| NOTICE OF RI | EVISION (NOR) | - | 1. DATE | | | |---|--|--|--|------------------------------------|--| | THIS REVISION DESCRIBED BELOW HAS BEE | | OCUMENT LISTED | (YY <i>MMDD)</i>
97-01-27 | Form Approved
OMB No. 0704-0188 | | | Public reporting burden for this collection is estimated to a existing data sources, gathering and maintaining the data regarding this burden estimate or any other aspect of this; Department of Defense, Washingtion Headquarters Servic Highway, Suite 1204, Arlington, VA 22202-4302, and to the Washington, DC 20503. PLEASE DO NOT RETURN YOUR COMPLETED FORM GOVERNMENT ISSUING CONTRACTING OFFICER FORTHIS FORM. | | | instructions, searching
nation. Send comments
is burden, to
Jefferson Davis | 2. PROCURING
ACTIVITY NO. | | | Washington, DC 20503. PLEASE DO NOT RETURN YOUR COMPLETED FORM GOVERNMENT ISSUING CONTRACTING OFFICER FOIL THIS FORM. | 3. DODAAC | | | | | | 4. ORIGINATOR b. ADI | DRESS (Street, City, State, Zense Supply Center Columbus | ip Code) | 5. CAGE CODE
67268 | 6. NOR NO.
5962-R192-97 | | | 13 YPELINAME (First Middle Initial | D East Broad Street
Imbus, OH 43216-5000 | | 7. CAGE CODE
67268 | 8. DOCUMENT NO.
5962-97510 | | | 9. TITLE OF DOCUMENT MICROCIRCUIT, LINEAR, WIDE INPUT VOLTA AMPLIFIER, MONOLITHIC SILICON | AGE, DUAL OPERATIONAL | 10. REVISION LETT | ER | 11. ECP NO. | | | AMP EN IER, MONOCITAIC SILICON | | a. CURRENT | b. NEW
A | No users listed. | | | 12. CONFIGURATION ITEM (OR SYSTEM) TO W | HICH ECP APPLIES | | | | | | 13. DESCRIPTION OF REVISION | | | | · | | | Revisions date column; add "97-01-27" Revision level block; add "A". Rev status of sheets; for sheet 1 and 6 Sheet 6: TABLE I. Common-mode rejection rati Under the conditions column, delete "\ Under the conditions column, delete "\ Revision level block; add "A". | , add "A". | tute "V _{IC} = V _{ICR} min".
tute "V _{IC} = V _{ICR} min". | | | | | 14. THIS SECTION FOR GOVERNMENT USE ON | NLY | | | | | | a. (X one) X (1) Existing document sup | plemented by the NOR may t | e used in manufacture | | | | | | st be received before manufa | | | | | | | ocument shall make above re | | - | | | | b. ACTIVITY AUTHORIZED TO APPROVE CHAN | | | st, Middle Initial, Last |) | | | DSCC-VAS | | RAYMOND MONI | IIN | | | | d. TITLE | e. SIGNATURE | | | f. DATE SIGNED | | | Chief, Microelectronics Team | RAYMOND MOI | NNIN | | (YYMMDD)
97-01-27 | | | 15a. ACTIVITY ACCOMPLISHING REVISION | b. REVISION COM | PLETED (Signature) | | c. DATE SIGNED | | | DSCC-VAS | RICK OFFICER | | | (YYMMDD)
97-01-27 | | | DD Form 1695, APR 92 | Previous editions | s are obsolete | | | | **■** 9004708 0027529 279 **■** Previous editions are obsolete. | | | | | | | | | F | REVIS | IONS | | | | | | | | _ | | | |-------------------------|-------------|-------|--------------|------|------------|--|--------------|----------|---------------|-----------------|--------|----------------|-------------|-------------|--------------|----------------|--------------|------------|----------|---| | LTR | DESCRIPTION | | | | | | | | | | DA | TE (Y | R-MO- | DA) | | APPF | ROVE |) | ' | • | | | | • | REV | | Γ | Γ | | Ι | - | T | Τ | I | I | | · · | | | | - - | . | Ι | | | | | | - | | | <u> </u> | <u> </u> | | - | | | | ļ | | | | | | | ļ | | | SHEET | | | | | <u> </u> | ļ | | | | | | | | | | | | | ├ | | | | | | | | | - | - | | ļ | <u> </u> | | | | | | | ļ | <u> </u> | <u> </u> | | | SHEET | | | ł | | | | - | | | | | | <u> </u> | <u> </u> | ļ | | | | | | | REV STATUS
OF SHEETS | 5 | | | RE\ | | | | | | | | | | | | | | <u> </u> | ļ | | | | | _ | | SHE | EET | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | <u> </u> | | } | | | PMIC N/A | | | | | | D BY | | | | | | | | | | | | | | | | | | | RICK OFFICER | | | | I | DEFE | | | | NTER
