# Low-Voltage, Low RoN , SPDT Audio Switch with Negative Swing Capability 

## DESCRIPTION

The DG2612, DG2613 is a low on-resistance, single-pole/ double-throw monolithic CMOS analog switch with negative signal swing capability. It is designed for low voltage applications. The DG2612, DG2613 is ideal for portable and battery powered equipment, requiring high performance and efficient use of board space. In additional to the low on-resistance ( $1.0 \Omega$ at 2.7 V ), the DG2613 has a typical off isolation and crosstalk of -67 dB and -73 dB respectively.
The DG2612, DG2613 is built on Vishay Siliconix's low voltage process.
Break-before-make is guaranteed.
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead $(\mathrm{Pb})$-free device terminations. For analog switching products manufactured with $100 \%$ matte tin device terminations, the lead (Pb)-free "-E3" suffix is being used as a designator.

## FEATURES

- Low voltage operation (1.8 V to 5.5 V )
- Low on-resistance - $\mathrm{R}_{\mathrm{ON}}: 1.0 \Omega$ at 2.7 V
- High bandwidth


## BENEFITS

- Negative signal swing capability
- Shunt switch to eliminate switching noise
- Simplified design with direct DC coupling
- Space saving SC-89 package


## APPLICATIONS

- Cellular phones
- Portable multimedia players
- PDAs and hand-held devices
- Laptop computers


## FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION



| TRUTH TABLE |  |  |
| :---: | :---: | :---: |
| Logic | NC | NO |
| 0 | ON | OFF |
| 1 | OFF | ON |


| COMMERCIAL ORDERING INFORMATION |  |  |
| :---: | :---: | :---: |
| Temp Range | Package | Part Number |
| $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | SC-89 (SOT-666) <br> Lead (Pb)-free <br> with Tape and Reel | DG2612DX-T1-E3 <br> DG2613DX-T1-E3 |


| ABSOLUTE MAXIMUM RATINGS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Parameter |  | Symbol | Limit | Unit |
| Reference GND | V+ |  | - 0.3 to +6 | V |
|  | $1 \mathrm{Na}^{\text {a }}$ |  | -0.3 to (V++0.3) |  |
|  | COM, $\mathrm{NC}, \mathrm{NO}^{\text {a }}$ |  | ( $\mathrm{V}+-6$ ) to ( $\mathrm{V}++0.3$ ) |  |
| Continuous Current (NO, NC, COM pins) |  |  | $\pm 150$ | mA |
| Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) |  |  | $\pm 300$ |  |
| Storage Temperature | D Suffix |  | - 65 to 150 | ${ }^{\circ} \mathrm{C}$ |
| Power Dissipation (Packages) ${ }^{\text {b }}$ | SC-89 ${ }^{\text {c }}$ |  | 172 | mW |

## Notes:

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $2.15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

