

ALTIVECPEM/D
2/2002

Rev. 2.0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

AltiVec Technology
Programming Environments Manual

™

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

AltiVec is a trademark of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc.

The PowerPC name and the PowerPC logotype are trademarks of International Business Machines Corporation used by Motorola under license from
International Business Machines Corporation.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.
Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express or
implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this
document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do
vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical
experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other
application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

Motorola Literature Distribution Centers:
USA/EUROPE: Motorola Literature Distribution; P.O. Box 5405; Denver, Colorado 80217; Tel.: 1-800-441-2447 or 1-303-675-2140/
JAPAN: Nippon Motorola Ltd SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141, Japan Tel.: 81-3-5487-8488
ASIA/PACIFC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong; Tel.: 852-26629298

World Wide Web Address: http://sps.motorola.com/mfax
INTERNET: http://motorola.com/sps

Technical Information: Motorola Inc. SPS Customer Support Center 1-800-521-6274; electronic mail address: crc@wmkmail.sps.mot.com.
Document Comments: FAX (512) 933-2625, Attn: RISC Applications Engineering.
World Wide Web Addresses: http://www.mot.com/PowerPC

http://www.mot.com/netcomm

© Motorola Inc. 2001. All rights reserved.

For More Information On This Product,

 Go to: www.freescale.com

1

2

3

4

Overview

AltiVec Register Set

Operand Conventions

Addressing Modes and Instruction Set Summary

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

5

A

6

GLO

B

C

D

E

F

Cache, Exceptions, and Memory Management

AltiVec Instructions

Glossary of Terms and Abbreviations

Appendix A: Instruction Set Mnemonics - Decimal

Appendix B: Instruction Set Mnemonics - Binary

Appendix C: Opcodes - Decimal

Appendix D: Opcodes - Binary

Appendix E: Forms

Appendix F: Legends

GAppendix G: Revision History
INDIndex

For More Information On This Product,
 Go to: www.freescale.com

1

2

3

4

5

A

6

GLO

IND

B

C

D

E

F

Overview

AltiVec Register Set

Operand Conventions

Addressing Modes and Instruction Set Summary

G

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Cache, Exceptions, and Memory Management

AltiVec Instructions

Glossary of Terms and Abbreviations

Appendix A: Instruction Set Mnemonics - Decimal

Appendix B: Instruction Set Mnemonics - Binary

Appendix C: Opcodes - Decimal

Appendix D: Opcodes - Binary

Appendix E: Forms

Appendix F: Legends

Appendix G: Revision History
Index

For More Information On This Product,
 Go to: www.freescale.com

Contents

Section
Number Title

 Page
Number

Contents

Paragraph
Number Title

 Page
Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Audience ..xx
Organization... xxi
Suggested Reading... xxi

General Information.. xxii
Related Documentation .. xxii

Conventions ... xxiii
Acronyms and Abbreviations... xxiv
Terminology Conventions... xxvii

Chapter 1
Overview

1.1 Overview.. 1-1
1.2 AltiVec Technology Overview... 1-3
1.2.1 Levels of AltiVec ISA .. 1-5
1.2.2 Features Not Defined by AltiVec ISA.. 1-6
1.3 AltiVec Architectural Model .. 1-6
1.3.1 AltiVec Registers and Programming Model .. 1-6
1.3.2 Operand Conventions... 1-7
1.3.2.1 Byte Ordering .. 1-7
1.3.2.2 Floating-Point Conventions ... 1-8
1.3.3 AltiVec Addressing Modes .. 1-9
1.3.4 AltiVec Instruction Set... 1-11
1.3.5 AltiVec Cache Model .. 1-12
1.3.6 AltiVec Exception Model... 1-12
1.3.7 Memory Management Model .. 1-12