110 4: | | JMBU | S | | | | | | | STAN | | | | CHE | CKE | D BY | | | | <u> </u> | | | | | | | | | | | | MICRO | | | T | | | I PITH | | | | | | | | | | | | | | | | DRA | Wil | 1G | | ├ | | | | | | l MIC | BOC | IDCLI | | | . \A#F | · · · · · · | | (OL T | | | | THIS DE | RAWIN | IG IS | | | | OVED BY MOND MONNIN MICROCIRCUIT DUAL OPERATION | | TION/ | NEAR
AL AN | I, WIL
IPLIF | IER. I | MON | DLITE | 4GE,
{IC | | | | | | | | AVA
FOR US | ILABL | | | ~ | A Y IVIC | ואו טאיי | OMMI | N | SILICON | | | | | | | | | | | | | DEPAR | RTME | NTS | | DBA | MANN | 3 APP | POVA | LDAT | ·E | | | | | | | | | | | | | AND AGEN
DEPARTMEN | | | |] " | / • • II 4 | | 12-31 | | _ | SIZI | = | CAC | SE CO | DE | | | | | | | | | | | | DEV | / כוַחַי | N LEV | = 1 | | | 1 | 4 | l | 72 6 | | | 59 | 62 | .97 | 510 |) | | AMSC | N/A | | | ``=' | | ∢ LEV | | | | - | | <u> </u> | 120 | טע_ | 1 | | | | | | | | | | | | | | | | | SHE | ET | 1 | | OF | 1 | 0 | | | | | | | | | | | | | | | | I | | . – | _ | | | | | | | | | DESC FORM 19 | | | | | • | | | | | | 900 | 4708 | 3 00 | 275 | 3 0 1 | 790 | - | | | | DESC FORM 193 <u>DISTRIBUTION STATEMENT A.</u> Approved for public release; distribution is unlimited. 5962-E061-97 # 1. SCOPE - 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN. - 1.2 PIN. The PIN is as shown in the following example: - 1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. - 1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows: | Device type | Generic number | Circuit function | |-------------|----------------|---| | 01 | TLV2432M | Rail-to-rail wide-input-voltage dual operational amplifiers | | 02 | TLV2432AM | Rail-to-rail wide-input-voltage dual operational amplifiers (enhanced V _{IO}) | 1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows: **Device class** **Device requirements documentation** М Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A Q or V Certification and qualification to MIL-PRF-38535 1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|------------------------------| | н | GDFP1-F10 or CDFP2-F10 | 10 | Flat pack | | P | GDIP1-T8 or CDIP2-T8 | 8 | Dual-in-line | | 2 | CQCC1-N20 | 20 | Square leadless chip carrier | 1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. | STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 | SIZE
A | | 5962-97510 | |--|------------------|----------------|------------| | | | REVISION LEVEL | SHEET 2 | DESC FORM 193A JUL 94 **9**004708 0027531 927 **=** | 1.3 Absolute maximum ratings. 1/ | | |---|--| | Supply voltage (V _{DD}) Differential input voltage (V _{ID}) Input current, each input (I _{IN}) Output current (I _{OUT}) Total current into +V _{DD} Total current out of -V _{DD} Duration of short-circuit current at (or below) +25°C Continuous total power dissipation (P _D) Case H Case P Case 2 Operating free-air temperature range (T _A) Storage temperature range (T _{STG}) Lead temperature 1.6 mm (1/16 seconds) from case for 10 seconds Maximum junction temperature (T _J) Thermal resistance, junction-to-case (Θ _{JC}) | ±50.0 mA
±50.0 mA
±50.0 mA
Unlimited <u>4/</u>
675 mW
1050 mW
1375 mW
-55° C to +125° C
-65° C to +150° C
+260° C | | Supply voltage (±V _{DD}) Input voltage range (V _{IN}) Common-mode input voltage (V _{IC}) Case operating temperature range (T _A) | 2.7 V dc to 10.0 V dc
-V _{DD} to +V _{DD} - 1.3 V
-V _{DD} to +V _{DD} - 1.3 V
