16-BIT FIXED-POINT DIGITAL SIGNAL PROCESSORS

DESCRIPTION

The μ PD77113A and 77114 are 16-bit fixed-point digital signal processors (DSPs).
Compared with the μ PD77016 family, these DSPs have improved power consumption and are ideal for batterypowered mobile terminals such as PDAs and cellular phones.

Both mask ROM and RAM models are available.

For details of the functions of these DSPs, refer to the following User's Manuals:
μ PD77111 Family User's Manual
: U14623E
μ PD77016 Family User's Manual - Instructions: U13116E

FEATURES

- Instruction cycle (operating clock)
μ PD77113A : 13.3 ns MIN (75 MHz MAX)
μ PD77114 : 13.3 ns MIN (75 MHz MAX)
- Memory
- Internal instruction memory

```
\muPD77113A: RAM 3.5K words }\times32\mathrm{ bits
    Mask ROM 48K words }\times32\mathrm{ bits
\(\mu\) PD77114 : RAM 3.5 K words \(\times 32\) bits Mask ROM 48 K words \(\times 32\) bits
- Data memory
\(\mu\) PD77113A: RAM 16 K words \(\times 16\) bits \(\times 2\) banks
Mask ROM 32 K words \(\times 16\) bits \(\times 2\) banks
\(\mu\) PD77114 : RAM 16 K words \(\times 16\) bits \(\times 2\) banks Mask ROM 32 K words \(\times 16\) bits \(\times 2\) banks External memory space 8 K words \(\times 16\) bits \(\times 2\) banks
```


ORDERING INFORMATION

Part Number	Package
μ PD77113AF1-xxx-CN1	80-pin plastic fine-pitch BGA (9×9)
μ PD77114GC-xxx-9EU	100-pin plastic TQFP (fine pitch) (14×14)

Remark xxx indicates ROM code suffix.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

BLOCK DIAGRAM

PIN CONFIGURATION

Notes 1. The function of this pin can be activated or deactivated by mask option.
2. An external data memory interface is not provided on the $\mu \mathrm{PD} 77113 \mathrm{~A}$.

* DSP FUNCTION LIST

Item		μ PD77016	$\mu \mathrm{PD} 77018 \mathrm{~A}$	μ PD77019	$\mu \mathrm{PD} 77019-013$	μ PD77110	μ PD77111	μ PD77112	$\mu \mathrm{PD} 77113 \mathrm{~A}$	μ PD77114
Memory space (words \times bits)	Internal instruction RAM	$1.5 \mathrm{~K} \times 32$	256×32	$4 \mathrm{~K} \times 32$		$35.5 \mathrm{~K} \times 32$	$1 \mathrm{~K} \times 32$		$3.5 \mathrm{~K} \times 32$	
	Internal instruction ROM	None	$24 \mathrm{~K} \times 32$		None		$31.75 \mathrm{~K} \times 32$		$48 \mathrm{~K} \times 32$	
	Data RAM (X/Y memory)	$2 \mathrm{~K} \times 16$ each	$3 \mathrm{~K} \times 16$ each			$24 \mathrm{~K} \times 16$ each	$3 \mathrm{~K} \times 16$ each		$16 \mathrm{~K} \times 16$ each	
	Data ROM (X/Y memory)	None	$12 \mathrm{~K} \times 16$ each		None		$16 \mathrm{~K} \times 16$ each		$32 \mathrm{~K} \times 16$ each	
	External instruction memory	$48 \mathrm{~K} \times 32$	None							
	External data memory (X/Y memory)	$48 \mathrm{~K} \times 16$ each	$16 \mathrm{~K} \times 16$ each			$32 \mathrm{~K} \times 16$ each	None	$16 \mathrm{~K} \times 16$ each	None	$8 \mathrm{~K} \times 16$ each
Instruction cycle (at maximum speed)		$30 \mathrm{~ns} \mathrm{(33} \mathrm{MHz)}$	$16.6 \mathrm{~ns}(60 \mathrm{MHz})$			$15.3 \mathrm{~ns}(65 \mathrm{MHz}$)	13.3 ns (75 MHz)			
Multiple		-	$\times 1,2,3,4,8$ (mask option)		Fixed to $\times 4$	Integer of $\times 1$ to 8 (external pin)	Integer of $\times 1$ to 16 (mask option)			
Serial interface (two channels)		Channels 1 and 2 have same function.	Channel 1 has same function as μ PD77016. Channel 2 does not have SORQ2 and SIAK2 pins (for connection of codec).							
Supply voltage		5 V	3 V			DSP core: 2.5 V I/O pins : 3 V				
Package		160-pin QFP	100-pin TQFP 116-pin BGA	100-pin TQFP			80-pin TQFP 80-pin FBGA	100-pin TQFP	80-pin FBGA	100-pin TQFP

PIN CONFIGURATION

80-pin plastic fine-pitch BGA (9×9)
μ PD77113AF1-xxx-CN1
(Bottom View)

(Top View)

Pin No.	Pin Name						
A1	-	C3	NU	E6	$\overline{\mathrm{HCS}}$	G8	P1
A2	NU	C4	RESET	E7	GND	G9	GND
A3	EVdo	C5	TDI	E8	HD1	H1	NU
A4	$\overline{\text { INT3 }}$	C6	TDO	E9	HD2	H2	NU
A5	GND	C7	CLKIN	F1	NU	H3	SCK1
A6	TMS	C8	HAO	F2	NU	H4	SOEN2
A7	GND	C9	EVdo	F3	SOEN1	H5	SIEN2
A8	$\overline{\text { TRST }}$	D1	EVdo	F4	GND	H6	P3
A9	-	D2	NU	F5	HDO	H7	P0
B1	NU	D3	$\overline{\mathrm{INT} 2}$	F6	SI2	H8	HD7
B2	NU	D4	NU	F7	HD3	H9	NU
B3	INT1	D5	TCK	F8	HD6	J1	-
B4	INT4/ $/$ WAKEUP ${ }^{\text {Note }}$	D6	GND	F9	HD5	J2	NU
B5	IVDD	D7	HWR	G1	EVDD	J3	SI1
B6	TICE	D8	HRD	G2	GND	J4	SORQ1
B7	IVDD	D9	EVdo	G3	SIEN1	J5	SO2
B8	HA1	E1	NU	G4	SO1	J6	SCK2
B9	CLKOUT	E2	GND	G5	IVDD	J7	EVDD
C1	GND	E3	SIAK1	G6	HD4	J8	NU
C2	NU	E4	NU	G7	P2	J9	-

Note The function of the $\overline{\text { WAKEUP }}$ pin can be activated or deactivated by a mask option.

100-pin plastic TQFP (fine-pitch) (14×14) (Top View) μ PD77114GC-xxx-9EU

Note The functions can be activated or deactivated by a mask option.

Pin No.	Pin Name						
1	GND	26	GND	51	GND	76	GND
2	NC	27	D7	52	P3	77	IVDD
3	NC	28	D6	53	P2	78	GND
4	DA12	29	D5	54	P1	79	TDO
5	DA11	30	D4	55	P0	80	TICE
6	DA10	31	D3	56	HD7	81	TCK
7	DA9	32	D2	57	HD6	82	TD1
8	DA8	33	D1	58	HD5	83	TMS
9	DA7	34	D0	59	HD4	84	TRST
10	DA6	35	IVdo	60	HD3	85	IVdo
11	DA5	36	GND	61	HD2	86	GND
12	DA4	37	SI1	62	HD1	87	$\overline{\text { RESET }}$
13	DA3	38	SIEN1	63	HDO	88	$\overline{\text { INT4 }} / \overline{\text { WAKEUP }}{ }^{\text {Note }}$
14	DA2	39	SCK1	64	EVDD	89	$\overline{\text { INT3 }}$
15	DA1	40	SIAK1	65	GND	90	$\overline{\text { INT2 }}$
16	DA0	41	SO1	66	$\overline{\text { HRE }}$	91	$\overline{\text { INT1 }}$
17	D15	42	SORQ1	67	$\overline{\text { HWE }}$	92	HOLDRQ
18	D14	43	SOEN1	68	$\overline{\text { HCS }}$	93	HOLDAK
19	D13	44	SOEN2	69	$\overline{\text { HRD }}$	94	$\overline{\text { BSTB }}$
20	D12	45	SO2	70	$\overline{\text { HWR }}$	95	NC
21	D11	46	SCK2	71	HAO	96	$\overline{\mathrm{MWR}}$
22	D10	47	SIEN2	72	HA1	97	$\overline{\text { MRD }}$
23	D9	48	SI2	73	CLKOUT	98	I.C.
24	D8	49	NC	74	CLKIN	99	\bar{X} / Y
25	EVDD	50	EVDD	75	EVDD	100	EVDD

Note The function of the $\overline{\mathrm{WAKEUP}}$ pin can be activated or deactivated by a mask option.

