
MD15[6]—Message Data 15[6]	H'F92D	HCAN0
MD15[7]—Message Data 15[7]	H'F92E	HCAN0
MD15[8]—Message Data 15[8]	H'F92F	HCAN0

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

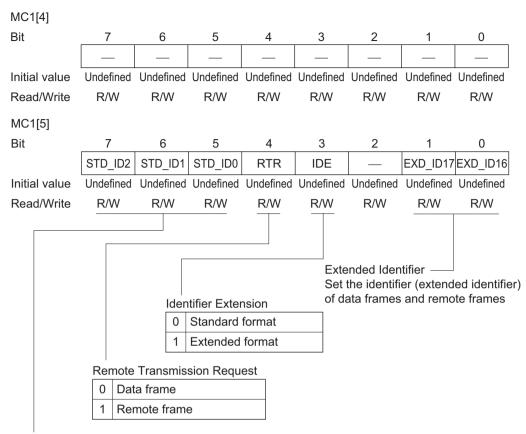
MC0[1]—Message Control 0[1]	H'FA20	HCAN1
MC0[2]—Message Control 0[2]	H'FA21	HCAN1
MC0[3]—Message Control 0[3]	H'FA22	HCAN1
MC0[4]—Message Control 0[4]	H'FA23	HCAN1
MC0[5]—Message Control 0[5]	H'FA24	HCAN1
MC0[6]—Message Control 0[6]	H'FA25	HCAN1
MC0[7]—Message Control 0[7]	H'FA26	HCAN1
MC0[8]—Message Control 0[8]	H'FA27	HCAN1


Note: These registers are not available in the H8S/2635 Group.

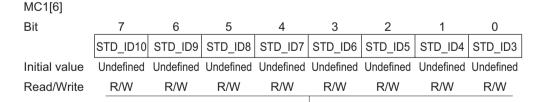
MC0[1]											
Bit	7	6	5			4		3	2	1	0
	_	_	_		-	_		DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefined	t	Undefined		ed	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	:/W		R/W	R/W	R/W	R/W
Data Length Code					Code —						
			С	_	0	0 0 Data length = 0 bytes				ytes	
							1	Data le	ength = 1 b	yte	
						1	0	Data le	ength = 2 b	ytes	
							1	Data le	ength = 3 b	ytes	
					1	0	0	Data le	ength = 4 b	ytes	
							1	Data le	ength = 5 b	ytes	
						1	0	Data le	ength = 6 b	ytes	
							1	Data le	ength = 7 b	ytes	
			1	1	0/1	0/1	0/	1 Data le	ength = 8 b	ytes	
1010014											
MC0[2]	7	C	-			4		2	0	4	0
Bit	/	6	5	1		4	1	3	2	1	0
1 20 1 1				_			4				
Initial value	Undefined			t			d		Undefined		Undefined
Read/Write	R/W	R/W	R/W		R	:/W		R/W	R/W	R/W	R/W
MC0[3]											
Bit	7	6	5			4		3	2	1	0
	_	_	_		-	_		_	_		_
Initial value	Undefined	Undefined	Undefined	ď	Und	efine	ed	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	:/W		R/W	R/W	R/W	R/W

Set the identifier (standard identifier) of data frames and remote frames

MC0[6]



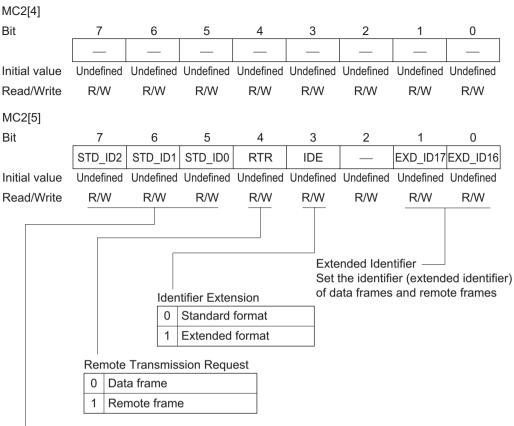
MC0[7]								
Bit	7	6	5	4	3	2	1	0
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MC0[8]		nded Iden he identifi		ed identifie	er) of data	frames an	nd remote	frames
Bit	7	6	5	4	3	2	1	0
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Extended Identifier ————————————————————————————————————								frames


MC1[1]—Message Control 1[1]	H'FA28	HCAN1
MC1[2]—Message Control 1[2]	H'FA29	HCAN1
MC1[3]—Message Control 1[3]	H'FA2A	HCAN1
MC1[4]—Message Control 1[4]	H'FA2B	HCAN1
MC1[5]—Message Control 1[5]	H'FA2C	HCAN1
MC1[6]—Message Control 1[6]	H'FA2D	HCAN1
MC1[7]—Message Control 1[7]	H'FA2E	HCAN1
MC1[8]—Message Control 1[8]	H'FA2F	HCAN1

Note: These registers are not available in the H8S/2635 Group.

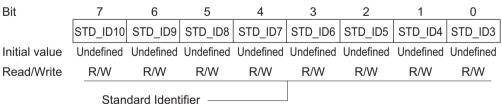
MC1[1]	egisters an	o not avail			1100	<i>312</i> 0		отобр.			
Bit	7	6	5			4		3	2	1	0
Dit.		_						DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefine	 ed	Und	efine	L ed		Undefined		
Read/Write	R/W	R/W	R/W	R/W		/W		R/W	R/W	R/W	R/W
			_	-		المرسم سا					
						_		Code —		1	
				0	0	0	0		ength = 0 b		
							1		ength = 1 b	-	
						1	0	Data le	ength = 2 b	oytes	
							1	Data le	ength = 3 b	oytes	
					1	0	0	Data le	ength = 4 b	ytes	
							1	Data le	ength = 5 b	ytes	
						1	0	Data le	ength = 6 b	oytes	
							1	Data le	ength = 7 b	ovtes	
				1	0/1	0/1	0/		ength = 8 b	-	
			L					1		.,	
MC1[2]											
Bit	7	6	5			4		3	2	1	0
	_	_	_		-	_			_		_
Initial value	Undefined	Undefined	Undefine	ed	Und	efine	d	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	/W		R/W	R/W	R/W	R/W
MC1[3]											
Bit	7	6	5			4		3	2	1	0
	_	_	_		_	_		_	_	_	_
Initial value	Undefined	Undefined	Undefine	ed	Und	efine	d	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	/W		R/W	R/W	R/W	R/W

Set the identifier (standard identifier) of data frames and remote frames



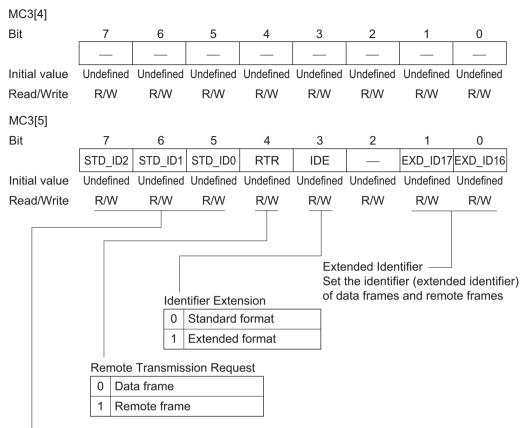
MC1[7]								
Bit	7	6	5	4	3	2	1	0
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MC1[8]		nded Iden he identifi		ed identifie	er) of data	frames an	nd remote	frames
Bit	7	6	5	4	3	2	1	0
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Extended Identifier ————————————————————————————————————								

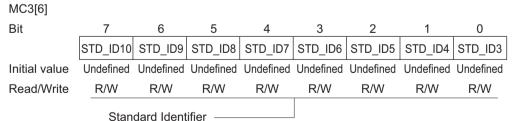
MC2[1]—Message Control 2[1]	H'FA30	HCAN1
MC2[2]—Message Control 2[2]	H'FA31	HCAN1
MC2[3]—Message Control 2[3]	H'FA32	HCAN1
MC2[4]—Message Control 2[4]	H'FA33	HCAN1
MC2[5]—Message Control 2[5]	H'FA34	HCAN1
MC2[6]—Message Control 2[6]	H'FA35	HCAN1
MC2[7]—Message Control 2[7]	H'FA36	HCAN1
MC2[8]—Message Control 2[8]	H'FA37	HCAN1


Note: These registers are not available in the H8S/2635 Group.

	J							•				
MC2[1]												
Bit	7	6	5		4			3	2	1	0	
	_	_	_					DLC3	DLC2	DLC1	DLC0	
Initial value	Undefined	Undefined	Undefined		Undefined		ed	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W		R/W			R/W	R/W	R/W	R/W	
		Data Length Code										
			0		0	0	0		Data length = 0 bytes			
							1		Data length = 1 byte			
					1	0		Data length = 2 bytes				
							1		Data length = 3 bytes			
					1	0	0		ength = 4 k	-		
					'		1		ength = 5 k			
						1	0		ength = 6 k			
						'	1			-		
				1	0/1	0/1			Data length = 7 bytes Data length = 8 bytes			
			Į		0/1	0/ 1	U/	Data is	engui – o t	bytes		
MC2[2]												
Bit	7	6	5		4			3	2	1	0	
	_	_	_		-	_		_	_	_	_	
Initial value	Undefined	Undefined	Undefin	Jndefined		Undefined		Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W		R/W			R/W	R/W	R/W	R/W	
MC2[3]												
Bit	7	6	5		4			3	2	1	0	
	_	_	_		_			_	_			
Initial value	Undefined	Undefined	Undefin	defined		Undefined		Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W		R/W			R/W	R/W	R/W	R/W	

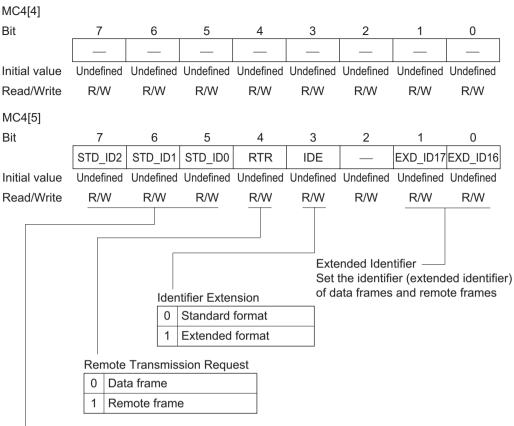
Set the identifier (standard identifier) of data frames and remote frames


MC2[6]

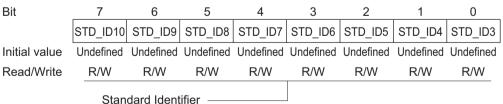

MC2[7]										
Bit	7	6	5	4	3	2	1	0		
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0		
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Extended Identifier ————————————————————————————————————										
MC2[8]	_		_							
Bit	7	6	5	4	3	2	1	0		
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8		
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
		nded Iden he identifi	er) of data	frames an	id remote	frames				

MC3[1]—Message Control 3[1]	H'FA38	HCAN1
MC3[2]—Message Control 3[2]	H'FA39	HCAN1
MC3[3]—Message Control 3[3]	H'FA3A	HCAN1
MC3[4]—Message Control 3[4]	H'FA3B	HCAN1
MC3[5]—Message Control 3[5]	H'FA3C	HCAN1
MC3[6]—Message Control 3[6]	H'FA3D	HCAN1
MC3[7]—Message Control 3[7]	H'FA3E	HCAN1
MC3[8]—Message Control 3[8]	H'FA3F	HCAN1

	- 3			_								
MC3[1]												
Bit	7	6	5	_		4	_	3	2	1	0	
	_	_	_		_			DLC3	DLC2	DLC1	DLC0	
Initial value	Undefined	Undefined	Undefined	ď	Und	efine	d	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W		R	2/W		R/W	R/W	R/W	R/W	
			D:	ats	ale	nat	h (Code —				
					0	0	0		ength = 0 b	vtos		
				'	U	0	_			-		
							1		ength = 1 b	-		
						1	0		ength = 2 b	-		
							1	Data le	ength = 3 b	oytes		
					1	0	0	Data le	ength = 4 b	oytes		
							1	Data le	ength = 5 b	ytes		
						1	0	Data le	ength = 6 b	oytes		
							1	Data le	ength = 7 b	ytes		
			1		0/1	0/1	0/	1 Data le	ength = 8 bytes			
						ı						
MC3[2]												
Bit	7	6	5	_		4	_	3	2	1	0	
	_				-	_			—			
Initial value	Undefined	Undefined	Undefined	t	Und	efine	d	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W		R	2/W		R/W	R/W	R/W	R/W	
MC3[3]												
Bit	7	6	5			4		3	2	1	0	
	_	_	_		_			_	_	_	_	
Initial value	Undefined	Undefined	Undefined	ď	Und	efine	d	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W		R	2/W		R/W	R/W	R/W	R/W	

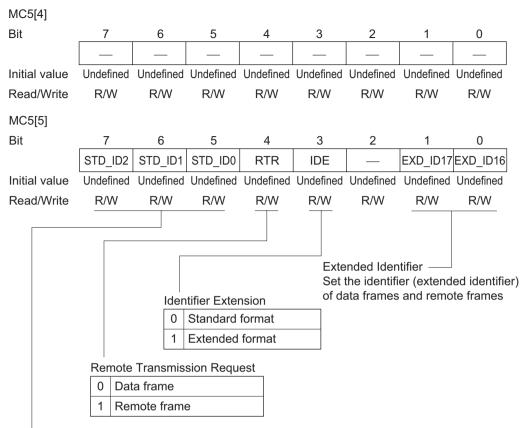

Set the identifier (standard identifier) of data frames and remote frames

MC3[7]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Extended Identifier Set the identifier (extended identifier) of data frames and remote frames MC3[8]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Extended Identifier ————————————————————————————————————											

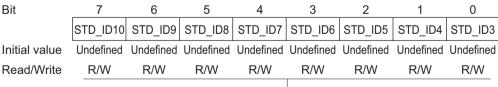

MC4[1]—Message Control 4[1]	H'FA40	HCAN1
MC4[2]—Message Control 4[2]	H'FA41	HCAN1
MC4[3]—Message Control 4[3]	H'FA42	HCAN1
MC4[4]—Message Control 4[4]	H'FA43	HCAN1
MC4[5]—Message Control 4[5]	H'FA44	HCAN1
MC4[6]—Message Control 4[6]	H'FA45	HCAN1
MC4[7]—Message Control 4[7]	H'FA46	HCAN1
MC4[8]—Message Control 4[8]	H'FA47	HCAN1

MC4[1]											
Bit	7	6	5			4		3	2	1	0
	_	_	_	_		_		DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefine	Undefined		Undefined		Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	2/W		R/W R/W		R/W	R/W
			D	at	ta Length (h C	Code —			
)	0	0	0		ength = 0 b	ytes	
							1	Data le	ength = 1 b	yte	
						1	0	Data le	ength = 2 b	ytes	
							1	Data le	ength = 3 b	ytes	
					1	0	0	Data le	ength = 4 b	oytes	
							1	Data le	ength = 5 b	oytes	
						1	0		ength = 6 b	-	
							1	Data le	ength = 7 b	oytes	
			-	1		0/1	0/	1 Data le	ength = 8 b	ytes	
NAO 4101											
MC4[2]	7	0	-					0	0	4	0
Bit	7	6	5	7		4	$\overline{}$	3	2	1	0
Initial value	Undefined	Undefined		d			ed		Undefined		Undefined
Read/Write	R/W	R/W	R/W		R	2/W		R/W	R/W	R/W	R/W
MC4[3]											
Bit	7	6	5			4		3	2	1	0
	_	_			-	_		_	_	_	_
Initial value	Undefined	Undefined	Undefine	d	Und	efine	ed	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	2/W		R/W	R/W	R/W	R/W

Set the identifier (standard identifier) of data frames and remote frames

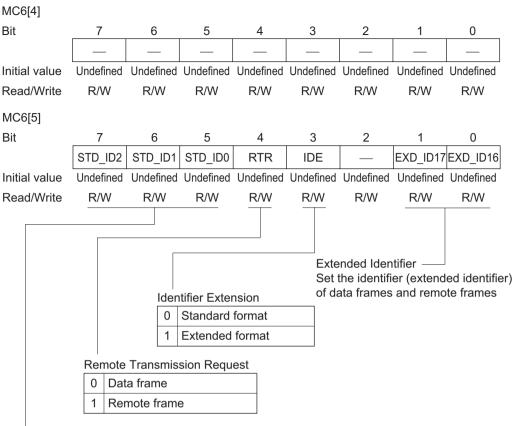


MC4[7]									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Extended Identifier Set the identifier (extended identifier) of data frames and remote frames MC4[8]									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		nded Iden he identifie	er) of data	frames an	d remote	frames			


MC5[1]—Message Control 5[1]	H'FA48	HCAN1
MC5[2]—Message Control 5[2]	H'FA49	HCAN1
MC5[3]—Message Control 5[3]	H'FA4A	HCAN1
MC5[4]—Message Control 5[4]	H'FA4B	HCAN1
MC5[5]—Message Control 5[5]	H'FA4C	HCAN1
MC5[6]—Message Control 5[6]	H'FA4D	HCAN1
MC5[7]—Message Control 5[7]	H'FA4E	HCAN1
MC5[8]—Message Control 5[8]	H'FA4F	HCAN1

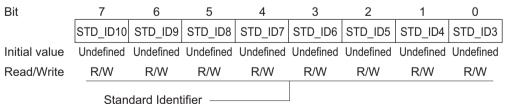
	9.0									
MC5[1]										
Bit	7	6	5		4	_	3	2	1	0
	_	_	_				DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefined	Un	define	ed	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	I	R/W		R/W	R/W	R/W	R/W
			Da	ta L	engt	h (Code —			
			0	0	0	0		ength = 0 b	vtes	
						1		ength = 1 k	-	
					1	0		ength = 2 b	-	
					'	1		ength = 3 b	-	
				1	0	0			-	
				'	0	_		ength = 4 b	-	
					_	1		ength = 5 b	-	
					1	0		ength = 6 b	-	
					_	1		ength = 7 b	-	
			1	0/	1 0/1	0/	1 Data le	ength = 8 b	oytes	
MC5[2]										
Bit	7	6	5		4		3	2	1	0
	_	_	_		_		_	_	_	_
Initial value	Undefined	Undefined	Undefined	Un	define	ed	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	I	R/W		R/W	R/W	R/W	R/W
MC5[3]										
Bit	7	6	5		4		3	2	1	0
5.0					<u> </u>					
Initial value	Undefined	Undefined	Undefined	Un	define	hd	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		aciiiic R/W	Ju	R/W	R/W	R/W	R/W

Set the identifier (standard identifier) of data frames and remote frames



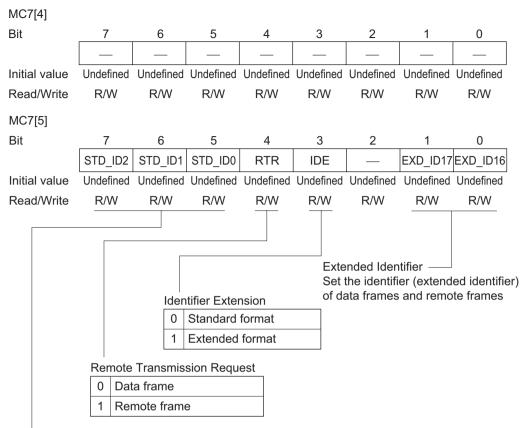
Standard Identifier -

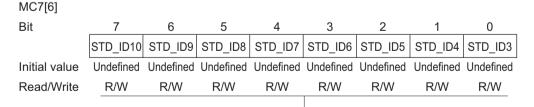
MC5[7]										
Bit	7	6	5	4	3	2	1	0		
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0		
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Extended Identifier ————————————————————————————————————										
Bit	7	6	5	4	3	2	1	0		
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8		
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Extended Identifier ————————————————————————————————————										


MC6[1]—Message Control 6[1]	H'FA50	HCAN1
MC6[2]—Message Control 6[2]	H'FA51	HCAN1
MC6[3]—Message Control 6[3]	H'FA52	HCAN1
MC6[4]—Message Control 6[4]	H'FA53	HCAN1
MC6[5]—Message Control 6[5]	H'FA54	HCAN1
MC6[6]—Message Control 6[6]	H'FA55	HCAN1
MC6[7]—Message Control 6[7]	H'FA56	HCAN1
MC6[8]—Message Control 6[8]	H'FA57	HCAN1

MC6[1]											
Bit	7	6	5			4		3	2	1	0
	_	_	_	_		_		DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefin	Undefined		Undefined		Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	R/W		R/W	R/W	R/W	R/W
			[Dat	ta Le	engt	h C	Code —			
				0	0	0	0		ength = 0 b	ytes	
							1	Data le	ength = 1 b	yte	
						1	0	Data le	ength = 2 b	ytes	
							1	Data le	ength = 3 b	ytes	
					1	0	0	_	ength = 4 b	-	
							1		ength = 5 b		
						1	0		ength = 6 b		
							1		ength = 7 b		
				1		0/1	0/		ength = 8 b		
			L								
MC6[2]	_	_	_					_			_
Bit	7	6	5			4	-	3	2	1	0
	_	_	_		-						
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	d	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	:/W		R/W	R/W	R/W	R/W
MC6[3]											
Bit	7	6	5			4		3	2	1	0
	_	_	_		-	_			_	_	_
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	d	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	:/W		R/W	R/W	R/W	R/W

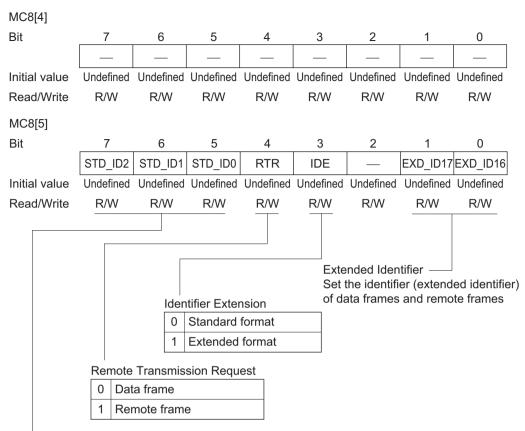
Set the identifier (standard identifier) of data frames and remote frames


MC6[6]

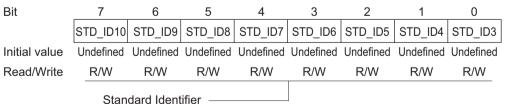

MC6[7]									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Extended Identifier ————————————————————————————————————									
MC6[8]	_		_		•	•			
Bit	7	6	5	4	3	2	1	0	
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		nded Iden he identifi	er) of data	frames an	id remote	frames			

MC7[1]—Message Control 7[1]	H'FA58	HCAN1
MC7[2]—Message Control 7[2]	H'FA59	HCAN1
MC7[3]—Message Control 7[3]	H'FA5A	HCAN1
MC7[4]—Message Control 7[4]	H'FA5B	HCAN1
MC7[5]—Message Control 7[5]	H'FA5C	HCAN1
MC7[6]—Message Control 7[6]	H'FA5D	HCAN1
MC7[7]—Message Control 7[7]	H'FA5E	HCAN1
MC7[8]—Message Control 7[8]	H'FA5F	HCAN1

iote. Triese i	egisters an	e not avail	able in	me	ПО	5/20	33	Group.			
MC7[1]											
Bit	7	6	5			4		3	2	1	0
	_		_		-	_		DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefin	ed	Und	Undefined		Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	,	R	2/W		R/W	R/W	R/W	R/W
				Dat	ta Le	enatl	h C	Code —			
				0	0	0	0		ength = 0 b	vtes	
				-			1		ength = 1 b	-	
						1	0		ength = 2 b	-	
						'	1		ength = 3 b		
					1	0				-	
					'	0	0		ength = 4 b	-	
							1		ength = 5 b	-	
						1	0		ength = 6 b	-	
							1		ength = 7 b	-	
				1	0/1	0/1	0/	1 Data le	ength = 8 b	ytes	
MC7[2]											
Bit	7	6	5			4		3	2	1	0
		_			-			_	_	_	_
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	ed .	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	,	R	2/W		R/W	R/W	R/W	R/W
MC7[3]											
Bit	7	6	5			4		3	2	1	0
	_	_	_		-			_	_	_	_
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	d	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	,	R	2/W		R/W	R/W	R/W	R/W

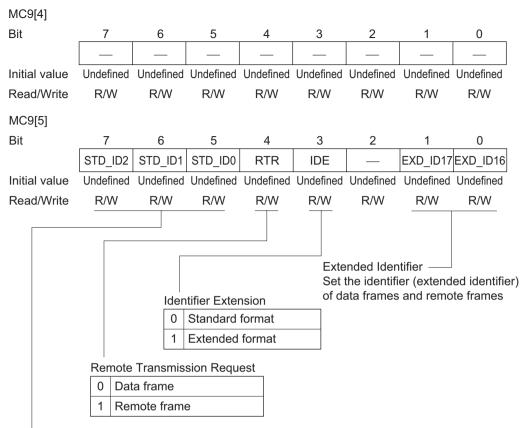

Set the identifier (standard identifier) of data frames and remote frames

MC7[7]									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Extended Identifier ————————————————————————————————————									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		nded Iden he identifi	er) of data	frames an	id remote	frames			

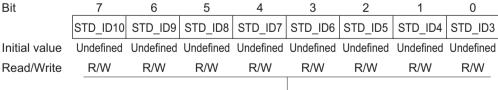

MC8[1]—Message Control 8[1]	H'FA60	HCAN1
MC8[2]—Message Control 8[2]	H'FA61	HCAN1
MC8[3]—Message Control 8[3]	H'FA62	HCAN1
MC8[4]—Message Control 8[4]	H'FA63	HCAN1
MC8[5]—Message Control 8[5]	H'FA64	HCAN1
MC8[6]—Message Control 8[6]	H'FA65	HCAN1
MC8[7]—Message Control 8[7]	H'FA66	HCAN1
MC8[8]—Message Control 8[8]	H'FA67	HCAN1

MC8[1]											
Bit	7	6	5			4		3	2	1	0
	_	_	_	_		_		DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefin	ed	Und	Undefined		Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	:/W		R/W	R/W	R/W	R/W
			[Dat	ta Le	engt	h C	Code —			
				0	0	0		0 Data length = 0 bytes			
							1	Data le	ength = 1 b	yte	
						1	0	Data le	ength = 2 b	ytes	
							1	Data le	ength = 3 b	ytes	
					1	0	0	_	ength = 4 k	-	
							1		ength = 5 k		
						1	0		ength = 6 k		
							1		ength = 7 k		
				1	0/1	0/1	0/		ength = 8 k		
			L								
MC8[2]	_	_	_					_			_
Bit	7	6	5			4		3	2	1	0
	_	_	_		-				_		
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	ed	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	:/W		R/W	R/W	R/W	R/W
MC8[3]											
Bit	7	6	5			4		3	2	1	0
	_	_	_		-	_		_	_	_	_
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	ed	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	:/W		R/W	R/W	R/W	R/W

Set the identifier (standard identifier) of data frames and remote frames

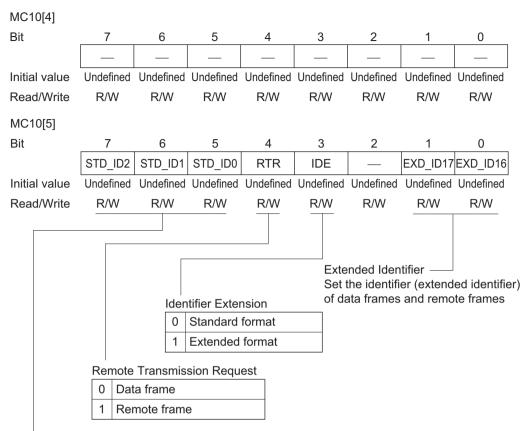

MC8[6]

MC8[7]									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Extended Identifier ————————————————————————————————————									
	7	0	_	4	0	0	4	0	
Bit	7	6	5	4	3	2	1	0	
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		nded Iden he identifi	er) of data	frames an	id remote	frames			


MC9[1]—Message Control 9[1]	H'FA68	HCAN1
MC9[2]—Message Control 9[2]	H'FA69	HCAN1
MC9[3]—Message Control 9[3]	H'FA6A	HCAN1
MC9[4]—Message Control 9[4]	H'FA6B	HCAN1
MC9[5]—Message Control 9[5]	H'FA6C	HCAN1
MC9[6]—Message Control 9[6]	H'FA6D	HCAN1
MC9[7]—Message Control 9[7]	H'FA6E	HCAN1
MC9[8]—Message Control 9[8]	H'FA6F	HCAN1

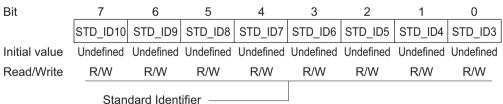
iote. These i	egisters an	e not avail	able in	me	по	5/20	33	Group.					
MC9[1]													
Bit	7	6	5			4		3	2	1	0		
	_	_			-	_		DLC3	DLC2	DLC1	DLC0		
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	d	Undefined	Undefined	Undefined	Undefined		
Read/Write	R/W	R/W	R/W	,	R	2/W		R/W	R/W	R/W	R/W		
				Dat	ta Le	engtl	h C	Code —					
				0	0	0	0		ength = 0 b	ytes			
							1	Data le	Data length = 1 byte				
						1	0	Data le	ength = 2 b	ytes			
							1	Data le	ength = 3 b	ytes			
					1	0	0	Data le	ength = 4 b	ytes			
							1	Data le	ength = 5 b	ytes			
						1	0	Data le	ength = 6 b	ytes			
							1	Data le	ength = 7 b	ytes			
				1	0/1	0/1	0/	1 Data le	ength = 8 b	ytes			
MC9[2]													
Bit	7	6	5			4		3	2	1	0		
Dit		_					Т						
Initial value	Undefined	Undefined	Undefin	ed.	Und	efine	Н	Undefined	Undefined	Undefined	Undefined		
Read/Write	R/W	R/W	R/W			2/W	ď	R/W	R/W	R/W	R/W		
	1000										1,000		
MC9[3]													
Bit	7	6	5	_		4	_	3	2	1	0		
	_	_	_		-	_		_	_	_			
Initial value	Undefined	Undefined			Und	efine	d		Undefined	Undefined	Undefined		
Read/Write	R/W	R/W	R/W	'	R	2/W		R/W	R/W	R/W	R/W		

Set the identifier (standard identifier) of data frames and remote frames



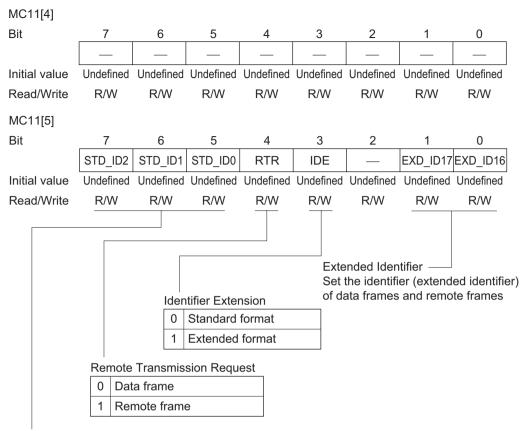
Standard Identifier -

MC9[7]									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Extended Identifier ————————————————————————————————————									
Bit	7	6	5	4	3	2	1	0	
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		nded Iden he identifi	er) of data	frames an	id remote	frames			

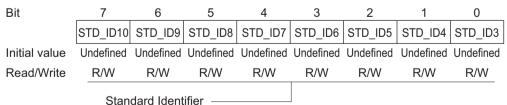

MC10[1]—Message Control 10[1]	H'FA70	HCAN1
MC10[2]—Message Control 10[2]	H'FA71	HCAN1
MC10[3]—Message Control 10[3]	H'FA72	HCAN1
MC10[4]—Message Control 10[4]	H'FA73	HCAN1
MC10[5]—Message Control 10[5]	H'FA74	HCAN1
MC10[6]—Message Control 10[6]	H'FA75	HCAN1
MC10[7]—Message Control 10[7]	H'FA76	HCAN1
MC10[8]—Message Control 10[8]	H'FA77	HCAN1

toto. Those registers are not available in the theo/2000 Group.	
MC10[1]	
Bit 7 6 5 4 3 2 1	0
DLC3 DLC2 DLC1	DLC0
Initial value Undefined Undefined Undefined Undefined Undefined Undefined U	Jndefined
Read/Write R/W R/W R/W R/W R/W	R/W
Data Length Code ————	
1 Data length = 1 byte	
1 0 Data length = 2 bytes	
1 Data length = 3 bytes	
1 0 0 Data length = 4 bytes	
1 Data length = 5 bytes	
1 0 Data length = 6 bytes	
1 Data length = 7 bytes	
1 0/1 0/1 0/1 Data length = 8 bytes	
1 0/1 0/1 Data length = 6 bytes	
MC10[2]	
Bit _ 7 6 5 4 3 2 1	0
Initial value Undefined Undefined Undefined Undefined Undefined Undefined U	Jndefined
Read/Write R/W R/W R/W R/W R/W	R/W
MC10[3]	
Bit 7 6 5 4 3 2 1	0
	_
Initial value Undefined Undefined Undefined Undefined Undefined Undefined U	Jndefined
Read/Write R/W R/W R/W R/W R/W R/W	R/W

