

MOS INTEGRATED CIRCUIT $\mu PD789800$

8-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD789800 is a 78K/0S series product designed for a USB keyboard (for ASSP).

The μ PD789800 has on-chip hardware compatible with a USB keyboard, including USB (Universal Serial Bus) functions, a regulator which powers a USB driver/receiver, and a key return signal detection circuit.

The μ PD78F9801, a product with on-chip flash memory which can operate on the same supply voltage as for masked ROM products and various development tools are also under development.

Detailed descriptions of its functions, etc., are given in the following user's manuals. Be sure to read them for design purposes.

μPD789800 Sub-Series User's Manual : U12978E 78K/0S Series User's Manual, Instruction : U11047E

FEATURES

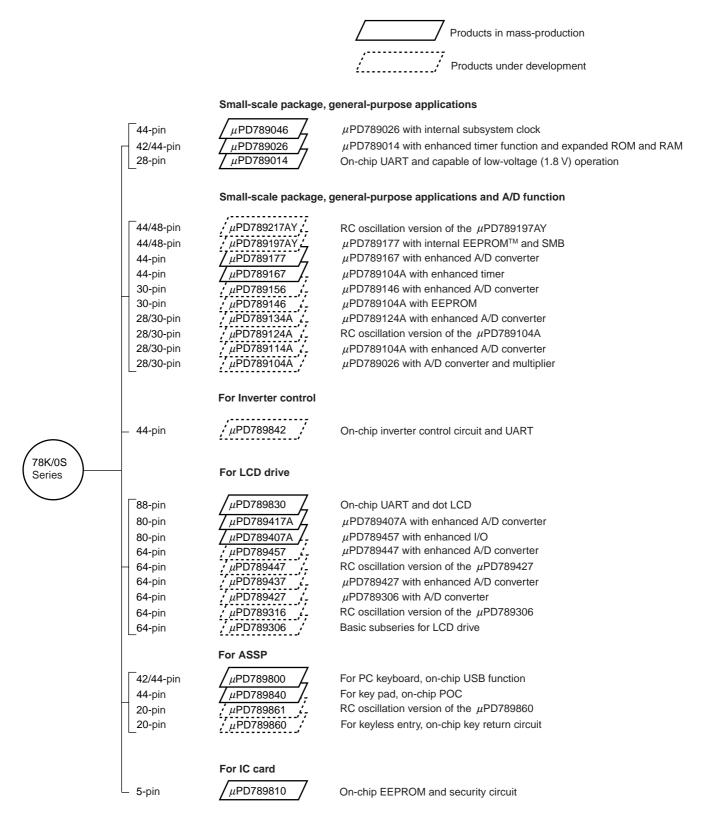
- On-chip USB functions
 - Implements a USB (Universal Serial Bus) by connecting to Hub and Host.
 - Transfer speed: 1.5 Mbps (when the system clock operates at 6.0 MHz)
- On-chip regulator
 - Controls the USB port voltage by using a bus power supply (V_{REG} = 3.3 ±0.3 V) dedicated to the USB driver/receiver.
- On-chip ROM and RAM
 - Internal ROM : 8K bytes
 - Internal high-speed RAM: 256 bytes
- Minimum instruction execution time can be switched between high speed (0.33 μ s) and low speed (1.33 μ s) (when the system clock operates at 6.0 MHz).
- I/O port: 31
- Serial interface: 2 channels
 - USB function : 1 channel
 - Three-wire serial I/O mode: 1 channel
- Timer: 3 channels
 - 8-bit timer : 1 channel
 - 8-bit timer/event counter: 1 channel
 - Watchdog timer : 1 channel
- On-chip key return signal detection circuit
- Supply voltage: VDD = 4.0 to 5.5 V
- Operating ambient temperature: $T_A = -40^{\circ}C$ to $+85^{\circ}C$ (when the USB is not operating)

 $T_A = 0^{\circ}C$ to +70°C (when the USB is operating)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

 \star

APPLICATIONS


USB keyboards, etc.

ORDERING INFORMATION

Part number	Package
μPD789800GB-xxx-3BS-MTX	44-pin plastic QFP (10 $ imes$ 10 mm, 2.7-mm resin thickness)
μPD789800GB-×××-8ES	44-pin plastic LQFP (10 $ imes$ 10 mm, 1.4-mm resin thickness)

★ 78K/0S SERIES DEVELOPMENT

The 78K/0S series products are shown below. The sub-series names are indicated in frames.

 \star

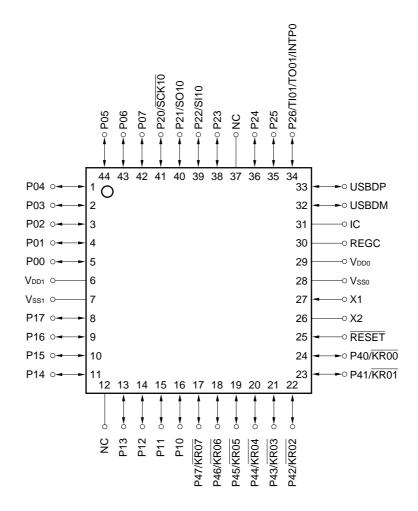
The major functional differences among the subseries are listed below.

	Function	ROM	Timer		8-bit	10-bit	Serial interface	I/O	VDD MIN.	Remark		
Subseries name		capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	Senai internace	1/0	value	Remark
Small-scale	µPD789046	16 K	1ch	1ch	1ch	1ch	-	-	1ch (UART: 1ch)	34	1.8 V	-
package, general- purpose	μPD789026	4 K to 16 K			-							
applications	μPD789014	2 K to 4 K	2 ch	-						22		
Small-scale package, general-	μPD789217AY	16 K to 24 K	3 ch	1 ch	1 ch	1 ch	_	8 ch	2ch UART: 1ch SMB: 1ch	31	1.8 V	RC oscillation version, on- chip EEPRC
purpose applications + A/D	μPD789197AY											On-chip EEPROM
converter	μPD789177								1 ch (UART: 1 ch)			-
	μPD789167						8 ch	-				
	μPD789156	8 K to	1 ch		-		I	4 ch		20		On-chip
	μPD789146	16 K					4 ch	_				EEPROM
	μPD789134A	2 K to 8 K					-	4 ch				RC oscillatio
	μPD789124A						4 ch	-				version
	μPD789114A						-	4 ch				_
	μPD789104A						4 ch	_				
Inverter control	μPD789842	8 K to 16 K	3 ch	Note	1 ch	1 ch	8 ch	-	1 ch (UART: 1 ch)	30	4.0 V	_
LCD drive	µPD789830	24 K	1 ch	1 ch	1 ch	1 ch	-	-	1 ch (UART: 1 ch)	30	2.7 V	-
	μPD789417A	12 K to	3 ch					7 ch		43	1.8 V	
	μPD789407A	24 K					7 ch	-		25		
	μPD789457	16 K to	2 ch				1	4 ch	2 ch (UART: 1 ch)			RC oscillatio
	μPD789447	24 K					4 ch	-				version
	µPD789437						-	4 ch				-
	μPD789427						4 ch	-				
	μPD789316	8 K to 16 K					-			23		RC oscillatio
	μPD789306											_
ASSP	μPD789800	8 K	2 ch	1 ch	-	1 ch	-	-	2 ch (USB: 1 ch)	31	4.0 V	-
	µPD789840						4 ch		1 ch	29	2.8 V	
	μPD789861	4 K		-			-		_	14	1.8 V	RC oscillation
	μPD789860											_
IC card	μPD789810	6 K	-	-	-	1 ch	-	_	-	1	2.7 V	On-chip EEPROM

Note 10-bit timer: 1 channel

FUNCTIONS

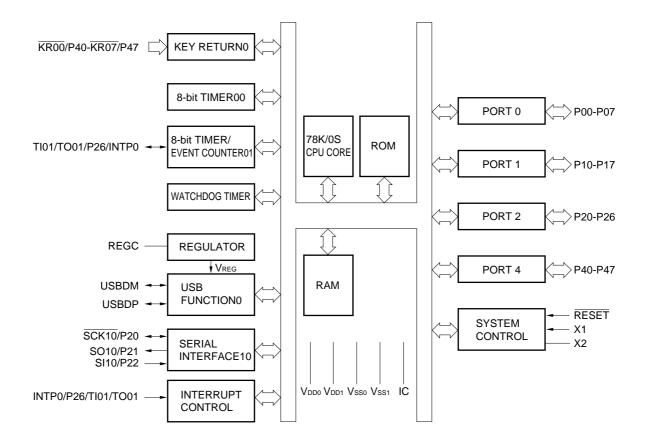
lte	em	Function				
Internal memory	ROM	8K bytes				
	High-speed RAM	256 bytes				
Minimum instruction execution time		0.33 μ s/1.33 μ s (when the system clock operates at 6.0 MHz)				
General-purpose regi	ster	8 bits × 8 registers				
Instruction set		16-bit operationBit manipulation (set, reset, and test) etc.				
I/O ports		CMOS I/O: 31 pins (Of these, 18 pins can be switched to N-ch open-drain I/O pins.)				
Serial interface		USB (Universal Serial Bus) function : 1 channel Three-wire serial I/O mode : 1 channel				
Timer		 8-bit timer : 1 channel 8-bit timer/event counter : 1 channel Watchdog timer : 1 channel 				
Regulator		Incorporated (V _{REG} = 3.3 ±0.3 V)				
Vector interrupt	Maskable	Internal: 9, external: 2				
source	Nonmaskable	Internal: 1				
Power supply voltage	•	V _{DD} = 4.0 to 5.5 V				
Operating ambient temperature		 T_A = -40°C to +85°C (when the USB is not operating) T_A = 0°C to +70°C (when the USB is operating) 				
Package		 44-pin plastic QFP (10 × 10 mm, 2.7-mm resin thickness) 44-pin plastic LQFP (10 × 10 mm, 1.4-mm resin thickness) 				


CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)7
2.	BLOCK DIAGRAM8
3.	PIN FUNCTIONS
	3.1 Port Pins
	3.2 Non-Port Pins
	3.3 Pin Input/Output Circuits and Handling of Unused Pins
4.	MEMORY SPACE13
5.	PERIPHERAL HARDWARE FUNCTIONS14
	5.1 Ports
	5.2 Clock Generator
	5.3 Timer
	5.4 Serial Interface
	5.5 Regulator
	5.6 Key Return Signal Detection Circuit
6.	INTERRUPT FUNCTION
7.	STANDBY FUNCTION
8.	RESET FUNCTION23
9.	INSTRUCTION SET OVERVIEW
	9.1 Legend
	9.2 Operations
10.	ELECTRICAL CHARACTERISTICS
11.	PACKAGE DRAWINGS
12.	RECOMMENDED SOLDERING CONDITIONS41
AP	PENDIX A DEVELOPMENT TOOLS42
AP	PENDIX B RELATED DOCUMENTS44

*

1. PIN CONFIGURATION (TOP VIEW)


- 44-pin plastic QFP (10 × 10 mm, 2.7-mm resin thickness) μPD789800GB-xxx-3BS-MTX
- 44-pin plastic LQFP (10 × 10 mm, 1.4-mm resin thickness) μPD789800GB-xxx-8ES

Caution Connect the IC (Internally Connected) pin directly to the Vsso or Vss1 pin.

IC	: Internally connected	SCK10	: Serial clock input/output
INTP0	: Interrupt from peripherals	SI10	: Serial data input
KR00 - KR07	7: Key return	SO10	: Serial data output
NC	: No connection	TI01	: Timer input
P00-P07	: Port 0	TO01	: Timer output
P10-P17	: Port 1	USBDM, USBDP	: Universal serial bus data
P20-P26	: Port 2	Vddo, Vdd1	: Power supply
P40-P47	: Port 4	Vsso, Vss1	: Ground
RESET	: Reset	X1, X2	: Crystal
REGC	: Voltage regulator for USB function		

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

3.1 Port Pins

Pin name	I/O	Function	When reset	Also used as
P00-P07	I/O	Port 0 8-bit input/output port Input or output is specifiable bit by bit. When used as an input port, the use of on-chip pull-up resistors can be specified by software. CMOS output or N-ch open-drain output is specifiable in 8-bit units.	Input	-
P10-P17	I/O	Port 1 8-bit input/output port Input or output is specifiable bit by bit. When used as an input port, the use of on-chip pull-up resistors can be specified by software. CMOS output or N-ch open-drain output is specifiable in 8-bit units.	Input	-
P20	I/O	Port 2	Input	SCK10
P21		7-bit input/output port Input or output is specifiable bit by bit.		SO10
P22		When used as an input port, the use of on-chip pull-up resistors can		SI10
P23-P25		be specified by software.		-
P26		Only for P25 and P26, CMOS output or N-ch open-drain output is specifiable bit by bit.		INTP0/TI01/TO01
P40-P47	I/O	Port 4 8-bit input/output port Input or output is specifiable bit by bit. When used as an input port, the use of on-chip pull-up resistors can be specified by software.	Input	KR00 - KR07

3.2 Non-Port Pins

Pin name	I/O	Function	When reset	Also used as
INTP0	Input	External interrupt request input for which effective edges (rising and/or falling edges) can be specified	Input	P26/TI01/TO01
KR00 - KR07	Input	Input for detecting key return signals	Input	P40-P47
REGC	Input	Internally generated power supply for driving USB driver/receiver. Connect this pin to Vss through a 220- Ω resistor and a 0.1- μ F capacitor.	-	-
RESET	Input	System reset input	Input	-
SCK10	I/O	Serial clock input/output for serial interface	Input	P20
SI10	Input	Serial data input for serial interface	Input	P22
SO10	Output	Serial data output for serial interface	Input	P21
TI01	Input	External count clock input to 8-bit timer/event counter 01	Input	P26/INTP0/TO01
TO01	Output	Timer output from 8-bit timer/event counter 01	Input	P26/INTP0/TI01
USBDM	I/O	Serial data input/output (negative side) for USB function. The pull-up resistor (1.5 k Ω) for the USBDM pin must be connected to the REGC pin.	Input	-
USBDP	I/O	Serial data input/output (positive side) for USB function	Input	-
X1	Input	Connected to crystal for system clock oscillator	Input	-
X2	-		-	
V _{DD0}	-	Positive supply voltage for ports	-	-
V _{DD1}	-	Positive supply voltage for circuits other than ports	-	-
Vsso	-	Ground potential for ports	-	-
Vss1	-	Ground potential for circuits other than ports	-	-
IC	-	Internally connected. Connect this pin directly to Vsso.	-	-
NC	-	Not internally connected. Leave this pin open.	-	-

3.3 Pin Input/Output Circuits and Handling of Unused Pins

Table 3-1 lists the types of input/output circuits for each pin and explains how unused pins are handled. Figure 3-1 shows the configuration of each type of input/output circuit.

Pin name	I/O circuit type	I/O	Recommended connection of unused pins
P00-P07	5-R	I/O	Input : Connect these pins separately to VDD0, VDD1, VSS0, or VSS1 via
P10-P17			respective resistors.
P20/ SCK10	8-C		Output : Leave these pins open.
P21/SO10			
P22/SI10			
P23, P24			
P25	8-F		
P26/INTP0/TI01/TO01			
P40/KR00-P47/KR07	8-C		
USBDM	24-A		Connect this pin to the REGC pin.
USBDP			Connect this pin to V _{SS0} or V _{SS1} via resistors.
RESET	2	Input	-
IC	-	-	Connect this pin directly to Vsso or Vss1.
NC	-	-	Leave this pin open.
REGC	-	-	Connect this pin to the USBDM pin.

Table 3-1. Type of Input/Output Circuit for Each Pin

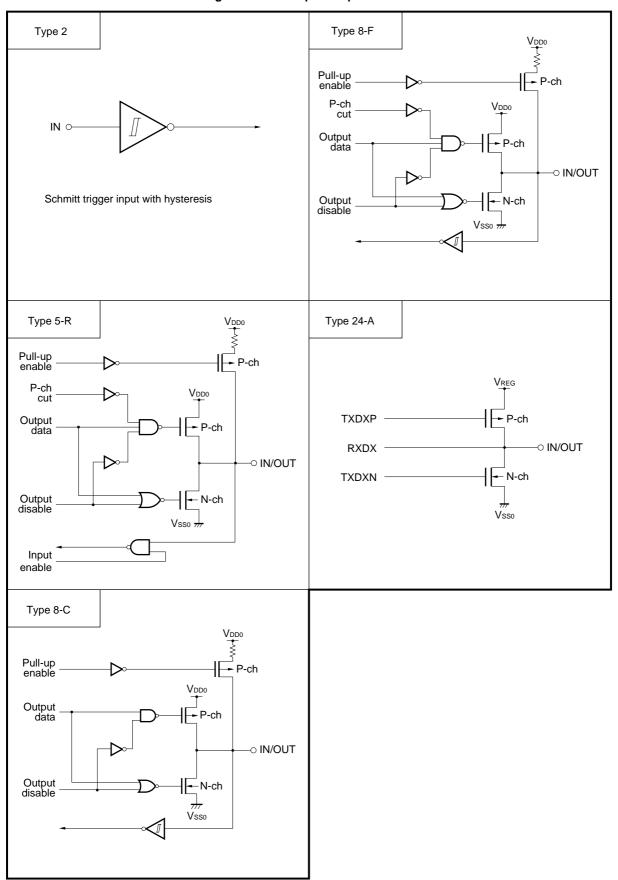
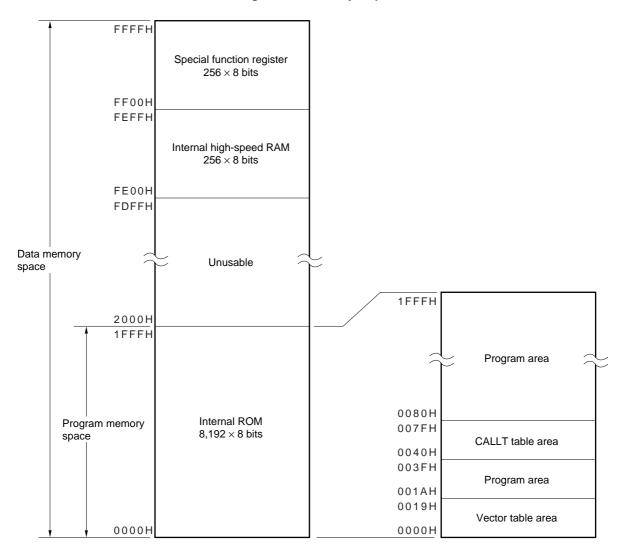



Figure 3-1. Pin Input/Output Circuits

 \star

4. MEMORY SPACE

Figure 4-1 shows the memory map of the μ PD789800.

