

MAX3180E~MAX3183Eは、スペース及びコストが 制限されたアプリケーション用として5ピンSOT23 パッケージに内蔵されたシングルRS-232レシーバです。 レシーバ入力はIEC 1000-4-2エアギャップ放電法で ±15kV、IEC 1000-4-2接触放電法で±8kV、ヒューマン モデルで±15kVまで保護されているため、国際規格に 適合します。

これらのデバイスは+3.0V~+5.5Vの電源電圧から僅か 0.5µAの電流しか消費しないため、電力消費と発熱を 最小限に抑えられます。これらのデバイスは、最大データ レート1.5Mbpsまで真のRS-232性能を保証しています。 MAX3180E/MAX3182Eは、ENロジック入力によって 制御されるスリーステートのTTL/CMOSレシーバ出力 を持っています。MAX3181E/MAX3183Eは、自動 システムウェイクアップを必要とするアプリケーション 用に、レシーバ入力における有効なRS-232信号を表示 するINVALID出力を備えています。MAX3180E/ MAX3181Eレシーバは標準の反転出力を備え、 MAX3182E/MAX3183Eレシーバは非反転出力に なっています。

アプリケーション _____

診断ポート

テレコム

ネットワーク機器

セットトップボックス

ディジタルカメラ

ハンドヘルド機器

特長

- ◆ パッケージ:超小型5ピンSOT23
- ◆ ESD保護付RS-232入力
 - ±15kV(ヒューマンモデル)
 - ±8kV(IEC 1000-4-2接触放電)
 - ±15kV(IEC 1000-4-2エアギャップ放電)
- ◆ 消費電流: 0.5µA
- ◆ 保証データレート: 1.5 Mbps
- ◆ 最低V_{CC} = +3.0VまでEIA/TIA-232及びV.28/V.24 規格に適合
- ◆ INVALID 出力がレシーバ入力における有効RS-232 信号を表示(MAX3181E/MAX3183E)
- ◆ スリーステートTTL/CMOSレシーバ出力 (MAX3180E/MAX3182E)
- ◆ 非反転RS-232出力(MAX3182E/MAX3183E)

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK	
MAX3180EEUK-T	-40°C to +85°C	5 SOT23-5	ACHB	
MAX3181EEUK-T	-40°C to +85°C	5 SOT23-5	ACHC	
MAX3182EEUK-T	-40°C to +85°C	5 SOT23-5	ACHD	
MAX3183EEUK-T	-40°C to +85°C	5 SOT23-5	ACHE	

ピン配置及びファンクションダイアグラムは、データシートの 最後に記載されています。

選択ガイド

PART	ESD PROTECTION (kV)	PACKAGE	SUPPLY CURRENT (µA)	EN INPUT	INVALID OUTPUT	INVERTING ROUT	NON- INVERTING ROUT
MAX3180E	±15	SOT23-5	0.5		_		_
MAX3181E	±15	SOT23-5	0.5	_			_
MAX3182E	±15	SOT23-5	0.5		_	_	
MAX3183E	±15	SOT23-5	0.5	_		_	

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND0.3V to +6V RIN to GND±25V EN, ROUT, INVALID to GND0.3V to (V _{CC} + 0.3V)	Operating Temperature Range40°C to +85°C Storage Temperature Range65°C to +150°C Lead Temperature (soldering, 10sec)+300°C
Continuous Power Dissipation (T _A = +70°C) SOT23-5 (derate 7.1mW/°C above +70°C)571mW	, ,