Set the identifier (standard identifier) of data frames and remote frames

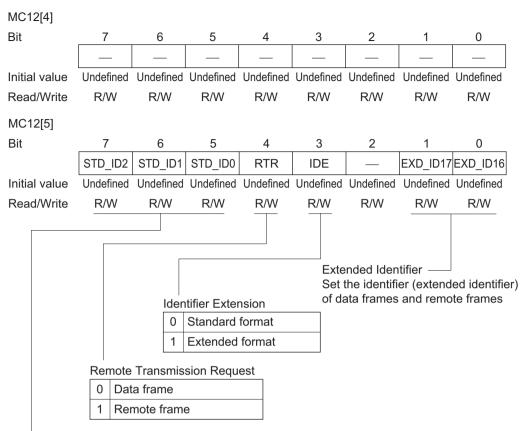


MC10[7]										
Bit	7	6	5	4	3	2	1	0		
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0		
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Extended Identifier Set the identifier (extended identifier) of data frames and remote frames MC10[8]										
Bit	7	6	5	4	3	2	1	0		
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8		
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Extended Identifier ————————————————————————————————————										

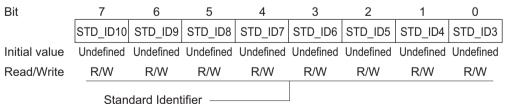

MC11[1]—Message Control 11[1]	H'FA78	HCAN1
MC11[2]—Message Control 11[2]	H'FA79	HCAN1
MC11[3]—Message Control 11[3]	H'FA7A	HCAN1
MC11[4]—Message Control 11[4]	H'FA7B	HCAN1
MC11[5]—Message Control 11[5]	H'FA7C	HCAN1
MC11[6]—Message Control 11[6]	H'FA7D	HCAN1
MC11[7]—Message Control 11[7]	H'FA7E	HCAN1
MC11[8]—Message Control 11[8]	H'FA7F	HCAN1

	J							•			
MC11[1]											
Bit	7	6	5			4		3	2	1	0
	_	_				_		DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefined		Und	Undefined		Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	R/W		R/W R/W		R/W	R/W	R/W	
				Dat	la I e	enatl	h (Code —			
			0		0	0					
							1		Data length = 1 byte		
						1	0		ength = 2 k	<u>-</u>	
						·	1		ength = 3 k	<u>-</u>	
					1	0	0		ength = 4 k	<u>-</u>	
							1		ength = 5 k	<u>-</u>	
						1	0			-	
						ı	1		ength = 6 b	-	
					0/4	0/4		_ = = = = = = = = = = = = = = = = = = =	ength = 7 k		
				1	0/1	0/1	U/	1 Data is	ength = 8 b	oytes	
MC11[2]											
Bit	7	6	5			4		3	2	1	0
		_	_					_	_	_	_
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	d	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	,	F	2/W		R/W	R/W	R/W	R/W
MC11[3]											
Bit	7	6	5			4		3	2	1	0
Dit						<u> </u>					
Initial value	Undefined	Undefined	Lindafin	had	Lind	ofine	М	Lindefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W			eiiie Z/W	u	R/W	R/W	R/W	R/W
neau/wille	FX/ V V	FX/ V V	r./ VV		r	./ V V		IT./ V V	FX/ V V	FX/ V V	FX/ V V

Set the identifier (standard identifier) of data frames and remote frames

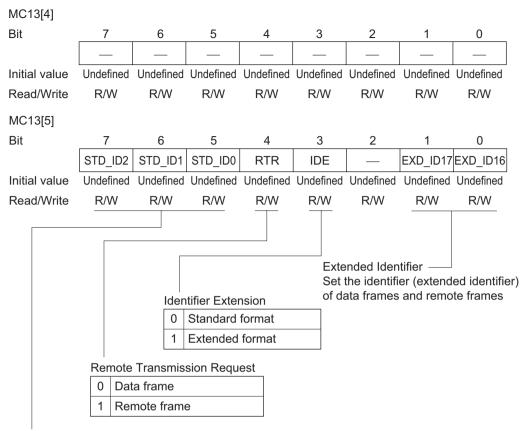

MC11[6]

MC11[7]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Extended Identifier Set the identifier (extended identifier) of data frames and remote frames MC11[8]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Extended Identifier ————————————————————————————————————											

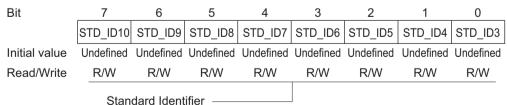

MC12[1]—Message Control 12[1]	H'FA80	HCAN1
MC12[2]—Message Control 12[2]	H'FA81	HCAN1
MC12[3]—Message Control 12[3]	H'FA82	HCAN1
MC12[4]—Message Control 12[4]	H'FA83	HCAN1
MC12[5]—Message Control 12[5]	H'FA84	HCAN1
MC12[6]—Message Control 12[6]	H'FA85	HCAN1
MC12[7]—Message Control 12[7]	H'FA86	HCAN1
MC12[8]—Message Control 12[8]	H'FA87	HCAN1

iole. These is	egisters art	e not avail	abie iii t		1100	3/20		Gloup.			
MC12[1]											
Bit	7	6	5			4		3	2	1	0
	_	_	_		-	_		DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefine	ed	Und	Undefined		Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R/W			R/W	R/W	R/W	R/W
			г)at	ta Length		h C				
			Ī	0	0	0	0		ength = 0 b	ovtes	
				Ů			1		ength = 1 b	<u> </u>	
						1	0		ength = 2 b	-	
						'	1		ength = 3 b	-	
					1	0	0		ength = 4 k	-	
					'	0	1		ength = 5 k	-	
						1	0		ength = 6 k	-	
						'	1			-	
			-	1	0/4	0/4		_ = = = = = = = = = = = = = = = = = = =	ength = 7 b	-	
			L	<u> </u>	0/1	0/1	U/	Data is	ength = 8 b	oytes	
MC12[2]											
Bit	7	6	5			4		3	2	1	0
	_	_	_		-			_	_		_
Initial value	Undefined	Undefined	Undefine	ed	Und	efine	d	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	:/W		R/W	R/W	R/W	R/W
MC12[3]											
Bit	7	6	5			4		3	2	1	0
Dit							T			<u> </u>	
Initial value	Undefined	Lindefined	Lindofin		LInd	ofino	лЧ 		Undefined	Undefined	Lindefined
Read/Write	R/W	R/W	R/W	- u		eille :/W	u	R/W	R/W	R/W	R/W
Reau/Wille	IT./ V V	r/ V V	r v v</td <td></td> <td>K</td> <td>./ V V</td> <td></td> <td>r\/VV</td> <td>r\/VV</td> <td>IT/VV</td> <td>IT./ V V</td>		K	./ V V		r\/VV	r\/VV	IT/VV	IT./ V V

Set the identifier (standard identifier) of data frames and remote frames

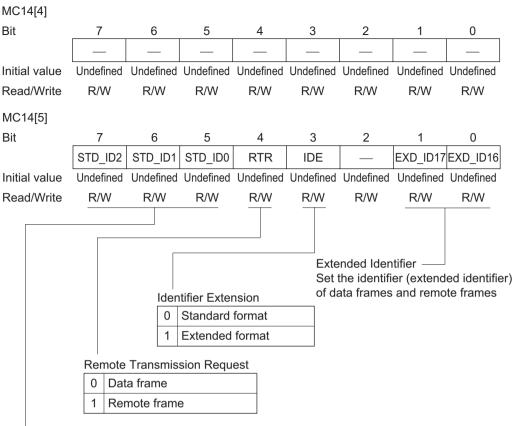


MC12[7]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
MC12[8]	Extended Identifier ————————————————————————————————————										
Bit	7	6	5	4	3	2	1	0			
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
		nded Iden he identifi	er) of data	frames an	ıd remote	frames					


MC13[1]—Message Control 13[1]	H'FA88	HCAN1
MC13[2]—Message Control 13[2]	H'FA89	HCAN1
MC13[3]—Message Control 13[3]	H'FA8A	HCAN1
MC13[4]—Message Control 13[4]	H'FA8B	HCAN1
MC13[5]—Message Control 13[5]	H'FA8C	HCAN1
MC13[6]—Message Control 13[6]	H'FA8D	HCAN1
MC13[7]—Message Control 13[7]	H'FA8E	HCAN1
MC13[8]—Message Control 13[8]	H'FA8F	HCAN1

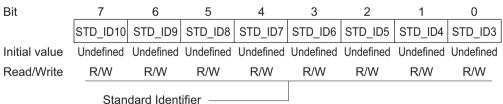
	J							•			
MC13[1]											
Bit	7	6	5			4		3	2	1	0
	_	_	_		-	_		DLC3	DLC2	DLC1	DLC0
Initial value	Undefined	Undefined	Undefin	Undefined		Undefined		Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W		R	R/W R/W		R/W	R/W	R/W	
				Dat	ta Le	enatl	h (Code —			
			0		0	0	0				
							1				
						1	0		ength = 2 k	<u>-</u>	
							1		ength = 3 k	<u>-</u>	
					1	0	0		ength = 4 k	<u>-</u>	
							1		ength = 5 k	<u>-</u>	
						1	0		ength = 6 k	-	
							1		ength = 7 k	-	
			-	1	0/1	0/1		_ = = = = = = = = = = = = = = = = = = =	ength = 8 k		
			L	_	0, 1	0, 1	0,	. Data ic	,,,g.,, o k	7,100	
MC13[2]											
Bit	7	6	5			4	_	3	2	1	0
	_	_	_		-	_			_		
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	d	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	,	R	R/W		R/W	R/W	R/W	R/W
MC13[3]											
Bit	7	6	5			4		3	2	1	0
	_	_	_		_			_	_	_	
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	ed	Undefined	Undefined	Undefined	Undefined
Read/Write	R/W	R/W	R/W	,	R	R/W		R/W	R/W	R/W	R/W

Set the identifier (standard identifier) of data frames and remote frames


MC13[6]

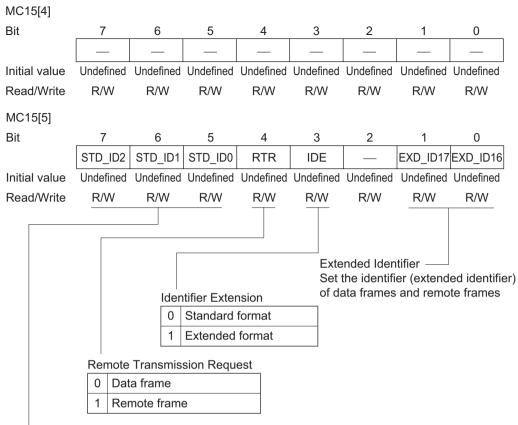
MC13[7]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Extended Identifier Set the identifier (extended identifier) of data frames and remote frames MC13[8]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Extended Identifier ————————————————————————————————————											

MC14[1]—Message Control 14[1]	H'FA90	HCAN1
MC14[2]—Message Control 14[2]	H'FA91	HCAN1
MC14[3]—Message Control 14[3]	H'FA92	HCAN1
MC14[4]—Message Control 14[4]	H'FA93	HCAN1
MC14[5]—Message Control 14[5]	H'FA94	HCAN1
MC14[6]—Message Control 14[6]	H'FA95	HCAN1
MC14[7]—Message Control 14[7]	H'FA96	HCAN1
MC14[8]—Message Control 14[8]	H'FA97	HCAN1


MC14[1]												
Bit	7	6	5			4		3	2	1	0	
	_	_	_	_				DLC3	DLC2	DLC1	DLC0	
Initial value	Undefined	Undefined	Undefined		Undefined		d	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W		R/W			R/W	R/W	R/W	R/W	
			ı	Dat	ta Length (h C	Code ———				
				0		0	0	Data le	ytes			
							1	Data le	Data length = 1 byte			
						1	0	Data le	ength = 2 b	oytes		
							1	Data le	ength = 3 b	oytes		
						0	0		ength = 4 k			
							1		ength = 5 k	-		
						1	0		ength = 6 k	-		
							1		ength = 7 k	-		
				1	0/1	0/1	0/		ength = 8 b	-		
			L							.,		
MC14[2]												
Bit	7	6	5			4	_	3	2	1	0	
	_	_	_		-				_	_	—	
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	d	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W		R	2/W		R/W	R/W	R/W	R/W	
MC14[3]												
Bit	7	6	5			4		3	2	1	0	
	_	_			-	_		_	_	_	_	
Initial value	Undefined	Undefined	Undefin	ed	Und	efine	d	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W		R	2/W		R/W	R/W	R/W	R/W	

Standard Identifier

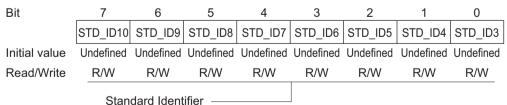
Set the identifier (standard identifier) of data frames and remote frames



Set the identifier (standard identifier) of data frames and remote frames

MC14[7]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Extended Identifier Set the identifier (extended identifier) of data frames and remote frames MC14[8]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
		nded Iden he identifi	er) of data	frames an	d remote	frames					

MC15[1]—Message Control 15[1]	H'FA98	HCAN1
MC15[2]—Message Control 15[2]	H'FA99	HCAN1
MC15[3]—Message Control 15[3]	H'FA9A	HCAN1
MC15[4]—Message Control 15[4]	H'FA9B	HCAN1
MC15[5]—Message Control 15[5]	H'FA9C	HCAN1
MC15[6]—Message Control 15[6]	H'FA9D	HCAN1
MC15[7]—Message Control 15[7]	H'FA9E	HCAN1
MC15[8]—Message Control 15[8]	H'FA9F	HCAN1


	J							•					
MC15[1]													
Bit	7	6	5			4		3	2	1	0		
		_			_			DLC3	DLC2	DLC1	DLC0		
Initial value	Undefined	Undefined	Undefined		Und	efine	d	Undefined	Undefined	Undefined	Undefined		
Read/Write	R/W	R/W	R/W		F	2/W		R/W	R/W	R/W	R/W		
				Dat	ta Le	enatl	h C	Code —					
				0	0	0	0		ata length = 0 bytes				
							1		ength = 1 k	-			
						1	0		ength = 2 k	<u>-</u>			
							-	1		ength = 3 k	<u>-</u>		
				-	1	0	0		ength = 4 k	<u>-</u>			
									1		ength = 5 k	<u>-</u>	
								1	0		ength = 6 k	-	
							1		ength = 7 k	-			
				1	0/1	0/1		_ = = = = = = = = = = = = = = = = = = =	ength = 8 k				
			l		07 1	0, 1	-	. Data ic	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7,100			
MC15[2]													
Bit	7	6	5			4		3	2	1	0		
	_	_	_		-	_			_				
Initial value	Undefined	Undefined	Undefin	ned	Und	efine	d	Undefined	Undefined	Undefined	Undefined		
Read/Write	R/W	R/W	R/W	1	F	2/W		R/W	R/W	R/W	R/W		
MC15[3]													
Bit	7	6	5			4		3	2	1	0		
	_	_	_					_	_	_	_		
Initial value	Undefined	Undefined	Undefin	ned	Und	efine	ed .	Undefined	Undefined	Undefined	Undefined		
Read/Write	R/W	R/W	R/W	,	F	2/W		R/W	R/W	R/W	R/W		

Standard Identifier

Set the identifier (standard identifier) of data frames and remote frames

MC15[6]

Set the identifier (standard identifier) of data frames and remote frames

MC15[7]											
Bit	7	6	5	4	3	2	1	0			
	EXD_ID7	EXD_ID6	EXD_ID5	EXD_ID4	EXD_ID3	EXD_ID2	EXD_ID1	EXD_ID0			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Extended Identifier Set the identifier (extended identifier) of data frames and remote frames MC15[8]											
Bit	7	6	5 4		3	2	1	0			
	EXD_ID15	EXD_ID14	EXD_ID13	EXD_ID12	EXD_ID11	EXD_ID10	EXD_ID9	EXD_ID8			
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
		nded Iden he identifi	er) of data	frames an	nd remote	frames					

MD0[1]—Message Data 0[1]	H'FAB0	HCAN1
MD0[2]—Message Data 0[2]	H'FAB1	HCAN1
MD0[3]—Message Data 0[3]	H'FAB2	HCAN1
MD0[4]—Message Data 0[4]	H'FAB3	HCAN1
MD0[5]—Message Data 0[5]	H'FAB4	HCAN1
MD0[6]—Message Data 0[6]	H'FAB5	HCAN1
MD0[7]—Message Data 0[7]	H'FAB6	HCAN1
MD0[8]—Message Data 0[8]	H'FAB7	HCAN1

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD1[1]—Message Data 1[1]	H'FAB8	HCAN1
MD1[2]—Message Data 1[2]	H'FAB9	HCAN1
MD1[3]—Message Data 1[3]	H'FABA	HCAN1
MD1[4]—Message Data 1[4]	H'FABB	HCAN1
MD1[5]—Message Data 1[5]	H'FABC	HCAN1
MD1[6]—Message Data 1[6]	H'FABD	HCAN1
MD1[7]—Message Data 1[7]	H'FABE	HCAN1
MD1[8]—Message Data 1[8]	H'FABF	HCAN1

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
		<u> </u>							
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD2[1]—Message Data 2[1]	H'FAC0	HCAN1
MD2[2]—Message Data 2[2]	H'FAC1	HCAN1
MD2[3]—Message Data 2[3]	H'FAC2	HCAN1
MD2[4]—Message Data 2[4]	H'FAC3	HCAN1
MD2[5]—Message Data 2[5]	H'FAC4	HCAN1
MD2[6]—Message Data 2[6]	H'FAC5	HCAN1
MD2[7]—Message Data 2[7]	H'FAC6	HCAN1
MD2[8]—Message Data 2[8]	H'FAC7	HCAN1

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD3[1]—Message Data 3[1]	H'FAC8	HCAN1
MD3[2]—Message Data 3[2]	H'FAC9	HCAN1
MD3[3]—Message Data 3[3]	H'FACA	HCAN1
MD3[4]—Message Data 3[4]	H'FACB	HCAN1
MD3[5]—Message Data 3[5]	H'FACC	HCAN1
MD3[6]—Message Data 3[6]	H'FACD	HCAN1
MD3[7]—Message Data 3[7]	H'FACE	HCAN1
MD3[8]—Message Data 3[8]	H'FACF	HCAN1

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
		<u> </u>							
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD4[1]—Message Data 4[1]	H'FAD0	HCAN1
MD4[2]—Message Data 4[2]	H'FAD1	HCAN1
MD4[3]—Message Data 4[3]	H'FAD2	HCAN1
MD4[4]—Message Data 4[4]	H'FAD3	HCAN1
MD4[5]—Message Data 4[5]	H'FAD4	HCAN1
MD4[6]—Message Data 4[6]	H'FAD5	HCAN1
MD4[7]—Message Data 4[7]	H'FAD6	HCAN1
MD4[8]—Message Data 4[8]	H'FAD7	HCAN1

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD5[1]—Message Data 5[1]	H'FAD8	HCAN1
MD5[2]—Message Data 5[2]	H'FAD9	HCAN1
MD5[3]—Message Data 5[3]	H'FADA	HCAN1
MD5[4]—Message Data 5[4]	H'FADB	HCAN1
MD5[5]—Message Data 5[5]	H'FADC	HCAN1
MD5[6]—Message Data 5[6]	H'FADD	HCAN1
MD5[7]—Message Data 5[7]	H'FADE	HCAN1
MD5[8]—Message Data 5[8]	H'FADF	HCAN1

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD6[1]—Message Data 6[1]	H'FAE0	HCAN1
MD6[2]—Message Data 6[2]	H'FAE1	HCAN1
MD6[3]—Message Data 6[3]	H'FAE2	HCAN1
MD6[4]—Message Data 6[4]	H'FAE3	HCAN1
MD6[5]—Message Data 6[5]	H'FAE4	HCAN1
MD6[6]—Message Data 6[6]	H'FAE5	HCAN1
MD6[7]—Message Data 6[7]	H'FAE6	HCAN1
MD6[8]—Message Data 6[8]	H'FAE7	HCAN1

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD7[1]—Message Data 7[1]	H'FAE8	HCAN1
MD7[2]—Message Data 7[2]	H'FAE9	HCAN1
MD7[3]—Message Data 7[3]	H'FAEA	HCAN1
MD7[4]—Message Data 7[4]	H'FAEB	HCAN1
MD7[5]—Message Data 7[5]	H'FAEC	HCAN1
MD7[6]—Message Data 7[6]	H'FAED	HCAN1
MD7[7]—Message Data 7[7]	H'FAEE	HCAN1
MD7[8]—Message Data 7[8]	H'FAEF	HCAN1

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD8[1]—Message Data 8[1]	H'FAF0	HCAN1
MD8[2]—Message Data 8[2]	H'FAF1	HCAN1
MD8[3]—Message Data 8[3]	H'FAF2	HCAN1
MD8[4]—Message Data 8[4]	H'FAF3	HCAN1
MD8[5]—Message Data 8[5]	H'FAF4	HCAN1
MD8[6]—Message Data 8[6]	H'FAF5	HCAN1
MD8[7]—Message Data 8[7]	H'FAF6	HCAN1
MD8[8]—Message Data 8[8]	H'FAF7	HCAN1

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

RENESAS

MD9[1]—Message Data 9[1]	H'FAF8	HCAN1
MD9[2]—Message Data 9[2]	H'FAF9	HCAN1
MD9[3]—Message Data 9[3]	H'FAFA	HCAN1
MD9[4]—Message Data 9[4]	H'FAFB	HCAN1
MD9[5]—Message Data 9[5]	H'FAFC	HCAN1
MD9[6]—Message Data 9[6]	H'FAFD	HCAN1
MD9[7]—Message Data 9[7]	H'FAFE	HCAN1
MD9[8]—Message Data 9[8]	H'FAFF	HCAN1

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD10[1]—Message Data 10[1]	H'FB00	HCAN1
MD10[2]—Message Data 10[2]	H'FB01	HCAN1
MD10[3]—Message Data 10[3]	H'FB02	HCAN1
MD10[4]—Message Data 10[4]	H'FB03	HCAN1
MD10[5]—Message Data 10[5]	H'FB04	HCAN1
MD10[6]—Message Data 10[6]	H'FB05	HCAN1
MD10[7]—Message Data 10[7]	H'FB06	HCAN1
MD10[8]—Message Data 10[8]	H'FB07	HCAN1

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
		*	*	*	*	*	*	*	*
	Initial value								
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD11[1]—Message Data 11[1]	H'FB08	HCAN1
MD11[2]—Message Data 11[2]	H'FB09	HCAN1
MD11[3]—Message Data 11[3]	H'FB0A	HCAN1
MD11[4]—Message Data 11[4]	H'FB0B	HCAN1
MD11[5]—Message Data 11[5]	H'FB0C	HCAN1
MD11[6]—Message Data 11[6]	H'FB0D	HCAN1
MD11[7]—Message Data 11[7]	H'FB0E	HCAN1
MD11[8]—Message Data 11[8]	H'FB0F	HCAN1

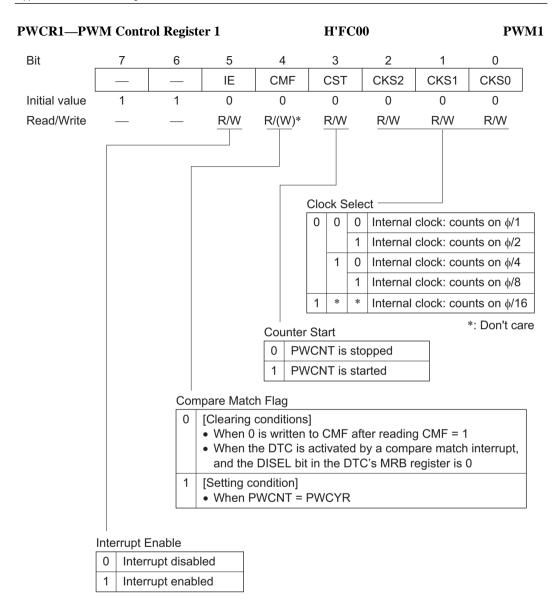
MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD12[1]—Message Data 12[1]	H'FB10	HCAN1
MD12[2]—Message Data 12[2]	H'FB11	HCAN1
MD12[3]—Message Data 12[3]	H'FB12	HCAN1
MD12[4]—Message Data 12[4]	H'FB13	HCAN1
MD12[5]—Message Data 12[5]	H'FB14	HCAN1
MD12[6]—Message Data 12[6]	H'FB15	HCAN1
MD12[7]—Message Data 12[7]	H'FB16	HCAN1
MD12[8]—Message Data 12[8]	H'FB17	HCAN1

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
		*	*	*	*	*	*	*	*
	Initial value								
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

RENESAS

MD13[1]—Message Data 13[1]	H'FB18	HCAN1
MD13[2]—Message Data 13[2]	H'FB19	HCAN1
MD13[3]—Message Data 13[3]	H'FB1A	HCAN1
MD13[4]—Message Data 13[4]	H'FB1B	HCAN1
MD13[5]—Message Data 13[5]	H'FB1C	HCAN1
MD13[6]—Message Data 13[6]	H'FB1D	HCAN1
MD13[7]—Message Data 13[7]	H'FB1E	HCAN1
MD13[8]—Message Data 13[8]	H'FB1F	HCAN1


MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD14[1]—Message Data 14[1]	H'FB20	HCAN1
MD14[2]—Message Data 14[2]	H'FB21	HCAN1
MD14[3]—Message Data 14[3]	H'FB22	HCAN1
MD14[4]—Message Data 14[4]	H'FB23	HCAN1
MD14[5]—Message Data 14[5]	H'FB24	HCAN1
MD14[6]—Message Data 14[6]	H'FB25	HCAN1
MD14[7]—Message Data 14[7]	H'FB26	HCAN1
MD14[8]—Message Data 14[8]	H'FB27	HCAN1

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MD15[1]—Message Data 15[1]	H'FB28	HCAN1
MD15[2]—Message Data 15[2]	H'FB29	HCAN1
MD15[3]—Message Data 15[3]	H'FB2A	HCAN1
MD15[4]—Message Data 15[4]	H'FB2B	HCAN1
MD15[5]—Message Data 15[5]	H'FB2C	HCAN1
MD15[6]—Message Data 15[6]	H'FB2D	HCAN1
MD15[7]—Message Data 15[7]	H'FB2E	HCAN1
MD15[8]—Message Data 15[8]	H'FB2F	HCAN1

MDx[1]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[2]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[3]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[4]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[5]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[6]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[7]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MDx[8]	Bit	7	6	5	4	3	2	1	0
	Initial value	*	*	*	*	*	*	*	*
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * Only 0 can be written, to clear the flag.

PWOCR1—PV	VM Outp	ut Contro	l Register	r 1	H'FC02			PWM	1
Bit	7	6	5	4	3	2	1	0	
	OE1H	OE1G	OE1F	OE1E	OE1D	OE1C	OE1B	OE1A	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
				Outp 0 1		out is disal			
PWPR1—PWI	M Polarity	y Register	1		H'FC04			PWM	1
Bit	7	6	5	4	3	2	1	0	
	OPS1H	OPS1G	OPS1F	OPS1E	OPS1D	OPS1C	OPS1B	OPS1A	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	D/M/	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
r today vviito	R/W	1 1/ 7 7	1 1/ 7 7	1 (/ V V	1 1/ 7 7				

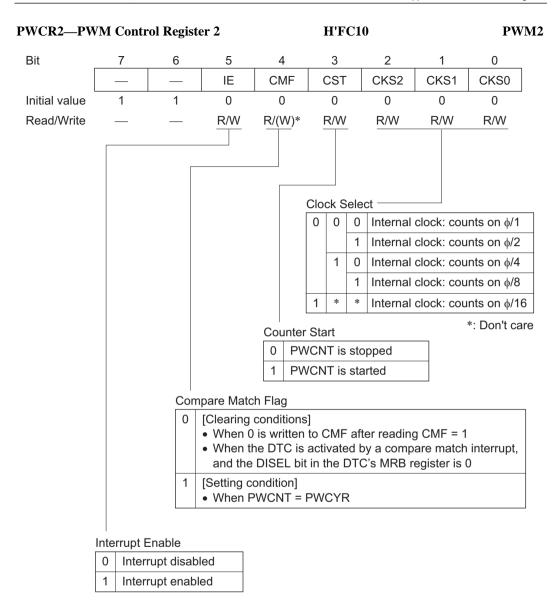
PWCYR1—PWM Cycle Register 1							H'FC06								PWM1		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	_	_	_	_	_	_											
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Read/Write	—	—	—	—	—	—	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

1

Set the PWM conversion cycle

PWM inverse output

PWM1


PWBFR1A—PWM Buffer Register 1A

PWBFR1C—PWM Buffer Register 1C PWBFR1E—PWM Buffer Register 1E PWBFR1G—PWM Buffer Register 1G								H'FC0A H'FC0C H'FC0E							WM1 WM1 WM1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_	_	_	OTS	-	—	DT9	DT8	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0
1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0
_		_	R/W		_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Outp	ut Tei	mina	l Sele	ct			Dι	ıty —]				
Bit 12	2 is th	e dat	a trans	sferre	d to		Bi	ts 9 to	0 co	mpris	e the	data	transf	erred	to
bit 12 of PWDTR1								s 9 to	0 in I	PWD	TR1				
Register OTS							De	script	ion						
	PV PV 15 1 Outp Bit 12 bit 12	—PWM B 15 14 — — 1 1 — Output Ter Bit 12 is the bit 12 of P	PWM Buffer PWM Buffer 15 14 13 1 1 1 Output Termina Bit 12 is the dat bit 12 of PWDT	PWM Buffer RegiPWM Buffer Regi 15	—PWM Buffer Register 1 —PWM Buffer Register 1 15 14 13 12 11 —	PWM Buffer Register 1E PWM Buffer Register 1G 	—PWM Buffer Register 1E —PWM Buffer Register 1G 15 14 13 12 11 10 9 — — OTS — DT9 1 1 1 0 1 1 0 — — R/W — R/W Output Terminal Select Bit 12 is the data transferred to bit 12 of PWDTR1	— PWM Buffer Register 1E — PWM Buffer Register 1G 15	—PWM Buffer Register 1E —PWM Buffer Register 1G 15 14 13 12 11 10 9 8 7 — — — OTS — — DT9 DT8 DT7 1 1 1 0 1 1 0 0 0 — —	—PWM Buffer Register 1E —PWM Buffer Register 1G 15 14 13 12 11 10 9 8 7 6 — — — OTS — — DT9 DT8 DT7 DT6 1 1 1 0 1 1 0 0 0 0 — — R/W — — R/W R/W R/W R/W Output Terminal Select Bit 12 is the data transferred to bits 9 to 0 in least 12 of PWDTR1 H'FC0C	—PWM Buffer Register 1E H'FC0C —PWM Buffer Register 1G H'FC0E 15 14 13 12 11 10 9 8 7 6 5 — — — — DT9 DT8 DT7 DT6 DT5 1 1 1 0 0 0 0 0 0 — — — R/W <	—PWM Buffer Register 1E H'FC0C —PWM Buffer Register 1G H'FC0E 15 14 13 12 11 10 9 8 7 6 5 4 — — — — DT9 DT8 DT7 DT6 DT5 DT4 1 1 1 0 0 0 0 0 0 0 — — — R/W R/W R/W R/W R/W R/W R/W R/W Output Terminal Select Duty — Bits 9 to 0 comprise the bits 9 to 0 in PWDTR1 bits 9 to 0 in PWDTR1	—PWM Buffer Register 1E H'FC0C —PWM Buffer Register 1G H'FC0E 15 14 13 12 11 10 9 8 7 6 5 4 3 — — — OTS — DT9 DT8 DT7 DT6 DT5 DT4 DT3 1 1 1 0<	—PWM Buffer Register 1E H'FC0C —PWM Buffer Register 1G H'FC0E 15 14 13 12 11 10 9 8 7 6 5 4 3 2 — — — OTS — — DT9 DT8 DT7 DT6 DT5 DT4 DT3 DT2 1 1 1 0	—PWM Buffer Register 1E H'FC0C P —PWM Buffer Register 1G H'FC0E P 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 — — — DT9 DT8 DT7 DT6 DT5 DT4 DT3 DT2 DT1 1 1 1 0 1 1 0

H'FC08

Register	OTS	Description
PWDTR1A	0	PWM1A output selected
	1	PWM1B output selected
PWDTR1C	0	PWM1C output selected
	1	PWM1D output selected
PWDTR1E	0	PWM1E output selected
	1	PWM1F output selected
PWDTR1G	0	PWM1G output selected
	1	PWM1H output selected

Note: When a PWCYR1 compare match occurs, data is transferred from PWBFR1A to PWDTR1A, from PWBFR1C to PWDTR1C, from PWBFR1E to PWDTR1E, and from PWBFR1G to PWDTR1G.