Figure 4-1. Memory Map

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 Ports

I/O ports are listed below.

• CMOS input/output ports (ports 0 to 2 and port 4): 31 pins Of these, 18 pins (pins of ports 0 and 1, P25, and P26) can be switched to N-ch open-drain input/output pins.

Name	Pin name	Function
Port 0	P00-P07	Input/output port. Input or output is specifiable bit by bit. When used as an input port, the use of on-chip pull-up resistors can be specified by software. CMOS output or N-ch open-drain output is specifiable in 8-bit units.
Port 1	P10-P17	Input/output port. Input or output is specifiable bit by bit. When used as an input port, the use of on-chip pull-up resistors can be specified by software. CMOS output or N-ch open-drain output is specifiable in 8-bit units.
Port 2	P20-P24	Input/output port. Input or output is specifiable bit by bit. When used as an input port, the use of on-chip pull-up resistors can be specified by software.
	P25, P26	Input/output port. Input or output is specifiable bit by bit. When used as an input port, the use of on-chip pull-up resistors can be specified by software. Only for P25 and P26, CMOS output or N-ch open-drain output is specifiable.
Port 4	P40-P47	Input/output port. Input or output is specifiable bit by bit. When used as an input port, the use of on-chip pull-up resistors can be specified by software.

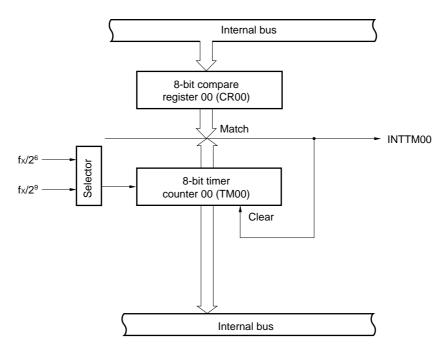

Table 5-1. Port Functions

5.2 Clock Generator

The μ PD789800 has an on-chip system clock generator. It is possible to change the minimum instruction execution time.

• 0.33 μ s/ 1.33 μ s (when the system clock operates at 6.0 MHz)

5.3 Timer


The μ PD789800 has three on-chip timers.

- 8-bit timer 00 : 1 channel
- 8-bit timer/event counter 01: 1 channel
- Watchdog timer : 1 channel

Table 5-2. Timer Operation

		8-bit timer 00	8-bit timer/event counter 01	Watchdog timer
Operation mode	Interval timer	1 channel	1 channel	1 channel
	External event counter	-	1 channel	-
Function	Timer output	-	1 output	-
	Square wave output	-	1 output	-
	Interrupt request	1	1	1

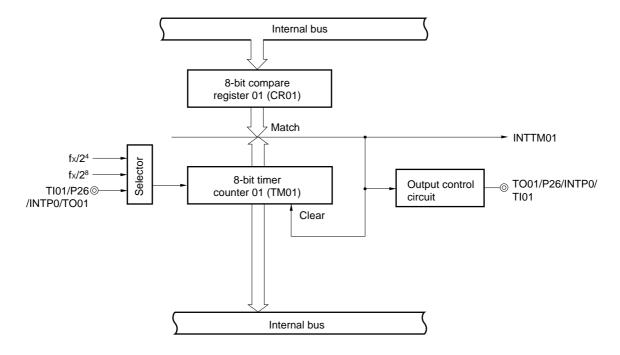
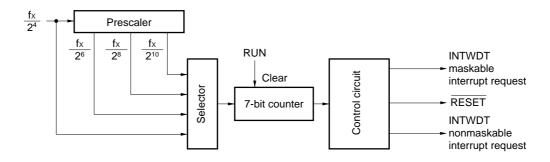



Figure 5-3. Block Diagram of 8-Bit Timer/Event Counter 01

Figure 5-4. Block Diagram of Watchdog Timer

5.4 Serial Interface

Two channels of serial interface are on chip.

• USB function

The μ PD789800 supports 1.5 Mbps transfer speed with the system clock of 6.0 MHz and incorporates an NRZI (Non Return Zero Invert) decode/encode function, bit stuffing function, and CRC (Cyclic Redundancy Check) function specified by the USB (Universal Serial Bus) communication protocol. Figure 5-5 shows a block diagram.

• Serial interface 10 (SIO10)

SIO10 has the following two modes:

Operation stop mode

• Three-wire serial I/O mode (The first bit can be switched between the MSB and LSB.) Figure 5-6 shows a block diagram.

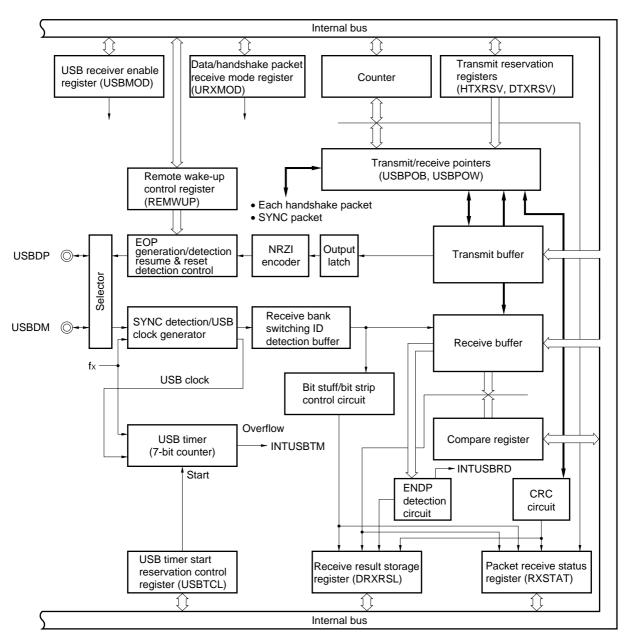
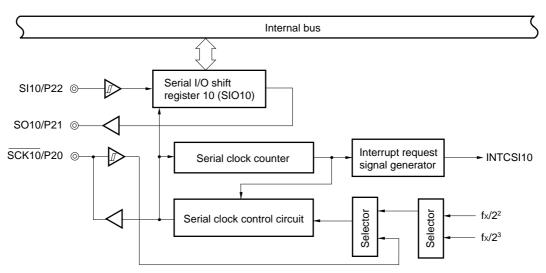
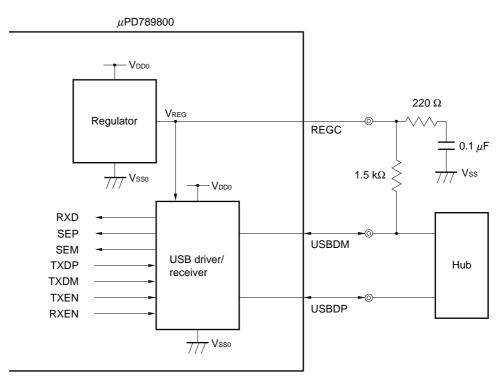



Figure 5-5. Block Diagram of USB Function


Figure 5-6. Block Diagram of Serial Interface 10

5.5 Regulator

The μ PD789800 incorporates a regulator which powers the USB driver/receiver. The features are as follows:

- Generates VREG (3.3 ± 0.3 V) from VDD0 and VDD1 (4.0 to 5.5 V) and outputs it to the REGC pin.
- Supports power-saving mode, reducing current dissipation during STOP mode.

- Cautions 1. To settle the V_{REG} voltage, connect the REGC pin to V_{SS} via a 220- Ω resistor and a 0.1- μ F capacitor.
 - 2. Connect the pull-up resistor (1.5 k Ω), for the USBDM pin, to the REGC pin.

5.6 Key Return Signal Detection Circuit

The μ PD789800 incorporates the key return signal detection circuit that can detect the key return signals input to the P40/KR00-P47/KR07 pins.

Specify whether to detect the key return signals at the P40/KR00-P47/KR07 pins by means of key return mode register 00 (KRM00). Inhibit interrupts before setting KRM00 (see **Caution 3**).

KRM00 is set by a 1-bit memory operation instruction or an 8-bit memory operation instruction.

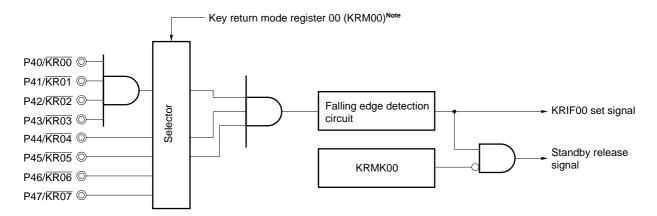
Bit 0 (KRM000) corresponds to the $\overline{\text{KR00}}/\text{P40}$ - $\overline{\text{KR03}}/\text{P43}$ pins. Its setting is common to these four pins. Bits 4 to 7 (KRM004-KRM007) correspond to the $\overline{\text{KR04}}/\text{P44}$ - $\overline{\text{KR07}}/\text{P47}$ pins respectively and are set bit by bit.

