DC-DC CONVERTER IC FOR ORGANIC EL DISPLAYS

DESCRIPTION

The μ PD16908 is composed of a 4 ch step-up circuit (chopper method), a 2 ch polarity-inverted circuit (chopper method) and a 3ch series regulator, and is ideal for the power supply for organic EL displays.

FEATURES

- Output voltage setting function via serial interface
- On-chip soft start circuit
- Low current consumption achieved by full CMOS
- On-chip timer latch short-circuit protection circuit
- Adjustable oscillation frequency (200 to 800 kHz)
- MOS FET directly driven by push-pull-configured output stage
- Mounted on 56-pin plastic WQFN (8×8)

ORDERING INFORMATION

Part Number	Package
μ PD16908K9-5B4-A	56-pin plastic WQFN (8×8)

[^0]
1. BLOCK DIAGRAM

2. PIN CONFIGURATION (Top View)

3. PIN FUNCTIONS

Pin No.	Symbol	Pin Name	I/O	Description
1	OUT7	Output 7	Output	Output of ch7 series regulator (E/A)
2	BVDD	Buffer regulator power supply	Power supply	Power supply for series regulator (ch7 to ch9)
3	PGND4	Power ground	Ground	Power ground
4	OUT4	Output 4	Output	Output for driving Power MOS FET of ch4
5	PGND2	Power ground	Ground	Power ground
6	OUT3	Output 3	Output	Output for driving Power MOS FET of ch3
7	PVDD	Power supply for output buffer stage	Power supply	Power supply for output buffer stage of ch1 to ch4
8	OUT2	Output 2	Output	Output for driving Power MOS FET of ch2
9	PGND1	Power ground	Ground	Power ground
10	OUT1	Output 1	Output	Output for driving Power MOS FET of ch1
11	NPVDD	Power supply for output buffer stage	Power supply	Power supply for output buffer stage of ch5 and ch6
12	OUT5	Output 5	Output	Output for driving Power MOS FET of ch5
13	PGND3	Power ground	Ground	Power ground
14	OUT6	Output 6	Output	Output for driving Power MOS FET of ch6
15	FB5	Feedback	Output	Feedback of ch5 E/A
16	115	Inversion input	Input	Inversion input of ch5 E/A
17	Css5	Soft start capacitance 5	Output	Capacitance connection pin for ch5 soft start
18	AGND1	Analog ground	Ground	Analog ground
19	FB6	Feedback	Output	Feedback of ch6 E/A
20	116	Inversion input	Input	Inversion input of ch6 E/A
21	Css6	Soft start capacitance 6	Output	Capacitance connection pin for ch6 soft start
22	FB1	Feedback	Output	Feedback of ch1 E/A
23	${ }_{11}$	Inversion input	Input	Inversion input of ch1 E/A
24	Css1	Soft start capacitance 1	Output	Capacitance connection pin for ch1 soft start
25	N.C.	-	-	Leave open, or short to GND or LVDD
26	FB2	Feedback	Output	Feedback of ch2 E/A
27	112	Inversion input	Input	Inversion input of ch2 E/A
28	Css2	Soft start capacitance 2	Output	Capacitance connection pin for ch2 soft start
29	N.C.	-	-	Leave open, or short to GND or LVod
30	FB3	Feedback	Output	Feedback of ch3 E/A
31	113	Inversion input	Input	Inversion input of ch3 E/A
32	Css3	Soft start capacitance 3	Output	Capacitance connection pin for ch3 soft start
33	N.C.	-	-	Leave open, or short to GND or LVod
34	VDD	Power supply	Power supply	Power supply for DC-DC converter
35	FB4	Feedback	Output	Feedback of ch4 E/A
36	114	Inversion input	Input	Inversion input of ch4 E/A
37	Css4	Soft start capacitance 4	Output	Capacitance connection pin for ch4 soft start

Pin No.	Symbol	Pin Name	I/O	
38	CT	Timing capacitor	Output	Capacitor connection for triangular wave generation
39	RT	Timing resistance	Output	Resistance connection for triangular wave generation
40	V $_{\text {REF }}$	Reference voltage	Output	Power supply for reference voltage
41	CDLY	Short-circuit protection circuit delay capacitance	Output	Capacitor connection for timer latch
42	AGND2	Analog ground	Ground	Analog ground
43	LVDD	Power supply for control logic	Power supply	Power supply for control logic
44	CS	Chip select	Input	Chip select
45	SDA	Serial data input	input	Serial data input for controlling each output
46	SCL	Serial clock input	input	Serial clock input for controlling each output
47	SHDNB	Shut-down input	input	Shut down the IC
48	TEST3	Test 3	Input	Short to LVDD
49	TEST1	Test 1	Input	Short to GND
50	TEST2	Test 2	Input	Short to GND
51	DCON	Output turn-on control	Input	Output of the channel selected by serial data is switched
52	II9	Inversion input	ON.	
53	OUT9	Output 9	Input	Inversion input of ch9 E/A
54	li8	Inversion input	Output	Output of ch9 series regulator (E/A)
55	OUT8	Output 8	Input	Inversion input of ch8 E/A
56	li7	Inversion input	Output	Output of ch8 series regulator (E/A)
		Input	Inversion input of ch7 E/A	

4. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	VDD		-0.5 to +6	V
Power supply voltage for output buffer stage 1	PVod	(ch1 to ch4)	-0.5 to +6	V
Power supply voltage for output buffer stage 2	NPV ${ }_{\text {do }}$	(ch5 and ch6)	-0.5 to +6	V
Buffer regulator power supply voltage	$B V_{\text {do }}$		-0.5 to +6	V
Control logic power supply voltage	LVDD		-0.5 to +6	V
Analog input pin voltage	Valn	FB, lı	-0.5 to +6	V
Control logic input voltage	Vclin	SHDNB, DCON, SDA, SCL, CS	-0.5 to LVDD +0.5	V
Output current (DC) 1-6	lo(DC) 1-6	OUT1 to OUT6	20	mA
Output current (pulse) 1-6	lo (pulse) 1-6	OUT1 to OUT6	200	mA
Output current (DC) 7-9	$\mathrm{lo}(\mathrm{DC}) 7-9$	OUT7 to OUT9	20	mA
Total power dissipation	$\mathrm{P}_{\text {T }}$	$\begin{aligned} & \text { Glass epoxy board of } 100 \mathrm{~mm} \times 100 \mathrm{~mm} \\ & \times 1 \mathrm{~mm} \text { with copper foil area of } 15 \% \\ & \hline \end{aligned}$	0.8	W
Operating ambient temperature	T_{A}		-30 to +75	${ }^{\circ} \mathrm{C}$
Operating junction temperature	TJ		-30 to +125	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-55 to +125	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions (Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Power supply voltage	$V_{D D}$		2.7	3.3	5.5	V
Power supply voltage for output buffer stage 1	PVdo	(ch1 to ch4)	2.7	3.3	5.5	V
Power supply voltage for output buffer stage 2	NPVDD	(ch5 and ch6)	2.7	3.3	5.5	V
Buffer regulator power supply voltage	BVDD		3.0	3.3	5.5	V
Control logic power supply voltage	LVDD		2.7	3.3	3.6	V
Control logic input voltage	Vclin	SHDNB, DCON, SDA, SCL, CS	2.7	3.3	3.6	V
Operating frequency	fosc		200	700	800	kHz
Timing capacitance	Сст	Capacitance connected to C_{T}	60		240	pF
Timing resistance	Rrt	Resistance connected to R_{T}	5.1		22	$\mathrm{k} \Omega$
Serial clock period	tprd				10	$\mu \mathrm{s}$
SCL waiting time	t(Scl-cs)		500			ns
CS waiting time	t(cs-scl)		50			ns
SDA set-up time	tsetup		50			ns
SDA hold time	thold		50			ns
SCL high-pulse time	tow		2			$\mu \mathrm{s}$
SCL low-pulse time	tnw		2			$\mu \mathrm{s}$

Electrical Characteristics (Unless otherwise specified, $V_{d D}=N P V_{d D}=P V_{d D}=L V_{d D}=B V_{d D}=3.3 \mathrm{~V}$, fosc $=700 \mathrm{kHz}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
(1/2)

Overall						
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Shut-down current	IdD(SHD)	$\begin{aligned} & S H D N B=L, \\ & V_{D D}+N P V_{D D}+P V_{D D}+B V_{D D}+L V_{D D} \end{aligned}$		5	8	$\mu \mathrm{A}$
Standby current	ld (SB)	$\begin{aligned} & D C O N=L, S H D N B=H, \\ & V_{D D}+N P V_{D D}+P V_{D D}+B V_{D D}+L V_{D D} \end{aligned}$		2.04	3.75	mA
Circuit operation current 1	IDD	VDD		2.04	3.75	mA
Circuit operation current 2	Pldo	$\mathrm{PV} \mathrm{DD}, \mathrm{CL}=150 \mathrm{pF}, \mathrm{FB}=\mathrm{V}_{\mathrm{DD}}$		3.0	5.7	mA
Circuit operation current 3	NPIdo	NPV ${ }_{\text {do }}, \mathrm{CL}=150 \mathrm{pF}, \mathrm{FB}=\mathrm{AGND}$		0.96	1.8	mA
Circuit operation current 4	Bldo	BVDD, no-load, $\mathrm{I}=$ BVDD		180	345	$\mu \mathrm{A}$
Circuit operation current 5	Lldo	LVDD		24	45	$\mu \mathrm{A}$
Triangular Wave Oscillator Block						
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Oscillation frequency setting accuracy	fosc	Cct $=150 \mathrm{pF}, \mathrm{R}_{\mathrm{Rt}}=11 \mathrm{k} \Omega$	-10		+10	\%
Triangular wave low-level voltage	$V_{\text {th(L) }}$			1.1		V
Triangular wave high-level voltage	$V_{\text {th(}}$ ($)$			1.8		V
Reference Voltage Block						
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Reference voltage	$V_{\text {REF }}$	$\mathrm{IREF}=1 \mathrm{~mA}$	1.97	2.0	2.03	V
Maximum output current	Iref			1	2	mA

PWM Comparator Block						
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Maximum duty 1-4	DMAX.1-4	ch1 to ch4		85		$\%$
Maximum duty 5-6	Dmax.5-6	ch5 and ch6		85		$\%$

Undervoltage Lockout Circuit Block						
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Operation start voltage at power application	VDD(L-H)		1.01	1.45	1.89	V
Operation stop voltage	$V_{\text {DD(}}^{\text {(H-L) }}$		0.89	1.27	1.65	V
Hysteresis width	V_{H}		5	60		mV
Short-circuit Protection Circuit Block						
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
FB detection voltage 1-4	$V_{\text {TH }}(\mathrm{FB}) 1-4$	FB (ch1 to ch4)	1.9	2	2.1	V
FB detection voltage 5-6	$V_{\text {TH(FB) } 5 \text {-6 }}$	FB (ch5 and ch6)	0.76	0.8	0.84	V
DLY detection voltage	$V_{\text {TH }}$ (DLY)	Coly	0.76	0.8	0.84	V
Short-circuit source current	Ioly		1	2	4	$\mu \mathrm{A}$