Note: * Only 0 can be written, to clear the flag.

PWOCR2—PWM Output Control Register 2 H'FC12 PWM2												
Bit	7	6	5	4		3	2		1		0	
	OE2H	OE2G	OE2F	OE2E	OE	E2D	OE2	2C	OE2	2B	OE2	A
Initial value	0	0	0	0		0	0		0	'	0	
Read/Write	R/W	R/W	R/W	R/W	R	/W	R/V	N	R/V	V	R/W	
				Ou	tput E	nable						
				0	PWI	M out	out is	disab	led			
				1	PWI	M out	out is	enab	led			
PWPR2—PWM Polarity Register 2 H'FC14 PWM2												
Bit	7	6	5	4		3	2		1		0	
	OPS2H	OPS2G	OPS2F	OPS2E	: OP	S2D	OPS	2C	OPS	2B	OPS2	Α
Initial value	0	0	0	0	•	0	0	•	0	•	0	
Read/Write	R/W	R/W	R/W	R/W	R	/W	R/V	N	R/V	V	R/W	_
				Ou 0	tput P		Selec					
				1			erse o	-				
				_ '	FVVI	VIIIIVE	5156 0	игриг	•			
PWCYR2—PV	VM Cycle	Register	2		H '	FC16					P	WM2
Bit 15	5 14 1	3 12 1	11 10	9 8	7	6	5	4	3	2	1	0
_	-	-	$- \mid - \mid$									
Initial value 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1											
Read/Write —				R/W R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PWBFR2A—PWM Buffer Register 2A

PWBFR2B—PWM Buffer Register 2B

PWBFR2C—PWM Buffer Register 2C

PWM2

PWM2

PWM2

PWBFR2D—PWM Buffer Register 2D							H'FC1E								PWM2	,	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	_	_	_	TDS	_	_	DT9	DT8	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0	
Initial value	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	
Read/Write	_	_	_	R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
									,				the da	ata tra	ınsfer	red to	

Transfer Destination Select Selects the PWDTR2 register to which data is to be transferred

H'FC18

H'FC1A

H'FC1C

Register	TDS	Description
PWBFR2A	0	PWDTR2A selected
	1	PWDTR2E selected
PWBFR2B	0	PWDTR2B selected
	1	PWDTR2F selected
PWBFR2C	0	PWDTR2C selected
	1	PWDTR2G selected
PWBFR2D	0	PWDTR2D selected
	1	PWDTR2H selected

Note: When a PWCYR2 compare match occurs, data is transferred from PWBFR2A to PWDTR2A or PWDTR2E, from PWBFR2B to PWDTR2B or PWDTR2F, from PWBFR2C to PWDTR2C or PWDTR2G, and from PWBFR2D to PWDTR2D or PWDTR2H.

PHDDR—Por		H'FC20	l		Port			
Bit	7	6	5	4	3	2	1	0
	PH7DDR	PH6DDR	PH5DDR	PH4DDR	PH3DDR	PH2DDR	PH1DDR	PH0DDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PJDDR—Port	J Data Di	irection R	egister			Port			
Bit	7	6	5	4	3	2	1	0	
	PJ7DDR	PJ6DDR	PJ5DDR	PJ4DDR	PJ3DDR	PJ2DDR	PJ1DDR	PJ0DDR	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	W	W	W	W	W	W	W	W	
PHDR—Port I	H Data Re	egister			H'FC24	,		Port	
Bit	7	6	5	4	3	2	1	0	
	PH7DR	PH6DR	PH5DR	PH4DR	PH3DR	PH2DR	PH1DR	PH0DR	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PJDR—Port J	Data Reg	ister			H'FC25			Port	
Bit	7	6	5	4	3	2	1	0	
	PJ7DR	PJ6DR	PJ5DR	PJ4DR	PJ3DR	PJ2DR	PJ1DR	PJ0DR	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PORTH—Port	H Regist	er			H'FC28			Port	
Bit	7	6	5	4	3	2	1	0	
	PH7	PH6	PH5	PH4	PH3	PH2	PH1	PH0	
Initial value	*	*	*	*	*	*	*	*	
Read/Write	R	R	R	R	R	R	R	R	
Note: * Dete	rmined by	the state	of PH7 to	PH0.					
PORTJ—Port J Register H'FC29									

Bit 2 7 6 5 4 3 1 0 PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 Initial value Read/Write R R R R R R R R

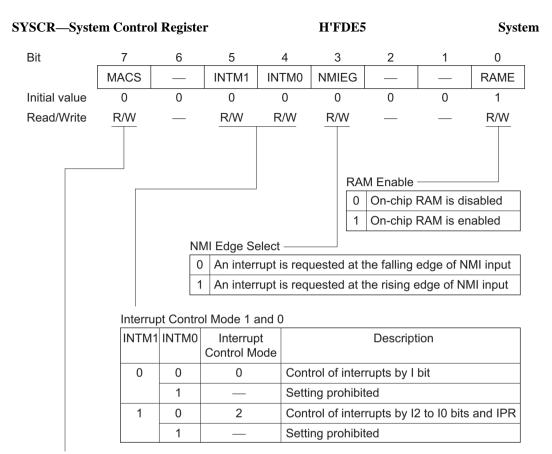
Note: * Determined by the state of PJ7 to PJ0.

MSTPCRD—N	Module St	op Contr	ol Registe	r D	H'FC60			Syste	m
Bit	7	6	5	4	3	2	1	0	
	MSTPD7	MSTPD6	MSTPD5	MSTPD4	MSTPD3	MSTPD2	MSTPD1	MSTPD0	
Initial value	1	1	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	_		_	_	_	_	
	Мо	dule Stop							
	0	PWM mo	odule stop	mode is c	leared				
	1	PWM mo	dule stop						
					_				

SCRX—Ser	ial (Control R	Register X			H'FDB	4		I	II(
Bit	:	7	6	5	4	3	2	1	0	
		_	IICX1	IICX0	IICE	_	_	_		
Initial value	e : ˈ	0	0	0	0	1	0	0	0	_
R/W	:	R/W	R/W	_	data	oles CPU a register ar	nd control	register		
					I	lles CPU a register ar			erface	
			l ² (C transfer	rate selec	t 1, 0				

Note: This register is valid only when an I²C bus interface has been added as an H8S/2638, H8S/2639, and H8S/2630 option.

DDCSWR—D	DC Switcl	n Regist	er			H'FDI	B5			IIC
Bit :	7	6	5		4	3	2	1	0	
		_	_		_	CLR3	CLR2	CLR1	CLR0	
Initial value:	0	0	0		0	1	1	1	1	_
R/W :	R/(W)*1	R/(W)*1	R/(W)*1 R/	(W)*1	W*2	W*2	W*2	W*2	
	R	eserved								
		CLR3	CLR2	CLR1	CLR0					7
		0	0	_	_	Setting	prohibited			
			1	0	0	Setting	prohibited			
					1	IIC0 inte	ernal latch	cleared		
				1	0	IIC1 inte	ernal latch	cleared		
					1	IIC0 and	d IIC1 inter	nal latche	s cleared	
		1	_		_	Invalid s	etting			


Notes: This register is valid only when an I²C bus interface has been added as an H8S/2638, H8S/2639, and H8S/2630 option.

- 1. Should always be written with 0.
- 2. Always read as 1.

SBYCR—Standby Control Register H'FDE4 **System** Bit 5 4 7 6 3 0 OPF SSBY STS2 STS1 STS0 1 Initial value 0 1 0 1 0 0 0 Read/Write R/W R/W R/W R/W R/W **Output Port Enable** In software standby mode, watch mode, and when making a direct transition, address bus and bus control signals are high-impedance In software standby mode, watch mode, and when making a direct transition, the output state of the address bus and bus control signals is retained Standby Timer Select 2 to 0 0 0 Standby time = 8192 states 1 Standby time = 16384 states 1 0 Standby time = 32768 states 1 Standby time = 65536 states 1 0 0 Standby time = 131072 states 1 Standby time = 262144 states 1 0 Reserved 1 Standby time = 16 states (Setting prohibited)

Software Standby

- Shifts to sleep mode when the SLEEP instruction is executed in high-speed mode or medium-speed mode
 - Shifts to sub-sleep mode when the SLEEP instruction is executed in sub-active mode
 - · Shifts to software standby mode, sub-active mode, and watch mode when the SLEEP instruction is executed in high-speed mode or medium-speed mode
 - Shifts to watch mode or high-speed mode when the SLEEP instruction is executed in sub-active mode

MAC Saturation

Non-saturating calculation for MAC instructionSaturating calculation for MAC instruction

SCKCR—System Clock Control Register H'FDE6 **System** Bit 7 6 5 4 3 2 1 0 **PSTOP** STCS SCK2 SCK1 SCK₀ 0 Initial value 0 0 0 0 0 0 Read/Write R/W R/W R/W R/W R/W System Clock Select-Bus master in high-speed mode 1 Medium-speed clock is $\phi/2$ 1 0 Medium-speed clock is $\phi/4$ 1 Medium-speed clock is $\phi/8$ 1 0 0 Medium-speed clock is $\phi/16$ 1 Medium-speed clock is $\phi/32$ 1 Frequency Multiplication Factor Switching Mode Select Specified multiplication factor is valid after transition to software standby mode, watch mode*, or subactive mode* Specified multiplication factor is valid immediately after STC bits are rewritten

DDR	0	1	1
PSTOP		0	1
Hardware standby mode	High impedance	High impedance	High impedance
Software standby mode,	High impedance	Fixed high	Fixed high
watch mode*, and direct transition			
Sleep mode and subsleep mode*	High impedance	φ output	Fixed high
High-speed mode, medium-speed	High impedance	φ output	Fixed high
mode, and subactive mode*			

Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask and W-mask versions, and H8S/2635 Group only.

These functions cannot be used with the other versions.

Page 1316 of 1458

MDCR—Mode	e Control	Register		H'FDE7					em
Bit	7	6	5	4	3	2	1	0	_
	_	_	_	_	_	MDS2	MDS1	MDS0	
Initial value	1	0	0	0	0	*	*	*	-
Read/Write	R/W	_	_	_	_	R	R	R	
Note: * Dete	rmined by	pins MD2	to MD0.			Indicate	elect 2 to 0 the input I 2 to MD0		

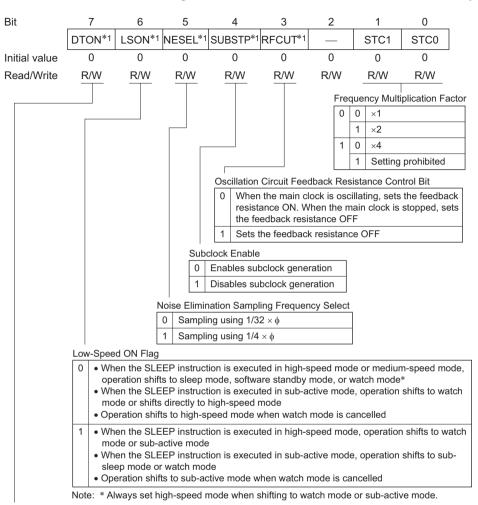
MSTPCRA—I	Module St	op Contro	ol Registe	r A	H'FDE8	3		System
Bit	7	6	5	4	3	2	1	0
	MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0
Initial value	0	0	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				Mod	ule Stop			
				0	Module st	op mode i	s cleared	
				1	Module st	op mode i	s set	

MSTPCRB—N	Module St	op Contro	ol Registe	r B	H'FDE9)		System
Bit	7	6	5	4	3	2	1	0
	MSTPB7	MSTPB6	MSTPB5	MSTPB4	MSTPB3	MSTPB2	MSTPB1	MSTPB0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				Mod	ule Stop			_
				0	Module st	top mode i	s cleared	
				1	Module st	top mode i	s set	

May 28, 2010

MSTPCRC—N	Module St	op Contro	ol Registe	r C	H'FDE	A		System
Bit	7	6	5	4	3	2	1	0
	MSTPC7	MSTPC6	MSTPC5	MSTPC4	MSTPC3	MSTPC2	MSTPC1	MSTPC0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				Mod	ule Stop			_
				0	Module st	top mode i	s cleared	
				1	Module st	top mode i	s set	
								_

PFCR—Pin I	Function (Control R	egister		H'FDI	EB		Sys	stem
Bit	7	6	5	4	3	2	1	0	
		_	_	_	AE3	AE2	AE1	AE0	
Initial value	0	0	0	0	1/0	1/0	1	1/0	-
Read/Write	_	_	_	_	R/W	R/W	R/W	R/W	


Α .Ι .Ι	O	Entertain 1	0 1 - 0
Address			

0	0	0	0	A8 to A23 address output disabled (Initial value*)
			1	A8 address output enabled; A9 to A23 address output disabled
		1	0	A8, A9 address output enabled; A10 to A23 address output disabled
			1	A8 to A10 address output enabled; A11 to A23 address output disabled
	1	0	0	A8 to A11 address output enabled; A12 to A23 address output disabled
			1	A8 to A12 address output enabled; A13 to A23 address output disabled
		1	0	A8 to A13 address output enabled; A14 to A23 address output disabled
			1	A8 to A14 address output enabled; A15 to A23 address output disabled
1	0	0	0	A8 to A15 address output enabled; A16 to A23 address output disabled
			1	A8 to A16 address output enabled; A17 to A23 address output disabled
		1	0	A8 to A17 address output enabled; A18 to A23 address output disabled
			1	A8 to A18 address output enabled; A19 to A23 address output disabled
	1	0	0	A8 to A19 address output enabled; A20 to A23 address output disabled
			1	A8 to A20 address output enabled; A21 to A23 address output disabled (Initial value*)
		1	0	A8 to A21 address output enabled; A22, A23 address output disabled
			1	A8 to A23 address output enabled

Note: * In on-chip ROM-enabled expansion mode, bits AE3 to AE0 are initialized to B'0000. In on-chip ROM-disabled expansion mode, bits AE3 to AE0 are initialized to B'1101. Address pins A0 to A7 are made address outputs by setting the corresponding DDR bits to 1.

System

LPWRCR—Low-Power Control Register

H'FDEC

Direct Transition ON Flag

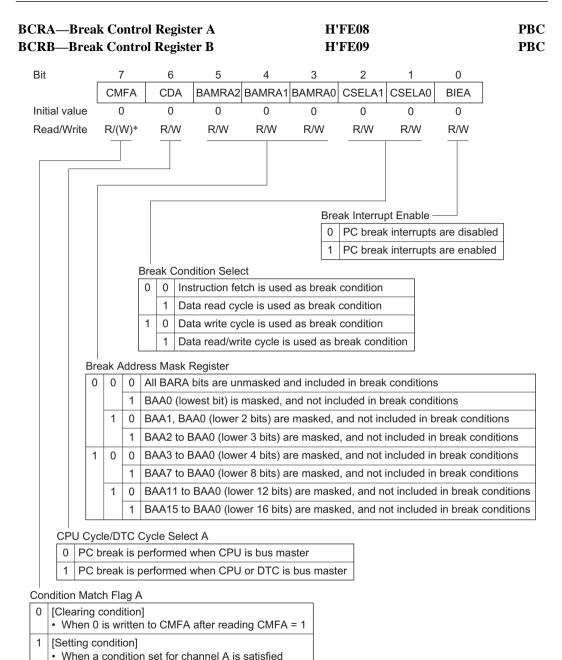
- When the SLEEP instruction is executed in high-speed mode or medium-speed mode, operation shifts to sleep mode, software standby mode, or watch mode*
 - When the SLEEP instruction is executed in sub-active mode, operation shifts to sub-sleep mode or watch mode
- When the SLEEP instruction is executed in high-speed mode or medium-speed mode, operation shifts directly to sub-active mode*, or shifts to sleep mode or software standby mode
 - When the SLEEP instruction is executed in sub-active mode, operation shifts directly to high-speed mode, or shifts to sub-sleep mode

Note: * Always set high-speed mode when shifting to watch mode or sub-active mode.

Note: 1. Bits 7 to 3 in LPWRCR are valid in the U-mask and W-mask versions, and H8S/2635 Group; they are reserved bits in all other versions.

See sections 23A.2.3, 23B.2.3, Low-Power Control Register (LPWRCR), for more information.

BARA—Break Address Register A


PBC

BARB—Break Address Register B										H'FE04								PBC		
Bit	31		24	23	22	21	20	19	18	17	16		7	6	5	4	3	2	1	0
	_		_	BAA 23	BAA 22	BAA 21	BAA 20		BAA 18	BAA 17	BAA 16		BAA 7	BAA 6	BAA 5	BAA 4	BAA 3	BAA 2	BAA 1	BAA 0
Initial value Read/Write	Unde- fined		fined	-	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W		0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 / R/W
Break Address 23 to 0 ——————————————————————————————————																				

H'FE00

Notes: 1. The bit configuration of BARB is the same as for BARA.

2. These registers are not available in the H8S/2635 Group.

Notes: 1. The bit configuration of BCRB is the same as for BCRA.

- 2. These registers are not available in the H8S/2635 Group.
- * Only a 0 may be written to this bit to clear the flag.

ISCRH—IRQ ISCRL—IRQ	-				H'FE12 H'FE13	_	Interrupt Controller Interrupt Controller		
ISCRH									
Bit	15	14	13	12	11	10	9	8	
	_	_	_	_	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ISCRL									
Bit	7	6	5	4	3	2	1	0	
	IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

IRQ5 to IRQ0 sense control A and B

IRQ5SCB to IRQ0SCB	IRQ5SCA to IRQ0SCA	Description
0	0	Interrupt request generated at IRQ5 to IRQ0 input at low level
	1	Interrupt request generated at falling edge of IRQ5 to IRQ0 input
1	0	Interrupt request generated at rising edge of IRQ5 to IRQ0 input
	1	Interrupt request generated at both falling and rising edges of IRQ5 to IRQ0 input

IER—IRQ Ena	able Regis	ster			H'FE14		Interrup	t Controller
Bit	7	6	5	4	3	2	1	0
	_	_	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			0 IR	IRQ0 Ena Qn interrul Qn interrul	pts disable			

ISR—IRQ Sta	tus Regist	er			H'FE15		Interrupt Controller		
Bit	7	6	5	4	3	2	1	0	
	_	_	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	

IRQ5 to IRQ0 Flags

- 0 [Clearing conditions]
 - Cleared by reading IRQnF when set to 1, then writing 0 in IRQnF
 - When interrupt exception handling is executed while low-level detection is set (IRQnSCB = IRQnSCA = 0) and IRQn input is high
 - When IRQn interrupt exception handling is executed while falling, rising, or both-edge detection is set (IRQnSCB = 1 or IRQnSCA = 1)
 - When the DTC is activated by an IRQn interrupt, and the DISEL bit in MRB of the DTC is cleared to 0
- 1 [Setting conditions]
 - When IRQn input goes low when low-level detection is set (IRQnSCB = IRQnSCA = 0)
 - When a falling edge occurs in IRQn input while falling edge detection is set (IRQnSCB = 0, IRQnSCA = 1)
 - When a rising edge occurs in IRQn input while rising edge detection is set (IRQnSCB = 1, IRQnSCA = 0)
 - When a falling or rising edge occurs in IRQn input while both-edge detection is set (IRQnSCB = IRQnSCA = 1)

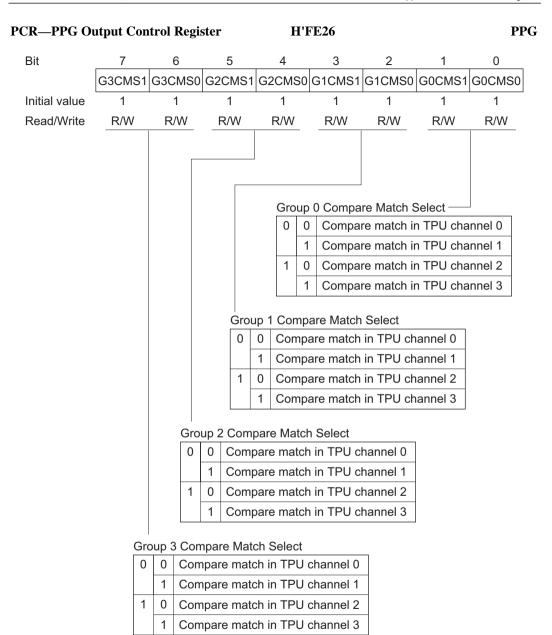
(n = 5 to 0)

Note: * Only 0 can be written, to clear the flag.

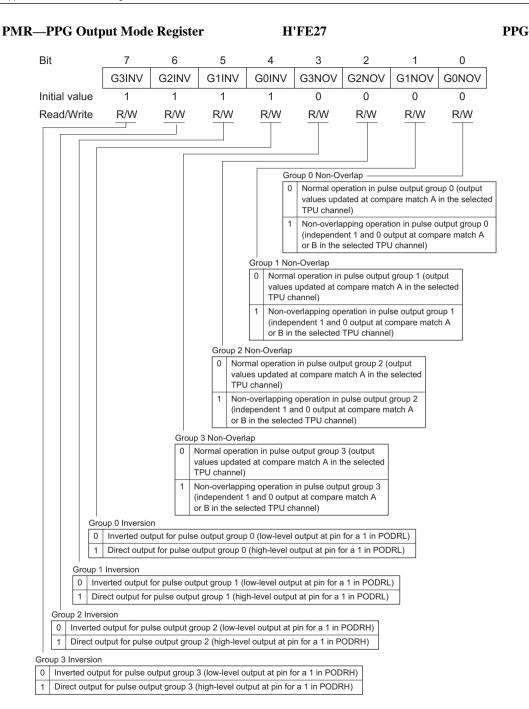
DTCERA—DTC Enable Register A	H'FE16	DTC
DTCERB—DTC Enable Register B	H'FE17	DTC
DTCERC—DTC Enable Register C	H'FE18	DTC
DTCERD—DTC Enable Register D	H'FE19	DTC
DTCERE—DTC Enable Register E	H'FE1A	DTC
DTCERF—DTC Enable Register F	H'FE1B	DTC
DTCERG—DTC Enable Register G	H'FE1C	DTC

Note: These registers are not available in the H8S/2635 Group.

7	6	5	4	3	2	1	0
DTCE7	DTCE6	DTCE5	DTCE4	DTCE3	DTCE2	DTCE1	DTCE0
0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	0	0 0	DTCE7 DTCE6 DTCE5 0 0 0	DTCE7 DTCE6 DTCE5 DTCE4 0 0 0 0	DTCE7 DTCE6 DTCE5 DTCE4 DTCE3 0 0 0 0 0	DTCE7 DTCE6 DTCE5 DTCE4 DTCE3 DTCE2 0 0 0 0 0 0	DTCE7 DTCE6 DTCE5 DTCE4 DTCE3 DTCE2 DTCE1 0 0 0 0 0 0 0


DTC Activation Enable -

- DTC activation by interrupt is disabled [Clearing conditions]
 - When data transfer ends with the DISEL bit set to 1
 - When the specified number of transfers end
- DTC activation by interrupt is enabled [Holding condition]
 - When the DISEL bit is 0 and the specified number of transfers have not ended


DTVECR—D7	ΓC Vector	Register		H'I	FE1F			DTC	
Bit	7	6	5	4	3	2	1	0	
	SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVEC0	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/(W)*1	R/W*2	R/W*2	R/W*2	R/W*2	R/W*2	R/W*2	R/W*2	
	Set vector number for DTC software activation DTC Software Activation Enable								
	DTC software activation is disabled [Clearing conditions] When the DISEL bit is 0 and the specified number of transfers have not ended When 0 is written to DISEL bit after a software-activated data transfer end interrupt (SWDTEND) request has been sent to the CPU.								
	DTC software activation is enabled [Holding conditions] When data transfer ends with the DISEL bit set to 1 When the specified number of transfers end During software-activated deta transfer								

Notes: This register is not available in the H8S/2635 Group.

- 1. Only 1 can be written to the SWDTE bit.
- 2. Bits DTVEC6 to DTVEC0 can be written to when SWDTE = 0.

Note: This register is not available in the H8S/2635 Group.

Note: This register is not available in the H8S/2635 Group.

NDERH—N	lext Data	Enable R	egister H]	H'FE28				PPG
Bit	7	6	5	4	3	2	1	0	_
	NDER15	NDER14	NDER13	NDER12	NDER11	NDER10	NDER9	NDER8	
Initial value	0	0	0	0	0	0	0	0	_
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	Next Data Enable —————								
		0 Pulse outputs PO15 to PO8 are disabled (NDR15 to NDR8 are not transferred to POD15 to POD8)							
		1 Pulse outputs PO15 to PO8 are enabled (NDR15 to NDR8 are transferred to POD15 to POD8)							

Note: This register is not available in the H8S/2635 Group.

NDERL—N	ext Data	Enable Re	egister L]	H'FE29				PPG
Bit	7	6	5	4	3	2	1	0	_
	NDER7	NDER6	NDER5	NDER4	NDER3	NDER2	NDER1	NDER0	
Initial value	0	0	0	0	0	0	0	0	_
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Next Data Enable —									
	0 Pulse outputs PO7 to PO0 are disabled (NDR7 to NDR0 are not transferred to POD7 to POD0								
	1 Pulse outputs PO7 to PO0 are enabled (NDR7 to NDR0 are transferred to POD7 to POD0)								

Note: This register is not available in the H8S/2635 Group.

PODRH—O]	H'FE2A			PPG				
Bit	7	6	5	4	3	2	1	0	_
	POD15	POD14	POD13	POD12	POD11	POD10	POD9	POD8	
Initial value	0	0	0	0	0	0	0	0	-
Read/Write	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	

Notes: This register is not available in the H8S/2635 Group.

^{*} A bit that has been set for pulse output by NDER is read-only.

PODRL—Output Data Register L				I	H'FE2B				PPG
Bit	7	6	5	4	3	2	1	0	-
	POD7	POD6	POD5	POD4	POD3	POD2	POD1	POD0	
Initial value	0	0	0	0	0	0	0	0	•
Read/Write	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	

Notes: This register is not available in the H8S/2635 Group.

^{*} A bit that has been set for pulse output by NDER is read-only.

NDRH—Next Data Register H

H'FE2C, H'FE2E

PPG

Same Trigger for Pulse Output Groups

Address I	H'FE2C
-----------	--------

Bit	7	6	5	4	3	2	1	0
	NDR15	NDR14	NDR13	NDR12	NDR11	NDR10	NDR9	NDR8
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address H'FE2E

Bit	7	6	5	4	3	2	1	0
	_	_		_	_	_	_	_
Initial value	1	1	1	1	1	1	1	1
Read/Write		_		_	_	_	_	_

Different Triggers for Pulse Output Groups

Address H'FE2C

Bit	7	6	5	4	3	2	1	0
	NDR15	NDR14	NDR13	NDR12	_	_	_	_
Initial value	0	0	0	0	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W				_

Address H'FE2E

Bit	7	6	5	4	3	2	1	0
	_	_	_	_	NDR11	NDR10	NDR9	NDR8
Initial value	1	1	1	1	0	0	0	0
Read/Write	_				R/W	R/W	R/W	R/W

Notes: 1. For details, see section 11.2.4, Notes on NDR Access.

2. This register is not available in the H8S/2635 Group.

NDRL—Next Data Register L

H'FE2D, H'FE2F

PPG

Same Trigger for Pulse Output Groups

Address H'FE2D

Bit	7	6	5	4	3	2	1	0
	NDR7	NDR6	NDR5	NDR4	NDR3	NDR2	NDR1	NDR0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address H'FE2F

Bit	7	6	5	4	3	2	1	0
	_	_	_	_	_	_	_	
Initial value	1	1	1	1	1	1	1	1
Read/Write	_	_	_	_	_	_	_	_

Different Triggers for Pulse Output Groups

Address H'FE2D

Bit	7	6	5	4	3	2	1	0
	NDR7	NDR6	NDR5	NDR4	_	_	_	_
Initial value	0	0	0	0	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	_	_	_	_

Address H'FE2F

Bit	7	6	5	4	3	2	1	0
	_	_	_	_	NDR3	NDR2	NDR1	NDR0
Initial value	1	1	1	1	0	0	0	0
Read/Write		_			R/W	R/W	R/W	R/W

Notes: 1. For details, see section 11.2.4, Notes on NDR Access.

2. This register is not available in the H8S/2635 Group.

P1DDR—Port	1 Data Di	rection R	egister		H'FE30			P	ort
Bit	7	6	5	4	3	2	1	0	
	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	W	W	W	W	W	W	W	W	

Specify input or output for each of the pins in port 1

P3DDR—Port	3 Data Di	rection R	egister		H'FE32			Po	ort
Bit	7	6	5	4	3	2	1	0	
	_	_	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR	
Initial value	Undefined	Undefined	0	0	0	0	0	0	
Read/Write	_	_	W	W	W	W	W	W	

Specify input or output for each of the pins in port 3

PADDR—Port	t A Data I	Direction 1	Register	Po				
Bit	7	6	5	4	3	2	1	0
	_	_	_		PA3DDR	PA2DDR	PA1DDR	PA0DDR
Initial value	Undefined	Undefined	Undefined	Undefined	0	0	0	0
Read/Write	_	_		_	W	W	W	W

Specify input or output for each of the pins in port A

PBDDR—Port B Data Direction Register				H'FE3A	Port			
Bit	7	6	5	4	3	2	1	0
	PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Specify input or output for each of the pins in port B

PCDDR—Port C Data Direction Register					H'FE3B	Port			
Bit	7	6	5	4	3	2	1	0	
	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	W	W	W	W	W	W	W	W	

Specify input or output for each of the pins in port C

PDDDR—Port D Data Direction Register				H'FE3C	Port				
Bit	7	6	5	4	3	2	1	0	
	PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR	
Initial value	0	0	0	0	0	0	0	0	1
Read/Write	W	W	W	W	W	W	W	W	

Specify input or output for each of the pins in port D

PEDDR—Port E Data Direction Register					Port			
Bit	7	6	5	4	3	2	1	0
	PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Specify input or output for each of the pins in port E

PFDDR—Port I			Port						
Bit	7	6	5	4	3	2	1	0	
	PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	_	_	PF0DDR	
Modes 4, 5, 6			1			1			
Initial value	1	0	0	0	0	Undefined	Undefined	0	
Read/Write	W	W	W	W	W	_	_	W	
Mode 7									
Initial value	0	0	0	0	0	Undefined	Undefined	0	
Read/Write	W	W	W	W	W	_	_	W	

Specify input or output for each of the pins in port F

PAPCR—Port	A MOS Pull-Up Control Register			gister	H'FE40		Por		
Bit	7	6	5	4	3	2	1	0	
	_		_		PA3PCR	PA2PCR	PA1PCR	PA0PCR	
Initial value	Undefined	Undefined	Undefined	Undefined	0	0	0	0	
Read/Write	_	_	_	_	R/W	R/W	R/W	R/W	

Control the MOS input pull-up function incorporated into port A

PBPCR—Port	H'FE41			Po	ort				
Bit	7	6	5	4	3	2	1	0	•
	PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Control the MOS input pull-up function incorporated into port B

PCPCR—Port	C MOS I	C MOS Pull-Up Control Register			H'FE42			Port		
Bit	7	6	5	4	3	2	1	0		
	PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PC0PCR		
Initial value	0	0	0	0	0	0	0	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Control the MOS input pull-up function incorporated into port C

PDPCR—Port	Pull-Up C	ontrol Re	gister	H'FE43			Po	ort	
Bit	7	6	5	4	3	2	1	0	i
	PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Control the MOS input pull-up function incorporated into port D

PEPCR—Port	E MOS F	E MOS Pull-Up Control Register			H'FE44			Port	
Bit	7	6	5	4	3	2	1	0	
	PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Control the MOS input pull-up function incorporated into port E

P3ODR—Port	trol Regis	ter	H'FE46			Po	rt		
Bit	7	6	5	4	3	2	1	0	
	_	_	P35ODR	P34ODR	P33ODR	P32ODR	P310DR	P30ODR	
Initial value	Undefined	Undefined	0	0	0	0	0	0	
Read/Write	_	_	R/W	R/W	R/W	R/W	R/W	R/W	

PAODR—Por	ister	H'FE47			Po	rt			
Bit	7	6	5	4	3	2	1	0	
	_	_	_	_	PA3ODR	PA2ODR	PA10DR	PA00DR	
Initial value	Undefined	Undefined	Undefined	Undefined	0	0	0	0	
Read/Write	_	_	_	_	R/W	R/W	R/W	R/W	

PBODR—Port B Open Drain Control Register H'FE48 Po													
Bit	7	6	5	4	3	2	1	0					
	PB7ODR	PB6ODR	PB5ODR	PB4ODR	PB3ODR	PB2ODR	PB10DR	PB0ODR					
Initial value	0	0	0	0	0	0	0	0					
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
PCODR—Port C Open Drain Control Register H'FE49 Port													
PCODR—Port	t C Open	Drain Co	ntrol Regi	ister	H'FE49			Port					
PCODR—Port	t C Open	Drain Co	ntrol Regi	ister 4	H'FE49	2	1	Port					
	7	6	5		3	_	ı	0					
	7	6	5	4	3	_	ı	0					

TCR3—Timer Control Register 3 TPU3 H'FE80 7 6 5 4 3 2 1 0 Bit CCLR2 CCLR1 CCLR0 CKEG1 CKEG0 TPSC2 TPSC1 TPSC0 0 0 0 0 0 0 Initial value 0 0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Time Prescaler Internal clock: counts on 6/1 Internal clock: counts on 6/4 1 Internal clock: counts on 6/16 Internal clock: counts on 6/64 1 0 External clock: counts on TCLKA pin input Internal clock: counts on $\phi/1024$ 1 Internal clock: counts on $\phi/256$ 0 Internal clock: counts on 6/4096 Clock Edge Count at rising edge

Count at falling edge

Count at both edges

Note: Internal clock edge selection is valid when the input clock is φ/4 or slower. This setting is ignored if the input clock is φ/1, or when overflow/underflow of another channel is selected.