Inputting the RESET signal clears KRM00 to 00H.

Figure 5-8 shows the format of key return mode register 00. Figure 5-9 shows the block diagram of the falling edge detection circuit.

Figure 5-8. Format of Key Return Mode Register 00

Symbol	7	6	5	4	3	2	1	0	Address	When reset	R/W
KRM00	KRM007	KRM006	KRM005	KRM004	0	0	0	KRM000	FFF5H	0 0 H	R/W


KRM00n	Selection of key return signal detection for the P4n/ $\overline{KR0n}$ pin (n = 4 to 7)
0	No detection
1	Detection (detecting the falling edges of the P4n/KR0n signals)

KRM000	Selection of key return signal detection for the P40/KR00-P43/KR03 pins
0	No detection
1	Detection (detecting the falling edges of the P40/KR00-P43/KR03 signals)

Cautions 1. Be sure to set 0 in bits 1 to 3.

- 2. When KRM00 is set to 1, the pull-up resistor is forcibly connected to the corresponding pin. However, when the pin is placed in output mode, the pull-up resistor is disconnected.
- Before setting KRM00, inhibit interrupts (set bit 4 of interrupt mask flag register 0 (MK0) (KRMK00 = 1). After setting KRM00, clear bit 4 of interrupt request flag register 0 (IF0) (KRIF00 = 0), then permit interrupts (clear bit 4 of MK0 (KRMK00 = 0)).

Note Register that selects the pin used for falling edge input

6. INTERRUPT FUNCTION

There are two types and 12 sources of interrupt function as shown below.

- Nonmaskable interrupt: 1 source
- Maskable interrupts : 11 sources

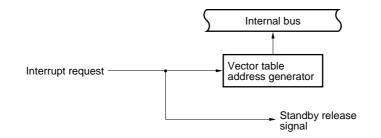

Type of	Priority ^{Note 1}		Interrupt source	Internal/	Vector table	Basic configuration	
interrupt	FIIOIIty	Name	Trigger	external	address	type ^{Note 2}	
Nonmaskable	-	INTWDT	Watchdog timer overflow (when watchdog timer mode 1 is selected)	Internal	0004H	(A)	
Maskable	0	INTWDT	Watchdog timer overflow (when interval timer mode is selected)			(B)	
	1	INTUSBTM	USB timer overflow		0006H		
	2	INTUSBRT	EOP detection when a USB token packet is received		0008H		
	3	INTUSBRD	EOP detection when a USB data/handshake packet is received		000AH		
	4	INTUSBST	EOP detection when a USB data/handshake packet is sent		000CH		
	5	INTUSBRE	Detection of transition from J state to K state or SE0 on the USB bus		000EH		
	6	INTP0	Detection of a pin input edge	External	0010H	(C)	
	7	INTCSI10	End of three-wire SIO bus interface transmission and reception	Internal	0012H	(B)	
	8	INTTM00	Generation of the 8-bit timer counter 00 match signal		0014H		
	9	INTTM01	Generation of the 8-bit timer/event counter 01 match signal		0016H		
	10	INTKR00	Detection of the key return signal	External	0018H	(C)	

Table 6-1. Interrupt Source List

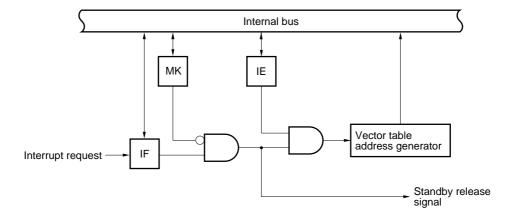
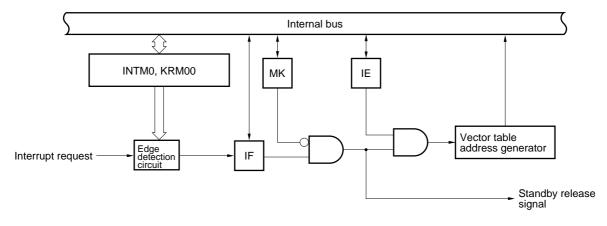
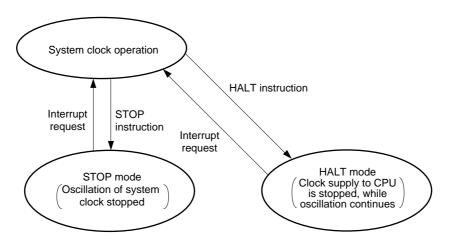

- **Notes 1.** The priority is the order of priority when multiple maskable interrupts are generated simultaneously. 0 is the highest priority and 10 is the lowest priority.
 - 2. Types (A) to (C) in the basic configuration correspond to (A) to (C) in Figure 6-1, respectively.

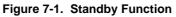
Figure 6-1. Basic Configuration of Interrupt Function


(A) Internal nonmaskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt




- INTM0 : External interrupt mode register 0
- KRM00 : Key return mode register 00
- IF : Interrupt request flag
- IE : Interrupt enable flag
- MK : Interrupt mask flag

7. STANDBY FUNCTION

The standby function is a function to reduce current consumption and there are two kinds of standby function as shown below.

- HALT mode : Stops the operating clock of the CPU. Intermittent operation together with normal operation can reduce average current consumption.
- STOP mode: Stops oscillation of the system clock. Stops the entire operation by the system clock and minimizes power consumption.

8. RESET FUNCTION

The system is reset in the following two ways.

- External reset by RESET pin
- Internal reset by detection of inadvertent program loop time of watchdog timer

9. INSTRUCTION SET OVERVIEW

The instruction set for the μ PD789800 is listed later.

9.1 Legend

9.1.1 Operand formats and descriptions

The description made in the operand field of each instruction conforms to the operand format for the instructions listed below (the details conform with the assembly specification). If more than one operand format is listed for an instruction, one is selected. Uppercase letters, #, !, \$, and a pair of [and] are used to specify keywords, which must be written exactly as they appear. The meanings of these special characters are as follows:

- #: Immediate data specification
- \$: Relative address specification
- !: Absolute address specification
- [and]: Indirect address specification

Immediate data should be described using appropriate values or labels. The specification of values and labels must be accompanied by #, !, \$, or a pair of [and].

Operand registers, expressed as r or rp in the formats, can be described using both functional names (X, A, C, etc.) and absolute names (R0, R1, R2, and other names listed in Table 9-1).

Format	Description
r	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)
rp	AX (RP0), BC (RP1), DE (RP2), HL (RP3)
sfr	Special function register symbol
saddr	FE20H to FF1FH: Immediate data or label
saddrp	FE20H to FF1FH: Immediate data or label (even addresses only)
addr16	0000H to FFFFH: Immediate data or label
	(only even address for 16-bit data transfer instructions)
addr5	0040H to 007FH: Immediate data or label (even addresses only)
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label

Table 9-1. Operand Formats and Descriptions

9.1.2 Descriptions of the operation field : A register (8-bit accumulator) А Х : X register В : B register С : C register D : D register Е : E register Н : H register L : L register AX : AX register pair (16-bit accumulator) BC : BC register pair DE : DE register pair HL : HL register pair PC : Program counter SP : Stack pointer PSW : Program status word CY : Carry flag AC : Auxiliary carry flag Ζ : Zero flag IΕ : Interrupt request enable flag NMIS : Flag to indicate that a nonmaskable interrupt is being handled : Contents of a memory location indicated by a parenthesized address or register name () XH, XL : Upper and lower 8 bits of a 16-bit register : Logical product (AND) \wedge : Logical sum (OR) \mathbf{v} ₩ : Exclusive OR : Inverted data ____

- addr16 : 16-bit immediate data or label
- jdisp8 : Signed 8-bit data (displacement value)

9.1.3 Description of the flag operation field

- (blank) : No change
- 0 : To be cleared to 0
- 1 : To be set to 1
- \times : To be set or cleared according to the result
- R : To be restored to the previous value