-55°C to +125°C | | 2. APPLICABLE DOCUMENTS | | | 2.1 <u>Government specification, standards, and handbooks</u> . The following specificat part of this drawing to the extent specified herein. Unless otherwise specified, the issue of the Department of Defense Index of Specifications and Standards (DoDIS solicitation. | sues of these documents are those listed in | | SPECIFICATION | | | MILITARY | | | MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for | or. | | STANDARDS | | | MILITARY | | | MIL-STD-883 - Test Methods and Procedures for Microelectronics. MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. | | | Stresses above the absolute maximum rating may cause permanent damage to maximum levels may degrade performance and affect reliability. All voltage values, except differential voltages, are with respect to the midpoint b Differential voltages are at the noninverting input with respect to the inverting input brought below -V_{DD} - 0.3 V. The output may be shorted to either supply. Temperature and/or supply voltages maximum dissipation rating is not exceeded. Above T_A = +25°C, derate by the following factors; case H at 5.4 mW/°C, case F at 11.0 mW/°C. | netween +V _{DD} and -V _{DD} . but. Excessive current flows if the input is s must be limited to ensure that the | | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-97510 | |---|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL | SHEET 3 | DESC FORM 193A JUL 94 ■ 9004708 0027532 **8**63 **■** ### **HANDBOOKS** **MILITARY** MIL-HDBK-103 - List of Standard Microcircuit Drawings (SMD's). MIL-HDBK-780 - Standard Microcircuit Drawings. (Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. ## 3. REQUIREMENTS - 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M. - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein. - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1. - 3.2.3 Radiation exposure circuit. The radiation exposure circuit shall be as specified when available. - 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I. - 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A. - 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A. - 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein. - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing. STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 SIZE A 5962-97510 REVISION LEVEL SHEET 4 DESC FORM 193A JUL 94 ■ 9004708 0027533 7TT **■** TABLE I. Electrical performance characteristics. **Test** Symbol Conditions 1/ Group A Device Limits Unit -55°C ≤ T_A ≤ +125°C subgroups type unless otherwise specified Min Max Input offset voltage V_{10} $V_{IC} = 0 V$, $\pm V_{DD} = \pm 1.5 V$ 1 01 2000 μV $V_0 = 0 \text{ V}, R_S = 50 \Omega$ 2, 3 2500 02 950 2, 3 2000 $V_{IC} = 0 \text{ V}, \pm V_{DD} = \pm 2.5 \text{ V}$ $V_{O} = 0 \text{ V}, R_{S} = 50 \Omega$ 1 01 2000 2, 3 2500 1 02 950 2, 3 2000 Input offset current lo $V_{IC} = 0 \text{ V}, \pm V_{DD} = \pm 1.5 \text{ V}$ 2, 3 All 150 pΑ $V_{O} = 0 \text{ V, R}_{S} = 50 \Omega$ V_{IC} = 0 V, $\pm V_{DD}$ = ± 2.5 V 2, 3 All 150 $V_{O} = 0 \text{ V, R}_{S} = 50 \Omega$ Input bias current lв $V_{IC} = 0 V$, $\pm V_{DD} = \pm 1.5 V$ 2, 3 All 300 pΑ $V_{O} = 0 \text{ V, R}_{S} = 50 \Omega$ $V_{IC} = 0 \text{ V}, \pm V_{DD} = \pm 2.5 \text{ V}$ 2, 3 All 300 $V_0 = 0 \text{ V, R}_S = 50 \Omega$ Common-mode input V_{ICR} $|V_{1O}| \le 5$ mV, $R_S = 50 \Omega$, All 0 to ٧ voltage range $V_{DD} = 3.0 V$ 2.5 2.3 0 to 2.2 $|V_{IO}| \le 5$ mV, $R_S = 50 \Omega$, 1 0 to $V_{DD} = 5.0 \text{ V}$ 4.5 2, 3 0 to 4.2 High-level output voltage V_{OH} $I_{OH} = -3 \text{ mA}, V_{DD} = 3.0 \text{ V}$ 2, 3 ΑII 2.25 V $I_{OH} = -5 \text{ mA}, V_{DD} = 5.0 \text{ V}$ 1, 2, 3 4.0 v_{OL} Low-level output voltage $V_{IC} = 0 \text{ V}, I_{OI} = 3 \text{ mA},$ 2,3 All 1.0 $V_{DD} = 3.0 V$ $V_{IC} = 2.5 \text{ V}, I_{OL} = 5 \text{ mA},$ 1.25 $V_{DD} = 5.0 V$ See footnotes at end of table. SIZE **STANDARD** Α 5962-97510 **MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS REVISION LEVEL** SHEET **COLUMBUS, OHIO 43216-5000** 5 **DESC FORM 193A** 9004708 0027534 636 **JUL 94** | | TABLE I | I. Electrical performance chara | acteristics - Cor | ntinued. | | | | |--|------------------|---|-------------------|----------|------|------|------| | Test | Symbol | Conditions 1/ | Group A | Device | Lir | mits | Unit | | | | -55°C ≤ T _A ≤ +125°C
