
The information in this document is subject to change without notice.

DATA SHEET

MOS INTEGRATED CIRCUIT

µPD17062

Document No. IC-3560
 (O.D. No. IC-8937)
Date Published January 1995 P
Printed in Japan

The µPD17062 is a 4-bit CMOS microcontroller for digital tuning systems. The single-chip device

incorporates an image display controller enabling a range of different displays, together with a PLL frequency

synthesizer.

The CPU has six main functions: 4-bit parallel addition, logic operation, multiple bit test, carry-flag set/

reset, powerful interrupt, and a timer.

The device contains a user-programmable image display controller (IDC) for on-screen displays. The

different displays can be controlled with simple programs.

The device also has a serial interface function, many input/output (I/O) ports controlled by powerful I/O

instructions, and 6-bit pulse width modulation (PWM) output for a 4-bit A/D converter and D/A converter.

FEATURES

4-BIT SINGLE-CHIP MICROCONTROLLER CONTAINING PLL FREQUENCY

SYNTHESIZER AND IMAGE DISPLAY CONTROLLER

• 4-bit microcontroller for digital tuning system

• Internal PLL frequency synthesizer: With prescaler

µPB595

• 5 V ±10%

• Low-power CMOS

• Program memory (ROM): 8K bytes (16 bits × 3968

steps)

• Data memory (RAM): 4 bits × 336 words

• 6 stack levels

• 35 easy-to-understand instruction sets

• Support of decimal operations

• Instruction execution time: 2 µs (with an 8-MHz

crystal)

• Internal D/A converter: 6 bits × 4 (PWM output)

• Internal A/D converter: 4 bits × 6

• Internal horizontal synchronizing signal counter

• Internal commercial power frequency counter

• Internal power-failure detector and power-on reset

circuit

• Internal image display controller (IDC) (user-pro-

grammable)

Number of characters in display: Up to 99 on a

single screen

Display configuration: 14 rows × 19 columns

Number of character types: 120

Character format: 10 × 15 dots (rimming possible)

Number of colors: 8

Character size: Four sizes in each of the horizontal

and vertical dimensions

Internal 1H circuit for preventing vertical deflection

• Internal 8-bit serial interface (One system with two

channels: three-wire or two-wire)

• Interrupt input for remote-controller signals (with

noise canceler)

• Many I/O ports

Number of I/O ports : 15

Number of input ports : 4

Number of output ports: 8

© 1995

2

µPD17062

ORDERING INFORMATION

Part number Package

µPD17062CU-××× 48-pin plastic shrink DIP (600 mil)

µPD17062GC-××× 64-pin plastic QFP (14 × 14 mm)

Remark ××× is the ROM code number.

FUNCTION OVERVIEW

Item Function

ROM (program memory) capacity 3968 × 16 bits (masked ROM)

CROM (character ROM) capacity 1920 × 16 bits (included in ROM)

RAM (data memory) capacity 336 × 4 bits (including the area that can be used for VRAM)

VRAM (video RAM) capacity 224 × 4 bits (included in RAM)

Instruction execution time 2 µs (when the 8-MHz crystal is used)

Stack level 6 levels (stack operation possible)

Number of I/O ports Number of input ports: 4

Number of output ports: 8

Number of I/O ports: 15

IDC (Image Display Controller) Number of characters in display: Up to 99 on a single screen

Display format: 10 × 15 dots, 14 rows × 19 columns

Number of character types: 120 (user-programmable)

Number of colors: 8

Character size

Vertical dimension : 1 to 4 times (can be set for each line)

Horizontal dimension : 1 to 4 times (can be set for each character)

Serial interface Serial interface 0 (two-wire or I2C bus compatible)

Serial interface 1 (two-wire or three-wire)

D/A converter 6 bits × 4 (PWM output, withstand voltage of up to 12.5 V)

A/D converter 4 bits × 6 (successive-approximation converter by software)

Interrupt External interrupt : 2 channels

Internal interrupt : 2 channels

Timer 1 channel (internal clock/zerocross input)

PLL frequency synthesizer Scaling method : Pulse swallow method (VCO pin: Up to 40 MHz),

external specialized two-modulus prescaler

(µPB595, for example)

Reference frequency : 6.25, 12.5, 25 kHz

Charge pump : Error-out output

Phase comparator : Capable of unlock detection by a program

Reset Power-on reset

Reset by the CE pin

With power-failure detection function

Supply voltage 5 V ±10%

One system

4 channels





3

µPD17062

PIN CONFIGURATION (TOP VIEW)

48-pin plastic shrink DIP (600 mil)

ADC0 to ADC5 : A/D converter input P0D0 to P0D3 : Port 0D

BLANK : Blanking signal output P1A0 to P1A3 : Port 1A

BLUE : Character signal output P1B0 to P1B3 : Port 1B

CE : Chip enable P1C1 to P1C3 : Port 1C

EO : Error out RED : Character signal output

GND : Ground SCK : Shift clock input/output

GREEN : Character signal output SCL : Shift clock input/output

HSCNT : Horizontal synchronizing signal SDA : Serial data input/output

counter input SI : Serial data input

HSYNC : Horizontal synchronizing signal input SO : Serial data output

INTNC : Interrupt signal input TMIN : Timer event input

NC : No connection VCO : Local oscillation input

PSC : Pulse swallow control output VDD : Main power supply

PWM0 to PWM3 : Pulse width modulation output VSYNC : Vertical synchronizing signal input

P0A0 to P0A3 : Port 0A XIN : Clock oscillation

P0B0 to P0B3 : Port 0B XOUT : Clock oscillation

P0C0 to P0C3 : Port 0C

1

3

2

4

6

5

7

9

8

10

12

11

13

15

14

16

18

17

19

21

20

22

24

23

48

46

47

45

43

44

42

40

41

39

37

38

36

34

35

33

31

32

30

28

29

27

25

26

P0C3

P0C1

P0C2

P0C0

P0D2/ADC4

P0D3/ADC5

P0D1/ADC3

PWM3

P0D0/ADC2

PWM2

PWM0

PWM1

VDD

EO

VCO

GND

CE

PSC

XOUT

P1A3

XIN

P1A2

P1A0

P1A1

INTNC

P0A1/SCL

P0A0/SDA

P0A2/SCK

P0B0/SI

P0A3/SO

P0B1

P0B3/HSCNT

P0B2/TMIN

ADC0

P1C2

P1C1

P1C3/ADC1

HSYNC

VSYNC

BLANK

GREEN

BLUE

RED

P1B1

P1B0

P1B2

GND

P1B3

P
D

1
7
0
6
2
C

U
-×××

µ

4

µPD17062

64-pin plastic QFP (14 × 14 mm)

1

3

2

4

6

5

7

9

8

10

12

11

13

15

14

16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

48

46

47

45

43

44

42

40

41

39

37

38

36

34

35

33

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
POB2/TMIN

ADC0

POB3/HSCNT

P1C2

NC

NC

NC

P1C3/ADC1

NC

VSYNC

BLANK

BLUE

NC

HSYNC

P1C1

NC

P0D0/ADC2

PWM2

PWM3

PWM0

NC

NC

VDD

VCO

NC

EO

GND

PSC

NC

NC

PWM1

NC

P
0D

1/
A

D
C

3

P
0D

3/
A

D
C

5

P
0D

2/
A

D
C

4

P
0C

2

N
C

P
0C

3

N
C

P
0A

0/
S

D
A

IN
T N

C

P
0A

1/
S

C
K

P
0B

0/
S

I

P
0B

1

P
0A

1/
S

C
L

P
0A

3/
S

O

P
0C

0

P
0C

1

C
E

X
IN

X
O

U
T

N
C

P
1A

0

P
1A

1

N
C

P
1B

3

G
N

D

P
1B

1

R
E

D

G
R

E
E

N

P
1B

2

P
1B

0

P
1A

3

P
1A

2

PD17062GC-×××-3BEµ

5

µPD17062

BLOCK DIAGRAM

VCO

PSC

EO

HSYNC

VSYNC

RED

GREEN

BLUE

BLANK

P0A0/SDA

P0A1/SCL

P0A2/SCK

P0A3/SO

P0B0/SI

P0B1

P0B2/TMIN

P0B3/HSCNT

P0D0/ADC2

P0D1/ADC3

P0D2/ADC4

P0D3/ADC5

P1C3/ADC1

P1C2

P1C1

ADC0

PWM0

PWM1

PWM2

PWM3

P1A0

P1A1

P1A2

P1A3

P1B0

P1B1

P1B2

P1B3

P0C0

P0C1

P0C2

P0C3

INTNC

XIN

XOUT

VDD

CE

GND

CPU

Peripheral

Instruction
Decoder

Interrupt
Controller

P0C

P1B

P1A

PWM

PLL

IDC

Serial
I/O

P0A

P0B

Hsync Counter

Timer Controller

RF

RAM
336 × 4 bits

(Including VRAM)

SYSREG

ALU

ROM
3968 × 16 bits

(Including CROM)

Program Counter

Stack 6 × 12 bits

OSC

Reset

P0D

P1C

A/D

6

µPD17062

CONTENTS

1. PINS ... 11

1.1 PIN FUNCTIONS ... 11

1.2 EQUIVALENT CIRCUITS OF THE PINS .. 14

2. PROGRAM MEMORY (ROM) .. 18

2.1 CONFIGURATION OF PROGRAM MEMORY ... 18

2.2 FUNCTIONS OF PROGRAM MEMORY .. 19

2.3 PROGRAM FLOW ... 19

2.4 BRANCHING A PROGRAM .. 20

2.6 TABLE REFERENCE .. 24

2.7 NOTES ON USING THE BRANCH INSTRUCTION AND

SUBROUTINE CALL INSTRUCTION ... 24

3. PROGRAM COUNTER (PC) ... 25

4. STACK.. 26

4.1 COMPONENTS.. 26

4.2 STACK POINTER (SP) .. 26

4.3 ADDRESS STACK REGISTERS (ASRs) .. 27

4.4 INTERRUPT STACK REGISTERS .. 27

5. DATA MEMORY (RAM) ... 29

5.1 STRUCTURE OF DATA MEMORY .. 29

5.2 FUNCTIONS OF DATA MEMORY ... 34

5.3 NOTES ON USING DATA MEMORY .. 38

6. GENERAL-PURPOSE REGISTER (GR) .. 40

6.1 STRUCTURE OF THE GENERAL-PURPOSE REGISTER ... 40

6.2 FUNCTION OF THE GENERAL-PURPOSE REGISTER .. 40

6.3 ADDRESS GENERATION FOR GENERAL-PURPOSE REGISTER AND

DATA MEMORY IN INDIVIDUAL INSTRUCTIONS ... 42

6.4 NOTES ON USING THE GENERAL-PURPOSE REGISTER ... 46

7. ARITHMETIC LOGIC UNIT (ALU) BLOCK .. 48

7.1 OVERVIEW .. 48

7.2 CONFIGURATION AND FUNCTIONS OF THE COMPONENTS OF THE ALU BLOCK 49

7.3 ALU OPERATIONS ... 49

7.4 NOTES ON USING THE ALU .. 53

8. SYSTEM REGISTER (SYSREG) ... 54

8.1 ADDRESS REGISTER (AR) ... 55

8.2 WINDOW REGISTER (WR) .. 55

8.3 BANK REGISTER (BANK) .. 56

8.4 MEMORY POINTER ENABLE FLAG (MPE) .. 56

7

µPD17062

8.5 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS POINTER (MP) 57

8.6 GENERAL-PURPOSE REGISTER POINTER (RP) .. 66

8.7 PROGRAM STATUS WORD (PSWORD) .. 66

9. REGISTER FILE (RF) ... 67

9.1 IDCDMAEN (00H, b1) .. 75

9.2 SP (01H) ... 75

9.3 CE (07H, b0) ... 76

9.4 SERIAL INTERFACE MODE REGISTER (08H) .. 76

9.5 BTM0MD (09H) ... 77

9.6 INTVSYN (0FH, b2) ... 77

9.7 INTNC (0FH, b0) .. 78

9.8 HORIZONTAL SYNCHRONIZING SIGNAL COUNTER CONTROL (11H, 12H) 78

9.9 PLL REFERENCE MODE SELECTION REGISTER (13H) .. 79

9.10 SETTING OF INTNC PIN ACCEPTANCE PULSE WIDTH (15H) .. 79

9.11 TIMER CARRY (17H) ... 80

9.12 SERIAL INTERFACE WAIT CONTROL (18H) .. 80

9.13 IEGNC (1FH) .. 80

9.14 A/D CONVERTOR CONTROL (21H) .. 81

9.15 PLL UNLOCK FLIP-FLOP JUDGE REGISTER (22H) ... 81

9.16 PORT1C I/O SETTING (27H) .. 82

9.17 SERIAL I/O0 STATUS REGISTER (28H) ... 82

9.18 INTERRUPT PERMISSION FLAG (2FH) .. 83

9.19 CROM BANK SELECTION (30H) ... 83

9.20 IDCEN (31H) .. 84

9.21 PLL UNLOCK FLIP-FLOP DELAY CONTROL REGISTER (32H) .. 84

9.22 P1BBIOn (35H) .. 85

9.23 P0BBIOn (36H) .. 85

9.24 P0ABIOn (37H) .. 86

9.25 SETTING OF INTERRUPT REQUEST GENERATION TIMING IN

SERIAL INTERFACE MODE (38H) ... 86

9.26 SHIFT CLOCK FREQUENCY SETTING (39H) ... 87

9.27 IRQNC (3FH) .. 87

10. DATA BUFFER (DBF) .. 88

10.1 DATA BUFFER STRUCTURE ... 88

10.2 FUNCTIONS OF DATA BUFFER .. 90

10.3 DATA BUFFER AND TABLE REFERENCING .. 91

10.4 DATA BUFFER AND PERIPHERAL HARDWARE ... 93

10.5 DATA BUFFER AND PERIPHERAL REGISTERS .. 97

10.6 PRECAUTIONS WHEN USING DATA BUFFERS ... 104

11. INTERRUPT ... 106

11.1 INTERRUPT BLOCK CONFIGURATION .. 106

11.2 INTERRUPT FUNCTION ... 108

11.3 INTERRUPT ACCEPTANCE .. 111

11.4 OPERATIONS AFTER INTERRUPT ACCEPTANCE .. 116

8

µPD17062

11.5 RETURNING CONTROL FROM INTERRUPT PROCESSING ROUTINE 116

11.6 INTERRUPT PROCESSING ROUTINE ... 117

11.7 EXTERNAL INTERRUPTS (INTNC PIN, VSYNC PIN) ... 121

11.8 INTERNAL INTERRUPT (TIMER, SERIAL INTERFACE) .. 123

11.9 MULTIPLE INTERRUPTS.. 124

12. TIMER .. 133

12.1 TIMER CONFIGURATION .. 133

12.2 TIMER FUNCTIONS .. 134

12.3 TIMER CARRY FLIP-FLOP (TIMER CARRY FF) .. 136

12.4 CAUTIONS IN USING THE TIMER CARRY FF ... 141

12.5 TIMER INTERRUPT ... 147

12.6 CAUTIONS IN USING THE TIMER INTERRUPT .. 151

13. STANDBY .. 153

13.1 STANDBY BLOCK CONFIGURATION ... 153

13.2 STANDBY FUNCTION .. 154

13.3 DEVICE OPERATION MODE SPECIFIED AT THE CE PIN ... 155

13.4 HALT FUNCTION .. 156

13.5 CLOCK STOP FUNCTION... 164

13.6 OPERATION OF THE DEVICE AT A HALT OR CLOCK STOP .. 167

14. RESET .. 171

14.1 RESET BLOCK CONFIGURATION ... 171

14.2 RESET FUNCTION .. 172

14.3 CE RESET ... 173

14.4 POWER-ON RESET ... 177

14.5 RELATIONSHIP BETWEEN CE RESET AND POWER-ON RESET .. 180

14.6 POWER FAILURE DETECTION .. 184

15. GENERAL-PURPOSE PORT ... 189

15.1 CONFIGURATION AND CLASSIFICATION OF GENERAL-PURPOSE PORT 189

15.2 FUNCTIONS OF GENERAL-PURPOSE PORTS .. 191

15.3 GENERAL-PURPOSE I/O PORTS (P0A, P0B, P1B, P1C) ... 194

15.4 GENERAL-PURPOSE INPUT PORT (P0D) .. 198

15.5 GENERAL-PURPOSE OUTPUT PORTS (P0C, P1A) ... 199

16. SERIAL INTERFACE.. 201

16.1 SERIAL INTERFACE MODE REGISTER .. 201

16.2 CLOCK COUNTER ... 206

16.3 STATUS REGISTER .. 207

16.4 WAIT REGISTER ... 209

16.5 PRESETTABLE SHIFT REGISTER (PSR) ... 214

16.6 SERIAL INTERFACE INTERRUPT SOURCE REGISTER (SIO0IMD) ... 215

16.7 SHIFT CLOCK FREQUENCY REGISTER (SIO0CK)... 216

9

µPD17062

17. D/A CONVERTER ... 217

17.1 PWM PINS ... 217

18. PLL FREQUENCY SYNTHESIZER ... 219

18.1 PLL FREQUENCY SYNTHESIZER CONFIGURATION ... 219

18.2 OVERVIEW OF EACH PLL FREQUENCY SYNTHESIZER BLOCK .. 220

18.3 PROGRAMMABLE DIVIDER (PD) AND PLL MODE SELECT REGISTER 221

18.4 REFERENCE FREQUENCY GENERATOR (RFG) .. 223

18.5 PHASE COMPARATOR (φ-DET), CHARGE PUMP, AND UNLOCK DETECTION BLOCK......... 225

18.6 PLL DISABLE MODE ... 231

18.7 SETTING DATA FOR THE PLL FREQUENCY SYNTHESIZER .. 232

19. A/D CONVERTER ... 233

19.1 PRINCIPLE OF OPERATION ... 233

19.2 D/A CONVERTER CONFIGURATION ... 234

19.3 REFERENCE VOLTAGE SETTING REGISTER (ADCR) .. 235

19.4 COMPARISON REGISTER (ADCCMP) .. 235

19.5 ADC PIN SELECT REGISTER (ADCCHn) .. 236

19.6 EXAMPLE OF A/D CONVERSION PROGRAM .. 237

20. IMAGE DISPLAY CONTROLLER ... 240

20.1 SPECIFICATION OVERVIEW AND RESTRICTIONS .. 240

20.2 DIRECT MEMORY ACCESS ... 243

20.3 IDC ENABLE FLAG ... 245

20.4 VRAM ... 246

20.5 CHARACTER ROM .. 255

20.6 BLANK, R, G, AND B PINS .. 263

20.7 SPECIFYING THE DISPLAY START POSITION ... 264

20.8 SAMPLE PROGRAMS .. 268

21. HORIZONTAL SYNC SIGNAL COUNTER .. 274

21.1 HORIZONTAL SYNC SIGNAL COUNTER CONFIGURATION .. 274

21.2 GATE CONTROL REGISTER (HSCGT) .. 275

21.3 HSYNC COUNTER (HSC) ... 276

21.4 EXAMPLE OF USING THE HORIZONTAL SYNC SIGNAL.. 276

22. INSTRUCTION SETS .. 277

22.1 OUTLINE OF INSTRUCTION SETS ... 277

22.2 INSTRUCTIONS .. 278

22.3 LIST OF INSTRUCTION SETS ... 279

22.4 BUILT-IN MACRO INSTRUCTIONS .. 281

23. RESERVED SYMBOLS FOR ASSEMBLER ... 282

23.1 SYSTEM REGISTER (SYSREG) ... 282

23.2 DATA BUFFER (DBF) .. 282

23.3 PORT REGISTER ... 283

23.4 REGISTER FILES ... 284

10

µPD17062

23.5 PERIPHERAL HARDWARE REGISTER .. 286

23.6 OTHERS ... 286

24. ELECTRICAL CHARACTERISTICS ... 287

25. PACKAGE DRAWINGS... 289

26. RECOMMENDED SOLDERING CONDITIONS ... 291

APPENDIX DEVELOPMENT TOOLS ... 292

11

µPD17062

1. PINS

1.1 PIN FUNCTIONS

Pin No.
DIP QFP

(GC)
Symbol Description Output type At power-on reset

P0C3

|

P0C0

P0D3/ADC5

|

P0D0/ADC2

PWM3

|

PWM0

VDD

VDD1

VDD0

VCO

EO

GND

GND2

GND1

GND0

PSC

CE

XOUT

XIN

1

|

4

5

|

8

9

|

12

13

14

15

16

17

18

19

20

58

|

61

62

|

1

2

|

6

9

11

13

15

16

17

18

19

4-bit output port

Input of port 0D and A/D converter

• P0D3 to P0D0

4-bit input port containing a pull-down resis-

tor.

• ADC5 to ADC2

Input of a 4-bit A/D converter, which is a soft-

ware-based successive-approximation type. The

reference voltage is VDD.

Output of a 6-bit D/A converter. The output type

is PWM. Output is done at a frequency of 15.625

kHz. The pin can also be used as a one-bit output

port.

Supplies the power to the device. To enable all

functions, 5 V ±10% is supplied. To operate only

the CPU, 4 V is required. In the clock-stop state,

the voltage can be reduced to 3.5 V.

When the supply voltage increases from 0 V to 4

V, a power-on reset occurs and the program is

started from address 0.

Apply an identical voltage to all pins.

Inputs the signal obtained by dividing the local

oscillation output by the specialized prescaler.

Outputs the PLL error signal. The signal is input

through the external LPF to the local oscillation

circuit.

Grounds the device. Connect all pins to ground.

Outputs the signal to switch the frequency divi-

sion ratio of the specialized prescaler.

Inputs the signal to select the device.

To operate the PLL and IDC, set the input signal

high.

If the input signal is low, the device can be backed

up with a low current drain by executing a stop

instruction.

When the input signal goes high, the device is reset

and the program is started from address 0.

Used to connect a crystal.

An 8-MHz crystal is used.

CMOS push-pull

—

N-ch open drain

—

—

CMOS tristate

—

CMOS push-pull

—

—

—

Undefined

Input

Undefined

—

Input

Hi-z

—

Undefined

Input

—

Input

12

µPD17062

Pin No.
DIP QFP

(GC)
Symbol Description Output type At power-on reset

P1A3

|

P1A0

P1B3

|

P1B0

RED

GREEN

BLUE

BLANK

HSYNC

VSYNC

P1C3/ADC1

P1C2

P1C1

ADC0

P0B3/HSCNT

P0B2/TMIN

P0B1

P0B0/SI

P0A3/SO

P0A2/SCK

P0A1/SCL

P0A0/SDA

21

|

24

26

|

29

30

31

32

33

34

35

36

|

38

39

40

|

43

44

|

47

20

|

24

27

|

30

31

32

33

34

35

36

38

|

45

46

47

|

50

51

|

54

4-bit output port. This N-ch open-drain output

port has an intermediate withstand voltage.

4-bit I/O port. Each bit can be set for input or

output.

Outputs the character data corresponding to R, G,

and B of the IDC display. The output is active-

high.

Outputs the blanking signal for cutting the

video signal of the IDC display. The output is

active-high.

Inputs the horizontal synchronizing signal of the

IDC display. The input must be active-low.

Inputs the vertical synchronizing signal of the IDC

display. The input must be active-low. The input

signal can generate an interrupt.

Input of port 1C and A/D converter

• P1C3 to P1C1

3-bit I/O port

• ADC1

Input of a 4-bit A/D converter

Input of a 4-bit A/D converter

Serial interface and input for port 0B, port 0A,

horizontal synchronizing signal counter, and

timer

• P0A3 to P0A0

4-bit I/O port. Each bit can be set for input or

output.

• P0B3 to P0B0

4-bit I/O port. Each bit can be set for input or

output.

• HSCNT

Inputs the count of the horizontal

synchronizing signal. The input is self-

biased.

• TMIN

Timer input. The pin inputs the commercial

power to be used for the clock.

• SI, SO, SCK

Input/output for the three-wire serial interface

• SI: Serial data input

• SO: Serial data output

• SCK: Shift clock input/output

• SDA, SCL

Input/output for the two-wire serial interface

• SCL: Serial clock input/output

• SDA: Serial data input/output

N-ch open-drain

CMOS push-pull

CMOS push-pull

CMOS push-pull

—

—

CMOS push-pull

—

N-ch open-drain

(P0A1, P0A0)

CMOS push-pull

(Other than P0A1

or P0A0)

Undefined

Input

Low level

Low level

Input

Input

Input

Input

Input

13

µPD17062

Pin No.
DIP QFP

(GC)
Symbol Description Output type At power-on reset

INTNC

NC

48

—

55

5

6

7

8

10

12

14

22

25

37

39

40

41

42

44

56

57

Interrupt input. Contains the noise canceler. An

interrupt can be generated at either the rising or

falling edge of the input signal.

No connection. The pins are not connected to the

internal circuit of the device. They can be used as

desired.

— Input

14

µPD17062

1.2 EQUIVALENT CIRCUITS OF THE PINS

P0A (P0A3/SO, P0A2/SCK)

P0B (P0B1, P0B0/SI)

P1B (P1B3, P1B2, P1B1, P1B0)

P1C (P1C3/ADC1, P1C2, P1C1)

VDD

VDD

A/D converter (only for P1C/ADC)

RESET signal (except for P1C)
Read instruction (only for P1C)

P0A (P0A1/SCL, P0A0/SDA)

(I/O)

15

µPD17062

P0C (P0C3, P0C2, P0C1, P0C0)

RED, GREEN, BLUE, BLANK, PSC

(Output)

PWM (PWM3, PWM2, PWM1, PWM0)

P1A (P1A3, P1A2, P1A1, P1A0)

(Output)

P0D (P0D3/ADC5, P0D2/ADC4, P0D1/ADC3, P0D0/ADC2)

A/D Converter

High on-state
resistance

(Input)

ADC0

A/D converter selection signal

16

µPD17062

P0B3/HSCNT

Port

Horizontal synchronizing
signal counter

P-ch

N-ch

P0B2/TMIN

Port

Timer/counter

P-ch

N-ch

17

µPD17062

HSYNC, VSYNC, INTNC, CE

(Hysteresis input)

XOUT, XIN

XIN

XOUT

EO

VCO

(Input)

18

µPD17062

2. PROGRAM MEMORY (ROM)

Program memory stores the program to be executed by the CPU, as well as predetermined constant data.

2.1 CONFIGURATION OF PROGRAM MEMORY

Fig. 2-1 shows the configuration of program memory.

As shown in Fig. 2-1, the capacity of the program memory is 8K bytes (3968 × 16 bits).

Locations in program memory are addressed in units of 16 bits. The total address range is from 0000H

to 0F7FH. Memory is divided into pages. The range of page 0 is from 0000H to 07FFH, while that of page

1 is from 0800H to 0F7FH.

The range from 0800H to 0F7FH can be used as the CROM (character ROM) area in which the display patterns

for the IDC are stored. If this area is not used as CROM, it can be used as a program area.

The range from 0000H to 00FFH is a table reference area. The area is used by the JMP @AR, CALL @AR,

MOVT, PUSH, and POP instructions.

Fig. 2-1 Configuration of Program Memory

Address
Program memory (ROM)

16 bits

Page 0

Page 1 (area that can be used as CROM)

3968 steps

0000H

07FFH

0800H

0F7FH

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

19

µPD17062

2.2 FUNCTIONS OF PROGRAM MEMORY

Program memory has two basic functions:

(1) Program storage

(2) Constant data storage

A program is a set of instructions that control the CPU (Central Processing Unit: Device that actually

controls the microcontroller). The CPU executes processing sequentially according to the instructions coded

in the program. The CPU sequentially reads instructions from the program stored in program memory and

executes processing according to each instruction.

Each instruction is one word, or 16 bits in length. A single instruction can thus be stored at a single address

in program memory.

Constant data is predetermined data such as a display pattern. Constant data is read from program memory

into a data buffer (DBF) in data memory (RAM) upon execution of the specialized MOVT instruction. This

reading of constant data from memory is called table referencing.

Program memory is read-only storage that cannot be rewritten by the execution of an instruction. In this

document, program memory and ROM (read-only memory) are synonymous.

2.3 PROGRAM FLOW

A program stored in program memory is usually executed one address at a time starting from address

0000H. If another program is to be executed upon some condition being satisfied, the program flow must

be branched. To achieve this, the branch instruction (BR) is used.

If a single program is executed a number of times, the efficiency of the program memory is reduced. This

problem can be solved by storing that program at a given location and calling it using the specialized CALL

instruction. Such a program is called a subroutine while the usual program is called a main routine.

If a program is executed upon some condition being satisfied, independently of the current program flow,

the interrupt function is used. If a predetermined condition is satisfied, the interrupt function transfers control

to a specified address (vector address) irrespective of the current program flow.

These program flows are controlled by the program counter (PC), which specifies program memory

addresses.

20

µPD17062

2.4 BRANCHING A PROGRAM

A program is branched by execution of the branch instruction (BR).

Fig. 2-2 illustrates the operation of the branch instruction.

Branch instructions (BR) are divided into two types. Direct branch instructions (BR addr) transfer control

to a program memory address (addr) directly specified in its operand. Indirect branch instructions (BR @AR)

transfer control to a program memory address specified in an address register (AR), described below.

See also Chapter 3.

2.4.1 Direct Branch

A direct branch instruction uses the least significant bit of the operation code and the 11 bits of its operand,

12 bits in total, to specify the destination program memory address. The destination of the direct branch

instruction can be any address in program memory between 0000H and 0F7FH.

2.4.2 Indirect Branch

The indirect branch instruction uses the eight-bit data of an address register to specify the destination

address. The destination of the indirect branch instruction is limited to addresses between 0000H and 00FFH.

See Section 8.1.

21

µPD17062

Fig. 2-2 Operation of Branch Instruction and Machine Code

(a) Direct branch (BR addr) (b) Indirect branch (BR @AR)

Address Program memory

Label: Instruction (Machine code)

Page 0

Page 1

0000H

0500H
07FFH
0800H

0900H

0F7FH

BR AAA (0C500)
BR BBB (0D100)

AAA:

BBB:

BR AAA (0C500)

BR BBB (0D100)

Address Program memory

Label: Instruction (Machine code)

Page 0

Page 1

0000H
0010H
0085H

0500H
07FFH
0800H

0F7FH

MOV AR0, #5H
MOV AR1, #8H
BR @AR

MOV AR0, #0H
MOV AR1, #1H
BR @AR

Remark The machine code (16 bits) of the 17K series consists of five blocks, of one bit, four bits, three bits,

four bits, and four bits. In this document, machine code is represented in these blocks so that

it can be easily understood.

Example Machine code 0C500 → 0 1100 101 0000 0000

1 4 3 4 4

2.4.3 Notes on Debugging

Direct branch instructions to page 0 (addresses 0000H to 07FFH) and page 1 (addresses 0800H to 0F7FH)

use different operation codes, as shown in Fig. 2-2.

The operation codes of the direct branch instructions to page 0 and page 1 are 0CH, and 0DH, respectively.

The difference arises because the direct branch instruction uses the addr operand, which is only 11 bits

long, together with the least significant bit of the operation code, to specify the branch destination address.

When assembling a program, the 17K series assembler (AS17K) references a jump destination identified

by a label and automatically converts the that instruction.

If the program is patched during debugging, the programmer must determine whether the branch

destination is on page 0 or page 1 and convert the instruction into operation code 0CH or 0DH.

If address BBB in (a) of Fig. 2-2 is patched from 0900H to 0910H, for example, the machine code of the BR

BBB instruction must be changed to 0D110.

22

µPD17062

2.5 SUBROUTINE

If a subroutine is executed, the specialized subroutine call instruction (CALL) and subroutine return

instruction (RET, RETSK) are used.

Fig. 2-3 illustrates the operation of subroutine call.

Subroutine call instructions are divided into two types. The direct subroutine call instruction (CALL addr)

calls the program memory address (addr) specified in its operand. The indirect subroutine call instruction

(CALL @AR) calls the program memory address specified in an address register.

The RET or RETSK instruction is used to return control from a subroutine. The RET or RETSK instruction

returns control to a program memory address next to the address at which the subroutine call instruction

(CALL) was executed. Upon execution of the RETSK instruction, the first instruction after the return is executed

as a no-operation instruction (NOP).

See also Chapter 3.

2.5.1 Direct Subroutine Call

The direct subroutine call instruction uses 11 bits of its operand to specify the program memory address

to be called. If the direct subroutine call instruction is used, the destination, or the first address of the

subroutine to be called, must be page 0 (addresses 0000H to 07FFH). The instruction cannot call a subroutine

whose first address is in page 1 (addresses 0800H to 0F7FH).

The subroutine return instruction (RET, RETSK) can be in page 1. The CALL instruction can be in page 0

or page 1.

Examples 1. When the subroutine return instruction is in page 0

When the first address of the subroutine is in page 0, as shown in Fig. 2-4, the return address

and return instruction can be in page 0 or page 1. When only the first address of the subroutine

is in page 0, the CALL instruction can be used in either page. If the first address of the

subroutine cannot be placed in page 0 because of programming restrictions, the method

shown in example 2 can be used.

2. When the first address of the subroutine is in page 1

The branch instruction (BR) is placed in page 0, as shown in Fig. 2-4, and the desired

subroutine (SUB1) is called via the BR instruction.

2.5.2 Indirect Subroutine Call

The indirect subroutine call instruction (CALL @AR) uses the 8-bit data in an address register (AR) to specify

the address of a subroutine to be called. The instruction can call a subroutine from a program memory address

between 0000H and 00FFH.

See Section 8.1.

23

µPD17062

Fig. 2-3 Operation of Subroutine Call Instruction

(a) Direct subroutine call (CALL addr) (b) Indirect subroutine call (CALL @AR)

Address Program memory

Instruction
CALL SUB1

Page 0

Page 1

0000H

07FFH

0800H

0F7FH

CALL SUB1

Address Program memory

Instruction

Page 0

Page 1

0000H

0010H
0085H

MOV AR0, #5H
MOV AR1, #8H
CALL @AR

Label: Label:

0500H SUB1:

RET

07FFH

0800H

0F7FH

SUB2:
SUB3:

RET

MOV AR0, #0H
MOV AR1, #1H
CALL @AR

Fig. 2-4 Sample Uses of Subroutine Call Instruction

(a) If the subroutine return instruction is in page 1 (b) If the first address of the subroutine is in page 1

Address Program memory

Instruction
CALL SUB1

Page 0

Page 1

0000H

07FFH

0800H

0F7FH

CALL SUB1

Address Program memory

Instruction
CALL SUB1

Page 0

Page 1

0000HLabel: Label:

0500H SUB1:

RET

07FFH

0800H

0F7FH

SUB1:BR SUB2

0890H SUB2:

CALL SUB1

RET

24

µPD17062

2.6 TABLE REFERENCE

The table reference instruction is used to reference the constant data in program memory. If the MOVT

DBF, @AR instruction is executed, data at the program memory address specified in an address register is

placed in a data buffer (DBF).

Because each data item in program memory consists of 16 bits, the constant data placed in the data buffer

by the MOVT instruction also consists of 16 bits (four words). Because the address register consists of eight

bits, the MOVT instruction can reference a program memory address between 0000H and 00FFH.

When table referencing is executed, a single stack is used.

See Sections 8.1 and 10.3.

2.7 NOTES ON USING THE BRANCH INSTRUCTION AND SUBROUTINE CALL INSTRUCTION

The 17K series assembler (AS17K) detects an error if a program memory address (numeric address) is

directly specified in the operand of the branch instruction (BR) or subroutine call instruction (CALL).

The assembler provides this function to minimize the number of bugs arising from program modification.

Examples 1. Instruction causing an error

; #

BR 0005H ; The assembler detects the error.

; $

CALL 00F0H ;

2. Instruction causing no error

; %

LOOP1: ; The BR or CALL instruction is executed for a label used in the

BR LOOP1 ; program.

; &

SUB1: ;

CALL SUB1 ;

; (

LOOP2 LAB 0005H ; As a label type, 0005H is assigned to LOOP2.

BR LOOP2 ;

;)

BR. LD. 0005H ; The numeric value of the operand is converted to a label type.

; It is recommended that this method not be used to reduce

; the number of bugs.

For details, refer to the AS17K User’s Manual.

25

µPD17062

3. PROGRAM COUNTER (PC)

The program counter addresses program memory or a program. It is a 12-bit binary counter.

Fig. 3-1 Program Counter

PC11 PC9PC10 PC8 PC6PC7 PC5 PC3PC4 PC2 PC0PC1

12 bits

Priority Interrupt cause Vector address

1 INTNC pin 4H

2 Internal timer 3H

3 VSYNC pin 2H

4 Serial interface 1H

Normally, the program counter is incremented by 1 each time an instruction is executed. When a branch

instruction or a subroutine call instruction is executed, however, the address specified in the operand field

is loaded into the program counter. If a skip instruction has been executed, the address of the instruction

following the skip instruction is specified, regardless of the contents of the skip instruction. If the specified

address contains a skip condition, the instruction following the skip instruction is regarded as being a NOP

instruction. That is, the NOP instruction is executed, and the address of the next instruction is specified.

If an interrupt request is accepted, one of addresses 1 to 4 (depending on the cause of the interrupt) is loaded

into the PC.

If a power-on reset or a CE reset is performed, the program counter is reset to address 0.

Table 3-1 Vector Addresses upon Interrupt Occurrence

26

µPD17062

4. STACK

The stack is a register used to save an address returned by a program or the contents of the system register,

described later, when a subroutine call occurs or an interrupt is accepted.

4.1 COMPONENTS

The stack consists of a stack pointer (SP), which is a 4-bit binary counter, six 13-bit address stack registers

(ASRs), and two 3-bit interrupt stack registers.

4.2 STACK POINTER (SP)

The stack pointer is located at address 01H in the register file, and specifies an address stack register. The

contents of the stack pointer are decremented by 1 whenever a push operation (CALL, MOVT, or PUSH

instruction or interrupt acceptance) is performed, or incremented by 1 whenever a pop operation (RET, RETSK,

RETI, MOVT, or POP instruction) is performed.

The high-order bit of the stack pointer is always set to 0. The stack pointer can indicate any of eight different

values, 0H to 7H. However, 6H and 7H are not assigned to the stack.

Fig. 4-1 Structure of Stack Pointer

Table 4-1 Behavior of Stack Pointer

0 (SPb2) (SPb1) (SPb0)

MSB LSB

 Instruction Stack pointer value

CALL addr

CALL @AR

MOVT DBF, @AR SP – 1

PUSH AR

Interrupt acceptance

RET

RETSK

MOVT DBF, @AR SP + 1

POP AR

RETI

27

µPD17062

4.3 ADDRESS STACK REGISTERS (ASRs)

There are six address stack registers, each consisting of 13 bits. After a subroutine call instruction has been

executed or an interrupt request accepted, the contents of the address stack register will contain a value that

is equal to the contents of the program counter, plus one, or the return address. The contents of an address

stack register are loaded into the program counter by executing a return instruction, after which control returns

to the original program flow.

The address stack registers are used for both subroutine calls and interrupts. If two levels of the address

stack registers are used for interrupts, the remaining four levels can be used for subroutine calls.

If a MOVT instruction is executed, an address stack register is used temporarily.

Fig. 4-2 Structure of Address Stack Registers

4.4 INTERRUPT STACK REGISTERS

There are two interrupt stack registers, each consisting of three bits, as shown in Fig. 4-3.

If an interrupt is accepted, the value of the two bits of the bank register (BANK) and the value of the one

bit of the index-enable flag (IXE) in the system register (SYSREG), described later, are saved to an interrupt

stack register. Once an interrupt return instruction (RETI) has been executed, the contents of the interrupt

stack register are returned to the bank register and the index-enable flag of the system register.

Unlike the address stack registers, the interrupt stack registers contain no addresses specified by the stack

pointer. As shown in Fig. 4-4, data is saved to an interrupt stack pointer each time an interrupt is accepted,

the saved data being returned whenever an interrupt return instruction is executed. If accepted interrupts

consist of more than two levels, the first level of data is pushed out. Thus, it must be saved by the program.

If a power-on reset is performed, the contents of the interrupt stack registers become undefined. Even if

a CE reset is performed or a clock stop instruction is executed, however, the contents of the interrupt stack

registers remain as is.

ASR0

ASR1

ASR2

ASR3

ASR4

ASR5

0H

1H

2H

3H

4H

5H

Stack pointer value

28

µPD17062

Fig. 4-3 Structure of Interrupt Stack Registers

MSB LSB

0H

1H

BANKSK0

BANKSK1

IXESK0

IXESK1

Fig. 4-4 Behavior of Interrupt Stack Registers

Not defined B A Not definedA

Not defined A Not defined Not definedNot defined

RETIRETIInterrupt BInterrupt AVDD is applied.

29

µPD17062

5. DATA MEMORY (RAM)

Data memory is used to store data for operations and control. Simply by executing an appropriate

instruction, data can be written to and read from data memory at any time.

5.1 STRUCTURE OF DATA MEMORY

Fig. 5-1 shows the structure of data memory.

As shown in Fig. 5-1, data memory is divided into three units called banks. These three banks are called

BANK0, BANK1, and BANK2.

In each bank, data is assigned an address in units of four bits. The high-order three bits are called the row

address, while the low-order four bits are called the column address. For example, the data memory location

having row address 1H and column address AH is referred to as the data memory location having address

1AH. One address consists of four bits of memory. These four bits are called a nibble.

Data memory is divided into the blocks described in Sections 5.1.1 to 5.1.5, according to function.

30

µPD17062

Fig. 5-1 Data Memory Structure

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

DBF3 DBF2 DBF1 DBF0

P0A
 (4 bits) System register

P0B
 (4 bits)

P0C
 (4 bits)

P0D
 (4 bits)

BANK0

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7 P1A
 (4 bits) System register

P1B
 (4 bits)

P1C
 (4 bits)

Fixed
 at 0

BANK1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7 P0A
 (4 bits) System register

P0B
 (4 bits)

P0C
 (4 bits)

P0D
 (4 bits)

BANK2
Th

e
sa

m
e

re
gi

st
er

 is
 a

llo
ca

te
d

fo
r

ea
ch

 b
an

k.

31

µPD17062

5.1.1 Structure of the System Register (SYSREG)

The system register consists of 12 nibbles, located at addresses 74H to 7FH in data memory. The system

register is allocated regardless of the bank. That is, the system register is always located at addresses 74H

to 7FH, regardless of the bank.

Fig. 5-2 shows the structure.

Fig. 5-2 Structure of the System Register

5.1.2 Structure of the Data Buffer (DBF)

The data buffer consists of four nibbles located at addresses 0CH to 0FH of BANK0 in data memory.

Fig. 5-3 shows the structure.

Fig. 5-3 Structure of the Data Buffer

74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FHAddress

Program
status word
(PSWORD)

System register (SYSREG)

Register
(symbol)

Address register
(AR)

Window
register

(WR)

Bank
register
(BANK)

Index register (IX)

Data memory row
address pointer

(MP)

General-purpose
register pointer

(RP)

0CH

DBF3

0DH

DBF2

0EH

DBF1

0FH

DBF0

Data buffer (DBF)

Address

Symbol

32

µPD17062

5.1.3 Structure of the General-Purpose Register (GR)

The general-purpose register consists of 12 nibbles, specified with an arbitrary row address, in data

memory.

An arbitrary row address is specified using the general-purpose register pointer in the system register.

Fig. 5-4 shows the structure.

Fig. 5-4 Structure of the General-Purpose Register (GR)

SYSREG

0
1
2
3
4
5
6
7

SYSREG

0
1
2
3
4
5
6
7

R
ow

 a
dd

re
ss

0 1 2 3 4 5 6 7 8 9 A B C D E F

Column address

BANK0

BANK1

General-purpose register

The same register is allocated
for each bank.

Area specifiable as general-purpose
register

Pointed to by general-purpose
register pointer (RP) in system
register.

SYSREG

0
1
2
3
4
5
6
7

BANK2

33

µPD17062

5.1.4 Structure of Port Data Registers (port register)

The port registers consist of 12 nibbles at addresses 70H to 73H of the banks of data memory.

Fig. 5-5 shows the structure of the port registers.

As shown in Fig. 5-5, the same port registers are allocated in BANK0 and BANK2. Thus, the port registers

actually consist of eight nibbles.

Fig. 5-5 Structure of Port Registers

5.1.5 Structure of General-Purpose Data Memory

General-purpose data memory consists of that part of memory other than the system register and the port

registers of data memory.

General-purpose data memory consists of a total of 336 words, with 112 words in each of BANK0 to BANK2.

5.1.6 Unmounted Data Memory

As shown in Fig. 5-6, nothing is assigned to bit 0 of address 72H in BANK1 of the port registers. For an

explanation of this address, see Section 5.3.2.

70H 71H 72H 73H

P0A P0B P0C P0D

P1A P1B P1C Fixed at 0

BANK0

BANK2

BANK1

Port register

Address

Sy
m

bo
l

34

µPD17062

5.2 FUNCTIONS OF DATA MEMORY

Data memory can be used to perform, with one instruction, a four-bit operation, comparison, decision, or

transfer of the data in data memory and immediate data (arbitrary data) by executing one of the data memory

manipulation instructions listed in Table 5-1.

If the general-purpose register is used, a four-bit operation, comparison, or transfer between data memory

and the general-purpose register can be performed by a single instruction.

Examples are given below. See Chapters 6 and 7 for details.

Example 1. Operation on data in data memory

; #

MOV 35H, #0001B ; Transfer (write) immediate data 0001B to data

; memory address 35H in the currently selected bank.

; $

ADD 76H, #0001B ; Add immediate data 0001B to the contents of

; data memory address 76H in the currently selected ;bank.

In instructions # and $, the currently selected bank is specified in the bank register of the

system register. For an explanation of the bank register, see Chapter 8.

In $, the instruction is for addition to the contents of data memory address 76H. Address

76H is part of the system register. Because the system register always exists regardless of

the bank, the ADD instruction eventually adds 0001B to the contents of address 76H of the

system register, regardless of the bank.

Remark For explanation of how to code instructions, see Section 5.3.1.

Example 2. Operation between data memory and the general-purpose register

Assume that the general-purpose register is allocated to row address 1H of BANK0.

; #

ADD 7H, 36H ; Add the contents of data memory address 36H in the

; currently selected bank to the contents of the

; general-purpose register location having column address

; 7H, or address 17H of BANK0.

; $

LD 7H, 36H ; Transfer the contents of data memory address 36H to

; the general-purpose register location having column

; address 7H.

; In this instruction, the general-purpose register

; location is address 17H of BANK0.

The system register, data buffer, general-purpose register, and port registers can be manipulated in the

same way as data memory by using the data memory manipulation instructions.

Sections 5.2.1 to 5.2.4 describe the functions of these registers.

35

µPD17062

5.2.1 Function of System Register (SYSREG)

The system register is used to control the CPU.

For example, the bank register shown in Fig. 5-2 is used to specify a data memory bank, while the general-

purpose register pointer specifies the row address of the general-purpose register.

See Chapter 8 for details.

5.2.2 Function of General-Purpose Register (GR)

The general-purpose register can be used both to perform operations on the data in data memory and to

transfer data to and from data memory.

The bank and the row address for the general-purpose register are specified by the general-purpose register

pointer in the system register. The general-purpose register pointer of the µPD17062 always specifies BANK0.

For example, if the general-purpose register pointer is set to 0, 16 nibbles at row address 0 of BANK0, or

addresses 00H to 0FH of BANK0, are allocated as the general-purpose register.

Note that if the general-purpose register is used, transfer and arithmetic/logical instructions that involve

the general-purpose register and immediate data cannot be executed. That is, the execution of a transfer or

an arithmetic/logical instruction that involves the general-purpose register and immediate data requires that

the general-purpose register be treated as data memory.

For example, assume that row address 0H of BANK0 is allocated as the general-purpose register (i.e., the

value of the general-purpose register pointer is 0). In this case, if the currently selected bank is BANK0 (i.e.,

the value of the bank register is 0), executing ADD 00H, #1 increments by 1 the contents of address 00H of

BANK0, which is allocated as the general register. However, if the currently selected bank is BANK1 (i.e., the

value of the bank register is 1), executing ADD 00H, #1 increments by 1 the contents of address 00H of BANK1.

See Chapter 6 for details.

5.2.3 Data Buffer (DBF)

The data buffer is used to store data to be transferred to a peripheral circuit, such as the reference voltage

setting data for an A/D converter. It is also used to store data transferred from a peripheral circuit, such as

input data for a serial interface.

See Chapter 10 for details.

5.2.4 General-Purpose Port Data Registers (port registers)

Port registers are used both to store output data for general-purpose I/O ports and to read input data. The

output of the pins assigned as an output port is determined by storing data into the port registers that

correspond to those pins. The input status of those pins assigned as an input port can be detected by reading

the contents of the port registers corresponding to those pins. Fig. 5-6 shows the correspondence between

the port registers and ports (pins).

See Chapter 15 for details.

