SOURCE DRIVER FOR 240-OUTPUT TFT-LCD (NAVIGATION, AUTOMOBILE LCD-TV)

DESCRIPTION

μ PD16449 is a source driver for TFT liquid crystal panels. This IC consists of a multiplexer circuit supporting a variety of pixel arrays, a shift register that generates sampling timing, and two sample and hold circuits that sample analog voltages. Because the two sample and hold circuits alternately execute sampling and holding, a high definition can be obtained.

In addition, simultaneous sampling and successive sampling are automatically selected according to the pixel array of the LCD panel. It is ideal for a wide range of applications, including navigation systems and automobile LCD-TVs.

FEATURES

- Can be driven on 5 V (Dynamic range: $4.3 \mathrm{~V}, \mathrm{VDD}_{\mathrm{D} 2}=5.0 \mathrm{~V}$)
-240-output
- fclk = 15 MHz MAX. (Vdd1 = 3.0 V)
- Simultaneous/successive sampling selectable according to pixel array

Simultaneous sampling: Vertical stripe
Successive sampling: Delta array, mosaic array

- Two sample and hold circuits
- Low output deviation between pins ($\pm 20 \mathrm{mV}$ MAX.)
- Stripe, delta, and mosaic pixel arrays supported by internal multiplexer circuit
- Left and right shift selected by R,/L pin
- TCP/COG mounting possible
* Remark /xxx indicates active low signal.
\star ORDERING INFORMATION

Part Number	Package
μ PD16449N-xxx	TCP
μ PD16449P	Chip

Remark Purchasing the above chip entails the exchange of documents such as a separate memorandum or product quality, so please contact one of our sales representative.

[^0]
1. BLOCK DIAGRAM

2. SAMPLE AND HOLD CIRCUIT AND OUTPUT CIRCUIT

3. PIN CONFIGURATION

Table 3-1. Pad Layout (1/3)

No.	PAD Name	$\mathrm{X}[\mu \mathrm{m}]$	Y [$\mu \mathrm{m}$]	No.	PAD Name	$\mathrm{X}[\mu \mathrm{m}]$	Y [$\mu \mathrm{m}]$
1	C1	-400	8033	56	VSS2	-400	-7807
2	C1	-400	7745	57	VSS2	-400	-8095
3	C1	-400	7457	58	DUMMY39	-277	-8403
4	C2	-400	7169	59	DUMMY40	-175	-8403
5	C2	-400	6881	60	DUMMY41	-107	-8403
6	C2	-400	6593	61	DUMMY42	-39	-8403
7	C3	-400	6305	62	DUMMY43	29	-8403
8	C3	-400	6017	63	DUMMY44	131	-8403
9	C3	-400	5729	64	DUMMY45	327	-8259
10	VDD2	-400	5441	65	H1	327	-8157
11	VDD2	-400	5153	66	H2	327	-8089
12	VDD2	-400	4865	67	H3	327	-8021
13	VDD1	-400	4577	68	H4	327	-7953
14	VDD1	-400	4289	69	H5	327	-7885
15	VDD1	-400	4001	70	H6	327	-7817
16	STHL	-400	3713	71	H7	327	-7749
17	STHL	-400	3425	72	H8	327	-7681
18	STHL	-400	3137	73	H9	327	-7613
19	MP/TH	-400	2849	74	H10	327	-7545
20	MP/TH	-400	2561	75	H11	327	-7477
21	MP/TH	-400	2273	76	H12	327	-7409
22	MP/1.5	-400	1985	77	H13	327	-7341
23	MP/1.5	-400	1697	78	H14	327	-7273
24	MP/1.5	-400	1409	79	H15	327	-7205
25	R,/L	-400	1121	80	H16	327	-7137
26	R,/L	-400	833	81	H17	327	-7069
27	R,/L	-400	545	82	H18	327	-7001
28	RESET	-400	257	83	H19	327	-6933
29	RESET	-400	-31	84	H20	327	-6865
30	RESET	-400	-319	85	H21	327	-6797
31	INH	-400	-607	86	H22	327	-6729
32	INH	-400	-895	87	H23	327	-6661
33	INH	-400	-1183	88	H24	327	-6593
34	CLI1	-400	-1471	89	H25	327	-6525
35	CLI1	-400	-1759	90	H26	327	-6457
36	CLI1	-400	-2047	91	H27	327	-6389
37	CLI2	-400	-2335	92	H28	327	-6321
38	CLI2	-400	-2623	93	H29	327	-6253
39	CLI2	-400	-2911	94	H30	327	-6185
40	CLI3	-400	-3199	95	H31	327	-6117
41	CLI3	-400	-3487	96	H32	327	-6049
42	CLI3	-400	-3775	97	H33	327	-5981
43	TEST	-400	-4063	98	H34	327	-5913
44	TEST	-400	-4351	99	H35	327	-5845
45	TEST	-400	-4639	100	H36	327	-5777
46	STHR	-400	-4927	101	H37	327	-5709
47	STHR	-400	-5215	102	H38	327	-5641
48	DUMMY32	-400	-5503	103	H39	327	-5573
49	VSS1	-400	-5791	104	H40	327	-5505
50	VSS1	-400	-6079	105	H41	327	-5437
51	VSS1	-400	-6367	106	H42	327	-5369
52	VSS2	-400	-6655	107	H43	327	-5301
53	VSS2	-400	-6943	108	H44	327	-5233
54	VSS2	-400	-7231	109	H45	327	-5165
55	VSS2	-400	-7519	110	H46	327	-5097