Soft Start Block						
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Css detection voltage 1-4	$\mathrm{V}_{\text {TH(Css) }}$-4	Css1 to Css4	1.47	1.55	1.63	V
Css detection voltage 5-6	$\mathrm{V}_{\text {TH(CSS }}$)-6	Csss and Css6	0.79	1.35	1.59	V
Charge current	Icss		1	2	4	$\mu \mathrm{A}$
Output Block (ch1 to ch6)						
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Output turn-on resistance-p	Ronp	$\mathrm{lo}=15 \mathrm{~mA}$		10	15	Ω
Output turn-off resistance-n	Ronn	$\mathrm{lo}=15 \mathrm{~mA}$		10	15	Ω
E/A Block (ch1 to ch4)						
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
E/A1 input threshold voltage	$\mathrm{V}_{\text {ITH1 }}$	ch1OUT control bit is fixed to default setting ($\mathrm{D}[0: 5]=000000$), offset is not included.	0.666	0.680	0.694	V
E/A2 input threshold voltage	ViTH2	ch2OUT control bit is fixed to default setting ($D[0: 5]=000000$), offset is included.	0.680	0.700	0.720	V
E/A3 input threshold voltage	Vітн3	ch3OUT control bit is fixed to default setting ($D[0: 5]=000000$), offset is not included.	0.666	0.680	0.694	V
E/A4 input threshold voltage	Vith4	Offset is not included.	0.980	1.000	1.020	V
E/A1 input offset voltage	VIofF1	$\mathrm{V}_{\text {REF }}=2 \mathrm{~V}$	0		40	mV
E/A3 input offset voltage	VIofF3		0		40	mV
E/A4 input offset voltage	Vioff4		0		40	mV
E/A Block (ch5 and ch6)						
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
E/A5 input threshold voltage	Vith5	Offset is not included.	0.980	1.000	1.020	V
E/A6 input threshold voltage	Vітн6		0.980	1.000	1.020	V
E/A5 input offset voltage	Vioff5	$\mathrm{V}_{\text {REF }}=2 \mathrm{~V}$	0		40	mV
E/A6 input offset voltage	Vioff6		0		40	mV
E/A Block (ch7 to ch9)						
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
E/A7 input threshold voltage	Vітн7	Offset is not included.	0.980	1.000	1.020	V
E/A8 input threshold voltage	Vітн8		0.980	1.000	1.020	V
E/A9 input threshold voltage	Vітн9		0.980	1.000	1.020	V
E/A7 input offset voltage	Vioff7	$\mathrm{V}_{\text {REF }}=2 \mathrm{~V}$	-10		30	mV
E/A8 input offset voltage	Vioff8		-10		30	mV
E/A9 input offset voltage	Vioff9		-10		30	mV
I/O differential voltage	VIIFF	BVDD - OUT7 to OUT9, $\mathrm{lo}=10 \mathrm{~mA}$	1			V
Control Logic Block and Serial Interface Block						
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
High-level input voltage	$\mathrm{V}_{\mathrm{H}(\mathrm{L})}$	SHDNB, DCON, SDA, SCL, CS	$\begin{aligned} & \hline \mathrm{LVDD} \\ & \times 0.8 \end{aligned}$			V
Low-level input voltage	VIL(L)	SHDNB, DCON, SDA, SCL, CS			$\begin{array}{r} \hline \mathrm{LVDD} \\ \times 0.2 \\ \hline \end{array}$	V
Input leak current	IL	SHDNB, DCON, SDA, SCL, CS, $\mathrm{V}_{\mathrm{IN}}=\mathrm{AGND}$ to LVDD			1	V

5. TIMING CHART

6. I/O PIN EQUIVALENT CIRCUIT (Protection Circuit)

Pin No.	Symbol	Internal Circuit Configuration	Specified Protection Element	Power Supply Connection (refer to Figure 6-1)	
				Vod Side	GND Side
1	OUT7	Analog output	Output protection 1	BVDD	AGND, PGND
2	BVDD	Power supply	Power supply protection	$B V_{\text {dD }}$	AGND, PGND
3	PGND4	Ground	Power supply protection		PGND
4	OUT4	Logic output	Output protection 1	PV ${ }_{\text {do }}$	AGND, PGND
5	PGND2	Ground	Power supply protection		PGND
6	OUT3	Logic output	Output protection 1	PVDD	AGND, PGND
7	PVdo	Power supply	Power supply protection	PV ${ }_{\text {DD }}$	AGND, PGND
8	OUT2	Logic output	Output protection 1	PV ${ }_{\text {do }}$	AGND, PGND
9	PGND1	Ground	Power supply protection		AGND, PGND
10	OUT1	Logic output	Output protection 1	PV ${ }_{\text {do }}$	AGND, PGND
11	NPVDD	Power supply	Power supply protection	NPV ${ }_{\text {do }}$	AGND, PGND
12	OUT5	Logic output	Output protection 1	NPV ${ }_{\text {do }}$	AGND, PGND
13	PGND3	Ground	Power supply protection	$V_{\text {do }}, ~ P V_{\text {do }}, ~ N P V_{\text {do }}$, LVdo	PGND
14	OUT6	Logic output	Output protection 1	NPVDD	AGND, PGND
15	FB5	Analog output	Output protection 1	VDD	AGND
16	115	Gate input	Input protection 1	Vdo	AGND
17	Css5	Analog output	Output protection 1	Vdo	AGND
18	AGND1	Ground	Power supply protection	$V_{\text {do }}, \mathrm{PV} \mathrm{V}_{\text {do }}$, NPV ${ }_{\text {do }}$, LVdo	AGND
19	FB6	Analog output	Output protection 1	Vdo	AGND
20	16	Gate input	Input protection 1	VDD	AGND
21	Css6	Analog output	Output protection 1	VDD	AGND
22	FB1	Analog output	Output protection 1	VDD	AGND
23	111	Gate input	Input protection 1	VDD	AGND
24	Css1	Analog output	Output protection 2	VDD	AGND
25	N.C.	-	-	-	-
26	FB2	Analog output	Output protection 1	V ${ }_{\text {d }}$	AGND
27	112	Gate input	Input protection 1	VDD	AGND
28	Css2	Analog output	Output protection 2	VDD	AGND
29	N.C.	-	-	-	-
30	FB3	Analog output	Output protection 1	VDD	AGND
31	113	Gate input	Input protection 1	VDD	AGND
32	Css3	Analog output	Output protection 2	VDD	AGND
33	N.C.	-	-	-	-
34	VDD	Power supply	Power supply protection	VDD	AGND, PGND
35	FB4	Analog output	Output protection 1	VDD	AGND
36	114	Gate input	Input protection 1	VDD	AGND
37	Css4	Analog output	Output protection 2	VDD	AGND
38	$\mathrm{C}_{\text {T }}$	Analog output	Output protection 2	Vdo	AGND
39	RT	Analog output	Output protection 2	VDD	AGND
40	$\mathrm{V}_{\text {REF }}$	Analog output	Output protection 2	VDD	AGND