36

µPD17062

Table 5-1 Data Memory Manipulation Instructions

Function Instruction

ADD

ADDC

SUB

SUBC

AND

OR

XOR

SKE

SKGE

SKLT

SKNE

MOV

LD

ST

SKT

SKF

Addition

Subtraction

Logical

operation

Operation

Comparison

Transfer

Decision

37

µPD17062

Fig. 5-6 Correspondence Between Port Registers and Ports (Pins)

70H P0A

71H P0B

72H P0C

73H P0D

70H P1A

71H P1B

72H P1C

73H Fixed at 0

b3 P0A3

b2 P0A2

b1 P0A1

b0 P0A0

b3 P0B3

b2 P0B2

b1 P0B1

b0 P0B0

b3 P0C3

b2 P0C2

b1 P0C1

b0 P0C0

b3 P0D3

b2 P0D2

b1 P0D1

b0 P0D0

b3 P1A3

b2 P1A2

b1 P1A1

b0 P1A0

b3 P1B3

b2 P1B2

b1 P1B1

b0 P1B0

b3 P1C3

b2 P1C2

b1 P1C1

b0 P1C0

Port0A

Port0B

Port0C

Port0D

Port1A

Port1B

Port1C

P0A3

P0A2

P0A1

P0A0

P0B3

P0B2

P0B1

P0B0

P0C3

P0C2

P0C1

P0C0

P0D3

P0D2

P0D1

P0D0

P1A3

P1A2

P1A1

P1A0

P1B3

P1B2

P1B1

P1B0

P1C3

P1C2

P1C1

 –

General-purpose port data register

AddressBank Symbol Bit symbol

Corresponding
port

Pin

Symbol Input or output

BANK0
BANK2

BANK1

Input and output
(group I/O)

Output

Input

Input and output
(bit I/O)

Output

Input and output
(bit I/O)

Input and output
(bit I/O)

38

µPD17062

5.3 NOTES ON USING DATA MEMORY

5.3.1 Addressing Data Memory

If the 17K series assembler is being used and a numeric representing a data memory address is specified

directly in an operand of a data memory manipulation instruction, as shown in example 1, an error will occur.

This error occurs to facilitate the maintainability of programs and to reduce the number of causes of bugs

when a program is modified. In this data sheet, however, real-address notation is used in the sample programs

to make them easy to understand. When coding an actual program, refer to the assembler instruction manual.

Example 1.

Instructions that result in an error

; #

MOV 2FH, #0001B ; Address 2FH is specified directly.

; $

MOV 0.2FH, #0001B ; Address 2FH in BANK0 is specified directly.

Instructions that do not cause an error

; %

M02F MEM 0.2FH ; Address 2FH of BANK0 is defined symbolically in

MOV M02F, #0001B ; M02F as a memory-type address.

; &

MOV .MD.2FH, #0001B ; Address 2FH is converted into a memory-type

; address by using .MD.. However, the use of this type of

; instruction should be avoided to reduce the

; likelihood of bugs arising.

Using an assembler pseudo instruction, namely the MEM instruction (symbol definition pseudo instruc-

tion), symbolically define a data memory address in advance.

If a data memory address is defined symbolically, a data memory bank must also be specified, as shown

in example 2.

This data memory bank specification is used when a data memory map is automatically created in the

assembler.

Note that if a symbolically defined data memory address for BANK2 is used in the range of BANK1 in a

program, as shown in example 2, the operation is performed in BANK1 data memory.

39

µPD17062

Example 2.

5.3.2 Notes on Using Unmounted Data Memory

As shown in Fig. 5-6, nothing is actually assigned to bit 0 (LSB) of address 72H of BANK1 of the port registers.

If a data memory manipulation instruction is executed for this address, the following operations are

performed:

(1) Device behavior

If a read instruction is executed, a 0 is read.

Executing a write instruction results in no change.

(2) Assembler behavior

Normal assembly is performed.

No error occurs.

(3) Emulator (IE-17K) behavior

If a read instruction is executed, a 0 is read.

Executing a write instruction results in no change.

No error occurs.

M1

M2

M3

MEM

MEM

MEM

0.15H

1.15H

2.15H

;

;

;

Bank Row address Column address

BANK1

MOV M1,

MOV M2,

MOV M3,

#0000B

#0000B

#0000B

;

;

;

; Assembler built-in macro instruction BANK ← 1

M1, M2, and M3 are defined symbolically in # for different

banks, but are for BANK1 in this program. Thus, all of these

three instructions write 0s to data memory address 15H in BANK1.

Symbol definition pseudo instruction

40

µPD17062

6. GENERAL-PURPOSE REGISTER (GR)

The general-purpose register is allocated in data memory space, and is used to perform direct operations

on the data in data memory and to transfer data to and from data memory.

6.1 STRUCTURE OF THE GENERAL-PURPOSE REGISTER

Fig. 6-1 shows the structure of the general-purpose register.

As shown in Fig. 6-1, 16 words (16 words × 4 bits) having the same row address in data memory space can

be used as the general-purpose register.

The row address to be used as the general-purpose register can be specified using the general-purpose

register pointer of the system register. The general-purpose register consists of seven bits. However, the

high-order four bits are fixed to 0 so, within the data memory space, only row addresses 0H to 7H of BANK0

can be used as the general-purpose register.

See Section 8.6.

6.2 FUNCTION OF THE GENERAL-PURPOSE REGISTER

The general-purpose register can be used to perform an operation or to transfer data between itself and

data memory with the execution of a single instruction. The general-purpose register is allocated in data

memory space. This enables an operation or transfer to be performed between data memory locations by

the execution of a single instruction.

Like other data memory, the general-purpose register can be controlled using a data memory manipulation

instruction.

41

µPD17062

Fig. 6-1 Structure of General-Purpose Register

RPH RPL

7DH 7EH

b3 b2 b1 b0 b3 b2 b1 b0

0 0 0 0 b2 b1 b0 B
C
D

(RP)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

2

3

4

5

6

7

1

0

2

3

4

5

6

7

1

0

2

3

4

5

6

7

1

Column address

Row addresses 0H to 7H
of BANK0 can be freely
specified using the general-
purpose register pointer (RP).

R
ow

 a
dd

re
ss General-purpose register (16 words) General-purpose

register allocated
when RP = 010B.

System register RP

BANK0

System register

BANK1

The same system
register is viewed.

System register

BANK2

General-purpose register
pointer (RP)

Symbol

Address

Bit

Function

42

µPD17062

6.3 ADDRESS GENERATION FOR GENERAL-PURPOSE REGISTER AND DATA MEMORY IN INDIVIDUAL

INSTRUCTIONS

Table 6-1 lists the operation and transfer instructions that can be executed for the data in the general-

purpose register and data memory.

Consider the following instruction:

ADD r, m ((r) ← (r) + (m))

Upon executing this instruction, the address of the general-purpose register is generated from the value

of the general-purpose register pointer and the value specified in r, as shown in Table 6-2. Then, the contents

of the general-purpose register specified by the generated address of the general-purpose register are added

to the contents of the data memory location specified in m, the result being stored into the general-purpose

register.

The address of the general-purpose register is generated, as described above, for each of the instructions

listed in Table 6-1.

Table 6-1 Manipulation Instructions Executed between the General-Purpose Register and Data Memory

Table 6-2 Address Generation for General-Purpose Register and Data Memory

Data memory address

specified in m

Instruction Address
Generated address

Bank Row address Column address

General-purpose register

address specified in r
ADD r, m

(0000B)

(BANK)

(00 × × B)

m

(RP) r

Instruction set Instruction Operation

Addition ADD r, m (r) ← (r) + (m)

ADDC r, m (r) ← (r) + (m) + CY

Subtraction SUB r, m (r) ← (r) – (m)

SUBC r, m (r) ← (r) – (m) – CY

Logical operation AND r, m (r) ← (r) ∧ (m)

OR r, m (r) ← (r) ∨ (m)

XOR r, m (r) ← (r) ∨− (m)

Transfer LD r, m (r) ← (m)

ST m, r (m) ← (r)

MOV @r, m if MPE = 1: (MP, (r)) ← (m)

if MPE = 0: (BANK, mR, (r)) ← (m)

MOV m, @r if MPE = 1: (m) ← (MP, (r))

if MPE = 0: (m) ← (BANK, mR, (r))

Shift RORC r Right shift, including a carry

43

µPD17062

Example 1. When BANK0 is selected

AND RPL, #0001B ; RP ← 0000000B; The general-purpose register is allocated in row

; address 0H in BANK0.

ADD 04H, 56H ;

Executing the above instruction adds the contents of address 04H of BANK0, part of the general-purpose

register, to the contents of data memory address 56H, then stores the result into address 04H of the general-

purpose register. See Fig. 6-2.

Fig. 6-2 Execution of Instructions in Example 1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

2

3

4

5

6

7

1

M

RP

0000000B

BANK0

ADD 04H, 56H

System register

Column address

General-purpose register

R
ow

 a
dd

re
ss

44

µPD17062

Example 2. When BANK0 is selected and MPE = 0 is specified

MOV 04H, #8 ; 04H ← 8

AND RPL, #0001B ; RP ← 0000000B; The general-purpose register is allocated in row

; address 0H in BANK0.

MOV @04H, 52H

Executing the above instruction transfers the contents of data memory address 52H to address 58H. The

MOV @r, m instruction is called an indirect transfer of the general-purpose register contents. In this

instruction, the contents of the general-purpose register address specified in r (8 in the above example) consist

of the column address of data memory, and the row address specified in m (5 in the above example) is the

row address of data memory. That is, the data memory address is 58H (see Fig. 6-3).

See Section 8.5 for an explanation of the indirect transfer of the general-purpose register contents.

Fig. 6-3 Execution of Instructions in Example 2

Example 3.

AND RPL, #0000B ; RP ← 0000000B; The general-purpose register is allocated in row

; address 0H of BANK0.

MOV BANK, #0010B ; BANK2

LD 01H, 31H

LD 02H, 32H

LD 03H, 33H

LD 04H, 34H

OR RPL, #1000B ; RP ← 0000100B; The general-purpose register is allocated in row

; address 4H of BANK0.

LD 05H, 45H

LD 06H, 46H

LD 07H, 47H

LD 08H, 48H

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

2

3

4

5

6

7

1

RP

BANK0

MOV

M

@ 04H, 56H

8

System register

Column address

General-purpose register

R
ow

 a
dd

re
ss

45

µPD17062

Example 3 shows a program that transfers eight words of data from BANK2 to BANK0 data memory in units

of four words, as shown in Fig. 6-4. If the general-purpose register is allocated in a fixed row address, for

example, only in row address 0 of BANK0, instructions are needed to transfer all of the eight words to the

register and then store them into data memory. In contrast, if the row address of the general-purpose register

is changed using the general-purpose register pointer as shown in example 3, the operation can be completed

simply by executing a storage instruction.

Fig. 6-4 Execution of Instructions in Example 3

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

2

3

4

5

6

7

1

RP

BANK0

0

2

3

4

5

6

7

1

BANK1

0

2

3

4

5

6

7

1

BANK2

RP = 0000000B

RP = 0000100B

System register

Column address

R
ow

 a
dd

re
ss

System register

System register

46

µPD17062

6.4 NOTES ON USING THE GENERAL-PURPOSE REGISTER

This section provides notes on using the general-purpose register, referring to the following example:

Example

AND RPL, #000B ; RP ← 0000010B

OR RPL, #0100B ;

MOV BANK, #0000B ; BANK0

LD 04H, 32H

Executing the above instructions loads the contents of address 32H of BANK0 data memory into address

24H in the general-purpose register of BANK0.

In the above example, the general-purpose register is allocated in row address 2H of BANK0, so that the

address of the general-purpose register specified in r in instruction LD r, m is address 24H of BANK0. The

data memory address specified in m is address 32H of BANK0. (See Fig. 6-5.)

Note that it is necessary to code an actual data memory address, for example, 24H, as the value specified

in r when using the assembler. In this case, only the low-order four bits are needed as the value for r, so the

assembler ignores value 2H, which is a row address. Thus, executing instruction LD 24H, 32H produces the

same result as executing the instruction in the above example.

If, when using the assembler, the address of the general-purpose register is specified directly in an operand

of an instruction, as shown below, an error occurs.

Instruction that causes an error

LD 04H, 32H ; The address of the general-purpose register is coded as 04.

Most commonly used method

R1 MEM 0.04H ;

M1 MEM 0.32H ; # R1 and M1 are defined as memory-type addresses, and are

LD R1, M1 ; assigned addresses 04H and 32H of BANK0, respectively.

Executing the following instructions produces the same result as executing the instructions in # because

R1 and R2 are assigned the same column address.

R2 MEM 0.34H

M1 MEM 0.32H

LD R2, M1

47

µPD17062

Fig. 6-5 Execution of the Above Example

Also, note the following when the general-purpose register is being used. No arithmetic/logical instructions

are provided for the general-purpose register and immediate data. That is, the execution of an arithmetic/

logical instruction that involves data memory allocated as the general-purpose register and immediate data

requires that the data memory be treated as data memory rather than the general-purpose register.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

2

3

4

5

6

7

1

RP

BANK0

RP = 0000010B

LD 04H, 32H

System register

Column address

General-purpose register

R
ow

 a
dd

re
ss

48

µPD17062

7. ARITHMETIC LOGIC UNIT (ALU) BLOCK

7.1 OVERVIEW

Fig. 7-1 is an overview of the ALU block.

As shown in Fig. 7-1, the ALU block consists of the ALU, temporary storage registers A and B, program

status word, decimal conversion circuit, and data memory address controller.

The ALU performs arithmetic and logic operations on the 4-bit data in the data memory and performs

discrimination, comparison, rotation, and transfer.

Fig. 7-1 Overview of the ALU Block

Data memory

Data bus

Program status
word

Address
controller

Temporary
storage

register A

Temporary
storage

register B

Indexing memory
pointer

Detecting a carry,
borrow, or zero
Setting decimal
calculation or result
storage

ALU
 • Arithmetic operation
 • Logic operation
 • Bit discrimination
 • Comparative
 discrimination
 • Rotation
 • Transfer

Decimal conversion

49

µPD17062

7.2 CONFIGURATION AND FUNCTIONS OF THE COMPONENTS OF THE ALU BLOCK

7.2.1 ALU

In response to a programmed instruction, the ALU performs 4-bit arithmetic or logic processing, bit

discrimination, comparative discrimination, rotation, or transfer.

7.2.2 Temporary Storage Registers A and B

Temporary storage registers A and B temporarily hold the 4-bit data.

These registers are automatically used when an instruction is executed. They cannot be controlled by a

program.

7.2.3 Program Status Word

A program status word controls the operation of the ALU and holds the status of the ALU.

For details of the program status word, see Section 8.7.

7.2.4 Decimal Conversion Circuit

If the BCD flag of the program status word is set to 1 when an arithmetic operation is executed, the decimal

conversion circuit converts the results of the arithmetic operation to a decimal number.

7.2.5 Address Controller

The address controller specifies an address in data memory.

At the same time, the circuit also controls address modification by the index register or data memory row

address pointer.

7.3 ALU OPERATIONS

Table 7-1 lists the operations performed by the ALU when instructions are executed.

Table 7-2 shows the data memory address modification by the index register and data memory row address

pointer.

Table 7-3 lists the converted decimal data used in decimal operations.

50

µPD17062

Table 7-1 ALU Operations

A
LU

 fu
nc

tio
n

A
d

d
it

io
n

S
u

b
tr

ac
ti

o
n

Lo
g

ic
 o

p
er

at
io

n
D

is
cr

im
i-

n
at

io
n

C
o

m
p

ar
is

o
n

T
ra

n
sf

er
R

o
ta

ti
o

n

ADD

ADDC

SUB

SUBC

OR

AND

XOR

SKT

SKF

SKE

SKNE

SKGE

SKLT

LD

ST

MOV

RORC r

r, m

m, #n4

r, m

m, #n4

r, m

m, #n4

r, m

m, #n4

r, m

m, #n4

r, m

m, #n4

r, m

m, #n4

m, #n

m, #n

m, #n4

m, #n4

m, #n4

m, #n4

r, m

m, r

m, #n4

@r, m

m, @r

0 0

0 1

1 0

1 1

Instruction

Operation difference due to program status word (PSWORD) Address modification

Value
of the

BCD flag

Value
of the

CMP flag
Operation

Operation
of the

CY flag
Operation of the Z flag Index Memory

pointer

Optional
(hold)

Optional
(hold)

Optional
(hold)

Optional
(hold)

Optional
(hold)

Optional
(hold)

Optional
(hold)

Optional
(hold)

Optional
(hold)

Optional
(reset)

Binary operation

The result is stored.

Binary operation
The result is not
stored.

Decimal operation

The result is stored.

Decimal operation
The result is not
stored.

Not changed

Not changed

Not changed

Not changed

Not changed

Set by a
carry or
borrow.
Otherwise,
the flag
is reset.

Retains the
previous
state.

Retains the previous state.

Retains the
previous
state.

Retains the previous state.

Retains the
previous
state.

Retains the previous state.

Retains the
previous
state.

Retains the previous state.

Value of b0 of
the general-
purpose
register

Retains the previous state.

Set if the operation result is
0000B. Otherwise, the flag is
reset.

Set if the operation result is
0000B. Otherwise, the flag is
reset.

Retains the status if the
operation result is 0000B.
Otherwise, the flag is reset.

Retains the status if the
operation result is 0000B.
Otherwise, the flag is reset.

Provided Not
provided

Provided Not
provided

Provided Not
provided

Provided

Provided Not
provided

Not
provided

Provided

Not
provided

Not
provided

51

µPD17062

Table 7-2 Modification of the Data Memory Address and Indirect Transfer Address by the Index Register

and Data Memory Row Address Pointer

BANK : Bank register

IX : Index register

IXE : Index enable flag

IXH : Bits 10 to 8 of the index register

IXM : Bits 7 to 4 of the index register

IXL : Bits 3 to 0 of the index register

m : Data memory address specified with mR and mC

mR : Data memory row address (high order)

mC : Data memory column address (low order)

MP : Data memory row address pointer

MPE : Memory pointer enable flag

r : General-purpose register column address

RP : General-purpose register pointer

(×) : Contents addressed by ×

b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0

IXE MPE

0 0

0 1

1 0

1 1

RP r BANK m BANK mR (r)

(r)MP

BANK m BANK mR

(r)MP

(r)IXH, IXMIX
Logical OR

General-purpose register address
specified with r Data memory address specified with m Indirect transfer address specified with @r

Bank Row
address

Column
address

Bank Row
address

Column
address

Bank Row
address

Column
address

Same as
above

Same as
above

Same as
above

Same as
above

Same as
above

Logical OR

52

µPD17062

Table 7-3 Converted Decimal Data

Remark Correct decimal conversion is not possible in the shaded area.

Operation
result

Hexadecimal addi-
tion

0 0 0000B 0 0000B

1 0 0001B 0 0001B

2 0 0010B 0 0010B

3 0 0011B 0 0011B

4 0 0100B 0 0100B

5 0 0101B 0 0101B

6 0 0110B 0 0110B

7 0 0111B 0 0111B

8 0 1000B 0 1000B

9 0 1001B 0 1001B

10 0 1010B 1 0000B

11 0 1011B 1 0001B

12 0 1100B 1 0010B

13 0 1101B 1 0011B

14 0 1110B 1 0100B

15 0 1111B 1 0101B

16 1 0000B 1 0110B

17 1 0001B 1 0111B

18 1 0010B 1 1000B

19 1 0011B 1 1001B

20 1 0100B 1 1110B

21 1 0101B 1 1111B

22 1 0110B 1 1100B

23 1 0111B 1 1101B

24 1 1000B 1 1110B

25 1 1001B 1 1111B

26 1 1010B 1 1100B

27 1 1011B 1 1101B

28 1 1100B 1 1010B

29 1 1101B 1 1011B

30 1 1110B 1 1100B

31 1 1111B 1 1101B

Operation
result

Decimal addition

CY CY Operation
result

0 0 0000B 0 0000B

1 0 0001B 0 0001B

2 0 0010B 0 0010B

3 0 0011B 0 0011B

4 0 0100B 0 0100B

5 0 0101B 0 0101B

6 0 0110B 0 0110B

7 0 0111B 0 0111B

8 0 1000B 0 1000B

9 0 1001B 0 1001B

10 0 1010B 1 1100B

11 0 1011B 1 1101B

12 0 1100B 1 1110B

13 0 1101B 1 1111B

14 0 1110B 1 1100B

15 0 1111B 1 1101B

–16 1 0000B 1 1110B

–15 1 0001B 1 1111B

–14 1 0010B 1 1100B

–13 1 0011B 1 1101B

–12 1 0100B 1 1110B

–11 1 0101B 1 1111B

–10 1 0110B 1 0000B

–9 1 0111B 1 0001B

–8 1 1000B 1 0010B

–7 1 1001B 1 0011B

–6 1 1010B 1 0100B

–5 1 1011B 1 0101B

–4 1 1100B 1 0110B

–3 1 1101B 1 0111B

–2 1 1110B 1 1000B

–1 1 1111B 1 1001B

Operation
result

Hexadecimal subtrac-
tion

Operation
result

Decimal subtraction

CY CY Operation
result

53

µPD17062

7.4 NOTES ON USING THE ALU

7.4.1 Notes on Using the Program Status Word for Operations

After an arithmetic operation has been performed on the program status word, the operation result is held

in the program status word.

The CY and Z flags of the program status word are usually set or reset according to the result of the

arithmetic operation. If the arithmetic operation is performed on the program status word itself, the result

of the operation is stored and a carry, borrow, or zero cannot be discriminated.

If the CMP flag is set, the result of the arithmetic operation is not stored and the CY and Z flags are set or

reset as usual.

7.4.2 Notes on Performing Decimal Operations

A decimal operation can be carried out only when the operation result is within the following ranges:

(1) The result of addition is between 0 and 19 in decimal.

(2) The result of subtraction is between 0 and 9 or –10 and –1 in decimal.

If a decimal operation exceeding the above ranges is performed, the CY flag is set, resulting in a value

greater than or equal to 1010B (0AH).

54

µPD17062

8. SYSTEM REGISTER (SYSREG)

“System register” is the generic name for those registers directly related to CPU control. System registers

are allocated at addresses 74H-7FH in data memory and can be referenced regardless of the bank specification.

The system register types are as follows:

Address register

Window register

Bank register

Memory pointer enable flag

Index register

Data memory row address pointer

General-purpose register pointer

Program status word

Fig. 8-1 Configuration of System Register

b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0

AR3 AR2 AR1 AR0 WR BANK
IXH IXM

MPH MPL
IXL RPH RPL PSW

74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH

0 0 0 0 0 0 0 0 0 0 P 0 0 0 0 0 0 0 0

B

C

D

C

M

P

C

Y

Z I

X

E

(IX)

Address

Register

Symbol

Bit

Data

Address register
(AR)

System register

Window
register

(WR)

Bank
register
(BANK)

Index register
(IX)

Data memory
row address

pointer
(MP)

General-
purpose
register
pointer

(RP)

Program
status
word

(PSWORD)

M

E
(MP)

55

µPD17062

b3

0

b2

0

b1

0

b0

0

b3

0

b2

0

b1

0

b0

0

b3 b2 b1 b0 b3 b2 b1 b0

AR15 (MSB) AR0 (LSB)

AR0

(77H)

AR1

(76H)

AR2

(75H)

AR3

(74H)

8.1 ADDRESS REGISTER (AR)

The address register specifies a program memory address. It is located at addresses 74H-77H. The

instructions used to manipulate the address register are indirect branch instructions (BR @AR, CALL @AR),

the table reference instruction (MOVT), and stack manipulation instructions (PUSH, POP).

An indirect branch is a branch to the program memory address specified by the contents of the address

register. Indirect branch instructions include BR @AR and CALL @AR.

Table reference is the transfer of the contents of the program memory address specified by the address

register to the DBF of data memory (BANK0 0DH-0FH). This is done by executing a MOVT instruction.

Stacks are manipulated using the PUSH and POP instructions. The PUSH instruction stores the contents

of the address register in the stack specified by the current stack pointer, and decrements the contents of the

stack pointer by 1. The POP instruction increments the contents of the stack pointer by 1, and loads the contents

of the stack specified by the current stack pointer into the address register.

AR3 and AR2 of µPD17062 are fixed at 0. Hence, the program address that can be specified by the address

register is the 256 steps of 0000H-00FFH.

Fig. 8-2 Configuration of Address Register

8.2 WINDOW REGISTER (WR)

The window register is a 4-bit register, mapped to address 78H of the system register. It is used for data

transfer together with the register file (RF), described later in this manual. All data in each register of the

register file is manipulated via the window register.

Data transfer between the window register and the register file is achieved by execution of the exclusive

PEEK WR, rf and POKE rf, WR instructions.

56

µPD17062

8.3 BANK REGISTER (BANK)

The bank register specifies a data memory bank.

The bank register contains BANK0 upon reset. The two high-order bits of address 79H are consistently set

to 0.

Data memory is classified into three banks by the bank register. When a data memory manipulation

instruction is executed, it acts on the data memory in the bank specified by the bank register.

For example, to manipulate BANK1 data memory with BANK0 set as the current bank, the bank must first

be switched to BANK1 in the bank register.

However, system registers allocated to addresses 74H-7FH of data memory are not confined to the concept

of banks. The same system registers exist at addresses 74H-7FH of all banks. Executing MOV 78H, #0 in BANK1

and MOV 78H, #0 in BANK2 both result in writing 0 to address 78H of the system register. Therefore, system

register manipulation is not constrained to the concept of banks.

When an interrupt is accepted, BANK is saved.

Table 8-1 Specification of Data Memory Bank

8.4 MEMORY POINTER ENABLE FLAG (MPE)

The MPE specifies whether to specify the row address for execution of the MOV @r, M and MOV M, @r

instructions by the MPL, or to perform execution with the same address. When the MPE is set, the row address

is specified by the MPL. When the MPE is reset, the instruction is executed with same row address.

However, the address specified by the MPL is the row address of the currently specified bank.

Bank request

Data memory bank(BANK)

b3 b2 b1 b0

0 0 0 0 BANK0

0 0 0 1 BANK1

0 0 1 0 BANK2

0 0 1 1 Not to be set

57

µPD17062

8.5 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS POINTER (MP)

8.5.1 Configuration of Index Register and Data Memory Row Address Pointer

As shown in Fig. 8-1, the index register consists of 11 bits, including the three low-order bits, of 7AH (IXH)

of the system register, 7BH, and 7CH (IXM, IXL). The index register is used to indirectly specify a data memory

address.

The data memory row address pointer consists of 7 bits, including the three low-order bits of 7AH (MPH)

and 7BH (MPL).

This means that the seven high-order bits of the index register and data memory row address pointer are

shared.

The four high-order bits of the index register, i.e., the four high-order bits of the data memory row address

pointer (7AH b2-b0, 7BH b3), of µPD17062 are fixed at 0.

58

µPD17062

8.5.2 Functions of Index Register and Data Memory Row Address Pointer

When a data memory manipulation instruction is executed with the index enable flag (IXE) set to 1, the

index register ORs the data memory bank/address specified by the instruction and the contents of the index

register. Then, the index register executes the instruction in the data memory address indicated by the

operation result (in other words, the real address).

When a general-purpose register indirect transfer instruction (MOV @r, m and MOV m, @r) is executed

with the memory pointer enable flag set to 1, the data memory row address pointer executes the instruction,

regarding the indirect address bank specified by the general-purpose register and row address as being the

value of the data memory row address pointer.

Table 8-2 shows the modification of data memory and the indirect address by the index register and data

memory row address pointer.

All data memories are subject to modification by the index register and data memory row address pointer.

The following instructions are not subject to modification by the index register.

INC AR

INC IX

MOVT DBF, @AR

PUSH AR

POP AR

PEEK WR, rf

POKE rf, WR

GET DBF, P

PUT p, DBF

BR addr

BR @AR

RORC r

CALL addr

CALL @AR

RET

RETSK

RETI

EI

DI

STOP 0

HALT h

NOP

59

µPD17062

Table 8-2 Modification of Data Memory Address by Index Register and

Data Memory Row Address Pointer

 M ; Data memory address BANK ; Bank register
(M) ; Contents of data memory address (BANK) ; Contents of bank register
 m ; Data memory address excluding banks IX ; Index register
 mR ; Data memory row address (IX) ; Contents of index register
 R ; General-purpose register address IXH ; Bits b10-b8 of index register
(R) ; Contents of general-purpose register address IXM ; Bits b7-b4 of index register
 r ; General-purpose register column address IXL ; Bits b3-b0 of index register
 RP ; General-purpose register pointer MP ; Data memory row address pointer
(RP) ; Contents of general-purpose register address (MP) ; Contents of data memory row address pointer

b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0

IXE MPE

0 0

0 1

1 0

1 1

(RP) r (BANK) m (BANK) mR (R)

(MP) (R)

BANK

r

(BANK) mR

(MP)

(R)Logical OR

(IXH)

(R)

ORLogical

(IX)

ADD

ADDC

SUB

SUBC

AND

OR

XOR

SKE

SKGE

SKLT

SKNE

SKT

SKF

LD

ST

MOV

m

m, #n4

r m

m, #n4

m, #n4

m, #n

m, #n4

r m

@ r m

General-purpose register address specified by r
R

Data memory address specified by m
M

Indirect transfer address specified by @r
@R

Row
address

Column
addressBank

Row
address

Column
addressBank

Row
address

Column
addressBank

Address-modified instructions

Ad
di

tio
n/

su
bt

ra
ct

io
n

Lo
gi

ca
l o

pe
ra

tio
n

C
om

pa
ris

on
D

is
cr

im
i-

na
tio

n
Tr

an
sf

er

Same as
above

Same as
above

Same as
above

Same as
above

Same as
above

Indirect transfer address

m

(IXM)

60

µPD17062

8.5.3 For MPE = 0 and IXE = 0 (Data Memory Not Modified)

As shown in Table 8-2, data memory addresses are not affected by the index register or data memory row

address pointer.

Example 1. When the row address of the general-purpose register is 0 for BANK0

ADD 03H, 11H

When the above instruction is executed, the contents of general-purpose register 03H and

data memory 11H are added and the result is stored in general-purpose register 03H. (See

Example 1 in Fig. 8-3).

Example 2. When the row address of the general-purpose register is 0 for BANK0

MOV 05H, #8 ; 05H ← 8

MOV @05H, 34H ; Register indirect transfer

When the above instruction is executed, the contents of the data memory at address 34H are

transferred to address 38H. This means that the MOV @ r, m instruction transfers the contents

of data memory m to the same row address (in the above case, 3) as m and the column address

(in the above case, 38H) specified by the contents (in the above case, 8) of general-purpose

register r. (See Example 2 in Fig. 8-3).

Example 3. When the row address of the general-purpose register is 0 for BANK0

MOV 0BH, #0EH ; 0BH ← 0EH

MOV 34H @0BH ; Register indirect transfer

When the above instruction is executed, the contents of the data memory are transferred from

address 3EH to 34H. This means that the MOV m, @r instruction transfers the contents at

the same row address (in the above case, 3) as data memory m and at the column address

(in the above case, 3EH) specified by the contents (in the above case, 0EH) of general-purpose

register r to m (See Example 3 in Fig. 8-3). The (transfer) source and (transfer) destination

are exactly opposite to those in example 2.

61

µPD17062

Fig. 8-3 Indirect Transfer of General-Purpose Register with MPE = 0 and IXE = 0

Address generation of example 2

R

M

0

0

0

0

3

3

5

4

8(@ r)

@ r, mMOV

05H 34H

0 1 2 3 4 5 6 7 8 9 A B C D E F

8 E0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss

Example 1. ADD03H,11H Specifies the destination
column address Specifies the source

column address

General-
purpose
register

Example 2. MOV @05H, 34H

Example 3. MOV 34H, @0BH

Bank Row address Column address

Contents of RSame as M

62

µPD17062

8.5.4 For MPE = 1 and IXE = 0 (Diagonal Indirect Transfer)

As shown in Table 8-2, the bank and row address of the data memory address in the indirect side specified

by the general-purpose register are set to the value of the data memory row address pointer only when a

general-purpose register indirect transfer instruction is executed.

Example 1. When the row address of the general-purpose register is 0 for BANK0

MOV MPL, #0101B ; MP ← 00101B

MOV MPH, #1000B ; MPE ← 1

MOV 05H, #8 ; 05H ← 8

MOV @05H, 34H ; Register indirect transfer

When the above instruction is executed, the contents of the data memory at address 34H are

transferred to address 58H of data memory. This means that the MOV @r, m instruction at

MPE = 1 transfers the contents of data memory m to the data memory whose bank and row

addresses are the values of the data memory row address pointer (in the above example,

BANK0, row address 5) and whose column address is specified (in the above case, 58H of

BANK0) by general-purpose register r (in the above case, 8). (See Example 1 in Fig. 8-4.)

Compared to MPE = 0 (Example 2 in Section 8.5.3), the bank and row address of the data

memory address in the indirect side specified by the general-purpose register can be

specified by the data memory row address pointer (in Example 2 of Section 8.5.3, the bank

and row address in the indirect side are the same as those of m). Therefore, specifying MPE

= 1 enables general-purpose register diagonal indirect transfer to be performed.

Similarly, the MOV m, @r instruction becomes as shown in Example 2.

Example 2. When the row address of the general-purpose register is 0 for BANK0

MOV MPL, #0101B ; MP ← 00101B

MOV MPH, #1000B ; MPE ← 1

MOV 0BH, #0EH ; 0BH ← 0EH

MOV 3AH, @05H

(See Example 2 in Fig. 8-4.)

63

µPD17062

Fig. 8-4 Indirect Transfer of General-Purpose Register with MPE = 1 and IXE = 0

Address generation of example 1

R

M

0

0

0 0 0 0

0

3

1 0 1

5

4

8(@ r)

@ r, mMOV

05H 34H

0 1 2 3 4 5 6 7 8 9 A B C D E F

8 E0

1

2

3

4

5

6

7

MP = 00101B

Column address

Specifies the destination
column address Specifies the source

column address

General-
purpose
register

Example 1. MOV @05H, 34H

Bank Row address Column address

Contents of RValue of MP

Example 2. MOV 3AH, @0BH

The bank and row address are set to 000101B, the value of the
data memory row address pointer.

64

µPD17062

8.5.5 For MPE = 0 and IXE = 1 (Index Modification)

As shown in Table 8-2, when a data memory manipulation instruction is executed, the bank and row address

of the data memory specified directly by the instruction are ORed with the index register. Then, the instruction

is executed in the data memory address specified by the operation result (real address).

Example 1. When the row address of the general-purpose register is 0 for BANK0

MOV IXL, #0010B ; IX ← 000000010B

MOV IXM, #0000B ; MPE ← 0

MOV IXH, #0000B ;

OR PSW, #0001B ; IXE ← 1

ADD 03H, 11H

When the above instruction is executed, the contents of the data memory at address 13H and

the contents of the general-purpose register at address 03H are added and the result stored

in the general-purpose register at address 03H.

This means that the ADD r, m instruction performs the OR operation on the address (in the

above case, 11H of BANK0) specified by m and the index register value (in the above case,

000000010B), the result becoming the real address (in the above case, 13H of BANK0). Then,

the instruction is executed at the real address. (See Fig. 8-5.)

Compared to IXE = 0 (Example 1 in Section 8.5.3), the address of the data memory specified

directly by the instruction is modified (OR operation) by the index register.

Example 2. To clear all bank data memories to 0

MOV IXL, #0 ;

MOV IXM, #0 ; IX ← 0

MOV IXH, #0 ;

LOOP:

OR PSW, #0001B ; IXE ← 1

MOV 00H, #0 ; Sets data memory specified by IX to 0.

INC IX ; IX ← IX + 1

AND PSW, #1110B ; IXE ← 0; IXE is not modified by IX because the address

; is 7FH.

SKT IXM, #0111B ; Is row address 7 reached?

BR LOOP ; LOOP if not 7

ADD IXM, #1 ; Specifies the next bank without clearing row address 7.

ADDC IXH, #0 ;

SKF IXM, #1000B ; Were banks cleared up to BANK2?

SKT IXH, #0001B ;

BR LOOP ; LOOP unless cleared

65

µPD17062

Fig. 8-5 Data Memory Address Modification with IXE = 1

0 1 2 3 4 5 6

R0

1

2

3

4

M ADD r, m

Column address

R
ow

 a
dd

re
ss

General-
purpose
registerSpecified

by IX

66

µPD17062

8.6 GENERAL-PURPOSE REGISTER POINTER (RP)

The general-purpose register pointer points to the bank and row address of the general-purpose register.

However, since RPH of the µPD17062 is fixed at 0, only RPL (3 bits) can be specified. This means that 0

to 7 can be specified as a register pointer. Hence, in the µPD17062, the row address of the general-purpose

register can be specified anywhere within BANK0.

8.7 PROGRAM STATUS WORD (PSWORD)

The program status word consists of a flag that indicates the result of operation by the ALU in the CPU and

a 5-bit flag that modifies the ALU function. PSWORD has a binary coded decimal (BCD) flag, compare (CMP)

flag, carry (CY) flag, zero (Z) flag, and index enable (IXE) flag. Fig. 8-6 shows the functions of these flags.

Fig. 8-6 Configuration of PSWORD

b0 b3 b2 b1 b0

BCD CMP CY Z IXE

When the arithmetic operation result is other than 0, this flag
is reset. The set condition differs according to the contents of
the CMP flag.

7EH 7FH

Index
enable
flag

When this flag is set, index modification is enabled.

Zero flag (1) When CMP = 0
 The flag is set when the arithmetic operation result is 0.
(2) When CMP = 1
 The flag is set when the result of the arithmetic operation
 executed at Z = 1 is 0.

Carry flag

The carry flag is set when a carry occurs during the execution
of an addition instruction or when a borrow occurs during the
execution of a subtraction instruction. This flag is reset when
neither carry nor borrow occurs.
This flag is set when the least significant bit of the general-
purpose register is 1, in which the RORC instruction is executed.
The flag is reset when the bit is 0.

Compare
flag

When this flag is set, the arithmetic operation result is not
stored into data memory.
The CMP flag is reset automatically when the SKT or SKF
instruction is executed.

BCD flag
When this flag is set, all arithmetic operations are executed in
decimal. When this flag is not set, all arithmetic operations are
executed in binary.

67

µPD17062

9. REGISTER FILE (RF)

The register file is a group of registers that mainly control the CPU peripheral circuits. The register file has

a capacity of 128 words × 4 bits. However, peripheral circuit addresses are actually allocated to the high-order

64 nibbles (00H-3FH) and addresses 40H-7FH of the currently selected bank of data memory to the low-order

64 nibbles (40H-7FH).

This means that 40H-7FH of each bank of data memory belongs to both the data memory address space

and the register file address space.

In the assembler, the control register file is allocated to 80H-BFH.

68

µPD17062

Fig. 9-1 Configuration of Control Register (1/2)

Note The number in parenthesis is the address used when the assembler (AS17K) is used.

Column Address

Row
Address Item 0 1 2 3 4 5 6 7

0
(8)Note

Stack pointer
(SP)

S
P
2

(

S
P
1

(

S
P
0

(

0 0 0

C
E

Read/
Write R/W R

1
(9)Note 0

H
S
C
G
T
1

0

H
S
C
G
T
0

H
S
C
G
O
S
T
T

 0 0 0

P
L
L
R
F
C
K
3

P
L
L
R
F
C
K
2

P
L
L
R
F
C
K
1

P
L
L
R
F
C
K
0

0

I
N
T
N
C
M
D
2

I
N
T
N
C
M
D
1

I
N
T
N
C
M
D
0

0 0 0

B
T
M
0
C
Y

Read/
Write R/W R R/W R/W R

2
(A)Note

A
D
C
C
H
1

A
D
C
C
H
0

A
D
C
C
M
P

0 0 0

P
L
L
U
L 0 0 0

P
1
C
G
I
O

Read/
Write R/W R R/W

Read/
Write R/W R /W R/W R/WR/W R/W

3
(B)Note 0

C
R
O
M
B
N
K

0 0

I
D
C
E
N 0 0

P
L
U
L
S
E
N
1

P
L
U
L
S
E
N
0

P
1
B
B
I
O
3

P
1
B
B
I
O
2

P
1
B
B
I
O
1

P
1
B
B
I
O
0

P
0
B
B
I
O
3

P
0
B
B
I
O
2

P
0
B
B
I
O
1

P
0
B
B
I
O
0

P
0
A
B
I
O
3

P
0
A
B
I
O
2

P
0
A
B
I
O
1

P
0
A
B
I
O
0

Register
CE pin level

judge register

Symbol

HSYNC-
counter-gate

control
register

HSYNC-
counter-gate

judge
register

Register

Symbol

PLL refer-
ence

clock select
register

INTNC mode
select
register

Basic timer 0
carry flip-flop
judge register

Register

Symbol

A/D converter
control
register

PLL-unlock-
flip-flop
judge

register

Port 1C
group I/O

select
register

IDC CROM
bank

registerRegister

Symbol

IDC enable
register

PLL-unlock-
flip-flop

sensibility
select register

Port 1B bit
I/O select

register

Port 0B bit
I/O select

register

Port 0A bit
I/O select

register

IDCDMA
enable
register

0

I
D
C
D
M
A
E
N

000

R/W

A
D
C
C
H
2

0 0 0

69

µPD17062

Fig. 9-1 Configuration of Control Register (2/2)

8 9 A B C D E F

S
I
O
0
C
H

S
B

S
I
O
0
M
S

S
I
O
0
T
X

B
T
M
0
C
K
0

0

I
N
T
V
S
Y
N

I
N
T
N
C

R/W R/W

0

I
E
G
V
S
Y
N

I
E
G
N
C

B
T
M
0
Z
X

R

S
B
A
C
K

S
I
O
0
N
W
T

S
I
O
0
W
R
Q
1

S
I
O
0
W
R
Q
0

R/W R/W

S
I
O
0
S
F
8

S
I
O
0
S
F
9

S
B
S
T
T

S
B
B
S
Y

I
P
N
C

R R/W

0

S
I
O
0
I

M
D
0

0

S
I
O
0
I

M
D
1

0 0

S
I
O
0
C
K
1

S
I
O
0
C
K
0

I
R
Q
S
I
O
0

I
R
Q
N
C

R/W R/W R

Serial I/O0
mode select

register

Timer 0
clock select

register

Interrupt-
level judge

register

Serial I/O0
wait control

register

Interrupt
edge

selection
register

Serial I/O0
status judge

register

Interrupt
enable
register

Serial I/O0
interrupt

mode register

Serial I/O0
clock select

register

Interrupt
request
register

B
T
M
0
C
K
1

B
T
M
0
C
K
2

0

0

I
P
V
S
Y
N

I
P
B
T
M
0

I
R
Q
B
T
M
0

I
R
Q
V
S
Y
N

I
P
S
I
O
0

70

µPD17062

Table 9-1 Peripheral Hardware Control Functions of Control Registers (1/5)

Remark *: Retains the previous state.

Pe
ri

ph
er

al
 h

ar
dw

ar
e Control register Peripheral hardware control function At reset

S
ta

ck
T

im
er

In
te

rr
u

p
t

Register Ad-
dress

Read/
write

b3

b2

b1

b0

Symbol Function outline
Set value

0 1

7 7 7Stack pointer
(SP) 01H R/W

0

(SP2)

(SP1)

(SP0)

Fixed at 0

Stack pointer
(3 bits are valid.)

BTM0ZX On/off of zerocross circuit

BTM0CK2

BTM0CK0

0

0

0

BTM0CY

0

INTVSYN

0

INTNC

0

INTNCMD2

INTNCMD1

INTNCMD0

09H R/W

17H R

0FH R

15H R/W

Timer 0
clock select
register BTM0CK1

Basic timer 0
carry flip-flop
judge register

Interrupt-level
judge register

INTNC mode
select register

Base clock setting of basic
timer 0 (internal/external)

Fixed at 0

Detects the carry flip-flop state

Fixed at 0

Detects the VSYNC pin state

Fixed at 0

Detects the INTNC pin state

Fixed at 0

Selects the pulse width of
interrupt accept pulse width
of the INTNC pin

No operation Operation

Pulse for timer carry flop-flop set

0: 10 Hz (100 ms, internal)

1: 200 Hz (5 ms, internal)

2: 10 Hz (100 ms, internal)

3: 200 Hz (5 ms, internal)

4: fTMIN/5 Hz (external)

5: 200 Hz (5 ms, internal)

6: fTMIN/6 Hz (external)

7: 200 Hz (5 ms, internal)

Pulse for timer interrupt

0: 200 Hz (5 ms, internal)

1: 10 Hz (100 ms, internal)

2: 50 Hz (20 ms, internal)

3: 50 Hz (20 ms, internal)

4: 200 Hz (5 ms, internal)

5: fTMIN/5 Hz (external)

6: 200 Hz (5 ms, internal)

7: fTMIN/6 Hz (external)

0 0 *

0 1 1

0 0 0

0 0 0

Reset Set

Low level High level

Low level High level

0: Accepts with edge
1: 200 s 2: 400 s 3: 2 ms
4: 4 ms

µ µ

P
o
w
e
r

O
n

S
T
O
P

C
E

71

µPD17062

Table 9-1 Peripheral Hardware Control Functions of Control Registers (2/5)

Remark *: Retains the previous state.

Pe
ri

ph
er

al
 h

ar
dw

ar
e Control register Peripheral hardware control function At reset

Register Ad-
dress

Read/
write

b3

b2

b1

b0

Symbol Function outline
Set value

0 1

P
o
w
e
r

O
n

S
T
O
P

C
E

In
te

rr
u

p
t

P
in

P
LL

 f
re

q
u

en
cy

 s
yn

th
es

iz
er

Interrupt edge
select register

Interrupt
permission
register

Interrupt
request
register

CE pin level
judge register

PLL reference
clock select
register

PLL unlock
flip-flop judge
register

PLL unlock
flip-flop
sensibility
select register

1FH R/W

2FH R/W

3FH R

07H R

13H R/W

22H R

32H R/W

0

IEGVSYN

0

IEGNC

IPVSYN

IPSIO0

IPBTM0

IPNC

IRQVSYN

IRQSIO0

IRQBTM0

IRQNC

0

0

0

CE

PLLRFCK3

PLLRFCK2

PLLRFCK1

PLLRFCK0

0

0

0

PLLUL

0

0

PLULSEN1

PLULSEN0

Fixed at 0

Sets the interrupt issue edge (VSYNC)

Fixed at 0

Sets the interrupt issue edge (INTNC)

- Serial interface 0

- VSYNC signal

- Basic timer 0

- INTNC pin

- Serial interface 0

- VSYNC signal

- Basic timer 0

- INTNC pin

Sets
the in-
terrupt
permis-
sion of:

Sets
the in-
terrupt
request
of:

Fixed at 0

Detects the CE pin state

Fixed at 1

Fixed at 0

Detects the unlock flip-flop state

Fixed at 0

Sets the set delay time for
the unlock flip-flop

Rising edge Falling edge

Rising edge Falling edge

0 0 0

0 1 1
Interrupt
disabled

Interrupt
enabled

No interrupt
request/
processing
in progress

Interrupt
request made 0 0 0

Low level High Level

0 – –

2: 6.25 kHz 3: 12.5 kHz

6: 25 kHz

F: Operation stopped (disabled state)

0, 1, 4, 5, 7-E: Setting disabled

Locked state Unlocked state

0 0 1 1

0 1 0 1

1.25 3.5 0.25

1.5 s 3.75 s 0.5 sµ µ µ

Disabled
stateto to to

F F *

0 * *

0 0 *

72

µPD17062

Table 9-1 Peripheral Hardware Control Functions of Control Registers (3/5)

Remark *: Retains the previous state. **: Indefinite

Pe
ri

ph
er

al
 h

ar
dw

ar
e Control register Peripheral hardware control function At reset

Register Ad-
dress

Read/
write

b3

b2

b1

b0

Symbol Function outline
Set value

0 1

P
o
w
e
r

O
n

S
T
O
P

C
E

A
/D

 c
o

n
ve

rt
er

G
en

er
al

-p
u

rp
o

se
 p

o
rt

S
er

ia
l i

n
te

rf
ac

e

A/D converter
controll
register

Port 1C group
I/O select
register

Port 1B bit I/O
select register

Port 0B bit I/O
select register

Port 0A bit I/O
select register

Serial I/O0
mode select
register

Serial I/O0
wait control
register

21H R/W

27H R/W

35H R/W

36H R/W

37H R/W

08H R/W

18H R/W

ADCCH2

ADCCH1

ADCCH0

ADCCMP

0

0

0

P1CGIO

P1BBIO3

P1BBIO2

P1BBIO1

P1BBIO0

P0BBIO3

P0BBIO2

P0BBIO1

P0BBIO0

P0ABIO3

P0ABIO2

P0ABIO1

P0ABIO0

SIO0CH

SB

SIO0MS

SIO0TX

SBACK

SIO0NWT

SIO0WRQ1

SIO0WRQ0

Selects the pin used as an
A/D converter

Detects the comparison result

Fixed at 0

Sets I/O of port 1C (group I/O)

P1B3 pin

P1B2 pin

P1B1 pin

P1B0 pin

P0B3 pin

P0B2 pin

P0B1 pin

P0B0 pin

P0A3 pin

P0A2 pin

P0A1 pin

P0A0 pin

I/O setting
(bit I/O)

Sets the number of communication lines

Sets the communication method

Sets master/slave

Sets the transfer direction

Sets and detects acknowledge (I2C bus method)

Sets the wait permission

Sets the wait mode

0: AD0

2: AD2

4: AD4

6, 7: Not to be set

1: AD1

3: AD3

5: AD5

VIN < VREF VIN > VREF

Input Output

Input Output

2-wire method 3-wire method

Serial I/O method I2C bus method
(only for 2-wire method)

Master operation Slave operation

Reception Transmission

Permitted Released

Sets and detects 0 and 1

0 1 10

0 0 11

No
wait

Data
wait

Acknow-
ledge
wait

Ad-
dress
wait

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

** * *

73

µPD17062

Table 9-1 Peripheral Hardware Control Functions of Control Registers (4/5)

Remark *: Retains the previous state. **: Indefinite

Pe
ri

ph
er

al
 h

ar
dw

ar
e Control register Peripheral hardware control function At reset

Register Ad-
dress

Read/
write

b3

b2

b1

b0

Symbol Function outline
Set value

0 1

P
o
w
e
r

O
n

S
T
O
P

C
E

S
er

ia
l i

n
te

rf
ac

e
H

o
ri

zo
n

ta
l s

yn
ch

ro
n

iz
in

g
 s

ig
n

al
 c

o
u

n
te

r

Serial I/O0
status judge
register

Serial I/O0
interrupt
mode
register

Serial I/O0
clock select
register

HSYNC counter
gate control
register

HSYNC counter
gate judge
register

28H R

38H R/W

39H R/W

11H R/W

12H R

SIO0SF8

SIO0SF9

SBSTT

SBBSY

0

0

SIO0IMD1

SIO0IMD0

0

0

SIO0CK1

SIO0CK0

0

0

HSCGT1

HSCGT0

HSCGOSTT

0

0

0

Detects the contents of clock
counter

Detects the number of clocks
(I2C bus method)

Detects the start condition
(I2C bus method)

Fixed at 0

Sets the interrupt condition
of serial interface 0

Fixed at 0

Fixed at 0

Sets the internal clock of
serial interface 0

Controls the HSYNC

counter gate

Detects open/close of the HSYNC counter

Fixed at 0

0 0 0

Resets when
the contents of
the clock counter
become 0 or 1

Resets when
the contents of
the clock counter
become 0 or 1

Resets when
the contents of
the clock counter
become 8

Resets when
the contents of
the clock counter
become 9

Sets up the start condition - 9th clock

Sets up the start condition -
stop condition

0 0 11

0 1 10

7th
clock

8th
clock

7th clock
after occur-
rence of start
condition

Stop
con-
dition

0 0 11

0 1 10

Gate
close

Gate
open

1.69 ms
gate
open

Not to
be set

Gate openGate close

0 0 11

0 1 10

100
kHz

200
kHz

500
kHz

1
MHz

** * *

** * *

0 0 0

0 – –

74

µPD17062

Table 9-1 Peripheral Hardware Control Functions of Control Registers (5/5)

Pe
ri

ph
er

al
 h

ar
dw

ar
e Control register Peripheral hardware control function At reset

Register Ad-
dress

Read/
write

b3

b2

b1

b0

Symbol Function outline
Set value

0 1

P
o
w
e
r

O
n

S
T
O
P

C
E

ID
C

IDC DMA
enable
register

IDC CROM
bank register

IDC enable
register

00H R/W

30H R/W

31H R/W

0

0

0

0

0

0

0

0

0

IDCDMAEN

CROMBNK

IDCEN

Fixed at 0

Sets the DMA mode permission

Fixed at 0

Fixed at 0

Fixed at 0

Turns the IDC display on/off

Selects the CROM bank

Not permitted Permitted

BANK0
(0800H-0BFFH)

BANK1
(0C00H-0F7FH)

Display on Display off

0 0 0

0 0 0

0 0 0

75

µPD17062

b3 b2 b1 b0

0 IDCDMAEN0 0

00H

0

1

DMA prohibited mode (instruction cycle = 2 s)

DMA mode (instruction cycle = 12 s)

µ

µ

9.1 IDCDMAEN (00H, b1)

This flag must be set to enable the operation of IDC.