PIN NAME

$\overline{\text { BSTB }}$	Bus Strobe
CLKIN	Clock Input
CLKOUT	Clock Output
D0-D15	16-bit Data Bus
DA0-DA12	External Data Memory Address Bus
EVdd	Power Supply for I/O Pins
GND	Ground
HA0, HA1	Host Data Access
$\overline{\mathrm{HCS}}$	Host Chip Select
HD0 - HD7	Host Data Bus
HOLDAK	Hold Acknowledge
HOLDRQ	Hold Request
$\overline{\text { HRD }}$	Host Read
$\overline{\text { HRE }}$	Host Read Enable
HWE	Host Write Enable
HWR	Host Write
I.C.	Internally Connected
$\overline{\text { INT1 }}$ - $\overline{\text { INT4 }}$	Interrupt
IVdo	Power Supply for DSP Core
$\overline{\text { MRD }}$	Memory Read Output
$\overline{\text { MWR }}$	Memory Write Output
NC	Non-Connection
NU	Not Used
P0-P3	Port
RESET	Reset
SCK1, SCK2	Serial Clock Input
SI1, SI2	Serial Data Input
SIAK1	Serial Input Acknowledge
SIEN1, SIEN2	Serial Input Enable
SO1, SO2	Serial Data Output
SOEN1, SOEN	Serial Output Enable
SORQ1	Serial Output Request
TCK	Test Clock Input
TDI	Test Data Input
TDO	Test Data Output
TICE	Test In-Circuit Emulator
TMS	Test Mode Select
$\overline{\text { TRST }}$	Test Reset
WAKEUP	Wakeup from STOP Mode
$\overline{\mathrm{X}} / \mathrm{Y}$: X/Y Memory Select

CONTENTS

1. PIN FUNCTION 10
1.1 Pin Function Description 10
1.2 Connection of Unused Pins 15
2. FUNCTION OUTLINE 17
2.1 Program Control Unit 17
2.2 Arithmetic Unit 18
2.3 Data Memory Unit 19
2.4 Peripheral Units 19
3. CLOCK GENERATOR 20
4. RESET FUNCTION 20
4.1 Hardware Reset 20
4.2 Initializing PLL 21
5. FUNCTIONS OF BOOT-UP ROM 21
5.1 Boot at Reset 21
5.2 Reboot 22
5.3 Signature Operation 23
5.4 Instruction ROM Modification 23
6. STANDBY MODES 24
6.1 HALT Mode 24
6.2 STOP Mode 24
7. MEMORY MAP 25
7.1 Instruction Memory 25
7.2 Data Memory 27
8. MASK OPTION 28
8.1 Clock Control Options 28
8.2 WAKEUP Function 29
9. INSTRUCTIONS 30
9.1 Outline of Instructions 30
9.2 Instruction Set and Operation. 31
10. ELECTRICAL SPECIFICATIONS 37
11. PACKAGE DRAWINGS 56
12. RECOMMENDED SOLDERING CONDITIONS 58

1. PIN FUNCTION

Because the pin numbers differ depending on the package, refer to the diagram of the package to be used.

1.1 Pin Function Description

- Power supply

Pin Name	Pin No.		Function		Shared by:
	100-pin TQFP	80-pin BGA		-	
IVDD	$35,77,85$	B5, B7, G5	-	Power to DSP core (+2.5 V)	-
EVDD	$25,50,64,75$, 100	A3, C9, D1, D9, G1, J7	-	Power to I/O pins (+3 V)	-
GND	$1,26,36,51$, $65,76,78,86$	A5, A7, C1, D6, E2, E7, F4, G2, G9	-	Ground	-

* Remark Please supply voltage to the IVDD and EVDD pins simultaneously.

- System control

Pin Name	Pin No.		Function		Shared by:
	100-pin TQFP	80-pin BGA			-
CLKIN	74	C7	Input	System clock input	-
CLKOUT	73	B9	Output	Internal system clock output	
$\overline{\text { RESET }}$	87	C4	Input	Internal system reset signal input	$\overline{\text { InT4 }}$
$\overline{\text { WAKEUP }}$	88	B4	Stop mode release signal input. (When this pin is asserted active, the stop mode is released. The function of this pin can be activated or deactivated by a mask option.		

- Interrupt

Pin Name	Pin No.		I/O	Function	Shared by:
	100-pin TQFP	80-pin BGA			
INT1 - INT3	91-89	B3, D3, A4	Input	External maskable interrupt input. - Detected at the falling edge.	-
$\overline{\text { INT4 }}$	88	B4	Input		$\overline{\text { WAKEUP }}$

- External data memory interface (μ PD77114 only)

Pin Name	Pin No.		I/O	Function	Shared by:
	100-pin TQFP	80-pin BGA			
\bar{X} / Y	99	-	Output (3S)	Memory select signal output. 0 : Uses X memory. 1: Uses Y memory.	-
DA0 - DA12	16-4	-	Output (3S)	Address bus of external data memory. - Accesses the external memory. - Continuously outputs the external memory address accessed last when the external memory is not being accessed. Kept low (0×000) if the external memory is never accessed after reset.	-
D0-D15	34-27, 24-17	-	$\begin{gathered} \text { I/O } \\ (3 S) \end{gathered}$	16-bit data bus. - Accesses the external memory.	-
$\overline{\mathrm{MRD}}$	97	-	Output (3S)	Read output - External memory read	-
$\overline{\mathrm{MWR}}$	96	-	Output (3S)	Write output - External memory write	-
$\overline{\text { HOLDRQ }}$	92	-	Input	Hold request signal - Input a low level to this pin when the external device uses the external data memory bus of the μ PD77114.	-
$\overline{\text { BSTB }}$	94	-	Output	Bus strobe signal - This pin goes low when the μ PD77114 uses the external data memory bus.	-
HOLDAK	93	-	Output	Hold acknowledge signal - This pin goes low when the external device is enabled to use the external data memory bus of the μ PD77114.	-

Remark Pins marked "3S" under the heading "I/O" go into a high-impedance state in the following conditions:
$\overline{\mathrm{X}} / \mathrm{Y}$, DA0-DA12, $\overline{\mathrm{MRD}}, \overline{\mathrm{MWR}}$: When the bus is released ($\overline{\text { HOLDAK }}=$ low level)
D0-D15: When the external data memory is not being accessed and when the bus is released ($\overline{\mathrm{HOLDAK}}=$ low level)

- Serial interface

Pin Name	Pin No.		1/O	Function	Shared by:
	100-pin TQFP	80-pin BGA			
SCK1	39	H3	Input	Serial 1 clock input	-
SORQ1	42	J4	Output	Serial output 1 request	-
SOEN1	43	F3	Input	Serial output 1 enable	-
SO1	41	G4	Output (3S)	Serial data output 1	-
SIEN1	38	G3	Input	Serial input 1 enable	-
SI1	37	J3	Input	Serial data input 1	-
SIAK1	40	E3	Output	Serial input 1 acknowledge	-
SCK2	46	J6	Input	Serial 2 clock input	-
SOEN2	44	H4	Input	Serial output 2 enable	-
SO2	45	J5	Output (3S)	Serial data output 2	-
SIEN2	47	H5	Input	Serial input 2 enable	-
SI2	48	F6	Input	Serial data input 2	-

Remark The pins marked "3S" under the heading "I/O" go into a high-impedance state on completion of data transfer and input of the hardware reset ($\overline{\mathrm{RESET}}$) signal.

- Host interface

Pin Name	Pin No.		I/O	Function	Shared by:
	100-pin TQFP	80-pin BGA			
HA1	72	B8	Input	Specifies the register to be accessed by HD7 through HDO. - 1: Accesses the host interface status register (HST). - 0: Accesses the host transmit data register (HDT (out)) when read ($\overline{\mathrm{HRD}}=0$), and host receive data register (HDT (in)) when written $(\overline{\mathrm{HWR}}=0)$.	-
HAO	71	C8	Input	Specifies the register to be accessed by HD7 through HDO. - 1: Accesses bits 15 through 8 of HST, HDT (in), and HDT (out). - 0: Accesses bits 7 through 0 of HST, HDT (in), and HDT (out).	-
$\overline{\text { HCS }}$	68	E6	Input	Chip select input	-
$\overline{\text { HRD }}$	69	D8	Input	Host read input	-
HWR	70	D7	Input	Host write input	-
$\overline{\text { HRE }}$	66	-	Output	Host read enable output	-
HWE	67	-	Output	Host write enable output	-
HDO - HD7	63-56	$\begin{aligned} & \text { F5, E8, E9, F7, } \\ & \text { G6, F9, F8, H8 } \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & \text { (3S) } \end{aligned}$	8 -bit host data bus	-

Remark The pins marked " 3 S " under the heading " $/ \mathrm{O}$ " go into a high-impedance state when the host interface is not being accessed.

- I/O ports

Pin Name	Pin No.		1/O	Function	Shared by:
	100-pin TQFP	80-pin BGA			
P0	55	H7	1/0	General-purpose I/O port	-
P1	54	G8	1/O		-
P2	53	G7	1/O		-
P3	52	H6	1/O		-

- Debugging interface

Pin Name	Pin No.		I/O	Function	Shared by:
	100-pin TQFP	80-pin BGA			
TDO	79	C6	Output	For debugging	-
tice	80	B6	Output		-
TCK	81	D5	Input		-
TDI	82	C5	Input		-
TMS	83	A6	Input		-
$\overline{\text { TRST }}$	84	A8	Input		-

- Others

Pin Name	Pin No.		I/O	Function	Shared by:
	100-pin TQFP	80-pin BGA		-	Internally connected. Leave this pin unconnected.
I.C.	98	-	A2, B1, B2, C2, C3, D2, D4, E1, E4, F1, F2, H1, H2, H9, J2, J8	-	No function pins. Connect to EV DD via pull-up resistor, or connect to GND via pull-down resistor.
NU	-	-	-	No-connect pins. Leave these pins unconnected.	-
NC	$2,3,49,95$	-	A1, A9, J1, J9	-	Pins to strengthen soldering. Connect these pins to the board as necessary.

Caution If any signal is input to these pins or if an attempt is made to read these pins, the normal operation of the μ PD77113A and 77114 is not guaranteed.

1.2 Connection of Unused Pins

1.2.1 Connection of Function Pins

When mounting, connect unused pins as follows:

Pin	I/O	Recommended Connection
$\overline{\mathrm{INT} 1}-\overline{\mathrm{INT} 4}$	Input	Connect to EVDD.
\bar{X} / Y	Output	Leave unconnected.
DA0-DA12	Output	
D0-D15 ${ }^{\text {Note } 1}$	I/O	Connect to EVDD via pull-up resistor, or connect to GND via pull-down resistor.
$\overline{\mathrm{MRD}}, \overline{\mathrm{MWR}}$	Output	Leave unconnected.
$\overline{\text { HOLDRQ }}$	Input	Leave unconnected. (internally pulled up).
$\overline{\text { BSTB, }} \overline{\text { HOLDAK }}$	Output	Leave unconnected.
SCK1, SCK2	Input	Connect to EVDD or GND.
SI1, SI2	Input	
SIEN1, SIEN2	Input	Connect to GND.
SOEN1, SOEN2	Input	
SORQ1	Output	Leave unconnected.
SO1, SO2	Output	
SIAK1	Output	
HA0, HA1	Input	Connect to EVdd or GND.
$\overline{\mathrm{HCS}}, \overline{\mathrm{HRD}}, \overline{\mathrm{HWR}}$	Input	Connect to EVdo.
$\overline{\text { HRE, }} \overline{\text { HWE }}$	Output	Leave unconnected.
HDO-HD7 ${ }^{\text {Note } 2}$	I/O	Connect to EVDD via pull-up resistor, or connect to GND via pull-down resistor.
P0-P3	1/O	
TCK	Input	Connect to GND via pull-down resistor.
TDO, TICE	Output	Leave unconnected.
TMS, TDI	Input	Leave unconnected. (internally pulled up).
$\overline{\text { TRST }}$	Input	Leave unconnected. (internally pulled down).
CLKOUT	Output	Leave unconnected.