(2/2)

Pin No.	Symbol	Internal Circuit Configuration	Specified Protection Element	Power Supply Connection (refer to Figure 6-1)	
				Vod Side	GND Side
41	Coly	Analog output	Output protection 2	VDD	AGND
42	AGND2	Ground	Power supply protection	Vdd, PVdo, NPVDd, LVdd	AGND
43	LVDD	Power supply	Power supply protection	LVDD	AGND, PGND
44	CS	Gate input	Input protection 1	LVDD	AGND
45	SDA	Gate input	Input protection 1	LVDD	AGND
46	SCL	Gate input	Input protection 1	LVDD	AGND
47	SHDNB	Gate input	Input protection 1	LVDD	AGND
48	TEST3	Gate input	Input protection 1	LVDD	AGND
49	TEST1	Gate input	Input protection 1	LVDD	AGND
50	TEST2	Gate input	Input protection 1	LVDD	AGND
51	DCON	Gate input	Input protection 1	LVDD	AGND
52	li9	Gate input	Input protection 1	BVDD	AGND
53	OUT9	Analog output	Output protection 1	$B V_{\text {do }}$	AGND, PGND
54	118	Gate input	Input protection 1	$B V_{\text {do }}$	AGND
55	OUT8	Analog output	Output protection 1	$B V_{\text {do }}$	AGND, PGND
56	117	Gate input	Input protection 1	BVDD	AGND

Figure 6-1.

Input Protection 1

Output Protection 1

Output Protection 2

Power Supply Protection

7. CONTROL LOGIC BLOCK

7.1 SHDNB Pin (Pin No. 47)

The internal circuits (E/A, PWM comparator, triangular wave oscillator) are stopped by the SHDNB pin and the serial interface registers are reset. The capacitor connected between the Css1 to Css6 pins also discharges.

SHDNB	State of IC	Serial Interface
L	Shut down (OUT1 to OUT4 $=$ fixed to GND, OUT5 and OUT6 $=$ fixed to VDD, and OUT7 to OUT9 $=$ fixed to GND)	Input disable
H	ON	Input enable

7.2 DCON Pin (Pin No. 51)

The outputs are switched OFF by the DCON pin while the internal circuits are operating (serial interface input possible). The capacitor connected between the Css1 to Css6 pins also discharges.

DCON	State of IC	Serial Interface
L	Standby (All channel output turns off, and the internal circuits operate.) (OUT1 to OUT4 = fixed to GND, OUT5 and OUT6 = fixed to VDD, and OUT7 to OUT9 = fixed to GND)	Input enable
H	The channel specified by ON/OFF control bit of the serial interface turns on.	

8. SERIAL INTERFACE BLOCK

8.1 Control Data (Default = All "0")

Data is the turn of $D_{11}, D_{10}, D_{9}, \cdots$, and D_{0}, and please input it.

8.2 Details of Output Voltage Control Bits

Input data configuration of input address control bit

D_{11}	D_{10}	D_{9}	D_{8}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
0	0	1	Unused				ch1 output voltage				