Counter Clear

1

0	0	0	TCNT clearing disabled
		1	TCNT cleared by TGRA compare match/input capture
	1	0	TCNT cleared by TGRB compare match/input capture
		1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*1
1	0	0	TCNT clearing disabled
		1	TCNT cleared by TGRC compare match/input capture*2
	1	0	TCNT cleared by TGRD compare match/input capture*2
		1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*1

Notes: 1. Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

When TGRC or TGRD is used as a buffer register, TCNT is not cleared because the buffer register setting has priority, and compare match/input capture does not occur.

H65/2630, H65/2	2035 Group										Appendix B	internal I/O F	kegister
TMDR3—Ti	imer Mod	le Registe	r 3]	H'l	FE8	81			7	ГРU3
Bit	7	6	5	4			3			2	1	0	
		_	BFB	BF.	Α	M	1D3	3	MD2		MD1	MD0	
Initial value	1	1	0	0			0			0	0	0	_
Read/Write	_	_	R/W	R/\	Ν	R	R/W	1	R	R/W	R/W	R/W	
					Ν	/lode	e –						
						0	0	0	0	Norn	nal operat	ion	
									1	Rese	erved		
								1	0	PWN	/I mode 1		
									1	PWN	/I mode 2		
							1	0	0			g mode 1	
							-		1			g mode 2	
								1	0			g mode 3	
						1	*	*	1	Phas	se countin	g mode 4	
					L	1	*	*	Ψ.			*: Don't	tooro
			D. d	for Or			2	it Pl. Pl se	sho hase et fo	uld alv e coun r chan	vays be w iting mode inel 3. In t	In a write ritten with e cannot b his case, (tten to MD	e, 0. e
			Buf 0	fer Op	perat RA o _l			. no	rmo	My.			
			1								ther for hi	uffer opera	ntion
				101	v~ ai	iiu I	OI	·	use	a loge	נווסו וטו טנ	andi opera	iiiOII

Buffer Operation

0	TGRB operates normally
1	TGRB and TGRD used together for buffer operation

TIOR3H—Timer I/O Control Register 3H H'FE82 TPU3 7 6 5 4 3 2 0 Rit IOB3 IOB2 IOB1 IOB0 IOA3 IOA2 IOA1 IOA0 0 0 0 0 0 0 0 0 Initial value Read/Write R/W R/W R/W R/W R/W R/W R/W R/W TGR3A I/O Control 0 0 TGR3A is Output disabled output 1 Initial output is 0 0 output at compare match compare output 1 0 1 output at compare match register 1 Toggle output at compare match 0 0 Output disabled 1 Initial output is 1 0 output at compare match output 1 0 1 output at compare match 1 Toggle output at compare match 1 0 0 0 TGR3A is Capture input Input capture at rising edge input source is 1 Input capture at falling edge capture TIOCA3 pin 1 Input capture at both edges register Input capture at TCNT4 count-up/ Capture input count-down source is channel 4/count clock

*: Don't care

TGR3B I/O Control

Page 1338 of 1458

0	0	0	0	TGR3B is	Output disabled							
0	0	U	U		Output disabled							
			1	output compare	Initial output is 0	0 output at compare match						
		1	0	register	output	1 output at compare match						
			1			Toggle output at compare match						
	1	0	0		Output disabled							
			1		Initial output is 1 output	0 output at compare match						
	1	0		output	1 output at compare match							
			1			Toggle output at compare match						
1	0	0	0	TGR3B is	Capture input	Input capture at rising edge						
			1	input	source is TIOCB3 pin	Input capture at falling edge						
		1	*	capture register	ПОСВЗ ріп	Input capture at both edges						
	1	*	*		Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/ count-down*1						

*: Don't care

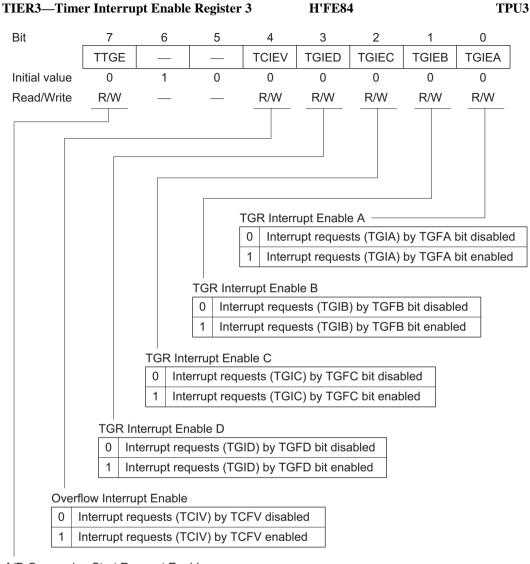
Note: 1. When bits TPSC2 to TPSC0 in TCR4 are set to B'000 and φ/1 is used as the TCNT4 count clock, this setting is invalid and input capture is not generated.

TIOR3L—Timer I/O Control Register 3L TPU3 H'FE83 Rit 7 6 5 4 3 2 1 0 IOD3 IOD2 IOD1 IOD0 IOC3 IOC2 IOC1 IOC0 Initial value 0 0 0 O 0 n 0 n Read/Write R/W R/W R/W R/W R/W R/W R/W R/W TGR3C I/O Control 0 TGR3C is Output disabled 0 0 output 1 Initial output is 0 0 output at compare match compare output 1 0 1 output at compare match register*1 1 Toggle output at compare match 0 0 Output disabled 1 Initial output is 1 0 output at compare match output 1 0 1 output at compare match 1 Toggle output at compare match 0 0 0 TGR3C is Capture input Input capture at rising edge input source is 1 Input capture at falling edge capture TIOCC3 pin * 1 Input capture at both edges register*1 1 Capture input Input capture at TCNT4 count-up/ count-down source is channel 4/count clock

*: Don't care

Note: 1. When the BFA bit in TMDR3 is set to 1 and TGR3C is used as a buffer register,
this setting is invalid and input capture/output compare is not generated.

TGR3D I/O Control


0	0	0	0	TGR3D is	Output disabled							
			1	output	Initial output is 0	0 output at compare match						
		1	0	register*2	output	1 output at compare match						
			1			Toggle output at compare match						
	1	. • •			Output disabled							
			1		Initial output is 1	0 output at compare match						
	1	1	0		output	1 output at compare match						
			1			Toggle output at compare match						
1	0	0	0	TGR3D is	Capture input	Input capture at rising edge						
			1	input	source is TIOCD3 pin	Input capture at falling edge						
		1	*	capture register*2	ПОСВЗ ріп	Input capture at both edges						
	1	*	*	3 ***	Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/ count-down*1						

*: Don't care

Notes: 1. When bits TPSC2 to TPSC0 in TCR4 are set to B'000 and $\phi/1$ is used as the TCNT4 count clock, this setting is invalid and input capture is not generated.

When the BFB bit in TMDR3 is set to 1 and TGR3D is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

A/D Conversion Start Request Enable

	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

TSR3—Timer S	Status Re	egister 3		H'FE85									
Bit	7	6	5	4	3	2	1	0	_				
	_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA					
Initial value	1	1	0	0	0	0	0	0	-				
Read/Write		_		R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*					
	Input Capture/Output Compare Flag A 0 [Clearing conditions]												
				When of MR	DTC is activ	ated by TGIA	A interrupt wh						
				Wher compa Wher	are register ı TCNT value	is transferre	RA is function	/ input captur	re				
				ture register									
		Input Capture/Output Compare Flag B											
		0	 [Clearing conditions] When DTC is activated by TGIB interrupt while DISEL bit of MRB in DTC is 0 When 0 is written to TGFB after reading TGFB = 1 										
		1	[Setting conditions] • When TCNT = TGRB while TGRB is functioning as output compare register • When TCNT value is transferred to TGRB by input capture signal while TGRB is functioning as input capture register										
	Input Capture/Output Compare Flag C												
	[Clearing conditions] • When DTC is activated by TGIC interrupt while DISEL bit of MRB in DTC is 0 • When 0 is written to TGFC after reading TGFC = 1												
		When T	CNT = TGR(CNT value is	C while TGRC s transferred to as input captu	o TGRC by ir			ster					
	nput Capture	put Capture/Output Compare Flag D											
	When	g conditions] DTC is activa 0 is written to				of MRB in DT	C is 0						
	When When	conditions] TCNT = TGR TCNT value i is functioning	s transferred	I to TGRD by			ister						
Overflow I	Flag												
	ring condition	n]				7							

Note: * Can only be written with 0 for flag clearing.

[Setting condition]

• When 0 is written to TCFV after reading TCFV = 1

• When the TCNT value overflows (changes from H'FFFF to H'0000)

TCNT3—Timer Counter 3											H'FE86						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
								Up-co	ounte	r							

TGR3A—Tim TGR3B—Tim TGR3C—Tim TGR3D—Tim		H'FE88 H'FE8A H'FE8C H'FE8E							TPU3 TPU3 TPU3 TPU3							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	1 R/M/	1 R/W/	1 R/W	1 R/W	1 R/W	1	1 7 R/W	1 R/W	1 R/W	1 R/W

1

0

1

1

TCR4—Time	er Contro	ol Registe	r 4				TPU4							
Bit	7	6		5		4	3	2	1	0				
		CCLR1	СС	LR0	СК	ŒG1	CKEG0	TPSC2	TPSC1	TPSC0				
Initial value	0	0	, ()		0	0	0	0	0				
Read/Write		R/W	R	/W	F	R/W	R/W	R/W	R/W	R/W				
				_	_									
					1	resca		-l.,,-t-						
				0	0	\vdash	Internal clo		·					
					1	+	Internal clo		·					
					'	\vdash	Internal clo		·					
				4	_		Internal clock: counts on \$\phi/64							
							External clock: counts on TCLKA pin input External clock: counts on TCLKC pin input							
					_	\perp	Internal clock: counts on \$\phi/1024							
					1		Counts on TCNT5 overflow/underflow							
					Щ.	Ι.Ι								
				Not			etting is igi ing mode.	nored whe	n channel	4 is in phase				
		Class	alı Eda			, , , , , , , , , , , , , , , , , , ,	ing mode.							
		0	ck Edg		at ri	sing e	adae							
							edge							
		1												
	1 — Count at both edges Note: This setting is ignored when channel 4 is in phase													
		counting mode.												
	Internal clock edge selection is valid when the input clock is ∳/4 or slower. This setting is ignored if the													
							wer. This s or when ov							
							s selected.							
Co	unter Cle	ar												
0	Counter Clear 0 0 TCNT clearing disabled													

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

TCNT cleared by TGRA compare match/input capture

TCNT cleared by TGRB compare match/input capture

TCNT cleared by counter clearing for another channel

performing synchronous clearing/synchronous operation*

TMDR4—Ti	r 4	H'FE91							,	ΓPU4		
Bit	7	6	5	4		3			2	1	0	_
	_	_	_	_	ı	MD:	3	N	1D2	MD1	MD0	
Initial value	1	1	1	1	•	0			0	0	0	_
Read/Write	_	_	_	_	_	R/W		F	R/W	R/W	R/W	
					Mod	le -						
					0	0	0	0	Norn	nal operati	on	
								1	Rese	erved		
							1	0	PWN	/I mode 1		

*: Don't care

Note: MD3 is a reserved bit. In a write, it should always be written with 0.

PWM mode 2

Phase counting mode 1

Phase counting mode 2

Phase counting mode 3

Phase counting mode 4

1

1

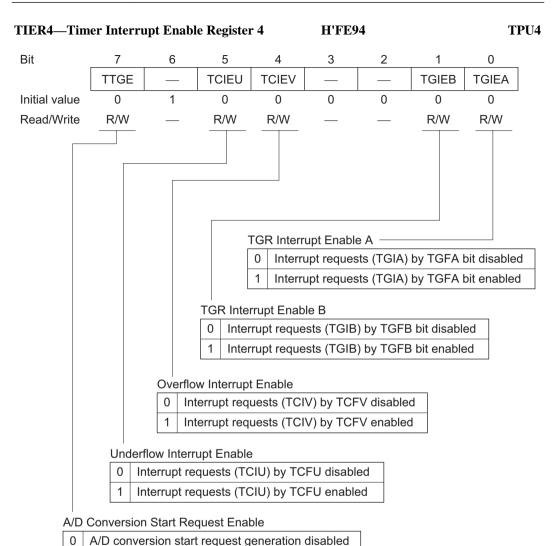
1 0 0

1

1 0

TIOR4—Timer I/O Control Register 4 H'FE92 TPU4 Bit 7 6 5 4 3 2 1 0 IOB3 IOB2 IOB1 IOB0 IOA3 IOA2 IOA1 IOA0 Initial value 0 0 0 0 0 0 0 0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W TGR4A I/O Control 0 0 0 TGR4A is Output disabled output Initial output is 0 0 output at compare match compare output 1 0 1 output at compare match register Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match output 0 1 1 output at compare match 1 Toggle output at compare match 0 0 TGR4A is Capture input Input capture at rising edge source is input Input capture at falling edge capture TIOCA4 pin Input capture at both edges register 1 Input capture at generation of TGR3A Capture input source is TGR3A compare match/input capture compare match/

input capture

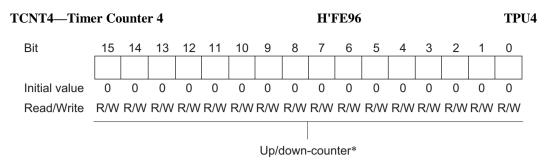

*: Don't care

TGR4B I/O Control

	STAD I/O CONTROL										
0	0	0	0	TGR4B is	Output disabled						
			1	output compare	Initial output is 0	0 output at compare match					
		1	0	register	output	1 output at compare match					
			1			Toggle output at compare match					
	1	0	0		Output disabled						
			1		Initial output is 1	0 output at compare match					
	1	0		output	1 output at compare match						
			1			Toggle output at compare match					
1	0	0	0	TGR4B is	Capture input	Input capture at rising edge					
			1	input capture	source is TIOCB4 pin	Input capture at falling edge					
		1	*	register	ПОСВ4 ріп	Input capture at both edges					
	1	*	*		Capture input source is TGR3C compare match/ input capture	Input capture at generation of TGR3C compare match/input capture					

*: Don't care

1


A/D conversion start request generation enabled

TSR4—Timer	Status R	egister 4		TPU4				
Bit	7	6	5	4	3	2	1	0
	TCFD	_	TCFU	TCFV		_	TGFB	TGFA
Initial value	1	1	0	0	0	0	0	0
Read/Write	R	_	R/(W)*	R/(W)*	_	_	R/(W)*	R/(W)*
	• Whe	Overflow Fla O [Clearin • When I [Setting • When I o is written In g condition]	[Clearing cc • When DTo • When 0 is [Setting con • When TCI • When TCI TGRB is for g condition] 0 is written to condition] the TCNT valid	0 [Clearin • Wher • Wher • Wher 1 [Setting • Wher comp • Wher signa utput Compar onditions] C is activated written to TG iditions]	ng conditions; n DTC is active RB in DTC is n 0 is written in g conditions] n TCNT = TG are register n TCNT value I while TGRA e Flag B by TGIB inte GFB after rear while TGRB is ansferred to input capture	vated by TGI/0 to TGFA after RA while TG e is transferre a is functionin errupt while D ding TGFB = s functioning a TGRB by inpre- e register V = 1 Dom H'FFFF to	A interrupt what reading TGf RA is function d to TGRA by g as input ca ISEL bit of M 1 as output con ut capture sig	ning as output y input capture pture register RB in DTC is 0

Note: * Can only be written with 0 for flag clearing.

Count Direction Flag

0 TCNT counts down
1 TCNT counts up

Note: * These counters can be used as up/down-counters only in phase counting mode or when counting overflow/underflow on another channel. In other cases they function as up-counters

		•			H'FE98 H'FE9A							TPU4			
				10									1	0_	
1	1	1					•	•	•	·	'	1	1	1	1
	15 1	15 14 1 1 1	15 14 13 1 1 1 1	15 14 13 12 1 1 1 1 1	1 1 1 1 1	T General Register 4B 15 14 13 12 11 10 1 1 1 1 1 1 1	T General Register 4B 15 14 13 12 11 10 9 1 1 1 1 1 1 1 1 1	T General Register 4B 15 14 13 12 11 10 9 8 1 1 1 1 1 1 1 1 1 1	r General Register 4B H'I 15 14 13 12 11 10 9 8 7 1 1 1 1 1 1 1 1 1 1 1	r General Register 4B H'FE9A 15 14 13 12 11 10 9 8 7 6 1 1 1 1 1 1 1 1 1 1 1	T General Register 4B H'FE9A 15 14 13 12 11 10 9 8 7 6 5 1 1 1 1 1 1 1 1 1 1 1 1	r General Register 4B	r General Register 4B	r General Register 4B	r General Register 4B H'FE9A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1

0

1

1

TCR5—Timer Control Register 5 H'FEA0 TPU5 Bit 7 5 4 3 2 1 0 6 CCI R1 CCLR0 CKFG1 CKFG0 TPSC2 TPSC1 TPSC0 Initial value 0 0 0 O 0 0 0 0 Read/Write R/W R/W R/W R/W R/W R/W R/W Time Prescaler n Internal clock: counts on $\phi/1$ 1 Internal clock: counts on 6/4 1 Internal clock: counts on $\phi/16$ 0 Internal clock: counts on 6/64 1 0 0 External clock: counts on TCLKA pin input 1 External clock: counts on TCLKC pin input 1 0 Internal clock: counts on $\phi/256$ External clock: counts on TCLKD pin input Note: This setting is ignored when channel 5 is in phase counting mode. Clock Edge Count at rising edge Count at falling edge 1 Count at both edges 1 Note: This setting is ignored when channel 5 is in phase counting mode. Internal clock edge selection is valid when the input clock is $\phi/4$ or slower. This setting is ignored if the input clock is $\phi/1$, or when overflow/underflow of another channel is selected. Counter Clear 0 0 TCNT clearing disabled

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

TCNT cleared by TGRA compare match/input capture

TCNT cleared by TGRB compare match/input capture

TCNT cleared by counter clearing for another channel

TMDR5—Ti	H'FEA1							TPU5					
Bit	7	6	5	4		3			2	1	0	_	
	_	_	_	_	- MI		3	M	ID2	MD1	MD0		
Initial value	1	1	0	0		0			0	0	0		
Read/Write	_	_	_	_	_	R/W		F	2/W	R/W	R/W		
					Mod	de -							
					0	0	0	0	Norn	nal operati	on		
								1	Rese	Reserved			
							1	0	PWN	/I mode 1			
								1	PWN	/I mode 2			
						1	0	0	Phas	se counting	g mode 1		

*: Don't care

Note: MD3 is a reserved bit. In a write, it should always be written with 0.

Phase counting mode 2

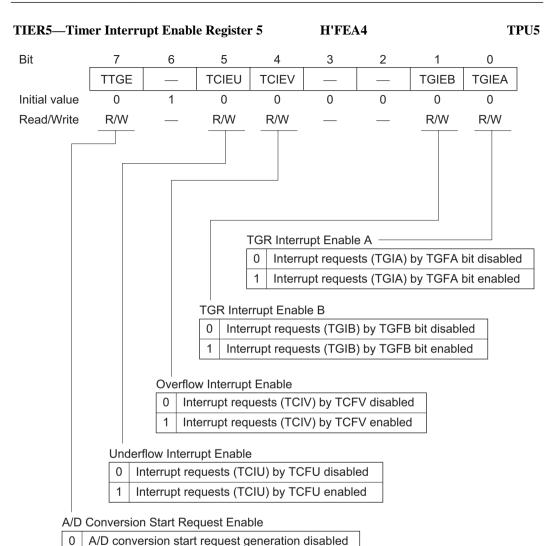
Phase counting mode 3

Phase counting mode 4

1

1

1

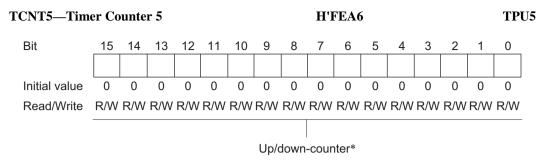

TIOR5—Timer I/O Control Register 5 H'FEA2 TPU5 Bit 7 5 4 3 2 0 6 1 IOB3 IOB2 IOB1 IOA2 IOA0 IOB0 IOA3 IOA1 0 0 0 0 Initial value 0 0 0 0 R/W Read/Write R/W R/W R/W R/W R/W R/W R/W TGR5A I/O Control 0 0 0 TGR5A is Output disabled output Initial output is 0 0 output at compare match compare output 1 0 1 output at compare match register Toggle output at compare match 0 0 Output disabled 1 Initial output is 1 0 output at compare match output 1 0 1 output at compare match Toggle output at compare match 0 0 TGR5A is Capture input 1 Input capture at rising edge input source is 1 Input capture at falling edge capture TIOCA5 pin 1 Input capture at both edges register *: Don't care

TGR5B I/O Control

0	0	0	0	TGR5B is	Output disabled							
			1	output	Initial output is 0	0 output at compare match						
		1	0	compare register	output	1 output at compare match						
			1			Toggle output at compare match						
	1	0	0		Output disabled							
			1		Initial output is 1	0 output at compare match						
		1	0		output	1 output at compare match						
			1			Toggle output at compare match						
1	*	0	0	TGR5B is	Capture input	Input capture at rising edge						
			1	input capture	source is TIOCB5 pin	Input capture at falling edge						
		1 4 1 * 1 '		register	Пооворії	Input capture at both edges						

^{*:} Don't care

1



A/D conversion start request generation enabled

TSR5—Timer	Status R	egister 5		TPU5					
Bit	7	6	5	4	3	2	1	0	
	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA	
Initial value	1	1	0	0	0	0	0	0	
Read/Write	R	_	R/(W)*	R/(W)*	_	_	R/(W)*	R/(W)*	
Count Dire	Underflow 0 [Clear • Whe 1 [Settir	Overflow Fla O [Clearin • When I [Setting • When Flag ing condition on 0 is written ing condition]	[Clearing cc • When DTo • When 0 is [Setting con • When TCI • When TCI TGRB is for g g condition] 0 is written to condition] the TCNT valid	0 [Clearin • Wher • Wher • Wher 1 [Setting • Wher comp • Wher signa utput Compar onditions] C is activated written to TG iditions]	g conditions; n DTC is activ RB in DTC is n 0 is written in conditions] n TCNT = TG are register n TCNT value I while TGRA e Flag B by TGIB inte FB after react while TGRB is ansferred to input capture	rated by TGIA to TGFA after RA while TGI is transferred is functioning errupt while D ding TGFB = functioning a FGRB by input eregister V = 1 Dom H'FFFF to	A interrupt what reading TGf RA is function d to TGRA by g as input ca ISEL bit of M 1 as output con ut capture sig	ning as outpur y input captur pture register RB in DTC is	et ee.

Note: * Can only be written with 0 for flag clearing.

TCNT counts down

Note: * These counters can be used as up/down-counters only in phase counting mode or when counting overflow/underflow on another channel. In other cases they function as up-counters.

TGR5A—Timer General Register 5A TGR5B—Timer General Register 5B										H'FEA8 H'FEAA						TPU5	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W							

TSTR—Timer	Start Reg	gister		H'FEB0							
Bit	7	6	5	4	3	2	1	0			
		_	CST5	CST4	CST3	CST2	CST1	CST0			
Initial value	0	0	0	0	0	0	0	0			
Read/Write	_	_	R/W	R/W	R/W	R/W	R/W	R/W			
				Counter S	tart ——						
				0 TCN	Tn count c	peration is	s stopped				
				1 TCNTn performs count operation							
					0)						

Note: If 0 is written to the CST bit during operation with the TIOC pin designated for output, the counter stops but the TIOC pin output compare output level is retained. If TIOR is written to when the CST bit is cleared to 0, the pin output level will be changed to the set initial output value.

TSYR—Time	Register	H'FEB1						T	PU		
Bit	7	6	5	5	4	3	2	1	0	_	
	_	_	SYN	NC5	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0		
Initial value	0	0	()	0	0	0	0	0		
Read/Write	_	_	R/	W	R/W	R/W	R/W	R/W	R/W		
			Tim 0	Timer Synchro 0 TCNTn operates independently (TCNT presetting/ clearing is unrelated to other channels) 1 TCNTn performs synchronous operation TCNT synchronous presetting/synchronous clearing							
				13 P	ossible			((n = 5 to 0)	

Notes: 1. To set synchronous operation, the SYNC bits for at least two channels must be set to 1.

2. To set synchronous clearing, in addition to the SYNC bit, the TCNT clearing source must also be set by means of bits CCLR2 to CCLR0 in TCR.

IPRA—Interrupt Priority Register A	H'FEC0	INT
IPRB—Interrupt Priority Register B	H'FEC1	INT
IPRC—Interrupt Priority Register C	H'FEC2	INT
IPRD—Interrupt Priority Register D	H'FEC3	INT
IPRE—Interrupt Priority Register E	H'FEC4	INT
IPRF—Interrupt Priority Register F	H'FEC5	INT
IPRG—Interrupt Priority Register G	H'FEC6	INT
IPRH—Interrupt Priority Register H	H'FEC7	INT
IPRJ—Interrupt Priority Register J	H'FEC9	INT
IPRK—Interrupt Priority Register K	H'FECA	INT
IPRL—Interrupt Priority Register L	H'FECB	INT
IPRM—Interrupt Priority Register M	H'FECC	INT

Bit	7	6	5	4	3	2	1	0
		IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0
Initial value	0	1	1	1	0	1	1	1
Read/Write	_	R/W	R/W	R/W	_	R/W	R/W	R/W

Correspondence between Interrupt Sources and IPR Settings

Register	Bi	ts
	6 to 4	2 to 0
IPRA	IRQ0	IRQ1
IPRB	IRQ2	IRQ4
	IRQ3	IRQ5
IPRC	*1	DTC*3
IPRD	Watchdog timer 0	*1
IPRE	PC break*3	A/D converter, watchdog timer 1
IPRF	TPU channel 0	TPU channel 1
IPRG	TPU channel 2	TPU channel 3
IPRH	TPU channel 4	TPU channel 5
IPRJ	*1	SCI channel 0
IPRK	SCI channel 1	SCI channel 2
IPRL	*1	IIC (Option)*2
IPRM	PWM channel 1, 2,	HCAN channel 0
	HCAN channel 1*3	

Notes: 1. Reserved. Read-only bits, always read as 1.

- I²C bus interface is available as an option in the H8S/2638, H8S/2639, H8S/2630.
 The IIC bit becomes reserved bit when this optional feature is not used.
- 3. The DTC, PC break, and HCAN1 are not implemented in the H8S/2635 Group.