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

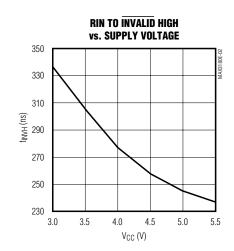
ELECTRICAL CHARACTERISTICS

(V_{CC} = +3.0V to +5.5V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{CC} = +5.0V, T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DC CHARACTERISTICS			1				
Supply Voltage	Vcc		3.0		5.5	V	
Supply Current	Icc	V _{CC} = 3.3V or 5V, RIN = V _{CC} or GND, no load		0.5	5.0	μΑ	
LOGIC INPUT (EN)			•				
Logic Threshold Low	VIL				0.8	V	
Logic Throphold Ligh	\/	$V_{CC} = 3.3V$	2.0			\/	
Logic Threshold High	VIH	VCC = 5.0V	2.4			V	
Leakage Current	IEN			±0.01	±1.0	μΑ	
LOGIC OUTPUT			•				
INVALID Output Voltage Low	VIOL	ISINK = 1.6mA			0.4	V	
INVALID Output Voltage High	VIOH	1	V _{CC} -			V	
INVALID Output Voltage Flight	VIOH	ISOURCE = 1.0mA	0.6				
RECEIVER INPUT							
Input Voltage Range	V _{RIN}		-25		25	V	
Input Threshold Low	V _{ITL}	$V_{CC} = 3.3V$	0.6	1.2		V	
input mreshold Low		VCC = 5.0V	0.8	1.5			
Input Threshold High	VITH	$V_{CC} = 3.3V$		1.5	2.4	\ \/	
input miesnoid mgn		$V_{CC} = 5.0V$		1.8	2.7		
Input Hysteresis	VHYST			300		mV	
RIN Threshold to INVALID	VITOH	Positive threshold			2.7	V	
Output High	VIION	Negative threshold	-2.7			V	
RIN Threshold to INVALID Output Low	VITOL		-0.3		0.3	V	
Input Resistance	R _{RIN}		3	5	7	kΩ	
RECEIVER OUTPUT			1				
Output Leakage Current	IROUT	Receiver disabled		±0.05	±10	μΑ	
Output Voltage Low	VoL	ISINK = 1.6mA			0.4	V	
Output Voltage High	Voн	ISOURCE = 1.0mA	V _{CC} - 0.6	V _{CC} - 0.1		V	

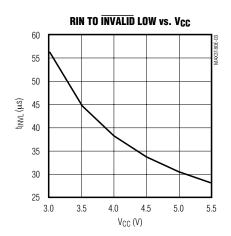
ELECTRICAL CHARACTERISTICS (continued)

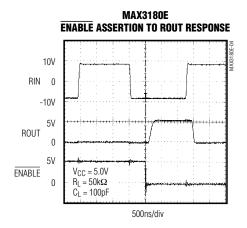
(VCC = +3.0V to +5.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +5.0V, TA = +25°C.) (Note 1)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
TIMING CHARACTERISTICS							
Maximum Data Rate		C _L = 50pF	1.5			Mbps	
Receiver Propagation Delay, High-to-Low	tpHL	RIN to ROUT; C _L = 150pF		0.15		μs	
Receiver Propagation Delay, Low-to-High	tPLH	RIN to ROUT; C _L = 150pF		0.15		μs	
Receiver Skew	trs	tphl - tplh , Figure 1		50		ns	
Receiver Output Enable Time	troe			200		ns	
Receiver Output Disable Time	t _{ROD}			200		ns	
Receiver Positive or Negative Threshold to INVALID High	tinvh			250		ns	
Receiver Positive or Negative Threshold to INVALID Low	tINVL			30		μs	

Note 1: Specifications are 100% tested at $T_A = +25$ °C. Limits over temperature are guaranteed by design.

標準動作特性


 $(V_{CC} = +5V, T_A = +25^{\circ}C, unless otherwise noted.)$



標準動作特性(続き)

 $(V_{CC} = +5V, T_A = +25^{\circ}C, unless otherwise noted.)$

端子説明

端子		名	称		機能
<u>т</u>	MAX3180E	MAX3181E	MAX3182E	MAX3183E	
1	ĒN	_	ĒN	_	レシーバ出力イネーブル
'	-	ĪNVALĪD	-	ĪNVALID	有効入力ディテクタの出力
2	GND	GND	GND	GND	グランド
3	ROUT	ROUT	-	_	反転レシーバ出力
3	-	_	ROUT	ROUT	非反転レシーバ出力
4	RIN	RIN	RIN	RIN	レシーバ入力
5	Vcc	Vcc	Vcc	Vcc	電源電圧