Chapter 2
AltiVec Register Set

2.1 Overview on the AltiVec and PowerPC Registers ... 2-1
2.2 AltiVec Register Set Overview .. 2-3
2.3 Registers defined by AltiVec ISA .. 2-4
2.3.1 AltiVec Vector Register File (VRF) ... 2-4
2.3.2 Vector Status and Control Register (VSCR).. 2-4
2.3.3 Vector Save/Restore Register (VRSAVE).. 2-6
MOTOROLA Contents v

For More Information On This Product,
 Go to: www.freescale.com

Contents

Paragraph
Number Title

Page
Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

2.4 Additions to PowerPC UISA Registers ... 2-7
2.4.1 PowerPC Condition Register ... 2-8
2.5 Additions to PowerPC OEA Registers... 2-9
2.5.1 AltiVec Field added in the PowerPC Machine State Register (MSR) 2-9
2.5.2 Machine Status Save/Restore Registers (SRRs) .. 2-10
2.5.2.1 Machine Status Save/Restore Register 0 (SRR0) 2-10
2.5.2.2 Machine Status Save/Restore Register 1 (SRR1) 2-11

Chapter 3
Operand Conventions

3.1 Data Organization in Memory ... 3-1
3.1.1 Aligned and Misaligned Accesses ... 3-1
3.1.2 AltiVec Byte Ordering ... 3-2
3.1.2.1 Big-Endian Byte Ordering... 3-3
3.1.2.2 Little-Endian Byte Ordering .. 3-3
3.1.3 Quad Word Byte Ordering Example.. 3-3
3.1.4 Aligned Scalars in Little-Endian Mode ... 3-4
3.1.5 Vector Register and Memory Access Alignment ... 3-6
3.1.6 Quad-Word Data Alignment .. 3-7
3.1.6.1 Accessing a Misaligned Quad Word in Big-Endian Mode.......................... 3-8
3.1.6.2 Accessing a Misaligned Quad Word in Little-Endian Mode 3-10
3.1.6.3 Scalar Loads and Stores... 3-11
3.1.6.4 Misaligned Scalar Loads and Stores.. 3-11
3.1.7 Mixed-Endian Systems .. 3-12
3.2 AltiVec Floating-Point Instructions—UISA.. 3-12
3.2.1 Floating-Point Modes .. 3-13
3.2.1.1 Java Mode .. 3-13
3.2.1.2 Non-Java Mode.. 3-14
3.2.2 Floating-Point Infinities ... 3-14
3.2.3 Floating-Point Rounding.. 3-14
3.2.4 Floating-Point Exceptions.. 3-14
3.2.4.1 NaN Operand Exception.. 3-15
3.2.4.2 Invalid Operation Exception .. 3-16
3.2.4.3 Zero Divide Exception... 3-16
3.2.4.4 Log of Zero Exception... 3-16
3.2.4.5 Overflow Exception ... 3-17
3.2.4.6 Underflow Exception ... 3-17
3.2.5 Floating-Point NaNs .. 3-17
3.2.5.1 NaN Precedence... 3-18
3.2.5.2 SNaN Arithmetic ... 3-18
3.2.5.3 QNaN Arithmetic... 3-18
vi AltiVec Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Contents