ABWCR—Bus	ABWCR—Bus Width Control Register				H'FED0	Bus Controller			
Bit	7	6	5	4	3	2	1	0	
	ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0	
Modes 5 to 7									
Initial value	1	1	1	1	1	1	1	1	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Mode 4									
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	Area 7 t	o 0 Bus W	idth Contr	ol	<u> </u>				
	0 Are	ea n is des	signated fo	or 16-bit ac	ccess				
	1 Are	ea n is des	signated fo	or 8-bit acc	ess				

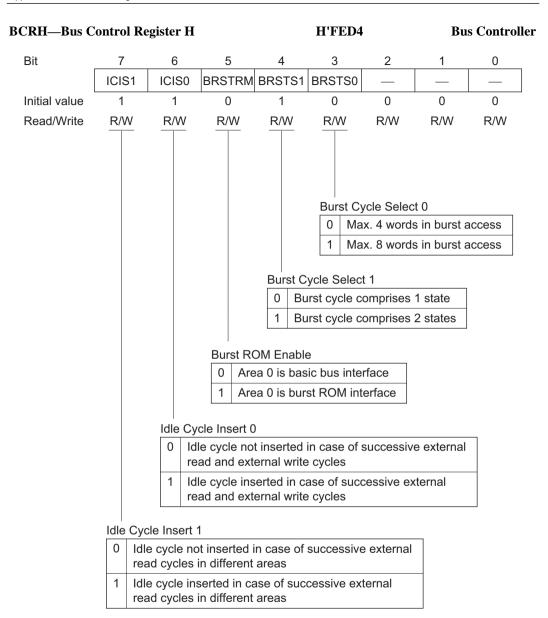
ASTCR—Access State Control Register **Bus Controller** H'FED1 Bit 6 5 4 3 2 1 0 AST7 AST6 AST5 AST3 AST2 AST1 AST0 AST4 Initial value 1 1 1 1 1 1 1 1 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Area 7 to 0 Access State Control Area n is designated for 2-state access Wait state insertion in area n external space is disabled

Wait state insertion in area n external space is enabled

Area n is designated for 3-state access

(n = 7 to 0)

(n = 7 to 0)


REJ09B0103-0800 Rev. 8.00 Page 1357 of 1458 RENESAS

WCRH—Wait Control Register H H'FED2 **Bus Controller** 7 5 4 3 Bit 6 2 1 0 W71 W70 W61 W60 W51 W50 W41 W40 1 1 1 1 1 1 Initial value 1 1 R/W R/W R/W Read/Write R/W R/W R/W R/W R/W Area 4 Wait Control 1 and 0 Program wait not inserted when external space area 4 is accessed 1 program wait state inserted when external space area 4 is accessed 1 2 program wait states inserted when external space area 4 is accessed 3 program wait states inserted when external space area 4 is accessed Area 5 Wait Control 1 and 0 Program wait not inserted when external space area 5 is accessed 1 program wait state inserted when external space area 5 is accessed 1 2 program wait states inserted when external space area 5 is accessed 1 3 program wait states inserted when external space area 5 is accessed Area 6 Wait Control 1 and 0 0 Program wait not inserted when external space area 6 is accessed 1 1 program wait state inserted when external space area 6 is accessed 1 0 2 program wait states inserted when external space area 6 is accessed 3 program wait states inserted when external space area 6 is accessed

Area 7 Wait Control 1 and 0

0	0	Program wait not inserted when external space area 7 is accessed
	1	1 program wait state inserted when external space area 7 is accessed
1	0	2 program wait states inserted when external space area 7 is accessed
	1	3 program wait states inserted when external space area 7 is accessed

WCRL—Wait Control Register L H'FED3 **Bus Controller** 7 6 5 4 3 Bit 2 1 0 W31 W30 W21 W20 W11 W01 W10 WOO 1 1 1 1 1 Initial value 1 1 1 R/W R/W R/W R/W Read/Write R/W R/W R/W R/W Area 0 Wait Control 1 and 0 O Program wait not inserted when external space area 0 is accessed 1 program wait state inserted when external space area 0 is accessed 1 2 program wait states inserted when external space area 0 is accessed 3 program wait states inserted when external space area 0 is accessed Area 1 Wait Control 1 and 0 Program wait not inserted when external space area 1 is accessed 1 program wait state inserted when external space area 1 is accessed 1 0 2 program wait states inserted when external space area 1 is accessed 1 3 program wait states inserted when external space area 1 is accessed Area 2 Wait Control 1 and 0 Program wait not inserted when external space area 2 is accessed 0 1 program wait state inserted when external space area 2 is accessed 1 2 program wait states inserted when external space area 2 is accessed 3 program wait states inserted when external space area 2 is accessed Area 3 Wait Control 1 and 0 Program wait not inserted when external space area 3 is accessed 1 program wait state inserted when external space area 3 is accessed

BCRL—Bus C	BCRL—Bus Control Register L					H'FED5			Bus Controller	
Bit	7	6	5	4	3	2	1	0		
	_	_	_	_	_	_	WDBE	_		
Initial value	0	0	0	0	1	0	0	0		
Read/Write	R/W	R/W	_	R/W	R/W	R/W	R/W	R/W		
				Write Data Buffer Enable						
				0 Write data buffer function not used						
				1 Write	data buff	er function	used			

RAMER—RAM Emulation Register

H'FEDB

Flash Memory

Bit	7	6	5	4	3	2	1	0
	_				RAMS	RAM2	RAM1	RAM0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W

Flash Memory Area Selection -

• H8S/2636

Addresses	Block Name	RAMS	RAM2	RAM1	RAM0
H'FFE000-H'FFE3FF	RAM area 1 kB	0	*	*	*
H'000000-H'0003FF	EB0 (1 kB)	1	0	0	
H'000400-H'0007FF	EB1 (1 kB)			1	
H'000800-H'000BFF	EB2 (1 kB)		1	0	
H'000C00-H'000FFF	EB3 (1 kB)			1	

^{*:} Don't care

• H8S/2638, H8S/2639, H8S/2630

. 100/2000, 1.00/2000							
Addresses	Block Name	RAMS	RAM2	RAM1	RAM0		
H'FFD000-H'FFDFFF	RAM area 4 kB	0	*	*	*		
H'000000-H'000FFF	EB0 (4 kB)	1	0	0	0		
H'001000-H'001FFF	EB1 (4 kB)				1		
H'002000-H'002FFF	EB2 (4 kB)			1	0		
H'003000-H'003FFF	EB3 (4 kB)				1		
H'004000-H'004FFF	EB4 (4 kB)		1	0	0		
H'005000-H'005FFF	EB5 (4 kB)				1		
H'006000-H'006FFF	EB6 (4 kB)			1	0		
H'007000-H'007FFF	EB7 (4 kB)				1		

^{*:} Don't care

• H8S/2635

Addresses	Block Name	RAMS	RAM2	RAM1	RAM0
H'FFD800-H'FFE7FF	RAM area 4 kB	0	*	*	*
H'000000-H'000FFF	EB0 (4 kB)	1	0	0	0
H'001000-H'001FFF	EB1 (4 kB)				1
H'002000-H'002FFF	EB2 (4 kB)			1	0
H'003000-H'003FFF	EB3 (4 kB)				1
H'004000-H'004FFF	EB4 (4 kB)		1	0	0
H'005000-H'005FFF	EB5 (4 kB)				1
H'006000-H'006FFF	EB6 (4 kB)			1	0
H'007000-H'007FFF	EB7 (4 kB)				1

^{*:} Don't care

RAM Select

0 Emulation not selected Program/erase-protection of all flash memory blocks is disabled

Emulation selected
Program/erase-protection of all flash memory blocks is enabled

P1DR—Port 1	Data Reg	gister			H'FF00			Port		
Bit	7	6	5	4	3	2	1	0		
	P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR		
Initial value	0	0	0	0	0	0	0	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
P3DR—Port 3	P3DR—Port 3 Data Register					H'FF02				
Bit	7	6	5	4	3	2	1	0		
	_	_	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR		
Initial value	Undefined	Undefined	0	0	0	0	0	0		
Read/Write	_	_	R/W	R/W	R/W	R/W	R/W	R/W		
PADR—Port A Data Register H'FF09									rt	
Bit	7	6	5	4	3	2	1	0		
	_	_	_	_	PA3DR	PA2DR	PA1DR	PA0DR		
Initial value	Undefined	Undefined	Undefined	Undefined	0	0	0	0		
Read/Write	_	_	_	_	R/W	R/W	R/W	R/W		
PBDR—Port B	B Data Re	gister			H'FF0A	<u> </u>		Po	rt	
Bit	7	6	5	4	3	2	1	0		
	PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR		
Initial value	0	0	0	0	0	0	0	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
PCDR—Port (C Data Re	gister			H'FF0B	.		Po	- rt	
Bit	7	6	5	4	3	2	1	0		
	PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR		
Initial value	0	0	0	0	0	0	0	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

PDDR—Port I) Data Re	gister			Port			
Bit	7	6	5	4	3	2	1	0
	PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
PEDR—Port B	E Data Re	gister			H'FF0D)		Port
Bit	7	6	5	4	3	2	1	0
	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
PFDR—Port F	Data Reg	gister			H'FF0E	2		Port
Bit	7	6	5	4	3	2	1	0
	PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	_	_	PF0DR
Initial value	0	0	0	0	0	Undefined	Undefined	0
Read/Write	R/W	R/W	R/W	R/W	R/W	_		R/W

TCR0—Timer Control Register 0 H'FF10 **TPU0** Bit 7 6 5 4 3 2 1 0 CCLR2 CCLR1 CCLR0 CKEG1 CKEG0 TPSC2 TPSC1 TPSC0 Initial value 0 n n n n n n n R/W Read/Write R/W R/W R/W R/W R/W R/W R/W Time Prescaler Internal clock: counts on 6/1 1 Internal clock: counts on 6/4 1 0 Internal clock: counts on $\phi/16$ 1 Internal clock: counts on 6/64 1 0 External clock: counts on TCLKA pin input 1 External clock: counts on TCLKB pin input 1 External clock: counts on TCLKC pin input External clock: counts on TCLKD pin input Clock Edge Count at rising edge 0 0 Count at falling edge 1 Count at both edges

Note: Internal clock edge selection is valid when the input clock is φ/4 or slower. This setting is ignored if the input clock is φ/1, or when overflow/underflow of another channel is selected.

Counter Clear

0	0	0	TCNT clearing disabled
		1	TCNT cleared by TGRA compare match/input capture
	1	0	TCNT cleared by TGRB compare match/input capture
		1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*1
1	0	0	TCNT clearing disabled
		1	TCNT cleared by TGRC compare match/input capture*2
	1	0	TCNT cleared by TGRD compare match/input capture*2
		1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*1

Notes: 1. Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

When TGRC or TGRD is used as a buffer register, TCNT is not cleared because the buffer register setting has priority, and compare match/input capture does not occur.

TMDR0—Ti	mer Mod	e Registe	r 0			Н'	FF1	11				TPU0
Bit	7	6	5	4		3			2	1	0	_
	_	_	BFB	BFA		MD:	3	N	ID2	MD1	MD0	
Initial value	1	1	0	0	•	0			0	0	0	_
Read/Write	_	—	R/W	R/W		R/V	/	F	2/W	R/W	R/W	
					Мо	de -						
					0	0	0	0		nal operati	ion	
								1		erved		
							1	0		/I mode 1		
						1	_	0		/ mode 2		
						'	0	1		se counting		
							1	0		se counting		
							'	1		se counting		
					1	*	*	*	_	oo oodriini,	9 111000	
					Note		it 2. P se	sho hase et fo	uld alv e coun r chan	served bit vays be w iting mode inel 0. In th	ritten witl cannot nis case,	te, h 0. be 0
			But	l ffer Oper	atio	n A						
			0	TGRA			s no	rma	ally			
			1	TGRA	and	TG	RC	use	d toge	ther for bu	ıffer oper	ation
			Buffer O	peration								_

	•
0	TGRB operates normally
1	TGRB and TGRD used together for buffer operation

TIOR0H—Timer I/O Control Register 0H H'FF12 **TPU0** Rit 7 6 5 4 3 2 1 0 IOB2 IOB1 IOA2 IOB3 IOB0 IOA3 IOA1 IOA0 0 0 0 Initial value 0 0 0 0 0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W TGR0A I/O Control 0 0 0 TGR0A is Output disabled output Initial output is 0 0 output at compare match compare output 1 0 1 output at compare match register Toggle output at compare match 0 1 0 Output disabled 1 Initial output is 1 0 output at compare match output 1 0 1 output at compare match Toggle output at compare match 0 1 0 0 TGR0A is Capture input Input capture at rising edge input source is Input capture at falling edge TIOCA0 pin capture Input capture at both edges 1 register 1 Capture input Input capture at TCNT1 count-up/ source is channel count-down 1/count clock

TGR0B I/O Control

0	0	0	0	TGR0B is	Output disabled				
			1	output	Initial output is 0	0 output at compare match			
		1	0	compare register	output	1 output at compare match			
			1			Toggle output at compare match			
	1	0	0		Output disabled				
			1		Initial output is 1	0 output at compare match			
		1	0		output	1 output at compare match			
			1			Toggle output at compare match			
1	0	0	0	TGR0B is	Capture input	Input capture at rising edge			
			1	input	source is TIOCB0 pin	Input capture at falling edge			
		1	*	capture register	ПОСВО РІП	Input capture at both edges			
	1	*	*	5	Capture input source is channel 1/count clock	Input capture at TCNT1 count-up/ count-down*1			

^{*:} Don't care

Note: 1. When bits TPSC2 to TPSC0 in TCR1 are set to B'000 and φ/1 is used as the TCNT1 count clock, this setting is invalid and input capture is not generated.

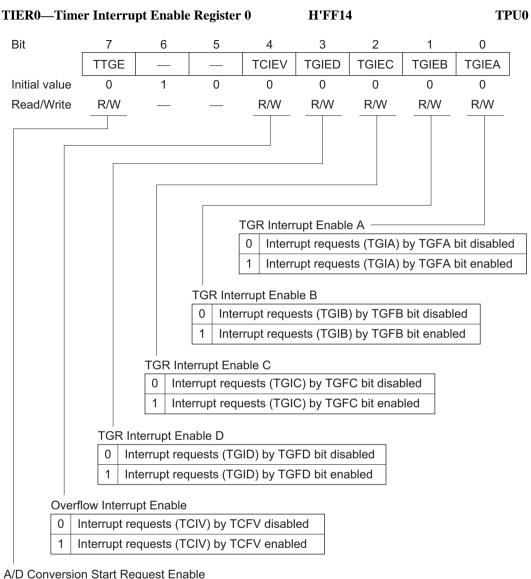
^{*:} Don't care

TIOR0L—Timer I/O Control Register 0L H'FF13 TPU₀ 7 6 5 4 3 2 0 Bit 1 IOD3 IOC2 IOD2 IOD1 IOD0 IOC3 IOC1 IOC0 0 0 0 0 0 0 n 0 Initial value R/W R/W R/W R/W R/W R/W Read/Write R/W R/W TGR0C I/O Control 0 0 0 TGR0C is Output disabled output Initial output is 0 1 0 output at compare match compare output 0 1 1 output at compare match register*1 1 Toggle output at compare match 0 0 Output disabled 1 Initial output is 1 0 output at compare match output 1 0 1 output at compare match 1 Toggle output at compare match 0 1 TGR0C is Capture input Input capture at rising edge input source is 1 Input capture at falling edge capture TIOCC0 pin 1 Input capture at both edges register*1 Capture input Input capture at TCNT1 count-up/ source is channel count-down 1/count clock

*: Don't care

Note: 1. When the BFA bit in TMDR0 is set to 1 and TGR0C is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

TGR0D I/O Control


0	0	0	0	TGR0D is	Output disabled					
			1	output	Initial output is 0	0 output at compare match				
		1	0	compare register*2	output	1 output at compare match				
			1			Toggle output at compare match				
	1	0	0		Output disabled					
			1		Initial output is 1	0 output at compare match				
		1	0		output	1 output at compare match				
			1			Toggle output at compare match				
1	0	0	0	TGR0D is	Capture input	Input capture at rising edge				
			1	input capture	source is TIOCD0 pin	Input capture at falling edge				
		1	*	register*2	ПОСВО РІП	Input capture at both edges				
	1	*	*	<u> </u>	Capture input source is channel 1/count clock	Input capture at TCNT1 count-up/ count-down*1				

*: Don't care

Notes: 1. When bits TPSC2 to TPSC0 in TCR1 are set to B'000 and ϕ /1 is used as the TCNT1 count clock, this setting is invalid and input capture is not generated.

2. When the BFB bit in TMDR0 is set to 1 and TGR0D is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

TSR0—Timer S	Status Re	egister 0			H'FF1	5		,	TPU0
Bit	7	6	5	4	3	2	1	0	
	_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA	
Initial value	1	1	0	0	0	0	0	0	ı
Read/Write		_	_	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	
		Inpu	ıt Capture/Oı	0 [Clearir • Wher of MF • Wher 1 [Setting • Wher comp • Wher	g conditions] n DTC is activ RB in DTC is a n 0 is written in conditions] n TCNT = TG are register n TCNT value I while TGRA	rated by TGIA TO TGFA after RA while TGI To transferre	A interrupt when reading TGF RA is function to TGRA by	ille DISEL bit FA = 1 ning as outpu y input captur pture register	t re
		1	When 0 is [Setting core	RB in DTC is npare register inal while					
	Input Capture/Output Compare Flag C 0 [Clearing conditions] • When DTC is activated by TGIC interrupt while DISEL bit of MRB in DTC is 0 • When 0 is written to TGFC after reading TGFC = 1 1 [Setting conditions] • When TCNT = TGRC while TGRC is functioning as output compare register • When TCNT value is transferred to TGRC by input capture signal while TGRC is functioning as input capture register								
	0 [Clearing • When • When 1 [Setting • When • When	0 is written to conditions] TCNT = TGR	ated by TGID TGFD after D while TGR is transferred	interrupt whil reading TGF RD is function to TGRD by oture register	O = 1 ng as output	compare reg			
1 1 7	ring conditio	n]	ter reading T	*CEV = 1					

• When 0 is written to TCFV after reading TCFV = 1 [Setting condition] • When the TCNT value overflows (changes from H'FFFF to H'0000)

Note: * Can only be written with 0 for flag clearing.

TCNT0—Tim	H'FF16							TPU	J 0								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
							ı	Up-co	ounte	r							
TGR0A—Tim	er Ge	enera	ıl Reş	gister	r OA				H'I	FF18						TPU	IJ 0
TGR0B—Tim	er Ge	enera	l Reg	gister	· 0B	H'FF1A								TPU	J 0		
TGR0C—Timer General Register 0C						H'FF1C											
IGRUC—IIII	er Ge	enera	ıl Reş	gistei	r 0C				H'I	FF1C						TPU	U 0
TGR0C—Tim			•							FF1C FF1E						TPU TPU	
			•			10	9	8				4	3	2	1		
TGR0D—Tim	er Ge	enera	ıl Reg	gistei	r OD	10	9	8	H'I	FF1E		4	3	2	1	TPU	
TGR0D—Tim	er Ge	enera	ıl Reg	gistei	r OD	10	9	8	H'I	FF1E		4	3	2	1	TPU	

TCR1—Timer Control Register 1 TPU1 H'FF20 Bit 7 5 4 3 2 1 0 6 CCLR1 CKFG0 TPSC2 CCLR0 CKFG1 TPSC1 TPSC0 Initial value 0 0 0 0 0 0 0 0 Read/Write R/W R/W R/W R/W R/W R/W R/W Time Prescaler n 0 Internal clock: counts on 6/1 Internal clock: counts on $\phi/4$ 1 0 Internal clock: counts on \$\dagger{1}6\$ Internal clock: counts on \$\display\$64 1 0 External clock: counts on TCLKA pin input External clock: counts on TCLKB pin input 1 Internal clock: counts on $\phi/256$ 0 Counts on TCNT2 overflow/underflow Note: This setting is ignored when channel 1 is in phase counting mode. Clock Edge Count at rising edge 1 Count at falling edge Count at both edges Note: This setting is ignored when channel 1 is in phase counting mode. Internal clock edge selection is valid when the input clock is $\phi/4$ or slower. This setting is ignored if the input clock is $\phi/1$, or when overflow/underflow of another channel is selected. Counter Clear 0 0 TCNT clearing disabled 1 TCNT cleared by TGRA compare match/input capture 1 0 TCNT cleared by TGRB compare match/input capture TCNT cleared by counter clearing for another channel

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

performing synchronous clearing/synchronous operation*

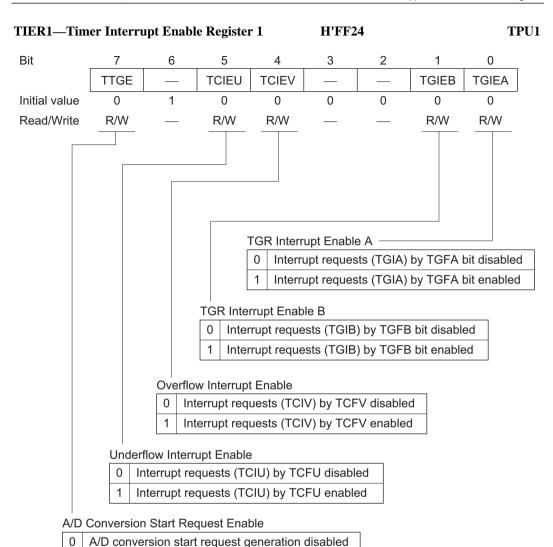
TMDR1—Ti	imer Mod	le Registe	r 1		TPU1				
Bit	7	6	5	4	3	2	1	0	
	_	_	_	_	MD3	MD2	MD1	MD0	
Initial value	1	1	0	0	0	0	0	0	
Read/Write	_	_	_	_	R/W	R/W	R/W	R/W	

Mod	de -						
0	0	0	0	Normal operation			
			1	Reserved			
		1	0	PWM mode 1			
			1	PWM mode 2			
	1	0	0	Phase counting mode 1			
			1	Phase counting mode 2			
		1	0	Phase counting mode 3			
			1	Phase counting mode 4			
1	*	*	*	_			

*: Don't care

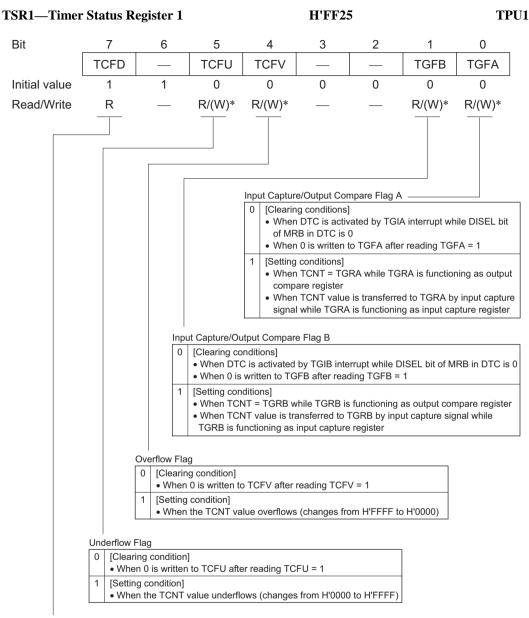
Note: MD3 is a reserved bit. In a write, it should always be written with 0.

TIOR1—Timer I/O Control Register 1 H'FF22 TPU1 Bit 7 6 5 4 3 2 1 0 IOB3 IOB₂ IOB1 IOB0 IOA3 IOA2 IOA1 IOA0 Initial value 0 0 0 0 0 0 0 0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W TGR1A I/O Control 0 0 0 TGR1A is Output disabled output 1 Initial output is 0 0 output at compare match compare output 1 0 1 output at compare match register 1 Toggle output at compare match 0 0 Output disabled 1 Initial output is 1 0 output at compare match output 0 1 1 output at compare match 1 Toggle output at compare match 1 0 0 0 TGR1A is Capture input Input capture at rising edge input source is 1 Input capture at falling edge capture TIOCA1 pin 1 Input capture at both edges register Capture input Input capture at generation of source is TGR0A channel 0/TGR0A compare match/ compare match/ input capture


input capture

*: Don't care

TGR1B I/O Control


		., 0	-00	illoi							
0	0	0	0	TGR1B is	Output disabled						
			1	output compare	Initial output is 0	0 output at compare match					
		1	0	register	output	1 output at compare match					
			1	_		Toggle output at compare match					
	1	0	0		Output disabled	Output disabled					
			1		Initial output is 1	0 output at compare match					
		1	0		output	1 output at compare match					
			1			Toggle output at compare match					
1	0	0	0	TGR1B is	Capture input	Input capture at rising edge					
			1	input capture	source is TIOCB1 pin	Input capture at falling edge					
		1	*	register	ПОСВТРІП	Input capture at both edges					
	1	*	*	J	Capture input source is TGR0C compare match/ input capture	Input capture at generation of TGR0C compare match/input capture					

*: Don't care

A/D conversion start request generation enabled

1

Count Direction Flag

0	TCNT counts down
1	TCNT counts up

Note: * Can only be written with 0 for flag clearing.

TCNT1—Tim		H'FF26										TPU1				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Up/down-counter*																

Note: * These counters can be used as up/down-counters only in phase counting mode or when counting overflow/underflow on another channel. In other cases they function as up-counters.

TGR1A—Tim			,	_						FF28 FF2A						TPU1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TCR2—Timer Control Register 2 TPU2 H'FF30 Bit 7 5 4 3 2 1 0 6 CCLR1 CCLR0 CKEG1 CKFG0 TPSC2 TPSC1 TPSC0 Initial value 0 0 0 0 0 0 0 0 Read/Write R/W R/W R/W R/W R/W R/W R/W Time Prescaler Λ Internal clock: counts on $\phi/1$ Internal clock: counts on 6/4 1 Internal clock: counts on $\phi/16$ 0 Internal clock: counts on 6/64 1 0 External clock: counts on TCLKA pin input External clock: counts on TCLKB pin input 1 External clock: counts on TCLKC pin input 0 Internal clock: counts on \$\phi/1024\$ Note: This setting is ignored when channel 2 is in phase counting mode. Clock Edge Count at rising edge Count at falling edge 1 Count at both edges Note: This setting is ignored when channel 2 is in phase counting mode. Internal clock edge selection is valid when the input clock is $\phi/4$ or slower. This setting is ignored if the input clock is $\phi/1$, or when overflow/underflow of another channel is selected. Counter Clear 0 TCNT clearing disabled 1 TCNT cleared by TGRA compare match/input capture 1 0 TCNT cleared by TGRB compare match/input capture

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*

TMDR2—Timer Mode Register 2

TPU2

Bit	7	6	5	4		3			2	1	0	
	_	_	_	_		MD:	MD2			MD1	MD0	
Initial value	1	1	0	0		0			0	0	0	
Read/Write	_	_	_	_		R/W	/	R	2/W	R/W	R/W	
					Mod	de -						
					0	0	0	0	Norn	nal operati	on	
								1	Rese	erved		
							1	0	PWN	/I mode 1		
								1	PWN	/I mode 2		
						1	0	0	Phas	se counting	g mode 1	
								1	Phas	se counting	g mode 2	
							1 0 Phase counting mode 3					
								1	Phas	se counting	g mode 4	

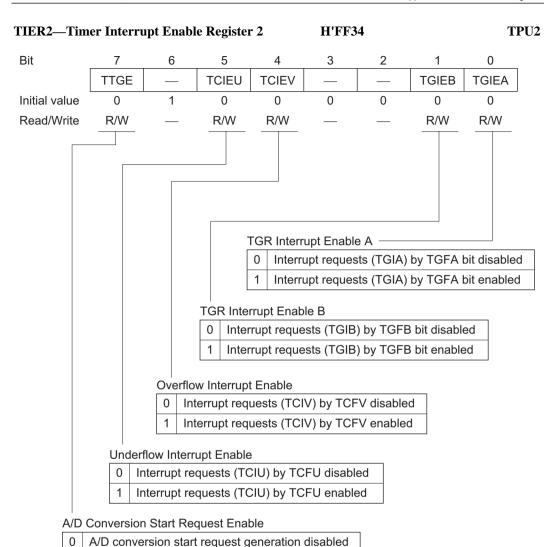
1

H'FF31

*: Don't care

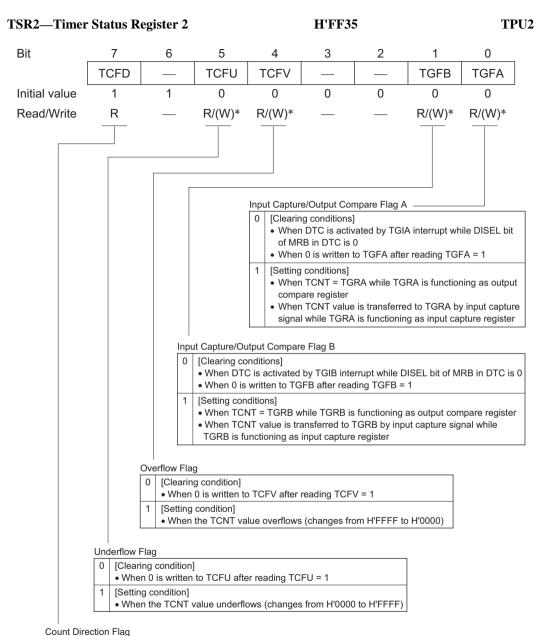
Note: MD3 is a reserved bit. In a write, it should always be written with 0.

TIOR2—Timer I/O Control Register 2 H'FF32 TPU2 4 2 0 Bit 7 6 5 3 1 IOB3 IOB2 IOB1 IOA2 IOB0 IOA3 IOA1 IOA0 0 0 0 0 Initial value 0 0 0 0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W TGR2A I/O Control 0 0 0 TGR2A is Output disabled output 1 Initial output is 0 0 output at compare match compare output 1 0 1 output at compare match register 1 Toggle output at compare match 0 0 Output disabled 1 Initial output is 1 0 output at compare match output 1 0 1 output at compare match 1 Toggle output at compare match 0 0 TGR2A is Capture input 1 Input capture at rising edge input source is 1 Input capture at falling edge capture TIOCA2 pin 1 Input capture at both edges


*: Don't care

TGR2B I/O Control

0	0	0	0	TGR2B is	Output disabled	
			1	output	Initial output is 0	0 output at compare match
		1	0	compare register	output	1 output at compare match
			1	Ü		Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
			1			Toggle output at compare match
1	*	0	0	TGR2B is	Capture input	Input capture at rising edge
			1	input capture	source is TIOCB2 pin	Input capture at falling edge
		1	*	register		Input capture at both edges


register

*: Don't care

A/D conversion start request generation enabled

1

0	TCNT counts down
1	TCNT counts up

Note: * Can only be written with 0 for flag clearing.

TCNT2—Tim		H'FF36										TPU	J 2				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Up/down-counter*																	

Note: * These counters can be used as up/down-counters only in phase counting mode or when counting overflow/underflow on another channel. In other cases they function as up-counters.

TGR2A—Tim TGR2B—Tim			•	_						FF38 FF3A						TPU2
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TCSR0—Timer	Control/S	Status Re	egister 0		I	1'FF74	(W), H'F	F 74 (I	R)	W	DT0
Bit	7	6	5		4	3	2		1	0	
	OVF	WT/IT	TME	-		_	CKS2	С	KS1	CKS0	
Initial value	0	0	0		1	1	0	I	0	0	1
Read/Write	R/(W)*	R/W	R/W	-		_	R/W	F	R/W	R/W	
			_		Select 2	2 to 0 —	Clock			flow Period [;] e φ = 20 MH	
			-	0	0	0	φ/2		`	25.6 μs	/
						1	φ/64			 819.2 μs	\neg
					1	0	φ/128			1.6 ms	
						1	φ/512			6.6 ms	
				1	0	0	φ/2048			26.2 ms	
						1	φ/8192			104.9 ms	
					1	0	ф/32768			419.4 ms	
						1	ф/13107			1.68 s	
		Tim 0 1	ner Enable TCNT is	initiali	start o	of countir rence of	eriod is the t ng up from F a TCNT ove	1'00 or	n the T		
	Tim	er Mode Se	elect								
	0	Interval tir					nterval timer	interr	upt (W	OVI) from	
	1	Watchdog RSTE bit					when the TC	NT ov	erflow	s if the	
Over	Note	e: * For de	tails see s	ection	12.2.3	, Reset (Control/Stati	us Re	gister (RSTCSR).	
	101 .	ne i									

0 [Clearing conditions]
• Write 0 in the TME bit (Only applies to WDT1)
• Read TCSR* when OVF = 1, then write 0 in OVF

1 [Setting condition]
• When TCNT overflows (changes from H'FF to H'00)
(When internal reset request generation is selected in watchdog timer mode,
OVF is cleared automatically by the internal reset)

Note: * When interval timer interrupts are disabled and OVF is polled, read the OVF = 1 state at least twice.

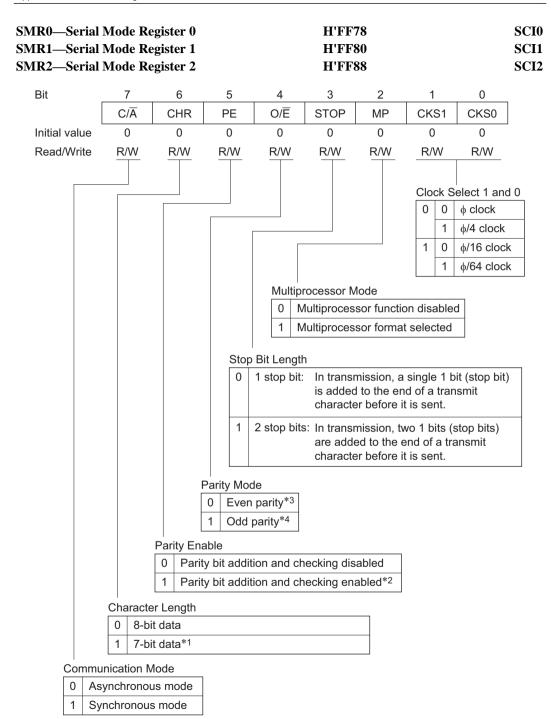
Notes: TCSR0 register differs from other registers in being more difficult to write to.

For details see section 12.2.4, Notes on Register Access.

* Only 0 can be written, to clear the flag.

TCNT0—Time	er Counte	er 0		H'FF74(W), H'FF75(R) WD7								
Bit	7	6	5	4	3	2	1	0	1			
Initial value	0	0	0	0	0	0	0	0				
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
-									-			
				Up-co	ounter							

Note: TCNT0 register differs from other registers in being more difficult to write to. For details see section 12.2.4, Notes on Register Access.


RSTCSR—Re	set Contro	ol/Status	Register	er H'FF76(W), H'FF77(R) WDT0							
Bit	7	6	5	4	3	2	1	0			
	WOVF	RSTE	RSTS	_	_	_	_	_			
Initial value	0	0	0	0	0	0	0	0			
Read/Write	R/(W)*	R/W		select	_	_	_	_			
		1 Re	Enable eset signal eset signal The modu but TCNT	ot reset,							

Watchdog Overflow Flag

()	[Clearing condition] • Cleared by reading RSTCSR when WOVF = 1, then writing 0 to WOVF
	1	[Setting condition]Set when TCNT overflows (changed from H'FF to H'00) during watchdog timer operation

Notes: RSTCSR register differs from other registers in being more difficult to write to. For details see section 12.2.4, Notes on Register Access.

* Can only be written with 0 for flag clearing.

May 28, 2010

Notes: 1. When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted, and it is not possible to choose between LSB-first or MSB-first transfer.