Notes 1. These pins may be left unconnected if the external data memory is not accessed in the program. However, connect these pins as recommended in the halt and stop modes when the power consumption must be lowered.
2. These pins may be left unconnected if $\overline{\mathrm{HCS}}, \overline{\mathrm{HRD}}$, and $\overline{\mathrm{HWR}}$ are fixed to the high level. However, connect these pins as recommended in the halt and stop modes when the power consumption must be lowered.
1.2.2 Connection of no-function pins

Pin	I/O	Recommended Connection
I.C.	-	Leave unconnected.
NU	-	Connect to EVDD via pull-up resistor, or connect to GND via pull-down resistor.
NC	-	Leave unconnected.

2. FUNCTION OUTLINE

2.1 Program Control Unit

This unit is used to execute instructions, and control branching, loops, interrupts, the clock, and the standby mode of the DSP.

2.1.1 CPU control

A three-stage pipeline architecture is employed and almost all the instructions, except some instructions such as branch instructions, are executed in one system clock.

2.1.2 Interrupt control

Interrupt requests input from external pins ($\overline{\mathrm{NT} 1}$ through $\overline{\mathrm{NT} 4}$) or generated by the internal peripherals (serial interface and host interface) are serviced. The interrupt of each interrupt source can be enabled or disabled. Multiple interrupts are also supported.

2.1.3 Loop control task

A loop function without any hardware overhead is provided. A loop stack with four levels is provided to support multiple loops.

2.1.4 PC stack

A 15-level PC stack that stores the program counter supports multiple interrupts and subroutine calls.

2.1.5 PLL

A PLL is provided as a clock generator that can multiply or divide an external clock input to supply an operating clock to the DSP. A multiple of $\times 1$ to $\times 16$ or a division ratio of $1 / 1$ to $1 / 16$ can be set by a mask option.

Two standby modes are available for lowering the power consumption while the DSP is not in use.

- HALT mode : Set by execution of the HALT instruction. The current consumption drops to several mA. The normal operation mode is recovered by an interrupt or hardware reset.
- STOP mode: Set by execution of the STOP instruction. The current consumption drops to several $10 \mu \mathrm{~A}$. The normal operation mode is recovered by hardware reset or WAKEUP pin ${ }^{\text {Note }}$.

Note If the WAKEUP function is activated by mask option

2.1.6 Instruction memory

The capacity and type of the memory differ depending on the model of the DSP.
64 words of the instruction RAM are allocated to interrupt vectors.
A boot-up ROM that boots up the instruction RAM is provided, and the instruction RAM can be initialized or rewritten by self boot (boot from the internal data ROM or external data space) or host boot (boot via host interface).

The μ PD77113A and 77114 have 3.5 K -word instruction RAM and 48K-word instruction ROM.

2.2 Arithmetic Unit

This unit performs multiplication, addition, logical operations, and shift, and consists of a 40-bit multiply accumulator, 40-bit data ALU, 40-bit barrel shifter, and eight 40-bit general-purpose registers.

2.2.1 General-purpose registers (R0 through R7)

These eight 40-bit registers are used to input/output data for arithmetic operations, and load or store data from/to data memory.

A general-purpose register (R 0 to R7) is made up of three parts: ROL through R7L (bits 15 through 0), ROH through R7H (bits 31 through 16), and R0E through R7E (bits 39 through 32). Depending on the type of operation, RnL, RnH, and RnE are used as one register or in different combinations.

2.2.2 Multiply accumulator (MAC)

The MAC multiplies two 16 -bit values, and adds or subtracts the multiplication result from one 40 -bit value, and outputs a 40-bit value.

The MAC is provided with a shifter (MSFT: MAC ShiFTer) at the stage preceding the input stage. This shifter can arithmetically shift the 40 -bit value to be added to or subtracted from the multiplication result 1 or 16 bits to the right .

2.2.3 Arithmetic logic unit (ALU)

This unit inputs one or two 40-bit values, executes an arithmetic or logical operation, and outputs a 40-bit value.

2.2.4 Barrel shifter (BSFT: Barrel ShiFTer)

The barrel shifter inputs a 40-bit value, shifts it to the left or right by any number of bits, and outputs a 40-bit value. The data may be arithmetically shifted to the right shifted to the right, in which case the data is sign-extended, or logically shifted to the right, in which case 0 is inserted from the MSB.

2.3 Data Memory Unit

The data memory unit consists of two banks of data memory and two data addressing units.

2.3.1 Data memory

The capacity and type of the memory differ depending on the model of the DSP. All DSPs have two banks of data memory (X data memory and Y data memory). A 64-word peripheral area is assigned in the data memory space.

The μ PD77113A and 77114 have 16K words $\times 2$ banks data RAM and 32 K words $\times 2$ banks data ROM.
In addition, the μ PD77114 has an external data memory interface so that the external memory can be expanded to 8 K words $\times 2$ banks.

2.3.2 Data addressing unit

An independent data addressing unit is provided for each of the X data memory and Y data memory spaces.
Each data addressing unit has four data pointers (DPn), four index registers (DNn), one modulo register (DMX or DMY), and an address ALU.

2.4 Peripheral Units

A serial interface, host interface, general-purpose I/O port, and wait cycle register are provided. All these internal peripherals are mapped to the X data memory and Y data memory spaces, and are accessed from program as memory-mapped I/Os.

2.4.1 Serial interface (SIO)

Two serial interfaces are provided. These serial interfaces have the following features:

- Serial clock : Supplied from external source to each interface. The same clock is used for input and output on the interface.
- Frame length: 8 or 16 bits, and MSB or LSB first selectable for each interface and input or output
- Handshake : Handshaking with external devices is implemented with a dedicated status signal. With the internal units, polling, wait, or interrupt are used.

2.4.2 Host interface (HIO)

This is an 8-bit parallel port that inputs data from or outputs data to an external host CPU or DMA controller. In the DSP, a 16-bit register is mapped to memory for input data, output data, and status. Handshaking with an external device is implemented by using a dedicated status signal. Handshaking with internal units is achieved by means of polling, wait, or interrupts.

2.4.3 General-purpose I/O port (PIO)

This is a 4-bit I/O port that can be set in the input or output mode in 1-bit units.

2.4.4 Wait cycle register

The number of wait cycles to be inserted when the external data memory area is accessed can be specified in advance by using a register (DWTR) ${ }^{\text {Note }}$. The number of wait cycles that can be set is 1,3 , or 7 .

Note This function is not available on the μ PD77113A because this DSP does not have an external data area.

3. CLOCK GENERATOR

The clock generator generates an internal system clock based on the external clock input from the CLKIN pin and supplies the generated clock to the internal units of the DSP.

For details of how to set the PLL multiple, refer to 4.2 Initializing PLL, and 8.1 Clock Control Options.

4. RESET FUNCTION

When a low level of a specified width is input to the $\overline{\text { RESET }}$ pin, the device is initialized.

4.1 Hardware Reset

If the $\overline{\text { RESET }}$ pin is asserted active (low level) for a specified period, the internal circuitry of the DSP is initialized. If the RESET pin is then deasserted inactive (high level), boot processing of the instruction RAM is performed according to the status of the port pins (P0 and P1). After boot processing, processing is executed starting from the instruction at address 0×200 of instruction memory (reset entry). In addition, a self-check is performed by the internal data RAM at the same time as the boot processing. This check takes about 20 ms (at 50 MHz operation, the length of this period is in inverse proportion to the operating frequency.)

On power application, the $\overline{\text { RESET }}$ pin must be asserted active (low level) after 4 input clocks have been input with the $\overline{R E S E T}$ pin in the inactive status (high level), after the supply voltage has reached the level of the operating voltage. In other words, no power-ON reset function is available. On power application, the PLL must be initialized.

4.2 Initializing PLL

Initializing the PLL starts from the 1024th input clock after the $\overline{\text { RESET }}$ pin has been asserted active (low level). Initialization takes 1024 clocks and it takes the PLL 100μ s to be locked.

After that, the DSP operates with the set value of the PLL specified by a mask option when the $\overline{\text { RESET }}$ pin is deasserted inactive (high level).

After initializing the PLL, be sure to execute boot-up processing to re-initialize the internal RAM. To initialize the PLL, the internal memory contents and register status of the DSP are not retained.

If the $\overline{\text { RESET }}$ pin is deasserted inactive before the PLL initialization mode is set, the DSP is normally reset (the PLL is not initialized).

Caution Do not deassert the $\overline{\text { RESET }}$ signal inactive in the PLL initialization mode and during PLL lock period.

5. FUNCTIONS OF BOOT-UP ROM

To rewrite the contents of the instruction memory on power application or from program, boot up the instruction RAM by using the internal boot-up ROM.

The μ PD77113A and 77114 have a function to verify the contents of the internal instruction RAM and a function to modify the instruction ROM in the boot-up ROM.

5.1 Boot at Reset

After hardware reset has been cleared, the boot program first reads the general-purpose I/O ports P0 and P1 and, depending on their bit pattern, determines the boot mode (self boot or host boot). After boot processing, processing is executed starting from the instruction at address 0×200 (reset entry) of the instruction memory.

The pins (P 0 and P 1) that specify the boot mode must be kept stable for the duration of 3 clocks before and for the duration of 12 clocks after reset has been cleared (the clock is input from CLKIN).

If host boot or self boot is specified, a self-check of the internal data RAM is performed at the same time as boot processing.