Paragraph
Number Title

Page
Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

3.2.5.4 NaN Conversion to Integer .. 3-18
3.2.5.5 NaN Production ... 3-18

Chapter 4
Addressing Modes and Instruction Set Summary

4.1 Conventions ... 4-2
4.1.1 Execution Model.. 4-2
4.1.2 Computation Modes... 4-2
4.1.3 Classes of Instructions ... 4-2
4.1.4 Memory Addressing... 4-3
4.1.4.1 Memory Operands ... 4-3
4.1.4.2 Effective Address Calculation.. 4-3
4.2 AltiVec UISA Instructions ... 4-4
4.2.1 Vector Integer Instructions... 4-4
4.2.1.1 Saturation Detection .. 4-4
4.2.1.2 Vector Integer Arithmetic Instructions... 4-5
4.2.1.3 Vector Integer Compare Instructions ... 4-13
4.2.1.4 Vector Integer Logical Instructions.. 4-15
4.2.1.5 Vector Integer Rotate and Shift Instructions.. 4-16
4.2.2 Vector Floating-Point Instructions ... 4-17
4.2.2.1 Floating-Point Division and Square-Root.. 4-18
4.2.2.1.1 Floating-Point Division ... 4-18
4.2.2.1.2 Floating-Point Square-Root ... 4-19
4.2.2.2 Floating-Point Arithmetic Instructions .. 4-19
4.2.2.3 Floating-Point Multiply-Add Instructions ... 4-20
4.2.2.4 Floating-Point Rounding and Conversion Instructions.............................. 4-21
4.2.2.5 Floating-Point Compare Instructions... 4-22
4.2.2.6 Floating-Point Estimate Instructions ... 4-24
4.2.3 Load and Store Instructions ... 4-25
4.2.3.1 Alignment .. 4-26
4.2.3.2 Load and Store Address Generation .. 4-26
4.2.3.3 Vector Load Instructions.. 4-27
4.2.3.4 Vector Store Instructions.. 4-30
4.2.4 Control Flow .. 4-31
4.2.5 Vector Permutation and Formatting Instructions ... 4-31
4.2.5.1 Vector Pack Instructions .. 4-31
4.2.5.2 Vector Unpack Instructions.. 4-33
4.2.5.3 Vector Merge Instructions.. 4-34
4.2.5.4 Vector Splat Instructions.. 4-35
4.2.5.5 Vector Permute Instruction .. 4-36
4.2.5.6 Vector Select Instruction.. 4-36
MOTOROLA Contents vii

For More Information On This Product,
 Go to: www.freescale.com

Contents

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.5.7 Vector Shift Instructions .. 4-37
4.2.5.7.1 Immediate Interelement Shifts/Rotates.. 4-37
4.2.5.7.2 Computed Interelement Shifts/Rotates .. 4-38
4.2.5.7.3 Variable Interelement Shifts .. 4-39
4.2.6 Processor Control Instructions—UISA ... 4-39
4.2.6.1 AltiVec Status and Control Register Instructions 4-40
4.2.7 Recommended Simplified Mnemonics.. 4-40
4.3 AltiVec VEA Instructions .. 4-40
4.3.1 Memory Control Instructions—VEA .. 4-41
4.3.2 User-Level Cache Instructions—VEA... 4-41

Chapter 5
Cache, Exceptions, and Memory Management

5.1 PowerPC Shared Memory.. 5-1
5.2 AltiVec Memory Bandwidth Management .. 5-1
5.2.1 Software-Directed Prefetch.. 5-2
5.2.1.1 Data Stream Touch (dst) .. 5-2
5.2.1.2 Transient Streams .. 5-4
5.2.1.3 Storing to Streams (dstst) .. 5-4
5.2.1.4 Stopping Streams ... 5-5
5.2.1.5 Exception Behavior of Prefetch Streams ... 5-6
5.2.1.6 Synchronization Behavior of Streams ... 5-7
5.2.1.7 Address Translation for Streams.. 5-7
5.2.1.8 Stream Usage Notes... 5-7
5.2.1.9 Stream Implementation Assumptions .. 5-9
5.2.2 Prioritizing Cache Block Replacement.. 5-9
5.2.3 Partially Executed AltiVec Instructions ... 5-10
5.3 DSI Exception—Data Address Breakpoint.. 5-10
5.4 AltiVec Unavailable Exception (0x00F20) .. 5-10

Chapter 6
AltiVec Instructions

6.1 Instruction Formats .. 6-1
6.1.1 Instruction Fields ... 6-1
6.1.2 Notation and Conventions.. 6-2
6.2 AltiVec Instruction Set... 6-8
viii AltiVec Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Contents

Paragraph
Number Title

Page
Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix A
AltiVec Instruction Set Listings