Table 8-1. ch1 Output Voltage (ch1OUT) Control Bit

D5	D4	D3	D2	D1	Do	E/A1 Threshold Voltage TYP.
						VITH1 [V]
0	0	0	0	0	0	0.68
0	0	0	0	0	1	0.69
0	0	0	0	1	0	0.70
0	0	0	0	1	1	0.71
0	0	0	1	0	0	0.72
0	0	0	1	0	1	0.73
0	0	0	1	1	0	0.74
0	0	0	1	1	1	0.75
0	0	1	0	0	0	0.76
0	0	1	0	0	1	0.77
0	0	1	0	1	0	0.78
0	0	1	0	1	1	0.79
0	0	1	1	0	0	0.80
0	0	1	1	0	1	0.81
0	0	1	1	1	0	0.82
0	0	1	1	1	1	0.83
0	1	0	0	0	0	0.84
0	1	0	0	0	1	0.85
0	1	0	0	1	0	0.86
0	1	0	0	1	1	0.87
0	1	0	1	0	0	0.88
0	1	0	1	0	1	0.89
0	1	0	1	1	0	0.90
0	1	0	1	1	1	0.91
0	1	1	0	0	0	0.92
0	1	1	0	0	1	0.93
0	1	1	0	1	0	0.94
0	1	1	0	1	1	0.95
0	1	1	1	0	0	0.96
0	1	1	1	0	1	0.97
0	1	1	1	1	0	0.98
0	1	1	1	1	1	0.99
1	0	0	0	0	0	1.00
1	0	0	0	0	1	1.01
1	0	0	0	1	0	1.02
1	0	0	0	1	1	1.03
1	0	0	1	0	0	1.04
1	0	0	1	0	1	1.05
1	0	0	1	1	0	1.06
1	0	0	1	1	1	1.07
1	0	1	0	0	0	1.08
1	0	1	0	0	1	1.09
1	0	1	0	1	0	1.10
1	0	1	0	1	1	1.11
1	0	1	1	0	0	1.12
1	0	1	1	0	1	1.13
1	0	1	1	1	0	1.14
1	0	1	1	1	1	1.15
1	1	0	0	0	0	1.16
1	1	0	0	0	1	1.17
1	1	0	0	1	0	1.18
1	1	0	0	1	1	1.19
1	1	0	1	0	0	1.20
1	1	0	1	0	1	1.21
1	1	0	1	1	0	1.22
1	1	0	1	1	1	1.23
1	1	1	0	0	0	1.24
1	1	1	0	0	1	1.25
1	1	1	0	1	0	1.26
1	1	1	0	1	1	1.27
1	1	1	1	0	0	1.28
1	1	1	1	0	1	1.29
1	1	1	1	1	0	1.30
1	1	1	1	1	1	1.31

Caution The output voltage value becomes ch10UT $\cong \mathrm{V}_{\text {ITH1 }} \times((R 11+R 12) / R 12)$.

Input data configuration of input address control bit

D_{11}	D_{10}	D_{9}	D_{8}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
0	1	0	Unused					ch2 output voltage			

Table 8-2. ch2 Output Voltage (ch2OUT) Control Bit

D5	D4	D3	D2	D1	Do	E/A2 Threshold VoltageTYP.
						VITH2 [V]
0	0	0	0	0	0	0.68
0	0	0	0	0	1	0.69
0	0	0	0	1	0	0.70
0	0	0	0	1	1	0.71
0	0	0	1	0	0	0.72
0	0	0	1	0	1	0.73
0	0	0	1	1	0	0.74
0	0	0	1	1	1	0.75
0	0	1	0	0	0	0.76
0	0	1	0	0	1	0.77
0	0	1	0	1	0	0.78
0	0	1	0	1	1	0.79
0	0	1	1	0	0	0.80
0	0	1	1	0	1	0.81
0	0	1	1	1	0	0.82
0	0	1	1	1	1	0.83
0	1	0	0	0	0	0.84
0	1	0	0	0	1	0.85
0	1	0	0	1	0	0.86
0	1	0	0	1	1	0.87
0	1	0	1	0	0	0.88
0	1	0	1	0	1	0.89
0	1	0	1	1	0	0.90
0	1	0	1	1	1	0.91
0	1	1	0	0	0	0.92
0	1	1	0	0	1	0.93
0	1	1	0	1	0	0.94
0	1	1	0	1	1	0.95
0	1	1	1	0	0	0.96
0	1	1	1	0	1	0.97
0	1	1	1	1	0	0.98
0	1	1	1	1	1	0.99
1	0	0	0	0	0	1.00
1	0	0	0	0	1	1.01
1	0	0	0	1	0	1.02
1	0	0	0	1	1	1.03
1	0	0	1	0	0	1.04
1	0	0	1	0	1	1.05
1	0	0	1	1	0	1.06
1	0	0	1	1	1	1.07
1	0	1	0	0	0	1.08
1	0	1	0	0	1	1.09
1	0	1	0	1	0	1.10
1	0	1	0	1	1	1.11
1	0	1	1	0	0	1.12
1	0	1	1	0	1	1.13
1	0	1	1	1	0	1.14
1	0	1	1	1	1	1.15
1	1	0	0	0	0	1.16
1	1	0	0	0	1	1.17
1	1	0	0	1	0	1.18
1	1	0	0	1	1	1.19
1	1	0	1	0	0	1.20
1	1	0	1	0	1	1.21
1	1	0	1	1	0	1.22
1	1	0	1	1	1	1.23
1	1	1	0	0	0	1.24
1	1	1	0	0	1	1.25
1	1	1	0	1	0	1.26
1	1	1	0	1	1	1.27
1	1	1	1	0	0	1.28
1	1	1	1	0	1	1.29
1	1	1	1	1	0	1.30
1	1	1	1	1	1	1.31

Caution The output voltage value becomes ch2OUT $\cong \mathrm{V}_{\mathrm{ITH}} \mathbf{x}(\mathbf{(R 2 1 + R 2 2)} / \mathrm{R} 22)$.

