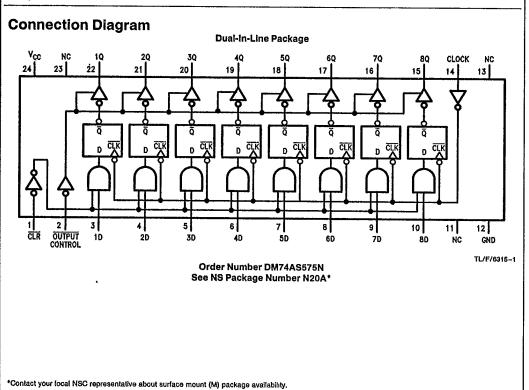
T-46-07-11

DM74AS575 Octal D-Type Edge-Triggered Flip-Flop with Synchronous Clear

General Description

These 8-bit registers feature totem-pole TRI-STATE® outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the AS575 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.


A buffered output control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are off.

The pinout is arranged to ease printed circuit board layout. All data inputs are on one side of the package, while all the outputs are on the other side.

Features

- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- TRI-STATE buffer-type outputs drive bus lines directly
- Synchronous clear
- Bus structured pinout

3-128

T-46-07-11

Absolute Maximum Ratings

N Package

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units	
Vcc	Supply Voltage	4.5	5 .	5.5	٧		
V _{IH}	High Level Input Voltage		2			>	
VIL	Low Level Input Voltage				0.8	>	
Гон	High Level Output Current				-15	mA	
loL	Low Level Output Current			48	mA		
fCLK	Clock Frequency		0		80	MHz	
tw	Width of Clock Pulse	High	4			ns	
		Low	6				
tsu	Data Setup Time	DATA	4↑			ns	
		CLR High or Low	6↑] "	
tн	Data Hold Time	DATA	2↑			ns	
		CLR	0↑] "	
TA	Free Air Operating Temperature		0		70	°C	

52.0°C/W

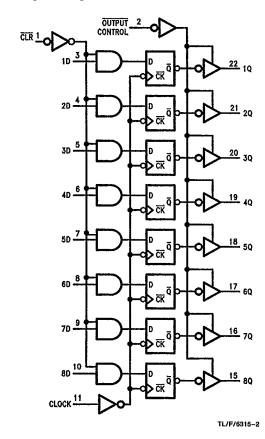
The (†) arrow indicates the positive edge of the Clock is used for reference.

Electrical Characteristics

over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V$, $I_{I} = -18 \text{ mA}$				-1.2	٧
V _{OH}	High Level Output Voltage	$V_{CC} = 4.5V$, $V_{ L} = Max$, $I_{OH} = Max$		2.4	3.3		٧
		$V_{CC} = 4.5V \text{ to 5.5V, } I_{OH} = -2 \text{ mA}$		V _{CC} 2			
V _{OL}	Low Level Output Voltage	$V_{CC} = 4.5V$, $V_{IH} = 2V$, $I_{OL} = Max$			0.35	0.5	٧
l _l	Input Current @ Max Input Voltage	$V_{CC} = 5.5V, V_{IH} = 7V$				0.1	mA
ΊΗ	High Level Input Current	$V_{CC} = 5.5V, V_{IH} = 2.7V$				20	μΑ
lı.	Low Level Input Current	$V_{CC} = 5.5V, V_{IL} = 0.4V$				-0.5	mA
I _Q (Note 1)	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA
lozh	Off-State Output Current, High Level Voltage Applied	$V_{CC} = 5.5V, V_{IH} = 2V,$ $V_{O} = 2.7V$				50	μΑ
l _{OZL}	Off-State Output Current, Low Level Voltage Applied	$V_{CC} = 5.5V, V_{IH} = 2V,$ $V_{O} = 0.4V$				-50	μΑ
lco	Supply Current	V _{CC} = 5.5V Outputs Open	Outputs High		78	126	
			Outputs Low		88	142	mA
			Outputs Disabled		88	142	1

Note 1: The output conditions have been chosen to produce a current that closely approximates one half of the true short circuit output current, IOS.


3.

T-	46-	07-	-1
----	-----	-----	----

Symbol	Parameter	Conditions	From	То	Min	Max	Units
fmax	Maximum Clock Frequency	$V_{CC} = 4.5V \text{ to } 5.5V$			80		MHz
tPLH	Propagation Delay Time Low to High Level Output	$R_{L} = 500\Omega$ $C_{L} = 50 \text{ pF}$	Clock	Any Q	3	8	ns
tpHL	Propagation Delay Time High to Low Level Output		Clock	Any Q	4	9.5	ns
t _{PZH}	Output Enable Time to High Level Output		Output Control	Any Q	2	6	ns
t _{PZL}	Output Enable Time to Low Level Output		Output Control	Any Q	3	10	ns
t _{PHZ}	Output Disable Time from High Level Output		Output Control	Any Q	2	6	ns
t _{PLZ}	Output Disable Time from Low Level Output		Output Control	Any Q	2	6	ns

Note 1: See Section 1 for test waveforms and output load.

Logic Diagram

Function Table

Output Control	CLR	Clock	D	Output Q
L	L	1	Х	L
L	н	Ť	н	н
L	Н	Ť	L	L
L	н	L	х	Q ₀
Н	×	Х	Х	Z

L = Low State, H = High State, X = Don't Care

↑ = Positive Edge Transition

Z = High Impedance State

Q₀ = Previous Condition of Q

NC = No Internal Connection