Table 3-1. Pad Layout (2/3)

No.	PAD Name	X [$\mu \mathrm{m}$]	Y [$\mu \mathrm{m}$]	No.	PAD Name	X [$\mu \mathrm{m}$]	Y [$\mu \mathrm{m}$]
111	H47	327	-5029	166	H102	327	-1289
112	H48	327	-4961	167	H103	327	-1221
113	H49	327	-4893	168	H104	327	-1153
114	H50	327	-4825	169	H105	327	-1085
115	H51	327	-4757	170	H106	327	-1017
116	H52	327	-4689	171	H107	327	-949
117	H53	327	-4621	172	H108	327	-881
118	H54	327	-4553	173	H109	327	-813
119	H55	327	-4485	174	H110	327	-745
120	H56	327	-4417	175	H111	327	-677
121	H57	327	-4349	176	H 112	327	-609
122	H58	327	-4281	177	H113	327	-541
123	H59	327	-4213	178	H114	327	-473
124	H60	327	-4145	179	H 115	327	-405
125	H61	327	-4077	180	H116	327	-337
126	H62	327	-4009	181	H117	327	-269
127	H63	327	-3941	182	H118	327	-201
128	H64	327	-3873	183	H119	327	-133
129	H65	327	-3805	184	H120	327	-65
130	H66	327	-3737	185	H121	327	3
131	H67	327	-3669	186	H122	327	71
132	H68	327	-3601	187	H123	327	139
133	H69	327	-3533	188	H124	327	207
134	H70	327	-3465	189	H125	327	275
135	H71	327	-3397	190	H126	327	343
136	H72	327	-3329	191	H127	327	411
137	H73	327	-3261	192	H128	327	479
138	H74	327	-3193	193	H129	327	547
139	H75	327	-3125	194	H130	327	615
140	H76	327	-3057	195	H131	327	683
141	H77	327	-2989	196	H132	327	751
142	H78	327	-2921	197	H133	327	819
143	H79	327	-2853	198	H134	327	887
144	H80	327	-2785	199	H135	327	955
145	H81	327	-2717	200	H136	327	1023
146	H82	327	-2649	201	H137	327	1091
147	H83	327	-2581	202	H138	327	1159
148	H84	327	-2513	203	H139	327	1227
149	H85	327	-2445	204	H140	327	1295
150	H86	327	-2377	205	H141	327	1363
151	H87	327	-2309	206	H142	327	1431
152	H88	327	-2241	207	H143	327	1499
153	H89	327	-2173	208	H144	327	1567
154	H90	327	-2105	209	H145	327	1635
155	H91	327	-2037	210	H146	327	1703
156	H92	327	-1969	211	H147	327	1771
157	H93	327	-1901	212	H148	327	1839
158	H94	327	-1833	213	H149	327	1907
159	H95	327	-1765	214	H150	327	1975
160	H96	327	-1697	215	H151	327	2043
161	H97	327	-1629	216	H152	327	2111
162	H98	327	-1561	217	H153	327	2179
163	H99	327	-1493	218	H154	327	2247
164	H100	327	-1425	219	H155	327	2315
165	H101	327	-1357	220	H156	327	2383

Table 3-1. Pad Layout (3/3)