Input data configuration of input address control bit

D_{11}	D_{10}	D9	D8	D_{7}	D6	D5	D4	D3	D_{2}	D1	Do
0	1	1	Unused			ch3 output voltage					

Table 8-3. ch3 Output Voltage (ch3OUT) Control Bit

D5	D4	D3	D2	D1	Do	E/A3 Threshold Voltage TYP. VITH3 [V]
0	0	0	0	0	0	0.68
0	0	0	0	0	1	0.69
0	0	0	0	1	0	0.70
0	0	0	0	1	1	0.71
0	0	0	1	0	0	0.72
0	0	0	1	0	1	0.73
0	0	0	1	1	0	0.74
0	0	0	1	1	1	0.75
0	0	1	0	0	0	0.76
0	0	1	0	0	1	0.77
0	0	1	0	1	0	0.78
0	0	1	0	1	1	0.79
0	0	1	1	0	0	0.80
0	0	1	1	0	1	0.81
0	0	1	1	1	0	0.82
0	0	1	1	1	1	0.83
0	1	0	0	0	0	0.84
0	1	0	0	0	1	0.85
0	1	0	0	1	0	0.86
0	1	0	0	1	1	0.87
0	1	0	1	0	0	0.88
0	1	0	1	0	1	0.89
0	1	0	1	1	0	0.90
0	1	0	1	1	1	0.91
0	1	1	0	0	0	0.92
0	1	1	0	0	1	0.93
0	1	1	0	1	0	0.94
0	1	1	0	1	1	0.95
0	1	1	1	0	0	0.96
0	1	1	1	0	1	0.97
0	1	1	1	1	0	0.98
0	1	1	1	1	1	0.99
1	0	0	0	0	0	1.00
1	0	0	0	0	1	1.01
1	0	0	0	1	0	1.02
1	0	0	0	1	1	1.03
1	0	0	1	0	0	1.04
1	0	0	1	0	1	1.05
1	0	0	1	1	0	1.06
1	0	0	1	1	1	1.07
1	0	1	0	0	0	1.08
1	0	1	0	0	1	1.09
1	0	1	0	1	0	1.10
1	0	1	0	1	1	1.11
1	0	1	1	0	0	1.12
1	0	1	1	0	1	1.13
1	0	1	1	1	0	1.14
1	0	1	1	1	1	1.15
1	1	0	0	0	0	1.16
1	1	0	0	0	1	1.17
1	1	0	0	1	0	1.18
1	1	0	0	1	1	1.19
1	1	0	1	0	0	1.20
1	1	0	1	0	1	1.21
1	1	0	1	1	0	1.22
1	1	0	1	1	1	1.23
1	1	1	0	0	0	1.24
1	1	1	0	0	1	1.25
1	1	1	0	1	0	1.26
1	1	1	0	1	1	1.27
1	1	1	1	0	0	1.28
1	1	1	1	0	1	1.29
1	1	1	1	1	0	1.30
1	1	1	1	1	1	1.31

Caution The output voltage value becomes ch3OUT $\cong \mathrm{V}_{\text {ітн }} \mathbf{x}((\mathrm{R} 31+\mathrm{R} 32) / R 32)$.

Input data configuration of input address control bit

D_{11}	D_{10}	D9	D8	D_{7}	D6	D5	D4	D_{3}	D_{2}	D_{1}	Do
1	0	1	Unused			ON/OFF control 1					
1	1	0	Unused			ON/OFF control 2					

- ON/OFF control bit 1

Input Data	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
	Output of ch6	Output of ch5	Output of ch4	Output of ch3	Output of ch2	Output of ch1
	ON					
	OFF (E/A and PWM operation stop)					

- ON/OFF control bit 2

Input Data	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
	Unused	Unused	Unused	Output of ch9	Output of ch8	Output of ch7
	ON 1					

8.3 Serial Correspondence Timing

Read at the rising

- The 12-bit serial data inputted by the SDA pin is loaded to the shift register at the rising edge of the signal inputted to the SCL pin. The loaded data is loaded to the shift register at the rising edge of the signal inputted to the CS pin. Be sure to fix the signal input to the SCL pin to low level at the rising and falling edges of the signal input to the CS pin.
- If the data which is loaded to shift register while the CS pin is low level is less than 12 bits, the loaded data is cancelled. If the loaded data is more than 12 bits, the 12 -bit data is valid in the last of the loaded data.
\star 9. TYPICAL CHARACTERISTICS (Unless Otherwise Specified, Vdd $=$ NPVdd $=P V d d=$ LVdd $=$ $B V_{d D}=3.3 \mathrm{~V}$, fosc $=\mathbf{7 0 0} \mathbf{~ k H z}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, Reference Value)

fosc vs. RRT

Dmax.1-4 Vs. Vdd

Dmax.5-6 vs. Vdd

Idly vs. Vdd

Dmax.1-4 vs. T_{A}

Dmax.5-6 vs. TA

IdLy Vs. T_{A}

Icss vs. VdD

Icss vs. T_{A}

10. OPERATION EXPLANATION OF EACH BLOCK

10.1 Reference Voltage Circuit Block

The reference voltage circuit block outputs reference voltage (2.0 V TYP.) by which temperature compensation is carried out by supplying voltage by the Vdd (No. 34) pin. The reference voltage is used as the reference voltage of each internal circuit, and can be extracted to outside by the $V_{\text {ref (}}$ (No. 40) pin to 1 mA TYP..

10.2 Triangular Wave Oscillator Block

The triangular wave oscillator block performs self-excited oscillation using the timing capacitance and timing resistor externally attached to the C_{T} (No.38) pin and R_{T} (No.39) pin, respectively, and outputs a symmetric triangular wave with an amplitude of 1.1 to 1.8 V TYP. to the C_{T} (No. 38) pin.
This triangular wave is supplied to the inversion input pin of the PWM comparator.

10.3 E/A Block

The input threshold voltage of E/A is the voltage set by the output voltage control bit of the serial interface for E/A1 to E/A3 (default = all zero; 0.68 V TYP.), and 1.0 V TYP. for E/A4 to E/A9.

Note that E/A7 to E/A9 operate as a series regulator.