When the IDCDMAEN flag is set, the mode changes to DMA mode and IDC is enabled. In DMA mode, the

instruction cycle is seen as 12 µs. For details, see Chapter 20.

9.2 SP (01H)

SP is a pointer that addresses the stack register.

b3 b2 b1 b0

0 (SPb2) (SPb0)

01H

0

0

0

0

0

1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

(SPb1)

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

At reset

Not to be set

SP (stack pointer)

76

µPD17062

9.3 CE (07H, b0)

CE is a flag for reading the CE pin level.

The flag indicates 1 when a high level signal is input to the CE pin, or 0 when a low level signal is input.

9.4 SERIAL INTERFACE MODE REGISTER (08H)

b3 b2 b1 b0

0 0 CE

07H

0

1

0

CE pin low level

CE pin high level

b3 b2 b1 b0

SIO0CH SB SIO0TX

08H

0

1

SIO0MS

0

1

0

1

0

1

Transmission/reception setting

Setting of serial interface clock direction

Setting of serial interface mode

Setting of serial interface channel

2-wire bus mode
CH0 serial I/O mode
CH1 serial I/O mode

: RX (reception) mode
: SI mode
: P0A3 used as a general-purpose port

2-wire bus mode
CH0 serial I/O mode
CH1 serial I/O mode

: TX (transmission) mode
: SO mode
: P0A3 used as an SO pin

2-wire bus mode
Serial I/O mode

: Slave operation
: External clock operation

2-wire bus mode
Serial I/O mode

: Master operation
: Internal clock operation

Serial I/O mode

2-wire bus mode

Selects CH0

Selects CH1

77

µPD17062

b3 b2 b1 b0

BTM0ZX BTM0CK2 BTM0CK0

09H

BTM0CK1

0

1

0

0

0

0

0

1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

TIMER INT TIMER CARRY

5 ms

100 ms

20 ms

20 ms

5 ms

5/fTMR s

5 ms

6/fTMR s

100 ms

5 ms

100 ms

5 ms

5/fTMR s

5 ms

6/fTMR s

5 ms

Time base setting

Internal

Internal

Internal

Internal

Internal

External

Internal

External

Internal

Internal

Internal

Internal

External

Internal

External

Internal

Zerocross setting

Zerocross off

Zerocross on

9.5 BTM0MD (09H)

9.6 INTVSYN (0FH, b2)

The INTVSYN flag is used for reading the vertical synchronous signal level. When a high level signal is

input to the VSYNC pin, the flag is set to 1. When a low level signal is input to the VSYNC pin , the flag is reset

to 0.

78

µPD17062

9.7 INTNC (0FH, b0)

The INTNC flag is used for reading the INTNC pin state.

The flag indicates 1 when a high level signal is input to the INTNC pin, and 0 when a low level signal is input

to the INTNC pin.

9.8 HORIZONTAL SYNCHRONIZING SIGNAL COUNTER CONTROL (11H, 12H)

b3 b2 b1 b0

0 INTVSYN INTNC

0FH

0

0

1

0

1

The VSYNC pin is low level.

The VSYNC pin is in the high level period.

The INTNC pin is low level.

The INTNC pin is high level.

b3 b1 b0

HSCGOSTT 0

12H

0

0

1

b3 b2 b1 b0

HSCGT3 HSCGT2 HSCGT0

11H

HSCGT1

0

0

1

1

0

1

0

1

0

b2

Input confirmation of gate open/close of
horizontal synchronizing signal counter

Both bits are fixed at 0.

Gate close

Gate open

Gate open (1.69 ms interval)

Not to be set

Gate close

Gate open

Setting of horizontal synchronizing signal counter

79

µPD17062

9.9 PLL REFERENCE MODE SELECTION REGISTER (13H)

9.10 SETTING OF INTNC PIN ACCEPTANCE PULSE WIDTH (15H)

b3 b2 b1 b0

PLLRFCK3 PLLRFCK2 PLLRFCK0

13H

PLLRFCK1

0 0 1 0

0 0 1 1

0 1 1 0

1 1 1 1

0 1 1 1

1 0 1 0

1 0 1 1

1 1 1 0

6.25 kHz

12.5 kHz

25 kHz

PLL disabled

Not to be set

Reference frequency fr setting

Fixed at 1

b3 b2 b1 b0

INTNCMD3 INTNCMD2 INTNCMD0

15H

INTNCMD1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

Edge (no noise canceler)

200 s

2 ms

Setting of INTNC pin acceptance pulse width

Fixed at 0

4 ms

400 s

µ

µ

80

µPD17062

9.11 TIMER CARRY (17H)

9.12 SERIAL INTERFACE WAIT CONTROL (18H)

9.13 IEGNC (1FH)

The IEGNC flag is used for selecting the interrupt detection edge of the INTNC pin and VSYNC pin.

When the flag is set to 0, an interrupt occurs at a rising edge. When the flag is set to 1, an interrupt occurs

at a falling edge.

b3 b2 b1 b0

17H

Exclusive flag for reading timer carry

0 0 0 BTM0CY

This flag is set according to the selected time base,
and reset when the timer carry is read.

b3 b2 b1 b0

18H

Setting of wait timing

0

1

SBACK SIO0NWT SIO0WRQ1 SIO0WRQ0

0 0

0 1

1 0

1 1

2-wire bus mode Serial I/O mode

Does not wait Does not wait

Waits when the clock falls with the contents
of the clock counter being 8

Waits when the clock falls with the contents
of the clock counter being 9

Waits when the clock falls with the contents
of the clock counter being 8 after detection
of the start condition

Waits when the contents of the
clock counter become 9

Waits when the contents of the
clock counter become 9

Not to be set

Wait setting

Acknowledgement at 2-wire bus mode

Forced wait

Wait released

b3 b2 b1 b0

0 IEGVSYN IEGNC

1FH

0

0

1

0

1

Interrupt occurs at the rising edge of the VSYNC pin

Interrupt occurs at the falling edge of the VSYNC pin

Interrupt occurs at the rising edge of the INTNC pin

Interrupt occurs at the falling edge of the INTNC pin

81

µPD17062

b3 b2 b1 b0

ADCCH2 ADCCH1 ADCCMP

21H

ADCCH0

0

0

0

0

0

0

1

1

0

1

0

1

1

1

1

1

0

0

1

1

0

1

0

1

ADC0 select

ADC1 select, shared with P1C3

ADC2 select, shared with P0D0

ADC3 select, shared with P1D1

ADC4 select, shared with P0D2

ADC5 select, shared with P0D3

No corresponding channel
(not to be set)

A/D converter input channel select

9.14 A/D CONVERTOR CONTROL (21H)

9.15 PLL UNLOCK FLIP-FLOP JUDGE REGISTER (22H)

b3 b2 b1 b0

0 0 PLLUL

22H

0

1

0

Detects the unlock flip-flop state

Unlock flip-flop = 0: PLL locked

Unlock flip-flop = 1: PLL unlocked

82

µPD17062

9.16 PORT1C I/O SETTING (27H)

9.17 SERIAL I/O0 STATUS REGISTER (28H)

b3 b2 b1 b0

SIO0SF8 SIO0SF9 SBBSY

28H

0

1

SBSTT

Busy condition detection

0

1

Start condition detection

0

1

9 clock detection

0

1

8 clock detection

Detects the stop condition

Detects the start condition

Resets when the contents of the clock counter become 9

Detects the start condition

Resets when the contents of the clock counter become 0 or 1

Sets when the contents of the clock counter become 9

Resets when the contents of the clock counter become 0 or 1

Sets when the contents of the clock counter become 8

b3 b2 b1 b0

0 0 P1CGIO

27H

0

1

0

P1C port I/O setting

P1C1, P1C2, P1C3: input port

P1C1, P1C2, P1C3: output port

83

µPD17062

9.18 INTERRUPT PERMISSION FLAG (2FH)

This flag is used to enable interrupt for each interrupt cause. When the flag is set to 1, interrupt is enabled.

When the flag is set to 0, interrupt is disabled.

9.19 CROM BANK SELECTION (30H)

b3 b2 b1 b0

IPSIO0 IPVSYN IPNC

2FH

0

1

IPBTM0

0

1

0

1

0

1

Interrupt from the INTNC pin disabled

Interrupt from the INTNC pin enabled

Interrupt from the clock timer disabled

Interrupt from the clock timer enabled

Interrupt from the VSYNC pin disabled

Interrupt from the VSYNC pin enabled

Interrupt from the serial interface disabled

Interrupt from the serial interface enabled

b3 b2 b1 b0

0 0 CROMBNK

30H

0

1

0

CROM address setting

CROM address 0800H-0BFFH

CROM address 0C00H-0F7FH

84

µPD17062

9.20 IDCEN (31H)

9.21 PLL UNLOCK FLIP-FLOP DELAY CONTROL REGISTER (32H)

b3 b2 b1 b0

0 0 IDCEN

31H

0

1

0

IDC operation prohibited (display off)

IDC operation start (display on)

b3 b2 b1 b0

PLULSEN3

32H

0

0

1

1

0

1

0

1

PLULSEN2 PLULSEN1 PLULSEN0

1.25 to 1.5 s or more

3.5 to 3.75 s or more

0.25 to 0.5 s or more

Unlock flip-flop disable (always set)

Fixed at 0

Setting of the delay time of the reference frequency fr and
divided frequency fN required for setting the unlock flip-flop

µ

µ

µ

85

µPD17062

9.22 P1BBIOn (35H)

P1BBIOn specifies the PORT1B I/O. When P1BBIOn is set to 0, PORT1B becomes an input port. When

P1BBIOn is set to 1, PORT1B becomes an output port.

9.23 P0BBIOn (36H)

P0BBIOn specifies the PORT0B I/O. When P0BBIOn is set to 0, PORT0B becomes an input port. When

P0BBIOn is set to 1, PORT0B becomes an output port.

b3 b2 b1 b0

P0BBIO3 P0BBIO2 P0BBIO0

36H

0

1

P0BBIO1

P0B0 I/O setting

0

1

P0B1 I/O setting

0

1

P0B2 I/O setting

0

1

P0B3 I/O setting

P0B0 input port

P0B0 output port

P0B1 input port

P0B1 output port

P0B2 input port

P0B2 output port

P0B3 input port

P0B3 output port

b3 b2 b1 b0

P1BBIO3 P1BBIO2 P1BBIO0

35H

0

1

P1BBIO1

P1B0 I/O setting

0

1

P1B1 I/O setting

0

1

P1B2 I/O setting

0

1

P1B3 I/O setting

P1B0 input port

P1B0 output port

P1B1 input port

P1B1 output port

P1B2 input port

P1B2 output port

P1B3 input port

P1B3 output port

86

µPD17062

9.24 P0ABIOn (37H)

P0ABIOn specifies the PORT0A I/O. When P0ABIOn is set to 0, PORT0A becomes an input port. When

P0ABIOn is set to 1, PORT0A becomes an output port.

9.25 SETTING OF INTERRUPT REQUEST GENERATION TIMING IN SERIAL INTERFACE MODE (38H)

b3 b2 b1 b0

P0ABIO3 P0ABIO2 P0ABIO0

37H

0

1

P0ABIO1

P0A0 I/O setting

0

1

P0A1 I/O setting

0

1

P0A2 I/O setting

0

1

P0A3 I/O setting

P0A0 input port

P0A0 output port

P0A1 input port

P0A1 output port

P0A2 input port

P0A2 output port

P0A3 input port

P0A3 output port

b3 b2 b1 b0

SIO0IMD3 SIO0IMD2 SIO0IMD0

38H

SIO0IMD1

0 0

0 1

1 0

1 1

Function
Fixed at 0

Interrupt request generated at rising edge of the 7th bit of the shift clock

Interrupt request generated at rising edge of the 8th bit of the shift clock

Interrupt request generated when the stop condition is detected

Interrupt request generated at rising edge of the 7th bit of the shift
clock immediately after the start condition is detected

87

µPD17062

9.26 SHIFT CLOCK FREQUENCY SETTING (39H)

9.27 IRQNC (3FH)

IRQNC is an interrupt request flag that indicates the interrupt request state.

When an interrupt request is generated, the flag is set to 1. When the request is accepted (interrupt is made),

the flag is reset to 0.

The interrupt request flag can be read and written by the program. Hence, if 1 is written, an interrupt by

software can be generated. If 0 is written, the interrupt hold status can be released. The IRQNC flag becomes

0 upon reset.

b3 b2 b1 b0

SIO0CK3 SIO0CK2 SIO0CK0

39H

SIO0CK1

0 0

0 1

1 0

1 1

100 kHz

200 kHz

500 kHz

1 MHz

Fixed at 0

Internal clock frequency

Flag name Bit position Interrupt source

IRQNC b0 INTNC pin

IRQBTM0 b1 Clock timer

IRQVSYN b2 VSYNC pin

IRQSIO0 b3 Serial interface

88

µPD17062

10. DATA BUFFER (DBF)

The data buffer is used to transfer data to and from peripheral hardware and to reference tables.

10.1 DATA BUFFER STRUCTURE

10.1.1 Mapping of Data Buffer to Data Memory

Fig. 10-1 shows how the data buffer is mapped to data memory.

As shown in Fig. 10-1, the data buffer is allocated to addresses 0CH to 0FH of data memory BANK0 and

consists of 16 bits in a 4-word × 4-bit configuration.

Because the data buffer is mapped to data memory, it can be operated by data memory instructions.

Fig. 10-1 Data Buffer Map

0 1 2 3 4 5 6 7 8 9 A B C D E F

Data buffer

Data memory

BANK0

BANK1

BANK2

System register

7

7

0

1

2

3

4

5

6

7

Column address

Lo
w

 a
dd

re
ss

89

µPD17062

10.1.2 Data Buffer Structure

Fig. 10-2 shows the data buffer structure.

As shown in Fig. 10-2, the data buffer consists of 16 bits. Bit b0 of data memory address 0FH is the LSB,

and bit b3 of data memory address 0CH bit 3 is the MSB.

Fig. 10-2 Data Buffer Structure

b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0CH 0DH 0EH 0FH

DBF3 DBF2 DBF1 DBF0

M
S
B

L
S
B

Data memory
Address

Bit

Bit

Symbol

Data

Data buffer

Data

90

µPD17062

10.2 FUNCTIONS OF DATA BUFFER

The data buffer provides the following two functions:

(1) Read constant data in program memory (to reference tables)

(2) Transfer data to and from peripheral hardware

Fig. 10-3 shows the relationship between the data buffer, peripheral hardware, and memory.

Table referencing is described in Section 10.3, and the peripheral hardware is described in Sections 10.4

to 10.6.

Fig. 10-3 Relationship Between Data Buffer, Peripheral Hardware, and Memory

01H

02H

03H

04H

05H-08H

40H

41H

Peripheral address

Data buffer

Internal

Table referencing

Peripheral hardware

Image display controller (IDC)

A/D converter

Serial interface

Horizontal synchronizing signal
counter

6-bit D/A converter

Address register (AR)

PLL frequency synthesizer

Program memory
(ROM)

Constant data

91

µPD17062

10.3 DATA BUFFER AND TABLE REFERENCING

10.3.1 Table Referencing

Tables are referenced by reading the constant data from program memory into the data buffer. This is done

using the MOVT DBF, @AR instruction.

Therefore, if display data or other constant data is written to program memory in advance and a table

reference instruction is executed, writing of a complex data conversion program is unnecessary.

The MOVT instruction is described below.

A example program is given in Section 10.3.2.

MOVT DBF, @AR ; Reads the contents of the program memory addressed by the address register into the

data buffer as shown below.

When a table reference instruction is executed, the stack is used one level.

Because the address register (AR) has only eight valid bits, program memory available for table reference

is limited to 256 steps from address 0000H to address 00FFH.

See also Chapter 4 and Section 8.1.

16

MOVT DBF, @ AR

DBF3 DBF2 DBF1 DBF0

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Constant data

Data buffer Program memory
(ROM)

Specifies the program memory address

92

µPD17062

10.3.2 Example Table Referencing Program

This section shows an example table referencing program.

Example

P0A MEM 0.70H ;

P0B MEM 0.71H ;

P0C MEM 0.72H ;

ORG 0000H

START :

BR MAIN

DATA :

DW 0001H ; Constant data

DW 0002H ;

DW 0004H ;

DW 0008H ;

DW 0010H ;

DW 0020H ;

DW 0040H ;

DW 0080H ;

DW 0100H ;

DW 0200H ;

DW 0400H ;

DW 0800H ;

MAIN :

BANK0 ; Built-in macro

SET4 P0ABIO3, P0ABIO2, P0ABIO1, P0ABIO0

SET4 P0BBIO3, P0BBIO2, P0BBIO1, P0BBIO0

MOV RPL, #1110B ; Sets general-purpose register to row address 7H of BANK0 .

MOV AR1, #(.DL.DATA SHR 4 AND 0FH)

MOV AR0, #(.DL.DATA SHR 0 AND 0FH)

; Sets address register to 0001H.

LOOP :

; #

MOVT DBF, @AR ; Transfers the contents of the ROM specified by AR to data

; buffer.

; $

LD P0A, DBF2 ; Transfers the contents of data buffer to Port0A (70H),

LD P0B, DBF1 ; Port0B(71H), and Port0C (72H) port data registers.

LD P0C, DBF0

ADD AR0, #1 ; Increments the contents of data register by one.

ADDC AR1, #0

SKNE AR0, #0CH ; Writes 0 in AR0 when the value of AR0 reaches 0CH.

MOV AR0, #0 ;

BR LOOP

93

µPD17062

This program sequentially reads the constant data stored at program memory addresses 0001H to 000CH

into the data buffer (#) and outputs the data to Port0A, Port0B, and Port0C ($).

The constant data is left-shifted one bit. As a result, a high-level data is sequentially output to the Port0A,

Port0B, and Port0C pins.

10.4 DATA BUFFER AND PERIPHERAL HARDWARE

10.4.1 How to Control Peripheral Hardware

The following peripheral hardware units transfer data via the data buffer:

• Image display controller

• A/D converter

• Serial interface

• Horizontal synchronizing signal counter

• 6-bit D/A converter

• Address register

• PLL frequency synthesizer

The peripheral hardware is controlled by setting the data in the peripheral hardware via the data buffer or

reading its data.

Each peripheral hardware unit is provided with a data transfer register called a peripheral register. An

address, called a peripheral address, is allocated to each peripheral hardware unit. Data transfer between the

data buffer and peripheral hardware can be performed by executing a GET or PUT instruction (dedicated to

the peripheral register) for the peripheral register.

The GET and PUT instructions are described below. The peripheral hardware and data buffer functions are

listed in Table 10-1.

GET DBF, p; Reads the data of the peripheral register at address p into the data buffer.

PUT p, DBF; Writes the data of the data buffer to the peripheral register at address p.

There are three types of peripheral registers: Write/read (PUT/GET), write only (PUT), and read only (GET).

Device operation when a GET or PUT instruction is executed for a write only (PUT only) or read only (GET

only) peripheral register is described below.

• When a read (GET) instruction is executed for a write only (PUT only) peripheral register, an undefined

value is returned.

• When a write (PUT) instruction is executed for a read only (GET only), it has no effect.

Be careful when using a 17K series assembler and emulator.

For details, see Section 10.6.

94

µPD17062

Table 10-1 Peripheral Hardware and Data Buffer Functions

Data buffer and data transfer
Function

peripheral register

Peripheral hardware
Name Symbol Peri- PUT Data Valid Explanation

pheral instruction/ buffer bits
address GET I/O bits

instruction

Image display IDC start posi- IDCORG 01H PUT/GET 8 7 Sets the image display

controller tion setting controller display start

register position.

A/D converter A/D converter ADCR 02H PUT/GET 8 4 Sets the AD converter

VREF data comparison voltage

register VREF.

VREF =
 x – 0.5

× VDD (V) 16

1 ≤ x ≤ 15

Serial interface Presettable SIO0SFR 03H PUT/GET 8 8 Sets the serial out data

shift register and reads the serial in

data.

Horizontal syn- HSYNC HSC 04H GET 8 6 Reads the value of the

chronizing signal counter data horizontal synchroni-

counter register zing signal counter.

PWM0 PWM data PWMR0 05H PUT/GET 8 7 Sets the D/A converter

pin register 0 output signal duty.

PWM1 PWM data PWMR1 06H
Duty D =

 x + 0.75
(%)

pin register 1 64

PWM2 PWM data PWMR2 07H 0 ≤ x ≤ 63

pin register 2 Frequency f = 15.625 kHz

PWM3 PWM data PWMR2 08H

pin register 3

Address register Address AR 40H PUT/GET 16 16 Reads of writes data

register from or to the address

register.

PLL frequency PLL data PLLR 41H PUT/GET 16 16 Sets the PLL frequency

synthesizer register synthesizer frequency

division ratio.

6-bit
D/A
conver-
ter
(PWM
output)

95

µPD17062

10.4.2 Precautions When Transferring Data With Peripheral Registers

Data is transferred between the data buffer and peripheral registers in 8-bit or 16-bit units.

A PUT or GET instruction is executed for one instruction cycle (2 µs) even if the data is 16 bits long.

When 8-bit data transfer is performed but the peripheral register execution data is seven bits, for example,

long one extra bit is added.

At data write, the status of this extra data is “Don’t care” as shown in Example 1. At data read, the status

of this extra data is “Unpredictable” as shown in Example 2.

Example 1. PUT instruction (When the valid peripheral register bits are seven bits from bit0 to bit6.)

When 8-bit data is written to a peripheral register, the status of the eight high-order bits of the data buffer

(contents of DBF3 and DBF2) is “Don’t care”.

Of the 8-bit data in the data buffer, the status of each bit that does not correspond to a valid bit in the

peripheral register is “Don’t care”.

DBF3 DBF2 DBF1 DBF0

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Peripheral register

b7 b6 b5 b4 b3 b2 b1 b0

PUT

Data buffer

8

0 or unpredictable

Don't care Don't care

Don't care
(Can be any value)

Valid bits

96

µPD17062

Example 2. GET instruction

When the 8-bit data of a peripheral register is read, the value of the eight high-order bits (DBF3 and DBF2)

of the data register does not change.

Of the 8-bit data of the data register, each bit that is not a valid peripheral register bit becomes 0 or

unpredictable. Whether the bit becomes 0 or unpredictable is decided in advance for each peripheral register.

10.4.3 State at Peripheral Register Reset

The valid bits of each peripheral register are reset as follows:

DBF3 DBF2 DBF1 DBF0

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Peripheral register

b7 b6 b5 b4 b3 b2 b1 b0

GET

Data buffer

8

Don't careDon't care

0 or unpredictable

0 or unpredictable
The value of the
peripheral register
is read without alteration.

Valid bits

Reset Valid bit state

Power-on Unpredictable

Clock-stop Previous state held

CE Previous state held

97

µPD17062

10.5 Data Buffer and Peripheral Registers

Sections 10.5.1 to 10.5.7 describe the data buffer and the peripheral registers.

10.5.1 IDC Start Position Setting Register

Fig. 10-4 shows the functions of the IDC start position setting register.

The IDC start position setting register sets the IDC display start position.

Fig. 10-4 IDC Start Position Register Functions

DBF3

0CH

DBF2

0DH

DBF1

0EH

DBF0

0FH

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

IDCORG 01H

Symbol Peripheral
address Peripheral hardware

IDC display position setting

Name

Peripheral register

Name Data buffer

Symbol

Address

Bit

Data Don't care Don't care Transfer data

GET
PUT

IDC start position
setting register

Valid data Image display
controller

D7 to D4: Horizontal start position
D3 to D0: Vertical start position

98

µPD17062

10.5.2 A/D Converter Data Register

Fig. 10-5 shows the functions of the A/D converter data register.

The A/D converter data register sets the A/D converter comparison voltage.

Because the A/D converter is a 4-bit converter, the four low-order bits of the A/D converter data register

are valid.

Fig. 10-5 A/D Converter Data Register Functions

DBF3

0CH

DBF2

0DH

DBF1

0EH

DBF0

0FH

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

0

ADCR 02H

A/D converter comparison voltage VREF setting

0 0 0 0

1

x

15

8

VREF = 0 V

Fixed at 0

VREF = VDD (V)x - 0.5
15

×

A/D converter

Symbol Peripheral
address Peripheral hardwareName

Peripheral register

Name Data buffer

Symbol

Address

Bit

Data Don't care Don't care Transfer data

GET
PUT

A/D converter
data register

Valid data

99

µPD17062

10.5.3 Presettable Shift Register

Fig. 10.6 shows the functions of the presettable shift register.

The presettable shift register writes the serial interface serial out data and reads the serial interface serial

in data.

Fig. 10-6 Relationship between Presettable Shift Register and Data Buffer

Serial interface serial data is output while being shifted sequentially the data from the MSB (bit b7) of the

presettable shift register.

During serial data input, data is shifted sequentially from the LSB (bit b0).

DBF3

0CH

DBF2

0DH

DBF1

0EH

DBF0

0FH

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

SIO0SFR 03H

Serial out data write and serial in data read

1 2 3 4 5 6 7 8

MSB LSB

Data output timing

×D7 ×D6 ×D5 ×D4 ×D3 ×D2 ×D1 ×D0

1 2 3 4 5 6 7 8

MSB LSB

Data input timing

×D7 ×D6 ×D5 ×D4 ×D3 ×D2 ×D1 ×D0

8

Symbol Peripheral
address Peripheral hardwareName

Peripheral register

Name Data buffer

Symbol

Address

Bit

Data Don't care Don't care Transfer data

GET
PUT

Valid dataPresettable
shift register Serial interface

Serial out data

Clock

Serial in data

Clock

100

µPD17062

10.5.4 HSYNC Counter Data Register

Fig. 10.7 shows how the HSYNC counter data register functions .

The HSYNC counter data register reads the horizontal synchronizing signal count.

When the HSYNC counter data register reaches 3FH, it returns to 00H at the next input.

Fig. 10-7 HSYNC Data Register Functions

DBF3

0CH

DBF2

0DH

DBF1

0EH

DBF0

0FH

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

HSC 04H0 0

8

Horizontal synchronizing signal count

Symbol Peripheral
address Peripheral hardwareName

Peripheral register

Name Data buffer

Symbol

Address

Bit

Data Don't care Don't care Transfer data

GET

HSYNC counter
data register

Horizontal
synchronizing signal

counter
Valid data

101

µPD17062

10.5.5 PWM Data Register

Fig. 10-8 shows how the PWM data register functions.

The PWM data register sets the duty cycle of the 6-bit D/A converter (PWM output) output.

The 6-bit D/A converter has four channels (pins PWM3, PWM2, PWM1, and PWM0). Because the duty cycle

can be set independently for each channel, four independent PWM duty cycle registers are also provided.

Fig. 10-8 PWM Data Register Functions

DBF3

0CH

DBF2

0DH

DBF1

0EH

DBF0

0FH

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

0

PWMR0 05H

Set the PWM output duty of each pin.

0

x

63

8

Use PWM pins as D/A converter.

Duty D = x + 0.75
64

PWM0 pin
PWM0
data register

PWMR1 06H0 PWM1 pin
PWM1
data register

PWMR2 07H0 PWM2 pin
PWM2
data register

PWMR3 08H0 PWM3 pin
PWM3
data register

(%)

0

0 Use PWM as 1-bit output pin.
Output contents of b5.

Symbol Peripheral
address Peripheral hardwareName

Peripheral register

Name Data buffer

Symbol

Address

Bit

Data Don't care Don't care Transfer data

GET
PUT

Valid data

Frequency f = 15.625 kHz

(f: PWM output repetition frequency)

102

µPD17062

10.5.6 Address Registers

The address registers are mapped to addresses 74H to 77H in the system register (at data memory addresses

74H to 7FH). They are used for program memory address operations. See Chapter 8.

The address registers can be used to manipulate data directly with data memory operation instructions.

They can also be used to transfer data via the data buffer as part of the peripheral hardware.

In other words, data can be read and written via the data buffer with PUT and GET instructions, as well as

data memory operation instructions.

Fig. 10-9 shows the relationship between the address registers and the data buffer.

Fig. 10-9 Relationship Between Address Registers and Data Buffer

DBF3

0CH

DBF2

0DH

DBF1

0EH

DBF0

0FH

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

0

AR 40H

Address register data write and read

0 0 0 0

F

16

Address register

b15 b14 b13 b12 b11 b10 b9 b8

0 0 0 0

0

x

F

0

0

0

0

AR3 AR2 AR1 AR0

74H 75H 76H 77H

Name

Symbol

Address

Data

Address register

x

Symbol Peripheral
address Peripheral hardware

Peripheral register

Name Data buffer

Symbol

Address

Bit

Data Transfer data

GET
PUT

Valid data

Name

Address
register

The eight high-order bits of the address
registers are always 0.

103

µPD17062

10.5.7 PLL Data Register

Fig. 10-10 shows how the PLL data register functions.

The PLL data register sets the frequency division ratio of the PLL frequency synthesizer. For the pulse

swallow method, all 16 bits are valid, the 12 high-order bits are set in the program counter, and the remaining

four low-order bits are set in the swallow counter.

Fig. 10-10 PLL Data Register

DBF3

0CH

DBF2

0DH

DBF1

0EH

DBF0

0FH

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

PLLR 41H

PLL frequency synthesizer frequency division ratio

16

b15 b14 b13 b12 b11 b10 b9 b8

256 (0100H)

x

0 (0000H)

216 - 1 (0FFFFH)

Not to be set.

Frequency division ratio N:N = x

PLL frequency
synthesizer

Symbol Peripheral
address Peripheral hardware

Name Data buffer

Symbol

Address

Bit

Data Transfer data

GET
PUT

Name

PLLR data
register

Peripheral register

Valid data

104

µPD17062

10.6 PRECAUTIONS WHEN USING DATA BUFFERS

10.6.1 Write Only, Read Only, and Unused Address Data Buffer Precautions

When the 17K series assembler and emulator are used for data transfer with peripheral hardware via the

data buffer, note the following regarding unused peripheral addresses and write only (PUT only) and read

only (GET only) peripheral registers.

(1) Device operation

Reading from a write only peripheral register returns an unpredictable value.

Writing to a read only register does not change its contents.

Reading from an unused address returns an unpredictable value. Writing to an unused address does not

change its contents.

(2) When using an assembler

An instruction that reads from a write only register generates an error.

An instruction that writes to a read only register generates an error.

An instruction that reads from or writes to an unused address generates an error.

(3) When using an emulator (used to execute instructions by batch processing, etc.)

Reading from a write only register returns an unpredictable value and does not generate an error.

Writing to a read only register does not change its contents and does not generate an error.

Reading from an unused address returns an unpredictable value. Writing to an unused address does not

change its contents and does not generate an error.

105

µPD17062

10.6.2 Peripheral Register Addresses and Reserved Words

When a 17K series assembler is used, no error is generated when peripheral address “p” is specified directly

(with a numerical value) in PUT p, DBF or GET DBF, p as shown in Example 1.

However, to reduce program bugs, this method should be avoided.

Therefore, the peripheral addresses should be symbolically defined with symbol definition instructions (an

assembler pseudo instructions), as shown in Example 2.

To simplify symbol definition, peripheral addresses are predefined in the assembler as reserved words.

Therefore, if reserved words are used, a program can be written without performing symbol definition, as

shown in Example 3.

The reserved words of peripheral registers are shown in the Symbol field in Table 10-1 and the Symbol

field in Figs. 10-4 to 10-10.

Example 1.

PUT 02H, DBF ; The assembler does not generate an error if peripheral

GET DBF, 03H ; addresses are directly specified by 02H and 03H. How

; ever, to reduce program bugs, this method should be

; avoided.

2.

SIO0DATA DAT 03H ; Assigns SIO0DATA to 03H using a symbol definition

PUT SIO0DATA, DBF ; instruction.

3.

PUT SIO0SFR ; If reserved word SIO0SFR is used, symbol definition is

; unnecessary.

106

µPD17062

11. INTERRUPT

An interrupt temporarily stops the program being executed in response to a request from the peripheral

hardware (INTNC pin, timer, VSYNC pin or serial interface). The interrupt then branches the program flow to

a predetermined address (vector address).

11.1 INTERRUPT BLOCK CONFIGURATION

Fig. 11-1 shows the interrupt block configuration.

The interrupt block consists of the interrupt request control blocks, interrupt enable flip-flop (INTE), stack

pointer, address stack register, program counter, and interrupt stack. The interrupt request control blocks

control interrupt requests from the INTNC pin, timer, VSYNC pin, and serial interface. The interrupt enable flip-

flop (INTE) sets all interrupt permissions. The stack pointer, address stack register, program counter, and

interrupt stack are controlled when an interrupt is accepted.

The interrupt request processing block in the peripheral hardware consists of the IRQ××× flip-flop, IP×××
flip-flop, and vector address generator (VAG). The IRQ××× flip-flop detects an interrupt request, the IP××× flip-

flop sets an interrupt permission, and the vector address generator (VAG) specifies a vector address at

interrupt acceptance.

The IRQ××× flip-flop and IP××× flip-flop correspond to the interrupt request flag and interrupt permission

flag, respectively, in the control register in one-to-one ratio.

107

µPD17062

Fig. 11-1 Interrupt Block Configuration

3FH 2FH
b3 b2 b1 b0 b3 b2 b1 b0

I
R
Q
S
I
O
0

I
R
Q
V
S
Y
N

I
R
Q
B
T
M
0

I
R
Q
N
C

I
P
S
I
O
0

I
R
V
S
Y
N

I
P
B
T
M
0

I
P
N
C

01H
b3 b2 b1 b0

0
S
P
2

S
P
1

S
P
0

BANK PSW
b3 b2 b1 b0 b3 b2 b1 b0

79H 7FH

0 0 C
M
P

C
Y

Z I
X
E

System register

Symbol
Address

Bit

Program counter

Address stack register

ASR0
ASR1

ASR5

Control register

IPSIO0

IRQSIO0

VAG
01H

IPVSYN

IRQVSYN

VAG
02H

IPBTM0

IRQBTM0

VAG
03H

IPNC

IRQNC

VAG
04H

Flag
symbol

Name
Interrupt
request

(INTREQ)

Interrupt
permission

(INTPM)

Stack pointer
(SP)

Address
Bit

Serial
inter-
face

VSYNC

pin

Timer

INTNC

pin

Stack
pointer

Flag
symbol

Interrupt
stack

Interrupt request processing block

Interrupt enable
flip-flop INTE

DI or EI instruction

108

µPD17062

11.2 INTERRUPT FUNCTION

The following peripheral hardware can use the interrupt function: the INTNC pin, timer, VSYNC pin, and serial

interface.

If the peripheral hardware satisfies the specified condition (e.g., a falling edge is input to the INTNC pin),

the interrupt function temporarily stops the program being executed and starts the exclusive processing

program.

The interrupt signal sent from the peripheral hardware at this time is called an interrupt request. Outputting

an interrupt signal can be expressed as “issuing an interrupt signal”. The exclusive processing program for

interrupts is called the interrupt processing routine.

When an interrupt is accepted, processing is branched to the program memory address (vector address)

specified for each interrupt source. Each interrupt processing routine can be started from this vector address.

Processing for the interrupt function can be divided into the processing done before interrupt acceptance

and the processing done after interrupt acceptance. First, the interrupt function operates until the interrupt

request from the peripheral hardware is accepted. Then, after the interrupt is accepted, the interrupt function

branches processing to the vector address and returns control to the program that was interrupted.

Sections 11.2.1 to 11.2.8 describe the functions of the blocks shown in Fig. 11-1.

11.2.1 Peripheral Hardware

There are four peripheral hardware interrupt functions: the INTNC pin, timer, VSYNC pin, and serial interface.

Interrupt request issuance conditions can be set for each type of peripheral hardware.

For example, the request issuance timing for the INTNC pin (rising or falling edge of the signal applied to

the INTNC pin) can be selected.

See Sections 11.3 to 11.7 for details of interrupt request issuance conditions for the peripheral hardware.

11.2.2 Interrupt Request Processing Block

An interrupt request processing block is provided for each type of peripheral hardware. This block controls

interrupt request permits an interrupt, and generates the vector address at interrupt acceptance.

Sections 11.2.3 to 11.2.8 describe the flags of the interrupt request processing block.

11.2.3 Interrupt Request Flags (IRQ×××)

The interrupt request flags are set to 1 when an interrupt request is issued from the peripheral hardware.

These flags are reset to 0 when the interrupt request is accepted.

Because the interrupt request flags correspond one-to-one to the flags in the interrupt request register, they

can be read and written via the window register.

Writing a 1 via the window register has the same effect as issuing an interrupt request.

Once these flags are set, they are not reset until the corresponding interrupts are accepted or a 0 is written

via the window register.

Even if two or more interrupt requests are issued together, the interrupt request flags corresponding to

the unaccepted interrupts are not reset.

These flags are reset to 0 at power-on reset, clock stop, or CE reset.

109

µPD17062

11.2.4 Interrupt Permission Flags (IP×××)

The interrupt permission flags set interrupt permissions for various types of peripheral hardware.

If these flags are set to 1 and the corresponding interrupt request flags are also set, the corresponding

interrupt requests are output.

Because these flags correspond one-to-one to the flags in the interrupt permission register of the control

register, they are read and written via the window register.

These flags are reset to 0 at power-on reset, clock stop, or CE reset.

11.2.5 Vector Address Generator (VAG)

When interrupts from various types of peripheral hardware are accepted, the vector address generator

generates the branch address (vector address) of the program memory for the source of the accepted interrupt.

Table 11-1 lists the vector addresses corresponding to the interrupt sources.

Table 11-1 Interrupt Vector Addresses

Interrupt source Vector address

INTNC pin 04H

Timer 03H

VSYNC pin 02H

Serial interface 01H

110

µPD17062

11.2.6 Interrupt Enable Flip-Flop (INTE)

The interrupt enable flip-flop sets the interrupt permissions of all four types of interrupts.

If each interrupt request processing block outputs a 1 while this flip-flop is set to 1, a 1 is output from this

flip-flop and an interrupt is accepted.

Even if a 1 is output from each interrupt request processing block while this flip-flop is reset to 0, an interrupt

is not accepted.

To set or reset this flip-flop, use exclusive instructions EI (set) and DI (reset).

If the EI instruction is executed, this flip-flop is set when the instruction executed after the EI instruction

is completed. If the DI instruction is executed, the flip-flop is reset during the DI instruction execution cycle.

If an interrupt is accepted while the interrupt enable flip-flop is set (EI state), this flip-flop is reset (DI state).

Even if the DI instruction is executed in the DI state or the EI instruction is executed in the EI state, the

instruction is invalid.

This flag is reset (DI state) at power-on reset, clock stop, or CE reset.

11.2.7 Stack Pointer, Address Stack Register, and Program Counter

The return address of control returned from the interrupt processing routine is saved in the address stack

register.

The stack pointer specifies one of six address stack registers (ASR0 to ASR5) to be used.

In other words, when an interrupt is accepted, the stack pointer value is reduced by 1, and the program

counter value is saved in the address stack register indicated by the stack pointer. Next, if exclusive return

instruction RETI is executed after the interrupt processing routine, the contents of the address stack register

indicated by the stack pointer are returned to the program counter. At this time, the stack pointer value is

increased by 1.

See also Chapter 4.

11.2.8 Interrupt Stack

The interrupt stack saves the contents of the bank register and index enable flag in the system register when

an interrupt is accepted.

When the interrupt is accepted and the contents of the bank register and index enable flag are saved, the

bank register and index enable flag in the system register are reset to 0.

The interrupt stack can save the contents of the bank registers and index enable flags of up to two levels.

Therefore, the interrupt stack can issue multiple interrupts of up to two levels; for example, an interrupt can

be accepted during execution of a routine that is processing another interrupt.

The contents of the interrupt stack are restored in the bank register and index enable flag in the system

register by executing the RETI instruction. The RETI instruction is exclusively used to return control from the

interrupt processing routine.

See also Chapter 4.

111

µPD17062

11.3 INTERRUPT ACCEPTANCE

11.3.1 Interrupt Acceptance and Priority

An interrupt is accepted as follows:

(1) When the interrupt conditions are satisfied (e.g., a rising edge is input to the INTNC pin), each type of

peripheral hardware outputs the interrupt request signal to the interrupt request blocks.

(2) When an interrupt request block accepts an interrupt request signal from the peripheral hardware, it sets

the corresponding IRQ××× flag to 1 (e.g., sets IRQNC for the INTNC pin).

(3) If an interrupt permission flag corresponding to an IRQ××× (e.g., IPNC flag for the IRQNC flag) is set 1 when

each interrupt request flag is set, each interrupt request block outputs a 1.

(4) A signal output from each interrupt request block is input to the interrupt enable flip-flop via an OR circuit.

This interrupt enable flip-flop is set to 1 by the EI instruction and reset by the DI instruction.

If a 1 is output from each interrupt request block while the interrupt enable flip-flop is set, a 1 is output

from the interrupt enable flip-flop and the interrupt is accepted.

When the interrupt is accepted, the signal from the interrupt enable flip-flop is input to the interrupt request

block via an AND circuit as shown in Fig. 11-1.

The interrupt request flag is reset by the signal input to each interrupt request block, and the vector address

for each interrupt is output.

If a 1 is output from the interrupt request block at this time, the interrupt acceptance signal is not

transferred to the next level. If two or more interrupt requests are issued together, they are accepted in

the following sequence:

(DMA) > INTNC pin > timer > VSYNC pin > serial interface

This sequence is called the hardware priority.

Fig. 11-2 shows the interrupt acceptance flowchart.

The processing in # of Fig. 11-2 is always executed in parallel. If two or more interrupt requests are

generated at the same time, the interrupt request flags are set at the same time.

On the other hand, the processing in $ is executed according to the priority given by the interrupt

permission flags.

In other words, if an interrupt permission flag is not set, the interrupt from the interrupt source is not

accepted. An interrupt with a high hardware priority can be inhibited by resetting the corresponding interrupt

permission flag in the program.

This type of interrupt is called a maskable interrupt. For a maskable interrupt, an interrupt with a high

hardware priority can be inhibited by the program; therefore, it is also called the software priority.

112

µPD17062

Fig. 11-2 Interrupt Acceptance Flowchart

START

INTNC pin Timer VSYNC pin Serial interface

IPNC=1? IPBTM0=1? IPVSYN=1? IPSIO0=1?
No

Yes

No

Yes

No

Yes

No

yes

Yes

No

Yes

No

Yes

No

IRQNC=
IPNC=1?

IRQBTM0=
IPBTM0=1?

IRQVSYN=
IPVSYN=1?

IRQSIO0=
IPSIO0=1

#

$

No

Yes

Interrupt
request?

No

Yes

Interrupt
request?

No

Yes

Interrupt
request?

No

Yes

Interrupt
request?

No

Yes

IRQNC setting IRQBTM0 setting IRQVSYN setting IRQSIO0 setting

EI state?

Interrupt acceptance

IRQNC resetting IRQBTM0 resetting IRQVSYN resetting IRQSIO0 resetting

113

µPD17062

11.3.2 Timing Chart at Interrupt Acceptance

Fig. 11-3 shows the timing chart at interrupt acceptance.

Fig. 11-3 (1) shows the timing chart of one interrupt.

The timing chart when an interrupt request flag is set to 1 is shown in (a) of (1). The timing chart when

an interrupt permission flag is set to 1 is shown in (b) of (1).

In both cases, the interrupt is accepted when the interrupt request flag, interrupt enable flip-flop, and

interrupt permission flag are all set.

If the flag or flip-flop that is set satisfies the skip conditions or the conditions for the first instruction cycle

of the MOVT DBF or @AR instruction, the interrupt is accepted after execution of the skipped instruction

(becomes NOP) or the second instruction cycle of the MOVT DBF or @AR instruction.

The interrupt enable flip-flop is set in the instruction cycle after the cycle in which the EI instruction is

executed.

Fig. 11-3 (2) shows the timing chart when two or more interrupts are used.

If all interrupt permission flags are set when two or more interrupts are used, the interrupt with the highest

hardware priority is accepted first. The program can be used to change the interrupt permission flags to

change the hardware priority.

The interrupt cycle shown in Fig. 11-3 is a special cycle in which an interrupt request flag is reset, a vector

address is specified, and the contents of the program counter are saved after an interrupt is accepted. The

time required for an interrupt is equal to the time required for one instruction (2 µs, or 12 µs when the IDC

is operating). See Section 11.4 for details.

Because the interrupt request flag is set to 1 regardless of the EI instruction and interrupt permission flags,

an interrupt request can be identified by detecting an interrupt request flag using the program.