## Vishay Siliconix

| SPECIFICATIONS (V+ = 3 V ) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Test Conditions Otherwise Unless Specified$\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V} \text { or } 1.4 \mathrm{~V}^{\mathrm{e}}$ | Temp. ${ }^{\text {a }}$ | $\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$ |  |  | Unit |
|  |  |  |  | Min. ${ }^{\text {b }}$ | Typ. ${ }^{\text {c }}$ | Max. ${ }^{\text {b }}$ |  |
| Analog Switch |  |  |  |  |  |  |  |
| Analog Signal Range ${ }^{\text {d }}$ | $\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \\ \hline \end{gathered}$ |  | Full | $V+-5.5$ |  | V+ | V |
| On-Resistance | $\mathrm{R}_{\mathrm{ON}}$ | $\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=-1 \mathrm{~V} / 0 \mathrm{~V} / 1 \mathrm{~V} / 2 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA} \end{gathered}$ | Room Full |  | 1.0 | $\begin{aligned} & 1.4 \\ & 1.6 \\ & \hline \end{aligned}$ |  |
| $\mathrm{R}_{\text {ON }}$ Match ${ }^{\text {d }}$ | $\Delta \mathrm{R}_{\mathrm{ON}}$ |  | Room |  |  | 0.1 | $\Omega$ |
| $\mathrm{R}_{\text {ON }}$ Flatness ${ }^{\text {d }}$ | $\begin{gathered} \mathrm{R}_{\mathrm{ON}} \\ \text { Flatness } \end{gathered}$ |  | Room |  |  | 0.3 |  |
| Shunt Switch Resistance | $\mathrm{R}_{\text {SH }}$ | $\mathrm{I}_{\mathrm{NO}}$ or $\mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}, \mathrm{~V}+=2.7 \mathrm{~V}, \mathrm{DG2612}$ only | Full |  | 150 | 300 | $\Omega$ |
| Switch Off Leakage Current | $\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $I_{\mathrm{NC} \text { (off) }}$ | $\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$ | $\begin{aligned} & \hline \text { Room } \\ & \text { Full } \\ & \hline \end{aligned}$ | $\begin{gathered} \hline-2 \\ -100 \\ \hline \end{gathered}$ |  | $\begin{gathered} \hline 2 \\ 100 \end{gathered}$ | nA |
|  | $\mathrm{I}_{\text {com(off) }}$ |  | Room Full | $\begin{gathered} \hline-2 \\ -100 \end{gathered}$ |  | $\begin{gathered} \hline 2 \\ 100 \end{gathered}$ |  |
| Channel-On Leakage Current | ${ }^{\text {COM (on) }}$ | $\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\text {COM }}=1 \mathrm{~V} / 3 \mathrm{~V}$ | Room Full | $\begin{gathered} \hline-2 \\ -100 \end{gathered}$ |  | $\begin{gathered} 2 \\ 100 \end{gathered}$ |  |
| Digital Control |  |  |  |  |  |  |  |
| Input High Voltage | $\mathrm{V}_{\text {INH }}$ | $\mathrm{V}+=1.8 \mathrm{~V}$ to 2.0 V | Full | 1.0 |  |  | V |
|  |  | $\mathrm{V}+=2.7 \mathrm{~V}$ to 3.6 V |  | 1.4 |  |  |  |
|  |  | $\mathrm{V}+=4.2 \mathrm{~V}$ to 5.5 V |  | 2.0 |  |  |  |
| Input Low Voltage | $\mathrm{V}_{\text {INL }}$ | $\mathrm{V}+=1.8 \mathrm{~V}$ to 2.0 V |  |  |  | 0.4 |  |
|  |  | $\mathrm{V}+=2.7 \mathrm{~V}$ to 3.6 V |  |  |  | 0.5 |  |
|  |  | $\mathrm{V}+=4.2 \mathrm{~V}$ to 5.5 V |  |  |  | 0.8 |  |
| Input Capacitance | $\mathrm{C}_{\text {in }}$ |  | Full |  | 5 |  | pF |
| Input Current | $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\text {INH }}$ | $\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{+}$ | Full | 1 |  | 1 | $\mu \mathrm{A}$ |
| Dynamic Characteristics |  |  |  |  |  |  |  |
| Turn-On Time | ton | $\mathrm{V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ | $\begin{gathered} \hline \text { Room } \\ \text { Full } \\ \hline \end{gathered}$ |  | 34 | $\begin{aligned} & \hline 60 \\ & 63 \\ & \hline \end{aligned}$ | ns |
| Turn-Off Time | $t_{\text {OFF }}$ |  | Room Full |  | 10 | $\begin{aligned} & \hline 35 \\ & 37 \\ & \hline \end{aligned}$ |  |
| Break-Before-Make Time | $\mathrm{t}_{\text {BBM }}$ |  | Room | 4 | 16 |  |  |
| Charge Injection ${ }^{\text {d }}$ (DG2613) | $\mathrm{Q}_{\text {INJ }}$ | $\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$ | Room |  | 2.4 |  | pC |
| Off-Isolation ${ }^{\text {d }}$ | OIRR | $\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \\ \mathrm{DG} 2612 \end{gathered}$ | Room |  | -61 |  | dB |
| Crosstalk ${ }^{\text {d }}$ | $\mathrm{X}_{\text {TALK }}$ |  | Room |  | -67 |  |  |
| Off-Isolation ${ }^{\text {d }}$ | OIRR | $\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \\ \mathrm{DG} 2613 \end{gathered}$ | Room |  | -67 |  | dB |
| Crosstalk ${ }^{\text {d }}$ | $\mathrm{X}_{\text {TALK }}$ |  | Room |  | -73 |  |  |
| $\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$ | $\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$ | $\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$, $\mathrm{f}=1 \mathrm{MHz}$ | Room |  | 36 |  | pF |
| Channel-On Capacitance ${ }^{\text {d }}$ | $\mathrm{C}_{\mathrm{ON}}$ |  | Room |  | 95 |  |  |
| Power Supply |  |  |  |  |  |  |  |
| Power Supply Range | V+ |  |  | 1.8 |  | 5.5 | V |
| Power Supply Current | I+ | $\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{+}$ |  |  | 0.01 | 1.0 | $\mu \mathrm{A}$ |

## Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
$\qquad$

TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted


R $_{\text {ON }}$ vs. $V_{\text {COM }}$ and Supply Voltage


Supply Current vs. Temperature


Leakage Current vs. Temperature

$R_{\text {ON }}$ vs. Analog Voltage and Temperature


Supply Current vs. Temperature


Switching Time vs. Temperature and Supply Voltage

TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted


Insertion Loss, Off-Isolation, Crosstalk vs. Frequency


Charge Injection vs. Analog Voltage

## TEST CIRCUITS


$C_{L}$ (includes fixture and stray capacitance)

$$
v_{\text {OUT }}=v_{\text {COM }}\left(\frac{R_{L}}{R_{L}+R_{\text {ON }}}\right)
$$



Insertion Loss, Off-Isolation, Crosstalk vs. Frequency


Switching Threshold vs. Supply Voltage


Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

## TEST CIRCUITS


$C_{L}$ (includes fixture and stray capacitance)


Figure 2. Break-Before-Make Interval



IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection


Figure 4. Off-Isolation

## TEST CIRCUITS



Figure 5. Channel Off/On Capacitance

## SC-89: 6-LEAD (SOT-666)



| Dim | MILLIMETERS* |  | INCHES |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Nom | Max | Min | Nom | Max |  |  |  |  |  |
| A | 0.56 | - | 0.60 | 0.022 | - | 0.024 |  |  |  |  |  |
| A3 | 0.13 | 0.17 | 0.18 | 0.005 | 0.006 | 0.007 |  |  |  |  |  |
| b | 0.17 | - | 0.25 | 0.006 | - | 0.010 |  |  |  |  |  |
| b1 | - | 0.27 | 0.34 | - | 0.011 | 0.013 |  |  |  |  |  |
| D | 1.50 | 1.66 | 1.70 | 0.059 | 0.065 | 0.067 |  |  |  |  |  |
| E | 1.50 | 1.65 | 1.70 | 0.059 | 0.065 | 0.067 |  |  |  |  |  |
| E1 | 1.10 | 1.20 | 1.30 | 0.043 | 0.047 | 0.051 |  |  |  |  |  |
| e | 0.50 BSC |  |  |  |  |  |  |  |  |  | 0.020 BSC |
| e1 | 0.20 | - | - | 0.008 | - | - |  |  |  |  |  |
| L1 | 0.11 | 0.19 | 0.26 | 0.004 | 0.007 | 0.010 |  |  |  |  |  |
| L2 | 0.10 | 0.23 | 0.30 | 0.004 | 0.009 | 0.012 |  |  |  |  |  |
| L3 | 0.05 | 0.10 | - | 0.002 | 0.004 | - |  |  |  |  |  |
| $\boldsymbol{\theta}$ | $8^{\circ}$ | $10^{\circ}$ | $12^{\circ}$ | $8^{\circ}$ | $10^{\circ}$ | $12^{\circ}$ |  |  |  |  |  |
| ECN: S-52444-Rev. D, 28-Nov-05 |  |  |  |  |  |  |  |  |  |  |  |
| DWG: 5891 |  |  |  |  |  |  |  |  |  |  |  |
| *Use millimeters as the primary measurement |  |  |  |  |  |  |  |  |  |  |  |

## Disclaimer

## ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