No.	PAD Name	X [$\mu \mathrm{m}$]	Y [$\mu \mathrm{m}$]	No.	PAD Name	X [$\mu \mathrm{m}$]	Y [$\mu \mathrm{m}$]
221	H157	327	2451	276	H212	327	6191
222	H158	327	2519	277	H213	327	6259
223	H159	327	2587	278	H214	327	6327
224	H160	327	2655	279	H215	327	6395
225	H161	327	2723	280	H216	327	6463
226	H162	327	2791	281	H217	327	6531
227	H163	327	2859	282	H218	327	6599
228	H164	327	2927	283	H219	327	6667
229	H165	327	2995	284	H220	327	6735
230	H166	327	3063	285	H221	327	6803
231	H167	327	3131	286	H222	327	6871
232	H168	327	3199	287	H223	327	6939
233	H169	327	3267	288	H224	327	7007
234	H170	327	3335	289	H225	327	7075
235	H171	327	3403	290	H226	327	7143
236	H172	327	3471	291	H227	327	7211
237	H173	327	3539	292	H228	327	7279
238	H174	327	3607	293	H229	327	7347
239	H175	327	3675	294	H230	327	7415
240	H176	327	3743	295	H231	327	7483
241	H177	327	3811	296	H232	327	7551
242	H178	327	3879	297	H233	327	7619
243	H179	327	3947	298	H234	327	7687
244	H180	327	4015	299	H235	327	7755
245	H181	327	4083	300	H236	327	7823
246	H182	327	4151	301	H237	327	7891
247	H183	327	4219	302	H238	327	7959
248	H184	327	4287	303	H239	327	8027
249	H185	327	4355	304	H240	327	8095
250	H186	327	4423	305	DUMMY46	327	8197
251	H187	327	4491	306	DUMMY47	131	8405
252	H188	327	4559	307	DUMMY48	29	8405
253	H189	327	4627	308	DUMMY49	-39	8405
254	H190	327	4695	309	DUMMY50	-107	8405
255	H191	327	4763	310	DUMMY51	-175	8405
256	H192	327	4831	311	DUMMY52	-277	8405
257	H193	327	4899				
258	H194	327	4967				
259	H195	327	5035				
260	H196	327	5103				
261	H197	327	5171				
262	H198	327	5239				
263	H199	327	5307				
264	H200	327	5375				
265	H201	327	5443				
266	H202	327	5511				
267	H203	327	5579				
268	H204	327	5647				
269	H205	327	5715				
270	H206	327	5783				
271	H207	327	5851				
272	H208	327	5919				
273	H209	327	5987				
274	H210	327	6055				
275	H211	327	6123				

4. PIN FUNCTIONS

Symbol	Pin Name	Pad No.	I/O	Description		
C1 to C3	Video signal input	$\begin{aligned} & 1 \text { to } 3,4 \text { to } 6, \\ & 7 \text { to } 9 \end{aligned}$	Input	Input R, G, and B video signals.		
H_{1} to H_{300}	Video signal output	65 to 304	Output	Video signal output pins. Output sampled and held video signals during horizontal period.		
STHR, STHL	Cascade I/O	$\begin{aligned} & 46,47 \\ & 16 \text { to } 18 \end{aligned}$	I/O	Start pulse I/O pins of sample hold timing. STHR serves as an input pin and STHL, as an output pin, in the case of right shift. In the case of left shift, STHL serves as an input pin, and STHR, as an output pin.		
CLI1 to CLI3	Shift clock input	$\begin{aligned} & 34 \text { to } 38, \\ & 37 \text { to } 39, \\ & 40 \text { to } 42 \end{aligned}$	Input	A start pulse is read at the rising edge of CLI1. Sampling pulse SHPn is generated at the rising edge of CLI1 through CLI3 during successive sampling, and at the rising edge of CLI1 during simultaneous sampling (for details, refer to the Timing charts in 5. FUNCTIONAL DESCRIPTION).		
INH	Inhibit input	31 to 33	Input	Selects a multiplexer and one of the two sample and hold circuits at the falling edge.		
RESET	Reset input	28 to 30	Input	Resets the select counter of the multiplexer and the selector circuit of the two sample and hold circuits when it goes high. After reset, the multiplexer is turned OFF, so sure to input one pulse of the INH signal before inputting the video signal. If the video signal is input without the INH signal, sampling is not executed.		
MP/TH	Multiplexer circuit select input (1)	19 to 21	Input	Four types of color filter arrays can be supported by combination of MP/TH and MP/1.5.		
				Mode	MP/TH	MP/1.5
				Vertical stripe array	L	L
MP/1.5	Multiplexer circuit	22 to 24	Input	Single-side delta array	L	H
	select input (2)			Mosaic array	H	L
				Double-side delta array	H	H
R,/L	Shift direction select input	25 to 27	Input	$\mathrm{R}, / \mathrm{L}=\mathrm{H}:$ Right shift: STHR $\rightarrow \mathrm{H}_{1} \rightarrow \mathrm{H}_{240} \rightarrow$ STHL $\mathrm{R}, / \mathrm{L}=\mathrm{L}:$ Left shift: STHL $\rightarrow \mathrm{H}_{240} \rightarrow \mathrm{H}_{1} \rightarrow$ STHR		
VDD1	Logic power supply	13 to 15	-	3.0 to 5.5 V		
VDD2	Driver power supply	10 to 12	-	$5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$		
Vss1	Logic ground	49 to 51	-	Connect this pin to ground of system.		
Vss2	Driver ground	52 to 57	-	Connect this pin to ground of system.		
TEST	Test	43 to 45	-	Fix this pin to low level.		
Dummy	Dummy	$\begin{array}{\|l\|} 48,58 \text { to } 64, \\ 305 \text { to } 311 \\ \hline \end{array}$	-	No dummy pins are connected with other pins inside IC.		