unless otherwise specified | subgroups | type | Min | Max | | | Large-signal differential | A _{VD} | V _{IC} = 1.5 V, <u>2</u> / | 4 | All | 1.5 | | V/mV | | voltage amplification | | $V_{DD} = 3.0 \text{ V}, R_L = 2 \text{ k}\Omega,$
$V_O = 1 \text{ V to 2 V}$ | 5, 6 | | 0.5 | | | | | | $V_{IC} = 2.5 \text{ V}, 3/$
$V_{DD} = 5.0 \text{ V}, R_{I} = 2 \text{ k}\Omega,$ | 4 |] | 2.5 | | | | | | $V_{DD} = 5.0 \text{ V}, R_{L} = 2 \text{ K}\Omega,$
$V_{O} = 1 \text{ V to 4 V}$ | 5, 6 | | 0.5 | | | | Common-mode rejection ratio | CMRR | $V_{IC} = 0 \text{ V to } 2.5 \text{ V},$
$V_{DD} = 3.0 \text{ V}$
$V_{O} = 1.5 \text{ V}, R_{S} = 50 \Omega$ | 1, 2, 3 | All | 70 | | dB | | | | $V_{IC} = 0 \text{ V to } 4.5 \text{ V},$
$V_{DD} = 5.0 \text{ V}$
$V_{O} = 2.5 \text{ V}, R_{S} = 50 \Omega$ | | | 70 | | | | Supply-voltage rejection ratio ($\Delta V_{DD}/\Delta V_{IO}$) | ^k SVR | $V_{DD} = 2.7 \text{ V to 8 V},$
$V_{DD} = 3.0 \text{ V},$
$V_{IC} = V_{DD}/2$, no load | 1, 2, 3 | All | 80 | | dB | | | | V _{DD} = 4.4 V to 8 V,
V _{DD} = 5.0 V,
V _{IC} = V _{DD} /2, no load | | | 80 | | | | Supply current | I _{DD} | V _O = 1.5 V, no load, | 1 | All | | 250 | μA | | | | V _{DD} = 3.0 V | 2, 3 |] ' | | 260 | | | | | V _O = 2.5 V, no load, | 1 |] ' | | 250 | | | | | V _{DD} = 5.0 V | 2, 3 | | | 270 | | | Slew rate at unity gain | SR | V _{DD} = 3.0 V, <u>4</u> /
R ₂ = 2 kO, C ₃ = 100 pF | 4 | Ali | 0.15 | | V/µs | | | | $R_L = 2 k\Omega, C_L = 100 pF,$
$V_O = 1.1 V to 1.9 V$ | 5, 6 |] ! | 0.1 | | | | | | $V_{DD} = 5.0 \text{ V}, \ \underline{5}/$
R _L = 2 k Ω , C _L = 100 pF, | 4 | | 0.15 | | | | | | $V_O = 1.5 \text{ V to } 3.5 \text{ V}$ | 5, 6 | | 0.1 | | | ^{1/} All characteristics are measured with zero common-mode input voltages unless otherwise noted. - 2/ Load resistance is referenced to 1.5 V. - 3/ Load capacitance is referenced to 2.5 V. - 4/ Load resistance and load capacitance are referenced to 1.5 V. - 5/ Load resistance and load capacitance are referenced to 2.5 V. | STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | SIZE
A | | 5962-97510 | |---|------------------|----------------|------------| | | | REVISION LEVEL | SHEET
6 | DESC FORM 193A JUL 94 9004708 0027535 572 | Device type | | 01 and 02 | | | | | | |--------------------|-----------------------|-----------------------|-----------------------|--|--|--|--| | Case outlines | Н | Р | 2 | | | | | | Terminal
number | Terminal symbol | | | | | | | | 1 | NC | OUTPUT 1 | NC | | | | | | 2 | OUTPUT 1 | -INPUT 1 | OUTPUT 1 | | | | | | 3 | -INPUT 1 | +INPUT 1 | NC | | | | | | 4 | +INPUT 1 | -V _{DD} /GND | NC | | | | | | 5 | -V _{DD} /GND | +INPUT 2 | -!NPUT 1 | | | | | | 6 | +INPUT 2 | -INPUT 2 | NC | | | | | | 7 | -INPUT 2 | OUTPUT 2 | +INPUT 1 | | | | | | 8 | OUTPUT 2 | +V _{DD} | NC | | | | | | 9 | +V _{DD} | | NC | | | | | | 10 | NC | | -V _{DD} /GND | | | | | | 11 | | | NC | | | | | | 12 | | | +INPUT 2 | | | | | | 13 | | | NC | | | | | | 14 | | | NC | | | | | | 15 | | | -INPUT 2 | | | | | | 16 | | | NC | | | | | | 17 | _ | | OUTPUT 2 | | | | | | 18 | | | NC | | | | | | 19 | | | NC | | | | | | 20 | - | | +V _{DD} | | | | | | Pin description | | | | | |-----------------------|----------------------|--|--|--| | Terminal symbol | Description | | | | | +INPUT m (m = 1 to 2) | Non-inverting inputs | | | | | -INPUT m (m = 1 to 2) | Inverting inputs | | | | | OUTPUT m (m = 1 to 2) | Outputs | | | | FIGURE 1. <u>Terminal connections</u>. STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 SIZE A 5962-97510 REVISION LEVEL SHEET 7 DESC FORM 193A JUL 94 **=** 9004708 0027536 409 **==** - 3.8 <u>Notification of change for device class M.