P1	P0	Boot Mode
0	0	Does not execute boot but branches to address $0 \times 200^{\text {Note }}$.
0	1	Executes host boot and then branches to address 0×200.
1	1	Executes self boot and then branches to address 0x200.
1	0	Setting prohibited

Note This setting is used when the DSP must be reset to recover from the standby mode after reset boot has been executed once.

5.1.1 Self boot

The boot-up ROM transfers the instruction code stored in the data memory space to the instruction RAM, based on the boot parameter written to address 0×4000 of the Y data memory. Generally, with a mask ROM model, this function is implemented by storing the instructions to be booted in the data ROM.

In addition, the instructions to be booted can be also stored in an external data area in the form of flash ROM, and self boot can be executed from this external data area.

5.1.2 Host boot

In this boot mode, a boot parameter and instruction code are obtained via the host interface, and transferred to the instruction RAM.

5.2 Reboot

By calling the next reboot entry from the program, the contents of the instruction RAM can be rewritten.

Reboot Mode		Entry Address	
Self boot	X memory	Word reboot	0×2
		Byte reboot	0×4
	Y memory	Word reboot	0×1
		Byte reboot	0×3
Host boot	Host reboot		0×5

5.2.1 Self reboot

The instruction codes stored in the data memory are transferred to the instruction RAM.
Set the following parameters and call the entry address of the corresponding reboot mode to execute self reboot.

- R7L: Number of instruction steps for rebooting
- DP3: First address of X memory in which instruction codes are stored (in the case of reboot from X memory), or first address of the instruction memory to be loaded (in the case of reboot from Y memory)
- DP7: First address of instruction memory to be loaded (in the case of reboot from X memory), or first address of X memory in which instruction codes are stored (in the case of reboot from Y memory)

5.2.2 Host reboot

An instruction code is obtained via the host interface and transferred to the instruction RAM.
The entry address of is 0×5. Host reboot is executed by calling this address after setting the following parameter:

- R7L: Number of instruction steps for rebooting
- DP3: First address of instruction memory to be loaded

5.3 Signature Operation

The μ PD77113A and 77114 have a signature operation function so that the contents of the internal instruction RAM can be verified. The signature operation performs a specific arithmetic operation on the data in the instruction RAM booted up, and returns the result to a register. Perform the signature operation in advance on the device when it is operating normally, and repeat the signature operation later to check whether the data in RAM is correct by comparing the operation result with the previous result. If the results are identical, there is no problem.

The entry address is 0×9. Execute the operation by calling this address after setting the following parameter. The operation result is stored in register R7.

- R7L: Number of instruction steps for operation
- DP3: First address of instruction memory for operation

5.4 Instruction ROM Modification

The μ PD77113A and 77114 have a function to modify the contents of the internal instruction mask ROM. Instructions at up to four addresses can be modified.

The entry address is $0 \times 10 \mathrm{D}$. By calling this address with the following parameters, modification is performed.

R7L : Address of instruction ROM to be modified
R6H, R6L : Instruction code (32 bits)

6. STANDBY MODES

Two standby modes are available. By executing the corresponding instruction, each mode is set and the power consumption can be reduced.

6.1 HALT Mode

To set this mode, execute the HALT instruction. In this mode, functions other than clock circuit and PLL are stopped to reduce the current consumption.

To release the HALT mode, use an interrupt or hardware reset. When releasing the HALT mode using an interrupt, the contents of the internal registers and memory are retained. It takes several 10 system clocks to release the HALT mode when the HALT mode is released using an interrupt.

In the HALT Mode, the clock circuit of the μ PD77111 family supplies the following clock as the internal system clock. The clock output from the CLKOUT pin is also as follows.

The clock output from the CLKOUT pin, however, has a high-level width that is equivalent to 1 cycle of the normal operation (i.e., the duty factor is not 50%).

- μ PD77113A, 77114: $1 /$ l of internal system clock ($=$ integer from 1 to 16 , specified by mask option)

6.2 STOP Mode

To set this mode, execute the STOP instruction. In this mode, all the functions, including the clock circuit and PLL, are stopped and the power consumption is minimized with only leakage current flowing.

To release the STOP mode, use hardware reset or $\overline{\text { WAKEUP }}$ pin.
When releasing the STOP mode by using the WAKEUP pin, the contents of the internal registers and memory are retained, but it takes several 100μ s to release the mode.

The $\overline{\text { WAKEUP }}$ pin is multiplexed with the $\overline{\mathrm{INT} 4}$ pin. Usually, this pin functions as an interrupt pin, but functions as the $\overline{\text { WAKEUP }}$ pin when it is asserted active in the STOP mode. Whether the $\overline{\text { WAKEUP }}$ pin is used to release the STOP mode is selected by mask option. For details, refer to 8.2 WAKEUP Function.

7. MEMORY MAP

A Harvard architecture, in which the instruction memory space and data memory space are separated is employed.

7.1 Instruction Memory

7.1.1 Instruction memory map

The instruction memory space consists of 64 K words $\times 32$ bits, and the capacity and type of the memory differ depending on the product.

Caution Programs and data cannot be placed at addresses reserved for the system, nor can these addresses be accessed. If these addresses are accessed, the normal operation of the device cannot be guaranteed.

7.1.2 Interrupt vector table

Addresses 0x200 through 0x23F of the instruction memory are entry points (vectors) of interrupts. Four instruction addresses are assigned to each interrupt source.

Vector	Interrupt Source
0x200	Reset
0x204	Reserved
0x208	
0x20C	
0x210	INT1
0x214	INT2
0x218	INT3
0x21C	INT4
0x220	SI1 input
0x224	SO1 output
0x228	SI2 input
0x22C	SO2 output
0x230	HI input
0x234	HO output
0x238	Reserved
0x23C	

Cautions 1. Although reset is not an interrupt, it is handled like an interrupt as an entry to a vector.
2. It is recommended that unused interrupt source vectors be used to branch an error processing routine.
3. Because a vector area also exists in the internal RAM area of the mask ROM model, this area must be booted up. In addition, because the entry address after reset is 0×200, address 0×200 must be booted up even when the internal instruction RAM and interrupts are not used.

7.2 Data Memory

7.2.1 Data memory map

The data memory space consists of an X memory space and a Y memory space of 64 K words $\times 16$ bits each, and the memory capacity and memory type differ depending on the product.

μ PD77113A		μ PD77114
$0 \times$ E000 $0 \times$ DFFF	Data RAM (8K words)	Data RAM (8 K words)
$\begin{aligned} & 0 \times C 000 \\ & 0 \times B F F F \end{aligned}$	System	External data memory (8K words)
	Data ROM (32K words)	Data ROM (32K words)
$0 \times 3 F F F$ 0×3840	System	System
$\begin{aligned} & 0 \times 383 \mathrm{~F} \\ & 0 \times 3800 \\ & 0 \times 37 \mathrm{~F} \end{aligned}$	Peripheral (64 words)	Peripheral (64 words)
$\begin{aligned} & 0 \times 31 F F \\ & 0 \times 3000 \\ & 0 \times 2 F F F \end{aligned}$	System	System
	Data RAM (4K words)	Data RAM (4K words)
$\begin{aligned} & 0 \times 2000 \\ & 0 \times 1 \text { FFF } \end{aligned}$	System	System
$\begin{aligned} & 0 \times 1000 \\ & 0 \times 0 F F F \end{aligned}$	Data RAM (4K words)	Data RAM (4K words)

Caution Programs and data cannot be placed at addresses reserved for the system, nor can these addresses be accessed. If these addresses are accessed, the normal operation of the device cannot be guaranteed.

7.2.2 Internal peripherals

The internal peripherals are mapped to the internal data memory space.

X/Y Memory Address	Register Name	Function	Peripheral Name
0×3800	SDT1	First serial data register	SIO
0×3801	SST1	First serial status register	
0×3802	SDT2	Second serial data register	
0×3803	SST2	Second serial status register	
0×3804	PDT	Port data register	PIO
0×3805	PCD	Port command register	HIO
0×3806	HDT	Host data register	
0×3807	HST	Host status register	WTR
0×3808	DWTR	Data memory wait cycle register	

Cautions 1. The register names listed in this table are not reserved words of the assembler or the \mathbf{C} language. Therefore, when using these names in assembler or \mathbf{C}, the user must define them.
2. The same register is accessed, as long as the address is the same, regardless of whether the X memory space or Y memory space is accessed.
3. Even different registers cannot be accessed at the same time from both the X and Y memory spaces.

8. MASK OPTION

The μ PD77113A and 77114 have mask options that must be specified when an order for a ROM is placed. This section explains these mask options. The mask options are specified in the Workbench (WB77016) development tool. To order a mask ROM, output a mask ROM ordering file format (.msk file) using WB77016.

8.1 Clock Control Options

The following four clock related options must be specified.

- PLL multiple
- Output division ratio
- HALT division ratio
- Validity of CLKOUT pin

When the PLL multiple is m, output division ratio is n, and halt division ratio is I, the relationship between each operation mode and operating clock is as follows:

Operation Mode	Clock Supplied Inside DSP
Normal operation mode	m / n times external input clock
HALT mode	$\mathrm{m} / \mathrm{n} / \mathrm{l}$ times external input clock
STOP mode	Stopped

The PLL control circuit multiplies the input clock by an integer from 1 to 16 . Specify the mask option of the PLL multiple so that the multiplied frequency falls within the specified PLL lock frequency range.

The output divider divides the clock multiplied by the PLL by an integer from 1 to 16 . Specify the mask option of the output division ratio so that the frequency m / n times the external input clock supplied to the DSP falls within the specified operating frequency range of the DSP.

The HALT divider functions only in the HALT mode. It divides the clock of the output divider by an integer from 1 to 16 and supplies the divided clock to the internal circuitry. Specify the mask option of the HALT division ratio so that necessary division can be performed.

Whether the clock supplied to the internal circuitry of the DSP (internal system clock) is "output" or "not output" from the CLKOUT pin can be specified. Specify the mask option as necessary.

If an odd value (other than 1) is specified as the output division ratio, the high-level width of the clock output from the CLKOUT pin is equal to one cycle during normal operation (i.e., the clock does not have a duty factor of 50%).