114

µPD17062

Fig. 11-3 Interrupt Reception Timing Chart (1/2)

(1) When one interrupt (e.g., rising edge at the INTNC pin) is used

(a) When an interrupt mask time is not set by the interrupt permission flag

When the MOVT instruction or a normal instruction that does not satisfy the skip conditions is

executed at interrupt acceptance

$$ When the MOVT instruction or an instruction satisfying the skip conditions is executed at

interrupt reception

(b) When an interrupt holding period is set by the interrupt permission flag

Instruction EI MOV
WR, #0001B

POKE
INTPM, WR

INTE

INTNC pin

IRQNC flag

IPNC flag

Interrupt acceptance

Normal
instruction

Interrupt
cycle

or 12 s

1 instruction cycle:
 2 s

Interrupt permission
period

Interrupt processing
routineµ

µ

Instruction EI MOV
WR, #0001B

POKE
INTPM, WR

INTE

INTNC pin

IRQNC flag

IPNC flag

Interrupt processing
routine

MOVT DBF,
@AR skip
instruction

Interrupt
cycle

Interrupt acceptance

Instruction EI MOV
WR, #0001B

POKE
INTPM, WR

INTE

INTNC pin

IRQNC flag

IPNC flag

Interrupt acceptance

Interrupt
cycle

Interrupt holding period
Interrupt processing
 routine

115

µPD17062

Fig. 11-3 Interrupt Acceptance Timing Chart

(2) When two or more interrupts (e.g., rising edge at the INTNC pin and falling edge at the VSYNC pin) are used

(a) Hardware priorities

(b) Software priorities

Instruction EIMOV
WR, #0101B

POKE
INTPM, WR

INTE

INTNC pin

IRQVSYN flag

IPNC flag

EI

IPVSYN flag

IRQNC flag

VSYNC pin

Interrupt
cycle

Interrupt
cycle

VSYNC pin interrupt acceptance

INTNC pin interrupt holding period INTNC pin interrupt processing VSYNC pin
interrupt processing

VSYNC pin interrupt holding period

INTNC pin interrupt acceptance

Instruction EIMOV
WR, #0100B

POKE
INTPM, WR

INTE

INTNC pin

IRQNC flag

IPNC flag

EI

IPVSYN flag

IRQNC flag

VSYNC pin

MOV
WR, #0101B

POKE
INTPM, WR

INTNC pin interrupt holding period

VSYNC pin interrupt acceptance

INTNC pin interrupt
processing

INTNC pin interrupt acceptance

VSYNC pin interrupt holding period VSYNC pin interrupt processing

Interrupt
cycle

Interrupt
cycle

116

µPD17062

11.4 OPERATIONS AFTER INTERRUPT ACCEPTANCE

When an interrupt is accepted, the following processing sequence is executed:

(1) The interrupt enable flip-flop or interrupt request flag corresponding to the accepted interrupt is reset.

In other words, a write protected state is set.

(2) The stack pointer value is decreased by 1.

(3) The contents of the program counter are saved in the address stack register indicated by the stack pointer.

The contents of the program counter become the program memory address after the contents at interrupt

acceptance. For a branch instruction, the contents become the branch destination address. For a

subroutine call instruction, the contents become the called address. If a skip instruction satisfies the skip

conditions, an interrupt is accepted after the next instruction is executed as the NOP instruction.

Therefore, the contents of the program counter become the skipped address.

(4) The lower two bits of the bank register (BANK: address 79H) and the index enable flag (IXE: bit b0 of

address 7FH) are saved in the interrupt stack.

(5) The contents of the vector address generator corresponding to the accepted interrupt are transferred to

the program counter. In other words, processing is branched to the interrupt processing routine.

The processing in (1) to (5) above is executed during one special instruction cycle (2 µs, or 12 µs when the

IDC is operating) without normal instruction execution.

This instruction cycle is called the interrupt cycle. The processing from interrupt acceptance to branching

to the corresponding vector address requires one instruction cycle.

11.5 RETURNING CONTROL FROM INTERRUPT PROCESSING ROUTINE

To return control from the interrupt processing routine to the processing executed at interrupt acceptance,

use the exclusive RETI instruction. When the RETI instruction is executed, the following processing sequence

is executed.

(1) The contents of the address stack register indicated by the stack pointer are restored in the program

counter.

(2) The contents of the interrupt stack are restored in the lower two bits of the bank register or bit b0 of the

index enable flag.

(3) The stack pointer value is increased by 1.

The processing in (1) to (3) above is executed during one instruction cycle of the RETI instruction. The only

difference between the RETI instruction and subroutine return instruction RET or RETSK is in the restoration

of the contents of the bank register or index enable flag in (2) above.

117

µPD17062

11.6 INTERRUPT PROCESSING ROUTINE

An interrupt is accepted in a program area that permits interrupts regardless of the program being executed.

Therefore, to return control to the original program after interrupt processing, return the program to the

state it is in when it is not processing an interrupt.

For example, if an arithmetic operation is performed during interrupt processing, the contents of the carry

flag may differ from those before interrupt acceptance. This content change may cause a decision error in

the program to which control has returned.

A system or control register that can at least operate within the interrupt processing routine should be saved

or restored within the interrupt processing routine.

See Section 11.9 for processing that permits an interrupt while another interrupt is being processed

(multiple interrupts).

11.6.1 Save Processing

This section describes how to save the contents of registers using the interrupt routine as an example.

Only the contents of bank register and index enable flag of system registers are automatically saved by

the hardware. Use the program to save another system register as described in the example if necessary.

The PEEK and POKE instructions can be used to save or restore the contents of the system registers or other

registers as described in the example.

To save the contents of a register, a transfer instruction (LD r, LD m, ST m, or ST r) can be used in addition

to PEEK and POKE. If a transfer instruction is used to save the contents of a register when the row address

of the general-purpose register is not defined at interrupt acceptance, the data memory address is hard to

specify.

If the general-purpose register address is not defined when the transfer instruction is used to save the

contents of the general-purpose register, the address to be saved also becomes undefined. In this case, use

of the general-purpose register should be fixed at least in the interrupt permission routine.

However, because the address of the register file controlled by the PEEK or POKE instruction is specified

regardless of the contents of the general-purpose register and because addresses 40H-7FH of the register file

overlap with the bank data memory, each system register can be saved only by specifying the bank.

In the example, the PEEK or POKE instruction is used to save the contents of the window register and

general-purpose register pointer. Then, the general-purpose register is respecified to row address 07H of

BANK0 and the ST instruction is used to save another system register.

Fig. 11-4 illustrates register content saving using the PEEK and POKE instructions.

11.6.2 Restoration Processing

This section describes an example of restoration.

To restore the contents of a register, reverse the procedures for register saving explained in Section 11.6.1.

Because an interrupt is always accepted in an interrupt permitted state (EI state), the EI instruction must

be executed before the RETI instruction.

The EI instruction sets the interrupt enable flip-flop to 1 after the next RETI instruction is executed.

Therefore, control is returned to the program before an interrupt is accepted, then the program enters an

interrupt permitted state.

118

µPD17062

11.6.3 Notes on Interrupt Processing Routine

Note the following regarding the interrupt processing routine:

(1) Data saved by hardware

All bank registers and index enable flags are reset to 0 after being saved in the interrupt stack.

(2) Data saved by software

Data saved by software is not reset after being saved.

Program status words such as the BCD flag, compare flag, carry flag, zero flag, and memory pointer enable

flags keep their preacceptance values. Initialize these program status words if necessary.

119

µPD17062

Example Saving the status in an interrupt processing routine

EI

M046

M047

M048

M04D

M04E

M05F

BTM0CK

MEM

MEM

MEM

MEM

MEM

MEM

MEM

0.46H

0.47H

0.48H

0.4DH

0.4EH

0.5FH

0.89H

POKE

$ PEEK

% POKE

& MOV

(ST

) ST

M048,

WR,

M04E,

RPL,

M046,

M047,

WR

RPL

WR

#0EH

AR1

AR0
...

* PEEK

+ ST

WR,

M05F,

BTM0CK

WR

BANK0

MOV

LD

LD

RPL,

AR1,

AR0,

#0EH

M046

M047
...

LD

POKE

WR,

BTM0CK,

M05F

WR
...

PEEK

POKE

PEEK

WR,

RPL,

WR,

M04E

WR

M048

RETI

EI

Main routine Program example
Interrupt

processing
routine

(enters a DI state)

BANK and IXE
saving by
hardware

Saving contents
of required system

register using
software

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

Restoration of
contents of saved
system registers

Interrupt reception
Interrupt

processing

Saves the contents of the window register in M048.

Saves the contents of the general-purpose register pointer in M04E.

Sets row address 7 of bank 0 in the general-purpose register

Saves the contents of required system registers.

Saves the contents of the required control register.

Restores the contents of the saved control register.

Restores the contents of the general register-purpose pointer.

Restores the contents of the saved window register.

The EI instruction permits an interrupt (INTE setting)

after the next RETI instruction is executed.

Restoration by the BANK or IXE hardware

;

;

;

;

Makes bank 0 available.

Sets row address 7 of bank 0 in the general-purpose register.

Restores the contents of the saved system registers.

...

120

µPD17062

Fig. 11-4 Saving the System or Control Register Using the Window Register

Numbers # to + correspond to the numbers in the program example.

0 1 2 3 4 5 6 7 8 9 A B C D E F
0

1

2

3

4

5

6

7

BANK0

POKE M048, WR() # %

+

*

AR1 AR0 WR RPL

BTM0CK

$

&

0

1

2

3

Column address

Data memory

Save area

Control register

Register file

R
ow

 a
dd

re
ss

Specify the general-
purpose register.

121

µPD17062

11.7 EXTERNAL INTERRUPTS (INTNC PIN, VSYNC PIN)

There are two external interrupt sources: INTNC and VSYNC.

An interrupt request is issued when a rising or falling edge is input to the INTNC or VSYNC pin.

11.7.1 Configuration

Fig. 11-5 shows the configurations of the INTNC and VSYNC interrupts.

As shown in Fig. 11-5, the INTNC and VSYNC signals are input to the INTNC or INTVSYN latch and to edge

detectors.

The edge detectors output their respective interrupt request signals according to the inputs from the pin

and the status of the IEGNC or IEGVSYN flip-flop.

The IEGNC flip-flop and IEGVSYN flip-flop correspond to the IEGNC flag and IEGVSYN flag, respectively,

in the interrupt edge selection register (INTEDGE: address 1FH) of the control register.

The INTNC latch and INTVSYN latch correspond to the INTNC flag and INTVSYN flag, respectively, in the

interrupt-pin-level judge register (INTJDG: address 0FH) of the control register.

The Schmitt triggers at the INTNC and VSYNC inputs prevent pulses operations due to noise. These pins do

not accept pulses of 1 µs or less.

A minimum pulse width can be set for the INTNC pin. See Section 9.10.

Fig. 11-5 INT0 Pin and INT1 Pin Configurations

IRQNC

IRQVSYN

INTNC latch

INTVSYN latch

IEGVSYN flip-flop

0 FH1 FH
b3 b2 b1 b0 b3 b2 b1 b0

0

I
E
G
V
S
Y
N

0

I
E
G
N
C

0

I
N
T
V
S
Y
N

0

I
N
T
N
C

Control register

Name

Address
Bit

Flag
symbol

Interrupt
edge select
(INTEDGE)

Interrupt
pin level judge

(INTJDG)

VSYNC pin

INTNC pin

Schmitt trigger
IEGNC flip-flop

Edge detection

Interrupt request block

Edge detection
Schmitt trigger

122

µPD17062

11.7.2 Functions

An interrupt can be issued when either a rising or falling edge is input to the INTNC or VSYNC pin.

Use the IEGNC or IEGVSYN flag in the interrupt edge select register of the control register to select the rising

or falling edge.

Table 12-2 shows the relationship between the IEGNC and IEGVSYN flags and the active edges of interrupt

requests.

Note the following:

If the IEGNC or IEGVSYN flag is used to switch the interrupt request edge, an interrupt request signal may

be issued at the moment of switching.

Suppose that the IEGNC flag is set to 0 (falling edge) and a high level is input to the INTNC pin as shown

in Table 11-3. At this time, if the IEGNC flag is set to 1, the edge detector determines that a rising edge has

been input and therefore issues an interrupt request.

See Section 11.2 for operations after interrupt request issuance.

Because the signals input to the INTNC and VSYNC pins are input to the INTNC and INTVSYN latches as shown

in Fig. 11-5, the input signal levels can be detected by reading the INTNC and INTVSYN flags.

Because the INTNC and INTVSYN flags are set or reset regardless of interrupts, they can be used as 2-bit

general-purpose input ports when the corresponding interrupt functions are not used.

If interrupt is not permitted, the flags can be used as general-purpose ports that can detect a rising or falling

edge by reading the interrupt request flags (IRQNC or IRQVSYN). However, because the interrupt request flags

are not automatically reset in this case, they must be reset by the program.

Table 11-2 IEGNC and IEGVSYN Flags and Interrupt Request Issuance Edges

IEGNC

Flag values

INTVSYN

Active edges of interrupt
request pins

VSYNC pinINTNC pin

0 0

0 1

1 0

1 1

Rise Rise

Rise Fall

Fall Rise

Fall Fall

123

µPD17062

IEGNC or IEGVSYN flag change INTNC or VSYNC pin Whether interrupt IRQNC flag

request is issued

1 → 0 Low Not issued No change

(Fall) (Rise) High Issued Set

1 → 0 Low Issued Set

(Rise) (Fall) High Not issued No change

Table 11-3 Interrupt Request Issuance by IEGNC Flag Change

11.8 INTERNAL INTERRUPT (TIMER, SERIAL INTERFACE)

There are two types of internal interrupts: the timer interrupt and the serial interface interrupt.

11.8.1 Timer Interrupt

The timer interrupt function can issue interrupt requests at a specified time interval.

An interval of 100 ms, 20 ms, or 5 ms can be selected.

See Chapter 12 for details.

11.8.2 Serial Interface Interrupt

The serial interface interrupt function can issue an interrupt request when a serial out or serial in operation

terminates.

Therefore, interrupt requests are mainly issued by the serial clock.

See Chapter 16 for details.

124

µPD17062

11.9 MULTIPLE INTERRUPTS

The multiple interrupt function is used to process interrupt C or D while another interrupt from source A

or B is being processed as shown in Fig. 11-6.

The interrupt depth at this time is called the interrupt level.

Note the following regarding the multiple interrupt function.

(1) Interrupt source priorities

(2) Interrupt level restriction by an interrupt stack

(3) Interrupt level restriction by the address stack register

(4) System or control register saving

See Sections 11.9.1 to 11.9.4 for details.

Fig. 11-6 Example of Multiple Interrupts

MAIN B D

A B

C

Interrupt level 2Main routine Interrupt level 1

125

µPD17062

11.9.1 Interrupt Source Priorities

When using the multiple interrupt function, the priorities of interrupt sources must be determined.

For example, if the interrupt sources are A, B, C, and D, the following priorities can be specified:

A = B = C = D or A < B < C < D.

If A = B = C = D, the main routine always accepts interrupts A, B, C, and D. However, if interrupt C is accepted,

interrupts A, B, and D are inhibited, making the multiple interrupt function unusable.

If the priorities are A < B < C < D, interrupt C should be processed with the first priority even if interrupt

A or B is being processed. In this case, processing of interrupt D has the same priority as interrupt C.

The priorities can be set to hardware or software priorities by using the interrupt permission flags. Section

11.3 describes the hardware and software priorities.

To determine priorities at multiple interrupts, interrupt sources A and B are assumed have no priority and

source A is assumed to issue requests at 10 ms intervals. The interrupt processing time is assumed to be

4 ms. Source B is assumed to issue requests at 2 ms intervals. Lastly, the interrupt processing time is assumed

to be 1 ms.

Under these conditions, if interrupt A is issued by an interrupt request from A while interrupt B is being

processed, and the priorities of A and B are not determined, several interrupts from B will not be executed.

Because an interrupt is generally used for emergency processing, the A < B priority should be set in the

program to prevent interrupt A while interrupt B is being processed and accept interrupt B while interrupt A

is being processed.

When using the multiple interrupt function for non-emergency purposes, priorities need not be determined.

However, if the number of existing interrupt sources exceeds the multiple interrupt level limit described in

Section 11.9.2 or 11.9.3, be sure to determine priorities so that the interrupt level is not exceeded.

11.9.2 Interrupt Level Restriction by Interrupt Stack

The contents of the bank register of the system register and index enable flag are automatically saved in

the interrupt stack.

Fig. 11-7 (a) shows the interrupt stack operation.

The contents of all bank registers and index enable flags are reset when they are saved in the interrupt stack.

Because there are two levels of interrupt stacks, if multiple interrupts of more than two levels are issued,

the contents of the bank register and index enable flag are not restored normally as shown in Fig. 11-7 (b).

In other words, multiple interrupts of more than two levels cannot be used.

However, if the bank register and index enable flag are fixed in a main routine permits interrupts and

multiple interrupts have clear priorities as shown in Fig. 11-8, multiple interrupts of two levels or more can

be used by using subroutine return instruction RET.

126

µPD17062

For multiple interrupts of more than two levels, operations of the device and emulator differ as shown in

Figs. 11-8 and 11-9.

At interrupt stack, the device operation is the sweep-off type and the emulator operation is the rotation type.

Use the RET instruction as the last restoration instruction when using multiple interrupts of more than two

levels. RETI and RET instructions operate in the same manner except when restoring the contents of the

interrupt stack.

127

µPD17062

Fig. 11-7 Interrupt Stack Operation at Multiple Interrupts

(a) Multiple level-2 interrupts

(b) Multiple level-3 interrupts

MAIN A

MAIN

BAMAIN

RETIRETI

A

MAIN

MAIN

MAIN

MAIN

MAIN

Interrupt B

Interrupt
stack

Undefined

Main routine Interrupt A

Interrupt
stack

Undefined

Undefined

MAIN A

MAIN

B

A

CBAMAIN

BAAA

RETIRETIRETI

AAAA

If control is returned to the main routine at this time,
BANK and IXE of interrupt A are restored and the
main routine operates abnormally.

Undefined

Undefined

Main routine Interrupt A Interrupt B Interrupt C

Undefined

128

µPD17062

MAIN A

MAIN

B

A

CBAMAIN

BAAA

RETIRETIRET

AAAA

BANK0
CLR1 IXE

DI

BANK0

CLR1 IXE

EI

Undefined

Undefined

Main routine Interrupt A Interrupt B Interrupt C

Undefined

Fig. 11-8 Example of Using Multiple Level-3 Interrupts

To interrupt A, be sure to set a lower priority than interrupts B and C. Fix the bank register and index enable

flag (BANK0 and IXE = 0 in this example) in the main routine that permits interrupt A. This processing enables

the use of RET instructions for multiple interrupts of three levels after specifying the bank register and index

enable flag of the main routine.

If the bank register and index enable flag at interrupt A are exactly the same as those of the main routine,

the RETI instruction can be used. However, because the operation of the 17K series emulator differs as shown

in Fig. 11-9, the RETI instruction cannot be used for debugging.

129

µPD17062

Fig. 11-9 Interrupt Stack Operation when 17K Series Emulator is Used

If the RETI instruction is used on the emulator, the contents of the bank register and index enable flag of

interrupt B are restored.

MAIN MAIN

A

B

A

CBAMAIN

BBBB

RETIRETI
RET

AAAA

Undefined

Undefined

Main routine Interrupt A Interrupt B Interrupt C

Undefined

130

µPD17062

11.9.3 Interrupt Level Restriction by Address Stack Register

The return address at control return from interrupt processing is automatically saved in the address stack

register.

The address stack register can use the six levels from ASR0 to ASR5 as described in Chapter 4. Because

the interrupt sources are the INTNC pin, timer, VSYNC pin, and serial interface, the multiple interrupt level is

unlimited when the address stack register is used only for interrupts.

However, because the address stack register is also used to save the return address at subroutine calling,

multiple interrupt levels are limited according to the levels of the address stack register used for subroutine

calling.

For example, if four levels are used for subroutine calling, only two levels of the multiple interrupts shown

in Fig. 11-10 can be used.

Fig. 11-10 Address Stack Register Operation

ASR0
ASR1
ASR2
ASR3
ASR4
ASR5
ASR6
ASR7

× × × ×
Undefined
Undefined
Undefined
Undefined
Undefined

MAIN
× × × ×

× × × ×
Undefined
Undefined
Undefined
Undefined

SUB1
MAIN
× × × ×

× × × ×
Undefined
Undefined
Undefined

SUB2
SUB1
MAIN
× × × ×

× × × ×
Undefined
Undefined

SUB3
SUB2
SUB1
MAIN
× × × ×

× × × ×
Undefined

AAA
SUB3
SUB2
SUB1
MAIN
× × × ×

× × × ×
SUB4
AAA
SUB3
SUB2
SUB1
MAIN
× × × ×

× × × ×
SUB4
AAA
SUB3
SUB2
SUB1
MAIN
× × × ×

× × × ×
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
× × × ×

× × × ×
SUB4
AAA
SUB3
SUB2
SUB1
MAIN
× × × ×

RET
BBB:SUB4:AAA:SUB3:SUB2:SUB1:

MAIN:

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

Stack
pointer

SP

Main routine Subroutine
1

Subroutine
2

Subroutine
3

Interrupt
A

Subroutine
4

Interrupt
B

Subroutine
5

Because the contents of the address stack register
(ASR0) are always undefined when the stack pointer
is 0, the return addressof the RET instruction also
becomes undefined.

Address stack
register

131

µPD17062

11.9.4 Saving the Contents of System and Control Registers

The contents of system and control registers must be saved before using the multiple interrupt function.

The contents of these registers change during interrupt processing.

An area must be obtained for these contents for each interrupt source.

An interrupt being accepted and interrupts with lower priorities must be inhibited, and interrupts with

higher priorities must be permitted.

Because an interrupt with a high priority is an emergency interrupt, it should have first priority. Therefore,

the contents of system and control registers should be saved after permitting an interrupt with a high priority.

The following example describes processing of the interrupt processing routine to enable an interrupt with

a high priority and to save the contents of system and control registers:

Example Example of permitting an interrupt and saving register contents at multiple interrupts

Use the INTNC pin, VSYNC pin, and timer interrupts with the following software priorities:

VSYNC pin > timer > INTNC pin

A timer interrupt is assumed to be accepted in the first level.

The figure below shows an example program and flowchart for this processing.

 Flowchart Program example

#

$

%

&

(

)

*

+

,

EI
RETI

EI

EI

DI

MOV
POKE

BANK1

POKE

PEEK
POKE
MOV
POKE

PEEK
POKE

PEEK
POKE

PEEK
POKE

PEEK

WR,
INTPM,

#0111B
WR

WR

INTPM
WR
#0100B
WR

WR,
M3,

WR,
INTPM,

M2
WR

M1

WR,
INTPM,

WR,

M3
WR

RPL
WR

M1,

WR,
M2,
WR,
INTPM,

VSYNC, INTNC, and timer
interrupt permission

;
;
;
;

;
;

;

;
;
;

;
;
;

;

;
;
;
;

(built-in macro) ;Bank specification

Window register saving

Interrupt permission flag
saving

Permission of interrupt
with high priority

System register saving

Interrupt processing

System register restoration

Interrupt permission
flag restoration

Window register restoration

Permit timer, INTNC pin, and VSYNC pin interrupts
using the interrupt permission register.
The contents of the bank register, index enable flag,
and program counter are automatically saved.

Restore the contents of the interrupt
permission register.

Restores the contents of the window register.

Restore the contents of system
and control registers other than window
and interrupt permission registers.

Save the contents of system and
control registers other than window
and interrupt permission registers.

Saves the window register.

Save the interrupt permission
register in data memory M2.
Permit a VSYNC pin interrupt using
the interrupt permission register.

Specifies that the data is saved in BANK1.

Timer interrupt

Main routine

132

µPD17062

In #, specify the data memory bank containing the contents of the system register.

Because the bank becomes BANK0 when an interrupt is accepted, if the data is saved in BANK0, this

instruction is not necessary.

In $, save the contents of the window register in data memory M1.

Because the POKE instruction is used, the address of data memory M1 should be 40H or more. Because

the window register is used as a work area for subsequent data saving, its contents must be saved first.

In %, save the interrupt permission flags (IPNC, IPBMT0, and IPVSYN) set when interrupts are accepted.

In this example, all INTNC pin, VSYNC pin, and timer interrupts must be permitted when control is returned to

the main routine in this save operation. The priority of the timer interrupt is higher than that of the INTNC pin.

Therefore, if the timer interrupt is accepted while the INTNC pin interrupt is being processed, control should

be returned with the INTNC pin interrupt inhibited.

In &, permit VSYNC interrupt with a lower priority than the timer interrupt. Then, use the EI instruction to

permit all interrupts.

Because processing in #, $, %, and & must be executed with an interrupt inhibited, the VSYNC interrupt

with the highest priority is also inhibited during this processing.

In (and), save and restore the contents of the system and control registers. At this time, interrupts with

high priorities can be enabled.

If the contents of the registers are saved when a VSYNC interrupt with a high priority is accepted, the contents

of the system and control registers do not change when control is returned from VSYNC interrupt processing.

In * and +, return the contents of the interrupt permission flag and window register.

At this time, all interrupts should be inhibited.

If a timer interrupt is issued when the instruction in * that permits an interrupt is executed in an EI state,

the contents of the window register in + are not restored but are saved again in $. At this time, the contents

of the window register cannot be restored.

133

µPD17062

12. TIMER

The timer functions are used to manage the time in creating programs.

12.1 TIMER CONFIGURATION

Fig. 12-1 shows the configuration of the timer.

The timer consists of two blocks, timer carry flip-flop (timer carry FF) block and timer interrupt block, as

shown in Fig. 12-1.

The clock generation circuit, which specifies time intervals for the timer carry FF and timer interrupts,

consists of an 8 MHz frequency divider, selector A, selector B, bias circuit, and a timer mode select register

(BTM0CK at address 09H), which is a control register.

12.1.1 Timer Carry FF Block Configuration

The timer carry FF block consists of selector A, timer carry FF, a timer carry FF judge register (BTM0CYJDG

at address 17H), which is a control register, as shown in Fig. 12-1.

12.1.2 Timer Interrupt Block Configuration

The timer interrupt block consists of selector B, an interrupt control block, an interrupt permission register

(INTPM at address 2FH), which is a control register, and an interrupt request register (INTREQ at address 3FH),

as shown in Fig. 12-1.

Fig. 12-1 Timer Configuration

09H 2FH 3FH 17H
b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0

B
T
M
0
Z
X

B
T
M
0
C
K
2

B
T
M
0
C
K
1

B
T
M
0
C
K
0

I
P
S
I
O
0

I
P
V
S
Y
N

I
P
B
T
M
0

I
P
N
C

I
R
Q
S
I
O
0

I
R
Q
V
S
Y
N

I
R
Q
B
T
M
0

I
R
Q
N
C

0 0 0

B
T
M
0
C
Y

10 Hz
50 Hz

200 Hz

8 MHz

50/60 Hz

100 ms (10 Hz), 20 ms (50 Hz), or 5 ms (200 Hz) can be selected.

Control register

Register

Address
Bit

Flag symbol

Timer mode
select

(BTM0CK)

Interrupt
permission

(INTPM)

Interrupt
request

(INTREQ)

Timer carry
FF judge

(BTM0CYJDG)

Selector
B

Interrupt
control block

Interrupt
request
signal

Frequency
divider

Timer interrupt block

Selector
A

Timer carry FF

Bias Timer carry FF block

134

µPD17062

12.2 TIMER FUNCTIONS

There are two timer functions, timer carry FF check and timer interrupt.

The timer carry FF check function performs time management by checking, by program, the state of the

timer carry FF, which is set at constant intervals. The timer interrupt function performs time management

by requesting an interrupt at constant intervals.

The timing at which the timer carry FF is set to 1 or the timer interrupt is requested is controlled by the

timer interval set pulse output from selector A or B, respectively.

The timer interval set pulse can be specified as 10 Hz (100 ms), 50 Hz (20 ms), or 200 Hz (5 ms) by setting

the appropriate data in the timer mode select register.

The timer mode select register is used to specify the time base mode (internal timer mode or external timer

mode) for selectors A and B. The internal timer mode uses pulses generated by dividing the device’s operating

frequency (8 MHz). The external timer mode uses 50 or 60 Hz supplied at the P0B2/TMIN pin.

The timer mode select register is again used to specify whether to divide the frequency of the pulse supplied

at the P0B2/TMIN pin by 5 or 6.

The timer interval set pulse is specified by combining the timer carry FF and timer interrupt.

Fig. 12-2 shows the relationships between the timer mode select register and timer interval set pulse.

In the internal timer mode, the timer interval set pulse is generated by dividing the device’s operating

frequency (8 MHz). If the frequency deviates from the correct value (8 MHz), the timer interval set pulse will

also deviate at the same ratio.

135

µPD17062

Fig. 12-2 Relationship Between the Timer Mode Select Register and Timer Interval Set Pulse

b3 b2 b1 b0

B
T
M
0
Z
X

B
T
M
0
C
K
2

B
T
M
0
C
K
1

B
T
M
0
C
K
0

09H

R/WRead/Write

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

10 Hz (100 ms)

200 Hz (5 ms)

10 Hz (100 ms)

200 Hz (5 ms)

fTMIN/5 Hz (5/fTMIN s)

200 Hz (5 ms)

fTMIN/6 Hz (6/fTMIN s)

200 Hz (5 ms)

200 Hz (5 ms)

10 Hz (100 ms)

50 Hz (20 ms)

50 Hz (20 ms)

200 Hz (5 ms)

fTMIN/5 Hz (5/fTMIN s)

200 Hz (5 ms)

fTMIN/6 Hz (6/fTMIN s)

200 Hz

50 Hz

fTMIN/6 (Hz)

10 Hz

fTMIN/5 (Hz)

Control register

Register

Address

Bit

Flag symbol

Timer mode
select

(BTM0CK)

Selection of frequency (time) of the timer carry FF set pulse Selection of frequency (time) of the timer interrupt pulse

Internal timer

Internal timer

Internal timer

Internal timer

External timer

Internal timer

External timer

Internal timer

Internal timer

Internal timer

Internal timer

Internal timer

Internal timer

External timer

Internal timer

External timer

fTMIN is the input frequency (50 or 60 Hz) at the P0B2/TMIN pin.

Disables the bias circuit.

Enables the bias circuit.

Duty cycle Duty cycle

80 ms

1 ms
5 ms

4 ms

100 ms
20 ms

20%80%50%

10 ms
20 ms

10 ms

50%

136

µPD17062

12.3 TIMER CARRY FLIP-FLOP (TIMER CARRY FF)

The timer carry FF is set to 1 by the positive-going edge of the timer carry FF set pulse specified by the

timer mode select register.

The content of the timer carry FF corresponds to the lowest bit (BTM0CY flag) of the timer carry FF judge

register on a one-to-one basis, and when the timer carry FF is set to 1, the BTM0CY flag is also set to 1 at the

same time.

The BTM0CY flag is reset to 0 by the PEEK instruction when it reads the content of the window register

(Read & Reset).

When the BTM0CY flag is reset to 0, the timer carry FF is also reset to 0 at the same time.

Reading the BTM0CY flag by program can create a timer that operates at intervals of the time specified

in the timer mode select register.

Section 12.3.1 gives an example of a program used to read the BTM0CY flag.

When using the timer carry FF, observe the following point.

A power-on reset disables the timer carry FF from being bet. It cannot be set until the PEEK instruction

is issued to read the content of the BTM0CY flag.

0 is read in when the BTM0CY flag is read-accessed for the first time after a power-on reset. Once it is reset,

the timer carry FF is set to 1 at intervals of the time specified in the timer mode select register.

The timer carry FF also controls the timing of a CE reset.

To put in another way, once the CE pin goes from a low to a high, a CE reset occurs at the same time the

timer carry FF is set.

Therefore, reading the content of the BTM0CY flag at a reset (power-on or CE reset) enables a power failure

check. See Section 12.4 and Chapter 14 for details.

Because the BTM0CY flag is a read-only flag, writing to it with the POKE instruction does not affect the

operation of the device at all. However, an error is reported by the 17K series assembler.

137

µPD17062

12.3.1 Example of Using the Timer Based on the BTM0CY Flag

An example of a program follows.

Example INITFLG NOT BTM0ZX, NOT BTM0CK2, NOT BTM0CK1, NOT BTM0CK0

; Built-in macro

; Specifies that the timer carry FF be set at intervals of 100 ms.

LOOP1:

MOV M1, #0110B

LOOP2:

SKT1 BTM0CY ; Built-in macro

; Tests the BTM0CY flag. Branches to NEXT if the flag is 0.

BR NEXT

ADD M1, #0100B ; Adds 4 to data memory M1.

SKT1 CY ; Built-in macro

; Tests the CY flag.

BR NEXT ; Branches to NEXT if the flag is 0.

Process A ; Performs process A if the flag is 1.

MOV M1, #0110B

NEXT:

Process B ; Performs process B and branches to LOOP.

BR LOOP

This program performs process A at intervals of one second.

Note the following point (1) when creating this program.

(1) The time interval at which the BTM0CY flag is checked must be less than the time interval at which the

timer carry FF is set to 1.

This is because if it takes 100 ms or longer to perform process B, it is impossible to detect when the timer

carry FF is set, as shown in Fig. 12-3.

Fig. 12-3 BTM0CY Flag Check and Timer Carry FF

$ % & (

SKT1
 BTM0CY

SKT1
 BTM0CY

SKT1
 BTM0CY

Timer carry FF set pulse

BTM0CY flag

Process B Process B'

Because it takes long to perform process B' after it is detected that the
BTM0CY flag is set at $, it is impossible to detect when the BTM0CY
flag is set at %.

138

µPD17062

12.3.2 Timer Error Caused by the BTM0CY Flag

There are two types of timer error that can occur because of the BTM0CY flag. One type depends on the

timing when the BTM0CY flag is checked, and the other type occurs when the timer carry FF setting interval

is changed.

These types of timer error are detailed below.

(1) Timer error by BTM0CY flag check timing

As described in Section 12.3.1, the time interval at which the BTM0CY flag is checked must be less than

the time interval at which the timer carry FF is set to 1.

Suppose the time interval at which the BTM0CY flag is checked is tCHECK, and the time interval (100 ms or

5 ms) at which timer carry FF is set is tSET. The relationship between these two intervals must be as follows:

tCHECK < tSET

Under this condition, as shown in Fig. 12-4, the timer error that depends on the timing when the BTM0CY

flag is checked is as follows:

0 < error < tCHECK

Fig. 12-4 Timer Error That Depends on the Time Interval at Which the BTM0CY Flag Is Checked

As shown in Fig. 12-4, when the BTM0CY flag is checked at $, it appears to be 1 and causes the timer to

be updated. When it is checked at %, it appears to be 0, and defers the updating of the timer until it is checked

again at &. In this case, the timer count is increased by tCHECK3.

SKT1
BTM0CY
#

SKT1
BTM0CY
$

SKT1
BTM0CY
%

SKT1
BTM0CY
&

Timer carry FF set pulse

BTM0CY flag

tSET

tCHECK tCHECK2 tCHECK3

139

µPD17062

(2) Timer error that occurs when the timer carry FF setting time interval is changed

The timer carry FF setting time interval is specified by the BTM0CK2, BTM0CK1, and BTM0CK0 flags in the

timer mode select register.

As shown in Fig. 12-1 and 12-2, the timer interval set pulse can be selected from 200 Hz, 10 Hz, and an external

timer.

These three pulses operate independently.

Therefore, when the timer interval set pulse is switched using the BTM0CK2, BTM0CK1, or BTM0CK0 flag,

a timer error occurs as shown in the following example.

Example

; #

INITFLG NOT BTM0ZX, NOT BTM0CK2, NOT BTM0CK1, NOT BTM0CK0

; Built-n macro

Process A ; Specifies the timer carry FF set pulse as 10 Hz (100 ms).

; $

SET1 BTM0CK0 ; Built-in macro

; Specifies the timer carry FF set pulse as 200 Hz (5 ms).

Process A

; %

CLR1 BTM0CK0 ; Built-in macro

; Specifies the timer carry FF set pulse as 10 Hz (100 ms).

With this coding, the timer carry FF set pulse is switched as shown below.

$SET1 BTM0CK0 %CLR1 BTM0CK0

SKT1 BTM0CY

Internal pulse 10 Hz

Internal pulse 200 Hz

Timer carry FF set pulse

BTM0CY flag

As shown above, when the timer carry FF setting time interval is switched, if a newly selected pulse goes

low, it allows the BTM0CY flag to preserve its previous state ($ in the figure). If the pulse goes high, it sets

the BTM0CY flag to 1 (% in the figure).

140

µPD17062

As shown in Fig. 12-5, if the timer carry FF setting time interval is switched, the timer error that occurs before

the BTM0CY flag is set for the first time is as follows:

-tSET < error < tCHECK

where tSET : Newly selected timer carry FF setting time interval

tCHECK : Time interval at which the BTM0CY flag is checked

The internal pulses, 4 Hz, 10 Hz, 200 Hz, and 1 kHz, have a phase difference. However, this phase difference

is less than a newly selected set pulse interval, and included in the timer error described above.

See Section 12.6 for details about the phase difference of each pulse.

Fig. 12-5 Timer Error That Occurs When the Timer Carry FF Setting Time Interval Is Switched from A to B

(a) Timer error of -tSET (b) Timer error of tCHECK

tSET tSET

= 0SKT1
 BTM0CY

Internal pulse A

Internal pulse B

Timer carry FF set pulse

BTM0CY flag

True timer interval
Actual timer interval

Time interval switched here

If the BTM0CY flag is checked right
after the timer setting time interval is
switched, it appears to be 1, and therefore,
the timer error is -tSET.

Actual timer interval
True timer interval

Time interval switched here

If the timer setting time interval is
switched right after the BTM0CY flag
is checked, the BTM0CY flag remains
reset for one cycle, and therefore, the
timer error is tCHECK.

. .= 0. .
tCHECK

141

µPD17062

12.4 CAUTIONS IN USING THE TIMER CARRY FF

The timer carry FF is used not only as a timer function but also as a reset sync signal at a CE reset.

A CE rest occurs when the timer carry FF set pulse rises after the CE pin goes from a low to a high.

Note the following points:

(1) The sum of the time used to update the timer and the time interval at which the BTM0CY flag is checked

must be less than the timer carry FF setting time interval.

(2) If a created program needs a timer that operates at constant intervals regardless of a CE reset once a power-

on reset occurs, the program must correct the timer at each CE reset.

(3) A check of the BTM0CY flag takes precedence over a reset sync signal for a CE reset. If both occur at the

same time, a CE reset is delayed one cycle.

Sections 12.4.1 to 12.4.3 detail the above topics.

142

µPD17062

12.4.1 Timer Update Time and BTM0CY Flag Check Time Interval

As described in Section 12.3.1, the time interval tSET at which the BTM0CY flag is checked must be less than

the time interval at which the timer carry FF is set.

Even when the above requirement is satisfied, if the timer update process takes long, the timer process

may not be performed correctly when a CE reset occurs.

To solve this problem, it is necessary to satisfy the following condition.

tCHECK + tTIMER < tSET

where tCHECK : Time interval at which the BTM0CY flag is checked

tTIMER : Timer update process time

tSET : Time interval at which the timer carry FF is set

An example follows:

Example Timer update process and BTM0CY flag check time interval

START: ; Program address 0000H

INITFLG NOT BTM0ZX, NOT BTM0CK2, NOT BTM0CK1, NOT BTM0CK0

; Built-in macro

; Specifies the timer carry FF setting time interval as 100 ms.

TIMER:

; #

SKT1 BTM0CY flag ; Built-in macro

; Tests the BTM0CY flag.

BR AAA ; Branches to AAA, if 0.

Timer update

BR TIMER

AAA:

Process A

BR TIMER

The timing chart for the processing by the above program is shown below.

SKT1
 BTM0CY

SKT1
 BTM0CY

CE pin

Timer carry FF set pulse

BTM0CY flag

BTM0CY flag check
time interval

tCHECK

Timer update processing
tTIMER

If this processing takes long,
a CE reset occurs before the
processing is completed.

CE reset

143

µPD17062

12.4.2 Correcting the Timer Carry FF at a CE reset

This section describes an example of correcting the timer at a CE reset.

If the timer carry FF is used both to check for power failure and as a timer, it is necessary to correct the

timer at a CE reset, as explained in the following example.

The timer carry FF is reset to 0 at a power-on reset, and it is kept from being set until the BTM0CY flag is

read-accessed using a PEEK instruction.

When the CE pin goes from a low to a high, a CE reset occurs in synchronization with the positive-going

edge of the timer carry FF set pulse. At this point, the BTM0CY flag is set to 1 and becomes active.

Therefore, checking the state of the BTM0CY flag at a system reset (power-on reset or CE reset) can

discriminate between a power-on reset and CE reset; if the flag is 0, it indicates a power-on reset, and if 1,

it indicates a CE reset (power failure check).

A timer for ordinary time measurement must continue to operate even at a CE-reset.

Reading the BTM0CY flag for a power failure check could reset the BTM0CY flag to 0, thus losing a chance

of detecting a set (1) state of the flag.

To skirt the above problem, it is necessary to update the timer for time measurement at a CE reset that occurs

because of power failure.

See also Section 14.6 for details about a power failure check.

Example Correcting the timer at a CE reset

When using the timer carry FF for a power failure check and clock update

START: ; Program address 0000H

Process A

; #

SKT1 BTM0CY ; Built-in macro

; Tests the BTM0CY flag.

BR INITIAL ; Branches to INITIAL if 0 (power failure check)

BACKUP:

; $

Update the clock by 100 ms ; Correct the clock because of a backup (CE reset).

LOOP:

; %

Process B ; While performing process B,

SKF1 BTM0CY ; tests the BTM0CY flag and updates the clock.

BR BACKUP

BR LOOP

INITIAL:

INITFLG NOT BTM0ZX, NOT BTM0CK2, NOT BTM0CK1, NOT BTM0CK0

; Built-in macro

; Because a power failure (power-on reset) is detected, the timer

; carry FF setting time interval is set to 100 ms, and passes

; control to process C.

Process C

BR LOOP

Fig. 12-6 shows the timing chart for the above program.

144

µPD17062

Fig. 12-6 Timing Chart

As shown in Fig. 12-6, the positive-going edge of the internal 10 Hz pulse starts the program at 000H at

a power-on reset.

When the BTM0CY flag is checked at point A, it appears to be reset to 0, thus indicating a power-on reset,

because it is just after the power is turned on.

When a power-on reset occurs, process C is performed to specify the timer carry FF set pulse as 100 ms.

Because the timer carry FF was read-accessed once at point A, the BTM0CY flag is set to 1 at intervals of

100 ms.

Even when the CE pin goes low at point B and high at point C, the program continues updating the clock

while performing process B unless a clock stop instruction has been executed.

Because the CE pin goes from a low to a high at point C, a CE reset occurs at point D, where the timer carry

FF set pulse rises for the second time, thus starting the program at 0000H.

When the BTM0CY flag is checked at point E, a backup (CE reset) is detected because the BTM0CY flag is

already set to 1.

As seen from the timing chart, if the clock is not updated by 100 ms at point E, the clock loses 100 ms each

time a CE reset occurs.

If process A (power failure check) takes longer than 100 ms at point E, the program loses twice a chance

of detecting when the BTM0CY flag is set; therefore, process A must be completed within 100 ms.

To put in another way, checking the BTM0CY flag for power failure must be performed before the timer

carry FF is set after the program starts at 0000H.

A C B B B B B B B B B B A B B B

% % % % % % % % % # % %

5 V
0 VVDD

CE

Internal pulse
10 Hz

Timer carry FF
set pulse

BTM0CY flag

Program
processing

Program
instruction

Supply voltage
applied

Start at address 0
on a power-on reset

Timer
incre-
mented

Timer
incre-
mented

Timer
incremented

Timer
incremented

Timer
incremented

BTM0CY flag detected

Start at
address 0
on a CE
reset

Timer updated because
the BTM0CY flag has
been detected to be
set to 1

Point A Point B Point C Point D Point E

%

145

µPD17062

12.4.3 If the BTM0CY flag is checked at the same time with a CE reset

As described in Section 12.4.2, a CE reset occurs at the same time the BTM0CY flag is set to 1.

If the BTM0CY flag read instruction happens to occur at the same time a CE reset occurs, the BTM0CY flag

read instruction takes precedence.

Once a CE pin goes from a low to a high, if the setting of the BTM0CY flag (at the positive-going edge of

the timer carry FF set pulse) and a BTM0CY flag read instruction occur at the same time, a CE reset occurs

next time the BTM0CY flag is set.

This operation is shown in Fig. 12-7.

Fig. 12-7 Operation That Occurs When a CE Reset and a BTM0CY Flag Read Instruction Coincide

So, if your program checks the BTM0CY flag cyclically and the BTM0CY flag check time interval coincides

with the BTM0CY flag setting time interval, a CE reset will not occur forever.

Note the following point:

Because one instruction cycle is 2µs (1/500 kHz), a program that checks the BTM0CY flag once at every 500

instructions reads the BTM0CY flag at every 1 ms (2µs × 500).

Under this condition, whichever timer interval set pulse, 5 ms or 100 ms, is selected, a CE reset will not

occur for ever, once the setting and checking of the BTM0CY flag occur at the same time.

To be specific, avoid creating a cyclic program that satisfies the following condition.

tSET × 500 = n (n is any integer)

x

where tSET : BTM0CY flag setting time interval

x : BTM0CY flag read instruction cycle time x number of steps

In other words, the program should not contain x steps when the above calculation produces any integer.

SKT 1
BTM0CY

SKT 1
BTM0CY

CE reset

SKT1 BTM0CY
(PEEK…) (SKT…)

CE pin

Timer carry FF
set pulse

BTM0CY flag

Timer carry FF set pulse

BTM0CY flag

Instruction

Built-in macro

2 s
If the BTM0CY flag is read
during this period, a CE
reset is deferred by one cycle.

Normally, the program starts at address 0000H at this
point, but a CE reset does occur because the program to
read the BTM0CY flag also happens to run.

PEEK WR, . MF. BTM0CY SHR 4
SKT WR, #, DF. BTM0CY AND 000FHµ

146

µPD17062

The program shown below is an example of a program that meets the above condition. Do not creates

such a program.

Example

Process A

INITFLG NOT BTM0ZX, NOT BTM0CK2, NOT BTM0CK1, BTM0CK0

; Built-in macro

; Specifies the timer carry FF set pulse as 5 ms.

LOOP:

; #

SKT1 BTM0CY ; Built-in macro

BR BBB

AAA:

496 steps

BR LOOP

BBB:

496 steps

BR LOOP

Because the BTM0CY flag read instruction at # in this program is executed at every 500 instructions, once

the BTM0CY flag happens to be set at the timing of the instruction at #, a CE reset will not occur forever.

In addition, because the instruction execution time is 12µs (1/83.33 kHz) during the operation of the IDC,

do not create a cyclic program that meets the following condition.

tSET × 83.33 = n (n is any integer)

x

where tSET : BTM0CY flag setting time interval

x : BTM0CY flag read instruction cycle time x number of steps

147

µPD17062

12.5 TIMER INTERRUPT

The timer interrupt function issues an interrupt request at the negative-going edge of the timer interrupt

pulse specified in the timer mode select register.

The timer interrupt request corresponds to the IRQBTM0 flag in the interrupt request register on a one-to-

one basis. When an interrupt is requested, the corresponding IRQBTM0 flag is set to 1.

In other words, when a timer interrupt request pulse falls, the IRQBTM0 flag is set to 1.

As described in Chapter 11, to use the timer interrupt function, it is necessary not only to issue an interrupt

request but also to execute the EI instruction, which enables all interrupts, and enable the timer interrupt.

The timer interrupt is enabled by setting the IPBTM0 flag to 1 in the interrupt permission register.

To put in another way, if the EI instruction has been executed, and the IPBTM0 flag is set to 1, an interrupt

request is accepted when the IRQBTM0 flag is set to 1.

When a timer interrupt request is accepted, program control is passed to program memory address 0003H.

When the interrupt request is accepted, the IRQBTM0 flag is reset to 0.

Fig. 12-8 shows the relationship between the timer interrupt pulse and the IRQBTM0 flag.

Fig. 12-8 Relationship Between the Timer Interrupt Pulse and the IRQBTM0 Flag

#

IRQBTM0

IPBTM0

INTE
FF

EI

DI

Timer interrupt pulse

The negative-going edge
of the timer interrupt pulse
sets the IRQBTM0 flag.

The EI instruction is executed,
but the interrupt request is
not accepted because the
IPBTM0 flag is not set.

The timer interrupt request is
accepted at the same time
the IPBTM0 flag is set.

Timer interrupt
request accepted

Interrupt pending Interrupt enabled

At this point, note the following: Once the IRQBTM0 flag is set when a timer interrupt is disabled by the

DI instruction or the IPBTM0 flag, the corresponding interrupt request is accepted immediately when the EI

instruction is executed or the IPBTM0 flag is set.

In the above case, writing 0 to the IRQBTM0 flag can cancel the interrupt request.

Meanwhile, writing 1 to the IRQBTM0 flag amounts to issuing an interrupt request.

Accepting a timer interrupt request uses one level of stack.

When an interrupt request is accepted, the contents of the bank register and index enable flag are saved

automatically.

A RETI instruction is used to return from an interrupt handling routine. This instruction is dedicated to use

for this purpose.

See Chapters 4 and 11 for details.

Sections 12.5.1 and 12.5.2 describe an example of using a timer interrupt and a timer interrupt error,

respectively.

See Chapter 11 for relationships with other types of interrupts (INTNC pin, VSYNC pin, and serial interface).

148

µPD17062

12.5.1 Example of Using a Timer Based on a Timer Interrupt

An example follows.

Example

BR AAA ; Branches to AAA.

TIMER: ; Program address 0003H

ADD M1, #0001B ; Add 1 to M1.