5. FUNCTIONAL DISCRIPTION

5.1 Multiplexer Circuit

This circuit selects RGB video signals input to the C 1 to C 3 pins according to the pixel array of the liquid crystal panel, and outputs the signals to the H_{1} through H_{240} pins.
Vertical stripe array, single-/double-side delta array, or mosaic array can be selected by using the MP/TH and MP/1.5 pins.

5.1.1 Vertical stripe array mode (MP/TH = L, MP/1.5 = L)

In this mode, the relation between video signals C1 to C3, and output pins is as shown below. This mode is used to drive a panel of vertical stripe array. In this mode, the multiplexer circuit is in the through status.

Table 5-1. Relation between Video Signals C1 to C3, and Output Pins (during right shift)

Line No. (number of INHn)	RESET	INH	$\mathrm{H}_{1}\left(\mathrm{H}_{240}\right)$	$\mathrm{H}_{2}\left(\mathrm{H}_{239}\right)$	$\mathrm{H}_{3}\left(\mathrm{H}_{238}\right)$	$\mathrm{H}_{4}\left(\mathrm{H}_{237}\right)$	\ldots	$\mathrm{H}_{239}\left(\mathrm{H}_{2}\right)$	$\mathrm{H}_{240}\left(\mathrm{H}_{1}\right)$
0	H	L	Sampling $\mathrm{C} 1(\mathrm{C} 3)$	Sampling $\mathrm{C} 2(\mathrm{C} 2)$	Sampling $\mathrm{C} 3(\mathrm{C} 1)$	Sampling $\mathrm{C} 1(\mathrm{C} 3)$	\ldots	Sampling $\mathrm{C} 2(\mathrm{C} 2)$	Sampling $\mathrm{C} 3(\mathrm{C} 1)$
1	L	\downarrow	Output $\mathrm{C} 1(\mathrm{C} 3)$	Output $\mathrm{C} 2(\mathrm{C} 2)$	Output $\mathrm{C} 3(\mathrm{C} 1)$	Output $\mathrm{C} 1(\mathrm{C} 3)$	\ldots	Output $\mathrm{C} 2(\mathrm{C} 2)$	Output $\mathrm{C} 3(\mathrm{C} 1)$
2	L	\downarrow	Output C1 (C3)	Output $\mathrm{C} 2(\mathrm{C} 2)$	Output $\mathrm{C} 3(\mathrm{C} 1)$	Output $\mathrm{C} 1(\mathrm{C} 3)$	\ldots	Output $\mathrm{C} 2(\mathrm{C} 2)$	Output $\mathrm{C} 3(\mathrm{C} 1)$
3	L	\downarrow	Output $\mathrm{C} 1(\mathrm{C} 3)$	Output $\mathrm{C} 2(\mathrm{C} 2)$	Output $\mathrm{C} 3(\mathrm{C} 1)$	Output $\mathrm{C} 1(\mathrm{C} 3)$	\ldots	Output $\mathrm{C} 2(\mathrm{C} 2)$	Output $\mathrm{C} 3(\mathrm{C} 1)$
$:$	$:$	$:$	$:$	$:$	$:$	$:$	\ldots	$:$	$:$

Remark () indicates the case of left shift.