8.2 WAKEUP Function

The $\overline{\text { WAKEUP }}$ pin can be used to release the STOP mode as well as a hardware reset.
If the STOP mode is released by means of a hardware reset, the status before the STOP mode was set cannot be restored after the STOP mode has been released. If the $\overline{\text { WAKEUP }}$ pin is used, however, the status before the STOP mode is set can be retained and program execution can be resumed starting from the instruction after the STOP instruction.

Whether the $\overline{\text { WAKEUP }}$ pin is used to release the STOP mode can be specified by a mask option.
When the WAKEUP function is specified valid, the $\overline{\text { WAKEUP }}$ pin is multiplexed with the $\overline{\mathrm{INT4}}$ pin and it usually functions as an interrupt pin. The pin functions as the WAKEUP pin only in the STOP mode (if this pin is asserted active in the STOP mode, it is used only to release the STOP mode, and execution does not branch to an interrupt vector).

9. INSTRUCTIONS

9.1 Outline of Instructions

An instruction consists of 32 bits. Almost all the instructions, except some such as branch instructions, are executed with one system clock. The maximum instruction cycle of the μ PD77113A and 77114 is 13.3 ns. The following nine types of instructions are available:

(1) Trinomial operation instructions

These instructions specify an operation by the MAC. As the operands, three general-purpose registers can be specified.
(2) Binomial operation instructions

These instructions specify an operation by the MAC, ALU, or BSFT. As the operands, two general-purpose registers can be specified. An immediate value can be specified for some of these instructions, instead of a general-purpose register, for one input.

(3) Uninominal operation instructions

These instructions specify an operation by the ALU. As the operands, one general-purpose register can be specified.
(4) Load/store instructions

These instructions transfer 16-bit values between memory and a general-purpose register. Any general-purpose register can be specified as the transfer source or destination.
(5) Register-to-register transfer instructions

These instructions transfer data from one general-purpose register to another.
(6) Immediate value setting instructions

These instructions write an immediate value to a general-purpose register and the registers of the address operation unit.
(7) Branch instructions

These instruction specify branching of program execution.
(8) Hardware loop instructions

These instruction specify repetitive execution of an instruction.
(9) Control instructions

These instructions are used to control the program.

9.2 Instruction Set and Operation

An operation is written in the operation field for each instruction in accordance with the operation representation format of that instruction. If two or more parameters can be written, select one of them.
(a) Representation formats and selectable registers

The following table shows the representation formats and selectable registers.

Representation Format	Selectable Register
$\mathrm{rO}, \mathrm{rO}^{\prime}, \mathrm{rO}^{\prime \prime}$	R0-R7
rl, rl^{\prime}	R0L - R7L
rh, rh	R0H - R7H
re	R0E - R7E
reh	R0EH - R7EH
dp	DP0 - DP7
dn	DN0 - DN7
dm	DMX, DMY
dpx	DP0 - DP3
dpy	DP4 - DP7
dpx_mod	DPn, DPn++, DPn--, DPn\#\#, DPn\%\%, !DPn\#\# ($\mathrm{n}=0-3$)
dpy_mod	DPn, DPn++, DPn--, DPn\#\#, DPn\%\%, !DPn\#\# ($\mathrm{n}=4-7$)
dp_imm	DPn\#\#imm ($\mathrm{n}=0-7$)
*xxx	Contents of memory with address $x x x$ <Example> If the contents of the DP0 register are 1000, *DP0 indicates the contents of address 1000 of the memory.

(b) Modifying data pointer

The data pointer is modified after the memory has been accessed. The result of modification becomes valid starting from the instruction that immediately follows. The data pointer cannot be modified.

Example	Operation
DPn	Nothing is done (value of DPn is not changed.)
DPn++	$\mathrm{DPn} \leftarrow \mathrm{DPn}+1$
DPn--	$\mathrm{DPn} \leftarrow \mathrm{DPn}-1$
DPn\#\#	$\mathrm{DPn} \leftarrow \mathrm{DPn}+\mathrm{DNn}$ (Adds value of corresponding DN0 to DN7 to DP0 to DP7.) Example: $\mathrm{DPO} \leftarrow \mathrm{DPO}+$ DN0
DPn\%\%	$(\mathrm{n}=0-3) \mathrm{DPn}=((\mathrm{DPL}+\mathrm{DNn}) \mathrm{mod}(\mathrm{DMX}+1))+\mathrm{DPH}$
	$(\mathrm{n}=4-7) \mathrm{DPn}=((\mathrm{DPL}+\mathrm{DNn}) \mathrm{mod}(\mathrm{DMY}+1))+\mathrm{DPH}$
!DPn\#\#	Reverses bits of DPn and then accesses memory. After memory access, $\mathrm{DPn} \leftarrow \mathrm{DPn}+\mathrm{DNn}$
DPn\#\#imm	$\mathrm{DPn} \leftarrow \mathrm{DPn}+\mathrm{imm}$

(c) Instructions that can be simultaneously written

Instructions that can be simultaneously written are indicated by \checkmark.
(d) Status of overflow flag (OV)

The status of the overflow flag is indicated by the following symbol:

- : Not affected
! : Set to 1 when overflow occurs

Caution If an overflow does not occur as a result of an operation, the overflow flag is not reset but retains the status before the operation.

Instruction Set

Instruction	Instruction Name	Mnemonic	Operation	Instructions Simultaneously Written									Flag OV	
				$\begin{aligned} & \text { Trino- } \\ & \text { mial } \end{aligned}$	$\begin{aligned} & \text { Bino- } \\ & \text { mial } \end{aligned}$	$\begin{aligned} & \text { Unino- } \\ & \text { minal } \end{aligned}$	$\begin{array}{\|l\|l\|} \text { Load/ } \\ \text { store } \end{array}$	$\begin{array}{\|l\|l} \hline \text { Trans- } \\ \text { fer } \end{array}$	$\left\lvert\, \begin{aligned} & \text { Imme- } \\ & \text { diate- } \\ & \text { value } \end{aligned}\right.$	$\begin{aligned} & \text { Bran- } \\ & \text { ch } \end{aligned}$	Loop	Cont- rol		
Trinomial operation	Multiply add	$\mathrm{ro}=\mathrm{ro}+\mathrm{rh}^{*} \mathrm{rh}^{\prime}$	$\mathrm{ro} \leftarrow \mathrm{ro}+\mathrm{rh}^{*} \mathrm{rh}^{\prime}$				\checkmark						\dagger	
	Multiply sub	$\mathrm{ro}=\mathrm{ro}-\mathrm{rh}{ }^{\text {* }} \mathrm{rh}^{\prime}$	$\mathrm{ro} \leftarrow \mathrm{ro}-\mathrm{rh}^{*} \mathrm{rh}^{\prime}$				\checkmark						\dagger	
	Sign unsign multiply add	$r o=r o+r h * r$ (rl is in positive integer format.)	$\mathrm{ro} \leftarrow \mathrm{ro}+\mathrm{rh} * \mathrm{rl}$				$\sqrt{ }$						\dagger	
	Unsign unsign multiply add	$\mathrm{ro}=\mathrm{ro}+\mathrm{rl}^{*} \mathrm{rl}^{\prime}$ (rl and rl' are in positive integer format.)	$\mathrm{ro} \leftarrow \mathrm{ro}+\mathrm{rl}^{*} \mathrm{rl}^{\prime}$				\checkmark						\dagger	
	1-bit shift multiply add	$\mathrm{ro}=(\mathrm{ro>>} 1)+\mathrm{rh} * \mathrm{r}^{\prime}$	$\mathrm{ro} \leftarrow \frac{\mathrm{ro}}{2}+\mathrm{rh} * \mathrm{rh}^{\prime}$				\checkmark						\dagger	
	16-bit shift multiply add	$\mathrm{ro}=(\mathrm{ro>>} 16)+\mathrm{rh}{ }^{*} \mathrm{rh}^{\prime}$	$\mathrm{ro} \leftarrow \frac{\mathrm{ro}}{2^{16}}+\mathrm{rh}{ }^{*} \mathrm{rh}^{\prime}$				\checkmark						\bullet	
Binomial operation	Multiply	$\mathrm{ro}=\mathrm{rh}^{*} \mathrm{rh}^{\prime}$	$\mathrm{ro} \leftarrow \mathrm{rh}^{*} \mathrm{rh}^{\prime}$				\checkmark						\bullet	
	Add	$\mathrm{ro} \mathrm{\prime} \mathrm{\prime}=\mathrm{ro}+\mathrm{ro}^{\prime}$	$\mathrm{ro}^{\prime \prime} \leftarrow \mathrm{ro}+\mathrm{ro}^{\prime}$				\checkmark						t	
	Immediate add	$\mathrm{ro}^{\prime}=\mathrm{ro}+\mathrm{imm}$	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro}+\mathrm{imm}$ (where imm $\neq 1$)										\dagger	
	Sub	$\mathrm{ro}{ }^{\prime \prime}=\mathrm{ro}-\mathrm{ro}^{\prime}$	$\mathrm{ro}^{\prime \prime} \leftarrow \mathrm{ro}-\mathrm{ro}^{\prime}$				\checkmark						\dagger	
	Immediate sub	$\mathrm{ro}^{\prime}=\mathrm{ro}-\mathrm{imm}$	$\mathrm{ro} \leftarrow \mathrm{ro}-\mathrm{imm}$ (where imm $=1$)										\dagger	
	Arithmetic right shift	$r 0^{\prime}=$ ro SRA rl	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro} \gg \mathrm{rl}$				\checkmark						\bullet	
	Immediate arithmetic right shift	ro' = ro SRA imm	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro} \gg \mathrm{imm}$										\bullet	
	Logical right shift	$\mathrm{ro}^{\prime}=\mathrm{roSRL} \mathrm{rl}$	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro} \mathrm{>>} \mathrm{rl}$				$\sqrt{ }$						\bullet	
	Immediate logical right shift	ro' = ro SRL imm	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro} \mathrm{>>} \mathrm{imm}$										\bullet	
	Logical left shift	$\mathrm{ro}^{\prime}=\mathrm{roSLL} \mathrm{rl}$	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro} \ll \mathrm{rl}$				\checkmark						-	
	Immediate logical left shift	ro' = ro SLL imm	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro} \ll \mathrm{imm}$										\bullet	
	AND	$\mathrm{ro} \mathrm{\prime}=\mathrm{ro} \& \mathrm{ro}^{\prime}$	$\mathrm{ro}^{\prime \prime} \leftarrow \mathrm{ro} \& \mathrm{ro}^{\prime}$				\checkmark						\bullet	
	Immediate AND	$r O^{\prime}=r o \& i m m$	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro}$ \& imm										\bullet	
	OR	$\mathrm{ro} \mathrm{\prime} \mathrm{\prime}=\mathrm{ro} \mid \mathrm{ro}^{\prime}$	$\mathrm{ro}^{\prime \prime} \leftarrow \mathrm{ro} \mid \mathrm{ro}^{\prime}$				\checkmark						\bullet	
	Immediate OR	$\mathrm{ro}^{\prime}=\mathrm{ro} \\| \mathrm{imm}$	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro} \mid \mathrm{imm}$										\bullet	
	Exclusive OR	$\mathrm{ro} \mathrm{\prime}=\mathrm{ro}^{\wedge} \mathrm{ro}$	$\mathrm{ro}^{\prime \prime} \leftarrow \mathrm{ro}^{\wedge} \mathrm{ro}^{\prime}$				\checkmark						\bullet	
	Immediate exclusive OR	ro' $=$ ro ${ }^{\wedge} \mathrm{imm}$	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro}^{\wedge} \mathrm{imm}$										\bullet	