9.2 Operations

Mnemonic	Operand		Byte	Clock	Operation		Flag	
winemonic	Operand		Byte	CIUCK	Operation	z	AC	CY
MOV	r, #byte		3	6	$r \leftarrow byte$			
	saddr, #byte		3	6	$(saddr) \leftarrow byte$			
	sfr, #byte		3	6	$sfr \leftarrow byte$			
	A, r	Note 1	2	4	$A \leftarrow r$			
	r, A	Note 1	2	4	r ← A			
	A, saddr		2	4	$A \leftarrow (saddr)$			
	saddr, A		2	4	$(saddr) \leftarrow A$			
	A, sfr		2	4	$A \leftarrow sfr$			
	sfr, A		2	4	$sfr \leftarrow A$			
	A, !addr16		3	8	$A \leftarrow (addr16)$			
	!addr16, A		3	8	$(addr16) \leftarrow A$			
	PSW, #byte		3	6	$PSW \leftarrow byte$	×	×	×
	A, PSW		2	4	$A \leftarrow PSW$			
	PSW, A		2	4	$PSW \leftarrow A$	×	×	×
	A, [DE]		1	6	$A \leftarrow (DE)$			
	[DE], A		1	6	$(DE) \gets A$			
	A, [HL]		1	6	$A \leftarrow (HL)$			
	[HL], A		1	6	$(HL) \gets A$			
	A, [HL + byte]		2	6	$A \leftarrow (HL + byte)$			
	[HL + byte], A		2	6	$(HL + byte) \leftarrow A$			
ХСН	A, X		1	4	$A \leftrightarrow X$			
	A, r	Note 2	2	6	$A \leftrightarrow r$			
	A, saddr		2	6	$A \leftrightarrow (saddr)$			
	A, sfr		2	6	$A \leftrightarrow (sfr)$			
	A, [DE]		1	8	$A \leftrightarrow (DE)$			
	A, [HL]		1	8	$A \leftrightarrow (HL)$			
	A, [HL + byte]		2	8	$A \leftrightarrow (HL + byte)$			
MOVW	rp, #word		3	6	$rp \leftarrow word$			
	AX, saddrp		2	6	$AX \leftarrow (saddrp)$			
	saddrp, AX		2	8	$(saddrp) \leftarrow AX$			
	AX, rp	Note 3	1	4	$AX \leftarrow rp$			
	rp, AX	Note 3	1	4	$rp \leftarrow AX$			

Notes 1. Except when r = A.

- **2.** Except when r = A or X.
- **3.** Only when rp = BC, DE, or HL.
- **Remark** The instruction clock cycle is based on the CPU clock (fcPu), specified in the processor clock control register (PCC).

Maamaaia	Operand	Duto	Clock	Operation		Flag	
Mnemonic	Operand	Byte	CIOCK	Operation	Z	AC	CY
XCHW	AX, rp	1	8	$AX \leftrightarrow rp$			
ADD	A, #byte	2	4	A, CY \leftarrow A + byte	×	×	×
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) + byte	×	×	×
	A, r	2	4	A, CY \leftarrow A + r	×	×	×
	A, saddr	2	4	A, CY \leftarrow A + (saddr)	×	×	×
	A, !addr16	3	8	A, CY \leftarrow A + (addr16)	×	×	×
	A, [HL]	1	6	A, CY \leftarrow A + (HL)	×	×	×
	A, [HL + byte]	2	6	A, CY \leftarrow A + (HL + byte)	×	×	×
ADDC	A, #byte	2	4	A, CY \leftarrow A + byte + CY	×	×	×
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) + byte + CY	×	×	×
	A, r	2	4	A, CY \leftarrow A + r + CY	×	×	×
	A, saddr	2	4	A, CY \leftarrow A + (saddr) + CY	×	×	×
	A, !addr16	3	8	A, CY \leftarrow A + (addr16) + CY	×	×	×
	A, [HL]	1	6	$A,CY \gets A + (HL) + CY$	×	×	×
	A, [HL + byte]	2	6	A, CY \leftarrow A + (HL + byte) + CY	×	×	×
SUB	A, #byte	2	4	A, CY \leftarrow A – byte	×	×	×
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) – byte	×	×	×
	A, r	2	4	A, CY \leftarrow A – r	×	×	×
	A, saddr	2	4	A, CY \leftarrow A – (saddr)	×	×	×
	A, !addr16	3	8	A, CY \leftarrow A – (addr16)	×	×	×
	A, [HL]	1	6	A, CY \leftarrow A – (HL)	×	×	×
	A, [HL + byte]	2	6	A, CY \leftarrow A – (HL + byte)	×	×	×
SUBC	A, #byte	2	4	A, CY \leftarrow A – byte – CY	×	×	×
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) – byte – CY	×	×	×
	A, r	2	4	$A,CY \leftarrow A-r-CY$	×	×	×
	A, saddr	2	4	A, CY \leftarrow A – (saddr) – CY	×	×	×
	A, !addr16	3	8	A, CY \leftarrow A – (addr16) – CY	×	×	×
	A, [HL]	1	6	$A,CY \gets A - (HL) - CY$	×	×	×
	A, [HL + byte]	2	6	A, CY \leftarrow A – (HL + byte) – CY	×	×	×
AND	A, #byte	2	4	$A \leftarrow A \land byte$	×		
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \land byte$	×		
	A, r	2	4	$A \leftarrow A \wedge r$	×		
	A, saddr	2	4	$A \leftarrow A \land (saddr)$	×		
	A, !addr16	3	8	$A \leftarrow A \land (addr16)$	×		
	A, [HL]	1	6	$A \leftarrow A \land (HL)$	×		
	A, [HL + byte]	2	6	$A \leftarrow A \land (HL + byte)$	×		

Note Only when rp = BC, DE, or HL.

Remark The instruction clock cycle is based on the CPU clock (fcPu), specified in the processor clock control register (PCC).

Maamania	Operand	Duto	Cleak	Operation		Flag	
Mnemonic	Operand	Byte	Clock	Operation	Z	AC	CY
OR	A, #byte	2	4	$A \leftarrow A \lor byte$	×		
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \lor byte$	×		
	A, r	2	4	$A \leftarrow A \lor r$	×		
	A, saddr	2	4	$A \leftarrow A \lor (saddr)$	×		
	A, !addr16	3	8	$A \leftarrow A \lor (addr16)$	×		
	A, [HL]	1	6	$A \leftarrow A \lor (HL)$	×		
	A, [HL + byte]	2	6	$A \leftarrow A \lor (HL + byte)$	×		
XOR	A, #byte	2	4	$A \leftarrow A \forall byte$	×		
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) + byte$	×		
	A, r	2	4	$A \leftarrow A \forall r$	×		
	A, saddr	2	4	$A \leftarrow A \forall$ (saddr)	×		
	A, !addr16	3	8	$A \leftarrow A \forall$ (addr16)	×		
	A, [HL]	1	6	$A \leftarrow A \nleftrightarrow (HL)$	×		
	A, [HL + byte]	2	6	$A \leftarrow A \nleftrightarrow (HL + byte)$	×		
CMP	A, #byte	2	4	A – byte	×	×	×
	saddr, #byte	3	6	(saddr) – byte	×	×	×
	A, r	2	4	A – r	×	×	×
	A, saddr	2	4	A – (saddr)	×	×	×
	A, !addr16	3	8	A – (addr16)	×	×	×
	A, [HL]	1	6	A – (HL)	×	×	×
	A, [HL + byte]	2	6	A – (HL + byte)	×	×	×
ADDW	AX, #word	3	6	AX, CY \leftarrow AX + word	×	×	×
SUBW	AX, #word	3	6	AX, CY \leftarrow AX – word	×	×	×
CMPW	AX, #word	3	6	AX – word	×	×	×
INC	r	2	4	r ← r + 1	×	×	
	saddr	2	4	$(saddr) \leftarrow (saddr) + 1$	×	×	
DEC	r	2	4	r ← r − 1	×	×	
	saddr	2	4	$(saddr) \leftarrow (saddr) - 1$	×	×	
INCW	rp	1	4	$rp \leftarrow rp + 1$			
DECW	rp	1	4	$rp \leftarrow rp - 1$			
ROR	A, 1	1	2	$(CY, A_7 \leftarrow A_0, A_{m-1} \leftarrow A_m) \times 1$			×
ROL	A, 1	1	2	$(CY, A_0 \leftarrow A_7, A_{m+1} \leftarrow A_m) \times 1$			×
RORC	A, 1	1	2	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m-1} \leftarrow A_m) \times 1$			×
ROLC	A, 1	1	2	$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1$			×

Remark The instruction clock cycle is based on the CPU clock (fcPu), specified in the processor clock control register (PCC).

Mnemonic	Operand	Byte	Clock	Operation		Flag	1
	Operatio	Dyte	CIUCK		Z	AC	CY
SET1	saddr. bit	3	6	(saddr. bit) \leftarrow 1			
	sfr. bit	3	6	sfr. bit \leftarrow 1			
	A. bit	2	4	A. bit $\leftarrow 1$			
	PSW. bit	3	6	PSW. bit \leftarrow 1	×	×	×
	[HL]. bit	2	10	(HL). bit \leftarrow 1			
CLR1	saddr. bit	3	6	(saddr. bit) $\leftarrow 0$			
	sfr. bit	3	6	sfr. bit $\leftarrow 0$			
	A. bit	2	4	A. bit $\leftarrow 0$			
	PSW. bit	3	6	PSW. bit $\leftarrow 0$	×	×	×
	[HL]. bit	2	10	(HL). bit $\leftarrow 0$			
SET1	CY	1	2	CY ← 1			1
CLR1	CY	1	2	$CY \leftarrow 0$			0
NOT1	CY	1	2	$CY \leftarrow \overline{CY}$			×
CALL	!addr16	3	6	$(SP - 1) \leftarrow (PC + 3)_{H}, (SP - 2) \leftarrow (PC + 3)_{L},$ $PC \leftarrow addr16, SP \leftarrow SP - 2$			
CALLT	[addr5]	1	8	$\begin{array}{l} (SP-1) \leftarrow (PC+1)_{H}, (SP-2) \leftarrow (PC+1)_{L}, \\ PC_{H} \leftarrow (00000000, addr5+1), \\ PC_{L} \leftarrow (00000000, addr5), \\ SP \leftarrow SP-2 \end{array}$			
RET		1	6	$PC_{H} \leftarrow (SP + 1), PC_{L} \leftarrow (SP),$ $SP \leftarrow SP + 2$			
RETI		1	8	$\begin{array}{l} PC_{H} \leftarrow (SP + 1), PC_{L} \leftarrow (SP), \\ PSW \leftarrow (SP + 2), SP \leftarrow SP + 3, \\ NMIS \leftarrow 0 \end{array}$	R	R	R
PUSH	PSW	1	2	$(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$			
	rp	1	4	$(SP - 1) \leftarrow rp_H, (SP - 2) \leftarrow rp_L,$ $SP \leftarrow SP - 2$			
POP	PSW	1	4	$PSW \gets (SP), SP \gets SP + 1$	R	R	R
	rp	1	6	$rp_{H} \leftarrow (SP + 1), rp_{L} \leftarrow (SP),$ $SP \leftarrow SP + 2$			
MOVW	SP, AX	2	8	$SP \leftarrow AX$			
	AX, SP	2	6	$AX \leftarrow SP$			
BR	!addr16	3	6	$PC \leftarrow addr16$			
	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$			
	AX	1	6	$PC_{H} \leftarrow A, PC_{L} \leftarrow X$			