Figure 5-1. Pixel Arrangement of Vertical Stripe Array and Multiplexer Operation

Figure 5-2. Timing Chart of Vertical Stripe Array

5.1.2 Single-side delta array mode (MP/TH = L, MP/1.5 = H)

Table 5-2. Relation between Video Signals C1 to C3, and Output Pins

Line No. (number of INHn)	RESET	INH	$\mathrm{H}_{1}\left(\mathrm{H}_{240}\right)$	$\mathrm{H}_{2}\left(\mathrm{H}_{23}{ }^{\text {a }}\right.$	$\mathrm{H}_{3}\left(\mathrm{H}_{238}\right)$	$\mathrm{H}_{4}\left(\mathrm{H}_{237}\right)$	\ldots	$\mathrm{H}_{239}\left(\mathrm{H}_{2}\right)$	$\mathrm{H}_{240}\left(\mathrm{H}_{1}\right)$
0	H	L	Undefined	Undefined	Undefined	Undefined	\cdots	Undefined	Undefined
1	L	\downarrow	Sampling C1 (C3)	Sampling C2 (C2)	$\begin{aligned} & \text { Sampling } \\ & \text { C3 (C1) } \\ & \hline \end{aligned}$	Sampling C1 (C3)	...	Sampling C2 (C2)	Sampling C3 (C1)
2	L	\downarrow	Output C1 (C3)	$\begin{aligned} & \text { Output } \\ & \text { C2 (C2) } \\ & \hline \end{aligned}$	Output $\mathrm{C} 3 \text { (C1) }$	Output C1 (C3)	...	Output C2 (C2)	$\begin{aligned} & \text { Output } \\ & \text { C3 (C1) } \end{aligned}$
3	L	\downarrow	Output C2 (C1)	$\begin{gathered} \text { Output } \\ \text { C3 (C3) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Output } \\ & \text { C1 (C2) } \\ & \hline \end{aligned}$	Output C2 (C1)	...	Output C3 (C3)	$\begin{aligned} & \text { Output } \\ & \text { C1 (C2) } \end{aligned}$
4	L	\downarrow	Output C1 (C3)	$\begin{aligned} & \text { Output } \\ & \text { C2 (C2) } \\ & \hline \end{aligned}$	Output C3 (C1)	Output C1 (C3)	\ldots	Output C2 (C2)	$\begin{aligned} & \text { Output } \\ & \text { C3 (C1) } \\ & \hline \end{aligned}$
5	L	\downarrow	Output C2 (C1)	Output C3 (C3)	Output C1 (C2)	Output C2 (C1)		Output C3 (C3)	Output C1 (C2)
			:		:		...		

Remark () indicates the case of left shift.

Figure 5-3. Pixel Arrangement of Single-Side Delta Array and Multiplexer Operation

Figure 5-4. Timing Chart of Single-Side Delta Array

5.1.3 Double-side delta array mode (MP/TH = H, MP/1.5 = H)

Because the pad pitch of the μ PD16449 is designed so that the IC is mounted on one side, the output pitch must be expanded on the TCP if the IC is mounted on both sides.

Table 5-3. Relation between Video Signals C1 to C3 and Output Pins

Line No. (number of INHn)	RESET	INH	$\mathrm{H}_{1}\left(\mathrm{H}_{240}\right)$	$\mathrm{H}_{2}\left(\mathrm{H}_{23}{ }^{\text {a }}\right.$)	$\mathrm{H}_{3}\left(\mathrm{H}_{238}\right)$	$\mathrm{H}_{4}\left(\mathrm{H}_{23}{ }^{\text {a }}\right.$)	\ldots	$\mathrm{H}_{239}\left(\mathrm{H}_{2}\right)$	$\mathrm{H}_{240}\left(\mathrm{H}_{1}\right)$
0	H	L	Undefined	Undefined	Undefined	Undefined	\cdots	Undefined	Undefined
1	L	\downarrow	Sampling C2 (C3)	Sampling C3 (C2)	Sampling C1 (C1)	Sampling C2 (C3)	...	Sampling C3 (C2)	Sampling C1 (C1)
2	L	\downarrow	$\begin{aligned} & \text { Output } \\ & \text { C2 (C3) } \end{aligned}$	Output C3 (C2)	Output C1 (C1)	Output C2 (C3)	...	Output C3 (C2)	Output C1 (C1)
3	L	\downarrow	$\begin{aligned} & \text { Output } \\ & \text { C1 (C1) } \end{aligned}$	$\begin{aligned} & \text { Output } \\ & \text { C2 (C3) } \end{aligned}$	$\begin{gathered} \text { Output } \\ \text { C3 (C2) } \\ \hline \end{gathered}$	Output C1 (C1)	\ldots	Output C2 (C3)	Output C3 (C2)
4	L	\downarrow	$\begin{aligned} & \text { Output } \\ & \text { C2 (C3) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Output } \\ & \text { C3 (C2) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Output } \\ & \text { C1 (C1) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Output } \\ & \text { C2 (C3) } \\ & \hline \end{aligned}$...	$\begin{aligned} & \text { Output } \\ & \text { C3 (C2) } \end{aligned}$	$\begin{aligned} & \text { Output } \\ & \text { C1 (C1) } \\ & \hline \end{aligned}$
5	L	\downarrow	$\begin{aligned} & \text { Output } \\ & \text { C1 (C1) } \end{aligned}$	Output $\mathrm{C} 2 \text { (C3) }$	Output C3 (C2)	Output C1 (C1)	...	Output C2 (C3)	Output C3 (C2)
:	:	:	:	:	:	:	...	:	:

Remark () indicates the case of left shift.