SKT1 CY ; Tests the CY flag.

BR BBB ; Returns if no carry is generated.

Process A

BBB:

EI

RETI

AAA:

INITFLG NOT BTM0ZX, NOT BTM0CK2, NOT BTM0CK1, NOT BTM0CK0

; Built-in macro

; Specifies the timer interrupt pulse as 5 ms.

MOV M1, #0000B ; Clears the content of M1 to 0.

SET1 IPBTM0 ; Enables a timer interrupt.

EI ; Enables all types of interrupts.

LOOP:

Process B

BR LOOP

This program performs process A at every 80 ms.

At this point, note the following: Accepting an interrupt request causes a DI state automatically, and the

IRQBTM0 flag is set to 1 even in the DI state.

In other words, if process A takes 5 ms or longer, an interrupt request will be accepted immediately when

a return is made by a RETI instruction, thus disabling process B from being performed.

149

µPD17062

12.5.2 Timer Interrupt Error

As explained in Section 12.4, an interrupt request is accepted each time the timer interrupt pulse goes low,

provided that the interrupt is enabled.

A timer error due to use of a timer interrupt occurs when:

(1) An interrupt request is accepted for the first time after the timer interrupt is enabled.

(2) An interrupt request is accepted for the first time after the timer interrupt pulse interval is switched.

(3) Writing to the IRQBTM0 flag occurs.

These timer error types are illustrated in Fig. 12-9.

Fig. 12-9 Timer Interrupt Error (1/2)

(a) When a timer interrupt is enabled

IRQBTM0

IPBTM0

INTE
FF

EI

DI

tSET

EI EIEI

$ %

SET1 IPBTM0

Timer interrupt
pulse

Interrupt pending

Interrupt request
accepted

Interrupt request accepted Interrupt request accepted

At point #, an interrupt request is accepted immediately when the IPBTM0 flag is set to enable the timer

interrupt.

In the above case, timer error -tSET occurs.

If the EI instruction is executed at point $ to enable interrupts, an interrupt occurs at the negative-going

edge of the timer interrupt pulse at point %.

In the above case, the time error is: -tSET < timer error < 0

150

µPD17062

Fig. 12-9 Timer Interrupt Error (2/2)

(b) When the timer interrupt pulse is switched

EI
#

EI EI EI
%

$

IRQBTM0

IPBTM0

INTE
FF

EI

DI

Internal pulse A

Internal pulse B

Timer interrupt pulse

Interrupt accepted

Timer interrupt
pulse switched

Interrupt accepted

Timer interrupt
pulse switched

Interrupt accepted

Although the timer interrupt pulse is switched to B at #, no interrupt occurs because the timer interrupt

pulse does not go low. Therefore, an interrupt occurs when the interrupt pulse goes low at point $.

When the timer interrupt pulse is switched to A at point %, the timer interrupt pulse goes low, and the

interrupt request is accepted immediately.

(c) When the IRQBTM0 flag is manipulated

EI EI EI
#

IRQBTM0

IPBTM0

INTE
FF

EI

DI

$

Timer interrupt pulse

Interrupt accepted SET1 IRQBTM0
Interrupt accepted

CLR1 IRQBTM0
No interrupt accepted Interrupt accepted

When the IRQBTM0 flag is set at point #, an interrupt request is accepted immediately.

If the IRQBTM0 flag is reset at the same time the timer interrupt pulse goes low at point $, the interrupt request

is not accepted.

151

µPD17062

12.6 CAUTIONS IN USING THE TIMER INTERRUPT

In a program using a timer that operates at constant intervals once a power-on reset occurs, it is necessary

to have the timer interrupt handling routine finish within that constant interval.

This is explained using an example.

Example

BR AAA ; Branches to AAA after reset.

TIMER: ; Program address 0003H

ADD M1, #0100B ; Adds 0100B to the content of M1.

SKT1 CY ; Performs clock processing if a carry occurs.

BR AAA

; #

Clock process

EI

RETI

AAA:

INITFLG NOT BTM0ZX, NOT BTM0CK2, NOT BTM0CK1, NOT BTM0CK0

; Built-in macro

; Specifies the timer interrupt time and timer carry FF setting time interval as 250

and 100 ms, respectively.

SET1 IPBTM0 ; Built-in macro

EI ; Enables the timer interrupt.

Process A

BR AAA

The program in this example performs the clock process # at every one second while performing process

A.

If the CE pin goes from a low to a high as shown in Fig. 12-10 (a), a CE reset occurs in synchronization with

the positive-going edge of the timer carry FF set pulse. If the timer interrupt request happens to be issued

simultaneously when the timer carry FF is set, a CE reset takes precedence. When the CE reset occurs, it resets

the timer interrupt request (IRQBTM0 flag), thus skipping the timer process once.

152

µPD17062

In reality, however, to avoid skipping the timer process in the above example, a delay is provided between

the negative-going edge of the timer carry FF set pulse and the negative-going edge of the timer interrupt

pulse, as shown in Fig. 12-10 (b).

As shown at (2) in Fig. 12-10, restricting the clock process to within 10 ms can eliminate skipping of a timer

interrupt that would otherwise be caused by a CE reset.

Fig. 12-10 Timing Chart

(a)

(b)

CE pin

Timer carry FF set pulse

Timer interrupt pulse

Timer interrupt Because the timer carry FF set
pulse goes high, a CE reset occurs
here, thus skipping detection
of a timer interrupt once.

CE pin

Timer carry FF set pulse

Timer interrupt pulse

Timer interrupt

Timer interrupt

Delay; 10 ms in this case

CE reset
Because there is a delay of 10
ms between the negative-going
edge of the timer interrupt pulse
and the positive-going edge of
the timer carry FF set pulse, a CE
reset does not hamper the
normal timer processing,
provided that the timer interrupt
handling is finished within 10 ms.

153

µPD17062

13. STANDBY

The standby function is intended to reduce the current drain of the device at backup.

13.1 STANDBY BLOCK CONFIGURATION

Fig. 13-1 shows the configuration of the standby block.

As shown in Fig. 13-1, the standby block is further divided into halt control and clock stop control blocks.

The halt control block consists of the halt control circuit, interrupt control block, timer carry FF, and the P0D0/

ADC2 to P0D3/ADC5 pins. It controls the operation of the CPU (program counter, instruction decoder, and ALU

block).

The clock stop control block controls the 8 MHz crystal oscillator, CPU, system register, and control register.

Fig. 13-1 Standby Block Configuration

ALU

Halt block

Interrupt block

Timer carry FF Halt control circuit
HALT h

P0D3/ADC5 pin
P0D2/ADC4 pin
P0D1/ADC3 pin
P0D0/ADC2 pin In

pu
t

la
tc

h

Program counter (PC)

Instruction decoder

Clock stop block System register

CE pin
Clock stop

control circuit
STOP s

Control register

XOUT pin

XIN pin Internal clock

CPU

154

µPD17062

13.2 STANDBY FUNCTION

The standby function stops the whole or part of the operation of the device to reduce its current drain.

The standby function is divided into halt and clock stop functions.

The halt function uses a dedicated instruction (HALT h instruction) to stop the CPU in order to reduce the

required current drain.

The clock stop function uses a dedicated instruction (STOP s instruction) to stop the 8 MHz crystal oscillator

in order to reduce the current drain in the device.

To use these functions, it is necessary to specify a device operation mode at the CE pin.

Section 13.3 explains the device operation mode specified at the CE pin.

Sections 13.4 and 13.5 describe the halt and clock stop functions.

Remark For the µPD17062, the operand s of the STOP s instruction must be 0000B. Therefore, the actual

instruction is: STOP 0000B

155

µPD17062

13.3 DEVICE OPERATION MODE SPECIFIED AT THE CE PIN

The CE pin controls the following items according to the level and positive-going edge of its input signal.

(1) Whether to enable or disable the clock stop instruction

(2) Whether to reset the device

Sections 13.3.1 and 13.3.2 explain the above items, respectively.

13.3.1 Controlling Whether to Enable or Disable the Clock Stop Instruction

The clock stop instruction, STOP s, is effective only when the CE pin is at a low level.

If the STOP s instruction is executed when the CE pin is at a high level, it is treated as a no-operation (NOP)

instruction.

13.3.2 Resetting the Device

Driving the CE pin from a low to a high can reset the device (CE reset).

There is another type of reset, which is a power-on reset. It occurs when supply voltage VDD is turned on.

See Chapter 14 for details.

13.3.3 Signal Inputs to the CE Pin

The CE pin does not accept a high or low level with a duration of less than 187.5 µs to prevent malfunction

due to noise.

The input level of a signal supplied to the CE pin is checked using the CE flag in the control register (bit

b0 at address 07H).

Fig. 13-2 shows the relationship between the input signal and CE flag.

Fig. 13-2 Relationship Between the Input Signal and CE Flag

CE pin

CE flag

Less than 187.5 s Less than 187.5 s

CE reset

STOP instruction disabled (NOP) STOP instruction enabled STOP instruction disabled (NOP);
a CE reset occurs next time
the timer carry FF is set.

187.5 s 187.5 sµ µ µ µ

156

µPD17062

13.4 HALT FUNCTION

The halt function stops the operation of the CPU clock by executing the HALT h instruction.

When the HALT h instruction is executed, the program stops at this instruction and rests there until the

halt state is released.

In the halt state, the current drain in the device is reduced by the amount required by the CPU to operate.

The halt state can be released using the timer carry FF, interrupt, and key entry.

The operand h of the HALT h instruction specifies a condition (timer carry FF, interrupt, or key entry) to

release the halt state.

The HALT h instruction is always effective regardless of the input level at the CE pin.

Sections 13.4.1 to 13.4.5 explain the halt state and halt release conditions.

13.4.1 Halt State

The CPU is entirely at a stop in the halt state.

In the halt state, the program completely stops at the HALT h instruction.

In the halt state, however, the peripheral hardware continues operating as it did before execution of the

HALT h instruction.

157

µPD17062

13.4.2 Halt Release Conditions

Fig. 13-3 summarizes the release conditions.

As shown in Fig. 13-3, the halt release condition is 4-bit data specified in the operand h of the HALT h

instruction.

The halt state is released when a condition specified as 1 in the operand h is satisfied.

Upon release of the halt state, the subsequent instructions after the HALT h instruction are executed

sequentially.

If multiple release conditions are specified at a time, the halt state is released when only one of them is

satisfied.

Also when a power-on or CE reset occurs, the halt state is released and the device is reset.

If the operand h is 0000B, no halt release condition is specified.

Under this condition, the halt state is released by resetting (power-on or CE reset) the device.

Sections 13.4.3 to 13.4.6 explain the timer carry FF, interrupt, and key entry as halt release conditions.

Fig. 13-3 Halt Release Conditions

b3 b2 b1 b0

0

1

HALT h (4 bits)

Operand bits

Specify a condition to release the halt state.

The halt state is released by a high level applied to a key entry pin (P0D3/ADC5 to P0D0/ADC2 pins).

The halt state is released when the timer carry FF is set to 1.

Undefined (to be fixed at 0)

The halt state is released when an interrupt (INTNC pin, timer, VSYNC, serial interface) is accepted.

The halt state is not released even when the condition is satisfied.

The halt state is released when the condition is satisfied.

158

µPD17062

13.4.3 Halt Release by Key Entry

The HALT 0001B instruction specifies a key entry as a halt release condition.

If this condition is specified, the halt state is released when a high level is applied to one of the P0D0/ADC2

to P0D3/ADC5 pins.

Items (1) to (3) describe cautions to be taken in using a general-purpose output port as a key source signal

and the P0D0/ADC2 to P0D3/ADC5 pins for an A/D converter.

(1) Cautions in using a general-purpose output port as a key source signal

P0D3/ADC5

P0D2/ADC4

P0D1/ADC3

P0D0/ADC2

Latch

Switch A

General-purpose output port

The HALT 0001B instruction must be executed after the general-purpose output port for key source signal

input is raised to a high.

If an alternate switch, like switch A in the above figure, is used, a high level is always applied to the P0D0/

ADC2 pin when the switch is kept closed, and causes the halt state to be released immediately.

Therefore, great care should be taken when an alternate switch is used.

The P0D0/ADC2 to P0D3/ADC5 pins are internally pulled down automatically.

159

µPD17062

(2) Cautions in using the P0D0/ADC2 to P0D3/ADC5 pins for an A/D converter

P0D3/ADC5

P0D2/ADC4

P0D1/ADC3

P0D0/ADC2

A/D input

A/D input Latch

General-purpose port

If one of the P0D0/ADC2 to P0D3/ADC5 pins is selected for an A/D converter (only one pin can be selected

at one time), it is disconnected from the input latch and connected to the internal A/D converter input.

If a pin happens to be at a high level when it is selected for an A/D converter, the latch circuit is held at

a high.

If the HALT 0001B instruction is executed under the above condition, the halt state is released immediately

because the input latch is at a high.

To solve the above problem, specify the input port so that a low level is input to the A/D converter, before

executing the HALT 0001B instruction.

160

µPD17062

(3) Alternative method to release the halt state

P0D3/ADC5

P0D2/ADC4

P0D1/ADC3

P0D0/ADC2

Output port Latch

Microprocessor or the like

General-purpose output port

The P0D0/ADC2 to P0D3/ADC5 pins can be used a general-purpose input port with a built-in pull-down

resistor.

This configuration of the P0D0/ADC2 to P0D3/ADC5 pins enables a microprocessor to be used to release the

halt state as shown above.

161

µPD17062

13.4.4 Releasing the Halt State by the Timer Carry FF

The HALT 0010B instruction specifies the timer carry FF as a halt release condition.

If it is specified that the halt state is to be released according to the timer carry FF, the halt state is released

immediately when the timer carry FF is set to 1.

The timer carry FF corresponds to the BTM0CY flag (bit b0 at address 17H) in the control register on a one-

to-one basis, and is set to 1 at constant intervals (5 or 100 ms).

Use of the timer carry FF can therefore release the halt state at constant intervals.

An example of using the HALT 0010B instruction follows:

Example

HLTTMR DAT 0010B ; Defines a symbol.

INITFLG NOT BTM0ZX, NOT BTM0CK2, NOT BTM0CK1, NOT BTM0CK0

; Built-in macro

; Specifies the timer carry FF setting time interval as 100 ms.

LOOP1:

MOV M1, #0110B

LOOP2:

HALT HLTTMR ; Specifies the timer carry FF as a halt release condition.

SKT1 BTM0CY ; Built-in macro

BR LOOP ; Branches to LOOP2 if the BTM0CY flag is not set.

ADD M1, #0001B ; Adds 0001B to the contents of M1.

SKT1 CY ; Built-in macro

BR LOOP2 ; Performs process A if there is a carry.

 Process A

BR LOOP1

This sample program releases the halt state at intervals of 100 ms and perform process A at intervals of

1 s.

162

µPD17062

13.4.5 Releasing the Halt State by an Interrupt

The HALT 1000B instruction specifies an interrupt as halt release condition.

If it is specified that the halt state is to be released according to an interrupt, the halt state is released

immediately when an interrupt request is accepted.

Four interrupt sources, INTNC pin, timer, VSYNC, and serial interface, can be used as a condition to release

the halt state.

It is necessary to program which interrupt source is to be used as a halt release condition, beforehand.

For an interrupt request to be accepted, besides issuing the interrupt request, it is necessary to enable all

interrupts (EI instruction) and the interrupt that corresponds to the issued interrupt request (to set the interrupt

permission flag).

If interrupts are not enabled, no interrupt request is accepted and therefore the halt state is not released,

even if an interrupt request is issued.

If an interrupt request is accepted and the halt state is released, program control is passed to the vector

address of the corresponding interrupt. After the required interrupt handling is finished, when the RET1

instruction is executed, program control is returned to the instruction just after the HALT instruction.

This is explained in the following example.

163

µPD17062

Example

HLTINT DAT 1000B ; Defines a symbol.

START: ; Address 0000H

BR MAIN ;

NOP

INTTM: ; Timer interrupt vector address (0003H)

BR INTTIMER ; Branches to INTTIMER (interrupt handling).

INT0: ; INTNC pin interrupt vector address (0004H)

Process A ; Interrupt requested at the INTNC pin

EI

RETI

INTTIMER:

Process B ; Timer interrupt handling

EI

RETI

MAIN:

SET2 IPBTM0, IPNC ; Built-in macro

; Enables INTNC pin and timer interrupts.

SET1 BTM0CK2 ; Built-in macro

LOOP: ; Specifies the timer interrupt time interval as 5 ms.

Process C ; Main routine processing

EI ; Enables all interrupts.

HALT HLTINT ; Specifies an interrupt as a halt release condition.

; #

BR LOOP

This sample program releases the halt state and performs process B when a timer interrupt request is

accepted. When an interrupt request at the INTNC pin is issued, the program performs process A. It also

performs process C each time the halt state is released.

If an INTNC pin interrupt is requested exactly at the same time with a timer interrupt during the halt state,

the program performs process A for the INTNC pin interrupt, which has a higher hardware priority than the

timer interrupt. When a RETI instruction is executed upon completion of process A, program control is

returned to the BR LOOP instruction at #, but this instruction will not be executed. Instead, the timer interrupt

request is accepted immediately. The BR LOOP instruction is executed only after a RETI is executed upon

completion of process B (timer interrupt handling).

164

µPD17062

13.5 CLOCK STOP FUNCTION

The clock stop function stops the operation of the 8 MHz crystal oscillator by executing the STOP s

instruction.

The clock stop function can reduce the current drain of the µPD17062 by 10 µA (maximum).

The operand s of the STOP s instruction is 0000B.

This instruction is effective only when the CE pin is at a low level. If executed when the CE pin is at a high,

the STOP s instruction is regarded as a no-operation instruction (NOP).

In other words, the STOP s instruction should be executed when the CE pin is at a low.

A CE reset is used to release the clock stop state.

Sections 13.5.1 to 13.5.3 describe the clock stop state, how to release the clock stop state, and cautions

to be taken in using the clock stop instruction.

13.5.1 Clock Stop State

In the clock stop state, all operations of the device, including CPU and peripheral hardware operations, are

stopped, because the crystal oscillator stops.

During the clock stop state, the power-failure detector does not operate even if the supply voltage VDD is

lowered to about 2.2 V. This makes possible a low-voltage data memory backup.

13.5.2 Releasing the Clock Stop State

The clock stop state is released by raising the level of the CE pin from a low to a high (CE reset) or by lowering

the supply voltage VDD of the device below 2.2 V, then increasing it to 4.5 V (power-on reset).

Figs. 13-4 and 13-5 show how the clock stop state is released by a CE reset and power-on reset, respectively.

Releasing the clock stop state using a power-on reset causes the power-failure detector to start operating.

165

µPD17062

Fig. 13-4 Releasing the Clock Stop State by a CE Reset

Fig. 13-5 Releasing the Clock Stop State by a Power-on Reset

5 V

0 V
VDD

CE pin

Crystal oscillation
(XOUT pin)

STOP 0 instruction

Approx. 50 ms

Program starts at address 0
(CE reset)

5 V

0 V
VDD

CE pin

Clock oscillation
(XOUT pin)

If a clock-stop instruction is not used, operation is as follows:

0-tSET

Program starts at address 0
(CE reset)
CE reset is applied in synchronization
with the setting of the timer carry FF
after the CE pin has been raised to high level.

5 V

0 V

VDD

CE pin

Crystal oscillation
(XOUT pin)

STOP 0 instruction

Approx. 50 ms

Program starts at address 0
(CE reset)

5 V

0 V
VDD

CE pin

Clock oscillation
(XOUT pin)

If a clock-stop instruction is not used, operation is as follows:

Approx. 50 ms

Program starts at address 0
(CE reset)

Oscillation stopped

3.5 V

2.2 V

166

µPD17062

13.5.3 Cautions in Using the Clock Stop Instruction

The clock stop instruction (STOP s) is effective only when the CE pin is at a low level.

To enable the clock stop state to be released, the program must therefore have a provision to handle when

the CE pin happens to be at a high.

Such a provision is explained using the example below.

Example

XTAL DAT 0000B ; Defines a symbol for the clock stop condition.

CEJDG:

; #

SKF1 CE ; Built-in macro

; Checks the input level at the CE pin.

BR MAIN ; Branches to the main process if the CE pin is high.

Process A ; Processing performed when the CE pin is low

; $

STOP XTAL ; Stops the clock.

; %

BR $ - 1

MAIN:

Main process

BR CEJDG

The above program checks the CE pin at #. If the CE pin is at a low, the clock stop instruction (STOP XTAL)

at $ is executed after process A is finished.

If the CE pin goes high during execution of the STOP XTAL instruction at $ as shown below, the STOP

XTAL instruction is treated as a no-operation (NOP). If the program does not contain the branch instruction

(BR $ - 1) at %, program control is passed to the main process, possibly resulting in a malfunction.

The program must always have a branch instruction at % or have a provision that can prevent a malfunction

in the main process.

Even if the CE pin remains high, the branch instruction at $ allows a CE reset to occur next time the timer

carry FF is set.

5 V

0 V
VDD

CE pin

$ STOP XTAL
The STOP XTAL
becomes a NOP
instruction because
the CE pin is high
level.

The program starts from
address 0 in synchronization
with setting of the timer carry
FF. (CE reset)

Main
proces-

sing Process A

CE pin detection

167

µPD17062

13.6 OPERATION OF THE DEVICE AT A HALT OR CLOCK STOP

13.6.1 State of Each Pin at a Halt and Clock Stop

Table 13-1 summarizes how the CPU and peripheral hardware behave during the halt or clock stop state.

During the halt state, execution of the CPU instructions is suspended, but the peripheral hardware operates

normally, as described in Table 13-1.

During the clock stop state, on the other hand, all peripheral hardware is at a stop.

During the halt state, the control register that controls the operating state of the peripheral hardware works

as usual (not initialized). During the clock stop state (when the STOP s instruction is executed), on the other

hand, the control register is initialized to a specified value.

To put in another way, the peripheral hardware keeps operating as specified in the control register during

the halt state. During the clock stop state, however, the peripheral hardware operates according to the initial

value set in the control register.

See Chapter 9 for the initial value for the control register.

Let’s study the following example.

Example When the P0A0/SDA and P0A1/SCL pins of port 0A are specified as output ports, and the P0A2/

SCK and P0A3/SO pins are used as a serial interface

HLTINT DAT 1000B ; Defines a symbol.

XTAL DAT 0000B ;

INITFLG P0ABIO3, P0ABIO2, P0ABIO1, P0ABIO0

; Built-in macro

; #

SET2 P0A0, P0A1 ;

INITFLG SIO0CH, NOT SB, SIO0MS, SIO0TX

;

SET2 SIO0CK1, SIO0CK0

; $

SET2 SIO0IMD1, SIO0IMD0

CLR1 IRQSIO0

SET1 IPSIO0

EI

; %

SET1 SIO0NWT

; &

HALT HLTINT

; (

STOP XTAL

The above program outputs a high level from the P0A0 and P0A1 pins at #, specifies a serial interface

condition at $, and starts serial communication at %.

When the HALT instruction is executed at &, the serial communication continues, and the halt state is

released after a serial interface interrupt request is accepted.

168

µPD17062

Stops at the address

of the HALT

instruction.

Holds the previous

state.

Holds the previous

state.

Holds the previous

state.

Operates normally.

Operates normally.

Operates normally.

Stops operating.

Operates normally.

Operates normally.

Operates normally.

Holds the same state

as when the HALT

instruction is

executed.

If the STOP instruction at (is executed in place of the HALT instruction at &, all flags in the control register

set up at #, $, and % are initialized, and therefore, the serial communication is suspended and all pins of

port 0A are specified as general-purpose input/output ports.

Table 13-1 Behavior of the Device at the Halt and Clock Stop States

Peripheral hardware

State

CE pin = low level

Halt Clock stopClock stopHalt

CE pin = high level

Program counter

System register

Peripheral hardware

register

Control register

Timer

A/D converter

D/A converter

Serial interface

General-purpose

input/output port

General-purpose

input port

General-purpose

output port

IDC

Initialized to 0000H

and stops.

InitializedNote.

Holds the previous

state.

InitializedNote.

Stops operating.

Stops operating.

Stops operating.

Stops operating.

Works as input port.

Works as input port.

Holds the previous

state.

Stops operating.

Note See Chapters 8 and 9 for the initial values.

The STOP instruction

is invalid (NOP).

Stops at the address

of the HALT

instruction.

Holds the previous

state.

Holds the previous

state.

Holds the previous

state.

Operates normally.

Operates normally.

Operates normally.

Stops operating.

Operates normally.

Operates normally.

Operates normally.

Stops operating.

169

µPD17062

13.6.2 Cautions in Processing of Each Pin During Halt or Clock Stop State

The halt function is intended to reduce the required current drain, for example, by allowing only the clock

to operate. Meanwhile, the clock stop function is intended to reduce the required current drain by suspending

all operations except preservation of data in memory. During the halt or clock stop state, therefore, it is

necessary to reduce the required current drain as much as possible. Because the current drain varies with

the state of each pin, it is necessary to take cautions listed in Table 13-2.

Table 13-2 State of Each Pin During the Halt or Clock Stop State and Cautions to Be Taken (1/2)

These pins are specified as general-

purpose input ports. All input ports

except the P0A1/SCL and P0A0/SDA

pins are designed so that even if

they are floating externally, the

current drain will not increase due to

noise. For the P0A1/SCL and P0A0/

SDA pins, an external pull-down

resistor or pull-up resistor must be

connected to keep the current drain

from increasing.

Port 0D (P0D3/ADC5 to P0D0/ADC2)

are pulled down internally.

These pins are specified as general-

purpose ports.

The outputs are preserved.

Therefore, if they are pulled down

externally during high-level output

or pulled up during low-level output,

the current drain will increase.

The state that exists before the execution

of the halt instruction continues.

(1) When the port is specified as output

If the pin pulled down externally during

high-level output or pulled up externally

during low-level output, the current drain

increases.

Be careful especially for N-channel

open-drain outputs (P0A1, P0A0, P1A3 to

P1A0).

(2) When the port is specified as input

When the pin is floating, the current

drain increases due to noise.

(3) Port 0D (P0D3/ADC7 to P0D0/ADC4)

Because the pin is already pulled down

internally, the current drain will increase if

it is pulled up externally. If the pin is

selected for A/D converter, however, the

internal pull-down resistor is disconnected.

(4) Port0B (P0B3/HSCNT to P0B0/SI) and

port1B (P1B3/P1B0)

When the P0B3/HSCNT pin operates as

the HSYNC counter or when the P1B3 pin

operates as an external timer input, the

built-in self-bias circuit operates, resulting

in an increase in the current drain.

P0A3/SO

P0A2/SCK

P0A1/SCL

P0A0/SDA

P0B3/HSCNT

P0B2/TMIN

P0B1

P0B0/SI

P1B3

P1B2

P1B1

P1B0

P1C3/ADC1

P1C2

P1C1

P0D3/ADC5

P0D2/ADC4

P0D1/ADC3

P0D0/ADC2

P0C3

P0C2

P0C1

P0C0

G
en

er
al

-p
u

rp
o

se

o
u

tp
u

t
p

o
rt

G
en

er
al

-p
u

rp
o

se

in
p

u
t

p
o

rt
G

en
er

al
-p

u
rp

o
se

 i
n

p
u

t/
o

u
tp

u
t

p
o

rt

Port0A

Port0B

Port1B

Port1C

Port0D

Port0C

Clock stop state

State of each pin and cautions in processing

Halt state
Pin symbolPin function

170

µPD17062

Table 13-2 State of Each Pin During the Halt or Clock Stop State and Cautions to Be Taken (2/2)

INTNC

RED

GREEN

BLUE

BLANK

HSYNC

VSYNC

PWM3

PWM2

PWM1

PWM0

ADC0

XIN

XOUT

Clock stop state

State of each pin and cautions in processing

Halt state
Pin symbolPin function

If the pin is floating, external noise causes the current drain to increase.

The output pins remain in the state in

which they were when the HALT

instruction was executed. If the IDCEN

flag is set, the current drain increases.

 It is necessary to take the same cautions

as for the general-purpose output port.

The pin becomes floating.

 The current drain varies with the

waveform of the oscillation output of the

clock oscillator.

The larger the amplitude, the current drain

becomes lower.

The oscillation amplitude of the oscillator

varies depending on its crystal and load

capacitance; evaluation is required.

The IDC is disabled.

Each pin behaves as follows:

The current drain will not increase,

even if the RED, GREEN, and BLUE

pins output a low level, or the HSYNC

and VSYNC pins are floating.

All pins output a low level.

The XIN pin is internally pulled

down, and the XOUT pin outputs a

high level.

Interrupt

IDC

D/A converter

A/D converter

Clock oscillator

171

µPD17062

14. RESET

The reset function is used to initialize device operation.

14.1 RESET BLOCK CONFIGURATION

Fig. 14-1 shows the configuration of the reset block.

Device reset is divided into reset by turning on VDD (power-on reset or VDD reset), and reset by CE pin (CE

reset).

The power-on reset block consists of a voltage detection circuit that detects the voltage applied to the VDD

pin, a power failure detection circuit, and a reset control circuit.

The CE reset block consists of a circuit that detects the rising edge of the signal input to the CE pin, and

a reset control circuit.

Fig. 14-1 Reset Block

XOUT

XIN

VDD

CE

Power-on clear signal (POC)

Reset signal

IRES

RES

RESET

STOP instruction

R
S Q

Selector

Timer carry FF

Timer FF block
Power failure detection block

Scaler
BTM0CY
flag read

STOP
instruction

Voltage
detection
circuit

Control register
System register
Stack
Program counter

Forced halt by
timer carry FF

Rising edge
detection
circuit

Timer carry
disable FF

Reset
control
circuit

172

µPD17062

14.2 RESET FUNCTION

Power-on reset is applied when VDD rises from a certain voltage, CE reset is applied when the CE pin rises

from low level to high level.

Power-on reset initializes the program counter, stack, system register and control registers, and executes

the program from address 0000H.

CE reset initializes the program counter, stack, system register and some control registers, and executes

the program from address 0000H.

The main differences between power-on reset and CE reset are the operation of the control registers that

are initialized and the power failure detection circuit described in Section 14.6.

Power-on reset and CE reset are controlled by reset signals IRES, RES, and RESET output from the reset

control circuit in Fig. 14-1.

Table 14-1 shows the IRES, RES, and RESET signal and power-on reset and CE reset relationship.

The reset control circuit also operates when the clock-stop instruction (STOP) described in Chapter 13 is

executed.

Sections 14.3 and 14.4 describe CE reset and power-on reset, respectively.

Section 14.5 describes the relationship between CE reset and power-on reset.

Table 14-1 Relationship between Internal Reset Signal and Each Reset

Output signal

Internal reset signal At CE reset At power- At clock-stop Contents controlled by each reset signal

on reset

IRES × ●● ●● Forces the device into the halt state.

The halt state is released by the setting of the

timer carry FF.

RES × ●● ●● Initializes some control registers.

RESET ●● ●● ●● Initializes the program counter, stack, system

register, and some control registers.

173

µPD17062

14.3 CE RESET

CE reset is executed by raising the CE pin from low level to high level.

When the CE pin rises to high level, the RESET signal is output and the device is reset in synchronization

with the rising edge of the pulse used for the next setting of the timer carry FF.

When CE reset is applied, the RESET signal initializes the program counter, stack, system register, and some

control registers to their initial value and executes the program from address 0000H.

For the initial values, see the relevant item.

CE reset operation is different when clock-stop is used and when it is not used.

These operations are described in Sections 14.3.1 and 14.3.2, respectively.

Section 14.3.3 describes the cautions at CE reset.

14.3.1 CE Reset When Clock-Stop (STOP Instruction) Not Used

Fig. 14-2 shows the reset operation.

When clock-stop (STOP instruction) is not used, the timer mode selection register of the control registers

is not initialized.

Therefore, after the CE pin becomes high level, the RESET signal is output, and reset is applied at the rising

edge of the timer carry FF set pulse (5 or 100 ms) .

Fig. 14-2 CE Reset Operation When Clock-Stop Not Used

5 V

0 V

Normal operation
Normal

operation

XOUT

VDD

CE

Timer carry FF
set pulse

IRES

RES

RESET

R
es

et
 s

ig
na

l

CE reset is applied at the rising
edge of the timer carry FF set pulse.

This period, t, varies with the timing when
the CE pin signal rises. It falls in the range
from 0 to tSET (0 < t < tSET), which is the
selected set time of the timer carry FF .
The program continues to run during this
period.

"H"

"H"

174

µPD17062

14.3.2 CE Reset When Clock-Stop (STOP Instruction) Used

Fig. 14-3 shows the reset operation.

When clock-stop is used, the IRES, RES and RESET signals are output at the time the STOP instruction is

executed.

At this time, the RES signal initializes the timer mode selection register of the control registers to 0000B

and sets the timer carry FF set signal to 100 ms.

Since the IRES signal is output continuously while the CE pin is low level, release by timer carry FF is forcibly

halted.

Since the clock itself stops, the device stops operating.

When the CE pin rises to high level, the clock-stop state is released and oscillation begins.

The IRES signal halts release by timer carry FF. When the timer carry FF set pulse rises after the CE pin

rises, the halt state is released and the program starts from address 0.

Since the timer carry FF set pulse is initialized to 100 ms, CE reset is applied 50 ms after the CE pin rises

to high level.

Fig. 14-3 CE Reset Operation When Clock-Stop Used

5 V

0 V

Normal operation Clock-stop state

XOUT

VDD

CE

Timer carry FF
set pulse

IRES

RES

RESET

R
es

et
 s

ig
na

l

CE reset
Program starts from address 0.

Clock stop release
Oscillation start

STOP
0000B

Halt state
50 ms

175

µPD17062

14.3.3 Cautions at CE Reset

When CE reset is used, careful attention must be given to points (1) and (2) below regardless of the

instruction being executed.

(1) Time required for clock and other timer processing

When writing a clock program by using timer carry FF and timer interrupts, the program must end

processing within a certain time.

For details, see Sections 12.4 and 12.6.

(2) Processing of data, flags, etc. used in the program

Care must be exercised when rewriting the contents of data, flags, etc. that cannot be processed by one

instruction so that the contents, such as the last channel, do not change even when CE reset is applied.

Two examples are given below:

Example 1.

; #

LCTUNE :

Initial reception ; The last channel is received.

The channel indicated by

the contents of M1 and

M2 is received.

MAIN : ; Main processing

Channel change ; The changed channel is assigned to general-purpose

; registers R1 and R2.

; $

ST M1, R1 ; The last channel is rewritten.

; %

ST M2, R2

BR MAIN

In this example, if the last channel is 12H, then the data memory contents of M1 and M2 will be 1H and

2H, respectively.

When CE reset is applied, the last channel (Channel 12) is received in #.

When the channel is changed in the main processing, the changed channel is rewritten to M1 and M2 in

$ and %.

When the channel is changed to 04H, 0H and 4H are rewritten to M1 and M2 in $ and %. If CE reset is

applied after $, the reset process runs without executing %.

Since this results in the last channel being 02H, Channel 02 is received in #.

This can be avoided by using a program shown in example 2.

176

µPD17062

Example 2.

; &

SKT1 FLG1 ; If FLG1 is set to 1,

BR LCTUNE

ST M1, R1 ; data is rewritten to M1 and M2 again.

ST M2, R2

CLR1 FLG1

; #

LCTUNE :

Initial reception ; The last channel is received.

The channel indicated by

the contents of M1 and

M2 is received.

MAIN : ; Main processing

Channel change ; The changed channel is assigned to general-purpose

; registers R1 and R2.

; (

SET1 FLG1 ; FLG1 is set while rewriting the last channel.

; $

ST M1, R1 ; The channel is rewritten.

; %

ST M2, R2

CLR1 FLG1

BR MAIN

In this example, FLG1 is set when rewriting the last channel in $ and %. This allows data to be rewritten

in & again even if CE reset is applied in %.

177

µPD17062

14.4 POWER-ON RESET

Power-on reset is executed by raising VDD from a certain voltage (called the power-on clear voltage) or less.

When VDD is less than the power-on clear voltage, the power-on clear signal (POC) is output from the voltage

detection circuit shown in Fig. 14-1.

When the power-on clear signal is output, the crystal oscillation circuit stops and the device stops operating.

While the power-on clear signal is being output, the IRES, RES and RESET signals are output.

When VDD exceeds the power-on clear voltage, the power-on clear signal is dropped and crystal oscillation

starts. At the same time, the IRES, RES and RESET signals are also dropped.

Since the IRES signal halts release by timer carry FF, power-on reset is applied at the rising edge of the

next timer carry FF set signal.

Since the RESET signal has initialized the timer carry FF set signal to 100 ms, 50 ms after VDD exceeds the

power-on clear voltage, reset is applied and the program starts from address 0.

This operation is shown in Fig. 14-4.

At power-on reset, the program counter, stack, system register and control registers are initialized when

the power-on clear signal is output.

For the initial values, see the relevant items.

During normal operation, the power-on clear voltage is 3.5 V (rated value). In the clock-stop state, the

power-on clear voltage becomes 2.2 V (rated value).

Sections 14.4.1 and 14.4.2 describe operation at this time.

Section 14.4.3 describes operation when VDD rises from 0 V,

Fig. 14-4 Power-on Reset Operation

5 V

0 V

“H”

Normal operation Device operation stopped

XOUT

VDD

CE

Timer carry FF
set pulse

IRES

RES

RESET

R
es

et
 s

ig
na

l

Power-on reset
Program starts from address 0

Power-on clear signal

Power-on clear release
Oscillation start

Halt state
50 ms

Power-on clear voltage

178

µPD17062

14.4.1 Power-on Reset at Normal Operation

Fig. 14-5 (a) shows power-on reset at normal operation.

As shown in Fig. 14-5 (a), when the VDD drops below 3.5 V, the power-on clear signal is output and operation

of the device stops regardless of the input level of the CE pin.

When VDD then rises to 3.5 V or greater, after a 50 ms halt, the program starts from address 0000H.

Normal operation refers to the state in which the clock-stop instruction is not used. This also includes the

halt state set by the halt instruction.

14.4.2 Power-on Reset in Clock-Stop State

Fig. 14-5 (b) shows power-on reset in the clock-stop state.

As shown in Fig. 14-5 (b), when VDD drops below 2.2 V, the power-on clear signal is output and device

operation stops.

However, since the device is in the clock-stop state, its operation apparently does not change.

When VDD rises to 3.5 V or greater, after a 50 ms halt, the program starts from address 0000H.

14.4.3 Power-on Reset When VDD Rises From 0 V

Fig. 14-5 (c) shows power-on reset when VDD rises from 0 V.

As shown in Fig. 14-5 (c), the power-on clear signal is being output while VDD is rising from 0 to 3.5 V.

When VDD rises above the power-on clear voltage, the crystal oscillation circuit starts and after a 50 ms halt,

the program starts from address 0000H.

179

µPD17062

Fig. 14-5 Power-on Reset and VDD

(a) During normal operation (including halt state)

(b) At clock-stop

(c) When VDD rises from 0 V

5 V

0 V

“H”

Normal operation
Device operation

stopped

XOUT

VDD

CE

Power-on
clear signal

Power-on clear release
Oscillation start

Power-on reset
Program starts from address 0

Halt state

50 ms

Power-on clear voltage3.5 V

5 V

Clock-stop
Device operation

stopped

XOUT

VDD

CE

Power-on
clear signal

Power-on clear release
Oscillation start

Power-on reset
Program starts from address 0

Halt state

50 ms

2.2 V Power-on clear voltage3.5 V

STOP 0000B

Normal operation

“L”

5 V

0 V

Device operation stopped

XOUT

VDD

CE

Power-on
clear signal

Power-on clear release
Oscillation start

Power-on reset
Program starts from address 0

Halt state

50 ms

3.5 V Power-on clear voltage

“L”

180

µPD17062

14.5 RELATIONSHIP BETWEEN CE RESET AND POWER-ON RESET

When supply voltage is first turned on, power-on reset and CE reset may be applied simultaneously.

Sections 14.5.1 through 14.5.3 describe this reset operation.

Section 14.5.4 describes the cautions when supply voltage rises.

14.5.1 When VDD Pin and CE Pin Rise Simultaneously

Fig. 14-6 (a) shows the reset operation. Power-on reset starts the program from address 0000H.

14.5.2 When CE Pin Raised in Forced Halt State Caused by Power-on Reset.

Fig. 14-6 (b) shows the reset operation. Power-on reset starts the program from address 0000H, as in Section

14.5.1.

14.5.3 When CE Pin Raised after Power-on Reset

Fig. 14-6 (c) shows the reset operation. Power-on reset starts the program from address 0000H. CE reset

restarts the program from address 0000H at the rising edge of the next timer carry FF set signal.

181

µPD17062

Fig. 14-6 Relationship Between Power-on Reset and CE Reset

(a) When VDD and CE pin raised simultaneously

(b) When CE pin raised in halt state

(c) When CE pin raised after power-on reset

5 V

0 V

Opera-
tion

stopped

VDD

CE

Power-on reset
Program start

Power-on clear voltage3.5 V

Halt state
50ms Normal operation

Timer carry FF
set pulse

5 V

0 V

VDD

CE

Power-on reset
Program start

Power-on clear voltage3.5 V

Halt state
50 ms Normal operation

Timer carry FF
set pulse

Opera-
tion

stopped

0 V

VDD

CE

Timer carry FF
set pulse

Power-on reset
Program start

Power-on clear voltage3.5 V

Halt state
50 ms Normal operation

CE reset
Program start

Opera-
tion

stopped

5 V

182

µPD17062

14.5.4 Cautions When Supply Voltage Raised

When supply voltage is raised, careful attention must be given to points (1) and (2) below.

(1) When VDD raised from power-on clear voltage

When VDD is raised, it must be raised to 3.5 V or greater, once.

This is shown in Fig. 14-7.

As shown in Fig. 14-7, when a voltage under 3.5 V is applied when VDD is turned on in a program that uses

clock-stop to back up VDD at 2.2 V, for example, the power-on clear signal continues to be output and the

program does not run.

Since the device output port outputs an undefined value, the supply current increases, according to the

situation, reducing the back-up time with a battery considerably.

Fig. 14-7 Caution When VDD Raised

5 V

0 V

Operation stopped

XOUT

VDD

CE

Power-on
clear signal

Timer carry FF
set pulse

3.5 V
2.2 V

Opera-
tion

stopped
Halt state

50 ms Normal operation Back-up

Since the values of the output
ports, etc. are undefined during
this period, the current drain
may increase.

During this period,
initialization is per-
formed, then the
clock is stopped.

Power-on reset
Program start

STOP 0000B

Power-on
clear voltage

183

µPD17062

(2) At return from clock-stop state

When returning from the back-up state when clock-stop is used to back-up supply voltage at 2.2 V, VDD

must be raised to 3.5 V or greater within 50 ms after the CE pin becomes high level.

As shown in Fig. 14-8, return from the clock-stop state is performed by CE reset. Since the power-on clear

voltage is switched to 3.5 V 50 ms after the CE pin is raised, if VDD is not 3.5 V or greater at this time, power-

on reset is applied.

The same caution is necessary when VDD is dropped.

Fig. 14-8 Return from Clock-Stop State

5 V

0 V

XOUT

VDD

CE

Power-on
clear signal

Timer carry FF
set pulse

3.5 V
2.2 V

CE = low
processingNormal operation Back-up

Back-up caused by
clock stop

Power-on
clear voltage

Halt state
50 ms

CE reset
Program start

STOP
 0000B

At this point, the power-on
clear voltage is switched to 2.2 V.
Therefore, VDD must not be dropped
below 2.2 V before this point.

At this point, the power-on
clear voltage is switched to 3.5 V.
Therefore, VDD must be raised to
3.5 V or greater before this point.

184

µPD17062

14.6 POWER FAILURE DETECTION

Power failure detection is used to judge whether the device is reset by turning on VDD or by the CE pin, as

shown in Fig. 14-9.

Since the contents of the data memory, output ports, etc. become “undefined” when VDD is turned on, they

are initialized by power failure detection.

Fig. 14-9 Power Failure Detection Flowchart

14.6.1 Power Failure Detection Circuit

As shown in Fig. 14-1, the power failure detection circuit consists of a voltage detection circuit and timer

carry disable FF that is reset by the output (power-on clear signal) of the voltage detection circuit, and timer

carry FF.

The timer carry disable FF is set to 1 by the power-on clear signal and is reset to 0 when a BTM0CY flag

(address 17H, bit b0) read instruction is executed.

When the timer carry disable FF is set to 1, the BTM0CY flag is not set to 1.

That is, when the power-on clear signal is output (at power-on reset), the program starts in the state in which

the BTM0CY flag is reset and the setting disabled state is set until a BTM0CY read instruction is executed

thereafter.

Once a BTM0CY read instruction is executed, the BTM0CY flag is set at each rising edge of the timer carry

FF set pulse thereafter. When reset is applied to the device, the contents of the BTM0CY flag are monitored.

If the BTM0CY flag has been reset to 0, power-on reset (power failure) is judged and if the BTM0CY flag has

been set to 1, CE reset (no power failure) is judged.

Since the voltage that can detect a power failure is the same as the voltage applied by power-on reset, VDD

becomes 3.5 V at clock oscillation and 2.2 V at clock-stop.

Fig. 14-10 shows the BTM0CY flag state transition.

Fig. 14-11 shows timing chart and BTM0CY flag operation specified in Fig. 14-10.

Program start

Power failureNo power failure

Data memory,
output port, etc.
initialization

Power
failure detect-

ion

185

µPD17062

Fig. 14-10 BTM0CY Flag State Transition

#

$
VDD = L→3.5 V

CE = L CE = H

(&) *

+

,

- .

0/ 1 2

3

4

CE = H→LSTOP 0 BTM0CY = 0

CE = L→H

CE = L→H

CE = H→L

CE = L→H

CE = L→H

STOP 0 BTM0CY = 1

CE = low CE = optional CE = high

VDD = low
 Operation stopped

Clock oscillation start
 Forced halt (approx. 50 ms)

Power-on reset

Normal
operation CE reset

Rising edge of
timer carry FF
set pulse

Clock-stop

BTM0CY flag setting
disabled state

Normal
operation

Normal operation
 CE reset wait

Clock oscillation start
Forced halt (50 ms)

SKT1 BTM0CY or
SKF1 BTM0CY SKT1 BTM0CY or SKF1 BTM0CY

Normal
operation CE reset

Rising edge of
timer carry FF
set pulse

Clock-stop Normal
operation

Normal operation
 CE reset wait

Clock oscillation start
Forced halt (50 ms)

BTM0CY
flag setting
enable state

%

186

µPD17062

Fig. 14-11 BTM0CY Flag Operation

(a) When BTM0CY flag not detected even once (neither SKT1 BTM0CY nor SKF1 BTM0CY executed)

(b) When power failure detected with BTM0CY flag

5 V

0 V
VDD

CE

Timer carry FF
set pulse

BTM0CY

Fig. 14-12
operation

Timer time
switching

STOP
 0000B

$) (+) (& ,)

**%

5 V

0 V
VDD

CE

Timer carry FF
set pulse

BTM0CY

SKT1 BTM0CY
instruction

Timer time
switching

STOP

#

%

Fig. 14-12
operation

$) 1 0 3 1 0 / 4 1 #

BTM0CY = 0
Power failure

BTM0CY = 1
No power failure

BTM0CY = 1
No power failure

22
.

187

µPD17062

14.6.2 Cautions at Power Failure Detection with BTM0CY Flag

When clock counting, etc. is performed with the BTM0CY flag, careful attention must be given to the

following points.

(1) Clock updating

When writing a clock program by using the timer carry FF, the clock must be updated after a power failure.

This is because the BTM0CY flag is reset to 0 and one clock count is lost by BTM0CY flag reading when

a power failure is detected.

(2) Clock update processing time

When the clock is updated, its processing must end before the next rising edge of the timer carry FF set

pulse.

This is because if the CE pin rises to high level during clock update processing, the clock update processing

will not be executed up to the end and a CE reset will be applied.

For (1) and (2) above, see Section 12.4.2.

When processing is performed at a power failure, careful attention must be given to the following point.

(3) Power failure detection timing

When clock counting, etc. is performed with the BTM0CY flag, the flag must be read for power-failure

detection before the next rising edge of the timer carry FF set pulse, after a program starts from address

0000H.

This is because when the timer carry FF set time is set to 5 ms, for instance, and power failure detection

is performed 6 ms after the program starts, one BTM0CY flag is lost.

See Section 12.4.2.

As shown in the example on the next page, power failure detection and initialization must be performed

within the timer carry FF set time.

This is because when the CE pin is raised and CE reset is applied during power failure processing and

initialization, these processings are interrupted and a problem may occur.

When the timer carry FF set time is changed in initialization, an instruction that makes the change must

be executed at the end of initialization.

This is also because when the timer carry FF set time is switched before initialization as shown in the

example on the next page, initialization by CE reset may not be executed up to the end.

188

µPD17062

Example

Sample program

START: ; Program address 0000H

; #

Reset processing ;

; $

SKT1 BTM0CY ; Power failure detection

BR INITIAL

BACKUP:

; %

Clock updating

BR MAIN

INITIAL:

; &

Initialization

; (

INITFLG NOT BTM0ZX, NOT BTM0CK2, NOT BTM0CK1, BTM0CK0

; Built-in macro

; Sets timer carry FF set time to 5 ms.