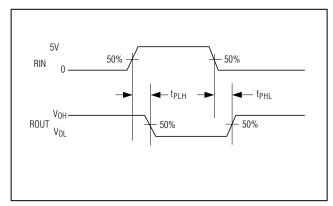


図1. レシーバ伝播遅延タイミング

詳細

MAX3180E ~ MAX3183Eは、RS-232信号をCMOS ロジックレベルに変換するEIA/TIA-232及びV.28/V.24 通信レシーバです。これらのデバイスは電源電圧+3V~+5.5Vで動作し、1.5Mbpsのデータレートが可能です。又、強力な静電放電(ESD)保護機能を備えています(「ESD 保護」を参照)。消費電流は $0.5\mu A(typ)$ です。MAX3180E/MAX3182Eはレシーバイネーブルコントロール(\overline{EN})を、MAX3181E/MAX3183Eは信号無効出力($\overline{INVALID}$)を持っています。MAX3180E/MAX3181Eは、ROUT信号をRIN(標準RS-232)に対して反転します。MAX3182E/MAX3183Eは反転しません。これらのデバイスは、超小型の5ピンSOT23パッケージで提供されています。

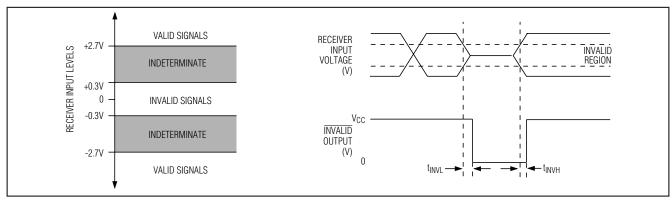


図2. 入力レベル及びINVALIDタイミング

信号無効ディテクタ

RINにおいて30µs(typ)にわたって有効信号レベルが検出されないと、INVALIDがローになります。このイベントはRS-232ケーブルが切り離された場合、又は接続されている周辺機器がターンオフされた場合に発生します。RS-232レシーバ入力に有効なレベルが印加されると、INVALIDはハイになります。図2に、INVALID動作の入力レベル及びタイミング図を示します。

イネーブル入力

MAX3180E/MAX3182Eは、イネーブル入力を持っています。 $\overline{\text{EN}}$ をハイに駆動すると、ROUTがハイインピーダンス状態になります。この状態においては、デバイスは着信RS-232信号を無視します。 $\overline{\text{EN}}$ をローに駆動すると、通常動作になります。

ESD保護

本製品は、マキシム社の他の製品と同様、製品取扱い及び組立て中に生じる静電放電から保護するために、全てのピンにESD保護構造が取り入れられています。MAX3180E~MAX3183Eのレシーバ入力は、通常動作中に発生する静電気に対する保護が特別に強化されています。マキシム社は、±15kVのESDにもダメージを受けず、ラッチアップも起こさない新構造を開発しました。MAX3180E~MAX3183Eのレシーバ入力は、以下に示す限度値まで保護されています。

- ヒューマンモデル法の場合は、±15kV
- IEC1000-4-2の接触放電法の場合は、±8kV
- IEC1000-4-2のエアギャップ放電法の場合は、 ±15kV

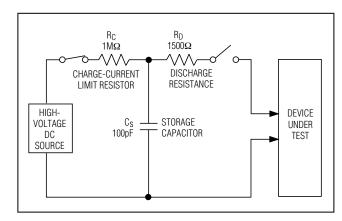


図3. ヒューマンESD試験モデル

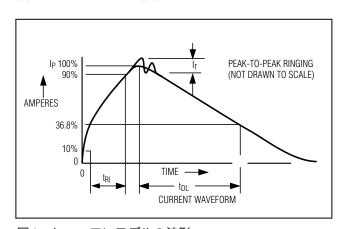


図4. ヒューマンモデルの波形

ヒューマンモデル

図3にヒューマンモデルを示します。図4は、低インピーダンスの負荷に放電した場合にヒューマンモデルが生成する電流波形を示しています。このモデルは、測定の対象となるESD電圧まで充電された100pFのコンデンサによって構成されています。このコンデンサが、1.5kの抵抗を通して試験素子に放電されます。