10.4 PWM Comparator Block

The PWM comparator compares the triangular wave signal and E/A output signal (or maximum duty) and controls the output ON duty.

10.5 Output Circuit Block

The output circuit block of ch1 to ch6 is of push-pull configuration and can directly drive a Power MOS FET. The output current capacity is 200 mA MAX. for pulse output and 20 mA MAX. for DC output.
The output current capacity of the output circuit block of ch7 to ch9 is 20 mA MAX. for DC output

10.6 Undervoltage Lockout Circuit Block

The undervoltage lockout circuit block shuts down the IC if the power supply voltage is insufficient at power application or shut down in order to prevent malfunction of the IC.

10.7 Soft Start Block of the Step-up DC-DC Converter Output (ch1 to ch4)

ch1 is soft-started by a capacitor connected to the Css1 (No. 24) pin. Also, ch2 to ch4 are respectively soft-started by a capacitor connected to the Css2 (No. 28) pin, Css3 (No. 32) pin, and Css4 (No. 37) pin.

Soft start is executed by charging the capacitor connected to each Css pin and gradually increasing the voltage at the Css pin. On starting the IC, the voltage at each Css pin is connected to the non-inverted input of E/A. Soft start is executed by increasing the non-inverted input voltage of E/A from 0 V and gradually prolonging the output ON duty.
(Figure 10-1 and 10-2)

Figure 10-1.

Figure 10-2.

10.8 Soft Start Block of the Polarity-inverted DC-DC Converter Output (ch5 and ch6)

ch5 is soft-started by a capacitor connected to the Css5 (No. 17) pin. Also, ch6 is soft-started by a capacitor connected to the Css6 (No. 21) pin.
Soft start is executed by charging the capacitor connected to each Css pin and gradually increasing the voltage at the Css pin. The Css pin voltage is connected to the PWM non-inverted input (DTC) via a $200 \mathrm{k} \Omega$ resistor. At startup, raising the PWM non-inverted input (DTC) voltage from about 0.4 gradually lengthens the output ON duty, causing a soft start (Figure 10-3 and 10-4).
Note that if the DTC voltage and FB voltage are switched while the output ON duty is still small (less than 50%) following a soft start, inrush current may occur at the point of switching. In this case, suppress the inrush current by either raising the operating frequency or increasing the inductance of the coil used by the DC-DC converter.

Figure 10-3.

Figure 10-4.

10.9 Short-circuit Protection Circuit Block (Timer latch type)

If the voltage of ch1 to ch4, which are the step-up DC-DC converter outputs, drops, the voltage of the inversion input pin of the E/A, which is feeding back the output, also drops, and the E/A output (FB) is stepped up. If the voltage of this E/A output (FB) reaches or exceeds the FB detection voltage of the short-circuit protection circuit $\left(V_{T H}(F B) 1-4=2.0\right.$ V TYP.), the timer circuit starts operating and the capacitor connected to the CdLy (No. 41) pin starts charging. When the voltage of the capacitor connected the Cdly (No. 41) pin reaches the Cdly protection voltage ($\mathrm{V}_{\mathrm{th}(\mathrm{DLL})}=0.8 \mathrm{~V}$ TYP.), all the outputs of the IC are latched to OFF (Figure 10-5 and 10-6).
If the voltage of ch5 and ch6, which are the polarity-inverted DC-DC converter outputs, is stepped up, the voltage of the inversion input pin of the E/A, which is feeding back the output, is also stepped up, and the E/A output (FB) is stepped down. If the voltage of this E/A output (FB) falls below the FB detection voltage of the short-circuit protection circuit (V тн(FB) $5-6=0.8 \mathrm{~V}$ TYP.), the timer circuit starts operating and the capacitor connected to the CdLy (No. 41) pin starts charging. When the voltage of the capacitor connected to the Cdly (No. 41) pin reaches the Cdly detection voltage $\left(\mathrm{V}_{T H(D L Y}\right)=0.8 \mathrm{~V}$ TYP.), all the outputs of the IC are latched to OFF (Figure 10-5 and 10-7).

As long as the E/A output (FB) of any of ch1 to ch6 is at least the FB detection voltage of the short-circuit protection circuit, the capacitor connected to the CdLy (No. 41) pin continues to charge. (Figure 10-8)
To reset the latch circuit when the short-circuit protection circuit is activated, decrease the supply voltage (VDD) to the operation stop voltage level $\left(\mathrm{V}_{\mathrm{DD}(\mathrm{H}-\mathrm{L})}=1.39 \mathrm{~V}\right.$ TYP.), or set the $\operatorname{SHDNB}(\mathrm{No} 47$.$) pin or DCON (No.51) pin to low level.$

Figure 10-5.

Figure 10-6.

The short-circuit protection circuit causes the capacitor to start charging when FB1 to FB4 $=2.0 \mathrm{~V}$ or higher.

Figure 10-7.

The short-circuit protection circuit causes the capacitor to start charging when FB5 and FB6 $=0.8 \mathrm{~V}$ or less.

Figure 10-8.

11. NOTES ON USE

11.1 Method of Setting Output Voltage

The method of setting the output voltage of ch1 to ch4 is shown in Figure 11-1, the method of setting the output voltage of ch5 and ch6 is shown in Figure 11-2, and the method of setting the output voltage of ch5 to ch7 is shown in Figure 11-3.
The output voltage can be calculated by using the expression in the figure.

Figure 11-1. The Method of Setting the Output Voltage of the Step-up Circuit of ch1 to ch4

Caution $V_{\text {Itн }}$ of ch1 to ch3 depends on the serial interface.
Vוтн of ch4 is 1.0 V TYP..