Remark The instruction clock cycle is based on the CPU clock (fcPU), specified in the processor clock control register (PCC).

Masaasia	Onerred	Dute	Cleak			Flag	
Mnemonic	Operand	Byte	Clock	Operation	Z	AC	CY
BC	\$addr16	2	6	$PC \gets PC + 2 + jdisp8 \text{ if } CY = 1$			
BNC	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 0$			
BZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 1$			
BNZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 0$			
BT	saddr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if (saddr. bit) = 1			
	sfr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 1			
	A. bit, \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8$ if A. bit = 1			
	PSW. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if PSW. bit = 1			
BF	saddr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if (saddr. bit) = 0			
	sfr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 0			
	A. bit, \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8$ if A. bit = 0			
	PSW. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if PSW. bit = 0			
DBNZ	B, \$addr16	2	6	$B \leftarrow B - 1$, then PC \leftarrow PC + 2 + jdisp8 if $B \neq 0$			
	C, \$addr16	2	6	$C \leftarrow C - 1$, then PC \leftarrow PC + 2 + jdisp8 if C $\neq 0$			
	saddr, \$addr16	3	8	(saddr) ← (saddr) – 1, then PC ← PC + 3 + jdisp8 if (saddr) ≠ 0			
NOP		1	2	No Operation			
EI		3	6	$IE \leftarrow 1$ (Enable Interrupt)			
DI		3	6	$IE \leftarrow 0$ (Disable Interrupt)			
HALT		1	2	Set HALT Mode			
STOP		1	2	Set STOP Mode			

Remark The instruction clock cycle is based on the CPU clock (fcPU), specified in the processor clock control register (PCC).

10. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Parameter	Symbol	Conditions	Rated value	Unit
Supply voltage	Vdd		-0.3 to +6.5	V
Input voltage	Vı		-0.3 to V _{DD} + 0.3	V
Output voltage	Vo		-0.3 to VDD + 0.3	V
Output high current	Іон	Each pin	-10	mA
		Total for all pins	-30	mA
Output low current	lo∟	Each pin	30	mA
		Total for all pins	160	mA
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	Tstg		-65 to +150	°C

- Caution Absolute maximum ratings are rated values beyond which physical damage will be caused to the product; if the rated value of any of the parameters in the above table is exceeded, even momentarily, the quality of the product may deteriorate. Always use the product within its rated values.
- **Remark** The characteristics of a dual-function pin do not differ between the port function and the secondary function, unless otherwise stated.

CHARACTERISTICS OF THE SYSTEM CLOCK OSCILLATION CIRCUIT (Ta = -40°C to +85°C, V_DD = 4.0 to 5.5 V)

Resonator	Recommended circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal		Oscillator frequency (fx) ^{Note 1}		6.0	6.0	6.0	MHz
		Oscillation settling time ^{Note 2}				10	ms
External clock	X1 X2	X1 input frequency (fx) ^{Note 1}		6.0	6.0	6.0	MHz
		X1 input high/low level width (txн, txL)		71		83	ns

- **Notes 1.** Only the characteristics of the oscillation circuit are indicated. See the description of the AC characteristics for the instruction execution time.
 - **2.** Time required for oscillation to settle once a reset sequence ends or STOP mode is deselected. Use a resonator that can settle oscillation before the oscillation settling time expires.
- Caution When using the system clock oscillation circuit, observe the following conditions for the wiring of that section enclosed in dotted lines in the above diagrams, so as to avoid the influence of the wiring capacitance.
 - Keep the wiring as short as possible.
 - Do not allow signal wires to cross one another.
 - Keep the wiring away from wires that carry a high, non-stable current.
 - Keep the grounding point of the capacitors at the same level as Vsso.
 - Do not connect the grounding point to a grounding wire that carries a high current.
 - Do not extract a signal from the oscillation circuit.

DC CHARACTERISTICS ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 4.0$ to 5.5 V)

Parameter	Symbol	Conditi	ons	MIN.	TYP.	MAX.	Unit
Output high	Іон	Each pin				-1	mA
current		Total for all pins				-15	mA
Output low current	Iol	Each pin				10	mA
		Total for all pins				80	mA
Input high voltage	VIH1	P00-P07, P10-P17		0.7Vdd		Vdd	V
	VIH2	RESET, P20-P26, P40-P4	7	0.8Vdd		Vdd	V
	Vінз	X1	Vdd - 0.1		Vdd	V	
	VIH4	USBDM, USBDP $T_A = 0^{\circ}C$	C to +70°C	2.0		3.6	V
Input low voltage	VIL1	P00-P07, P10-P17		0		0.3Vdd	V
	VIL2	RESET, P20, P22, P40-P4	7	0		0.2Vdd	V
	VIL3	X1		0		0.1	V
	VIL4	USBDM, USBDP $T_A = 0^{\circ}C$	to +70°C	0		0.8	V
Output high voltage	Voh1	Pins other than USBDM ar USBDP	Ind $I_0 = -1 \text{ mA}$	Vdd - 1.0			V
	Voh2	USBDM, USBDP $T_A = 0^{\circ}C$ RL = 15 k Ω (connected to		2.8			V
Output low voltage	Vol1	Pins other than USBDM and Io = -10 mA USBDP				1.0	V
	Vol2	USBDM, USBDP $T_A = 0^{\circ}C$ RL = 15 k Ω (connected to			0.3	V	
High-level input leakage current	Ілні	Pins other than X1, X2, USBDM, and USBDP	Vin = Vdd			3	μΑ
	LIH2	X1, X2	Vin = Vdd			20	μA
	Ілнз	USBDM, USBDP TA = 0°C to +70°C	$0~V \leq V_{\text{IN}} \leq V_{\text{REG}}$			10	μA
Low-level input leakage current		Pins other than X1, X2, USBDM, and USBDP	V _{IN} = 0 V			-3	μΑ
0		X1, X2	$V_{IN} = 0 V$			-20	μA
	Ilil3	USBDM, USBDP T _A = 0°C to +70°C	$0~V \leq V_{\text{IN}} \leq V_{\text{REG}}$			-10	μA
High-level output leakage current	Ісон	Vout = 0 V				3	μΑ
Low-level output leakage current	LOL	Vout = 0 V				-3	μΑ
Software pull-up resistor	R	VIN = 0 V		50	100	200	kΩ
Regulator output voltage	Vreg	lo = 0 to -3 mA		3.0	3.3	3.6	V
Supply current ^{Note 2}		6.0-MHz crystal oscillation	(operating mode) ^{Note 3}		1.5	3.0	mA
	DD2	6.0-MHz crystal oscillation			0.5	1.1	mA
	Idd3	STOP mode	When the USB function is disabled		10	30	μA
			When the USB function is enabled $(T_A = 0^{\circ}C \text{ to } +70^{\circ}C)$		50	100	μΑ

Notes 1. RL is a resistor connected to a bus line.

- 2. The power supply current does not include the current flowing through the on-chip pull-up resistor.
- 3. During high-speed mode operation (when the processor clock control register (PCC) is cleared to 00H)
- **Remark** The characteristics of a dual-function pin do not differ between the port function and the secondary function, unless otherwise stated.