Figure 5-5. Pixel Arrangement of Double-Side Delta Array and Multiplexer Operation

Figure 5-6. Timing Chart of Both-Sides Delta Array

5.1.4 Mosaic array mode (MP/TH = H, MP/1.5 = L)

Table 5-4. Relation between Video Signals C1 to C3, and Output Pins

Line No. (number of INHn)	RESET	INH	$\mathrm{H}_{1}\left(\mathrm{H}_{240}\right)$	$\mathrm{H}_{2}\left(\mathrm{H}_{23}{ }^{\text {a }}\right.$	$\mathrm{H}_{3}\left(\mathrm{H}_{238}\right)$	$\mathrm{H}_{4}\left(\mathrm{H}_{237}\right)$	\ldots	$\mathrm{H}_{239}\left(\mathrm{H}_{2}\right)$	$\mathrm{H}_{240}\left(\mathrm{H}_{1}\right)$
0	H	L	Undefined	Undefined	Undefined	Undefined	...	Undefined	Undefined
1	L	\downarrow	Sampling C1 (C3)	Sampling C2 (C2)	$\begin{aligned} & \text { Sampling } \\ & \text { C3 (C1) } \\ & \hline \end{aligned}$	Sampling C1 (C3)	...	Sampling C2 (C2)	Sampling C3 (C1)
2	L	\downarrow	Output C1 (C3)	$\begin{aligned} & \text { Output } \\ & \text { C2 (C2) } \\ & \hline \end{aligned}$	Output $\mathrm{C} 3 \text { (C1) }$	Output C1 (C3)	\ldots	Output C2 (C2)	$\begin{aligned} & \text { Output } \\ & \text { C3 (C1) } \end{aligned}$
3	L	\downarrow	Output C3 (C2)	$\begin{aligned} & \text { Output } \\ & \text { C1 (C1) } \end{aligned}$	$\begin{gathered} \text { Output } \\ \text { C2 (C3) } \\ \hline \end{gathered}$	Output C3 (C2)	\cdots	Output C1 (C1)	$\begin{aligned} & \text { Output } \\ & \text { C2 (C3) } \\ & \hline \end{aligned}$
4	L	\downarrow	Output C2 (C1)	$\begin{aligned} & \text { Output } \\ & \text { C3 (C3) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Output } \\ & \text { C1 (C2) } \\ & \hline \end{aligned}$	Output C2 (C1)	\ldots	Output C3 (C3)	$\begin{aligned} & \text { Output } \\ & \text { C1 (C2) } \end{aligned}$
5	L	\downarrow	Output C1 (C3)	$\begin{aligned} & \text { Output } \\ & \text { C2 (C2) } \end{aligned}$	Output C3 (C1)	Output C1 (C3)	\ldots	Output C2 (C2)	$\begin{aligned} & \text { Output } \\ & \text { C3 (C1) } \end{aligned}$
			:		:		...		

Remark () indicates the case of left shift.

Figure 5-7. Pixel Arrangement of Mosaic Array and Multiplexer Operation

Figure 5-8. Timing Chart of Mosaic Array

5.1.5 Relation between Shift Clock CLIn and Internal Sampling Pulse SHPn

(1) Simultaneous sampling (() indicates the case of left shift.)

Remark C1 through C3 are sampled while SHPn is high level.
(2) Successive sampling (() indicates the case of left shift.)

Remarks 1. Input a three-phase clock to shift clock pins CLI1 through CLI3.
2. The video signals (C 1 to C 3) are sampled while SHPn is high level.

5.2 Sample and Hold Circuit

The sample and hold circuit samples and holds the video input signals C1 through C3 selected by the multiplexer circuit in the timing shown below. Swa1 through Swb2 are reset by the RESET signal and change at the rising and falling edges of the INH signal (refer to 1. BLOCK DIAGRAM.).

5.3 Write Operation Timing

The sampled video signals are written to the LCD panel by output currents Ivol and Ivor via output buffer. The dynamic range is 4.3 V MIN . $(\mathrm{VdD2}=5.0 \mathrm{~V})$.
While INH = H, do not stop shift clocks CLI1 through CLI3.
The output operation of this IC is controlled by INH signals.
INH = Hi-Z
INH = Connected with internal circuit (switch sample and hold circuit at the falling edge.)
Therefore, performing Vсом inversion while INH = L causes current flow to these IC output pins, which may result in malfunction. Perform Vсом in version during $\mathrm{INH}=\mathrm{H}(\mathrm{Hi}-\mathrm{Z})$ and start output operation of the next line after the Vcom signal is stable enough to operate. Make sure to evaluate this output operation sufficiently.