MAIN:

SKT1 BTM0CY

BR MAIN

Clock updating

Operation example

5 V
0 VVDD

CE

Timer carry FF
set pulse

#

50 ms 50 ms

$Power failure detection

& # %

$Power failure
detection

CE reset CE reset

When the processing time
of # + % is too long, a
CE reset is applied.

When the processing time
of # + & is 100 ms or longer,
a CE reset is applied midway
through processing &.

(

CE reset may be applied immediately, depending on the timer carry
FF set time switching timing. When (is executed before &,
power failure processing & may not be executed.

189

µPD17062

15. GENERAL-PURPOSE PORT

A general-purpose port outputs a high level, low level, or floating signal to an external circuit and reads

a high level or low level signal from an external circuit.

15.1 CONFIGURATION AND CLASSIFICATION OF GENERAL-PURPOSE PORT

Fig. 15-1 shows a block diagram of the general-purpose port.

Table 15-1 lists the classifications of general-purpose ports.

As shown in Fig. 15-1, the general-purpose port consists of Port0A (P0A) to Port1C (P1C), that set data

according to addresses 70H to 73H (port register) in each bank of data memory. The same port register is

mapped to both BANK0 and BANK2.

Each port consists of general-purpose port pins. For example, Port0A consists of pin P0A3 to pin P0A0.

As stated in Table 15-1, general-purpose ports are classified into I/O shared ports (I/O ports), input-only ports

(input ports), and output-only ports (output ports).

I/O ports are classified into bit I/O ports which allow I/O to be specified in 1-bit (1-pin) units and group

I/O ports in which I/O can be specified in 3-bit (3-pin) units .

Fig. 15-1 Block Diagram of General-Purpose Port

P
0
A

P
0
B

P
0
C

P
0
D

P
1
A

P
1
B

P
1
C

Fixed
at
0

P
0
A

P
0
B

P
0
C

P
0
D

P
0
A

pin

P
0
A

pin

P
0
A

pin

P
0
A

pin

BANK0

BANK1

BANK2

0 1 2 3 4 5 6 7 8 9 A B C D E F
0
1
2
3
4
5
6
7

Column address

Ro
w

 a
dd

re
ss Data memory

Port register

System register

Bit
I/O

Bit
I/O

Bit
I/O

Group
I/O

Bit
I/O

Bit
I/O Out InOut In Out

I/O setting

Example configuration
of P0A pins

Control register

3 2 1 0

190

µPD17062

Table 15-1 Classification of General-Purpose Ports

G
en

er
al

-p
u

rp
o

se
 p

o
rt

s

Classification of general-purpose ports Target ports Data setting method

I/O shared port Bit I/O Port0A Port register

Port0B

Port1B

Group I/O Port1C Port register

Input-only port Port0D Port register

Output-only port Port0C Port register

Port1A

191

µPD17062

b3 b2 b1 b0

m
n

P
P
P
P

3

2

1

0

Weight of port register bit
Port register address (Examples: 70H = A, 71H = B, 72H = C, 73H = D)
Port register bank
"P" of port

Port register
Bank

Address
Bit

15.2 FUNCTIONS OF GENERAL-PURPOSE PORTS

A general-purpose I/O port, set up either as a general-purpose output port or output port, outputs high level

or low level signals from each corresponding pin by setting data in the port register accordingly.

A general-purpose I/O port, set up either as a general-purpose input port or input port, detects the level

of the input signal applied to each corresponding pin by reading the contents of the port register.

General-purpose I/O ports are set either as an input ports or output ports, according to the contents of the

control register for each port.

This enables I/O switching to be done by the program.

Since P0A to P0D and P1A to P1C are set as general-purpose ports at power-on reset, other pins that are

used as peripheral hardware are set up independently according to the contents of the corresponding control

register.

Sections 15.2.1 to 15.2.4 describe the functions of the port register and outline the functions of each port.

15.2.1 General-Purpose Port Data Register (Port Register)

The port register sets output data for each general-purpose port and reads input data.

Since the port register is mapped into data memory, it can be manipulated by all data memory manipulation

instructions.

Fig. 15-2 shows the relationship between the port register and each corresponding pin.

Output for each pin is set by setting data in the port register for the pin set as a general-purpose output

port.

The input state of each pin is detected by reading the contents of the port register for the pin set as a general-

purpose output port.

Table 15-2 shows the relationship between each port (each pin) and the port register.

Fig. 15-2 Relationship Between Port Register and Each Pin

Reserved words are defined in the port register by the assembler.

Since reserved words are defined in flag units (bits), the assembler built-in macro instructions can be used.

Note that reserved words of data memory type are not defined in the port register.

192

µPD17062

15.2.2 General-Purpose I/O Ports (P0A, P0B, P1B, P1C)

The I/O of P0A is switched by the P0A bit I/O selection register (RF address 37H). The I/O of P0B is switched

by the P0B bit I/O selection register (RF address 36H). The I/O of P1B is switched by the P1B bit I/O selection

register (RF address 35H). And, the I/O of P1C is switched by the P1C group I/O selection register (RF address

27H).

The I/O data of P0A is set by P0A (data memory address: 70H of BANK0 or BANK2) of the port register.

The I/O data of P0B is set by P0B (data memory address: 71H of BANK0 or BANK2) of the port register. The

I/O data of P1B is set by P1B (data memory address: 71H of BANK1) of the port register. And, the I/O data

of P1C is set by P1C (data memory address: 72H of BANK1) of the port register.

See Table 15-2.

For details, see Section 15.3.

15.2.3 General-Purpose Input Port (P0D)

P0D input data is read by P0D (data memory address: 73H of BANK0 or BANK2) of the port register.

See Table 15-2.

For details, see Section 15.4.

15.2.4 General-Purpose Output Ports (P0C, P1A)

(1) P0C, P1A

P0C and P1A output data is set by P0C (data memory address: 72H of BANK0 or BANK2) and P1A (data

memory address: 70H of BANK1) of the port register.

See Table 15-2.

For details, see Section 15.5.

193

µPD17062

Table 15-2 Relationship between Each Port (Pin) and Port Register

Note Nothing is mapped to b0 of 72H. When b0 is read, 0 is always read.

Port0A

(P0A)

Port0B

(P0B)

Port0C

(P0C)

Port0D

(P0D)

Port1A

(P1A)

Port1B

(P1B)

Port1C

(P1C)

P0A3

P0A2

P0A1

P0A0

P0B3

P0B2

P0B1

P0B0

P0C3

P0C2

P0C1

P0C0

P0D3

P0D2

P0D1

P0D0

P1A3

P1A2

P1A1

P1A0

P1B3

P1B2

P1B1

P1B0

P1C3

P1C2

P1C1

b3

b2

b1

b0

b3

b2

b1

b0

b3

b2

b1

b0

b3

b2

b1

b0

b3

b2

b1

b0

b3

b2

b1

b0

b3

b2

b1

b0

P0A3

P0A2

P0A1

P0A0

P0B3

P0B2

P0B1

P0B0

P0C3

P0C2

P0C1

P0C0

P0D3

P0D2

P0D1

P0D0

P1A3

P1A2

P1A1

P1A0

P1B3

P1B2

P1B1

P1B0

P1C3

P1C2

P1C1

70H

71H

72H

73H

70H

71H

72H

P0A

P0B

P0C

P0D

P1A

P1B

P1C

BANK0
BANK2

BANK1

Port
Symbol I/O

Pin Data setting method

Port register (data memory)

Bank Address Symbol Bit symbol
(reserved word)

I/O
(bit I/O)

I/O
(bit I/O)

Output

Input

Output

I/O
(bit I/O)

I/O
(group I/O)

No target pins Note

194

µPD17062

15.3 GENERAL-PURPOSE I/O PORTS (P0A, P0B, P1B, P1C)

15.3.1 Configuration of I/O Ports

In the following, (1) to (3) explain the configuration of the I/O ports.

(1) P0A (P0A3, P0A2 pins)

P0B (P0B3, P0B2, P0B1, P0B0 pins)

P1B (P1B3, P1B2, P1B1, P1B0 pins)

P1C (P1C3, P1C2, P1C1 pins)

(2) P0A (P0A1, P0A0 pins)

15.3.2 How to Use I/O Ports

An I/O port is set as an input or output port according to the contents of each I/O selection register of P0A,

P0B, P1B, and P1C of the control register.

I/O of the bit I/O port (P0A, P0B, P1B) can be set in 1-bit (1-pin) units. I/O of the group I/O port (P0C) can

be set in 3-bit (3-pin) units.

Output data is set and input data is read when a data write instruction or data read instruction is executed

in the corresponding port register.

Section 15.3.3 describes the I/O selection register of each port.

Sections 15.3.4 and 15.3.5 explain the use of an input port and output port.

VDD

VDD

OR

AND

1
0

I/O switching flag

Output
latch

Write
instruction

Port register
(1 bit)

Read
instruction

RESET (except P1C)
Read instruction (P1C only)

VDD

AND

RESET

I/O switching flag

Output
latch

Write
instruction

Port register
(1 bit)

Read
instruction

195

µPD17062

15.3.3 Port0A Bit I/O Selection Register (P0ABIO)

Port0B Bit I/O Selection Register (P0BBIO)

Port1B Bit I/O Selection Register (P1BBIO)

Port1C Group I/O Selection Register (P1CGPIO)

The Port0A bit I/O selection register sets I/O for each pin of P0A. The Port0B bit I/O selection register sets

I/O for each pin of P0B. The Port1B bit I/O selection register sets I/O for each pin of P1B. The Port1C group

I/O selection register sets I/O for each pin of P1C.

The following explains the configuration and functions.

b3 b2 b1 b0

0 0 0

P
1
C
G
I
O

b3 b2 b1 b0

P
1
B
B
I
O
3

P
1
B
B
I
O
2

P
1
B
B
I
O
1

P
1
B
B
I
O
0 b3 b2 b1 b0

P
0
B
B
I
O
3

P
0
B
B
I
O
2

P
0
B
B
I
O
1

P
0
B
B
I
O
0 b2 b1 b0

P
0
A
B
I
O
3

P
0
A
B
I
O
2

P
0
A
B
I
O
1

P
0
A
B
I
O
0

b3

27H

35H

36H

37H

R/W

R/W

R/W

R/W

Read/
write

Power-on
Clock stop
CE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

0
1

Register
Flag symbol

Port1C group
I/O selection
(P1CGPIO)

Port1B bit
I/O selection

(P1BBIO)

Port0B bit
I/O selection

(P0BBIO)

Port0A bit
I/O selection

(P0ABIO)

Flag symbol

Flag symbol

Flag symbol

Address

Sets I/O of each general-
purpose port
Port0A

P0A0 pin
P0A1 pin
P0A2 pin
P0A3 pin

P0B0 pin
P0B1 pin
P0B2 pin
P0B3 pin

P1B0 pin
P1B1 pin
P1B2 pin
P1B3 pin

P1C3 to P1C1 pins

Port0B

Port1B

Port1C

Input port

Fixed at 0

Output port

A
t r

es
et

196

µPD17062

15.3.4 To Use an I/O Port (P0A, P0B, P1B, P1C) as an Input Port

Select the pin to be used as an input port by using the I/O selection register of each port.

P1C can be set to I/O in 3-bit (3-pin) units only.

The pin specified as an input port enters floating (Hi-Z) status and waits for the input of an external signal.

Input data can be read by executing an instruction to read the contents of the port register for each pin,

for example, the SKT instruction.

When a high level signal is input to each pin of the port register, 1 is read. When a low level signal is input

to each pin of the port register, 0 is read.

Upon the execution of an instruction, such as the MOV instruction, to write to the port register specified

as an input port, the contents of the output latch are overwritten.

15.3.5 To Use an I/O Port (P0A, P0B, P1B, P1C) as an Output Port

Select the pin to be used as an output port by using the I/O selection register of each port.

P1C can be set to I/O in 3-bit (3-pin) units only.

The pin specified as an output port outputs the contents of the output latch from each pin.

Output data can be set by executing an instruction to write the contents of the port register for each pin,

for example, the MOV instruction.

To output a high level signal to each pin, write 1. To output a low level signal to each pin, write 0.

The pin can be set to the floating state (Hi-Z) by specifying it as an input port.

Upon executing an instruction, such as the SKT instruction, for reading the port register specified as an

output port, the contents of the output latch are read.

Note, however, that the contents of the output latch and the read contents may differ because the two pins,

P0A1 and P0A0, are read without changing the pin state.

See Section 15.3.6.

197

µPD17062

15.3.6 Notes on Using I/O Ports (P0A1 and P0A0)

As shown in the example below, when pins P0A1 and P0A0 pins are used as output pins, the contents of

the output latch may be overwritten.

Example:

INITFLG NOT P0ABIO3, NOT P0ABIO2, P0ABIO1, P0ABIO0

; Set the P0A1, P0A0 pins as output pins

INITFLG NOT P0A3, NOT P0A2, P0A1, P0A0

; # ; Output a high level signal to the P0A1 and P0A0 pins

CLR1 P0A1 ; Output a low level signal to the P0A1 pin

; Macro expansion

 AND .MF.P0A1 SHR 4, #.DF. (NOT P0A1 AND 0FH)

If the P0A0 pin is externally pulled down to the low level upon execution of instruction #, above,

the CLR1 instruction overwrites the contents of the output latch of the P0A0 pin with 0.

15.3.7 State of I/O Port (P0A, P0B, P1B, P1C) at Reset

(1) At power-on reset

All I/O ports are set as input ports.

Since the contents of the output latch are “indefinite”, the output latch must be initialized by the program

before the ports can be switched to output ports.

(2) At CE reset

All I/O ports are set as input ports.

The contents of the output latch are retained.

(3) At clock stop

All I/O ports are set as input ports.

The contents of the output latch are retained.

In I/O ports other than P1C, the RESET signal output at clock stop prevents the current drain from being

increased by noise from the input buffer, as shown in Section 15.3.1.

(4) During the halt state

The previous state is retained.

198

µPD17062

15.4 GENERAL-PURPOSE INPUT PORT (P0D)

15.4.1 Configuration

The following explains the configuration of the input port.

(1) P0D (P0D3, P0D2, P0D1, P0D0 pins)

15.4.2 Example of Using Input Port (P0D)

Input data can be read by executing an instruction, such as the SKT instruction, to read the contents of the

port register for each pin.

When a high level signal is input to each pin of the port register, 1 is read. When a low level signal is input

to each pin of the port register, 0 is read.

When a write instruction, such as the MOV instruction, is executed, the port register remains as is.

15.4.3 Notes on Using Input Port (P0D)

P0D is internally pulled down when being used as a general-purpose port.

15.4.4 State of Input Port (P0D) upon Reset

(1) At power-on reset

All I/O ports are set as general-purpose input ports.

(2) At CE reset

All I/O ports are set as general-purpose input ports.

(3) At clock stop

All I/O ports are set as general-purpose input ports.

The RESET signal, output upon clock stop, prevents the current drain from increasing due to noise from

the input buffer, as explained in Section 15.4.1.

P0D is pulled down internally.

(4) During halt state

The previous state is retained.

VDD

RESET

ADC selection signal

Write
instruction

To A/D converter

High on-state resistor

Port register
(1 bit)

Read
instructionInput latch

199

µPD17062

15.5 GENERAL-PURPOSE OUTPUT PORTS (P0C, P1A)

15.5.1 Configuration of Output Ports (P0C, P1A)

(1) and (2), below, show the configuration of the output ports.

(1) P0C (P0C3, P0C2, P0C1, P0C0 pins)

(2) P1A (P1A3, P1A2, P1A1, P1A0 pins)

VDD

Output
latch

Port register
(1 bit)

Write instruction

Read instruction

Output
latch

Port register
(1 bit)

Write instruction

Read instruction

200

µPD17062

15.5.2 Example of Using Output Ports (P0C, P1A)

The output ports output the contents of the output latch from each pin.

Output data can be set by executing an instruction, such as the MOV instruction, to write the contents of

the port register for each pin.

To output a high level signal to each pin, write 1. To output a low level signal to each pin, write 0.

However, the P1A3, P1A2, P1A1, and P1A0 pins, because of the N-ch open-drain output, are set to the floating

state (Hi-Z) when a high level signal is output.

Upon executing an instruction to read the port register, such as the SKT instruction, the contents of the

output latch are read.

15.5.3 State of Output Ports (P0C, P1A) at Reset

(1) At power-on reset

The contents of the output latch are output.

Since the contents of the output latch are “indefinite”, “indefinite” values are output until the output latch

is initialized by the program.

(2) At CE reset

The contents of the output latch are output.

Since the contents of the output latch are retained, the output data remains as is upon a CE reset.

(3) At clock stop

The contents of the output latch are output.

Since the contents of the output latch are retained, the output data remains as is at clock stop.

Therefore, the output latch must be initialized by the program as necessary.

(4) During halt state

The contents of the output latch are output.

Since the contents of the output latch are retained, the output data remains as is during the halt state.

201

µPD17062

16. SERIAL INTERFACE

The µPD17062 has two sets of serial interface pins, channel 0 (CH0) and channel 1 (CH1), for exchanging

data with an external unit.

The CH0 pin, which consists of two wires, SDA and SCL, can be operated in any of three modes, clock

synchronous two-wire serial input, clock synchronous two-wire serial output, and two-wire busNote. The SDA

and SCL pins can be used as general-purpose ports when not being used as a serial interface.

The CH1 pin, which consists of three wires, SCK, SO, and SI, can be operated in any of three modes, clock

synchronous two-wire serial I/O input, clock synchronous two-wire serial I/O output, and three-wire serial I/

O.

CH0 and CH1 cannot be operated at the same time. Which of pins CH0 and CH1 is used is specified with

the SIO0CH flag (register file: 08H, b3) of SMODE (Serial Interface Mode Register).

The two-wire hardware-supported bus mode is for the single master. Therefore, this mode does not support

any arbitration function. Arbitration must be done by the software.

Note The two-wire bus mode can be used as an I2C bus.

Table 16-1 External Pins for Serial Interface

16.1 SERIAL INTERFACE MODE REGISTER

The serial interface mode register specifies the operation mode of the serial interface. This register sets

up the channel to be used, the protocol, clock, and transmission/reception.

This register is mapped to address 08H in the register file.

All flags of this register are set to 0 at power-on reset.

Fig. 16-1 Configuration of Serial Interface Mode Register

CH Pin name
Function

Two-wire bus mode Serial I/O mode Port I/O setting register

0 P0A0/SDA Serial data I/O Serial data I/O P0ABIO0

P0A1/SCL Shift clock I/O Shift clock I/O P0ABIO1

1 P0A2/SCK Cannot be used Shift clock I/O P0ABIO2

P0A3/SO Serial data output P0ABIO3

P0B0/SI Serial data input P0BBIO0

Bit position b3 b2 b1 b0

Flag name SIO0CH SB SIO0MS SIO0TX

202

µPD17062

Table 16-2 CH0 Operation Modes

Remark × : Don’t care

Serial interface Port 0A I/O

SDA pin SCL pin Operation modemode register specification

SB SIO0MS SIO0TX P0ABIO0 P0ABIO1

0 0 0 0 0 SD-IN CK-IN Serial I/O-SI, EXT-CLK

0 0 0 0 1 SD-IN OUT-PORT Serial I/O-SI, INT-CLK(SOFT-CLK)

0 0 0 1 0 OUT-PORT IN-PORT 1OUT-PORT+1IN-PORT

0 0 0 1 1 OUT-PORT OUT-PORT 2OUT-PORT

0 0 1 × 0 SD-OUT CK-IN Serial I/O-SO, EXT-CLK

0 0 1 × 1 SD-OUT OUT-PORT Serial I/O-SO, INT-CLK(SOFT-CLK)

0 1 0 0 × SD-IN CK-OUT Serial I/O-SI, INT-CLK

0 1 0 1 × OUT-PORT CK-OUT CLK-OUT+1OUT-PORT

0 1 1 × × SD-OUT CK-OUT Serial I/O-SO, INT-CLK

1 0 0 0 0 SD-IN CK-IN BUS-SLAVE-RX

1 0 0 0 1 SD-IN OUT-PORT BUS-MASTER-RX(SOFT-CLK)

1 0 0 1 0 OUT-PORT IN-PORT 1OUT-PORT+1IN-PORT

1 0 0 1 1 OUT-PORT OUT-PORT 2OUT-PORT

1 0 1 × 0 SD-OUT CK-IN BUS-SLAVE-TX

1 0 1 × 1 SD-OUT OUT-PORT BUS-MASTER-TX(SOFT-CLK)

1 1 0 0 × SD-IN CK-OUT BUS-MASTER-RX

1 1 0 1 × OUT-PORT CK-OUT CLK-OUT+1OUT-PORT

1 1 1 × × SD-OUT CK-OUT BUS-MASTER-TX

203

µPD17062

Table 16-3 CH1 Operation Modes

Remark ×: Don’t care

Serial interface Port 0A I/O

SI pin SCK pin SO pin Operation modemode register specification

SB SIO0MS SIO0TX P0ABIO2 P0ABIO3 P0BBIO0

0 0 0 0 0 0 SD-IN CK-IN IN-PORT Serial I/O-SI, EXT-CLK, 1IN-PORT

0 0 0 0 0 1 SD-IN CK-IN OUT-PORT Serial I/O-SI, EXT-CLK, 1OUT-PORT

0 0 0 0 1 0 OUT-PORT IN-PORT IN-PORT 1OUT-PORT+2IN-PORT

0 0 0 0 1 1 OUT-PORT IN-PORT OUT-PORT 2OUT-PORT+1IN-PORT

0 0 0 1 0 0 SD-IN OUT-PORT IN-PORT Serial I/O-SI, INT-CLK (SOFT-CLK),

1IN-PORT

0 0 0 1 0 1 SD-IN OUT-PORT OUT-PORT Serial I/O-SI, INT-CLK (SOFT-CLK),

1IN-PORT

0 0 0 1 1 0 OUT-PORT OUT-PORT IN-PORT 2OUT-PORT + 1IN-PORT

0 0 0 1 1 1 OUT-PORT OUT-PORT OUT-PORT 3OUT-PORT

0 0 1 0 0 × SD-IN CK-IN SD-OUT Serial I/O-SI/SO, EXT-CLK

0 0 1 0 1 × OUT-PORT CK-IN SD-OUT Serial I/O-SO, EXT-CLK, 1OUT-
PORT

0 0 1 1 0 × SD-IN OUT-PORT SD-OUT Serial I/O-SI/SO, INT-CLK (SOFT-
CLK)

0 0 1 1 1 × OUT-PORT OUT-PORT SD-OUT Serial I/O-SO, INT-CLK (SOFT-CLK),
1OUT-PORT

0 1 0 × 0 0 SD-IN CK-OUT IN-PORT Serial I/O-SI, INT-CLK, 1IN-PORT

0 1 0 × 0 1 SD-IN CK-OUT OUT-PORT Serial I/O-SI, INT-CLK,1OUT-PORT

0 1 0 × 1 0 OUT-PORT CK-OUT IN-PORT CLK-OUT,1OUT-PORT, 1IN-PORT

0 1 0 × 1 1 OUT-PORT CK-OUT OUT-PORT CLK-OUT, 2OUT-PORT

0 1 1 × 0 × SD-IN CK-OUT SD-OUT Serial I/O-SI/SO, INT-CLK

0 1 1 × 1 × OUT-PORT CK-OUT SD-OUT Serial I/O-SO, INT-CLK, 1OUT-PORT

1 × × × × × – – – Not to be set

204

µPD17062

16.1.1 SIO0CH

The SIO0CH flag is used to select the channel of the serial interface.

When the SIO0CH flag is set to 0, the serial interface hardware is connected to CH0. When the SIO0CH flag

is set to 1, the serial interface hardware is connected to CH1.

The external pin of the unselected channels is used as a general-purpose port.

Table 16-4 Channel Setting of Serial Interface

16.1.2 SB

The SB flag specifies the serial interface protocol.

When the SB flag is set to 0, serial I/O mode is specified. When the SB flag is set to 1, two-wire bus mode

is specified.

Since CH1 does not support two-wire bus mode, the SB flag must be set to 0 when CH1 is used.

Table 16-5 Specification of Serial Interface Protocol

SIO0CH Channel to be selected

0 CH0

1 CH1

SB Protocol

0 Serial I/O mode

1 Two-wire bus mode

205

µPD17062

16.1.3 SIO0MS

The SIO0MS flag specifies the serial interface clock to be used.

When the SIO0MS flag is set to 0, the external clock is selected. When the SIO0MS flag is set to 1, the internal

clock is selected. When the internal clock is selected, its frequency is set by the shift clock frequency register

(RF: 39H).

When the SIO0MS flag is set to 0 in two-wire bus mode, slave operation is specified. When the SIO0MS

flag is set to 1 in two-wire bus mode, master operation is specified.

Table 16-6 SIO0MS Flag Functions

16.1.4 SIO0TX

If the SIO0TX flag is set to 0 in two-wire bus mode, reception mode is specified. If the SIO0TX flag is set

to 1 in two-wire bus mode, transmission mode is specified.

If the SIO0TX flag becomes 0 upon specifying CH0 serial I/O mode, SI mode (the SDA pin is in input mode)

is specified. If the SIO0TX flag becomes 1 upon specifying CH0 serial I/O mode, SO mode (the SDA pin is in

output mode) is specified.

When the CH1 serial I/O mode is specified, the SIO0TX flag specifies whether the SO pin is to be used as

a serial interface. When the SIO0TX flag is set to 1, the SO pin is used as an SO pin. When the SIO0TX flag

is set to 0, the SO pin is used as a general-purpose port.

Table 16-7 SIO0TX Flag Functions

SIO0MS Function

0 Two-wire bus mode : Slave operation

Serial I/O mode : External clock operation

1 Two-wire bus mode : Master operation

Serial I/O mode : Internal clock operation

SIO0TX Function

0 Two-wire bus mode : RX (reception) mode

CH0 serial I/O mode : SI mode

CH1 serial I/O mode : P0A3 is used as a general-purpose port

1 Two-wire bus mode : TX (transmission) mode

CH0 serial I/O mode : SO mode

CH1 serial I/O mode : P0A3 is used as an SO pin

206

µPD17062

16.2 CLOCK COUNTER

The clock counter is a wrap around counter that counts the clock of the shift clock pin (P0A1/SCL pin for

CH0, P0A2/SCK pin for CH1) of the currently selected serial interface. The clock counter counts the shift clock

from 1 to 9 repeatedly. The initial value of the counter is 0. The counter is incremented by 1 each time the

clock rising edge is detected. Once the counter has been incremented to 9, the counter is reset to 1, after which

it is again incremented in the same way.

In the following cases, the clock counter is reset to 0.

(1) In two-wire bus mode

(a) At power-on reset

(b) When a STOP instruction is executed and the system is clock stopped

(c) When a start condition is detected

(d) When the serial interface operation mode is switched from two-wire bus mode to serial I/O mode

(2) In serial I/O mode

(a) At power-on reset

(b) When a STOP instruction is executed and the system clock is stopped

(c) When data is written into the wait register

(d) When the serial interface operation mode is switched from serial I/O mode to two-wire bus mode

Whether the contents of the clock counter became 8 or 9 can be tested in the software by the status register.

A request to stop the clock in either transmission mode or reception mode in two-wire bus mode can be

handled by the wait register.

207

µPD17062

16.3 STATUS REGISTER

The status register is a four-bit read-only register that retains the start and stop states in two-wire bus mode

and the contents of the current clock counter.

Fig. 16-2 Configuration of Status Register

16.3.1 SBBSY (Serial Bus Busy) Flag

The SBBSY flag, mapped to b0 (LSB) of the status register (RF: 28H), detects the busy signal in two-wire

bus mode.

The SBBSY flag is valid only when two-wire bus mode is selected by the SB flag of the serial mode register.

When the start condition is detected, the SBBSY flag is set to 1. When the stop condition is detected, the SBBSY

flag is reset to 0.

When serial I/O mode is selected by setting the contents of the serial mode register, the SBBSY flag is reset

to 0 and remains set to 0 until two-wire bus mode is selected.

This means that the SBBSY flag does not change in serial I/O mode.

When neither transmission nor reception is performed, testing of the SBBSY flag in two-wire bus mode

enables the system to determine whether other devices are communicating.

16.3.2 SBSTT (Serial Bus Start Test) Flag

The SBSTT flag, mapped to b1 of the status register, detects the start condition in two-wire bus mode.

The SBSTT flag is valid only when two-wire bus mode is selected by setting the SB flag of the serial mode

register. When the start condition is detected, the SBSTT flag is set to 1. When the contents of the clock counter

become 9, the SBSTT flag is reset to 0.

16.3.3 SIO0SF9 (Serial I/O Shift 9 Clock) Flag

The SIO0SF9 flag, mapped to b2 of the status register, is set to 1 when the contents of the clock counter

become 9. When the contents of the clock counter become 0 or 1, the SIO0SF9 flag is reset to 0.

In master mode of two-wire bus mode, the contents of the flag that indicates whether the slave has returned

an acknowledgement must be read after the SIO0SF9 flag becomes 1 but before the flag becomes 1 again.

The SIO0SF9 flag is not influenced by the contents of the serial mode register. This means that the SIO0SF9

flag is set when the contents of the clock counter become 9, even in serial I/O mode.

Bit position b3 b2 b1 b0

Flag name SIO0SF8 SIO0SF9 SBSTT SBBSY

208

µPD17062

16.3.4 SIO0SF8 (Serial I/O Shift 8 Clock) Flag

The SIO0SF8 flag, mapped to b3 of the status register, is set to 1 when the contents of the clock counter

become 8. When the contents of the clock counter become 0 or 1, the SIO0SF8 flag is reset to 0.

An operation to read the presettable shift register must be performed while the SIO0SF8 flag is set to 1.

The SIO0SF8 flag is not influenced by the contents of the serial mode register.

Fig. 16-3 SIO0SF8 and SIO0SF9 Operations

6 7 8 9 1 2 3 4 5 6 7 8 9

SCL, SCK

Bit counter

SIO0SF8

SIO0SF9

209

µPD17062

16.4 WAIT REGISTER

The µPD17062 can set a state in which the serial interface hardware does not operate, even if a shift clock

is input. This state is called wait mode and is set by the wait register.

The wait register consists of four bits; the SIO0WRQ0 flag, which specifies the timing to stop (wait) serial

interface communication, SIO0WRQ1 flag, SIO0NWT flag, which indicates if whether the current state is

waiting, and the SBACK flag, which indicates whether an acknowledgement is returned in two-wire bus mode.

The wait register, mapped to the register file, is manipulated by executing “PEEK” and “POKE” instructions

via the window register.

All flags of the wait register are reset to 0 at power-on reset and when the system clock is stopped by

executing a STOP instruction.

Fig. 16-4 Configuration of Wait Register

16.4.1 SIO0WRQ1 and SIO0WRQ0 (Serial I/O Wait Request) Flag

The SIO0WRQ1 and SIO0WRQ0 flags reserve (specify) the timing at which the serial interface hardware

is forced to wait. The µPD17062 expands the concept of waiting from slave operations in two-wire bus mode,

to the transmission side in two-wire bus mode and internal clock operations in serial I/O mode.

During wait, the clock counter and the shift clock applied to the presettable shift register are disabled. This

means that, during wait, the clock counter is not updated and the contents of the presettable shift register

are not shifted, even if the level of the shift clock pin changes.

Bit position b3 b2 b1 b0

Flag name SBACK SIO0NWT SIO0WRQ1 SIO0WRQ0

210

µPD17062

Table 16-8 Wait Timings

(1) Slave operation wait in two-wire bus mode

When the timing specified by SIO0WRQ1 and SIO0WRQ0 is set, the SCL pin is switched to output mode

and a low level signal is output.

If no-wait (SIO0WRQ1 = SIO0WRQ0 = 0) is specified, this operation is not performed.

Wait is released by writing 1 into the SIO0NWT flag of the wait register.

For example, if 1 is written into the SIO0NWT flag of the wait register while waiting with the data wait

mode (SIO0WRQ1 = 0, SIO0WRQ0 = 1: Waits when the shift clock falls with the clock counter set to 8)

specified, wait is released. When the shift clock falls with the clock counter set to 8 again, the slave

operation waits again.

If communication has not started in slave operation, ordinary address wait mode (SIO0WRQ1 = SIO0WRQ0

= 1) is specified. In this wait mode, the slave operation waits when the shift clock falls, with the clock

counter at set to 8, the first time after detection of the start condition. This means that, in this mode, the

slave operation waits before the ninth clock (for acknowledgment of transmission of the slave address)

rises. While the slave operation waits in this mode, the contents of the presettable shift register (PSR)

are read to determine whether the address is mapped to the local station.

Testing the SIO0NWT flag enables the system to determine whether the slave operation is waiting.

SIO0WRQ1 SIO0WRQ0 Wait mode Two-wire bus mode Serial I/O mode

0 0 No-wait Does not wait. Does not wait.

0 1 Data wait Waits when the shift clock falls Waits with the shift clock in the

with the clock counter set to 8. high level state when the contents

of the clock counter become 8.

1 0 Acknowledge wait Waits when the shift clock falls Waits with the shift clock in the

with the clock counter set to 9. high level state when the contents

of the clock counter become 9.

1 1 Address wait Waits when the shift clock falls Not to be set

with the clock counter set to 8

after detection of the start

condition.

211

µPD17062

(2) Master operation wait in two-wire bus mode

Master operation wait in two-wire bus mode incurs the interruption of transmission. In this mode, when

the timing specified by SIO0WRQ1 and SIO0WRQ0 is set, the shift clock is fixed to the low level.

For example, testing the flag enables the system to determine whether the receiver has returned an

acknowledgement while waiting with the acknowledge wait mode (SIO0WRQ1 = 1, SIO0WRQ0 = 0: Waits

when the shift clock falls with the clock counter set to 9) specified. While waiting in this mode, data to

be transmitted next can be set in the presettable shift register.

Wait is released by writing 1 into the SIO0NWT flag, in exactly the same way as for a slave operation. If

no-wait is specified, this operation is not performed.

(3) Internal clock operation wait in serial I/O mode

This wait mode is almost the same as wait in two-wire bus mode. This wait also incurs the interruption

of transmission. The only difference is that the master operation waits with the shift clock set to low level

in two-wire bus mode while the internal clock operation waits with the shift clock set to the high level in

serial I/O mode.

If serial I/O mode is specified, the clock counter is reset to 0 by performing a data write operation on the

wait register. For this reason, if data wait mode is specified then acknowledge wait mode is respecified,

the clock counter starts counting after being reset to 0 and the shift clock stops at the high level when

the clock counter reaches 9.

This means that, in internal clock operation mode of serial I/O mode, writing data into the wait register

resets the clock counter, after which transmission starts.

If no-wait is specified, the shift clock is output continuously.

(4) External clock operation wait in serial I/O mode

For external clock operation in serial I/O mode, update of the clock counter and shift of the presettable

shift register are prohibited at the timing specified by SIO0WRQ1 and SIO0WRQ0. For example, if data

wait mode is specified, the external clock waits when the clock falls with the clock counter set to 8. And,

the clock counter is subsequently not updated by the shift clock input, nor does the presettable shift

register shift data.

To enable data after waiting, 1 must be written into the SIO0NWT flag as usual. This means that the clock

counter is reset to 0 by writing data into the wait register, after which wait is released.

212

µPD17062

16.4.2 SIO0NWT (Serial I/O No-Wait) Flag

Writing appropriate data into the SIO0NWT flag can both release wait and execute forced wait.

(1) Writing 0 into SIO0NWT

In this case, forced wait is executed. In other words, the clock being supplied to the clock counter and

presettable shift register is disabled.

If the SIO0MS flag of the serial interface mode register is set to 1 at this time, shift clock operation stops

in the current state.

(2) Writing 1 into SIO0NWT

In this case, wait is released. In other words, the clock being supplied to the clock counter and presettable

shift register is enabled. If the SIO0MS flag of the serial interface mode register is set to 1 at this time,

the shift clock operation resumes from the state existing immediately before waiting began.

16.4.3 SBACK (Serial Bus Acknowledge)

The operation of SBACK varies with the operation mode of the serial interface.

The following describes the operation of SBACK.

(1) For reception in two-wire bus mode (SIO0TX = 0)

In this case, the data set in the SBACK flag is automatically output to the SDA pin at the acknowledge output

timing. The contents of the SBACK flag can be changed only by executing POKE instruction on the wait

register. For this reason, to return acknowledgement continuously, simply write 0 into the SBACK flag.

Then, 0 is automatically transmitted as an acknowledgement. This eliminates the need to manipulate the

SBACK flag each time 1-byte data is received.

Data must be written to the SBACK flag after the 9th bit of the data has been set but before the 9th bit

of the next data is set. Normally, wait is instigated at the falling edge of the 8th or 9th bit. Therefore,

data should be written into the SBACK flag at this time.

Fig. 16-5 Timing of SBACK Rewriting during Wait

5 6 7 8 9

SCL

Clock counter

SDA

SBACK=1 SBACK=0

SBACK←0
SIO0NWT←1

Wait

213

µPD17062

(2) For transmission in two-wire bus mode (SIO0TX = 1)

In this case, the contents of an acknowledgement received from the receiver side are set in the SBACK

flag. This means that the acknowledge state of the receiver side can be determined simply by reading

the contents of the SBACK flag.

This examining of the SBACK flag must be done after the 9th bit of 1-byte is set but before the 9th bit of

the next data is set. Normally, waiting is instigated at the falling edge of the 9th bit. Therefore, the SBACK

flag must be read at this time.

Data can be written into the SBACK flag by executing a POKE instruction, even during transmission.

(3) In serial I/O mode

In this case, the contents of the SBACK flag are not influenced by the shift clock. In other words, the SBACK

flag is completely isolated from the serial interface. Hence, SBACK can be used as a 1-bit flag for data

storage.

214

µPD17062

16.5 PRESETTABLE SHIFT REGISTER (PSR)

The presettable shift register is an 8-bit register. It outputs the contents of the most significant bit of the

PSR to the serial data output pin (P0A0/SDA pin for CH0, P0A3/SO pin for CH1) synchronously with the falling

edge of the clock signal on the shift clock pin (P0A1/SCL pin for CH0, P0A2/SCK pin for CH1) and reads the data

of the serial data input pin (P0A0/SDA pin for CH0, P0B0/SI pin for CH1) into the least significant bit of the PSR

synchronously with the rising edge of the clock.

In the wait state, the shift clock is not supplied to PSR. In other words, the PSR does not shift data in the

wait state even if a clock (internal or external) is supplied to the shift clock pin (internally or externally) .

The operation of the PSR that is not in the wait state varies between two-wire bus mode and serial I/O mode.

Data is written to the PSR by the PUT instruction and read from the PSR by the GET instruction via the 8

low-order bits (data memory address: 0EH, 0FH) of DBF in data memory.

(1) PSR operation in two-wire bus mode

If two-wire bus mode is specified, the shift clock is supplied to the PSR only while the clock counter is

set to 1 to 8. For example, to receive 9-bit data (8-bit data + 1-bit acknowledgement) in two-wire bus mode,

the first 8 bits of data are read into the PSR. Then, the 9th bit is read into the SBACK flag of the wait register.

When the contents of the PSR are transmitted in two-wire bus mode, the contents of the PSR are output

to the serial data pin while the clock counter is set to 1 to 8, and the contents of the SBACK flag are output

while the clock counter is set to 9 (more precisely, between the fall of the 8th bit clock to the rise of the

9th bit clock).

The PSR operates as described above not only when using the hardware of the serial interface of the

µPD17062 (also when using internal or external clock) but also when the clock is generated by the software

with the port (P0A0) also used as the shift clock pin set as an output port.

During transmission, data output to the SDA pin is again read into the PSR synchronously with the rise

of the next shift clock. Therefore, in transmission also, once the shift clock has been output 8 times, data

on the pin being transmitted is stored in the PSR. If no data conflict occurs during transmission, the data

stored into the PSR will be exactly the same as that before the transmission. Hence, the data before

transmission and PSR data after transmission can be compared to determine whether the data was

transmitted normally.

The above explanation applies to a PSR that is not in the wait state, the PSR does not perform any shift

operations.

(2) PSR operation in serial I/O mode

When serial I/O mode is specified, the shift clock supply to the PSR is not related to the contents of the

clock counter. The PSR performs a shift operation according to the clock in the shift clock pin unless it

is currently in the wait state.

The PSR does not perform any shift operations in the wait state. Hence, when the PSR is used merely

for data storage, not as a serial interface, the PSR must be set to the wait state.

In serial I/O mode, data must be written to the PSR or read from the PSR when the shift clock is at the

high level or in the wait state. If data is written or read at any other time, the PSR will not operate normally.

Normally, when the internal clock is used, wait should occur with the rise of the 8th bit clock, and the PSR

should be manipulated during this wait state. When the external clock is used, the PSR should be

manipulated while the high level of the shift clock is checked by the transmission side.

215

µPD17062

16.6 SERIAL INTERFACE INTERRUPT SOURCE REGISTER (SIO0IMD)

The interrupt source register (SIO0IMD) is a four-bit register that specifies when an interrupt is generated

in the CPU during serial interface communication.

The SIO0IMD register is mapped to address 38H of the register file.

Fig. 16-6 shows the configuration of the SIO0IMD register. The register is not mapped to the two high-order

bits of the SIO0IMD. If the two high-order bits of the SIO0IMD are read, 0 is read from each bit.

Fig. 16-6 Configuration of Serial Interface Interrupt Source Register (RF: 38H)

Table 16-9 Functions of Serial Interface Interrupt Source Register

SIO0IMD1 SIO0IMD0 Function

0 0 An interrupt request is generated when the 7th bit of the shift

clock rises.

0 1 An interrupt request is generated when the 8th bit of the shift

clock falls.

1 0 An interrupt request is generated at the rising edge of the 7th

bit of the shift clock immediately after detection of the start

condition.

1 1 An interrupt request is generated upon detection of the stop

condition.

Bit position b3 b2 b1 b0

Flag name SIO0IMD3 SIO0IMD2 SIO0IMD1 SIO0IMD0

(0) (0)

216

µPD17062

Bit position b3 b2 b1 b0

Flag name SIO0CK3 SIO0CK2 SIO0CK1 SIO0CK0

(0) (0)

SIO0CK1 SIO0CK0 Internal clock frequency

0 0 100 kHz

0 1 200 kHz

1 0 500 kHz

1 1 1 MHz

16.7 SHIFT CLOCK FREQUENCY REGISTER (SIO0CK)

The shift clock frequency register is a four-bit register for setting the frequency of the internal clock of the

serial interface.

The shift clock frequency register is mapped to address 39H of the register file.

Fig. 16-7 shows the configuration of the shift clock frequency register. The register is not mapped to the

two high-order bits of the shift clock frequency register. If the two high-order bits of the shift clock frequency

register are read, 0 is read from each bit.

Fig. 16-7 Configuration of Shift Clock Frequency Register (RF: 39H)

Table 16-10 Internal Clock Frequencies of Serial Interface

217

µPD17062

Peripheral equipment Peripheral address Corresponding pin

PWM0 05H PWM0

PWM1 06H PWM1

PWM2 07H PWM2

PWM3 08H PWM3

17. D/A CONVERTER

17.1 PWM PINS

The µPD17062 has 4 output pins for 6-bit PWM, which enables varying the duty cycle of the 15.625 kHz pulse

signal in 64 steps. With this capability, attaching an external lowpass filter to the µPD17062 makes it function

as a D/A converter. The PWM pins can also be used as 1-bit output ports.

When used as a D/A converter, the µPD17062 sets the D/A outputs in the output data latches, PWMRs. These

latches, PWMR0, PWMR1, PWMR2, and PWMR3, are mapped at addresses 05H, 06H, 07H, and 08H, respec-

tively. They can be read- and write-accessed via the DBF. Table 17-1 lists the correspondence between the

PWMR addresses and the PWM pins.

Table 17-1 PWMR Addresses and the Corresponding Pins

Each PWMR consists of 7 bits. Fig. 17-1 shows the configuration of the PWMR and its correspondence with

the DBF. The highest bit of the PWMR specifies whether the PWM pin is to be used as a PWM output pin or

an output port. The other six bits specify the output values of the PWM signal.

Fig. 17-2 shows the waveform output from the PWMR pin.

218

µPD17062

Fig. 17-1 PWMR Structure and the Corresponding DBF Bits

Fig. 17-2 Waveform Output from the PWM Pin

b3 b2 b1 b0 b3 b2 b1 b0

b6 b5 b4 b3 b2 b1 b0

0

1

PWMR

DBF1 (0EH) DBF0 (0FH)

The PWM pin is used as a D/A converter.

The PWM pin is used as a one-bit output port (through mode), which
outputs the content of b5.

t

64 s

t = n + 0.75 (s) (where n is a value specified in the PWMR)µ

µ

219

µPD17062

18. PLL FREQUENCY SYNTHESIZER

18.1 PLL FREQUENCY SYNTHESIZER CONFIGURATION

Fig. 18-1 is a block diagram of the PLL frequency synthesizer.

As shown in Fig. 18-1, the PLL frequency synthesizer consists of a programmable divider (PD), phase

comparator (φ-DET), reference frequency generator (RFG), and charge pump. Strictly speaking, a PLL

frequency synthesizer is configured by connecting these blocks with an external lowpass filter (LPF) and

voltage-controlled oscillator (VCO).

See Sections 18.3 to 18.5 for details of these blocks.

Fig. 18-1 PLL Frequency Synthesizer Block Diagram

Note External circuit

VCO PSC EO

Register Data buffer

Unlock detection
block

Programmable
divider (PD)

Phase
comparator

(-DET) φ
Charge pump

Reference frequency
generator (RFG)

Prescaler PB595

Note

Note

Voltage-controlled
oscillator (VCO)

Lowpass filter
(LPF)

Note

µ

220

µPD17062

18.2 OVERVIEW OF EACH PLL FREQUENCY SYNTHESIZER BLOCK

The PLL frequency synthesizer receives an input signal at the VCO pin, divides its frequency in the

programmable divider, and outputs the difference in phase between the divider output and the reference

frequency from the EO pin.

The PLL frequency synthesizer works only when the CE pin is at a high level. It is disabled when the CE

pin is at a low level. See Section 18.6 for the disable mode of the PLL frequency synthesizer.

Items (1) to (4) briefly describe each block of the synthesizer.

(1) Programmable divider (PD)

The programmable divider divides the frequency of a signal input from the VCO pin. It uses NEC’s

proprietary pulse swallow method to divide a frequency. A division value is given through the data buffer

(DBF).

See Section 18.3.

(2) Reference frequency generator (RFG)

The reference frequency generator generates a reference frequency that the phase comparator (φ-DET)

uses for reference purposes.

A reference frequency can be selected using the PLL reference mode select register (at address 13H).

See Section 18.4.

(3) Phase comparator (φ-DET) and unlock detection block

The phase comparator compares the output signal of the programmable divider (PD) with a signal from

the reference frequency generator (RFG) and outputs the phase difference between the signals. The phase

comparator can also detect the PLL unlock state.

Detection of the PLL unlock state is controlled with the PLL unlock FF delay control register (at address

32H) and the PLL unlock FF judge register (at address 22H).

See Section 18.5.

(4) Charge pump

The charge pump directs the output signal of the phase comparator (φ-DET) to the EO pin as a high, low

level, or floating output.

See Section 18.5.

221

µPD17062

18.3 PROGRAMMABLE DIVIDER (PD) AND PLL MODE SELECT REGISTER

18.3.1 Programmable Divider Configuration

Fig. 18-2 shows the configuration of the programmable divider (PD).

As shown in Fig. 18-2, the programmable divider consists of a swallow counter and programmable counter.

Fig. 18-2 Programmable Divider Configuration

0CH 0DH 0EH 0FH
DBF3 DBF2 DBF1 DBF0

M
S
B

L
S
B

16

12 4

PSC

VCO

Data buffer (DBF)
Address
Symbol

Data

PLL data register

12 bits 4 bits

Swallow counter
4 bits

Programmable counter
12 bits

fN

To -DET φ

1/2 frequency
divider

PLL disable signal

222

µPD17062

18.3.2 Programmable Divider (PD) and Data Buffer (DBF)

The programmable divider divides the frequency of an input signal at the VCO pin by the values specified

in the swallow counter and programmable counter.

The swallow and programmable counters consist of a 4- and 12-bit binary downcounter, respectively.

The swallow and programmable counters are loaded with a division value by setting it in the PLL data

register (PLLR, at address 41H) through the data buffer (DBF).

Writing to and reading from the PLL data register are performed with the “PUT PLLR,DBF” and “GET

DBF,PLLR” instructions respectively.

A division value is called an N-value.

The following expression represents the frequency “fN” of a signal generated in the programmable divider

using the value N in the PLL data register (PLLR).

Pulse swallow method

fN =
 fin

 (where N is 16 bits)
 N

See Section 18.7 for how to set the division value (N-value) for each frequency division method.

223

µPD17062

18.4 REFERENCE FREQUENCY GENERATOR (RFG)

18.4.1 Reference Frequency Generator (RFG) Configuration and Functions

Fig. 18-3 shows the configuration of the reference frequency generator.