</u> For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973. - 3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. - 3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 73 (see MIL-PRF-38535, appendix A). - 4. QUALITY ASSURANCE PROVISIONS - 4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A. - 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. - 4.2.1 Additional criteria for device class M. - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition B or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015. - (2) $T_A = +125^{\circ}C$, minimum. - b. Interim and final electrical test parameters shall be as specified in table II herein. - 4.2.2 Additional criteria for device classes Q and V. - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883. - b. Interim and final electrical test parameters shall be as specified in table II herein. - Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B. - 4.3 Qualification inspection for device classes Q and V. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). - 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-PRF-38535 permits alternate in-line control testing. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-97510 | |---|---|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | * | REVISION LEVEL | SHEET
8 | DESC FORM 193A JUL 94 9004708 0027537 345 📟 ' TABLE II. Electrical test requirements. | Test requirements | Subgroups
(in accordance with
MIL-STD-883,
method 5005, table I) | Subgroups
(in accordance with
MIL-PRF-38535, table III) | | |---|---|---|--------------------| | | Device
class M | Device
class Q | Device
class V | | Interim electrical parameters (see 4.2) | | | | | Final electrical parameters (see 4.2) | 1,2,3,4 <u>1</u> / | 1,2,3,4 <u>1</u> / | 1,2,3,4 <u>1</u> / | | Group A test requirements (see 4.4) | 1,2,3,4,5,6 | 1,2,3,4,5,6 | 1,2,3,4,5,6 | | Group C end-point electrical parameters (see 4.4) | 1 | 1 | 1 | | Group D end-point electrical parameters (see 4.4) | 1 | 1 | 1 | | Group E end-point electrical parameters (see 4.4) | 1,4 | 1,4 | 1,4 | $[\]underline{1}$ / PDA applies to subgroup 1 with the exception of input offset voltage ($V_{|O}$). # 4.4.1 Group A inspection. - a. Tests shall be as specified in table II herein. - b. Subgroups 7, 8, 9, 10, and 11 in table I, method 5005 of MIL-STD-883 shall be omitted. - 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883: - a. Test condition B or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883. - b. $T_A = +125^{\circ}C$, minimum. - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. - 4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883. - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein. | STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 | SIZE
A | | 5962-97510 | |--|------------------|----------------|------------| | | | REVISION LEVEL | SHEET
9 | DESC FORM 193A JUL 94 9004708 0027538 281 📟 - 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). - a. End-point electrical parameters shall be as specified in table II herein. - b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein. - c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied. ## 5. PACKAGING 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. ### 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing. - 6.1.2 Substitutability. Device class Q devices will replace device class M devices. - 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal. - 6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0525. - 6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0674. - 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331. - 6.6 Sources of supply. - 6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing. - 6.6.2 <u>Approved sources of supply for device class M.</u> Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA. STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 | SIZE
A | | | 5962-97510 | |------------------|----|---------------|-------------| | | RI | EVISION LEVEL | SHEET
10 | DESC FORM 193A JUL 94 **-** 9004708 0027539 118 **-**