- 2. When the PE bit is set to 1, the parity (even or odd) specified by the O/E bit is added to transmit data before transmission. In reception, the parity bit is checked for the parity (even or odd) specified by the O/\overline{E} bit.
- 3. When even parity is set, parity bit addition is performed in transmission so that the total number of 1 bits in the transmit character plus the parity bit is even. In reception, a check is performed to see if the total number of 1 bits in the receive character plus the parity bit is even.
- 4. When odd parity is set, parity bit addition is performed in transmission so that the total number of 1 bits in the transmit character plus the parity bit is odd. In reception, a check is performed to see if the total number of 1 bits in the receive character plus the parity bit is odd.

IIC0

IIC1

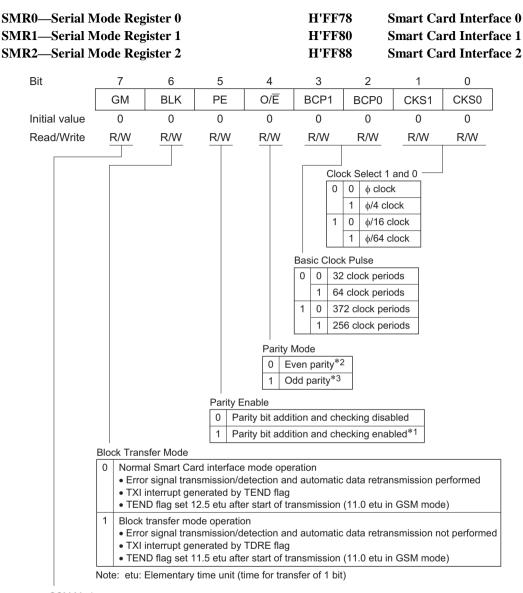
ICCR0-I2C Bus Control Register H'FF78 ICCR1—I²C Bus Control Register H'FF80 Bit 6 5 4 3 2 0 1 ICE IEIC MST TRS ACKE **BBSY IRIC** SCP Initial value: 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/(W)* R/W Start condition/stop condition prohibit 0 Writing 0 issues a start or stop condition, in combination with the BBSY flag Reading always returns a value of 1 Writing is ignored I2C Bus interface interrupt request flag 0 Waiting for transfer, or transfer in progress 1 Interrupt requested Note: * For details see section 15.2.5, I2C Bus Control Register. Bus busy Bus is free [Clearing condition] · When a stop condition is detected Bus is free [Clearing condition] · When a stop condition is detected Acknowledge bit judgement selection The value of the acknowledge bit is ignored, and continuous transfer is performed If the acknowledge bit is 1, continuous transfer is interrupted Master/slave select, transmit/receive select

0	0	Slave receive mode
	1	Slave transmit mode
1	0	Master receive mode
	1	Master transmit mode

Note: * For details see section 15.2.5, I2C Bus Control Register.

I2C Bus Interface Interrupt Enable

0	Interrupts disabled
1	Interrupts enabled


I2C Bus Interface Enable

- I²C bus interface module disabled, with SCL and SDA signal pins set to port function I²C bus interface module internal states initialized SAR and SARX can be accessed
 - I²C bus interface module enabled for transfer operations (pins SCL and SCA are driving the bus)

ICMR and ICDR can be accessed

Notes: This register is valid only on the H8S/2638, H8S/2639, or H8S/2630 with the I²C bus interface option added.

* Only 0 can be written, for flag clearing.

GSM Mode

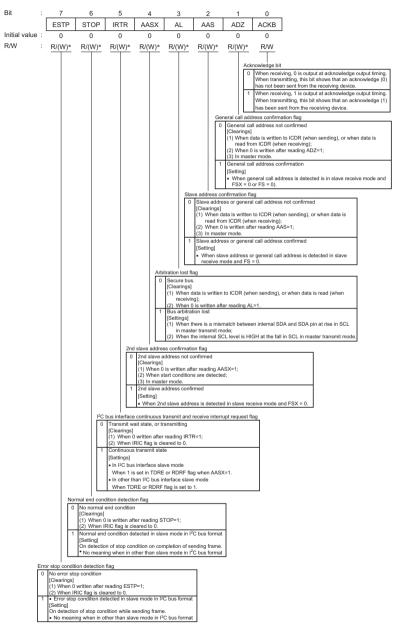
- 0 Normal smart card interface mode operation
 - TEND flag generation 12.5 etu (11.5 etu in block transfer mode) after beginning of start bit
 - Clock output ON/OFF control only
- 1 GSM mode smart card interface mode operation
 - TEND flag generation 11.0 etu after beginning of start bit
 - High/Low fixing control possible in addition to clock output ON/OFF control (set by SCR)

Note: etu: Elementary time unit (time for transfer of 1 bit)

Notes: When the smart card interface is used, be sure to make the 1 setting shown for bit 5.

- When the PE bit is set to 1, the parity (even or odd) specified by the O/E bit is added to transmit data before transmission. In reception, the parity bit is checked for the parity (even or odd) specified by the O/E bit.
- 2. When even parity is set, parity bit addition is performed in transmission so that the total number of 1 bits in the transmit character plus the parity bit is even.
 In reception, a check is performed to see if the total number of 1 bits in the receive character plus the parity bit is even.
- 3. When odd parity is set, parity bit addition is performed in transmission so that the total number of 1 bits in the transmit character plus the parity bit is odd.
 In reception, a check is performed to see if the total number of 1 bits in the receive character plus the parity bit is odd.

BRR0—Bit Ra	H'F	F 7 9	SCI0, Smart Card Interface 0					
Bit	7	6	5	4	3	2	1	0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W


Set the serial transmit/receive bit rate

Note: For details see section 13.2.8, Bit Rate Register (BRR).

ICSR0—I²C Bus Status Register ICSR1—I²C Bus Status Register

H'FF79 H'FF81

IIC0 IIC1

Notes: This register is valid only on the H8S/2638, H8S/2639, or H8S/2630 with the I²C bus interface option added.

* Only 0 can be written to these bits (to clear these flacs).

CR0—Seri CR1—Seri CR2—Seri	al Co	ontrol R	egister 1					H'FF' H'FF H'FF	82				SCI0 SCI1 SCI2
Bit		7	6	5	5 4 3 2					1	0		
		TIE	RIE	TE		RE		MPIE	TEII	E	CKE1	CKE0	
Initial val	lue	0	0	0		0		0	0		0	0	
Read/Wr	rite	R/W	R/W	R/W		R/W		R/W	R/V	V	R/W	R/W	
							_						
						Clock	k E	nable 1 and (Into	rnal clock/S0	CK nin	
							U	mode	us	1	ctions as I/O		
								Clocked synchronous	s mode	1	ernal clock/S0 ctions as ser	CK pin ial clock outp	ut
							1	Asynchrono mode	us	1	ernal clock/S ctions as clo		
								Clocked synchronous	s mode	1	rnal clock/So ctions as ser	CK pin ial clock outp	ut
						1	0	Asynchrono mode	us		ernal clock/S ctions as clo		
								Clocked synchronous	s mode		ernal clock/S ctions as ser	CK pin ial clock inpu	t
							1	Asynchrono mode	us		ernal clock/S ctions as clo		
								Clocked synchronous	s mode	1	ernal clock/S ctions as ser	CK pin ial clock inpu	t
						Transmit I	End	d Interrupt En	able				
								it-end interru	,				
								it-end interru	,	requ	est enabled*		
					∕lult 0	•		terrupt Enabl sor interrupts		d (no	rmal reception	on mode)	
T		 			٠	[Clearing	g cc	nditions]		•			
Transmit Int		Enable a-empty inte	rrupt					MPIE bit is on the MPB =			d		
		disabled*1			1			sor interrupts					
1 1		a-empty inte	rrupt					errupt (RXI) rend setting of t					
(1/1)1	equest	enabled				SSR are	dis	abled until da					
				L		1 is recei	ive	u					
Receive Inte				Rece		Enable eception di	incl	alod*5					
reques	st and r	-full interrup eceive-error t disabled*2	` /	1	Re	eception er							
1 Receiv	/e-data st and r	-full interrup	` /	$\overline{}$	nsm	nission dis							
(ERI) r	equest	enabled		1 Trai	nsm	nission ena	able	ed* ⁴					

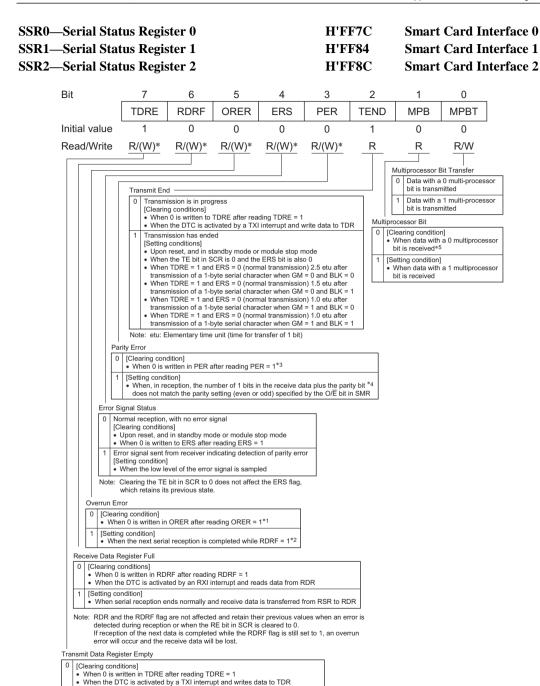
- Notes: 1. TXI interrupt request cancellation can be performed by reading 1 from the TDRE flag, then clearing it to 0, or clearing the TIE bit to 0.
 - RXI and ERI interrupt request cancellation can be performed by reading 1 from the RDRF flag, or the FER, PER, or ORER flag, then clearing the flag to 0, or clearing the RIE bit to 0.
 - 3. The TDRE flag in SSR is fixed at 1.
 - 4. In this state, serial transmission is started when transmit data is written to TDR and the TDRE flag in SSR is cleared to 0.
 - SMR setting must be performed to decide the transfer format before setting the TE bit to 1.
 - 5. Clearing the RE bit to 0 does not affect the RDRF, FER, PER, and ORER flags, which retain their states.
 - Serial reception is started in this state when a start bit is detected in asynchronous mode or serial clock input is detected in clocked synchronous mode.
 SMR setting must be performed to decide the transfer format before setting the RE bit to 1.
 - 7. When receive data including MPB = 0 is received, receive data transfer from RSR to RDR, receive error detection, and setting of the RDRF, FER, and ORER flags in SSR, is not performed. When receive data including MPB = 1 is received, the MPB bit in SSR is set to 1, the MPIE bit is cleared to 0 automatically, and generation of RXI and ERI interrupts (when the TIE and RIE bits in SCR are set to 1) and FER and ORER flag setting is enabled.
 - 8. TEI cancellation can be performed by reading 1 from the TDRE flag in SSR, then clearing it to 0 and clearing the TEND flag to 0, or clearing the TEIE bit to 0.
 - 9. Outputs a clock of the same frequency as the bit rate.
 - 10. Inputs a clock with a frequency 16 times the bit rate.

Initial value 0 0 0 0 0 0 0	Smart Card Interface 0 Smart Card Interface 1 Smart Card Interface 2		
Initial value 0 0 0 0 0 0 0 0 0 0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W	0		
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	CKE0		
Clock Enable 1 and 0 SCMR SMR SCR Setting SCK Pin F SMIF C/Ā, GM CKE1 CKE0 0 See the SCI	0		
SCMR SMR SCR Setting SCK Pin F	R/W		
SCMR SMR SCR Setting SCK Pin F			
SMIF C/Ā, GM CKE1 CKE0 0 See the SCI			
0 See the SCI	Function		
1 0 0 0 Onerates as no			
o Operates as per	ort I/O pin		
1 Outputs clock a output pin			
1 0 Operates as S0 pin, with output			
1 Outputs clock a output pin	as SCK		
1 1 Operates as S0 pin, with output			
0 Outputs clock a output pin	as SCK		
Transmit End Interrupt Enable			
0 Transmit-end interrupt (TEI) request disabled*8			
1 Transmit-end interrupt (TEI) request enabled*8			
Multiprocessor Interrupt Enable			
0 Multiprocessor interrupts disabled (normal reception m	node)		
[Clearing conditions]			
Transmit Interrupt Enable • When the MPIE bit is cleared to 0 • When data with MPB = 1 is received			
(TXI) request disabled*1 1 Multiprocessor interrupts enabled*7			
1 Transmit-data-empty interrupt Receive interrupt (RXI) requests, receive-error interrupt			
(TXI) request enabled requests, and setting of the RDRF, FER, and ORER flater SSR are disabled until data with the multiprocessor bit			
1 is received			
Receive Interrupt Enable Receive Enable			
0 Receive-data-full interrupt (RXI)			
request and receive-error interrupt (ERI) request disabled*2			
1 Receive-data-full interrupt (RXI) Transmit Enable			
request and receive-error interrupt (ERI) request enabled 0 Transmission disabled*3 1 Transmission enabled*4			

- Notes: 1. TXI interrupt request cancellation can be performed by reading 1 from the TDRE flag, then clearing it to 0, or clearing the TIE bit to 0.
 - RXI and ERI interrupt request cancellation can be performed by reading 1 from the RDRF flag, or the FER, PER, or ORER flag, then clearing the flag to 0, or clearing the RIE bit to 0.
 - 3. The TDRE flag in SSR is fixed at 1.
 - 4. In this state, serial transmission is started when transmit data is written to TDR and the TDRE flag in SSR is cleared to 0.
 - SMR setting must be performed to decide the transfer format before setting the TE bit to 1.
 - 5. Clearing the RE bit to 0 does not affect the RDRF, FER, PER, and ORER flags, which retain their states.
 - Serial reception is started in this state when a start bit is detected in asynchronous mode or serial clock input is detected in clocked synchronous mode.
 SMR setting must be performed to decide the transfer format before setting the RE bit to 1.
 - 7. When receive data including MPB = 0 is received, receive data transfer from RSR to RDR, receive error detection, and setting of the RDRF, FER, and ORER flags in SSR, is not performed. When receive data including MPB = 1 is received, the MPB bit in SSR is set to 1, the MPIE bit is cleared to 0 automatically, and generation of RXI and ERI interrupts (when the TIE and RIE bits in SCR are set to 1) and FER and ORER flag setting is enabled.
 - 8. TEI cancellation can be performed by reading 1 from the TDRE flag in SSR, then clearing it to 0 and clearing the TEND flag to 0, or clearing the TEIE bit to 0.

TDR0—Transi	H'F	F7B	SCI0, Smart Card Interface 0					
Bit	7	6	5	4	3	2	1	0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Store serial transmit data


SCI0

SCI1

SCI2

SSR1—	-Serial Stat -Serial Stat -Serial Stat	us Regis	ter 1			H'FI H'FI H'FI	F84		
	Bit	7	6	5	4	3	2	1	0
		TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT
	Initial value	1	0	0	0	0	1	0	0
	Read/Write	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W
							Mu	ultiprocessor Bi	
								bit is transmi	
							1	Data with a 1 bit is transmi	multi-processor tted
							Multiproc	essor Bit	
							• w		0 multiprocessor
							1 [Set • W	ting condition]	1 multiprocessor
						Transmit Er		i is received	
						• Whe	ng conditions; n 0 is written in n the DTC is a es data to TDR		ading TDRE = 1 (I interrupt and
						1 [Settin	g conditions] en the TE bit in	SCP is 0	
						• Whe	n TDRE = 1 at byte serial trans	transmission of	the last bit of
					Pa 0	rity Error [Clearing cor	ndition		
					1		written in PER	after reading Pl	ER = 1*5
						When, in redata plus to	eception, the nu he parity bit do dd) specified by	es not match the	e parity setting
					ming Error		, , , , ,		
				0		ritten in FER a	fter reading FE	R = 1*3	
				1		CI checks the s	stop bit at the enthe stop bit is 0		e data
				Overrun E					7
				• Wi		in ORER after	reading ORER	= 1*1	
				1 [Setti	ing condition] nen the next ser	rial reception is	completed whi	le RDRF = 1*2	
				Data Register I					
			• W	hen 0 is writter	n in RDRF after	reading RDRF n RXI interrupt	= 1 and reads data	from RDR	
			1 [Set	ting condition]			ve data is trans		R to RDR
			de If i	tected during reception of the	eception or whe	en the RE bit in empleted while	etain their previo SCR is cleared the RDRF flag i	I to 0.	
	Transmit Data Regis								
		itten in TDRE a			ata to TDR				
		bit in SCR is 0		and data can l	pe written in TD	IR .			

- Notes: 1. The ORER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0
 - The receive data prior to the overrun error is retained in RDR, and the data received subsequently is lost. Also, subsequent serial reception cannot be continued while the ORER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
 - 3. The FER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0.
 - 4. In 2-stop-bit mode, only the first stop bit is checked for a value of 0; the second stop bit is not checked. If a framing error occurs, the receive data is transferred to RDR but the RDRF flag is not set. Also, subsequent serial reception cannot be continued while the FER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
 - 5. The PER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0.
 - 6. If a parity error occurs, the receive data is transferred to RDR but the RDRF flag is not set. Also, subsequent serial reception cannot be continued while the PER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
 - Retains its previous state when the RE bit in SCR is cleared to 0 with multiprocessor format.
 - * Only 0 can be written, to clear the flag.

[Setting conditions] . When the TE bit in SCR is 0

. When data is transferred from TDR to TSR and data can be written in TDR

- Notes: 1. The ORER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0.
 - The receive data prior to the overrun error is retained in RDR, and the data received subsequently is lost. Also, subsequent serial reception cannot be continued while the ORER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
 - 3. The PER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0.
 - 4. If a parity error occurs, the receive data is transferred to RDR but the RDRF flag is not set. Also, subsequent serial reception cannot be continued while the PER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
 - Retains its previous state when the RE bit in SCR is cleared to 0 with multiprocessor format.
 - * Only 0 can be written, to clear the flag.

RDR0—Receiv	ve Data R	egister 0		H'F	F7D	SCI0, Smart Card Interface 0			
Bit	7	6	5	4	3	2	1	0	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R	R	R	R	R	R	R	R	

Store serial receive data

SCMR0—Sma	rt C	ard N	Iode Regi	ster 0	H'F	F 7E	SCI0, Sm	art Card	art Card Interface 0		
Bit		7	6	5	4	3	2	1	0		
		_		_	_	SDIR	SINV	_	SMIF		
Initial value		1	1	1	1	0	0	1	0		
Read/Write		_	_	_	_	R/W	R/W	_	R/W		
			Cmart Ca	rd Intorfoo	e Mode Se	alaat					
								- £4:	مانه مادا م ما		
						-	rd interface	e function	disabled)		
			1 Sma	rt card inte	erface fund	tion enab	oled				
		Smart	Card Inte	rface Data	Invert						
		0 T	DR conte	nts are tra	nsmitted w	ithout mo	odification				
		F	Receive da	ta is store	d in RDR v	without m	odification				
		1 T	DR conte	nts are inv	erted befo	re being	transmitted	I			
		F	Receive da	ta is store	d in RDR i	n inverte	d form				
Si	⊓ mart	rt Card Interface Data Transfer Direction									
	0 7	ΓDR co	ontents are	e transmitt	ed LSB-fir	st					
	F	Receiv	e data is s	tored in R	DR LSB-fi	rst					
	1 7	ΓDR co	ontents are	e transmitt	ed MSB-fi	rst					

Receive data is stored in RDR MSB-first

IIC0 IIC1

ICDR0—I ² C Bus Data Register ICDR1—I ² C Bus Data Register								
Bit :	7	6	5	4	3	2	1	0
	ICDR7	ICDR6	ICDR5	ICDR4	ICDR3	ICDR2	ICDR1	ICDR0
Initial value:	_	_		_	_	_	_	_
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ICDRR Bit :	7	6	5	4	3	2	1	0
	ICDRR7	ICDRR6	ICDRR5	ICDRR4	ICDRR3	ICDRR2	ICDRR1	ICDRR0
Initial value:		_	_	_	_	_	_	_
R/W :	R	R	R	R	R	R	R	R
ICDRS								
Bit :	7	6	5	4	3	2	1	0
	ICDRS7	ICDRS6	ICDRS5	ICDRS4	ICDRS3	ICDRS2	ICDRS1	ICDRS0
Initial value:	_	_	_			_		_
R/W :	_	_		_	_	_	_	_
ICDRT								
Bit :	7	6	5	4	3	2	1	0
	ICDRT7	ICDRT6	ICDRT5	ICDRT4	ICDRT3	ICDRT2	ICDRT1	ICDRT0
Initial value:				_	_	_	_	
R/W :	W	W	W	W	W	W	W	W
TDRE, RDRF	internal	flag)						

I DRE, RDRF (internal flag)

Bit	:		
		TDRE	RDRF
Initial value	9:	0	0
R/W	:		_

Note: This register is valid only on the H8S/2638, H8S/2639, or H8S/2630 with the I2C bus interface option added.

SARX0—2nd Slave Address Register

SARX1—2nd Slave Address Register

IIC0

IIC1

Bit	:	7	6	5	4	3	2	1	0
		SVAX6	SVAX5	SVAX4	SVAX3	SVAX2	SVAX1	SVAX0	FSX
Initial value	e :	0	0	0	0	0	0	0	1
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				0					
				2n	d slave addre	ess			Format select X

H'FF7E

H'FF86

Note: This register is valid only on the H8S/2638, H8S/2639, or H8S/2630 with the I2C bus interface option added.

ICMR0—I²C Bus Mode Register ICMR1—I²C Bus Mode Register

H'FF7F H'FF87

IIC0 IIC1

Bit	:	7	6	5	4	3	2	1	0
		MLS	WAIT	CKS2	CKS1	CKS0	BC2	BC1	BC0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit counter

Dit court				
Bit 2	Bit 1	Bit 0	Bit/fr	ame
BC2	BC1	BC0	Clock sync	PC bus format
			serial format	
0	0	0	8	9
		1	1	2
	1	0	2	3
		1	3	4
1	0	0	4	5
		1	5	6
	1	0	6	7
		1	7	8

Transmit clock select

0 0 0 0 4/28 179kHz 286 kHz 357 kHz 571 kHz 714 kHz 1 0 4/40 125kHz 200 kHz 250 kHz 400 kHz 500 kHz 1 0 0 4/48 104kHz 125kHz 200 kHz 250 kHz 333 kHz 417 kHz 1 0 4/64 78.1kHz 125 kHz 156 kHz 250 kHz 313 kHz 1 0 0 0 4/80 62.5kHz 100 kHz 125 kHz 200 kHz 250 kHz 250 kHz 1 0 0 0 4/80 62.5kHz 100 kHz 125 kHz 200 kHz 250 kHz 1 0 0 0 4/10 50.0kHz 80.0 kHz 100 kHz 160 kHz 200 kHz 250 kHz 1 0 0 0 4/112 44.6kHz 71.4 kHz 89.3 kHz 143 kHz 179 kHz 1 0 0 0 4/56 89.3 kHz 143 kHz 179 kHz 1 0 0 0 0 4/56 89.3 kHz 143 kHz 179 kHz 1 0 0 0 0 4/56 89.3 kHz 143 kHz 179 kHz 1 0 0 0 4/56 89.3 kHz 100 kHz 125 kHz 200 kHz 250 kHz 1 0 0 0 4/56 89.3 kHz 100 kHz 125 kHz 250 kHz 1 0 0 0 4/56 89.3 kHz 100 kHz 125 kHz 250 kHz 1 0 0 4/56 89.3 kHz 100 kHz 125 kHz 1 1 0 4/50 82.5 kHz 100 kHz 125 kHz 1 1 0 4/50 83.1 kHz 125 kHz 125 kHz 156 kHz 1 0 4/50 83.1 kHz 125 kHz 12	Hallol	TIIL GIUG	K Select							
S, 6	SCRX	Bit 5	Bit 4	Bit 3	Clock			Trans	sfer rate	
IICX	bit									
0 0 0 0 4/28 179kHz 286 kHz 357 kHz 571 kHz 7714 kHz 1 0 4/40 125kHz 200 kHz 250 kHz 400 kHz 500 kHz 1 0 0 4/48 104kHz 167 kHz 208 kHz 333 kHz 417 kHz 1 0 4/64 78.1kHz 125 kHz 156 kHz 250 kHz 333 kHz 250 kHz 1 0 0 kHz 1 156 kHz 250 kHz 313 kHz 1 0 0 0 4/80 62.5kHz 100 kHz 125 kHz 200 kHz 250 kHz 1 0 0 kHz 1 1 0 0 0 4/10 50.0kHz 80.0 kHz 100 kHz 160 kHz 200 kHz 1 0 0 kHz 1 0 0 kHz 1 0 0 kHz 1 1 0 0 kHz 1 0 0 kHz 1 0 0 kHz 1 0 0 kHz 1 0 0 kHz 1 0 0 kHz 1 0 0 kHz 1 0 0 kHz 1 0 0 kHz 1 0 0 kHz 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5, 6									
1	IICX	CKS2	CKS1	CKS0		φ = 5 MHz	φ = 8 MHz	φ = 10 MHz	φ = 16 MHz	φ = 20 MHz
1 0	0	0	0	0	φ/28	179kHz	286 kHz	357 kHz	571 kHz*	714 kHz*
1				1	φ/40	125kHz	200 kHz	250 kHz	400 kHz	500 kHz*
1 0 0 \$\phi/80\$ 62.5kHz 100 kHz 125 kHz 200 kHz 200 kHz 1 \$\phi/100\$ 50.0kHz 80.0 kHz 100 kHz 160 kHz 200 kHz 1 0 0 kHz 1 0 0 kHz 1 0 0 kHz 1 0 0 kHz 1 0 0 kHz 170 kHz 1 10 0 kHz 170 kHz 1 0 0 0 \$\phi/56\$ 89.3kHz 62.5 kHz 78.1 kHz 125 kHz 357 kHz 1 0 0 kHz 1 0 0 \$\phi/56\$ 89.3kHz 143 kHz 179 kHz 286 kHz 357 kHz 1 0 0 kHz 1 0 0 \$\phi/56\$ 62.5kHz 100 kHz 125 kHz 200 kHz 250 kHz 1 0 0 \$\phi/56\$ 89.3kHz 100 kHz 125 kHz 200 kHz 250 kHz 1 0 0 \$\phi/56\$ 89.3kHz 100 kHz 125 kHz 200 kHz 250 kHz 1 0 0 \$\phi/56\$ 89.3kHz 100 kHz 125 kHz 167 kHz 250 kHz 1 0 0 \$\phi/56\$ 89.3kHz 100 kHz 125 kHz 156 kHz 1 0 0 \$\phi/56\$ 89.3kHz 100 kHz 125			1	0	φ/48	104kHz	167 kHz	208 kHz	333 kHz	417 kHz*
1				1	φ/64	78.1kHz	125 kHz	156 kHz	250 kHz	313 kHz
1 0 \$\phi/112\$ 44.6kHz 71.4 kHz 89.3 kHz 143 kHz 179 kHz 1 \$\phi/128\$ 39.1kHz 62.5 kHz 78.1 kHz 125 kHz 156 kHz 1 0 0 \$\phi/56\$ 89.3kHz 143 kHz 179 kHz 286 kHz 357 kHz 1 \$\phi/80\$ 62.5kHz 100 kHz 125 kHz 200 kHz 1 \$\phi/80\$ 62.5kHz 100 kHz 125 kHz 200 kHz 1 0 \$\phi/96\$ 52.1kHz 83.3 kHz 104 kHz 167 kHz 208 kHz 1 \$\phi/128\$ 39.1kHz 62.5 kHz 78.1 kHz 125 kHz 156 kHz 1 0 \$\phi/128\$ 39.1kHz 62.5 kHz 78.1 kHz 125 kHz 156 kHz 1 \$\phi/200\$ 25.0kHz 40.0 kHz 50.0 kHz 80.0 kHz 100 kHz		1	0	0	φ/80	62.5kHz	100 kHz	125 kHz	200 kHz	250 kHz
1				1	φ/100	50.0kHz	80.0 kHz	100 kHz	160 kHz	200 kHz
1 0 0 0 \(\phi/56 \) 89.3kHz 143 kHz 179 kHz 286 kHz 357 kHz 1 \(\phi/80 \) 62.5kHz 100 kHz 125 kHz 200 kHz 250 kHz 1 0 \(\phi/96 \) 52.1kHz 83.3 kHz 104 kHz 167 kHz 208 kHz 1 0 \(\phi/128 \) 39.1kHz 62.5 kHz 78.1 kHz 125 kHz 156 kHz 1 0 0 \(\phi/160 \) 31.3kHz 50.0 kHz 62.5 kHz 100 kHz 125 kHz 1 \(\phi/200 \) 25.0kHz 40.0 kHz 50.0 kHz 80.0 kHz 100 kHz			1	0	φ/112	44.6kHz	71.4 kHz	89.3 kHz	143 kHz	179 kHz
1 ø/80 62.5kHz 100 kHz 125 kHz 200 kHz 250 kHz 1 0 ø/96 52.1kHz 83.3 kHz 104 kHz 167 kHz 208 kHz 1 0 ø/128 39.1kHz 62.5 kHz 78.1 kHz 125 kHz 156 kHz 1 0 0 ø/160 31.3kHz 50.0 kHz 62.5 kHz 100 kHz 125 kHz 1 ø/200 25.0kHz 40.0 kHz 50.0 kHz 80.0 kHz 100 kHz				1	φ/128	39.1kHz	62.5 kHz	78.1 kHz	125 kHz	156 kHz
1 0 \$\phi/96\$ 52.1kHz 83.3 kHz 104 kHz 167 kHz 208 kHz 1 \$\phi/128\$ 39.1kHz 62.5 kHz 78.1 kHz 125 kHz 156 kHz 1 0 0 \$\phi/160\$ 31.3kHz 50.0 kHz 62.5 kHz 100 kHz 125 kHz 1 \$\phi/200\$ 25.0kHz 40.0 kHz 50.0 kHz 80.0 kHz 100 kHz	1	0	0	0	φ/56	89.3kHz	143 kHz	179 kHz	286 kHz	357 kHz
1 0/128 39.1kHz 62.5 kHz 78.1 kHz 125 kHz 156 kHz 1 0 0 0/160 31.3kHz 50.0 kHz 62.5 kHz 100 kHz 125 kHz 1 0/200 25.0kHz 40.0 kHz 50.0 kHz 80.0 kHz 100 kHz				1	φ/80	62.5kHz	100 kHz	125 kHz	200 kHz	250 kHz
1 0 0 \$\psi/160\$ 31.3kHz 50.0 kHz 62.5 kHz 100 kHz 125 kHz 1 \$\phi/200\$ 25.0kHz 40.0 kHz 50.0 kHz 80.0 kHz 100 kHz			1	0	φ/96	52.1kHz	83.3 kHz	104 kHz	167 kHz	208 kHz
1 φ/200 25.0kHz 40.0 kHz 50.0 kHz 80.0 kHz 100 kHz				1	φ/128	39.1kHz	62.5 kHz	78.1 kHz	125 kHz	156 kHz
		1	0	0	φ/160	31.3kHz	50.0 kHz	62.5 kHz	100 kHz	125 kHz
1 0 ø/224 22.3kHz 35.7 kHz 44.6 kHz 71.4 kHz 89.3 kHz				1	φ/200	25.0kHz	40.0 kHz	50.0 kHz	80.0 kHz	100 kHz
			1	0	φ/224	22.3kHz	35.7 kHz	44.6 kHz	71.4 kHz	89.3 kHz
1 φ/256 19.5kHz 31.3 kHz 39.1 kHz 62.5 kHz 78.1 kHz				1	φ/256	19.5kHz	31.3 kHz	39.1 kHz	62.5 kHz	78.1 kHz

Note: * These rates are outside the ranges stipulated in the I²C bus interface specifications (normal mode: max. 100 kHz, high-speed mode: max. 400 kHz).

Wait insert bit

- 0 Send data followed by acknowledge bit.
- 1 Insert wait between data and acknowledge bit.

MSB-first/LSB-first select

	0	MSB first
ı	1	LSB first

Note: This register is valid only on the H8S/2638, H8S/2639, or H8S/2630 with the I²C bus interface option added.