As shown in Fig. 18-3, the reference frequency generator divides the frequency of the clock oscillator (8

MHz) to generate the reference frequency “fr” for the PLL frequency synthesizer.

The reference frequency fr can be selected from 6.25, 12.5, and 25 kHz.

Selection of the reference frequency fr is performed using the PLL reference mode select register (at address

13H).

Section 18.4.2 describes the configuration and functions of the PLL reference mode select register.

Fig. 18-3 Reference Frequency Generator (RFG) Configuration

13H
b3 b2 b0b1

P
L
L
R
F
C
K
3

P
L
L
R
F
C
K
2

P
L
L
R
F
C
K
0

P
L
L
R
F
C
K
1

8 MHz 6.25 kHz
12.5 kHz

25 kHz

OFF

Control register
Address

Bit

Flag
symbol

Multiplexer

PLL disable signal

To -DETφ

Divider

224

µPD17062

18.4.2 PLL Reference Mode Select Register Configuration and Functions

Fig. 18-4 shows the configuration and functions of the PLL reference mode select register.

When the PLL reference mode select register selects the PLL disable mode, the VCO pin is pulled down

internally, and the EO pin floats.

See Section 18.6 for the PLL disable mode.

Fig. 18-4 PLL Reference Mode Select Register Configuration and Functions

b3 b2 b1 b0

P
L
L
R
F
C
K
3

P
L
L
R
F
C
K
2

P
L
L
R
F
C
K
1

P
L
L
R
F
C
K
0

13H

Read/write

R/W except
PLLRFCK1, which

is read-only

0 0 1 0

0 0 1 1

0 1 1 0

1 1 1 1

0 1 1 1

1 0 1 0

1 0 1 1

1 1 1 0

6.25 kHz

12.5 kHz

25 kHz

1 1 1 1

1 1 1 1

CE

Register Address
Flag symbol

PLL reference mode
select (PLRFMODE)

Specify the reference frequency fr for the PLL
frequency synthesizer.

PLL disable

Not to be set

Fixed at 1

U
po

n
re

se
t

Clock stop

Power-on

Kept unchanged

225

µPD17062

18.5 PHASE COMPARATOR (φ-DET), CHARGE PUMP, AND UNLOCK DETECTION BLOCK

18.5.1 Configuration of the Phase Comparator (φ-DET), Charge Pump, and Unlock Detection Block

Fig. 18-5 shows the configuration of the phase comparator (φ-DET), charge pump, and unlock detection

block.

The phase comparator compares the phase of the output frequency “fN” of the programmable divider (PD)

with the reference frequency output “fr” of the reference frequency generator, and outputs the up request

signal (UP) or down request signal (DW).

The charge pump directs the output of the phase comparator to the error output pin (EO pin).

The unlock detection block consists of a delay control circuit and unlock flip-flop (FF). It detects the unlock

state of the PLL frequency synthesizer.

Sections 18.5.2, 18.5.3, and 18.5.4 explain the operation of the phase comparator, charge pump, and unlock

detection block, respectively.

Fig. 18-5 Configuration of the Phase Comparator, Charge Pump, and Unlock Detection Block

32H 22H
b3 b2 b1 b0 b3 b2 b1 b0

P
L
U
L
S
E
N
3

P
L
U
L
S
E
N
2

P
L
U
L
S
E
N
1

P
L
U
L
S
E
N
0

0 0 0

P
L
L
U
L

Control register

EO

VDD

P-ch

N-ch

UP

DW

fr

fN

Address
Bit

Flag
symbol

Unlock detection block

Delay control Unlock FF

Charge pump

Reference
frequency
generator

Programmable
divider

PLL disable signal

Phase comparator (-DET)φ

226

µPD17062

18.5.2 Functions of the Phase Comparator (φ-DET)

As shown in Fig. 18-5, the phase comparator compares the phase of the output frequency “fN” of the

programmable divider (PD) and the phase of the reference frequency “fr”, and outputs the up request signal

(UP) or down request signal (DW).

If the divider output frequency fN is lower than the reference frequency fr, the phase comparator outputs

an up request. If fN is higher than fr, the phase comparator outputs a down request.

Fig. 18-6 shows the relationship among the reference frequency fr, divider output frequency fN, up request

UP, and down request DW.

In the PLL disable mode, neither up nor down request is output.

The up and down requests are directed to the charge pump and unlock detection block.

227

µPD17062

Fig. 18-6 Relationship among fr, fN, UP, and DW Signals

(1) When fN is lagging behind fr

(2) When fN is leading fr

(3) When fN is in phase with fr

(4) When fN is lower than fr

fr

fN

UP
DW “H”

fr

fN

UP
DW

“H”

fr

fN

UP
DW

“H”
“H”

fr

fN

UP
DW “H”

228

µPD17062

18.5.3 Charge Pump

As shown in Fig. 18-5, the charge pump directs the up request signal (UP) or down request signal (DW)

from the phase comparator (φ-DET) to the error output pin (EO) pin.

The relationships among the output at the error output pin, divider output frequency fN, and reference

frequency fr are as follows:

Reference frequency fr > divider output frequency fN: Low level output

Reference frequency fr < divider output frequency fN: High level output

Reference frequency fr = divider output frequency fN: Floating

18.5.4 Unlock Detection Block

As shown in Fig. 18-5, the unlock detection block detects the unlock state of the PLL frequency synthesizer

according to the up request signal (UP) or down request signal (DW) from the phase comparator (φ-DET).

Either the up or down request signal is low in the unlock state. So the unlock detection block detects this

low signal as unlock state. When the unlock state is detected, the unlock flip-flop (FF) is set (1).

The state of the unlock FF is detected using the PLL unlock FF judge register (at address 22H).

The unlock FF is set at intervals of the then selected reference frequency fr.

The unlock FF is reset when the PLL unlock FF judge register is read-accessed with a PEEK instruction.

The unlock FF must be checked at intervals greater than the period (1/fr) of the reference frequency fr.

The unlock delay control circuit controls whether to set the unlock FF, by delaying the up and down request

signals output from the phase comparator.

If the delay becomes large, the unlock FF will not be set even if the phase difference between the divider

output frequency fN and reference frequency fr is large.

The delay is specified in the unlock delay control circuit using the PLL unlock FF delay control register (at

address 32H).

The following paragraphs describe the configuration and functions of the PLL unlock FF judge register and

PLL unlock FF delay control register.

229

µPD17062

(1) PLL unlock FF judge register (PLLULJDG)

This register is a read-only register. It is reset when its content is read into a window register (WR) with

a PEEK instruction.

Because the unlock FF is set at intervals of the period (1/fr) of the reference frequency fr, the content of

this register must be read into the window register at intervals larger than the period of the reference

frequency.

Fig. 18-7 Configuration and Functions of the PLL Unlock FF Judge Register (PLLULJDG)

Remark The PLLULJDG is reset when it is read-accessed with a PEEK instruction.

Register
Flag symbol

b3 b2 b1 b0

P
L
L
U
L

22H R

Address Read/write

U
po

n
re

se
t Power-on

Clock stop

CE

0 0

0

1

Detects the state of the unlock FF.

Unlock FF = 0 : PLL locked

Unlock FF = 1 : PLL unlocked

0 *

0

Fixed to 0.

PLL unlock FF
judge register
(PLLULJDG)

00

* Undefined

Hold

Hold

230

µPD17062

(2) PLL unlock FF delay control register (PLULSEN)

When the unlock FF disable mode is selected, the unlock FF remains set. So, note that if the PLL unlock

FF judge register checks the unlock FF in the unlock FF disable mode, it always appears to be unlocked

(PLLUL flag = 1).

Fig. 18-8 Configuration and Functions of the PLL Unlock FF Delay Control Register (PLULSEN)

P
L
U
L
S
E
N
3

Register
Flag symbol

b3 b2 b1 b0

P
L
U
L
S
E
N
1

P
L
U
L
S
E
N
0

32H R/W

Address Read/write

0

U
po

n
re

se
t Power-on

Clock stop

CE

0 0

0

0 1

1 0

1 1

1.25-1.5 s or more

3.5-3.75 s or more

0.25-0.5 s or more

Unlock FF disabled (Always to be set)

0 0

0 0

Hold

Sets the delay time between the reference (fr) and division frequency (fN) signals,
which is necessary to set the unlock FF.

Fixed to 0.

PLL unlock FF
delay control
(PLULSEN)

Hold

P
L
U
L
S
E
N
2

µ

µ

µ

231

µPD17062

18.6 PLL DISABLE MODE

The PLL frequency synthesizer is disabled when the CE pin is at a low level. It is also disabled when the

PLL reference mode select register (PLRFMODE, at address 13H) selects the PLL disable mode.

Table 18-1 summarizes how each block operates during the PLL disable mode.

Because the PLL reference mode select register is not initialized at a CE reset (its previous state is preserved),

it returns to the previous state after the CE pin goes low (selecting the PLL disable mode) then back to a high.

If it is necessary to select the PLL disable mode at a CE reset, the PLL reference mode select register should

be initialized by program.

The PLL frequency synthesizer is disabled at a power-on reset.

Table 18-1 Operation of Each Block During the PLL Disable Mode

Block CE pin = low or PLRFMODE = 1111B

VCO pin Pulled down internally

Programmable counter Frequency division disabled

Reference frequency generator Output disabled

Phase comparator Output disabled

Charge pump Error output pin floating

232

µPD17062

PLLR

0000 0110 1100 1111

0 6 C F

PLRFMODE

0010

6.25 kHz

18.7 SETTING DATA FOR THE PLL FREQUENCY SYNTHESIZER

The following data is necessary to control the PLL frequency synthesizer.

(1) Reference frequency : fr

(2) Division value : N

The following paragraphs explain how to set the PLL data.

(1) Setting reference frequency fr

The reference frequency is specified according to the PLL reference mode select register.

(2) Calculating division value N

The division value N is calculated as follows:

N =
 fUCO

 P × fr

where fUCO : Frequency input to the VCO pin

 fr : Reference frequency

 P : Prescaler frequency division ratio

(3) Example of setting the PLL data

The following example shows how to specify the data required to receive channel 02 of the West Europe

TV system, assuming that the prescaler used here is the µPB595 and that the frequency division ratio P

is 8.

Receive frequency : 48.25 MHz

Reference frequency : 6.25 kHz

Intermediate frequency : 38.9 MHz

The division value N is calculated as follows:

N =
 fUCO

=
 48250 + 38900

= 1743 (decimal)
 P × fr 8 × 6.25

= 06CFH (hexadecimal)

The PLL data register (PLLR, at address 41H) and PLL reference mode select register (PLRFMOD, at address

13H) are set with data as shown below.

233

µPD17062

19. A/D CONVERTER

The µPD17062 contains a 4-bit program-controlled A/D converter that operates with a successive compari-

son method.

19.1 PRINCIPLE OF OPERATION

The A/D converter in the µPD17062 consists of a 4-bit resistor string-based D/A converter and comparator.

The D/A converter is set with data using a 4-bit register (ADCR) mapped at peripheral address 02H. The

result of comparison is judged according to the ADCCMP flag in the register file.

Fig. 19-1 A/D Converter Configuration

ADCCH ADCCH ADCCH AD
2 1 0 CCMP

ADCR

D/A converter

Channel
selector

RF : 21H

ADCCH (R/W) ADCCMP (R)

Comparator

ADC0

ADC1

ADC2

ADC3

ADC4

ADC5

Peripheral address: 02H
ADCR (R/W)

234

µPD17062

19.2 D/A CONVERTER CONFIGURATION

The D/A converter used in the A/D converter of the µPD17062 is a resistor string D/A converter consisting

of 16 resistors connected in series between the VDD and GND pins in which a voltage at each resistor connection

point is selected. The configuration of the D/A converter is shown in Fig. 19-2.

Fig. 19-2 D/A Converter Configuration

With the configuration shown above, the D/A converter outputs a ground level when the ADCR is set with

value 0000B. It also outputs 1/32 × VDD when the ADCR is set with 0001B. The following expression represents

the reference voltage VREF that the D/A converter outputs when the ADCR is set with value n (decimal).

VREF = VDD ×
 2n – 1

(where 15 ≥ n ≥ 1)
 32

Table 19-1 D/A Converter Reference Voltage

ADCR 4

0 1 2 13 14 15

Selector

1/2R R R R R R 3/2R
VDD

D/A output
(reference voltage)

Set data (ADCR) Reference voltage (VREF)

Hexadecimal Binary × VDD VDD = 5 V

0 0000 0 0 [V]

1 0001 1/32 0.15625

2 0010 3/32 0.46875

3 0011 5/32 0.78125

4 0100 7/32 1.09375

5 0101 9/32 1.40625

6 0110 11/32 1.71875

7 0111 13/32 2.03125

8 1000 15/32 2.34375

9 1001 17/32 2.65625

A 1010 19/32 2.96875

B 1011 21/32 3.28125

C 1100 23/32 3.59375

D 1101 25/32 3.90625

E 1110 27/32 4.21875

F 1111 29/32 4.53125

235

µPD17062

19.3 REFERENCE VOLTAGE SETTING REGISTER (ADCR)

The ADCR is a 4-bit register to specify a reference voltage for the A/D converter. It is mapped at peripheral

address 02H. Data is written to and read from the ADCR register through the data buffer using the “PUT”

and “GET” instructions respectively. The data transfer between the ADCR and DBF is performed in 8-bit units

although the ADCR is a 4-bit register. In other words, 8-bit data is transferred through the DBF1 (0EH) and

DBF0 (0FH). To be specific, when the “GET DBF, ADCR” instruction is executed to read from the ADCR register,

the content of the ADCR is sent to the DBF0 and 0000B is sent to the DBF1. Similarly, when the “PUT ADCR,

DBF” instruction is executed, the data in the DBF0 is sent to the ADCR; the DBF1 may contain any data.

The ADCR is undefined at power-on. At a clock stop and CE reset, it retains the previous data.

19.4 COMPARISON REGISTER (ADCCMP)

The ADCCMP is a register that holds the output of a comparator which compares an input voltage at the

ADC pin with the reference voltage (VREF). It is mapped at bit b0 (LSB) of the register file at address 21H. The

ADCCMP is a 1-bit read-only register; it cannot be written to. The PEEK instruction is executed to read data

from the ADCCMP into a window register. At this point, the ADC pin select data is also read into the upper

3 bits of the window register.

The window register will receive the ADCCMP content as follows:

ADCCMP = 0 when input voltage < reference voltage

ADCCMP = 1 when input voltage ≥ reference voltage

236

µPD17062

b3 b2 b1 #0

(MSB) (LSB)

(RF : 21H)

ADCCMP

ADCCH2 ADCCH1 ADCCH0 Selected pin

0 0 0 ADC0

0 0 1 P1C3/ADC1

0 1 0 P0D0/ADC2

0 1 1 P0D1/ADC3

1 0 0 P0D2/ADC4

1 0 1 P0D3/ADC5

1 1 0 No corresponding pin
(do not set)1 1 1

19.5 ADC PIN SELECT REGISTER (ADCCHn)

The ADCCHn register selects an A/D converter input pin. It is mapped at the upper 3 bits of the register

file at address 21H. Table 19-2 lists the relationships between the ADCCHn and the actually selected pins.

Table 19-2 ADC Pin Selection

When using P1C3/ADC1 as the A/D converter, specify the P1C as an input port.

The P0D0/ADC2 to P0D3/ADC5 pins are internally equipped with pull-down resistors, but the pull-down

resistors are disconnected when they are selected as the A/D converter.

If P1C and P0D pins selected as the A/D converter are accessed as ports, “0” is read out.

237

µPD17062

19.6 EXAMPLE OF A/D CONVERSION PROGRAM

The following example shows an A/D conversion program based on the successive comparison method.

The result of conversion is held in the DBF0.

Sample program

DBF0B3 FLG 0.0FH.3

DBF0B2 FLG 0.0FH.2

DBF0B1 FLG 0.0FH.1

DBF0B0 FLG 0.0FH.0

START:

BANK0

INITFLG DBF0B3, NOT DBF0B2, NOT DBF0B1, NOT DBF0B0 ; Sets DBF data.

PUT ADCR, DBF ; Sets reference voltage.

SKT1 ADCCMP ; Judges comparison result.

CLR1 DBF0B3 ; DBF0B3 ← 0

SET1 DBF0B2 ; DBF0B2 ← 1

PUT ADCR, DBF ; Sets reference voltage.

SKT1 ADCCMP ; Judges comparison result.

CLR1 DBF0B2 ; DBF0B2 ← 0

SET1 DBF0B1 ; DBF0B1 ← 1

PUT ADCR, DBF ; Sets reference voltage.

SKT1 ADCCMP ; Judges comparison result.

CLR1 DBF0B1 ; DBF0B1 ← 0

SET1 DBF0B0 ; DBF0B0 ← 1

PUT ADCR, DBF ; Sets reference voltage.

SKT1 ADCCMP ; Judges comparison result.

CLR1 DBF0B0 ; DBF0B0 ← 0

END:

Number of steps in the conversion loop : 17

Conversion time : 34 µs (not in DMA mode)

Conversion time : 204 µs (in DMA mode)

238

µPD17062

Flowchart

START

DBF←1000B

ADCR←DBF

ADCCMP

DBF0B3←0

DBF0B2←1

ADCR←DBF

ADCCMP
1

0

1

0

DBF0B2←0

DBF0B1←1

1

Sets DBF data.

Begins AD conversion.

Judges comparison result.

DBF0B3←0

DBF0B2←1

Judges comparison result.

Sets reference voltage.

Sets reference voltage.

DBF0B2←0

DBF0B1←1

239

µPD17062

END

ADCR←DBF

ADCCMP

DBF0B1←0

DBF0B0←1

ADCR←DBF

ADCCMP
1

0

1

0

DBF0B0←0 DBF0B0←0

DBF0B1←0

DBF0B0←1

1

Sets reference voltage.

Judges comparison result.

Sets reference voltage.

Judges comparison result.

240

µPD17062

TV screen

19 characters

14 rows

20. IMAGE DISPLAY CONTROLLER

The image display controller (IDC) function indicates a channel number, volume of sound, time, and other

information on a TV screen. The pattern of a display is user-programmable, and the display pattern definition

is stored in the CROM area.

The pattern to be actually displayed is stored in VRAM, which is mapped at BANK1 and BANK2 in data

memory.

20.1 SPECIFICATION OVERVIEW AND RESTRICTIONS

(1) Maximum number of characters that can be displayed on one screen: 97

This specification applies when one control code is used per row. The maximum number of characters

that can be displayed on one screen varies with the number of times control data is used.

Using the control data three times per row amounts to that it is possible to specify the color three times

per row.

(2) Variable display position range: 19 characters × 14 rows

The display area is defined for the TV screen as follows:

(3) Up to 8 colors (including black and white) can be specified for individual characters.

Independent specification of R, G, and B (using control dataNote)

Note Up to three control data items can be specified per row.

Character size
Maximum number of Number of times that

display characters per row control data is used per row

Standard (minimum) 19 Up to 3

Double size 9 Up to 6

Triple size 5 Up to 5

Quadruple size 4 Up to 4

241

µPD17062

(4) Rounding, rimming, and reverse video can be specified for individual characters.

(5) Number of fonts: 120 (user-programmable)

The number of fonts that can be displayed on one screen simultaneously is limited to within 64.

Character pattern data is located in program memory (CROM), and up to 120 character patterns can be

specified; however, up to 64 character patterns (in the same CROMBANK) can be displayed on one screen

simultaneously.

No rimming Rimming Rounding Reverse video

Color specification by R, G, and B

Blank (black)

Background (TV screen)

0 0 0 0 H
0 0 F F H
0 1 0 0 H

0 7 F F H
0 8 0 0 H

0 B F F H
0 C 0 0 H

0 F 7 F H

ROM MAP

CROMBANK0
64 fonts

CROMBANK1
56 fonts

Characters defined in CROMBANK0
cannot be displayed together with
those in CROMBANK1 on the
same screen.

242

µPD17062

(6) Up to 4 different character sizes, both vertical and horizontal, are available.

The same vertical character size is specified for all characters in a row, while the horizontal character size

is specified for individual characters (according to the control dataNote 1).

(7) The character bit configuration is 10 × 15 dots.

There is no gap between character positions.Note 2

(8) Character pattern data is allocated in program memory.

If there is only a small amount of character pattern data, the CROM area can also be used as a program

area.

(9) Character data is allocated in the data memory space.

The character data can be transferred, read, and written in the same manner as ordinary data in data

memory.

Notes 1. Up to three control data items can be specified per row.

2. Because there is no gap between character positions, kanji and other graphic images can be

defined by combining two or more predefined characters.

243

µPD17062

20.2 DIRECT MEMORY ACCESS

The direct memory access (DMA) function transfers memory contents directly to peripheral equipment,

without using the CPU.

In the µPD17062, the DMA mode is used to run the IDC.

The instruction cycle of the µPD17062 is 2 µs, but its apparent instruction cycle becomes 12 µs during the

DMA mode. This does not mean that the actual instruction cycle becomes 12 µs, but means that data transfer

for the IDC takes 10 µs (5 instruction cycles) and execution of an instruction takes one instruction cycle as usual.

During DMA mode, instructions are executed at every five instruction cycles.

For the above reason, execution of one instruction takes 12 µs apparently when the IDC is being used. In

a program in which a problem may occur if 12 µs and 2 µs instruction cycles are mixed, the IDC must be kept

at a stop and the DMA mode can be specified only for critical sections of the program. In this case, during

five instruction cycles for IDC data transfer, only the clock operates, and the µPD17062 does nothing.

During the DMA mode, the ROM address for five instructions out of the six is not pointed to by the program

counter. Instead, it is pointed to by the CROM address pointer, and the RAM address is pointed to by the VRAM

address pointer.

The DMA mode is controlled using the IDCDMAEN flag.

The IDCDMAEN flag is mapped at the register file. It is a one-bit flag that can be both read- and write-

accessed. When this flag is set, a DMA request is accepted to begin the DMA mode in preference to any other

interrupt request. When the IDCDMAEN flag is reset, no DMA request is accepted. If it is reset during the

DMA mode, the DMA mode is terminated upon completion of the instruction that resets the flag.

Table 20-1 IDCDMAEN Flag

0 0 IDCDMAEN 0

b3 b2 b1 b0

0

0

Does not use the DMA mode (instruction cycle: 2 s)

Uses the DMA mode (instruction cycle: 12 s).

(RF 00H)

µ

µ

244

µPD17062

Sample program

Remark The “SET1” or “CLR1” is not included in the µPD17062 instruction set. They are a built-in macro

instruction of the 17K series assembler. They set or reset a one-bit flag. If they are written in a

source program as shown at *1, they are expanded during assembly as shown at *2.

PEEK

OR

POKE

WR, 80H

WR, #0010B

80H, WR

*1

SET1 IDCDMAEN

*2

CLR1 IDCDMAEN

PEEK

AND

POKE

WR, 80H

WR, #1101B

80H, WR

Instruction cycle: 2 s

Instruction cycle: 12 s

Instruction cycle: 2 s

µ

µ

µ

245

µPD17062

b3 b2 b1 b0

0 0 IDCEN

0

1

0

Turns off the display.

Turns on the display.

(RF 31H)
--

--
--

--
--

--

20.3 IDC ENABLE FLAG

The IDCEN (IDC enable) flag is manipulated to start IDC operations (turn on the display). The flag is mapped

at the lowest bit (#0) of the register file at 31H.

Table 20-2 IDCEN Flag

(1) Cautions in turning on the display

(a) The IDCEN flag must be set to 1 (begin displaying), when the vertical sync signal (Vsync) is high

(vertical flyback time: Vsync = low level) after the IDCDMAEN flag (RF, at 00H, #1) is turned on.

(b) Do not write data to VRAM, when the IDCEN flag is 1 (display turned on).

Sample program

SET1 IDCDMAEN ; Sets the DMA mode.

CLR1 IDCEN ; If the display is on when VRAM data is to be specified,

; reset the IDCEN (turn off the display).

 Sets data in VRAM. ; Sets VRAM data.

 LOOP

SKF1 INTVSYN ; Makes sure Vsync = low level, and sets the IDCEN.

BR LOOP

SET1 IDCEN ; Turns on the display.

--
-

--
-

246

µPD17062

20.4 VRAM

VRAM is the memory that holds data used to select a picture pattern that the IDC displays on a screen such

as a TV screen. In the µPD17062, the VRAM data is allocated at BANK1 and BANK2 in data memory. One VRAM

data item (8 bits) is held at two adjoining addresses (even and odd address).

BANK1 and BANK2 are each mapped at 112 nibbles of data memory (total of 224 nibbles, or 224 × 4 bits).

That is, up to 112 VRAM data items can be specified.

Fig. 20-1 VRAM Configuration

VRAM data consists of 8 bits. Of the 8 bits, the upper 2 bits are the ID field. The ID field indicates the type

of VRAM data. The lower 6 bits are the data field. The data field contains the display data or control data.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

VRAM data

Column address

R
ow

 a
dd

re
ss

Even
address

Odd
address

4 bits 4 bits

(2 data memory locations)

247

µPD17062

Fig. 20-2 VRAM Data Configuration

20.4.1 ID Field

The ID field indicates the type of data in the data field.

The data field can hold the following three types of data.

(1) Character pattern select data

(2) Carriage return data

(3) Control data select data

Table 20-3 ID Field

20.4.2 Character Pattern Select Data

The character pattern is the data of an image displayed on a screen such as a TV screen. It is allocated

in the CROM area (at 0800H to 0F7FH) of program memory. The character pattern select data becomes part

(b9 to b4) of a CROM address. In other words, the 6 bits of data in the data field indicate b9 to b4 of the CROM

address.

CROM consists of BANK0 and BANK1. Note that even if the 6-bit VRAM data is the same, the CROM address

varies according to the value of the CROMBNK (b0 at 30H). If the data field contains a value of 0 (000000B),

the CROM address is 080×H (10000000××××B) or 0C0×H (11000000××××B). Specifying the BANK of CROM

selects 080×H or 0C0×H. Table 20-4 lists the CROM addresses that the VRAM character pattern select data

actually points to.

b7 b6 b5 b4 b3 b2 b1 b0

(b3) (b2) (b1) (b0) (b3) (b2) (b1) (b0)

ID field Data field

Even address Odd address

ID field
Type of data in the data field

b7 b6

0 0 Character pattern select data

0 1 Carriage return (return address) to BANK1 (from BANK1 to

BANK1, and from BANK2 to BANK1)

1 0 Control data

1 1 Carriage return (return address) to BANK2 (from BANK2 to

BANK2)

248

µPD17062

Table 20-4 VRAM Data (Character Pattern Select Data) versus CROM Addresses

VRAM data CROM address VRAM data CROM address

(8 bits) BANK0 BANK1 (8 bits) BANK0 BANK1

00H 0800H-080EH 0C00H-0C0EH 20H 0A00H-0A0EH 0E00H-0E0EH

01H 0810H-081EH 0C10H-0C1EH 21H 0A10H-0A1EH 0E10H-0E1EH

02H 0820H-082EH 0C20H-0C2EH 22H 0A20H-0A2EH 0E20H-0E2EH

03H 0830H-083EH 0C30H-0C3EH 23H 0A30H-0A3EH 0E30H-0E3EH

04H 0840H-084EH 0C40H-0C4EH 24H 0A40H-0A4EH 0E40H-0E4EH

05H 0850H-085EH 0C50H-0C5EH 25H 0A50H-0A5EH OE50H-0E5EH

06H 0860H-086EH 0C60H-0C6EH 26H 0A60H-0A6EH 0E60H-0E6EH

07H 0870H-087EH 0C70H-0C7EH 27H 0A70H-0A7EH 0E70H-0E7EH

08H 0880H-088EH 0C80H-0C8EH 28H 0A80H-0A8EH 0E80H-0E8EH

09H 0890H-089EH 0C90H-0C9EH 29H 0A90H-0A9EH 0E90H-0E9EH

0AH 08A0H-08AEH 0CA0H-0CAEH 2AH 0AA0H-0AAEH 0EA0H-0EAEH

0BH 08B0H-08BEH 0CB0H-0CBEH 2BH 0AB0H-0ABEH 0EB0H-0EBEH

0CH 08C0H-08CEH 0CC0H-0CCEH 2CH 0AC0H-0ACEH 0EC0H-0ECEH

0DH 08D0H-08DEH 0CD0H-0CDEH 2DH 0AD0H-0ADEH 0ED0H-0EDEH

0EH 08E0H-08EEH 0CE0H-0CEEH 2EH 0AE0H-0AEEH 0EE0H-0EEEH

0FH 08F0H-08FEH 0CF0H-0CFEH 2FH 0AF0H-0AFEH 0EF0H-0EFEH

10H 0900H-090EH 0D00H-0D0EH 30H 0B00H-0B0EH 0F00H-0F0EH

11H 0910H-091EH 0D10H-0D1EH 31H 0B10H-0B1EH 0F10H-0F1EH

12H 0920H-092EH 0D20H-0D2EH 32H 0B20H-0B2EH 0F20H-0F2EH

13H 0930H-093EH 0D30H-0D3EH 33H 0B30H-0B3EH 0F30H-0F3EH

14H 0940H-094EH 0D40H-0D4EH 34H 0B40H-0B4EH 0F40H-0F4EH

15H 0950H-095EH 0D50H-0D5EH 35H 0B50H-0B5EH 0F50H-0F5EH

16H 0960H-096EH 0D60H-0D6EH 36H 0B60H-0B6EH 0F60H-0F6EH

17H 0970H-097EH 0D70H-0D7EH 37H 0B70H-0B7EH 0F70H-0F7EH

18H 0980H-098EH 0D80H-0D8EH 38H 0B80H-0B8EH

19H 0990H-099EH 0D90H-0D9EH 39H 0B90H-0B9EH

1AH 09A0H-09AEH 0DA0H-0DAEH 3AH 0BA0H-0BAEH

1BH 09B0H-09BEH 0DB0H-0DBEH 3BH 0BB0H-0BBEH Not to be set

1CH 09C0H-09CEH 0DC0H-0DCEH 3CH 0BC0H-0BCEH

1DH 09D0H-09DEH 0DD0H-0DDEH 3DH 0BD0H-0BDEH

1EH 09E0H-09EEH 0DE0H-0DEEH 3EH 0BE0H-0BEEH

1FH 09F0H-09FEH 0DF0H-0DFEH 3FH 0BF0H-0BFEH

249

µPD17062

Sample program

If the CROM data and VRAM data are specified as shown above, the display on the screen varies depending

on the CROM bank.

The CROM bank is specified by CROMBNK (b0 at 30H).

The following description applies to the above example.

(1) CROMBNK = 0

Display “CH” appears on the screen. The control data used in this case is “control data 1”.

(2) CROMBNK = 1

Display “VO” appears on the screen. The control data used in this case is “control data 1”.

0 1 2 3 4 5 6 7 8 9 A B

8 0 0 0 0 1 4 00

1

CROM data

VRAM data

0 8 0 0 H

0 8 0 F H

0 8 1 0 H

0 8 1 F H

0 C 0 0 H

0 C 0 F H

0 C 1 0 H

0 C 1 F H

“ C ”

“ H ”

“ V ”

“ O ”

; Control data 1

; Control data 2

; Control data 1

; Control data 2

250

µPD17062

20.4.3 Carriage Return Data

The term carriage return data refers to the data pointing to the address of the VRAM data that specifies

the first character in a row on the screen.

The carriage return data specifies the end of a display row.

When carriage return data appears two times consecutively, it specifies the end of a screen.

There are two types of carriage return data; one type is a carriage return to BANK1, and the other is a carriage

return to BANK2. The data in the ID field determines whether the data field indicates a carriage return to BANK1

or BANK2. If the ID field contains 01B, it indicates a carriage return to BANK1, and if the ID field contains 11B,

it indicates a carriage return to BANK2.

The carriage return data consists of 6 bits, the upper 3 bits of which point to the row address of VRAM and

the lower 3 bits of which point to the upper 3 bits of the VRAM column address. The lowest bit of the VRAM

column address is fixed at 0. If the carriage return data is 010011B, therefore, the VRAM row address is 010B

(2H), and the VRAM column address is 0110B (6H); namely, they mean the return data to 26H.

Fig. 20-3 Carriage Return Data Configuration

b7 b6 b5 b4 b3 b2 b1 b0

ID field Data field

VRAM row address Upper 3 bits of the
VRAM column address

251

µPD17062

Fig. 20-4 Carriage Return Data (8 Bits Including the ID Field)

0 1 2 3 4 5 6 7 8 9 A B C D E F

40 41 42 43 44 45 46 470

48 49 4A 4B 4C 4D 4E 4F1

50 51 52 53 54 55 56 572

58 59 5A 5B 5C 5D 5E 5F3

60 61 62 63 64 65 66 674

68 69 6A 6B 6C 6D 6E 6F5

70 71 72 73 74 75 76 776

BANK1

0 1 2 3 4 5 6 7 8 9 A B C D E F

C0 C1 C2 C3 C4 C5 C6 C70

C8 C9 CA CB CC CD CE CF1

D0 D1 D2 D3 D4 D5 D6 D72

D8 D9 DA DB DC DD DE DF3

E0 E1 E2 E3 E4 E5 E6 E74

E8 E9 EA EB EC ED EE EF5

F0 F1 F2 F3 F4 F5 F6 F76

BANK1

252

µPD17062

20.4.4 Control Data Select Data

The term control data refers to the data that specifies the character size, display position, and color of a

character pattern on the screen. This data is held in CROM (at ×××FH).

The control data select data is held in VRAM and selects control data in CROM.

The 6 bits of the data field correspond to b9 to b4 of the CROM address. Similarly to the pattern select data,

the control data select data also requires that a CROM bank be specified. A CROM bank is specified using

CROMBNK (b0 at 30H) in the register file.

Fig. 20-5 Relationship between the Control Data and CROM Address

b7 b6 b5 b4 b3 b2 b1 b0

1 0

b11

1

b0

1 1 1 1

Bank data
BANK0: 0
BANK1: 1

Data in VRAM

CROM address

253

µPD17062

Table 20-5 VRAM Data (Control Data Select Data) versus CROM Addresses

VRAM data CROM address VRAM data CROM address

(8 bits) BANK0 BANK1 (8 bits) BANK0 BANK1

80H 080FH 0C0FH A0H 0A0FH 0E0FH

81H 081FH 0C1FH A1H 0A1FH 0E1FH

82H 082FH 0C2FH A2H 0A2FH 0E2FH

83H 083FH 0C3FH A3H 0A3FH 0E3FH

84H 084FH 0C4FH A4H 0A4FH 0E4FH

85H 085FH 0C5FH A5H 0A5FH 0E5FH

86H 086FH 0C6FH A6H 0A6FH 0E6FH

87H 087FH 0C7FH A7H 0A7FH 0E7FH

88H 088FH 0C8FH A8H 0A8FH 0E8FH

89H 089FH 0C9FH A9H 0A9FH 0E9FH

8AH 08AFH 0CAFH AAH 0AAFH 0EAFH

8BH 08BFH 0CBFH ABH 0ABFH 0EBFH

8CH 08CFH 0CCFH ACH 0ACFH 0ECFH

8DH 08DFH 0CDFH ADH 0ADFH 0EDFH

8EH 08EFH 0CEFH AEH 0AEFH 0EEFH

8FH 08FFH 0CFFH AFH 0AFFH 0EFFH

90H 090FH 0D0FH B0H 0B0FH 0F0FH

91H 091FH 0D1FH B1H 0B1FH 0F1FH

92H 092FH 0D2FH B2H 0B2FH 0F2FH

93H 093FH 0D3FH B3H 0B3FH 0F3FH

94H 094FH 0D4FH B4H 0B4FH 0F4FH

95H 095FH 0D5FH B5H 0B5FH 0F5FH

96H 096FH 0D6FH B6H 0B6FH 0F6FH

97H 097FH 0D7FH B7H 0B7FH 0F7FH

98H 098FH 0D8FH B8H 0B8FH

99H 099FH 0D9FH B9H 0B9FH

9AH 09AFH 0DAFH BAH 0BAFH

9BH 09BFH 0DBFH BBH 0BBFH Not to be set

9CH 09CFH 0DCFH BCH 0BCFH

9DH 09DFH 0DDFH BDH 0BDFH

9EH 09EFH 0DEFH BEH 0BEFH

9FH 09FFH 0DFFH BFH 0BFFH

254

µPD17062

20.4.5 Cautions in Specifying VRAM Data

(1) Reset the IDCEN flag to 0 before specifying VRAM data.

(2) The VRAM data must begin at 00H in BANK1.

(3) Do not set VRAM data at 7×H in BANK1 or BANK2.

(4) Always set control data at the beginning of a screen. To prevent a program error, control data should

be set at the beginning of each row. Otherwise, the previous control data remains effective.

(5) Data setting

(a) The character pattern select data should be set at VRAM addresses sequentially starting at the lowest

address so that the corresponding display begins at the upper left corner of the screen.

(b) Control data can be used up to three times on each row.

(c) The character pattern data that is modified by the control data begins after the control data select data.

The horizontal start position data and vertical start position data correspond to only a character that

follows immediately the control data select data; the other characters are output consecutively.

(d) Always specify carriage return data at the end of a row.

(e) Always specify two carriage return data items at the end of a screen.

255

µPD17062

20.5 CHARACTER ROM

The CROM (character ROM) consists of the IDC pattern data and control data. The CROM data shares the

program memory with programs. The CROM area has a capacity of 2 Ksteps (1920 × 16 bits). An area not

used as CROM is used as an ordinary program area.

The CROM area in ROM is at 0800H to 0F7FH. The CROM area is divided into BANK0 and BANK1. A concept

of bank applies only to CROM. It does not apply to a program area. CROM BANK0 is 1 Kword at from 0800H

to 0BFFH, and CROM BANK1 is 896 words at from 0C00H to 0F7FH.

The CROM bank is switched according to the CROMBNK flag (b0 at 30H) in the register file.

Table 20-6 CROM Bank

Remark The CROM bank should not be switched when the IDCEN flag is 1.

The register file at 30H can be read- and write-accessed, but the bits other than the CROMBNK flag (b0) are

always 0.

Because the CROM data is mapped in a program memory area, its size is 16 bits.

There are two types of CROM data.

(1) Character pattern data

(2) Control data

20.5.1 Character Pattern Data

The character pattern data is a character or graphic pattern. One character consists of 10 horizontal and

15 vertical dots. The corresponding character pattern data consists of 16 bits × 15 steps. The data of 10

horizontal dots corresponds to one CROM step. 15 steps at addresses ××0H to ××EH in CROM form one

character pattern data item.

The structure of character pattern data varies according to whether the corresponding character has

rimming.

Fig. 20-6 shows the configuration of the character pattern data.

The highest bit selects whether there is rimming. Set the bit to 0 when the character has no rimming, when

the character has rimming, set the bit to 1.

For a character with no rimming, the lower 10 bits indicate the dot image of the actually displayed character

pattern. b9 corresponds to the left section of the display, and b0 to the right section. The bit that corresponds

to a bright dot is 1, and the bit that corresponds to a dark dot is 0.

For a character with rimming, the character pattern data is 5 bits as shown in Fig. 20-6. At this point, two

dots of the display pattern correspond to one character pattern data bit. This bit is combined with 10 rim data

bits (rim data is specified in one-dot units) to form a character pattern for a character with rimming.

With the 17K series assembler, the DCP pseudo instruction can define a character pattern easily. Use of

this instruction automatically generates the data shown in Fig. 20-6, regardless of whether there is rimming.

CROMBNK flag CROM bank CROM address

0 BANK0 0800H-0BFFH

1 BANK1 0C00H-0F7FH

256

µPD17062

Fig. 20-6 Character Pattern Data Configuration

(a) Data for a character with no rimming

(b) Data for a character with rimming

If 2 is to be displayed, the character pattern is set as shown in Fig. 20-7. 0 and 1 in the pattern data correspond

to ■■ and ■, respectively. In addition, the character size, position, and color are specified by the control data.

Fig. 20-8 shows an example of the pattern of a character with rimming.

Fig. 20-7 Example of the Pattern of a Character with No Rimming

0

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Undefined Character pattern data

1

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Character pattern data Rim data

b9 b0 b15 b9 b0

× × × 0 H

× × × 1 H

× × × 2 H

× × × 3 H

× × × 4 H

× × × 5 H

× × × 6 H

× × × 7 H

× × × 8 H

× × × 9 H

× × × A

× × × B

× × × C

× × × D

× × × E

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0

0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

"0" (no rimming)

ROM address
(in the CROM area)

Undefined

H

H

H

H

H

H

H

H

H

Pattern data

257

µPD17062

Fig. 20-8 Example of the Pattern of a Character with Rimming

× × × × 0 H

× × × × 1 H
× × × × 2 H

× × × × 3 H

× × × × 4 H

× × × × 5 H
× × × × 6 H

× × × × 7 H

× × × × 8 H

× × × × 9 H
× × × × A H

× × × × B H

× × × × C H

× × × × D H
× × × × E H

1

1
1

1

1

1
1

1

1

1
1

1

1

1
1

0

0
0

1

1

1
1

0

0

0
0

0

1

1
0

0

1
1

1

1

1
1

0

0

0
1

1

1

1
0

0

1
1

0

0

0
0

0

1

1
1

1

1

1
0

0

1
1

1

1

1
1

1

1

1
0

0

1

1
0

0

0
0

1

1

1
1

0

0

0
0

0

1

1
0

0

0
0

1

1

1
1

0

0

0
0

0

1

1
0

0

0
1

0

0

0
0

1

0

0
0

1

0

1

0

1
0

0

0

0
0

1

0

0
1

0

0

1

1

0
0

0

1

1
1

0

0

1
0

0

0

1

1

0
0

1

0

0
0

0

1

0
0

0

0

1

1

0
0

1

0

0
0

1

0

0
0

1

0

1

1

0
0

0

1

1
1

0

0

0
1

1

0

1

0

1
0

0

0

0
0

0

0

1
0

1

0

1

0

0
1

0

0

0
0

1

1

0
0

1

0

1

0

0
0

1

1

1
1

0

0

0
0

0

1

1
0

b15 b9 b0

b14 b9 b0b13 b12 b11 b10

0 0 0 0 0 0 0 0

"1" (rimming)

ROM address
(in the CROM area)

Pattern data Rim data

Pattern data Rim data

258

µPD17062

20.5.2 Control Data

The control data specifies the display position, size, and color of a character pattern. It is stored at ×××FH

in the CROM area. One control data item consists of 16 bits. The highest bit is always 0. Fig. 20-9 shows

the configuration of the control data.

Fig. 20-9 Control Data Configuration

The control data is provided between two character pattern data items. It has nothing to do with the

character pattern data items at addresses before and after the control code. Any control data can be specified

using data in VRAM.

(1) Horizontal size data (b14 and b13 of control data)

The horizontal size data determines the horizontal size of each image of a character. Each character has

four image sizes (up to three sizes per row). Table 20-7 lists details of the horizontal size data.

Table 20-7 Horizontal Size Setting

0

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

(Fixed)

Horizontal
size

Vertical
size

Horizontal
position

Vertical
position Color

 Horizontal size data
Size Horizontal width Maximum number of display

b14 b13 of a character characters per row

0 0 Standard 2.5 µs 16

0 1 Double 5.0 µs 8

1 0 Triple 7.5 µs 5

1 1 Quadruple 10.0 µs 4

259

µPD17062

(2) Vertical size data (b12 and b11 of the control data)

The vertical size data determines the vertical size of each image of a character. Up to four sizes can be

specified on each row. Table 20-8 lists details of the vertical size data.

The vertical size data specified at the beginning of a row is effective throughout that row. The vertical

size data in any other control data for the same row is ignored.

Table 20-8 Vertical Size Setting

(3) Horizontal position data (b10 to b7 of the control data)

The horizontal position data specifies which of the 16 horizontal positions shown in Fig. 20-10 the display

is to begin at. Although each row has 19 horizontal display positions, the display can start only at within

16 character positions from the left side of the screen.

The beginning of the row is specified with an absolute column number (column from 0 to 15 in

Fig. 20-10). The horizontal position data consists of four bits of the control data, with b10 corresponding

to the MSB and b7 corresponding to the LSB, and therefore it takes a value from 0H to FH. Value 0H

corresponds to column 0, and value FH to column 15.

The number of character positions left blank between two characters on the same row is specified by the

horizontal position data. In other words, the position of the next character is specified by the number (in

hexadecimal) of blank character positions after the current character position.

In Fig. 20-10, for example, the horizontal position data of A and that of C are 8H and 1H, respectively. If

the control data of C is changed to 0, C is displayed in column 9 (at character position 9). If no control

data is used after A, C is displayed also in column 9.

Remark The term number of character positions used in the above description applies when the horizontal

size data is 00. If the horizontal size data is changed, the character positions are counted for the

new horizontal size data. If the horizontal size data is a double size, for example, one row has

only eight character positions.

 Vertical size data
Size Vertical width of a Maximum number of display

b12 b11 character (interlace) characters in the vertical direction

0 0 Standard 15H 12

0 1 Double 30H 6

1 0 Triple 45H 4

1 1 Quadruple 60H 3

260

µPD17062

(4) Vertical position data (b6 to b3 of the control data)

The vertical position data specifies which of the 12 rows (vertical positions) shown in Fig. 20-10 the display

is to begin at. The vertical position data consists of four bits of the control data, with b6 corresponding

to the MSB and b3 corresponding to the LSB, and it takes a value from 0H to DH. Value 0H corresponds

to row 0, and value DH to column 13.

A character position at the beginning of the screen is specified with an absolute row number (row from

0 to 11 in Fig. 20-10). The number of rows left blank between two rows is specified by the vertical position

data. In other words, the position of the next character is specified by the number (in hexadecimal) of

blank rows after the current row.

In Fig. 20-10, for example, the vertical position data of A and that of B are 6H and 1H, respectively. Similarly,

the vertical position data of D is 0H.

Remark The term number of rows used in the above description applies when the vertical size data is 00

(standard size). If the vertical size data is changed, the rows are counted based on the new vertical

size data. If the vertical size data is a double size, for example, one screen has only six rows.

Fig. 20-10 Display Positions

A C

B

D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Row 10

Row 11

Row 12

Row 13

Column Column

261

µPD17062

(5) Color data (b2 to b0 of the control data)

The color data specifies the color of a display character. It is output from a specified output pin (R, G,

or B pin). Table 20-9 lists the correspondence between the color data and the output pins.

Table 20-10 summarizes the relationships between the color data setting and output colors.

Table 20-9 Color Data Table 20-10 Character Color

Color data Character color

R G B

0 0 0 Black

0 0 1 Blue

0 1 0 Green

0 1 1 Cyan

1 0 0 Red

1 0 1 Magenta

1 1 0 Yellow

1 1 1 White

b2 b1 b0

R G B

262

µPD17062

20.5.3 Defining Display Patterns with an Assembler

With the 17K series assembler, the DCP pseudo instruction can be used to define display patterns easily.

How to use the DCP pseudo instruction is described below.

(1) Instruction format

Symbol field Mnemonic field Operand field Comment field

[Label:] DCP expression, ‘display pattern’ [; comment]

(2) Explanation

(a) The expression takes value 0 or 1. The display pattern written in the second operand specifies whether

to use rimming in the display pattern.

0 : No rimming

1 : Rimming

If the expression does not evaluate to 0 or 1, an error is reported.

(b) The display pattern definition consists of 10 characters and can include three different characters, O,

#, and “ “ (blank).

If the display pattern is specified with any other character type or more then 10 characters, an error

is reported. Each of these three character types corresponds to one dot and has the following

meaning:

O : Bright dot

: Rimming

“ “ : Blank

When the expression in the first operand evaluates to 0, the display pattern cannot include #.

263

µPD17062

20.6 BLANK, R, G, AND B PINS

All these pins are CMOS push-pull output pins. They output an active-high signal. The BLANK pin outputs

a signal to turn off a broadcasting picture. The R, G, and B pins output character pattern data. If rimming

is not specified, the BLANK signal is the same as the character pattern signal (generated by ORing the R, G,

and B signals). If rimming is specified, the BLANK signal output from the BLANK pin is a waveform enveloping

the character pattern signal.

Fig. 20-11 IDC Output Waveform

(a) When rimming is not specified

(b) When rimming is specified

Pattern signal
(R, G, and B pins)

Blank signal
(BLANK pin)

Pattern signal
(R, G, and B pins)

Blank signal
(BLANK pin)

264

µPD17062

20.7 SPECIFYING THE DISPLAY START POSITION

IDC display start positions (upper left of the screen) can be specified by setting data in the IDC start position

setting register. Up to 16 horizontal and vertical positions can be specified. In other words, the display position

of the entire screen can be shifted. The IDC start position setting register consists of a 4-bit vertical start

position setting register and a 4-bit horizontal start position setting register. The IDC start position setting

register is mapped at peripheral address 01H. It can be read- and write-accessed using the GET and PUT

instructions.

Note that the IDC start position setting register should not be written to when the IDCEN flag is 1.