Instruction	Instruction Name	Mnemonic	Operation	Instructions Simultaneously Written									FlagOV
				Trino- mial	$\begin{aligned} & \text { Bino- } \\ & \text { mial } \end{aligned}$	$\begin{aligned} & \text { Unino- } \\ & \text { minal } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Load/ } \\ \text { store } \end{array}$	$\begin{aligned} & \text { Trans- } \\ & \text { fer } \end{aligned}$	Imme- diate- value	$\begin{array}{\|l} \text { Bran- } \\ \text { ch } \end{array}$	Loop	$\begin{array}{\|l\|} \text { Cont- } \\ \text { rol } \end{array}$	
Binomial operation	Less than	ro' $=$ LT (ro, ro')	$\begin{aligned} & \text { if }\left(\mathrm{r} 0<\mathrm{ro}^{\prime}\right) \\ & \left\{\mathrm{ro}^{\prime \prime} \leftarrow 0 \times 0000000001\right\} \\ & \text { else }\left\{r^{\prime \prime} \leftarrow 0 \times 0000000000\right\} \end{aligned}$				\checkmark						\bullet
Uninom- inal operation	Clear	CLR (ro)	$\mathrm{ro} \leftarrow 0 \times 0000000000$				\checkmark					\checkmark	-
	Increment	$\mathrm{ro}^{\prime}=\mathrm{ro}+1$	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro}+1$				\checkmark					\checkmark	\dagger
	Decrement	$\mathrm{ro}^{\prime}=\mathrm{ro}-1$	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro}-1$				\checkmark					\checkmark	\dagger
	Absolute value	$\mathrm{ro}^{\prime}=\mathrm{ABS}$ (ro)	$\begin{aligned} & \text { if }(\mathrm{ro}<0) \\ & \left\{\mathrm{ro}^{\prime} \leftarrow-\mathrm{ro}\right\} \\ & \text { else }\left\{\mathrm{ro}^{\prime} \leftarrow \mathrm{ro}\right\} \end{aligned}$				\checkmark					\checkmark	\dagger
	1's complement	$\mathrm{ro}^{\prime}=\sim \mathrm{ro}$	$\mathrm{ro}^{\prime} \leftarrow \sim \mathrm{ro}$				\checkmark					\checkmark	-
	2's complement	$\mathrm{ro}^{\prime}=-\mathrm{ro}$	$\mathrm{ro}^{\prime} \leftarrow-\mathrm{ro}$				\checkmark					\checkmark	\dagger
	Clip	ro' = CLIP (ro)	$\begin{aligned} & \text { if }(\text { ro }>0 \times 007 F F F F F F F) \\ & \left\{r 0^{\prime} \leftarrow 0 x 007 F F F F F F F\right\} \\ & \text { elseif }\{r 0<0 x F F 80000000\} \\ & \left\{r 0^{\prime} \leftarrow 0 x F F 80000000\right\} \\ & \text { else }\left\{r 0^{\prime} \leftarrow r 0\right\} \end{aligned}$				\checkmark					\checkmark	\bullet
	Round	ro' = ROUND (ro)					\checkmark					\checkmark	\bullet
	Exponent	$\mathrm{ro}^{\prime}=\mathrm{EXP}$ (ro)	$\mathrm{rO}^{\prime} \leftarrow \log _{2}\left(\frac{1}{\mathrm{rO}}\right)$				\checkmark					\checkmark	\bullet
	Substitution	$\mathrm{ro}^{\prime}=\mathrm{ro}$	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro}$				\checkmark					\checkmark	\bullet
	Accumulated addition	$\mathrm{ro}^{\prime}+=\mathrm{ro}$	$\mathrm{ro}{ }^{\prime} \leftarrow \mathrm{ro}{ }^{\prime}+\mathrm{ro}$				\checkmark					\checkmark	\dagger
	Accumulated subtraction	$\mathrm{ro}^{\prime}-=\mathrm{ro}$	$\mathrm{ro}{ }^{\prime} \leftarrow \mathrm{ro}^{\prime}-\mathrm{ro}$				\checkmark					\checkmark	\dagger
	Division	$\mathrm{ro}^{\prime} /=\mathrm{ro}$	$\begin{aligned} & \text { if }\left(\text { sign }\left(\mathrm{ro}^{\prime}\right)==\operatorname{sign}(\mathrm{ro})\right) \\ & \left\{\mathrm{ro}^{\prime} \leftarrow\left(\mathrm{ro}^{\prime}-\mathrm{ro}\right) \ll 1\right\} \\ & \text { else } \\ & \left\{\mathrm{ro}^{\prime} \leftarrow\left(\mathrm{ro}^{\prime}+\mathrm{ro}\right) \ll 1\right\} \\ & \text { if }\left(\operatorname{sign}\left(\mathrm{ro}^{\prime}\right)==0\right) \\ & \left\{\mathrm{ro}^{\prime} \leftarrow \mathrm{ro}^{\prime}+1\right\} \end{aligned}$				\checkmark					$\sqrt{ }$	\dagger

Notes 1. Of the two mnemonics, either one of them or both can be written.
2. After transfer, modification specified by mod is performed.
3. Select any of dest, dest' $=\{r o, r e h, r e, r h, r l\}$, source, source' $=\{r e, r h, r l\}$.
4. Select any of dest $=\{r o, r e h, r e, r h, r l\}$, source $=\{r e, r h, r l\}$, addr $=\left\{\begin{array}{l}0: X-0 x F F F: X(X \text { memory }) \\ 0: Y \text { - } 0 x F F F F: Y(Y \text { memory })\end{array}\right\}$.
5. Select any of dest $=\{r o, r e h, r e, r h, r l\}$, source $=\{r e, r h, r l\}$.
6. Select any register other than general-purpose registers as dest and source.

Instruc tion	Instruction Name	Mnemonic	Operation	Instructions Simultaneously Written									Flag OV
				$\begin{aligned} & \text { Trino- } \\ & \text { mial } \end{aligned}$	Binomial	$\left\lvert\, \begin{aligned} & \text { Unino- } \\ & \text { minal } \end{aligned}\right.$		Transfer	$\begin{array}{\|l\|l} \text { Imme- } \\ \text { diate- } \\ \text { value } \end{array}$	$\begin{aligned} & \begin{array}{l} \text { Bran- } \\ \text { ch } \end{array} \end{aligned}$	Loop	${ }_{\text {rol }}$ Cont-	
Branch	Jump	JMP imm	$\mathrm{PC} \leftarrow \mathrm{imm}$									\checkmark	\bullet
	Register indirect jump	JMP dp	$\mathrm{PC} \leftarrow \mathrm{dp}$									\checkmark	\bullet
	Subroutine call	CALL imm	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}+1 \\ & \mathrm{STK} \leftarrow \mathrm{PC}+1 \\ & \mathrm{PC} \leftarrow \mathrm{imm} \end{aligned}$									\checkmark	\bullet
	Register indirect subroutine call	CALL dp	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}+1 \\ & \mathrm{STK} \leftarrow \mathrm{PC}+1 \\ & \mathrm{PC} \leftarrow \mathrm{dp} \\ & \hline \end{aligned}$									\checkmark	\bullet
	Return	RET	$\begin{aligned} & \mathrm{PC} \leftarrow \mathrm{STK} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-1 \end{aligned}$									\checkmark	\bullet
	Interrupt return	RETI	$\begin{aligned} & \mathrm{PC} \leftarrow \mathrm{STK} \\ & \mathrm{STK} \leftarrow \mathrm{SP}-1 \end{aligned}$ Recovery of interrupt enable flag									\checkmark	\bullet
Hardware loop	Repeat	REP count	Start $R C \leftarrow$ count $R F \leftarrow 0$ During repeat $P C \leftarrow P C$ $R C \leftarrow R C-1$ End $P C \leftarrow P C+1$ $R F \leftarrow 1$										\bullet
	Loop	LOOP count (instruction of two or more lines)	Start $R C \leftarrow$ count $R F \leftarrow 0$ During repeat $P C \leftarrow P C$ $R C \leftarrow R C-1$ End $P C \leftarrow P C+1$ $R F \leftarrow 1$										\bullet
	Loop hop	LPOP	$\begin{aligned} & \mathrm{LC} \leftarrow \mathrm{LSR} 3 \\ & \mathrm{LE} \leftarrow \mathrm{LSR2} \\ & \mathrm{LS} \leftarrow \mathrm{LSR} 1 \\ & \mathrm{LSP} \leftarrow \mathrm{LSP}-1 \end{aligned}$										\bullet
Control	No operation	NOP	$\mathrm{PC} \leftarrow \mathrm{PC}+1$										\bullet
	Halt	HALT	CPU stops.										\bullet
	Stop	STOP	CPU, PLL, and OSC stop.										\bullet
	Condition	IF (ro cond)	Condition test			\checkmark		$\sqrt{ }$		\checkmark			\bullet
	Forget interrupt	FINT	Discard interrupt request										\bullet

10. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=\mathbf{+ 2 5 ^ { \circ }} \mathrm{C}$)

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	IVdo	For DSP core	-0.5 to +3.6	V
	EVdd	For I/O pins	-0.5 to +4.6	V
Input voltage	V_{1}	$\mathrm{V}_{1}<E V_{D D}+0.5 \mathrm{~V}$	-0.5 to +4.1	V
Output voltage	Vo		-0.5 to +4.1	V
Storage temperature	$\mathrm{T}_{\text {stg }}$		-65 to +150	${ }^{\circ} \mathrm{C}$
Operating temperature	TA		-40 to +85	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used unber conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions

Parameter	Symbol		Condition	MIN.	TYP.	MAX.	Unit
Operating voltage	IVDD	For DSP core		1.8		2.7	V
	EVdd	For I/O pins	$\mathrm{IV} \mathrm{DD}=1.8$ to 2.7 V	2.7		3.3	V
			$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V			3.6	
Input voltage	V_{1}			0		EVdD	V

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{IV} \mathrm{DD}=0 \mathrm{~V}, E V_{D D}=0 \mathrm{~V}\right)$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cl	$\mathrm{f}=1 \mathrm{MHz},$ Pins other than those tested: 0 V		10		pF
Output capacitance	Co			10		pF
I/O capacitance	$\mathrm{Cı}$			10		pF

DC Characteristics (Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$, with IVDD and EVdD within recommended operating condition range)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
High-level input voltage	VIHN	Pins other than below	0.7 EVDD		EVDD	V
	$\mathrm{V}_{\text {Hes }}$	CLKIN, $\overline{\text { RESET, }}$ $\overline{\mathrm{INT} 1}-\overline{\mathrm{NT} 4}$, SCK1, SIEN1, SOEN1, SCK2, SIEN2, SOEN2	0.8 EVDD		EVDD	V
	VIHC	CLKIN	$\begin{gathered} 0.5 \mathrm{EV} \text { DD } \\ +0.25 \end{gathered}$		EVDD	V
Low-level input voltage	VIL	Pins other than below	0		0.2 EVDD	V
	Vıc	CLKIN	0		$\begin{gathered} 0.5 \mathrm{EV} \mathrm{VD}^{2} \\ -0.25 \end{gathered}$	V
High-level output voltage	Vон	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	0.7 EVDD			V
		IOH $=-100 \mu \mathrm{~A}$	0.8 EVdo			V
Low-level output voltage	Vob	$\mathrm{loL}=2.0 \mathrm{~mA}$			0.2 EVDD	V
High-level input leakage current	ILH	Other than TDI, TMS, and TRST $V_{I}=E V_{D D}$	0		10	$\mu \mathrm{A}$
Low-level input leakage current	ILL	Other than TDI, TMS, and TRST $\mathrm{V}_{1}=0 \mathrm{~V}$	-10		0	$\mu \mathrm{A}$
Pull-up pin current	IpuI	TDI, TMS, 0 V $\leq \mathrm{V}_{1} \leq \mathrm{EV}_{\text {DD }}$	-250		0	$\mu \mathrm{A}$
Pull-down pin current	IPDI	$\overline{\text { TRST, }} 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{EVDD}^{\text {d }}$	0		250	$\mu \mathrm{A}$
Internal supply current $\left[\mathrm{V}_{\mathrm{IHN}}=\mathrm{V}_{\mathrm{IHS}}=\mathrm{EV} \mathrm{VD}^{2}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}\right. \text {, }$ no load]	lod ${ }^{\text {Note }}$	During operating, $30 \mathrm{~ns}, \mathrm{IVDD}=$ 2.7 V		TBD	75	mA
	Idoh	In halt mode, tcc $=30 \mathrm{~ns}$, divided by eight, $\mathrm{IV} \mathrm{DD}=2.7 \mathrm{~V}$		TBD	10	mA
	ldos	In stop mode, $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<60^{\circ} \mathrm{C}$			100	$\mu \mathrm{A}$

Note The TYP. values are when an ordinary program is executed.
The MAX. values are when a special program that brings about frequent switching inside the device is executed.

Common Test Criteria of Switching Characteristics

CLKIN, $\overline{\text { RESET }}, \overline{\text { INT1 }}-\overline{\mathrm{INT} 4}$, SCK1, SIEN1, SOEN1, SCK2, SIEN2, SOEN2

Output

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, with IVDD and $E V_{D D}$ within recommended operating condition range)

Clock

Timing requirements

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
CLKIN cycle time ${ }^{\text {Note } 1}$	tccx			25			ns
		PLL lock range ${ }^{\text {Note } 2}$	$\begin{aligned} & \mathrm{IV} \mathrm{DD}=1.8 \\ & \text { to } 2.7 \mathrm{~V} \end{aligned}$	$25 \times \mathrm{m}$		$50 \times \mathrm{m}$	ns
			$\begin{aligned} & \mathrm{IV} \mathrm{DD}=2.3 \\ & \text { to } 2.7 \mathrm{~V} \end{aligned}$	$10 \times m$		$50 \times \mathrm{m}$	ns
CLKIN high-level width	twcxh			12.5			ns
CLKIN low-level width	twCxL			12.5			ns
CLKIN rise/fall time	tricx					5	ns
Internal clock cycle time requirements ${ }^{\text {Nole } 3}$	$\left.\mathrm{tcC}_{\text {(}} \mathrm{R}\right)$	$\mathrm{IV} \mathrm{VD}=1.8$ to 2.7 V		25			ns
		IV DD $=2.3$ to 2.7 V		13.3			ns

Notes 1. m: Multiple, n: Division ratio
2. This is the range in which the PLL is locked (stably oscillates). Input tccx within this range.
3. Input $t_{c c x}$ so that the value of ($\mathrm{tccx}^{\circ} \div \mathrm{m} \times \mathrm{n}$) satisfies this condition.

Switching characteristics

Parameter	Symbol		Condition	MIN.	TYP.	MAX.	Unit
Internal clock cycle ${ }^{\text {Note }}$	tcc	During normal operation			$\operatorname{tcc} \times \times n \div m$		ns
		In HALT mode			$\operatorname{tcc} \times \times n \div m \times 1$		ns
CLKOUT cycle time	tcco				toc		ns
CLKOUT width	twco	During normal operation	$n=1$, or even number	toc $\div 2-3$			ns
			$\begin{aligned} & \mathrm{n}=\text { odd number } \\ & \text { (other than } 1 \text {) } \end{aligned}$	tco $\div 0 \div 2-3$			ns
		In HALT mode		tcc $\div \mathrm{n} \div 2-3$			ns
CLKOUT rise/fall time	trico					5	ns
CLKOUT delay time	taco	$\mathrm{I} \mathrm{VDD}^{\text {= }} 1.8$ to 2.7 V				20	ns
		$\mathrm{IVDD}=2.3$ to 2.7 V				15	ns

Note m: Multiple, n: Division ratio, I: HALT division ratio

Clock I/O timing

Reset, Interrupt

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
$\overline{\text { RESET }}$ low-level width	$t_{\text {w (RL) }}$	On power application ${ }^{\text {Note } 1}$, in STOP mode	$\begin{gathered} 100+ \\ 2048 \mathrm{tccx} \end{gathered}$			$\mu \mathrm{s}$
		During normal operation, in HALT mode	$4 \mathrm{tcc}{ }^{\text {Note } 2}$		Note 3	ns
$\overline{\text { RESET }}$ recovery time	trec (R)	On power application ${ }^{\text {Note } 4}$	4 tccx			ns
			$4 \mathrm{tcc}{ }^{\text {Note } 2}$			ns
$\overline{\text { WAKEUP }}$ low-level width	tw (WAKEUPL)		100			$\mu \mathrm{S}$
$\overline{\mathrm{INT} 1}$ - $\overline{\mathrm{INT} 4}$ low-level width	tw (INTL)		$3 \mathrm{tcc}^{\text {Note } 2}$			ns
$\overline{\text { INT1 }}$ - INT4 recovery time	tree (INT)		3 tcc			ns

Notes 1. The value on power application is the time from when the supply voltages have reached IVDD $=1.8 \mathrm{~V}$ and $E V D D=2.7 \mathrm{~V}$. A stable clock input is also required.
2. Note that tcc is $I(I=$ integer of 1 to 16$)$ times that during normal operation in the HALT mode.
3. If the low-level width of $\overline{R E S E T}$ is greater than 1024 tcc , the PLL initialization mode is triggered. If there is no need to use the PLL initialization mode, set the width to less than 1024tcc.
4. When the power is turned on, a recovery period of 4 tccx is necessary before inputting RESET.