AC CHARACTERISTICS

(1) Basic operations (T_A = -40°C to +85°C, V_{DD} = 4.0 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time (minimum	Тсү	When PCC = 00H (fx = 6.0 MHz)	0.333	0.333	0.333	μs
instruction execution time)		When PCC = 02H (fx = 6.0 MHz)	1.333	1.333	1.333	μs
TI01 input frequency	fтı		0		4.0	MHz
TI01 input high/low level width	t⊤⊮, t⊤∟		0.1			μs
Interrupt input high/low level width	tinth, tintl	INTP0	10			μs
RESET input low	trsl		10			μs

(2) Serial interface

(a) USB function ($T_A = 0^{\circ}C$ to +70°C, $V_{DD} = 4.0$ to 5.5 V)

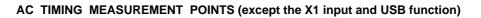
Parameter	Symbol	Conditions MIN. TYP. MAX		MAX.	Unit	
USBDM and USBDP rise time	tr	$CL = 50 \text{ pF}^{Note}$	75			ns
		CL = 350 pF ^{Note}			300	ns
USBDM and USBDP fall time	t⊧	CL = 50 pF ^{Note}	75			ns
		CL = 350 pF ^{Note}			300	ns
t _R and t _F matching	t RFM	tr/tr	80		120	%
Differential output signal cross-over point	Vcrs		1.3		2.0	V
Data transfer rate	t drate	When the microcontroller operates at the system clock (fx) of 6.0 MHz	1.5	1.5	1.5	Mbps
Transmission differential signal jitter	t udji	Upon transferring the next bit	-95	0	95	ns
	tudj2	Upon transferring the bit following the next bit	-150	0	150	ns
Transmission EOP width	teopt1		1.25	1.33	1.50	μs
Reception EOP width	teopr1	EOP width to be eliminated			300	μs
	teopr2	EOP width to be detected	675			μs
Reception USB reset width	tures1	USB reset width to be eliminated			2.5	μs
	tures2	USB reset width to be detected	5.5			μs

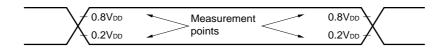
Note CL is the capacitance of the USBDM and USBDP output lines.

(b) Three-wire serial I/O mode ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 4.0$ to 5.5 V)

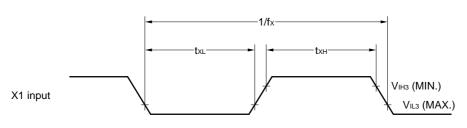
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCK10 cycle time	tkcy1	When $TPS100^{Note 1} = 0$		667	667	667	ns
		When TPS100 ^{Note 1} = 1		1,333	1,333	1,333	ns
SCK10 high/low level width	tкнı, tк∟ı	When TPS100 ^{Note 1} = 0		283	333		ns
		When TPS100 ^{Note 1} = 1		617	667		ns
SI10 setup time	tsik1	Relative to SCK10 ↑		150			ns
SI10 hold time	tksi1	Relative to SCK10 ↑	When $TPS100^{Note 1} = 0$	333			ns
			When TPS100 ^{Note 1} = 1	667			ns
SO10 output dalay	tkso1	Relative to $\overline{\text{SCK10}} \downarrow$, CL = 100 pF ^{Note 2}		0		200	ns

(i) $\overline{\text{SCK10}}$...Internal clock output (when fx = 6.0 MHz)

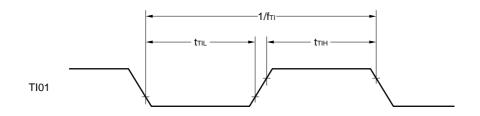

Notes 1. Bit 4 of serial operation mode register 10 (CSIM10)

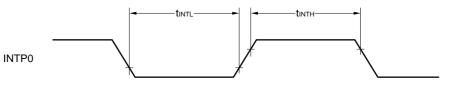

2. CL is the capacitance of the SO output line.

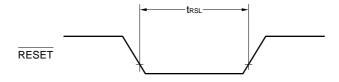
(ii) SCK10 ... External clock output


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK10 cycle time	t ксү2		667			ns
SCK10 high/low level width	tкн2, tк∟2		283			ns
SI10 setup time	tsik2		100			ns
SI10 hold time	tksi2		333			ns
SO10 output delay	tĸso2	Relative to $\overline{\text{SCK10}}\downarrow$, CL = 100 pF ^{Note}	0		250	ns

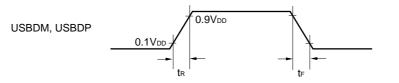
Note CL is the capacitance of the SO output line.

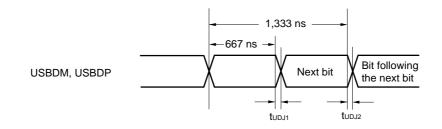



CLOCK TIMING

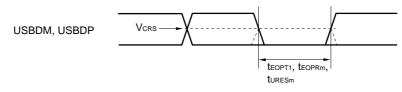

TI TIMING

INTERRUPT INPUT TIMING

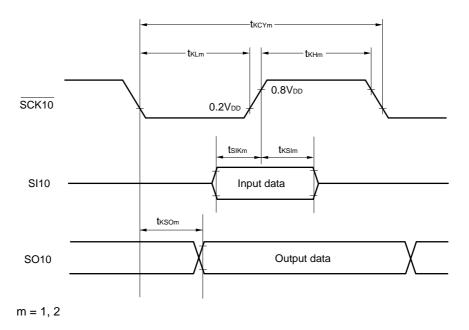

RESET INPUT TIMING


SERIAL TRANSFER TIMING

USB Function:


USBDM and USBDP rise/fall time

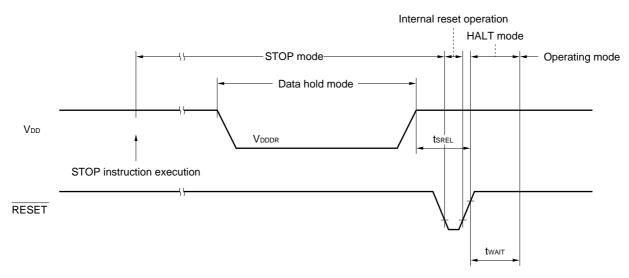
Transmission different signal jitter



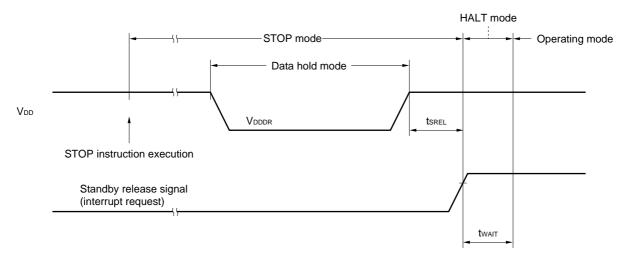
Differential output signal cross-over point, transmission EOP width, reception EOP width, and reception USB reset width

m = 1, 2

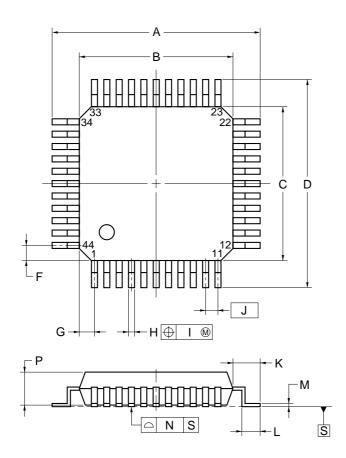
Three-Wire Serial I/O Mode:

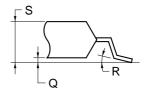

DATA HOLD CHARACTERISTICS OF DATA MEMORY AT LOW VOLTAGE IN STOP MODE (TA = -40°C to +85°C)

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data hold supply voltage	Vdddr		4.0		5.5	V
Release signal set time	tsrel		0			μs
Oscillation settling	t wait	Reset by RESET		215/fx		ms
time ^{Note 1}		Reset by interrupt request		Note 2		ms


- **Notes 1.** During the oscillation settling time, CPU operations are disabled to prevent them from becoming unstable upon the start of oscillation.
 - **2.** 2¹²/fx, 2¹⁵/fx, or 2¹⁷/fx can be selected according to the setting of bits 0 to 2 (OSTS0 to OSTS2) of the oscillation settling time selection register.

Remark fx: System clock oscillation frequency



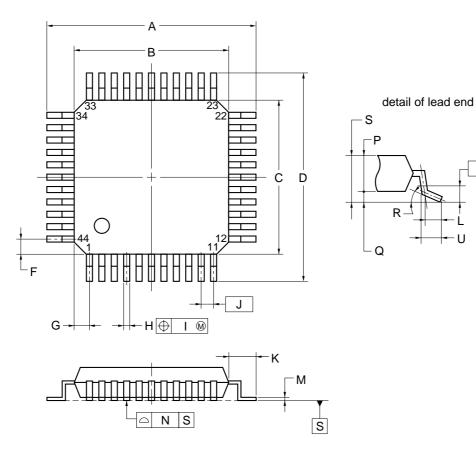


11. PACKAGE DRAWINGS

44-PIN PLASTIC QFP (10x10)

detail of lead end

NOTE


Each lead centerline is located within 0.16 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	13.2±0.2
В	10.0±0.2
С	10.0±0.2
D	13.2±0.2
F	1.0
G	1.0
н	$0.37\substack{+0.08 \\ -0.07}$
I	0.16
J	0.8 (T.P.)
К	1.6±0.2
L	0.8±0.2
М	$0.17\substack{+0.06 \\ -0.05}$
N	0.10
Р	2.7±0.1
Q	0.125±0.075
R	$3^{\circ+7^{\circ}}_{-3^{\circ}}$
S	3.0 MAX.
	S44GB-80-3BS-2

Т

U

44 PIN PLASTIC LQFP (10 \times 10 mm, 1.4-mm resin thickness) \star

NOTE

Each lead centerline is located within 0.16 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	12.0±0.2
В	10.0±0.2
С	10.0±0.2
D	12.0±0.2
F	1.0
G	1.0
н	$0.37\substack{+0.08 \\ -0.07}$
I	0.2
J	0.8 (T.P.)
К	1.0±0.2
L	0.5
М	$0.17\substack{+0.03 \\ -0.06}$
N	0.10
Р	1.4±0.05
Q	0.1±0.05
R	$3^{\circ + 4^{\circ}}_{-3^{\circ}}$
S	1.6 MAX.
U	0.6±0.15
	S44GB-80-8ES-1

12. RECOMMENDED SOLDERING CONDITIONS

The μ PD789800 should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual** (C10535E).