Cautions 1. Turn on power to $V_{D D 1}$, logic input, $V_{D D 2}$, and video signal input in that order to prevent destruction due to latch-up, and turn off power in the reverse sequence. Observe this power sequence even during the transition period.
2. The μ PD16449 is designed to input successive signals such as chrome signals. The input band of the video signals is designed to be 9 MHz MAX. If video signals faster than that are input, display is not performed correctly.
3. Insert a bypass capacitor of $0.1 \mu \mathrm{~F}$ between $\mathrm{V}_{\mathrm{dD} 1}$ and $\mathrm{V}_{\mathrm{ss} 1}$ and between $\mathrm{V}_{\mathrm{DD} 2}$ and $\mathrm{V}_{\mathrm{ss} 2}$. If the power supply is not reinforced, the sampling voltage may be abnormal if the supply voltage fluctuates.
4. Display may not be correctly performed if noise is superimposed on the start pulse pin. Therefore, be sure to input a reset signal during the vertical blanking period.
5. Even if the start pulse width is extended by half a clock or more, sampling start timing SHP 1 is not affected, and the sampling operation is performed normally.
6. When the multiplexer circuit is used in the vertical stripe mode, $\mathbf{C 1}$ to $\mathbf{C 3}$ are simultaneously sampled at the rising edge of SHPn. Internally, however, only CLI1 is valid. Therefore, input a shift clock to CLI1 only. At this time, keep the CLI2 and CLI3 pins to "L".
When using the multiplexer circuit in the delta array mode or mosaic array mode, C1 to C3 are sequentially sampled. Input a three-phase clock to CLI1 through CLI3 (for the sampling timing, refer to 5. FUNCTIONAL DESCRIPTION.).
7. The recommended timing of $\mathrm{tr}_{\mathrm{-}}$ and PWres on starting is shown below (The following timing chart shows simultaneous sampling.).
An INH pulse width of at least 5 clocks is required to reset the internal logic. Unless the INH pulse is input after reset, sampling is not performed in the correct sequence.

6. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Condition	Ratings	Unit
Logic supply voltage	$\mathrm{V}_{\mathrm{DD} 1}$		-0.5 to +6.0	V
Driver supply voltage	$\mathrm{V}_{\mathrm{DD} 2}$		-0.5 to +6.0	V
Logic input voltage	V_{I}		-0.5 to $\mathrm{V}_{\mathrm{DD} 1}+0.5$	V
Video input voltage	$\mathrm{V}_{\mathrm{V} 1}$	C 1 to C 3	-0.5 to $\mathrm{V}_{\mathrm{DD} 2}+0.5$	V
Logic output voltage	V_{01}		-0.5 to $\mathrm{V}_{\mathrm{DD} 1}+0.5$	V
Driver output voltage	$\mathrm{V}_{\mathrm{O} 2}$		-0.5 to $\mathrm{V}_{\mathrm{DD} 2}+0.5$	V
Driver output current	$\mathrm{lom}_{\mathrm{o}}$		± 10	mA
Operating temperature range	T_{A}		-30 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\mathrm{Stg}}$		-65 to +125	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vss} 1=\mathrm{Vss} 2=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Logic supply voltage	VDD1		3.0	3.3	5.5	V
Driver supply voltage	VDD2		4.5	5.0	5.5	V
Video input voltage	Vvi		$\mathrm{Vss2}+0.35$		VDD2 - 0.35	V
Driver output voltage	V02		V ss2 +0.35		VDD2 - 0.35	V
High level Input voltage	VIH		$0.7 \mathrm{VDD1}$		VDD1	V
Low level Input voltage	VIL		0		0.3 V DD1	V

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=-30$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD1}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{Vss} 1=\mathrm{Vss}^{2}=0 \mathrm{~V}$)