SAR0—	-Slave	Address	Register
SAR1—	-Slave	Address	Register

H'FF7F **H'FF87**

IIC0 IIC1

Bit :		6	5	4	3	2	1	0
	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS
Initial value :	0	0	0	0	0	0	0	0
R/W :		R/W	R/W	R/W	R/W	R/W	R/W	R/W
			S	lave address	;			

Format select

Format select	•		
DDCSWR	SAR	SARX	
bit 6	bit 0	bit 0	Operating mode
SW	FS	FSX	
0	0	0	I ² C bus format
			SAR and SARX slave addresses recognized
		1	I ² C bus format (initial value)
			SAR slave address recognized
			SARX slave address ignored
	1	0	I ² C bus format
			SAR slave address ignored
			SARX slave address recognized
		1	Synchronous serial format
			SAR and SARX slave addresses ignored
1		_	Must not be set.

BRR1—Bit Ra	te Registe	er 1	F81	SCI1, Sm	art Card	Interface	1		
Bit	7	6	5	4	3	2	1	0	,
Initial value	1	1	1	1	1	1	1	1	•
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
									-

Set the serial transmit/receive bit rate

Note: For details see section 13.2.8, Bit Rate Register (BRR).

TDR1—Trans	l	H'F	F83	SCI1, Smart Card Interface				
Bit	7	6	5	4	3	2	1	0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Store serial transmit data

RDR1—Receive Data Register 1 H'FF						F85 SCI1, Smart Card Interface 1			
Bit	7	6	5	4	3	2	1	0	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R	R	R	R	R	R	R	R	

Store serial receive data

SCMR1—Sma	rt Card N	Mode Regi	ster 1	H'F	F86	SCI1, Sm	art Card	Interface 1	
Bit	7	6	5	4	3	2	1	0	
	_	_		_	SDIR	SINV		SMIF	
Initial value	1	1	1	1	0	0	1	0	
Read/Write	_	_	_	_	R/W	R/W	_	R/W_	
	Smart Card Interface Mode Select 0 Operates as normal SCI (smart card interface function disabled) 1 Smart card interface function enabled Smart Card Interface Data Invert 0 TDR contents are transmitted without modification								
	Receive data is stored in RDR without modification 1 TDR contents are inverted before being transmitted Receive data is stored in RDR in inverted form								
S	Smart Card Data Interface Transfer Direction								
	-	ontents are ve data is s							
	1 TDR c	ontents are	e transmitt	ed MSB-fi	rst				

BRR2—Bit Ra	te Registe	er 2	F89	SCI2, Sm	art Card	Interface 2		
Bit	7	6	5	4	3	2	1	0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Receive data is stored in RDR MSB-first

Set the serial transmit/receive bit rate

Note: For details see section 13.2.8, Bit Rate Register (BRR).

TDR2—Transmit Data Register 2 H'FI						SCI2, Sı	mart Car	d Interfac	e 2
Bit	7	6	5	4	3	2	1	0	
Initial value	1	1	1	1	1	1	1	1	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
									-

Store serial transmit data

RDR2—Receiv		H'F	H'FF8D		SCI2, Smart Card Interface 2			
Bit	7	6	5	4	3	2	1	0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

Store serial receive data

SCMR2—Sma	rd N	Aode Regi	ster 2	H'F	F8E	SCI2, Sr	nart Card	l Interface 2			
Bit		7	6	5	4	3	2	1	0		
	_	_	_	_	_	SDIR	SINV		SMIF		
Initial value		1	1	1	1	0	0	1	0		
Read/Write	_	_	_	_	_	R/W	R/W	_	R/W		
		Smart Card Interface Mode Select O Operates as normal SCI (smart card interface function disabled) 1 Smart card interface function enabled Smart Card Interface Data Invert O TDR contents are transmitted without modification Receive data is stored in RDR without modification 1 TDR contents are inverted before being transmitted Receive data is stored in RDR in inverted form									
S	mart (Card	Interface I	Data Trans	sfer Directi	ion					
	-	TDR contents are transmitted LSB-first Receive data is stored in RDR LSB-first									
	1 TI	DR c	ontents are	e transmitt	ed MSB-fi	rst					

ADDRA—A/D Data Register A ADDRB—A/D Data Register B ADDRC—A/D Data Register C ADDRD—A/D Data Register D							H'FF90 H'FF92 H'FF94 H'FF96					A/I	A/D Converter A/D Converter A/D Converter A/D Converter			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0		_	_	_	_	_
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Receive data is stored in RDR MSB-first

ADCSR-A/D Control/Status Register A/D Converter H'FF98 7 6 5 4 3 2 1 0 Bit ADF ADIF ADST SCAN CH3 CH₂ CH₁ CH₀ 0 0 0 0 0 0 0 0 Initial value R/(W)* R/W R/W R/W R/W R/W R/W R/W Read/Write Channel Select 2 to 0 CH3 CH2 CH1 CH0 Single Mode Scan Mode (SCAN = 0)(SCAN = 1) 0 0 AN0 AN0 1 AN1 ANO. AN1 0 AN2 AN0 to AN2 AN3 AN0 to AN3 1 AN4 AN4 0 0 AN5 AN4. AN5 1 0 AN6 AN4 to AN6 AN7 AN4 to AN7 0 0 AN8 AN8 AN9 AN8, AN9 0 AN10 AN8 to AN10 AN11 AN8 to AN11 0 0 Setting prohibited Setting prohibited Setting prohibited Setting prohibited 0 Setting prohibited Setting prohibited Setting prohibited Setting prohibited Channel Select 3 AN8 to AN11 are group 0 analog input pins AN0 to AN3 are group 0 analog input pins, AN4 to AN7 are group 1 analog input pins Scan Mode Single mode Scan mode A/D Start 0 A/D conversion stopped Single mode: A/D conversion is started. Cleared to 0 automatically when conversion on the specified channel ends · Scan mode: A/D conversion is started. Conversion continues sequentially on the selected channels until ADST is cleared to 0 by software, a reset, or a transition to standby mode or module A/D Interrupt Enable 0 A/D conversion end interrupt (ADI) request disabled 1 A/D conversion end interrupt (ADI) request enabled A/D End Flag • When 0 is written in the to ADF flag after reading ADF = 1 . When the DTC is activated by an ADI interrupt, and ADDR is read [Setting conditions] . Single mode: When A/D conversion ends · Scan mode: When A/D conversion ends on all specified channels

Note: * Only 0 can be written, to clear the flag.

ADCR—A/D (Control	Regis	ster				H'FF99)	A	D Converter
Bit	7		6	5		1	3	2	1	0
	TRGS	1 TF	RGS0	_	-	-	CKS1	CKS0	_	_
Initial value	0	•	0	1	,	1	0	0	1	1
Read/Write	R/W	F	R/W		_	_	R/W	R/W	_	_
					Clock 0	Select 0 1 0 1	Conver Conver	sion time = sion time = sion time = sion time =	= 266 state = 134 state	es (max.)
	Timer	Trigge	r Selec	t						
	0	0	A/D co	/D conversion start by software is enabled						
		1	A/D co	onversio	n start	by TF	PU convei	sion start	trigger is e	enabled
	1	0	Settino	nrohib	ited					

A/D conversion start by external trigger pin (ADTRG) is enabled

WDT1

H'FFA2(W), H'FFA2(R)

TCSR1—Timer Control/Status Register 1

Bit 7 6 5 3 2 0 PSS*2 OVE WT/IT RST/NMI CKS2 CKS1 CKS0 TME Initial value 0 0 0 0 0 0 0 0 Read/Write R/(W)*1 R/W R/W R/W R/W R/W R/W R/W Clock Select 2 to 0 Overflow Period*1 (where ϕ = 20 MHz) (where ϕ SUB*2 = 32.768 kHz) PSS CKS2 CKS1 CKS0 Clock φ/2 25.6 μs φ/64 819.2 μs 0 d/128 1.6 ms φ/512 6.6 ms 0 0 φ/2048 26.2 ms ф/8192 104.9 ms 0 φ/32768 419.4 ms 0 1.68 s φ/131072 0 15.6 ms φSUB/4*2 31.3 ms φSUB/8*2 62.5 ms φSUB/16*2 125 ms φSUB/32*2 250 ms 500 ms 0 δSUB/128*2 1 s φSUB/256*2 2 s Notes: 1. An overflow period is the time interval between the start of counting up from H'00 on the TCNT and the occurrence of a TCNT overflow. 2. Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask, W-mask versions, and H8S/2635 Group only, but are not available in the other versions. Reset or NMI NMI request Internal reset request Prescaler Select The TCNT counts frequency-division clock pulses of the φ based prescaler (PSM) The TCNT counts frequency-division clock pulses of the & SUB*-based prescaler (PSS) Note: * Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask, W-mask versions, and H8S/2635 Group only. These functions cannot be used with the other versions, and in them the PSS bit is reserved. Only 0 should be written to this bit. Timer Enable TCNT is initialized to H'00 and halted TCNT counts Timer Mode Select Interval timer mode: WDT1 requests an interval timer interrupt (WOVI) from the CPU when the TCNT overflows Watchdog timer mode: WDT1 requests a reset or an NMI interrupt from the CPU when the TCNT overflows

Overflow Flag

- 0 [Clearing conditions]
 - Write 0 in the TME bit (Only applies to WDT1)
 - Read TCSR* when OVF = 1, then write 0 in OVF
- 1 [Setting condition]
 - When TCNT overflows (changes from H'FF to H'00)
 - (When internal reset request generation is selected in watchdog timer mode, OVF is cleared automatically by the internal reset)

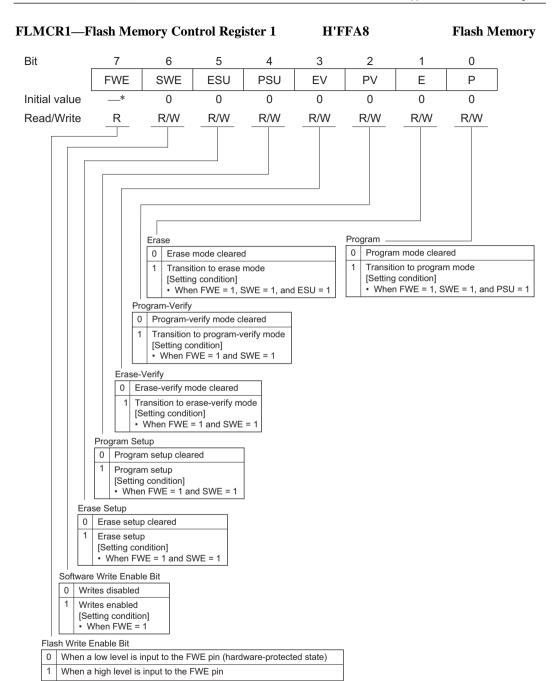
Note: * When interval timer interrupts are disabled and OVF is polled, read the OVF = 1 state at least twice.

Notes: TCSR1 register differs from other registers in being more difficult to write to. For details see section 12.2.4, Notes on Register Access.

- 1. Only 0 can be written, to clear the flag
- Subclock functions (subactive mode, subsleep mode, and watch mode) are available in the U-mask, W-mask versions, and H8S/2635 Group only.

TCNT1—T	imer Cou	inter 1			H'FFA	.2(W), H'	FFA3(R)		WDT1
Bit	7	6	5	4	3	2	1	0	_
Initial value	0	0	0	0	0	0	0	0	_
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
-									
				Up-co	ounter				

Note: TCNT1 register differs from other registers in being more difficult to write to. For details see section 12.2.4, Notes on Register Access.


DADR0— D DADR1— D		0		H'FFA4 H'FFA5						
Bit	7	6	5	4	3	2	1	0	1	
Initial value	0	0	0	0	0	0	0	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Store data to be converted

Note: These registers are not available in the H8S/2635 Group.

DACR01—	D/A	Cont	rol I	Regis	ter 01		H'FFA6						
Bit	7	7	6	3	5		4	3	2	1	0		
	DAC	DE1	DAG	DE0	DAE	-	_ [_		
Initial value	()	()	0		1	1	1	1	1		
Read/Write	R/(\	<u>N)</u> *	R/	W	R/W	-	_	_	_	_	_		
					D/A Ena	able							
					0	0	*	Disable	d on chanr	nels 0 and	1		
						1	0	Enabled	on chann	el 0 Disab	led on c	hannel 1	
							1	Enabled	on chann	els 0 and	1		
					1	0	0	Disable	d on chanr	nel 0Enabl	led on ch	annel 1	
							1	Enabled on channels 0 and 1					
						1	*	Enabled	l on chann	els 0 and	1		
											*: [Oon't care	
			D/A	Out	out Enab	le 0							
			0	Ana	alog outp	ut DA	0 is di	sabled					
			1	D/A	convers	ion is	enabl	ed on cha	nnel 0. An	alog outp	ut DA0 is	enabled	
	D/A	2			4								
				nable 1									
	0	Analo	og ou	tput	DA1 is d	sable	a						
	1	D/A	conve	ersior	is enab	led on	chan	nel 1. Ana	log output	DA1 is er	nabled		

Note: * This register is not available in the H8S/2635 Group.

Note: * Determined by the state of the FWE pin.

FLMCR2—Fla	ish Me	emory Contr	ol Registe	9	Flas	sh Memory				
Bit	7	6	5	4	3	2	1	0		
	FLE	R —	_	_	_		_	_		
Initial value	0	0	0	0	0	0	0	0		
Read/Write	Flas	Flash Memory Error O Flash memory is operating normally Flash memory program/erase protection (error protection) is disabled [Clearing condition]								
	1	An error has Flash memo [Setting con	Power-on reset or hardware standby mode In error has occurred during flash memory programming/erasing lash memory program/erase protection (error protection) is enabled Setting condition] See section 21A.10.3, 21B.10.3, Error Protection							

EBR1—Erase Block Register 1 EBR2—Erase Block Register 2

H'FFAA H'FFAB

Flash Memory Flash Memory

EBR1

Bit	15	14	13	12	11	10	9	8
	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
EBR2								
Bit	7	6	5	4	3	2	1	0
	_	_	EB13*3	EB12*3	EB11*2	EB10*1	EB9	EB8
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Specify the flash memory erase area

• H8S/2636

Block (Size)	Addresses
EB0 (1 kbyte)	H'000000 to H'0003FF
EB1 (1 kbyte)	H'000400 to H'0007FF
EB2 (1 kbyte)	H'000800 to H'000BFF
EB3 (1 kbyte)	H'000C00 to H'000FFF
EB4 (28 kbytes)	H'001000 to H'007FFF
EB5 (16 kbytes)	H'008000 to H'00BFFF
EB6 (8 kbytes)	H'00C000 to H'00DFFF
EB7 (8 kbytes)	H'00E000 to H'00FFFF
EB8 (32 kbytes)	H'010000 to H'017FFF
EB9 (32 kbytes)	H'018000 to H'01FFFF

• H8S/2638, H8S/2639

• H8S/2638, H8S/2639								
Addresses								
H'000000 to H'000FFF								
H'001000 to H'001FFF								
H'002000 to H'002FFF								
H'003000 to H'003FFF								
H'004000 to H'004FFF								
H'005000 to H'005FFF								
H'006000 to H'006FFF								
H'007000 to H'007FFF								
H'008000 to H'00FFFF								
H'010000 to H'01FFFF								
H'020000 to H'02FFFF								
H'030000 to H'03FFFF								

• H8S/2635

Block (Size)	Addresses
EB0 (4 kbytes)	H'000000 to H'000FFF
EB1 (4 kbytes)	H'001000 to H'001FFF
EB2 (4 kbytes)	H'002000 to H'002FFF
EB3 (4 kbytes)	H'003000 to H'003FFF
EB4 (4 kbytes)	H'004000 to H'004FFF
EB5 (4 kbytes)	H'005000 to H'005FFF
EB6 (4 kbytes)	H'006000 to H'006FFF
EB7 (4 kbytes)	H'007000 to H'007FFF
EB8 (32 kbytes)	H'008000 to H'00FFFF
EB9 (64 kbytes)	H'010000 to H'01FFFF
EB10 (64 kbytes)	H'020000 to H'02FFFF

• H8S/2630

¥1100/2000	
Block (Size)	Addresses
EB0 (4 kbytes)	H'000000 to H'000FFF
EB1 (4 kbytes)	H'001000 to H'001FFF
EB2 (4 kbytes)	H'002000 to H'002FFF
EB3 (4 kbytes)	H'003000 to H'003FFF
EB4 (4 kbytes)	H'004000 to H'004FFF
EB5 (4 kbytes)	H'005000 to H'005FFF
EB6 (4 kbytes)	H'006000 to H'006FFF
EB7 (4 kbytes)	H'007000 to H'007FFF
EB8 (32 kbytes)	H'008000 to H'00FFFF
EB9 (64 kbytes)	H'010000 to H'01FFFF
EB10 (64 kbytes)	H'020000 to H'02FFFF
EB11 (64 kbytes)	H'030000 to H'03FFFF
EB12 (64 kbytes)	H'040000 to H'04FFFF
EB13 (64 kbytes)	H'050000 to H'05FFFF

Notes: 1. On the H8S/2636, these bits are reserved.

- 2. Reserved in the H8S/2636 and H8S/2635.
- 3. Reserved in the H8S/2638, H8S/2639, and H8S/2635.

FLPWCR—Fl	ash Memoi	ry Power	Control	Register	H'FFAC		Flas	sh Memory		
Bit	7	6	5	4	3	2	1	0		
	PDWND	_	_	_	_	_	_	_		
Initial value	0	0	0	0	0	0	0	0		
Read/Write	R/W	R	R	R	R	R	R	R		
	Power-Down Disable									
	0 Tra	0 Transition to flash memory power-down mode enabled								
	1 Tra	nsition to	flash mer	nory powe	r-down mo	ode disabl	ed			

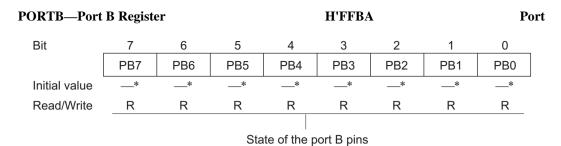
PORT1—Port	1 Register	r		H'FFB0					Port		
Bit	7	6	5	4	3	2	1	0			
	P17	P16	P15	P14	P13	P12	P11	P10			
Initial value	*	*	*	*	*	*	*	*			
Read/Write	R	R	R	R	R	R	R	R			
			Sta	ate of the p	ort 1 pins						

Note: * Determined by state of pins P17 to P10.

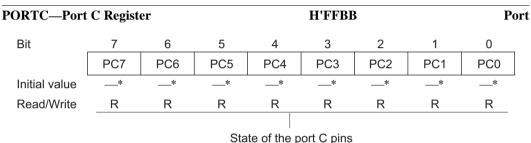
PORT3—Port	3 Registe	r		H'FFB2					ort
Bit	7	6	5	4	3	2	1	0	
	_	_	P35	P34	P33	P32	P31	P30	
Initial value	Undefined	Undefined	*	*	*	*	*	*	_
Read/Write	_	_	R	R	R	R	R	R	
				(State of the	 e port 3 pir	าร		

Note: * Determined by state of pins P35 to P30.

PORT4—Port	4 Registe	r		H'FFB3					
Bit	7	6	5	4	3	2	1	0	
	P47	P46	P45	P44	P43	P42	P41	P40	
Initial value	*	*	*	*	*	*	*	*	•
Read/Write	R	R	R	R	R	R	R	R	
State of the port 4 pins									


Note: * Determined by state of pins P47 to P40.

PORT9—Port 9 Register						H'FFB8			
Bit	7	6	5	4	3	2	1	0	_
	_	_	_	_	P93	P92	P91	P90	
Initial value	Undefined	Undefined	Undefined	Undefined	*	*	*	*	
Read/Write	_	_	_	_	R	R	R	R	
					8	tate of the	port 9 pir	าร	


Note: * Determined by state of pins P93 to P90.

PORTA—Port A Register						H'FFB9			
Bit	7	6	5	4	3	2	1	0	
	_	_		_	PA3	PA2	PA1	PA0	l
Initial value	Undefined	Undefined	Undefined	Undefined	*	*	*	*	
Read/Write		_	_		R	R	R	R	
					State of the port A pins				

Note: * Determined by state of pins PA3 to PA0.

Note: * Determined by state of pins PB7 to PB0.

State of the port C pil

Note: * Determined by state of pins PC7 to PC0.

PORTD—Port	D Registe	er		H'FFBC					
Bit	7	6	5	4	3	2	1	0	
	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	
Initial value	*	*	*	*	*	*	*	*	
Read/Write	R	R	R	R	R	R	R	R	

State of the port D pins

Note: * Determined by state of pins PD7 to PD0.

PORTE—Port	E Registe	er			Port				
Bit	7	6	5	4	3	2	1	0	
	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	
Initial value	*	*	*	*	*	*	*	*	
Read/Write	R	R	R	R	R	R	R	R	
State of the port E pins									

Note: * Determined by state of pins PE7 to PE0.

PORTF—Port	F Registe	er		H'FFBE					
Bit	7	6	5	4	3	2	1	0	
	PF7	PF6	PF5	PF4	PF3	_	_	PF0	
Initial value	*	*	*	*	*	Undefined	Undefined	*	1
Read/Write	R	R	R	R	R	_		R	
			Sta	ite of the r	ort F pins	S			

State of the port ⊢ pins

Note: * Determined by state of pins PF7 to PF3, PF0.

Appendix C I/O Port Block Diagrams

C.1 Port 1 Block Diagrams

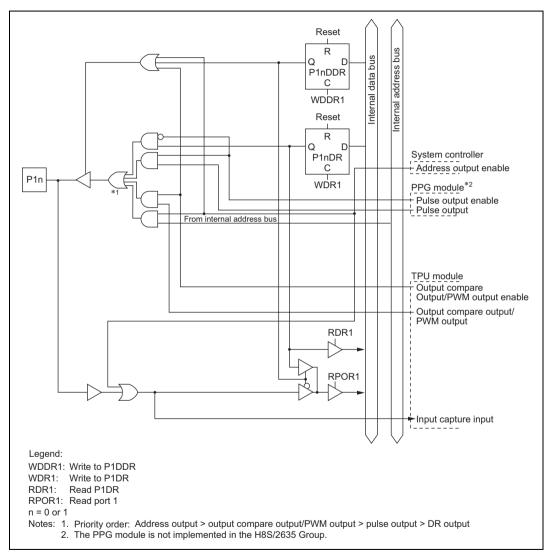


Figure C-1 (a) Port 1 Block Diagram (Pins P10 and P11)

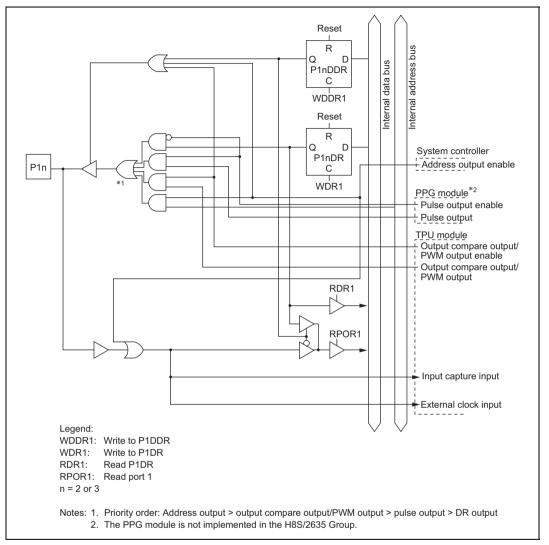


Figure C-1 (b) Port 1 Block Diagram (Pins P12 and P13)

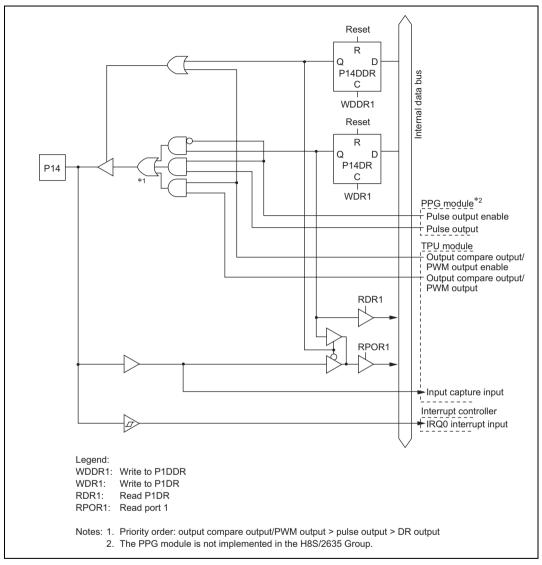


Figure C-1 (c) Port 1 Block Diagram (Pin P14)

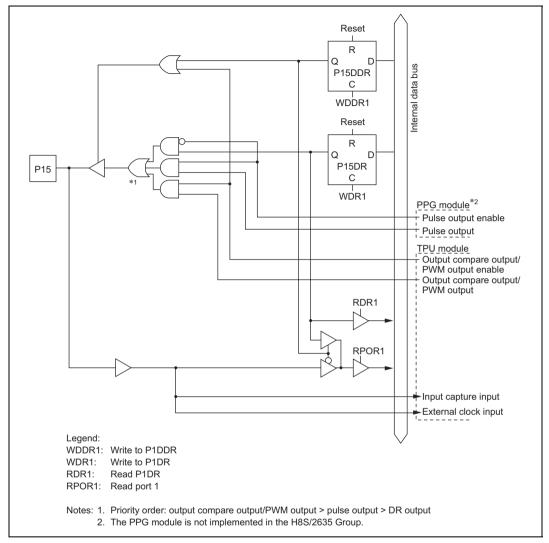


Figure C-1 (d) Port 1 Block Diagram (Pin P15)

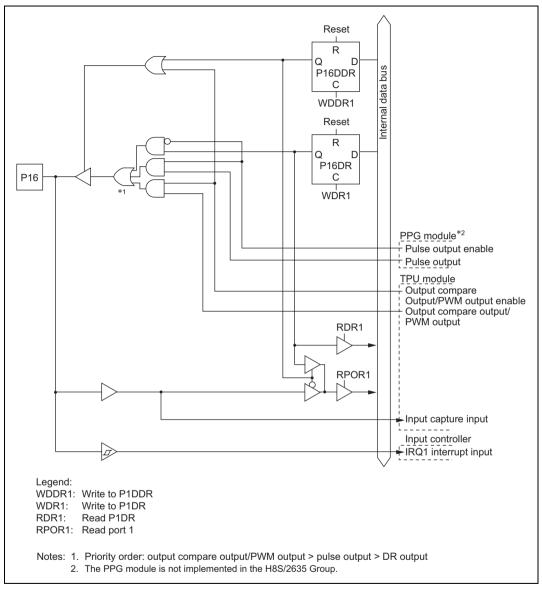


Figure C-1 (e) Port 1 Block Diagram (Pin P16)

Figure C-1 (f) Port 1 Block Diagram (Pin P17)

C.2 Port 3 Block Diagrams

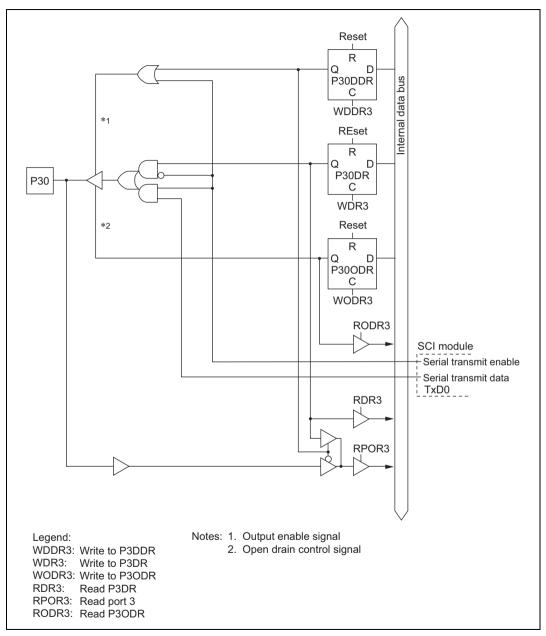


Figure C-2 (a) Port 3 Block Diagram (Pin P30)

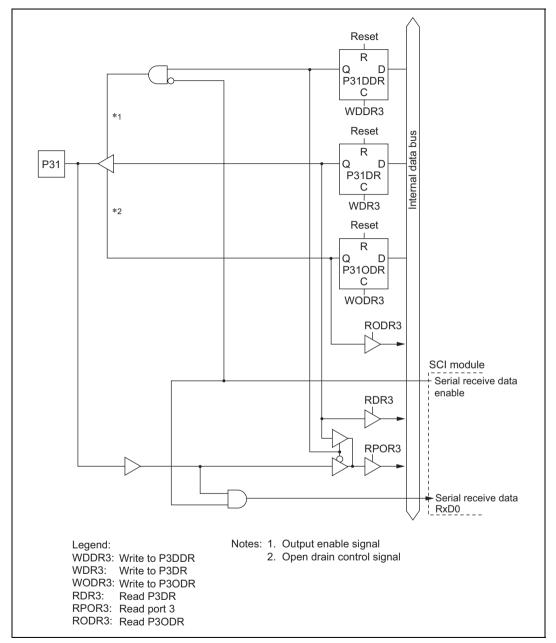


Figure C-2 (b) Port 3 Block Diagram (Pin P31)

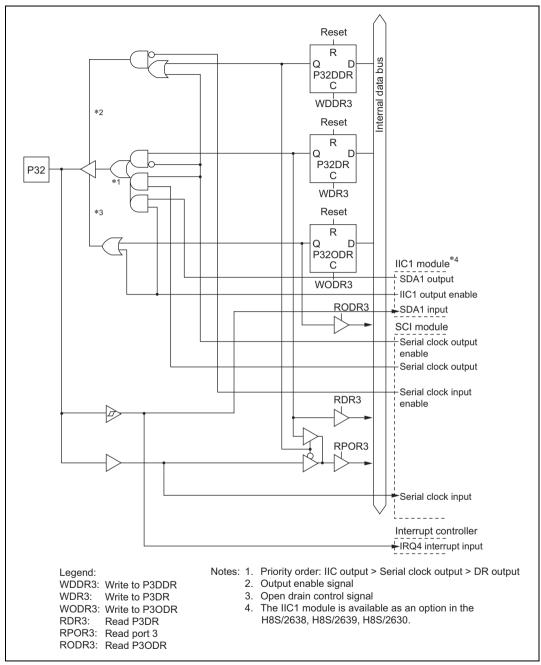


Figure C-2 (c) Port 3 Block Diagram (Pin P32)

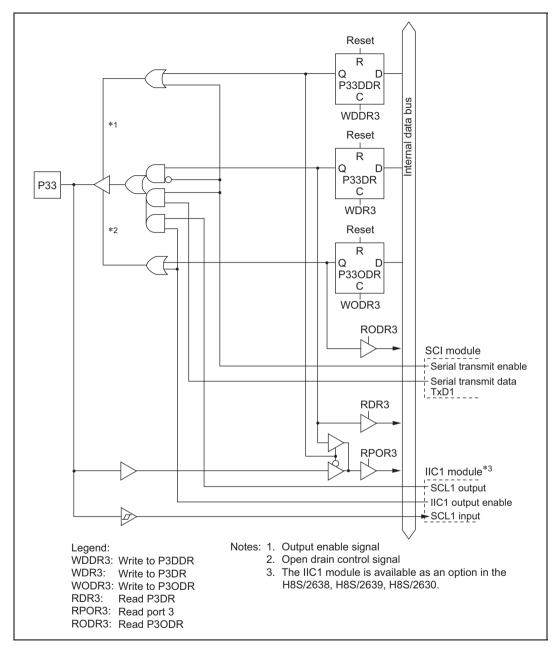


Figure C-2 (d) Port 3 Block Diagram (Pin P33)

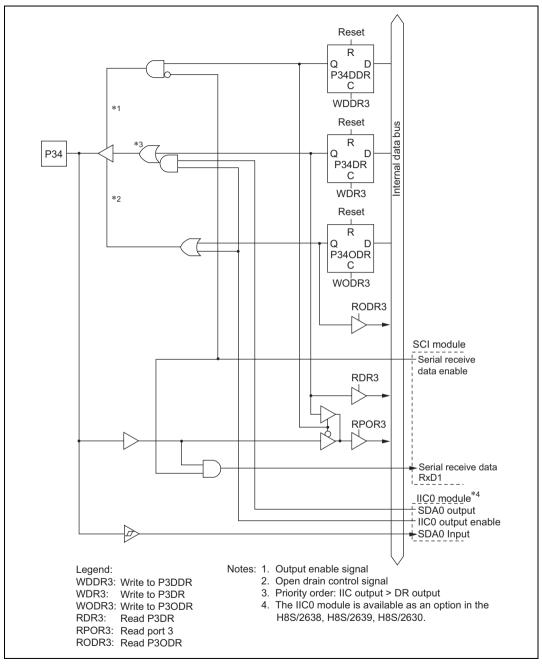


Figure C-2 (e) Port 3 Block Diagram (Pin P34)