For soldering methods and conditions other than those recommended below, contact our sales representatives.

Table 12-1. Surface Mounting Type Soldering Conditions

μPD789800GB-xxx-3BS-MTX: 44-pin plastic QFP (10 x 10 mm, 2.7-mm resin thickness)

Soldering method	Soldering conditions	Symbol
Infrared reflow	Package peak temperature: 235°C Duration: 30 sec. max. (at 210°C or above) Maximum allowable number of reflow processes: 3	IR35-00-3
VPS	Package peak temperature: 215°C Duration: 40 sec. max. (at 200°C or above) Maximum allowable number of reflow processes: 3	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max. Duration: 10 sec. max. Number of times: Once Preliminary heat temperature: 120°C max. (Package surface temperature)	WS60-00-1
Partial heating method	Terminal temperature: 300°C max. Duration: 3 sec. max. (per device side)	-

Caution Use of more than one soldering method should be avoided (except for partial heating method).

μPD789800GB-xxx-8ES: 44-pin plastic LQFP (10 x 10 mm, 1.4-mm resin thickness)

Soldering method	Soldering conditions	Symbol
Infrared reflow	Package peak temperature: 235°C Duration: 30 sec. max. (at 210°C or above) Maximum allowable number of reflow processes: 2	IR35-00-2
VPS	Package peak temperature: 215°C Duration: 40 sec. max. (at 200°C or above) Maximum allowable number of reflow processes: 2	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max. Duration: 10 sec. max. Number of times: Once Preliminary heat temperature: 120°C max. (Package surface temperature)	WS60-00-1
Partial heating method	Terminal temperature: 300°C max. Duration: 3 sec. max. (per device side)	-

Caution Use of more than one soldering method should be avoided (except for partial heating method).

★

★

APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for developing systems using the μ PD789800.

LANGUAGE PROCESSING SOFTWARE

RA78K0S ^{Notes 1, 2, 3}	Assembler package common to the 78K/0S series
CC78K0S ^{Notes 1, 2, 3}	C compiler package common to the 78K/0S series
DF789801 ^{Notes 1, 2, 3}	Device file for the μ PD789800 sub-series
CC78K0S-L ^{Notes 1, 2, 3}	C compiler library source file common to the 78K/0S series

FLASH MEMORY WRITE TOOLS

Flashpro III	Dedicated flash writer
FA-44GB ^{Note 4}	Flash memory write adapter (GB-3BS type)
FA-44GB-8ES ^{Note 4}	Flash memory write adapter (GB-8ES type)

DEBUGGING TOOLS (1/2)

IE-78K0S-NS In-circuit emulator	In-circuit emulator for debugging hardware and software of application system using 78K/0S Series. Supports integrated debugger (ID78K0S-NS). Used in combination with AC adapter emulation probe, and interface adapter for connecting the host machine.	
IE-70000-MC-PS-B AC adapter	This is the adapter for supplying power from outlet of 100 to 240 VAC.	
IE-70000-98-IF-C Interface adapter	This adapter is needed when PC-9800 series (excluding notebook models) is used as a host machine of IE-78K0S-NS. (Compatible with C bus)	
IE-70000-CD-IF-A PC card interface	This PC card and interface cable are needed when a notebook-type personal computer is used as a host machine of IE-78K0S-NS. (Compatible with a PCMCIA socket)	
IE-70000-PC-IF-C Interface adapter	This adapter is needed when IBM PC/AT [™] and compatibles are used as a host machine of IE-78K0S-NS. (Compatible with ISA bus)	
IE-70000-PCI-IF Interface adapter	This adapter is needed when a personal computer with a built-in PCI bus is used as a host machine of IE-78K0S-NS.	
IE-789801-NS-EM1 Emulation board	Emulation board for emulating the peripheral hardware inherent to the device. Used in combination with in-circuit emulator.	

Notes 1. Based on the PC-9800 series (MS-DOS[™] + Windows[™])

- 2. Based on the IBM PC/AT and compatibles (Japanese/English Windows)
- Based on the HP9000 series 700[™] (HP-UX[™]), SPARCstation[™] (SunOS[™], Solaris[™]), and NEWS[™] (NEWS-OS[™])
- **4.** Product manufactured by Naito Densei Machida Mfg. Co., Ltd. (044-822-3813). Contact an NEC sales representative for purchase.

Remark The RA78K0S and CC78K0S can be used in combination with the DF789801.

DEBUGGING TOOLS (2/2)

*
*

*

 \star

NP-44GB Emulation		This probe is used to connect the in-circuit emulator to the target system and is designed for 44-pin plastic QFP. It should be used in combination with EV-9200G-44.	
EV-9200G-44 Conversion socket		This conversion socket connects the NP-44GB to the target system board designed to mou a 44-pin plastic QFP (GB-3BS, GB-8ES type).	
NP-44GB Emulatior		This probe is used to connect the in-circuit emulator to the target system and is designed for 44-pin plastic QFP. It should be used in combination with TGB-044SAP.	
	TGB-044SAP ^{Note 3} Conversion socket	This conversion socket connects the NP-44GB-TQ to the target system board designed to mount a 44-pin plastic QFP (GB-3BS, GB-8ES type).	
SM78K0S	Notes 4, 5	System simulator common to the 78K/0S series	
ID78K0S-NS ^{Notes 4, 5}		Integrated debugger common to the 78K/0S series	
DF789801 ^{Notes 4, 5}		Device file for the μ PD789800 sub-series	

REAL-TIME OS

MX78K0S ^{Notes 4, 5}	OS for the 78K/0S series
-------------------------------	--------------------------

Notes 1. Product manufactured by Naito Densei Machida Mfg. Co., Ltd. (044-822-3813). Contact an NEC sales representative for purchase.

- 2. Either probe and socket combination can be selected for use.
- Product manufactured by TOKYO ELETEC Corporation For further information, consult: Tokyo Electronic Div. (TEL (03) 3820-7112), or Osaka Electronic Div. (TEL (06) 6244-6672) Daimaru Kogyo Corporation.
- 4. Based on the PC-9800 series (MS-DOS + Windows)
- 5. Based on the IBM PC/AT and compatibles (Japanese/English Windows)

Remark The SM78K0S can be used in combination with the DF789801.

APPENDIX B RELATED DOCUMENTS

DOCUMENTS RELATED TO DEVICES

Document name	Document No.		
Document name	Japanese	English	
μ PD789800 Data Sheet	U12627J	This manual	
μPD78F9801 Preliminary Product Information	U12626J	U12626E	
μ PD789800 Sub-Series User's Manual	U12978J	U12978E	
78K/0S Series User's Manual, Instruction	U11047J	U11047E	

DOCUMENTS RELATED TO DEVELOPMENT TOOLS (USER'S MANUAL)

Document name		Document No.	
		Japanese	English
RA78K0S Assembler Package	Operation	U11622J	U11622E
	Assembly Language	U11599J	U11599E
	Structured Assembly Language	U11623J	U11623E
CC78K0S C Compiler	Operation	U11816J	U11816E
	Language	U11817J	U11817E
SM78K0S System Simulator for IBM PC/AT (Windows)	Reference	U11489J	U11489E
SM78K Series System Simulator	External Parts User Open Interface Specifications	U10092J	U10092E
ID78K0S-NS Integrated Debugger Windows-Based	Reference	U12901J	U12901E
IE-78K0S-NS In-circuit Emulator		U13549J	U13549E
IE-789801-NS-EM1 Emulation Board		U13390J	U13390E

DOCUMENTS RELATED TO SOFTWARE TO BE INCORPORATED INTO THE PRODUCT (USER'S MANUAL)

Document name		Document No.	
		Japanese	English
OS for 78K/0S Series MX78K0S	Basic	U12938J	U12938E

OTHER DOCUMENTS

+	
×	

Document name	Document No.	
	Japanese	English
SEMICONDUCTORS SELECTION GUIDE Products & Packages (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Device	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Semiconductor Device Quality Control/Reliability Handbook	C12769J	-
Guide for Products Related to Micro-Computer: Other Companies	U11416J	-

Caution The above documents may be revised without notice. Use the latest versions when you design application systems.

NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM is a trademark of NEC Corporation.

MS-DOS and Windows are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of IBM Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of SONY Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK

Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A. Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

[MEMO]

Some related documents may be preliminary versions. Note, however, that whether a related document is preliminary is not indicated in this document.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M7 98.8