Fig. 20-12 IDC Start Position Setting Register Configuration

b7 b6 b5 b4 b3 b2 b1 b0

b3 b2 b1 b0 b3 b2 b1 b0

Horizontal start position Vertical start position

265

µPD17062

20.7.1 Horizontal Start Position Setting Register

If the horizontal start position setting register contains 0H, the horizontal start position is set 4.25 µs after

the trailing edge of the horizontal sync signal. Each time the horizontal start position setting register is

incremented by one, the horizontal start position shifts to the right by 250 ns; namely the following expression

applies.

Horizontal start position = 4.25 µs + 250 ns × (horizontal start position setting data)

In Fig. 20-13, position A corresponds to the horizontal position setting data 0H. When the horizontal position

setting data is changed to 1, the start position shifts to the right by 250 ns (one dot of the minimum-size

character), that is position B. (The solid lines indicate the screen when the horizontal position data is 0, and

the dotted lines, when the horizontal position data is 1.

Fig. 20-13 Horizontal Shifting

IDC image area
4.25

A B

 after trailing edge of horizontal synchronizing signal sµ

266

µPD17062

20.7.2 Vertical Start Position Setting Register

If the vertical start position setting register contains 0H, the vertical start position is set 17 H (interlace) after

the trailing edge of the vertical sync signal. Each time the vertical start position setting register is incremented

by one, the vertical start position shifts down by 1 H; namely the following expression applies.

Vertical start position = 17 H + 1 H × (vertical start position setting data)

In Fig. 20-14, position A corresponds to the vertical position setting data 0H. When the vertical position

setting data is changed to 1, the start position shifts down by 1 H, that is position B. (The solid lines indicate

the screen when the vertical position setting data is 0, and the dotted lines, when the vertical position setting

data is 1.

Fig. 20-14 Vertical Shifting

IDC image area
17 H after the trailing edge of the vertical sync signal

A

B

267

µPD17062

The vertical start position of the display character is determined by the vertical start position register. At

this point, the vertical start position (number of horizontal scan lines) depends on the state of the VSYNC and

HSYNC signals supplied to the µPD17062, as shown in Fig. 20-15. In other words, the first HSYNC signal that comes

after the VSYNC signal rises is counted as 1 H.

Fig. 20-15 Counting the Vertical Start Position

VSYNC

HSYNC

HSYNC

#

#

$

$

%

%

Each circled number corresponds to the number of scan lines.

268

µPD17062

20.8 SAMPLE PROGRAMS

The following sample program generates a display shown below.

The RAM names of VRAM are defined as follows (tentative):

NEC

CH 02

.......

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C H 0 2

Display on the TV screen

Column Column

Row 0

Row 5

4

3

2

1

0 1 2 3 4 5 6 7

0

1

2

VRAM0 VRAM1 VRAM2 VRAM3 VRAM4 VRAM5 VRAM6 VRAM7

8 9 A B C D E F

0

1

2

VRAM8 VRAM9 VRAMA VRAMB VRAMC VRAMD VRAME VRAMF

VRAM map (BANK2)VRAM0 MEM 2.00H

VRAM1 MEM 2.01H

VRAM2 MEM 2.02H

VRAM3 MEM 2.03H

VRAM4 MEM 2.04H

VRAM5 MEM 2.05H

VRAM6 MEM 2.06H

VRAM7 MEM 2.07H

VRAM8 MEM 2.08H

VRAM9 MEM 2.09H

VRAMA MEM 2.0AH

VRAMB MEM 2.0BH

VRAMC MEM 2.0CH

VRAMD MEM 2.0DH

VRAME MEM 2.0EH

VRAMF MEM 2.0FH

; * * RAM SET * *

269

µPD17062

The sample program follows:

Program start

; Performs initialization such as clearing RAM.

 Initialization

SET1 IDCDMAEN ; Selects the DMA mode.

CLR1 IDCEN ; Turns off the display.

;

; ** Channel display routine **

;

CLR1 CROMBNK ; Sets the CROM bank to 0.

;

MOV VRAM0, #1000B ; Specifies control code 1.

MOV VRAM1, #0000B

;

MOV VRAM2, #0 ; Specifies display character data C.

MOV VRAM3, #0CH

;

MOV VRAM4, #0 ; Specifies display character data H.

MOV VRAM5, #0DH

;

MOV VRAM6, #1000B ; Specifies control code 2.

MOV VRAM7, #0001B

;

MOV VRAM8, #0 ; Specifies display character data 0.

MOV VRAM9, #0

;

MOV VRAMA, #0 ; Specifies display character data 2.

MOV VRAMB, #2

;

MOV VRAMC, #0100B ; CR (carriage return)

MOV VRAMD, #0000B

;

MOV VRAME, #0100B ; CR (carriage return)

MOV VRAMF, #0000B

; #

LOOP:

SKF1 INTVSYN ; Make sure Vsync = low level and turns on the display.

BR LOOP

SET1 IDCEN ; Turns on the display

...
...

...

270

µPD17062

At point #, the contents of VRAM (BANK2) are as follows:

For this example, the contents of CROM are as follows:

0

8

1

0

2

0

3

C

4

0

5

D

6

8

7

1

8

0

9

0

A

0

B

2

C

4

D

0

E

4

F

00

1

CROM DATA

; *

; * * *

; *

Image Display Controller data set * * *

ORG 0800H

; * * * * * * * *

; * * * * * * * *

; * * * * * * * *

0

ROM ADDRESS

0 8 0 0

0 8 0 0 0 0 0 0

0 8 0 1 0 0 7 C

0 8 0 2 0 0 F E

0 8 0 3 0 1 C 7

0 8 0 4 0 1 8 3

0 8 0 5 0 1 8 3

0 8 0 6 0 1 8 3

0 8 0 7 0 1 8 3

0 8 0 8 0 1 8 3

0 8 0 9 0 1 8 3

0 8 0 A 0 1 8 3

0 8 0 B 0 1 8 3

0 8 0 C 0 1 C 7

0 8 0 D 0 0 F E

0 8 0 E 0 0 7 C

0 8 0 F 0 5 8 A

DCP 0, ' '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DW

OOOOO '

OOOOOOO '

OOO OOO '

OO OO '

OO OO '

OO OO '

OO OO '

OO OO '

OO OO '

OO OO '

OO OO '

OOO OOO '

OOOOOOO '

OOOOO '

; * * * * * * *CD1

0000010110001010B

; * * Control data 1 * *

; Horizontal size = standard, and vertical size = standard

; Horizontal position = column 11, and vertical position = row 1

; Color = green (G), and rimming = no

; “0”

271

µPD17062

; * * * * * * * *

; * * * * * * * *

; * * * * * * * *

1

0 8 1 0 0 0 0 0

0 8 1 1 0 0 0 6

0 8 1 2 0 0 0 E

0 8 1 3 0 0 1 E

0 8 1 4 0 0 7 6

0 8 1 5 0 0 C 6

0 8 1 6 0 1 8 6

0 8 1 7 0 0 0 6

0 8 1 8 0 0 0 6

0 8 1 9 0 0 0 6

0 8 1 A 0 0 0 6

0 8 1 B 0 0 0 6

0 8 1 C 0 0 0 6

0 8 1 D 0 0 0 6

0 8 1 E 0 0 0 6

0 8 1 F 0 0 8 2

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DW

OO

OO

OO

OO

OO

OO

OO

OO

; * * * * * * *CD2

0000000010000010B

; * * Control data 2 * *

; Horizontal size = standard, and vertical size = standard

; Horizontal position = column 1, and vertical position = row 0

; Color = green (G), and rimming = no

; “1”

OOOO

OOOO

OO

OO

OOOOOO

OOOOOO

; * * * * * * * *

; * * * * * * * *

; * * * * * * * *

2

0 8 2 0 0 0 0 0

0 8 2 1 0 0 7 C

0 8 2 2 0 0 F E

0 8 2 3 0 1 C 7

0 8 2 4 0 1 8 3

0 8 2 5 0 0 0 3

0 8 2 6 0 0 0 7

0 8 2 7 0 0 0 E

0 8 2 8 0 0 3 8

0 8 2 9 0 0 E 0

0 8 2 A 0 1 C 0

0 8 2 B 0 1 8 0

0 8 2 C 0 1 8 0

0 8 2 D 0 1 F F

0 8 2 E 0 1 F F

0 8 2 F 0 0 0 0

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DW

OOO

; * * * * * * *CD2

0000000000000000B

; “2”

OOO

OOO

OOOOOOO

OOOOO

OOO

OO

OO

OOO

OOO

OOO

OOO

OOO

OOO

OOOOOOOOO

OOOOOOOOO

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

; NO USE

ROM ADDRESS

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

272

µPD17062

; * * * * * * * *

; * * * * * * * *

; * * * * * * * *

3

0 8 3 0 0 0 0 0

0 8 3 1 0 0 7 C

0 8 3 2 0 0 F E

0 8 3 3 0 1 C 7

0 8 3 4 0 1 8 3

0 8 3 5 0 0 0 3

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

; “3”

OOO

OOO

OOOOOOO

OOOOO

OOO

OO

OO

'

'

'

'

'

'

; * * * * * * * *

; * * * * * * * *

; * * * * * * * *

C

0 8 C 0 0 0 0 0

0 8 C 1 0 0 7 F

0 8 C 2 0 0 F F

0 8 C 3 0 1 C 0

0 8 C 4 0 1 8 0

0 8 C 5 0 1 8 0

0 8 C 6 0 1 8 0

0 8 C 7 0 1 8 0

0 8 C 8 0 1 8 0

0 8 C 9 0 1 8 0

0 8 C A 0 1 8 0

0 8 C B 0 1 8 0

0 8 C C 0 1 C 0

0 8 C D 0 0 F F

0 8 C E 0 0 7 F

0 8 C F 0 0 0 0

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DW

OO

;

0000000000000000B

; “C”

OOO

OOO

OOOOOOO

OOOOO

OOO

OO

OO

OO

OO

OO

OO

OO

OOO

OOOOOOO

OOOOO

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

; NO USE

OO

OOO

273

µPD17062

; * * * * * * * *

; * * * * * * * *

; * * * * * * * *

H

0 8 D 0 0 0 0 0

0 8 D 1 0 1 8 3

0 8 D 2 0 1 8 3

0 8 D 3 0 1 8 3

0 8 D 4 0 1 8 3

0 8 D 5 0 1 8 3

0 8 D 6 0 1 8 3

0 8 D 7 0 1 F F

0 8 D 8 0 1 F F

0 8 D 9 0 1 8 3

0 8 D A 0 1 8 3

0 8 D B 0 1 8 3

0 8 D C 0 1 8 3

0 8 D D 0 1 8 3

0 8 D E 0 1 8 3

0 8 D F 0 0 0 0

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DCP 0, '

DW

OO

;

0000000000000000B

; “H”

OO

OO

OO

OOOOOOOOO

OOOOOOOOO

OO

OO

OO

OO

OO

OO

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

; NO USE

OO

OO

ROM ADDRESS

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

274

µPD17062

21. HORIZONTAL SYNC SIGNAL COUNTER

21.1 HORIZONTAL SYNC SIGNAL COUNTER CONFIGURATION

The horizontal sync signal counter counts the frequency of a horizontal sync signal for TV or similar

equipment. When a TV broadcasting signal is received, a prescribed horizontal sync signal is output. Using

this fact, the horizontal sync signal counter checks whether there is a broadcast station at a particular

frequency.

The horizontal sync signal counter consists of a 6-bit HSYNC counter (HSC), gate clock generator, gate

control register (HSCGT), gate input amplifier, and test gate open register (HSCGOSTT).

A signal supplied to the P0B3/HSCNT pin is amplified by the self-biased input amplifier. The output of the

amplifier passes through a gate which opens for a specific time interval specified by the gate control register.

After passing through the gate, the amplifier output is counted in the 6-bit HSYNC counter. When the gate

is closed, the HSYNC counter stops counting and sets 1 in the test gate open register. The HSYNC counter

is a read-only register. Reading the HSYNC counter finds out how many pulses are counted when the gate

is open. Dividing the number of pulses by the time during which the gate is open (1.69 ms) can obtain the

frequency of the horizontal sync signal. The P0B3/HSCNT pin is also used as an I/O port. It is assigned to the

P0B3 port. When it is used as a horizontal sync signal counter, the P0B3 must be set as an input port. When

it is used as a port, the HSCGT must be set with 0000B. When the P0B3 is used as an input to the horizontal

sync signal counter, it is read always as 0.

Fig. 21-1 Horizontal Sync Signal Counter Block Diagram

HSCGOSTT

RF92Hb3

(R/W)

HSCGT

RF91Hb1,b0

(R/W)

Gate clock generator

To a port

Gate input
amplifier

Gate HSYNC counter

Selector

Peripheral address 04H (R)

275

µPD17062

21.2 GATE CONTROL REGISTER (HSCGT)

The gate control register is a 2-bit register consisting of the HSCGT1 and HSCGT0 flags used to control the

gate. It is mapped in the register file at 11H. The gate control register can be read- and write-accessed through

the window register (system register) using the PEEK and POKE instructions, respectively.

The following modes can be set up using the gate control register.

Note The gate clock generator works only when this mode is selected.

21.2.1 Gate Closed Mode

In the gate closed mode, the gate is kept closed, disabling the HSC and gate clock generator from operating

(the content of the HSYNC counter does not change). This mode also turns off the bias input to the horizontal

sync signal counter, and therefore it should be selected when the port is used.

This mode is selected at a power-on reset and a clock stop.

21.2.2 Gate Open Mode

When the gate open mode is entered, the gate opens and causes the HSYNC counter to start counting the

input signal after it is reset.

When the HSYNC counter overflows, it goes back to 0.

In this mode, the input pin is biased.

21.2.3 1.69 ms gate mode

When the 1.69 ms gate mode is entered, the HSYNC counter is reset and starts counting the input signal

after 3.375/2 ms (with an error of 0 to 62.5 µs). The gate is kept open for 1.69 ms. The input pin is biased.

If the input signal is high when the gate is opened or closed, it is counted as one.

b3 b2 b1 b0

(RF11H)HSCGT0HSCGT1HSCGT2HSCGT3

00

10

1 0

11

Gate closed

Gate open

Open-gate time of 1.69 ms Note

Not to be set

Fixed at 0

276

µPD17062

21.3 HSYNC COUNTER (HSC)

The HSYNC counter is mapped at peripheral address 04H. It is a 6-bit read-only binary counter. It can be

read-accessed through the data buffer using the GET instruction.

When it overflows, the 6-bit HSYNC counter goes back to 00H.

The HSYNC counter is reset to 00H at a power-on reset and clock stop.

(1) Gate open bit (HSCGOSTT)

The HSCGOSTT is mapped at the MSB (b3) of the register file at 12H. It is always high when the gate with

the Hsync input is open. Note that when the 1.69 ms gate mode is selected, the HSCGOSTT becomes high

when the input data is set even if there is no gate clock.

21.4 EXAMPLE OF USING THE HORIZONTAL SYNC SIGNAL

The following example is a program that uses the horizontal sync signal counter.

When the 1.69 ms gate is open

CLR1 P0BBIO3 ; Sets P0B3 in input mode.

PEEK WR, 0B6H

AND WR, #0111B

POKE 0B6H, WR

LOOP:

PEEK WR, #92H ; Makes sure that the gate is closed once.

SKF WR, #1000B

BR LOOP

;

MOV WR, #0010B ; Selects the 1.69 ms gate mode.

POKE 91H, WR

LOOP2:

PEEK WR, #92H ; Makes sure that the gate is closed.

SKF WR, #1000B

BR LOOP2

GET DBF, HSC ; Reads the content of the HSYNC counter.

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

--
--

--
--

--
--

--
--

277

µPD17062

22. INSTRUCTION SETS

22.1 OUTLINE OF INSTRUCTION SETS

 b15

b14-b11 0 1

BIN HEX

0 0 0 0 0 ADD r, m ADD m, #n4

0 0 0 1 1 SUB r, m SUB m, #n4

0 0 1 0 2 ADDC r, m ADDC m, #n4

0 0 1 1 3 SUBC r, m SUBC m, #n4

0 1 0 0 4 AND r, m AND m, #n4

0 1 0 1 5 XOR r, m XOR m, #n4

0 1 1 0 6 OR r, m OR m, #n4

INC AR

INC IX

MOVT DBF, @AR

BR @AR

CALL @AR

RET

RETSK

EI

DI

0 1 1 1 7 RETI

PUSH AR

POP AR

GET DBF, p

PUT p, DBF

PEEK WR, rf

POKE rf, WR

RORC r

STOP s

HALT h

NOP

1 0 0 0 8 LD r, m ST m, r

1 0 0 1 9 SKE m, #n4 SKGE m, #n4

1 0 1 0 A MOV @r, m MOV m, @r

1 0 1 1 B SKNE m, #n4 SKLT m, #n4

1 1 0 0 C BR addr (page 0) CALL addr (page 0)

1 1 0 1 D BR addr (page 1) MOV m, #n4

1 1 1 0 E SKT m, #n

1 1 1 1 F SKF m, #n

278

µPD17062

22.2 INSTRUCTIONS

Legend

AR : Address register

ASR : Address stack register pointed to by the stack pointer

addr : Program memory address (11 low-order bits)

BANK : Bank register

CMP : Compare flag

CY : Carry flag

DBF : Data buffer

h : Halt release condition

INTEF : Interrupt enable flag

INTR : Register automatically saved in the stack when an interrupt occurs

INTSK : Interrupt stack register

IX : Index register

MP : Data memory row address pointer

MPE : Memory pointer enable flag

m : Data memory address specified by mR and mC

mR : Data memory row address (high-order)

mC : Data memory column address (low-order)

n : Bit position (four bits)

n4 : Immediate data (four bits)

PAGE : Page (Bits 12 and 11 of the program counter)

PC : Program counter

p : Peripheral address

pH : Peripheral address (three high-order bits)

pL : Peripheral address (four low-order bits)

r : General register column address

rf : Register file address

rfR : Register file address (three high-order bits)

rfC : Register file address (four low-order bits)

SP : Stack pointer

s : Stop release condition

WR : Window register

(×) : Contents of ×

279

µPD17062

22.3 LIST OF INSTRUCTION SETS

Instruction

set

Add

Subtract

Logical

operation

Test

Compare

Rotation

Transfer

Mne-

monic

ADD

ADDC

INC

SUB

SUBC

OR

AND

XOR

SKT

SKF

SKE

SKNE

SKGE

SKLT

RORC

LD

ST

MOV

MOVT

Operand

r, m

m, #n4

r, m

m, #n4

AR

IX

r, m

m, #n4

r, m

m, #n4

r, m

m, #n4

r, m

m, #n4

r, m

m, #n4

m, #n

m, #n

m, #n4

m, #n4

m, #n4

m, #n4

r

r, m

m, r

@r, m

m, @r

m, #n4

DBF, @AR

Instruction code

Op code

00000

10000

00010

10010

00111

00111

00001

10001

00011

10011

00110

10110

00100

10100

00101

10101

11110

11111

01001

01011

11001

11011

00111

01000

11000

01010

11010

11101

00111

Operand

mR

mR

mR

mR

000

000

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

000

mR

mR

mR

mR

mR

000

mC

mC

mC

mC

1001

1000

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

0111

mC

mC

mC

mC

mC

0001

r

n4

r

n4

0000

0000

r

n4

r

n4

r

n4

r

n4

r

n4

n

n

n4

n4

n4

n4

r

r

r

r

r

n4

0000

Operation

(r) ← (r) + (m)

(m) ← (m) + n4

(r) ← (r) + (m) + CY

(m) ← (m) + n4 + CY

AR ← AR + 1

IX ← IX + 1

(r) ← (r) – (m)

(m) ← (m) – n4

(r) ← (r) – (m) – CY

(m) ← (m) – n4 – CY

(r) ← (r) ∨ (m)

(m) ← (m) ∨ n4

(r) ← (r) ∧ (m)

(m) ← (m) ∧ n4

(r) ← (r) ∨ (m)

(m) ← (m) ∨ n4

CMP ← 0, if (m) ∧ n = n, then skip

CMP ← 0, if (m) ∧ n = 0, then skip

(m) – n4, skip if zero

(m) – n4, skip if not zero

(m) – n4, skip if not borrow

(m) – n4, skip if borrow

→ CY → (r)b3 → (r)b2 → (r)b1 → (r)b0

(r) ← (m)

(m) ← (r)

if MPE = 1: (MP, (r)) ← (m)

if MPE = 0: (BANK, mR, (r)) ← (m)

if MPE = 1: (m) ← (MP, (r))

if MPE = 0: (m) ← (BANK, mR, (r))

(m) ← n4

SP ← SP – 1, ASR ← PC, PC ← AR,

DBF ← (PC), PC ← ASR, SP ← SP + 1

280

µPD17062

Instruction codeMne-

monic

PUSH

POP

PEEK

POKE

GET

PUT

BR

CALL

RET

RETSK

RETI

EI

DI

STOP

HALT

NOP

Operand

AR

AR

WR, rf

rf, WR

DBF, p

p, DBF

addr

@AR

addr

@AR

s

h

Instruction

set

Transfer

Branch

Sub-

routine

Op code

00111

00111

00111

00111

00111

00111

01100

01101

00111

11100

00111

00111

00111

00111

00111

00111

00111

00111

00111

000

000

rfR

rfR

pH

pH

000

000

000

001

100

000

001

010

011

100

0000

0000

rfC

rfC

pL

pL

0000

0000

0000

0000

0000

0000

0000

s

h

0000

Operation
Operand

addr

addr

1101

1100

0011

0010

1011

1010

0100

0101

1110

1110

1110

1111

1111

1111

1111

1111

Interrupt

Others

SP ← SP – 1, ASR ← AR

AR ← ASR, SP ← SP + 1

WR ← (rf)

(rf) ← WR

DBF ← (p)

(p) ← DBF

PC10-0 ← addr, PAGE ← 0

PC10-0 ← addr, PAGE ← 1

PC ← AR

SP ← SP – 1, ASR ← PC,

PC11 ← 0, PC10-0 ← addr

SP ← SP – 1, ASR ← PC,

PC ← AR

PC ← ASR, SP ← SP + 1

PC ← ASR, SP ← SP + 1 and skip

PC ← ASR, INTR ← INTSK, SP ← SP + 1

INTEF ← 1

INTEF ← 0

STOP

HALT

No operation

281

µPD17062

22.4 BUILT-IN MACRO INSTRUCTIONS

The following macro instructions are built in the 17K series assembler (AS17K). For details, refer to the

assembler user’s guide.

Legend

flag n : FLG-type symbol

< > : An operand enclosed in < > is optional.

Mnemonic Operand Operation n

Built-in SKTn flag 1, … flag n if (flag 1) to (flag n) = all “1”, then skip 1 ≤ n ≤ 4

SKFn flag 1, … flag n if (flag 1) to (flag n) = all “0”, then skip 1 ≤ n ≤ 4

SETn flag 1, … flag n (flag 1) to (flag n) ← 1 1 ≤ n ≤ 4

CLRn flag 1, … flag n (flag 1) to (flag n) ← 0 1 ≤ n ≤ 4

NOTn flag 1, … flag n if (flag n) = “0”, then (flag n) ← 1 1 ≤ n ≤ 4

if (flag n) = “1”, then (flag n) ← 0

INITFLG <NOT>flag 1, if description = NOT flag n, then (flag n) ← 0 1 ≤ n ≤ 4
… <<NOT>flag n> if description = flag n, then (flag n) ← 1

BANKn (BANK) ← n 0 ≤ n ≤ 2

macro

282

µPD17062

23. RESERVED SYMBOLS FOR ASSEMBLER

The reserved µPD17062 symbols for the assembler are listed below.

23.1 SYSTEM REGISTER

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

FLG

MEM

MEM

MEM

MEM

MEM

MEM

FLG

FLG

FLG

FLG

FLG

0.74H

0.75H

0.76H

0.77H

0.78H

0.79H

0.7AH

0.7AH

0.7AH.3

0.7BH

0.7BH

0.7CH

0.7DH

0.7EH

0.7FH

0.7EH.0

0.7FH.3

0.7FH.2

0.7FH.1

0.7FH.0

R

R

R/W

R/W

R/W

R/W

R

R

R/W

R/W

R/W

R/W

R

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Bits 15 to 12 of the address register

Bits 11 to 8 of the address register

Bits 7 to 4 of the address register

Bits 3 to 0 of the address register

Window register

Bank register

Bits 10 to 8 of the index register high

Bits 6 to 4 of the memory pointer

Memory pointer enable flag

Bits 7 to 4 of the index register

Bits 3 to 0 of the memory pointer

Bits 3 to 0 of the index register

Bits 6 to 3 of the register pointer

Bits 2 to 0 of the register pointer

Program status word

BCD operation flag

Compare flag

Carry flag

Zero flag

Index enable flag

Read/

write
DescriptionValue

AR3

AR2

AR1

AR0

WR

BANK

IXH

MPH

MPE

IXM

MPL

IXL

RPH

RPL

PSW

BCD

CMP

CY

Z

IXE

Attribute Symbol

DBF3

DBF2

DBF1

DBF0

MEM

MEM

MEM

MEM

0.0CH

0.0DH

0.0EH

0.0FH

R/W

R/W

R/W

R/W

Bits 15 to 12 of the data buffer

Bits 11 to 8 of the data buffer

Bits 7 to 4 of the data buffer

Bits 3 to 0 of the data buffer

Read/

write
DescriptionSymbol Attribute Value

23.2 DATA BUFFER

283

µPD17062

23.3 PORT REGISTER

Symbol Attribute Value
Read/

Description
write

P0A3 FLG 0.70H.3 R/W Bit 3 of port 0A

P0A2 FLG 0.70H.2 R/W Bit 2 of port 0A

P0A1 FLG 0.70H.1 R/W Bit 1 of port 0A

P0A0 FLG 0.70H.0 R/W Bit 0 of port 0A

P0B3 FLG 0.71H.3 R/W Bit 3 of port 0B

P0B2 FLG 0.71H.2 R/W Bit 2 of port 0B

P0B1 FLG 0.71H.1 R/W Bit 1 of port 0B

P0B0 FLG 0.71H.0 R/W Bit 0 of port 0B

P0C3 FLG 0.72H.3 R/W Bit 3 of port 0C

P0C2 FLG 0.72H.2 R/W Bit 2 of port 0C

P0C1 FLG 0.72H.1 R/W Bit 1 of port 0C

P0C0 FLG 0.72H.0 R/W Bit 0 of port 0C

P0D3 FLG 0.73H.3 RNote Bit 3 of port 0D

P0D2 FLG 0.73H.2 RNote Bit 2 of port 0D

P0D1 FLG 0.73H.1 RNote Bit 1 of port 0D

P0D0 FLG 0.73H.0 RNote Bit 0 of port 0D

P1A3 FLG 1.70H.3 R/W Bit 3 of port 1A

P1A2 FLG 1.70H.2 R/W Bit 2 of port 1A

P1A1 FLG 1.70H.1 R/W Bit 1 of port 1A

P1A0 FLG 1.70H.0 R/W Bit 0 of port 1A

P1B3 FLG 1.71H.3 R/W Bit 3 of port 1B

P1B2 FLG 1.71H.2 R/W Bit 2 of port 1B

P1B1 FLG 1.71H.1 R/W Bit 1 of port 1B

P1B0 FLG 1.71H.0 R/W Bit 0 of port 1B

P1C3 FLG 1.72H.3 R/W Bit 3 of port 1C

P1C2 FLG 1.72H.2 R/W Bit 2 of port 1C

P1C1 FLG 1.72H.1 R/W Bit 1 of port 1C

Note These are read-only ports. However, even if an output instruction is written, the assembler (IE-17K)

does not generate an error message. Also, operation is not affected even if it is actually executed

on the device.

284

µPD17062

Symbol Attribute Value
Read/

 Description
write

IDCDMAEN FLG 0.80H.1 R/W DMA enable flag

SP MEM 0.81H R/W Stack pointer

CE FLG 0.87H.0 R CE pin status flag

SIO0CH FLG 0.88H.3 R/W SIO0 channel selection flag

SB FLG 0.88H.2 R/W SIO0 mode selection flag

SIO0MS FLG 0.88H.1 R/W SIO0 clock mode selection flag

SIO0TX FLG 0.88H.0 R/W SIO0 TX/RX selection mode

BTM0ZX FLG 0.89H.3 R/W Timer 0 interrupt mode selection flag

BTM0CK2 FLG 0.89H.2 R/W Timer 0 carry FF mode selection flag

BTM0CK1 FLG 0.89H.1 R/W Timer 0 carry FF mode selection flag

BTM0CK0 FLG 0.89H.0 R/W Timer 0 carry FF mode selection flag

INTVSYN FLG 0.8FH.2 R Vsync pin status flag

INTNC FLG 0.8FH.0 R INTNC pin status flag

HSCGT3 FLG 0.91H.3 R/W Hsync counter mode selection flag (dummy: 0)

HSCGT2 FLG 0.91H.2 R/W Hsync counter mode selection flag (dummy: 0)

HSCGT1 FLG 0.91H.1 R/W Hsync counter mode selection flag

HSCGT0 FLG 0.91H.0 R/W Hsync counter mode selection flag

HSCGOSTT FLG 0.92H.3 R Hsync counter gate open flag

PLLRFCK3 FLG 0.93H.3 R/W PLL reference clock selection flag

PLLRFCK2 FLG 0.93H.2 R/W PLL reference clock selection flag

PLLRFCK1 FLG 0.93H.1 R/W PLL reference clock selection flag

PLLRFCK0 FLG 0.93H.0 R/W PLL reference clock selection flag

INTNCMD3 FLG 0.95H.3 R/W INTNC pin status flag (dummy)

INTNCMD2 FLG 0.95H.2 R/W INTNC pin status flag

INTNCMD1 FLG 0.95H.1 R/W INTNC pin status flag

INTNCMD0 FLG 0.95H.0 R/W INTNC pin status flag

BTM0CY FLG 0.97H.0 R Timer 0 carry FF status flag

SBACK FLG 0.98H.3 R/W Serial bus acknowledge flag

SIO0NWT FLG 0.98H.2 R/W SIO0 no wait flag

SIO0WRQ1 FLG 0.98H.1 R/W SIO0 wait request flag

SIO0WRQ0 FLG 0.98H.0 R/W SIO0 wait request flag

IEGVSYN FLG 0.9FH.2 R/W Vsync interrupt edge selection flag

IEGNC FLG 0.9FH.0 R/W INTNC interrupt edge selection flag

ADCCH2 FLG 0.0A1H.3 R/W A/D converter channel selection flag

ADCCH1 FLG 0.0A1H.2 R/W A/D converter channel selection flag

ADCCH0 FLG 0.0A1H.1 R/W A/D converter channel selection flag

ADCCMP FLG 0.0A1H.0 R/W A/D converter judge flag

PLLUL FLG 0.0A2H.0 R PLL unlock FF flag

P1CGIO FLG 0.0A7H.0 R/W Port 1C I/O selection flag

23.4 REGISTER FILES

285

µPD17062

Symbol Attribute Value
Read/

 Description
write

SIO0SF8 FLG 0.0A8H.3 R SIO0 shift 8 clock flag

SIO0SF9 FLG 0.0A8H.2 R SIO0 shift 9 clock flag

SBSTT FLG 0.0A8H.1 R Serial bus start test flag

SBBSY FLG 0.0A8H.0 R Serial bus busy flag

IPSIO0 FLG 0.0AFH.3 R/W SIO0 interrupt permission flag

IPVSYN FLG 0.0AFH.2 R/W Vsync interrupt permission flag

IPBTM0 FLG 0.0AFH.1 R/W Timer 0 interrupt permission flag

IPNC FLG 0.0AFH.0 R/W INTNC interrupt permission flag

CROMBNK FLG 0.0B0H.0 R/W CROM bank selection flag

IDCEN FLG 0.0B1H.0 R/W IDC enable flag

PLULSEN3 FLG 0.0B2H.3 R/W PLL unlock time selection flag (dummy: 0)

PLULSEN2 FLG 0.0B2H.2 R/W PLL unlock time selection flag (dummy: 0)

PLULSEN1 FLG 0.0B2H.1 R/W PLL unlock time selection flag

PLULSEN0 FLG 0.0B2H.0 R/W PLL unlock time selection flag

P1BBIO3 FLG 0.0B5H.3 R/W P1B3 I/O selection flag

P1BBIO2 FLG 0.0B5H.2 R/W P1B2 I/O selection flag

P1BBIO1 FLG 0.0B5H.1 R/W P1B1 I/O selection flag

P1BBIO0 FLG 0.0B5H.0 R/W P1B0 I/O selection flag

P0BBIO3 FLG 0.0B6H.3 R/W P0B3 I/O selection flag

P0BBIO2 FLG 0.0B6H.2 R/W P0B2 I/O selection flag

P0BBIO1 FLG 0.0B6H.1 R/W P0B1 I/O selection flag

P0BBIO0 FLG 0.0B6H.0 R/W P0B0 I/O selection flag

P0ABIO3 FLG 0.0B7H.3 R/W P0A3 I/O selection flag

P0ABIO2 FLG 0.0B7H.2 R/W P0A2 I/O selection flag

P0ABIO1 FLG 0.0B7H.1 R/W P0A1 I/O selection flag

P0ABIO0 FLG 0.0B7H.0 R/W P0A0 I/O selection flag

SIO0IMD3 FLG 0.0B8H.3 R/W SIO0 interrupt mode selection flag (dummy: 0)

SIO0IMD2 FLG 0.0B8H.2 R/W SIO0 interrupt mode selection flag (dummy: 0)

SIO0IMD1 FLG 0.0B8H.1 R/W SIO0 interrupt mode selection flag

SIO0IMD0 FLG 0.0B8H.0 R/W SIO0 interrupt mode selection flag

SIO0CK3 FLG 0.0B9H.3 R/W SIO0 shift clock selection flag (dummy: 0)

SIO0CK2 FLG 0.0B9H.2 R/W SIO0 shift clock selection flag (dummy: 0)

SIO0CK1 FLG 0.0B9H.1 R/W Serial clock selection

SIO0CK0 FLG 0.0B9H.0 R/W Serial clock selection

IRQSIO0 FLG 0.0BFH.3 R SIO0 interrupt request flag

IRQVSYN FLG 0.0BFH.2 R Vsync interrupt request flag

IRQBTM0 FLG 0.0BFH.1 R Timer 0 interrupt request flag

IRQNC FLG 0.0BFH.0 R INTNC interrupt request flag

286

µPD17062

23.5 PERIPHERAL HARDWARE REGISTER

Symbol Attribute Value
Read/

 Description
write

IDCORG DAT 01H R/W IDC start position setting register

ADCR DAT 02H R/W A/D-converter reference-voltage (VREF) setting register

SIO0SFR DAT 03H R/W SIO0 register

HSC DAT 04H R Hsync counter data register

PWMR0 DAT 05H R/W PWM data register 0

PWMR1 DAT 06H R/W PWM data register 1

PWMR2 DAT 07H R/W PWM data register 2

PWMR3 DAT 08H R/W PWM data register 3

AR DAT 40H R/W Address register

PLLR DAT 41H R/W PLL data register

AR_EPA1 DAT 8040H – CALL/BR/MOVT instruction operand (EPA bit is on)

AR_EPA0 DAT 4040H – CALL/BR/MOVT instruction operand (EPA bit is off)

23.6 OTHERS

Symbol Attribute Value Description

DBF DAT 0FH Fixed operand value for a PUT/GET/MOVT instruction

IX DAT 01H Fixed operand value for an INC instruction

287

µPD17062

24. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (Ta = 25 ±2 °C)

Parameter Symbol Rated value Unit

Supply voltage VDD –0.3 to +6.0 V

Input voltage VI –0.3 to VDD + 0.3 V

Output voltage VO –0.3 to VDD + 0.3 (excluding P1A3 to P1A0 and PWM3 to PMW0) V

Output absorption current IO 10 (excluding P1A) mA

Output withstand voltage VBDS 13 (P1A, PWM) V

Operating temperature Topt1 –20 to +70 °C

Topt2 –40 to +85 (when IDC has stopped)

Storage temperature Vstg –55 to +125 °C

RECOMMENDED OPERATION RANGE (Ta = –40 to +85 °C)

Parameter Symbol Conditions Min. Typ. Max. Unit

Supply voltage VDD1 Ta = –20 to +70 °C (when CPU, PLL, and IDC are operating) 4.5 5.0 5.5 V

VDD2 When CPU and PLL are operating (IDC is not operating) 4.5 5.0 5.5 V

VDD3 When only CPU is operating (PLL and IDC are not operating) 4.0 5.0 5.5 V

Data hold voltage VDDR When crystal oscillation has stopped 3.0 5.5 V

Output withstand voltage VBDS P1B3-P1B1 0.0 12.5 V

Input amplitude Vin1 VCO 0.7 VDD VP-P

Supply voltage rise time trise VDD : 0 → 4.0 V 500 ms

288

µPD17062

AC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 5 V ±10 %, RH ≤ 70 %)

Parameter Symbol Conditions Min. Typ. Max. Unit

Operating frequency fin1 VCO Sine wave input Vin = 0.7 VP-P 0.7 20 MHz

fin2 TMIN 45 65 Hz

fin3 HSCNT 10 20 kHz

IDC jitter IDCG 4.0 8.0 ns

IDC horizontal start position IDCHP From trailing edge of HSYNC 4.25 µs

IDC vertical start position IDCVP From trailing edge of VSYNC 17 H

A/D CONVERTER CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 5 V ±10 %, RH ≤ 70 %)

Parameter Symbol Conditions Min. Typ. Max. Unit

A/D conversion 4 bit

resolution

A/D conversion total Ta = –10 to +50 °C ±0.5 ±1.0 LSB

error tolerance

A/D input impedance 1.0 MΩ

DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 5 V ±10 %, RH ≤ 70 %)

Parameter Symbol Conditions Min. Typ. Max. Unit

Supply voltage VDD1 Ta = –20 to +85 °C (when CPU, PLL, and IDC are operating) 4.5 5.0 5.5 V

VDD2 When CPU and PLL are operating (IDC is not operating) 4.5 5.0 5.5 V

VDD3 When only CPU is operating (PLL and IDC are not operating) 4.0 5.0 5.5 V

Supply current IDD4 When only CPU is operating, PLL and IDC are not 1.0 3.0 mA
operating, and HALT instruction is being used
(20 instructions are executed at 5-ms intervals)

Data hold voltage VDDR When the timer FF power failure detection method is used 3.0 5.5 V
When crystal oscillation has stopped

Data hold current IDDR When crystal oscillation has stopped Ta = 25 °C 1.5 10 µA

High-level input voltage VIH1 P0A, P0B, P0D, P1B, P1C 0.7VDD V

VIH2 CE, INTNC, VSYNC, HSYNC 0.8VDD mA

Low-level input voltage VIL1 P0A, P0B, P0D, P1B, P1C 0.3VDD V

VIL2 CE, INTNC, VSYNC, HSYNC 0.2VDD mA

High-level output voltage IOH1 P0A, P0B, P0C, P1B, P1C, –1.0 –2.0 mA
RED, GREEN, BLUE, BLANK VOH = VDD – 1 V

Low-level output voltage IOL1 P0A, P0B, P0C, P1B, P1C, 1.0 2.0 mA
RED, GREEN, BLUE, BLANK VOH = VDD – 1 V

IOL4 P1A VOL = 1 V 15 22 mA

High-level input current IIH1 When P0D pull-down resistor is applied VIH = VDD 20 70 150 µA

IIH2 VCO VIH = VDD 0.1 0.8 1.3 mA

Output off leakage current IIL1 P1A, PWM VOH = 12.5 V 0.5 µA

IIL2 EO VOH = VDD, VOL = 0 V ±1 µA

Output withstand voltage VBDS P1A, PWM 12.5 V

289

µPD17062

25. PACKAGE DRAWINGS

48PIN PLASTIC SHRINK DIP (600 mil)

ITEM MILLIMETERS INCHESNOTES

1) Each lead centerline is located within 0.17 mm (0.007 inch) of
 its true position (T.P.) at maximum material condition.

N 0.17 0.007

A 44.46 MAX. 1.751 MAX.

B 1.78 MAX. 0.070 MAX.

F 0.85 MIN. 0.033 MIN.

G 3.2±0.3 0.126±0.012

J 5.72 MAX. 0.226 MAX.

K 15.24 (T.P.) 0.600 (T.P.)

C 1.778 (T.P.) 0.070 (T.P.)

D 0.50±0.10 0.020+0.004
–0.005

H 0.51 MIN. 0.020 MIN.

I 4.31 MAX. 0.170 MAX.

L 13.2 0.520

M 0.25 0.010+0.004
–0.003

+0.10
–0.05

M
R

M

I

H

G F

D N
C

B

K

P48C-70-600B-1

R 0~15° 0~15°

2) ltem "K" to center of leads when formed parallel.

L

A

J

1 24

48 25

290

µPD17062

64 PIN PLASTIC QFP (14)

ITEM MILLIMETERS INCHES

F

G

K

N

J

1.0

1.6±0.2

0.10

0.8 (T.P.)

1.0

Q

0.039

0.039

0.063±0.008

0.004

0.031 (T.P.)

S64GC-80-3BE-1

A

C

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of
its true position (T.P.) at maximum material condition.

D 17.2±0.2 0.677±0.008

0.125±0.075 0.005±0.003

A 17.2±0.2 0.677±0.008

I 0.13 0.005

P 2.7 0.106

S

R

3.0 MAX.

5°±5°
0.119 MAX.

5°±5°

C 14.0±0.2 0.551+0.009
–0.008

B 14.0±0.2 0.551+0.009
–0.008

H 0.35±0.10 0.014+0.004
–0.005

M 0.15 0.006+0.004
–0.003

L 0.8±0.2 0.031+0.009
–0.008

+0.10
–0.05

48
49

64
1 16

32

17

33

M

B

D

F

G H JI

P

N
L

K

M

detail of lead end

S

Q R

291

µPD17062

26. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the µPD17062.

For details of the recommended soldering conditions, refer to our document SMD Surface Mount

Technology Manual (IEI-1207).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is

done under different conditions.

Table 26-1 Soldering Conditions for Surface-Mount Devices

µPD17062GC-×××-3BE: 64-pin plastic QFP (14 × 14 mm)

Symbol

IR35-207-1

VP15-207-2

–

Soldering process

Infrared ray reflow

VPS

Partial heating method

Soldering conditions

Peak package’s surface temperature: 235 ˚C

Reflow time: 30 seconds or less (at 210 ˚C or more)

Maximum allowable number of reflow processes: 1

Exposure limit Note: 7 days (20 hours of pre-baking is required at

125 ˚C afterward.)

Peak package’s surface temperature: 215 ˚C

Reflow time: 40 seconds or less (at 200 ˚C or more)

Maximum allowable number of reflow processes: 2

Exposure limit Note: 7 days (20 hours of pre-baking is required at

125 ˚C afterward.)

<Cautions>

(1) Do not start reflow-soldering the device if its temperature is

higher than the room temperature because of a previous

reflow soldering.

(2) Do not use water for flux cleaning before a second reflow

soldering.

Terminal temperature: 300 ˚C or less

Heat time: 3 seconds or less (for each side of device)

Note Exposure limit before soldering after dry-pack package is opened.

Storage conditions: Temperature of 25 ˚C and maximum relative humidity at 65% or less

Caution Do not apply more than a single process at once, except for “Partial heating method.”

Table 26-2 Soldering Conditions for Through Hole Mount Devices

µPD17062CU-×××: 48-pin plastic shrink DIP (600 mil)

Caution In wave soldering, apply solder only to the lead section. Care must be taken that jet solder does

not come in contact with the main body of the package.

Wave soldering

(only for leads)

Partial heating method

Soldering process Soldering conditions

Solder temperature: 260 °C or less

Flow time: 10 seconds or less

Terminal temperature: 260 °C or less

Heat time: 10 seconds or less

292

µPD17062

Name Description

APPENDIX DEVELOPMENT TOOLS

The following support tools are available for developing programs for the µPD17062.

Hardware

The IE-17K, IE-17K-ET, and EMU-17K are in-circuit emulators applicable to the 17K

series.

The IE-17K and IE-17K-ET are connected to the PC-9800 series (host machine) or

IBM PC/ATTM through the RS-232-C interface. The EMU-17K is inserted into the

extension slot of the PC-9800 series (host machine).

Use the system evaluation board (SE board) corresponding to each product together

with one of these in-circuit emulators. SIMPLEHOSTTM, a man machine interface,

implements an advanced debug environment.

The EMU-17K also enables user to check the contents of the data memory in real

time.

The SE-17002 is an SE board for the µPD17002 and µPD17062. It is used solely for

evaluating the system. It is also used for debugging in combination with the in-circuit

emulator.

The EP-17002CU is an emulation probe for the 48-pin shrink DIP (600 mil). It is used

to connect the SE board and the target system.

The EP-17002GC is an emulation probe for the 64-pin QFP (14 × 14 mm). It is used

with EV-9400GC-64Note 3 to connect the SE board to the target system.

The EV-9200GC-64 is a conversion socket used to connect the EP-17002GC to the

target system.

In-circuit emulator

IE-17K

IE-17K-ETNote 1

EMU-17KNote 2

SE board

(SE-17002)

Emulation probe

(EP-17002CU)

Emulation probe

(EP-17002GC)

Conversion socket

(EV-9200GC-64Note 3)

Notes 1. Low-end model, operating on an external power supply

2. The EMU-17K is a product of IC Co., Ltd. Contact IC Co., Ltd. (Tokyo, 03-3447-3793) for details.

3. The EP-17002GC is supplied together with one EV-9200GC-64. A set of five EV-9200GC-64 is also

available.

293

µPD17062

17K series

assembler

(AS17K)

Device file

(AS17062)

Support software

(SIMPLEHOST)

µS5A10AS17K

µS5A13AS17K

µS7B10AS17K

µS7B13AS17K

µS5A10AS17062

µS5A13AS17062

µS7B10AS17062

µS7B13AS17062

µS5A10IE17K

µS5A13IE17K

µS7B10IE17K

µS7B13IE17K

AS17K is an assembler

applicable to the 17K series.

In developing µPD17062

programs, AS17K is used in

combination with a device

file (AS17062).

AS17062 is a device file for the

µPD17062 .

It is used together with the

assembler (AS17K), which is

applicable to the 17K series.

SIMPLEHOST, running on the

WindowsTM, provides man-

machine-interface in devel-

oping programs by using a

personal computer and the

in-circuit emulator.

OS Part numberDescription
Distribution

media
Host

machine

Software

PC-9800

series

IBM

PC/AT

PC-9800

series

IBM

PC/AT

PC-9800

series

IBM

PC/AT

Name

MS-DOS

PC DOS

Windows

MS-DOSTM

PC DOS TM

MS-DOS

PC DOS

Remark The following table lists the versions of the operating systems described in the above table.

Note MS-DOS versions 5.00 and 5.00A

and PC DOS Ver. 5.0 are provided

with a task swap function. This

function, however, cannot be used

in these software packages.

5.25-inch,

2HD

3.5-inch,

2HD

5.25-inch,

2HC

3.5-inch,

2HC

5.25-inch,

2HD

3.5-inch,

2HD

5.25-inch,

2HC

3.5-inch,

2HC

5.25-inch,

2HD

3.5-inch,

2HD

5.25-inch,

2HC

3.5-inch,

2HC

OS Versions

MS-DOS Ver. 3.30 to Ver. 5.00ANote

PC DOS Ver. 3.1 to Ver. 5.0Note

Windows Ver. 3.0 to Ver. 3.1

294

µPD17062

[MEMO]

295

µPD17062

Cautions on CMOS Devices

Countermeasures against static electricity for all MOSs

Caution When handling MOS devices, take care so that they are not electrostatically charged.

Strong static electricity may cause dielectric breakdown in gates. When transporting or

storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal

cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during

assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins.

Also handle boards on which MOS devices are mounted in the same way.

$ CMOS-specific handling of unused input pins

Caution Hold CMOS devices at a fixed input level.

Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an

intermediate-level input may be caused by noise. This allows current to flow in the CMOS

device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input

level. Since unused pins may function as output pins at unexpected times, each unused

pin should be separately connected to the VDD or GND pin through a resistor.

If handling of unused pins is documented, follow the instructions in the document.

% Statuses of all MOS devices at initialization

Caution The initial status of a MOS device is unpredictable when power is turned on.

Since characteristics of a MOS device are determined by the amount of ions implanted

in molecules, the initial status cannot be determined in the manufacture process. NEC

has no responsibility for the output statuses of pins, input and output settings, and the

contents of registers at power on. However, NEC assures operation after reset and items

for mode setting if they are defined.

When you turn on a device having a reset function, be sure to reset the device first.

296

µPD17062

SIMPLEHOST is a trademark of NEC Corporation.

MS-DOS and Windows are trademarks of Microsoft Corporation.

PC/AT and PC DOS are trademarks of IBM Corporation.

Caution This product contains an I2C bus interface circuit.
When using the I2C bus interface, notify its use to NEC when ordering custom code. NEC can
guarantee the following only when the customer informs NEC of the use of the interface:
Purchase of NEC I2C components conveys a license under the Philips I2C Patent Rights to use
these components in an I2C system, provided that the system conforms to the I2C Standard
Specification as defined by Philips.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this
document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
“Standard“, “Special“, and “Specific“. The Specific quality grade applies only to devices developed based on
a customer designated “quality assurance program“ for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices in “Standard“ unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.

M4 94.11