Reset timing

WAKEUP timing

WAKEUP

Interrupt timing

INT1 - INT4

External Data Memory Access (μ PD77114 only)

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Read data setup time	tsuDDRD		18			ns
Read data hold time	thDDRD		0			ns

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX	Unit
Address cycle time	trodA			toc $+(\text { toc } \mathrm{X} \text { tow })^{\text {mide }}$		ns
Address output hold time	thDA		0			ns
$\overline{\mathrm{MRD}}$ output delay time	tddR				5	ns
Write data output valid time	tvodwd				5	ns
Write data output hold time	thDowd		0			ns
$\overline{\mathrm{MWR}}$ output delay time	tdow		0		0.5 tcc	ns
$\overline{\mathrm{MWR}}$ output hold time	thDA		0			ns
$\overline{\text { MWR }}$ low-level width	twDWL		tcc \times todw - 3			ns
$\overline{\mathrm{MWR}}$ high-level width	twDWH		$0.5 \mathrm{tcc}-3$			ns

Note tcDw: Number of data wait cycles
μ PD77113A, 77114

External data memory access timing (read)

External data memory access timing (write)

Bus Arbitration (μ PD77114 only)

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
$\overline{\text { HOLDRQ setup time }}$	tsuHRQ		0			ns
$\overline{\text { HOLDRQ }}$ hold time	thHRQ		0			ns

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
$\overline{\text { BSTB }}$ hold time	tnBS		0			ns
$\overline{\text { BSTB }}$ output delay time	tdBS				20	ns
HOLDAK output delay time	tdHAK				18	ns
Data hold time during bus arbitration	th (BS-D)				25	ns
Data valid time during bus arbitration	tv (BS-D)				25	ns

μ PD77113A, 77114

Bus arbitration timing (when bus is idle)

Bus arbitration timing (when bus is busy)

Serial Interface

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
SCK cycle time	tcsc		60			ns
SCK high-/low-level width	twsc		25			ns
SCK rise/fall time	trisc				20	ns
SOEN setup time	tsusoe	$\mathrm{IV} \mathrm{DD}=1.8$ to 2.7 V	10			ns
		$\mathrm{IV} \mathrm{VD}^{2}=2.3$ to 2.7 V	5			ns
SOEN hold time	thsoe	$\mathrm{IVDD}=1.8$ to 2.7 V	15			ns
		$\mathrm{IV} \mathrm{VD}=2.3$ to 2.7 V	10			ns
SIEN setup time	tsusie	$\mathrm{IVDD}=1.8$ to 2.7 V	10			ns
		$\mathrm{IVDD}=2.3$ to 2.7 V	5			ns
SIEN hold time	thsie	$\mathrm{IVDD}=1.8$ to 2.7 V	15			ns
		$\mathrm{IVDD}=2.3$ to 2.7 V	10			ns
SI setup time	tsusı	$\mathrm{IV} \mathrm{DD}=1.8$ to 2.7 V	10			ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V	5			ns
SI hold time	thsı	$\mathrm{IV} \mathrm{DD}=1.8$ to 2.7 V	15			ns
		IV DD $=2.3$ to 2.7 V	10			ns

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
SORQ output delay time	tdsor	$\mathrm{IV} \mathrm{DD}=1.8$ to 2.7 V			30	ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V			25	ns
SORQ hold time	thSor		0			ns
SO output delay time	tdso	$\mathrm{IV} \mathrm{DD}=1.8$ to 2.7 V			30	ns
		IV dD $=2.3$ to 2.7 V			25	ns
SO hold time	thso		0			ns
SIAK output delay time	tdsIA	$\mathrm{IV} \mathrm{VD}=1.8$ to 2.7 V			30	ns
		$\mathrm{IV} \mathrm{dD}=2.3$ to 2.7 V			25	ns
SIAK hold time	tnsiA		0			ns

Caution If noise is superimposed on the serial clock, the serial interface may be deadlocked. Bear in mind the following points when designing your system:

- Reinforce the wiring for power supply and ground (if noise is superimposed on the power and ground lines, it has the same effect as if noise were superimposed on the serial clock).
- Shorten the wiring between the device's SCK1 and SCK2 pins, and clock supply source.
- Do not cross the signal lines of the serial clock with any other signal lines. Do not route the serial clock line in the vicinity of a line through which a high alternating current flows.
- Supply the clock to the SCK1 and SCK2 pins of the device from the clock source on a one-toone basis. Do not supply clock to several devices from one clock source.
- Exercise care that the serial clock does not overshoot or undershoot. In particular, make sure that the rising and falling of the serial clock waveform are clear.
 rises and falls linearly.

\times

The serial clock must not bound. Noise must not be superimposed on the serial clock.

\times

The serial clock must not rise or fall step-wise.

Serial output timing 1

Serial output timing 2 (during successive output)

μ PD77113A, 77114

Serial input timing 1

Serial input timing 2 (during successive input)

Host Interface

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
$\overline{\mathrm{HRD}}$ delay time	tdHR	$\mathrm{IV} \mathrm{VD}^{\text {a }} 1.8$ to 2.7 V	15			ns
		IV dD $=2.3$ to 2.7 V	10			ns
$\overline{\mathrm{HRD}}$ width	twHR		60			ns
$\overline{\mathrm{HCS}}, \mathrm{HA} 0, \mathrm{HA} 1$, read hold time	thHCAR		0			ns
$\overline{\mathrm{HCS}}, \mathrm{HAO}, \mathrm{HA1}$ write hold time	tnhCAW		0			ns
$\overline{\mathrm{HRD}}, \overline{\text { HWR }}$ recovery time	trechs		60			ns
HWR delay time	tdaw	$\mathrm{IV} \mathrm{DD}=1.8$ to 2.7 V	15			ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V	10			ns
HWR width	twhw		60			ns
$\overline{\text { HWR }}$ hold time	thHDw		0			ns
HWR setup time	tsuHDW	$\mathrm{IV} D \mathrm{D}=1.8$ to 2.7 V	15			ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V	10			ns

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
$\overline{\mathrm{HRE}}, \overline{\mathrm{HWE}}$ output delay time	tdHE	$\mathrm{IV} \mathrm{DD}=1.8$ to 2.7 V			30	ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V			25	ns
$\overline{\text { HRE, }} \overline{\text { HWE }}$ hold time	thHE	$\mathrm{IV} \mathrm{DD}=1.8$ to 2.7 V			30	ns
		$\mathrm{IV} \mathrm{DD}^{\text {= }} 2.3$ to 2.7 V			25	ns
$\overline{\mathrm{HRD}}$ valid time	tvHDR	$\mathrm{IV} \mathrm{DD}=1.8$ to 2.7 V			30	ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V			25	ns
$\overline{\mathrm{HRD}}$ hold time	thHDR		0			ns

μ PD77113A, 77114

Host read interface timing

Host write interface timing

General-purpose I/O Port

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Port input setup time	tsupl		0			ns
Port input hold time	thpl	IV D $=1.8$ to 2.7 V	15			ns
		IV DD $=2.3$ to 2.7 V	10			ns

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Port output delay time	tapo	$\mathrm{IV} \mathrm{VD}=1.8$ to 2.7 V			30	ns
		IV DD $=2.3$ to 2.7 V			25	ns

General-purpose I/O port timing

μ PD77113A, 77114

Debugging Interface (JTAG)

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
TCK cycle time	tctck		120			ns
TCK high-/low-level width	twTCK		50			ns
TCK rise/fall time	trick				20	ns
TMS, TDI setup time	tsuDI	$\mathrm{IV} \mathrm{DD}=1.8$ to 2.7 V	25			ns
		IV do $=2.3$ to 2.7 V	20			ns
TMS, TDI hold time	thDI	$\mathrm{IV} \mathrm{dD}=1.8$ to 2.7 V	25			ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V	20			ns
Input pin setup time	tsulin	$\mathrm{IV} \mathrm{DD}=1.8$ to 2.7 V	25			ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V	20			ns
Input pin hold time	thJIN	$\mathrm{IV} \mathrm{DD}=1.8$ to 2.7 V	25			ns
		$I \mathrm{~V} D=2.3$ to 2.7 V	20			ns
$\overline{\text { TRST }}$ setup time	tsutrst		100			ns

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
TDO output delay time	tado	$\mathrm{IV} \mathrm{DD}=1.8$ to 2.7 V			25	ns
		IV DD $=2.3$ to 2.7 V			20	ns
Output pin output delay time	tajout	IV ${ }_{\text {DD }}=1.8$ to 2.7 V			25	ns
		IV DD $=2.3$ to 2.7 V			20	ns

Debugging interface timing

Remark For details of JTAG, refer to IEEE1149.1.
11. PACKAGE DRAWINGS

80-PIN PLASTIC FBGA (9x9)

ITEM	MILLIMETERS
A	9.00 ± 0.10
B	8.40
C	8.40
D	9.00 ± 0.10
E	1.30
F	0.8 (T.P.)
G	0.35 ± 0.1
H	0.36
I	0.96
J	1.31 ± 0.15
K	0.10
L	$\phi 0.50_{-0}^{+0.10}$
M	0.08
P	C1.0
Q	R0.3
R	25°
W	0.20
Y1	0.20
	S80F1-80-CN1-1

100-PIN PLASTIC TQFP (FINE PITCH) (14x14)

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	16.0 ± 0.2
B	14.0 ± 0.2
C	14.0 ± 0.2
D	16.0 ± 0.2
F	1.0
G	1.0
H	$0.22_{-0.04}^{+0.05}$
I	0.10
J	0.5 (T.P.)
K	1.0 ± 0.2
L	0.5 ± 0.2
M	$0.145_{-0.045}^{+0.055}$
N	0.10
P	1.0 ± 0.1
Q	0.1 ± 0.05
R	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$
S	1.27 MAX.
	S100GC-50-9EU-2

12. RECOMMENDED SOLDERING CONDITIONS

It is recommended to solder this product under the following recommended conditions.
For the details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Surface mount type

μ PD77113AF1-xxx-CN1: 80-pin plastic fine-pitch BGA (9 x 9)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $230^{\circ} \mathrm{C}$, Time: 30 sec. Max. (at $210^{\circ} \mathrm{C}$ or higher). Count: two times or less Exposure limit: 3 days $^{\text {Note }}$ (after that prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	IR30-103-2

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and 65% RH or less for the allowable storage period.
μ PD77114GC-xxx-9EU: 100-pin plastic TQFP (fine-pitch) (14 x 14)

Soldering Method		Soldering Conditions
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 sec. Max. (at $210^{\circ} \mathrm{C}$ or higher). Count: two times or less Exposure limit: 3 days $^{\text {Note }}$ (after that prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	IR35-103-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 sec. Max. (at $200^{\circ} \mathrm{C}$ or higher). Count: two times or less Exposure limit: 3 days ${ }^{\text {Note }}$ (after that prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	VP15-103-2
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ Max., Time: 3 sec. Max. (per pin row)	-

Note After opening the dry pack, store is at $25^{\circ} \mathrm{C}$ or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating for pins).

[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.I.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899

NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore
Tel: 65-253-8311
Fax: 65-250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP Brasil
Tel: 55-11-6462-6810
Fax: 55-11-6462-6829

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of January, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