Figure 11-2. The Method of Setting the Output Voltage of the Polarity-inverted Circuit of ch5 and ch6

Figure 11-3. The Method of Setting the Output Voltage of ch7 to ch9

11.2 Method of Handling Pins of Unused Channels

Figure 11-4 to 11-8 show how to handle the pins when not using ch1 to ch3, ch5 and ch6, ch7 to ch9, and the serial interface, respectively.

Figure 11-4. Handling of Pins When Not Using ch1 to ch3

Figure 11-5. Handling of Pins When Not Using ch4

Figure 11-6. Handling of Pins When Not Using ch5 and ch6

Figure 11-7. Handling of Pins When Not Using ch7 to ch9

Figure 11-8. Handling of Pins When Not Using the Serial Interface

11.3 Method of Setting Oscillation Frequency

The oscillation frequency can be arbitrarily set by the timing resistor ($\mathrm{RRT}_{\mathrm{R}}$) connected to the $\mathrm{Rt}^{(N o .39)}$ pin, and the timing capacitance (Сст) value connected to the C_{T} (No. 38) pin.
Expression <1> shows an approximate expression of the oscillation frequency (fosc). However, because this is an approximate expression, be sure to check the frequency on the actual device, especially when using a high frequency.

$$
\text { fosc }[\mathrm{Hz}]=1.43 /(\operatorname{RRT}[\Omega] \times \operatorname{CcT}[F]) \cdots \ldots .<1>
$$

11.4 Method of Setting Soft-start Time

Expression <2> shows an approximate expression of the soft-start charge time of ch1 to ch4, tss1 to tss4.

$$
\text { tss1 to tss }[\mathrm{s}]=0.775 \times \mathrm{Css}[\mu \mathrm{~F}] \ldots \ldots .<2>
$$

Expression <3> shows an approximate expression of the soft-start charge time of ch5 and ch6, tss5 and tss6.

$$
\text { tss5 and tss6 }[\mathrm{s}]=0.675 \times \mathrm{Css}[\mu \mathrm{~F}] \ldots \ldots<3>
$$

Note, however, that the startup characteristics of each channel differ depending on the load conditions of that channel, as mentioned in 10.7 Soft Start Block of the Step-up DC-DC Converter Output (ch1 to ch4) (Figure 10-1), and 10.8 Soft Start Block of the Polarity-inverted DC-DC Converter Output (ch5 and ch6) (Figure $10-3$), so tss does not equal the rise time of the output voltage of each channel. Therefore, be sure to check the softstart time on the actual device.

11.5 Method of Calculating Delay Time of Short-circuit Protection Circuit

Expression <4> shows an approximate expression of the short-circuit protection circuit delay time, toly.

$$
\operatorname{tDLY}[\mathrm{s}]=0.4 \times \operatorname{CdLy}[\mu \mathrm{F}] \ldots \ldots .<4>
$$

11.6 Method of Handling Pins When Short-circuit Protection Circuit is Unused

When the short-circuit protection circuit is unused, connected the Cdly (No. 41) pin to the AGND (No. 18 and 42) pin.

11.7 Method of Preventing Malfunction of Short-circuit Protection Circuit

If noise is superimposed on the Cdly (No. 41) pin, the internal latch circuit may malfunction, causing the outputs to stop operating.
To prevent this kind of malfunction, reduce the wiring impedance between the Cdly (No. 41) pin and the AGND (No. 18 and 42) pins, and take measures so that noise is not superimposed on the Cdly (No. 41) pin.
Note that if the soft-start time is longer than the short-circuit protection circuit may operate before the output of the channel rises. Therefore, be sure to determine the short-circuit protection circuit delay time on the actual device.

11.8 Notes on Actual Pattern Wiring

When actually wiring the pattern, separate the ground of the control lines from the ground of the power lines, so that there is as little common impedance by using a bypass capacitor (etc.), so that noise is not superimposed on the Vdd (No. 34) pin or the Vref (No. 40) pin.

11.9 Notes on Pin Connections

If there is more than one pin of any pin type, ensure that all the pins are connected. Also, always apply the same potential to the power supply pins $V_{D D}$ (No. 34) pin, PVDD (No. 7) pin, and NPVDD (No. 11) pin.

12. EXAMPLE OF APPLICATION CIRCUIT

Caution The constants shown in this figure are for reference only and do not guarantee the characteristics. Set the constants and use appropriate components in accordance with the actual operating conditions.

13. PACKAGE DRAWING

56-PIN PLASTIC WQFN (8x8)

14. RECOMMENDED SOLDERING CONDITIONS

The μ PD168103 should be soldered and mounted under the following recommended conditions.
For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Type of Surface Mount Device

μ PD16908K9-9B4-A: 56-pin plastic WQFN (8 x 8)

Process	Conditions	Symbol	
Infrared reflow	Package peak temperature: $260^{\circ} \mathrm{C}$, Time: 60 seconds MAX. (at $220^{\circ} \mathrm{C}$ or higher), Count: Three times or less, Exposure limit: 3 days ${ }^{\text {Note (after that, prebake at } 125^{\circ} \mathrm{C}}$ for 10 hours), Flux: Rosin flux with low chlorine ($0.2 \mathrm{Wt} \%$ or below) recommended. <Precaution> Products other than in heat-resistant trays (such as those packaged in a magazine, taping, or non-thermal-resistant tray) cannot be baked in their package.	IR60-103-3	

Note After opening the dry pack, store it a $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

NOTES FOR CMOS DEVICES

VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and $\mathrm{VIH}^{\mathrm{IH}}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and V_{iH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

(3) PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.
The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

- The information in this document is current as of October, 2004. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