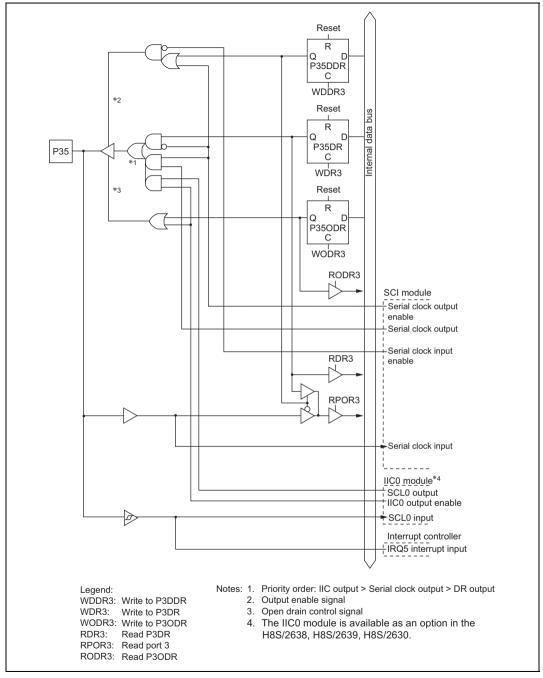


Figure C-2 (f) Port 3 Block Diagram (Pin P35)

C.3 Port 4 Block Diagram

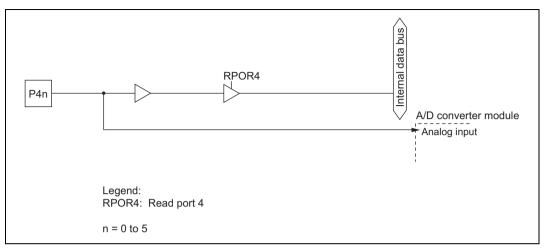


Figure C-3 (a) Port 4 Block Diagram (Pins P40 to P45)

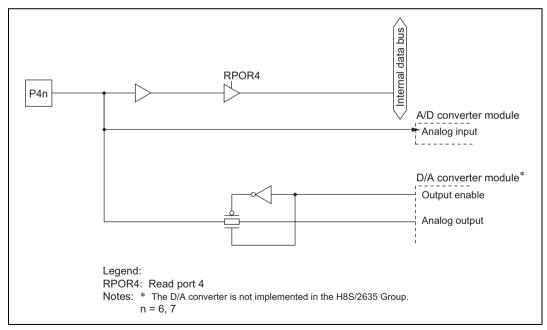


Figure C-3 (b) Port 4 Block Diagram (Pins P46, P47)

C.4 Port 9 Block Diagram

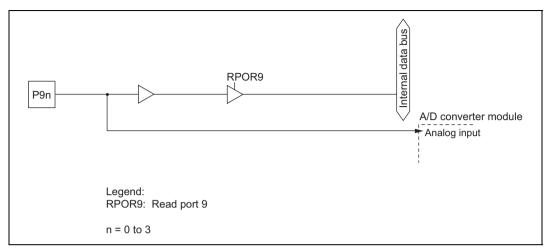


Figure C-4 Port 9 Block Diagram (Pins P90 to P93)

C.5 Port A Block Diagram

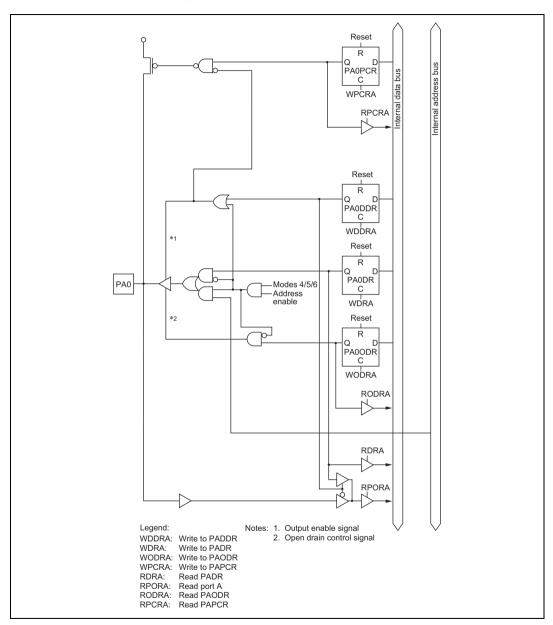


Figure C-5 (a) Port A Block Diagram (Pin PA0)

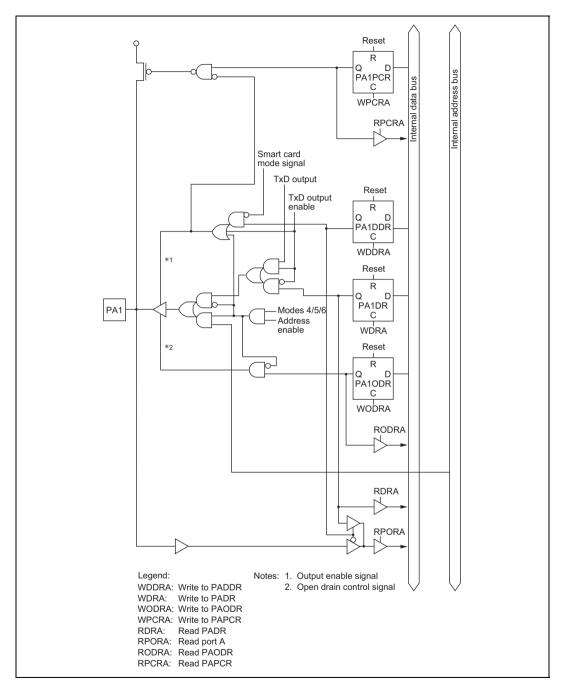


Figure C-5 (b) Port A Block Diagram (Pin PA1)

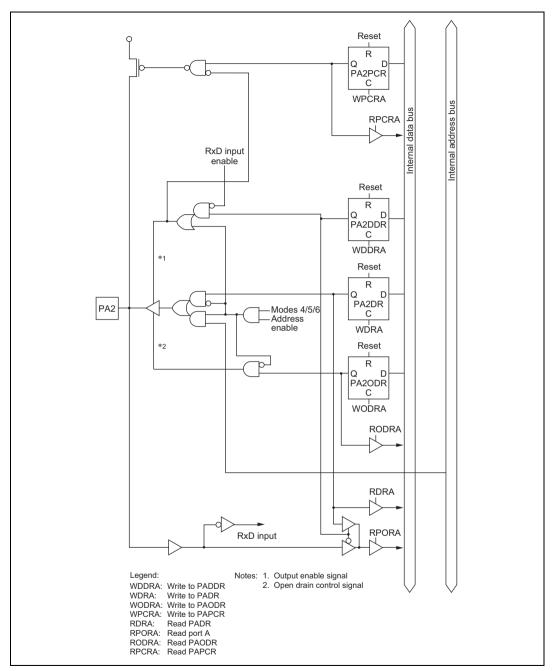


Figure C-5 (c) Port A Block Diagram (Pin PA2)

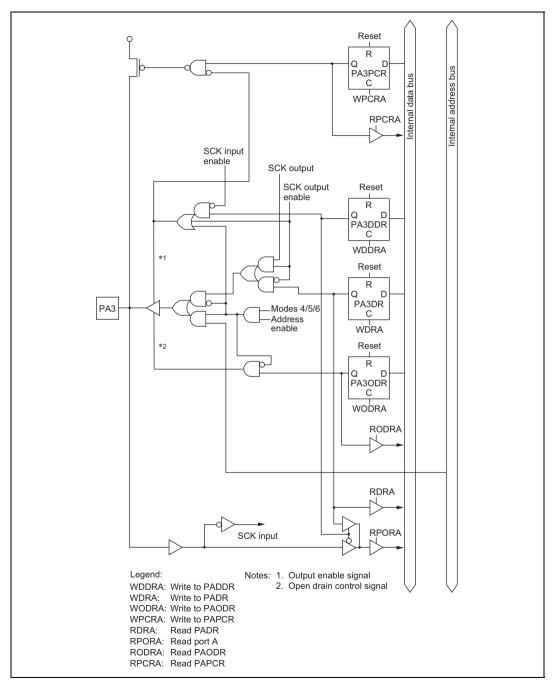


Figure C-5 (d) Port A Block Diagram (Pin PA3)

C.6 Port B Block Diagram

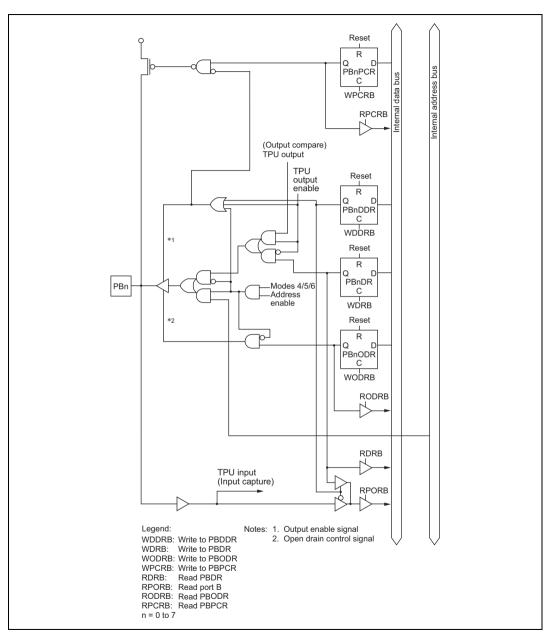


Figure C-6 Port B Block Diagram (Pins PB0 to PB7)

C.7 Port C Block Diagram

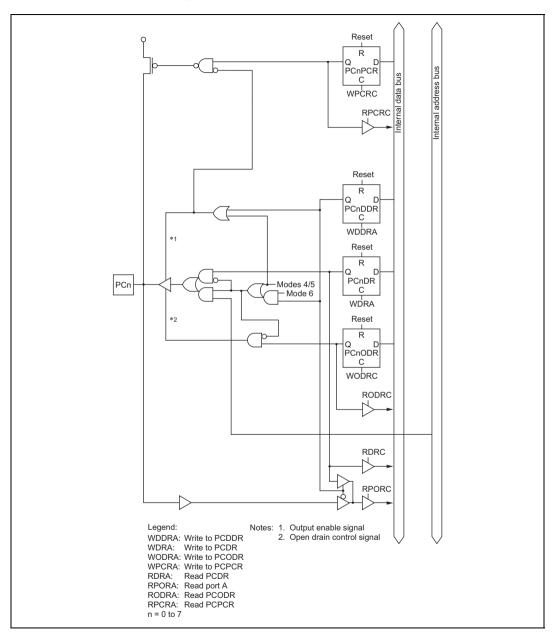


Figure C-7 Port C Block Diagram (Pins PC0 to PC7)

C.8 Port D Block Diagram

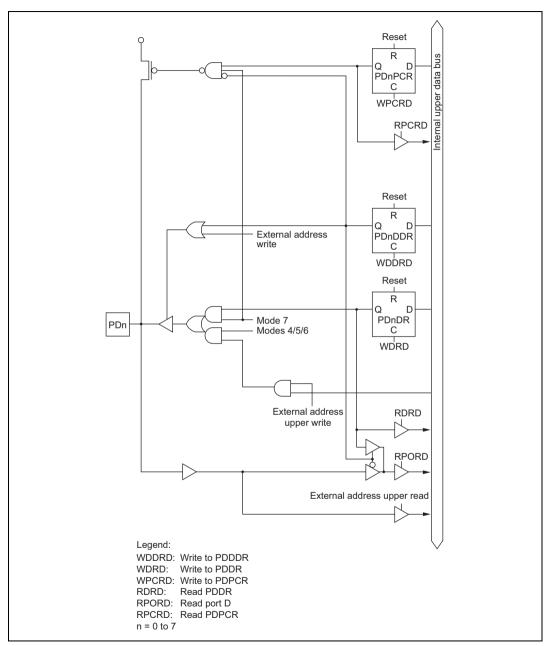


Figure C-8 Port D Block Diagram (Pins PD0 to PD7)

C.9 Port E Block Diagram

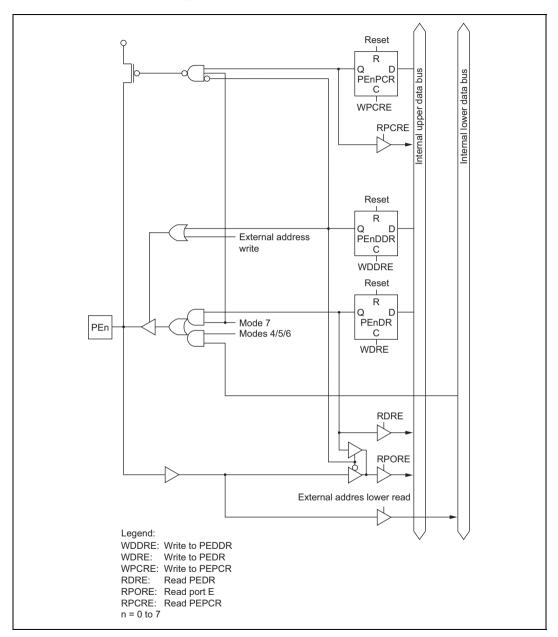


Figure C-9 Port E Block Diagram (Pins PE0 to PE7)

C.10 Port F Block Diagrams

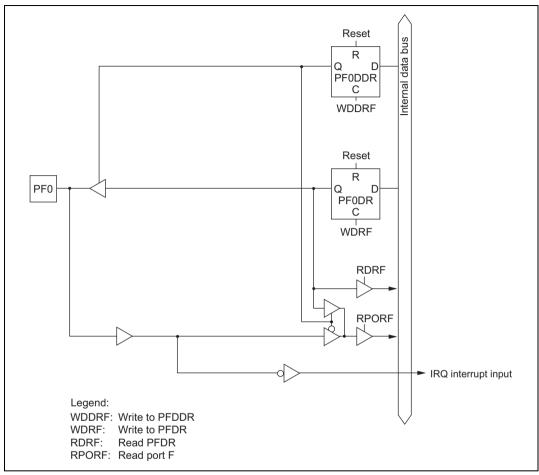


Figure C-10 (a) Port F Block Diagram (Pin PF0)

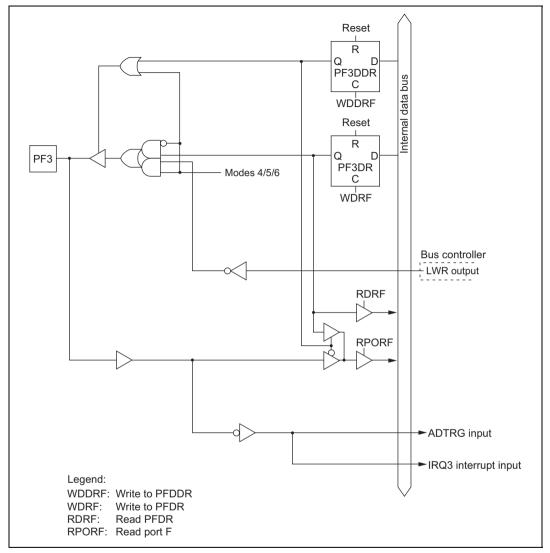


Figure C-10 (b) Port F Block Diagram (Pin PF3)

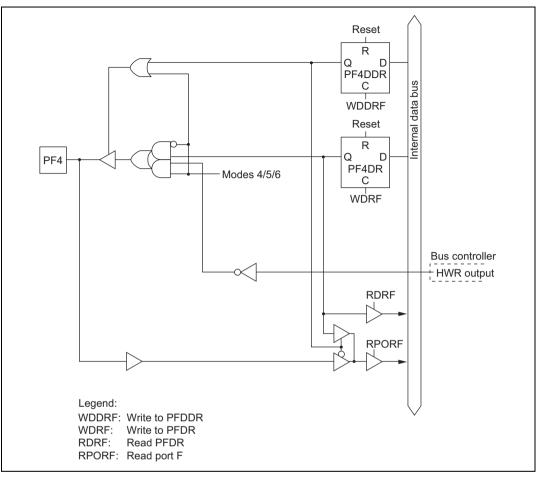


Figure C-10 (c) Port F Block Diagram (Pin PF4)

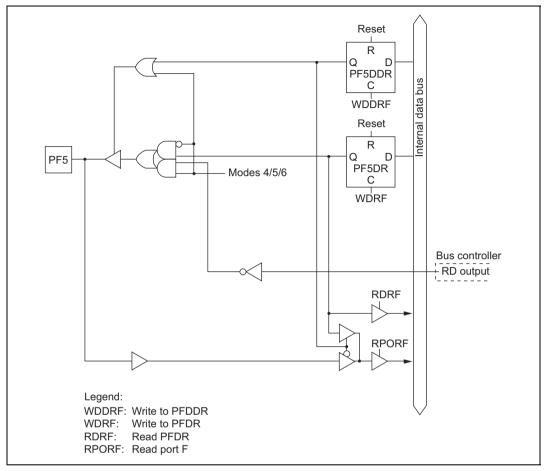


Figure C-10 (d) Port F Block Diagram (Pin PF5)

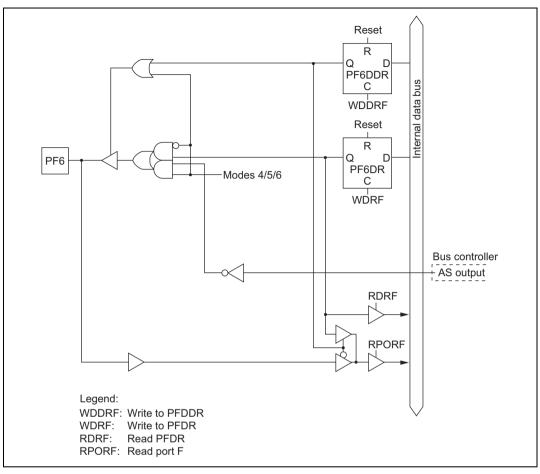


Figure C-10 (e) Port F Block Diagram (Pin PF6)

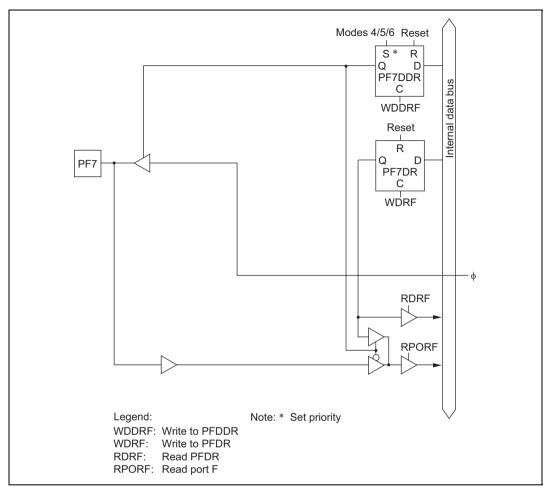


Figure C-10 (f) Port F Block Diagram (Pin PF7)

C.11 Port H Block Diagram

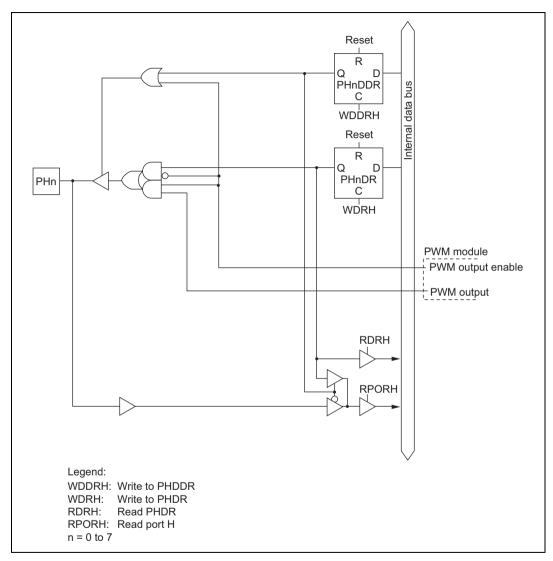


Figure C-11 Port H Block Diagram (Pins PH0 to PH7)

C.12 Port J Block Diagram

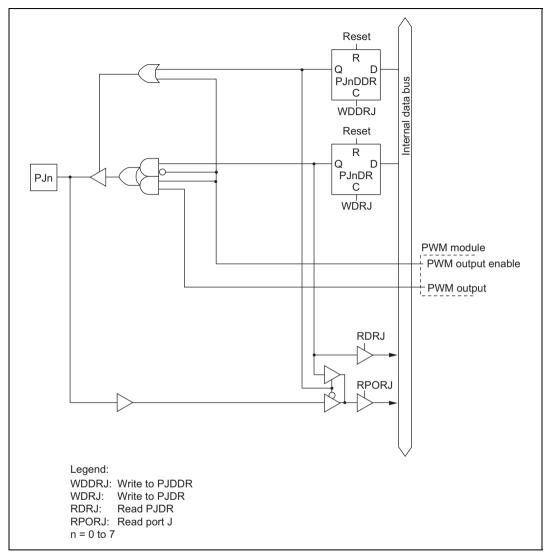


Figure C-12 Port J Block Diagram (Pins PJ0 to PJ7)

Appendix D Pin States

D.1 Port States in Each Mode

Table D-1 I/O Port States in Each Processing State

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Program Execution State Sleep Mode
Port 1	4, 5	Т	Т	P10 to P13	P10 to P13
	6	_		[Address output, OPE = 0] T [Address output, OPE = 1] kept [Otherwise] kept	[Address output] A20 to A23 [Otherwise] I/O port
				P14 to P17 kept	P14 to P17 I/O port
	7			kept	P10 to P17 I/O port
Port 3	4 to 7	Т	Т	kept	I/O port
Port 4	4 to 7	Т	Т	Т	Input port
Port 9	4 to 7	Т	Т	Т	Input port
Port A	4, 5 6	L T	T T	[Address output, OPE = 0]	[Address output] A19 to A17
				[Address output, OPE = 1] kept [Otherwise] kept	[Otherwise] I/O port
	7	Т	Т	kept	I/O port
Port B	4, 5	L	Т	[Address output, OPE = 0]	[Address output]
	6	Т	Т	T [Address output, OPE = 1] kept [Otherwise] kept	A15 to A8 [Otherwise] I/O port
	7	T	Т	kept	I/O port

Port C	Port Name Pin Name	MCU Opera Mode	ting	Reset	Hardware Standby Mode	Software Standby Mode	Program Execution State Sleep Mode
T	Port C	4, 5		L	T	T [OPE = 1]	A7 to A0
Port D 4 to 6 T T T T Data bus Port E 4 to 6 8 bit bit bus T T Kept I/O port PF7/ф 16 bit T bus T T T Data bus PF7/ф 4 to 6 Clock or T bus Clock or T bus [DDR = 0] bus [DDR = 0] bus 7 T T [DDR = 0] bus [DDR = 0] bus [DDR = 0] bus 7 T T [DDR = 0] bus [DDR = 0] bus [DDR = 0] bus 7 T T [DDR = 0] bus [DDR = 0] bus [DDR = 0] bus 8 T T [DDR = 0] bus [DDR = 0] bus AS 9 T [OPE = 0] bus AS AS 1 T [OPE = 0] bus RD, HWR 1 [OPE = 1] bus Hus T [OPE = 1] bus 1 Hus T [OPE = 1] bus RD, HWR		6		Т	Т	T [DDR = 1, OPE = 1] kept [DDR = 0]	A7 to A0 [DDR = 0]
Port E		7		Т	Т	kept	I/O port
Port E 4 to 6 bus 8 bit bus T bus kept I/O port 16 bit T bus T T T Kept T T T Kept I/O port PF7/φ 4 to 6 Clock output T [DDR = 0] [DDR = 0] T T T T Clock output [DDR = 1] [DDR = 1] [DDR = 0] T T T T T T T T T T T T T T T T T T	Port D	4 to 6		Т	T	Т	Data bus
bus 16 bit T T T T Data bus		7		Т	T	kept	I/O port
Dus FF7/φ Substitute FF5/RD PF5/RD PF7/φ	Port E	4 to 6		Т	Т	kept	I/O port
PF7/φ 4 to 6 Clock output T [DDR = 0] T T T [DDR = 0] T T T [DDR = 1] [DDR = 1] [DDR = 0] T [DDR = 0] T T T T [DDR = 0] T T T [DDR = 0] T T T [DDR = 1] [DD				Т	Т	Т	Data bus
output T T T T T [DDR = 1] [DDR = 1] [DDR = 1] [DDR = 0] T T [DDR = 0] T T [DDR = 1] [DDR = 1] [DDR = 1] Clock output PF6/AS 4 to 6 H T [OPE = 0] AS T [OPE = 1] H I/O port PF5/RD 4 to 6 H T [OPE = 0] RD, HWR PF4/HWR T [OPE = 1] H RD, HWR		7		Т	Т	kept	I/O port
T	PF7/φ	4 to 6			T	T [DDR = 1]	T [DDR = 1]
T [OPE = 1] H 7 T T kept I/O port PF5/RD 4 to 6 H T [OPE = 0] RD, HWR T [OPE = 1] H		7		Т	Т	T [DDR = 1]	T [DDR = 1]
PF5/RD 4 to 6 H T [OPE = 0] RD, HWR PF4/HWR T [OPE = 1] H	PF6/AS	4 to 6		Н	Т	T [OPE = 1]	AS
PF4/HWR T [OPE = 1] H		7		Т	Т	kept	I/O port
7 T T kept I/O port		4 to 6		Н	Т	T [OPE = 1]	RD, HWR
		7		Т	Т	kept	I/O port

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Program Execution State Sleep Mode
PF3/LWR	4	Н	Т	[OPE = 0]	LWR
	5 to 6	Т	_	T [OPE = 1] H	[16 Bit bus mode] LWR [Otherwise] I/O port
	7	Т	Т	kept	I/O port
PF0	4 to 7	Т	Т	kept	I/O port
Port H	4 to 7	Т	Т	kept	I/O port
Port J	4 to 7	Т	Т	kept	I/O port
HTxD0, HTxD1	4 to 7	Н	Т	Н	Tx output
HRxD0, HRxD1	4 to 7	Input	Т	Т	Rx output

Legend:

H: High level L: Low level

T: High impedance

kept: Input port becomes high-impedance, output port retains state

DDR: Data direction register OPE: Output port enable

Appendix E Timing of Transition to and Recovery from Hardware Standby Mode

Timing of Transition to Hardware Standby Mode

(1) To retain RAM contents with the RAME bit set to 1 in SYSCR, drive the RES signal low at least 10 states before the STBY signal goes low, as shown below. RES must remain low until \overline{STBY} signal goes low (delay from \overline{STBY} low to \overline{RES} high: 0 ns or more).

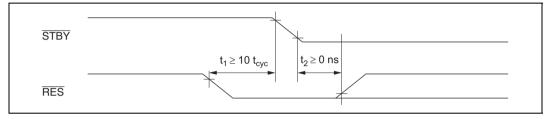


Figure E-1 Timing of Transition to Hardware Standby Mode

(2) To retain RAM contents with the RAME bit cleared to 0 in SYSCR, or when RAM contents do not need to be retained. \overline{RES} does not have to be driven low as in (1).

Timing of Recovery from Hardware Standby Mode

May 28, 2010

Drive the RES signal low and the NMI signal high approximately 100 ns or more before STBY goes high to execute a reset.

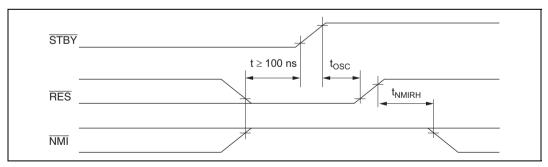


Figure E-2 Timing of Recovery from Hardware Standby Mode

Appendix F Product Code Lineup

Table F-1 H8S/2636, H8S/2638, H8S/2639, and H8S/2630 Product Code Lineup

Product Type		Part No.	Mark Code Functions		Packages
H8S/2636	F-ZTAT version	HD64F2636	HD64F2636F	No subclock function	128-pin QFP (FP-128B)
			HD64F2636UF	Subclock function	128-pin QFP (FP-128B)
	Mask ROM version	HD6432636	HD6432636F	No subclock function	128-pin QFP (FP-128B)
			HD6432636UF	Subclock function	128-pin QFP (FP-128B)
H8S/2638	F-ZTAT version	HD64F2638	HD64F2638F	No subclock function or I ² C bus interface	128-pin QFP (FP-128B)
			HD64F2638UF	Subclock function, no I ² C bus interface	128-pin QFP (FP-128B)
			HD64F2638WF	Subclock function and I ² C bus interface	128-pin QFP (FP-128B)
	Mask ROM version	HD6432638	HD6432638F	No subclock function or I ² C bus interface	128-pin QFP (FP-128B)
			HD6432638UF	Subclock function, no I ² C bus interface	128-pin QFP (FP-128B)
			HD6432638WF	Subclock function and I ² C bus interface	128-pin QFP (FP-128B)
H8S/2639	F-ZTAT version	HD64F2639	HD64F2639UF	Subclock function, no I ² C bus interface	128-pin QFP (FP-128B)
			HD64F2639WF	Subclock function and I ² C bus interface	128-pin QFP (FP-128B)
	Mask ROM version	HD6432639	HD6432639UF	Subclock function, no I ² C bus interface	128-pin QFP (FP-128B)
			HD6432639WF	Subclock function and I ² C bus interface	128-pin QFP (FP-128B)

Product Type		Part No.	Mark Code	Functions	Packages
H8S/2630	F-ZTAT version	HD64F2630	HD64F2630F	No subclock function or I ² C bus interface	128-pin QFP (FP-128B)
			HD64F2630UF	Subclock function, no I ² C bus interface	128-pin QFP (FP-128B)
			HD64F2630WF	Subclock function and I ² C bus interface	128-pin QFP (FP-128B)
	Mask ROM HD6432630 version		HD6432630F	No subclock function or I ² C bus interface	128-pin QFP (FP-128B)
			HD6432630UF	Subclock function, no I ² C bus interface	128-pin QFP (FP-128B)
			HD6432630WF	Subclock function and I ² C bus interface	128-pin QFP (FP-128B)
H8S/2635	F-ZTAT version	HD64F2635	HD64F2635F	Subclock function, no I ² C bus interface	128-pin QFP (FP-128B)
	Mask ROM version	HD6432635	HD6432635F	Subclock function, no I ² C bus interface	128-pin QFP (FP-128B)
		HD6432634	HD6432634F	Subclock function, no I ² C bus interface	128-pin QFP (FP-128B)

Appendix G Package Dimensions

The package dimension that is shown in the Renesas Semiconductor Package Data Book has Priority.

Figure G-1 shows the package dimensions of the H8S/2636, H8S/2638, H8S/2639, H8S/2630, H8S/2635, and H8S/2634.

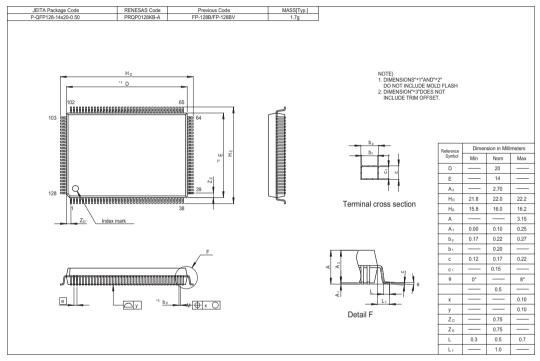


Figure G-1 FP-128B Package Dimensions

Renesas 16-Bit Single-Chip Microcomputer Hardware Manual H8S/2639, H8S/2638, H8S/2636, H8S/2630, H8S/2635 Group

Publication Date: 1st Edition, December 1999

Rev.8.00, May 28, 2010

Published by: Renesas Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi,

Kanagawa 211-8668 Japan

^{© 2010} Renesas Electronics Corporation. All rights reserved.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-109, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No. 1233 Lujiazui. Ring Rd., Pudong District, Shanghai 200120, China
Tel: +B6-21-8877-1818, Fax: +B6-21-8887-7858 / 7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852-2886-922/9044

Renesas Electronics Taiwan Co., Ltd. 7F, No. 363 Fu Shing North Road Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632

Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied or Bidg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-373, Fax: +82-2-558-5141

© 2010 Renesas Electronics Corporation. All rights reserved.

H8S/2639, H8S/2638, H8S/2636, H8S/2630, H8S/2635 Group Hardware Manual