IEC-1000-4-2

IEC 1000-4-2規格は完成品のESD試験及び性能については規定していますが、集積回路については特に触れていません。MAX3180E~MAX3183Eを使用することにより、ESD保護部品を追加せずに、IEC1000-4-2のレベル4(最高レベル)に適合する機器を設計できます。

ヒューマンモデルによる試験とIEC 1000-4-2による 試験の主な違いは、IEC 1000-4-2の方がピーク電流が 大きいことにあります。IEC 1000-4-2のESD試験 モデルの方が直列抵抗が低いため、測定されたESD耐圧 は一般的にヒューマンモデルによる耐圧よりも低く なっています。図5にIEC 1000-4-2モデル、図6に ± 8 kVのIEC1000-4-2レベル4のESD接触放電試験の電流波形を示します。

エアギャップ試験は、充電したプローブを素子に近付けることによって行います。 接触放電法では、 プローブが 充電される前に素子に接触させます。

電源デカップリング

殆どの場合、電源デカップリングは0.1µFのV_{CC}バイパスコンデンサで十分です。バイパスコンデンサは、ICにできるだけ近いところで接続してください。

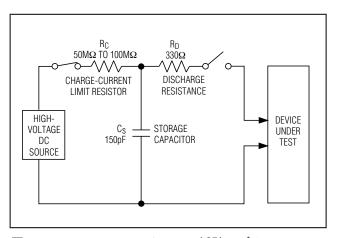


図5. IEC 1000-4-2によるESD試験モデル

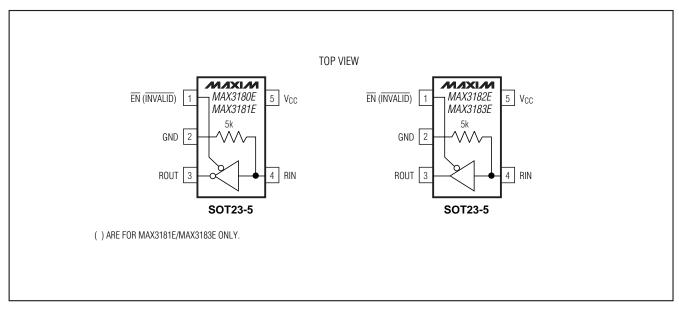
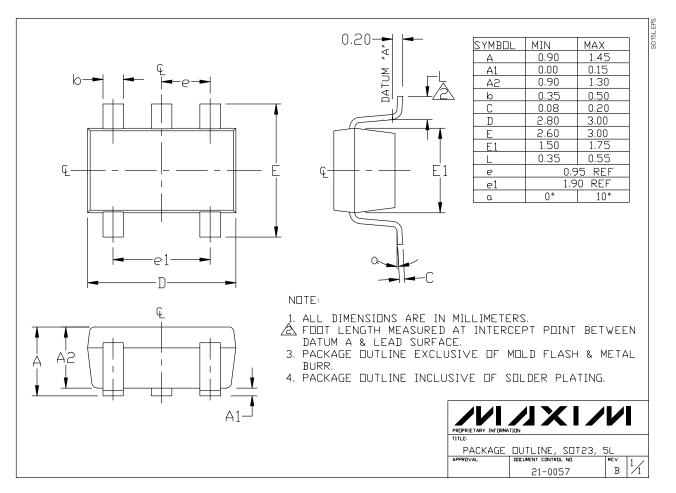



図6. IEC 1000-4-2のESDジェネレータ電流波形


ピン配置/ファンクションダイアグラム_____

チップ情報 ______

TRANSISTOR COUNT: 41

パッケージ _____

販売代理店		

マキシム・ジャパン株式会社

〒169-0051東京都新宿区西早稲田3-30-16(ホリゾン1ビル) TEL. (03)3232-6141 FAX. (03)3232-6149

マキシム社では全体がマキシム社製品で実現されている回路以外の回路の使用については責任を持ちません。回路特許ライセンスは明言されていません。マキシム社は随時予告なしに回路及び仕様を変更する権利を保留します。

______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600