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Maximum video signal output voltage	Vvoh			VDD2-0.35			V
Minimum video signal output voltage	VvoL					0.35	V
Logic high level output voltage	Vıoh	STHL, STHR pins,$\text { Іон }=-1.0 \mathrm{~mA}$		0.9 VDD 1			V
Logic low level output voltage	VıoL	STHL, STHR pins$\mathrm{loL}=1.0 \mathrm{~mA}$				$0.1 \mathrm{VDD1}$	V
Video signal high level output current	Vvoh	$\begin{aligned} & I_{\mathrm{NH}}=\mathrm{L}, \mathrm{~V}_{\mathrm{OF}}=\mathrm{V}_{\mathrm{DD} 2}-1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD} 2}-0.5 \mathrm{~V} \end{aligned}$			-0.20	-0.08	mA
Video signal low level output current	VvoL	$\mathrm{INH}^{\text {L }} \mathrm{L}, \mathrm{V}_{\text {OF }}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$		0.08	0.20		mA
Reference voltage 1	VReF1	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{VI}}=0.5 \mathrm{~V} \end{aligned}$			0.49		V
Reference voltage 2	$V_{\text {ReF2 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{VI}}=2.0 \mathrm{~V} \end{aligned}$			1.99		V
Reference voltage 3	Vref3	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{VI}}=3.5 \mathrm{~V} \end{aligned}$			3.49		V
Output voltage deviation 1	$\Delta \mathrm{V}$ vo1	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{VI}}=0.5 \mathrm{~V} \end{aligned}$				± 20	mV
Output voltage deviation 2	$\Delta \mathrm{V}$ Vo2	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{VI}}=2.0 \mathrm{~V} \end{aligned}$				± 20	mV
Output voltage deviation 3	$\Delta \mathrm{V}$ vo3	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{VI}}=3.5 \mathrm{~V} \end{aligned}$				± 20	mV
Logic input leakage current	ILL					± 1.0	$\mu \mathrm{A}$
Video input leakage current	IvL					± 10	$\mu \mathrm{A}$
Logic dynamic current consumption	IDD1	$\begin{aligned} & \hline \mathrm{fCLI}=14 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{V}}=2.0 \mathrm{~V}, \text { no load, }, \\ & \mathrm{finH}^{2}=15.4 \mathrm{kHz}, \\ & \mathrm{PW} . \mathrm{NH}=5.0 \mu \mathrm{~s} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{\mathrm{DD} 1}= \\ & 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \end{aligned}$			2.5	mA
			$\begin{aligned} & V_{\mathrm{DD} 1}= \\ & 5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$			4.0	mA
Driver dynamic current consumption	IDD2	$\begin{aligned} & \text { fCLI }=14 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{VI}}=2.0 \mathrm{~V}, \text { no load, } \\ & \text { fiNH }=15.4 \mathrm{kHz}, \\ & \text { PW } \mathrm{INH}=5.0 \mu \mathrm{~s} \\ & \hline \end{aligned}$				10.0	mA

Remarks 1. Vof: output applied voltage, Vo: output voltage without load
2. The reference values are typical values only. The output deviation is only guaranteed within the chip.

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=-30$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VDD1}^{2}=3.0$ to 5.5 V , $\mathrm{VDD2}^{2}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{Vss}_{1}=\mathrm{Vss}_{2}=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Start pulse propagation delay time	tPhL	$\mathrm{CL}=20 \mathrm{pF}$	10		54	ns
	tPLH	$\mathrm{CL}_{\mathrm{L}}=20 \mathrm{pF}$	10		54	ns
Clock frequency 1	fcLk 1				15	MHz
Clock frequency 2	fclk 2	With 3-phase clock input			8	MHz
Logic input capacitance	Cl_{11}	Other than STHL, STHR			15	pF
STHL, STHR input capacitance	Cl_{12}	STHL, STHR			20	pF
Video input capacitance	C_{3}	C 1 to $\mathrm{C} 3, \mathrm{~V} \mathrm{VI}=2.0 \mathrm{~V}$			50	pF

Timing Requirements ($\mathrm{TA}_{\mathrm{A}}=-30$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD} 1=3.0$ to $5.5 \mathrm{~V}, \mathrm{VdD2}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V} \mathrm{SS} 1=\mathrm{V} s \mathrm{~S} 2=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock pulse width	PW ${ }_{\text {CLI }}$	Duty = 50\%	33			ns
Start pulse setup time	tsetup		8			ns
Start pulse hold time	thold		8			ns
Reset pulse width	PWres		66			ns
INH setup time	tisetup		33			ns
INH hold time	timold		33			ns
Reset-INH time	$\mathrm{t}_{\text {R-I }}$		81			ns
INH pulse width	PWInH		5			CLK

Remark Keep the rise and fall times of the logic input signals to within $t_{r}=\mathrm{tf}_{\mathrm{f}}=5 \mathrm{~ns}$ (10 to 90\%). As an example, the switching characteristic wave of CLI1 is defined on the next page.

Switching Characteristic Waveform (Simultaneous/successive sampling)

Start Pulse Input Timing

Start Pulse Output Timing

Remark The input/output timing of the start pulse is the same for simultaneous/successive sampling.

RESET INH Pulse Timing

[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.
(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference Documents
NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades On NEC Semiconductor Devices (C11531E)

- The information in this document is current as of May, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