A.1 Instructions Sorted by Mnemonic in Decimal Format.. A-1

Appendix B
Instructions Sorted by Mnemonic in Binary Format

B.1 Instructions Sorted by Mnemonic in Binary Format ...B-1

Appendix C
Instructions Sorted by Opcode

C.1 Instructions Sorted by Opcode in Decimal Format..C-1

Appendix D
Instructions Sorted by Opcode

D.1 Instructions Sorted by Opcode in Binary Format ... D-1

Appendix E
Instructions Sorted by Form

E.1 Instructions Sorted by Form...E-1

Appendix F
Instruction Set Legend

F.1 Instruction Set Legend ...F-1

Appendix G
User’s Manual Revision History

G.1 Revision History ... G-1

Glossary

Index
MOTOROLA Contents ix

For More Information On This Product,
 Go to: www.freescale.com

Contents

Paragraph
Number Title

Page
Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

x AltiVec Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Figures

Figure
Number Title

 Page
Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

1-1 Overview of PowerPC architecture with AltiVec Technology 1-4
1-2 AltiVec Top-Level Diagram .. 1-7
1-3 Big-Endian Byte Ordering for a Vector Register .. 1-8
1-4 Bit Ordering .. 1-8
1-5 Intraelement Example, vaddsbs .. 1-9
1-6 Interelement Example, vperm ... 1-9
2-1 Programming Model—All Registers .. 2-2
2-2 AltiVec Register Set .. 2-3
2-3 Vector Registers (VRs).. 2-4
2-4 Vector Status and Control Register (VSCR) ... 2-5
2-5 32-bit VSCR Moved to a 128-bit Vector Register... 2-5
2-6 Vector Save/Restore Register (VRSAVE)... 2-7
2-7 Condition Register (CR) ... 2-8
2-8 Machine State Register (MSR) ... 2-9
2-9 Machine Status Save/Restore Register 0 (SRR0) ... 2-11
2-10 Machine Status Save/Restore Register 0 (SRR1) ... 2-11
3-1 Big-Endian Mapping of a Quad Word .. 3-3
3-2 Little-Endian Mapping of a Quad Word ... 3-4
3-3 Little-Endian Mapping of Quad Word—Alternate View .. 3-4
3-4 Quad Word Load with PowerPC Munged Little-Endian Applied............................... 3-5
3-5 AltiVec Little Endian Double-Word Swap.. 3-6
3-6 Misaligned Vector in Big-Endian Mode.. 3-7
3-8 Big-Endian Quad Word Alignment ... 3-8
3-7 Misaligned Vector in Little-Endian Addressing Mode.. 3-8
3-9 Little-Endian Alignment ... 3-11
4-1 Register Indirect with Index Addressing for Loads/Stores 4-27
5-1 Format of rB in dst Instruction.. 5-2
5-2 Data Stream Touch .. 5-3
5-3 SRR1 Bit Settings after an AltiVec Unavailable Exception...................................... 5-11
6-1 Format of rB in dst instruction (32-bit)... 6-13
6-2 Effects of Example Load/Store Instructions ... 6-15
6-3 Load Vector for Shift Left ... 6-18
6-4 Instruction vperm Used in Aligning Data ... 6-19
6-5 vaddcuw—Determine Carries of Four Unsigned Integer Adds (32-Bit) 6-30
6-6 vaddfp—Add Four Floating-Point Elements (32-Bit) .. 6-31
MOTOROLA Contents xi

For More Information On This Product,
 Go to: www.freescale.com

Figures

Figure
Number Title

Page
Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

6-7 vaddsbs—Add Saturating Sixteen Signed Integer Elements (8-Bit) 6-32
6-8 vaddshs— Add Saturating Eight Signed Integer Elements (16-Bit) 6-33
6-9 vaddsws—Add Saturating Four Signed Integer Elements (32-Bit) 6-34
6-10 vaddubm—Add Sixteen Integer Elements (8-Bit) .. 6-35
6-11 vaddubs—Add Saturating Sixteen Unsigned Integer Elements (8-Bit).................... 6-36
6-12 vadduhm—Add Eight Integer Elements (16-Bit) ... 6-37
6-13 vadduhs—Add Saturating Eight Unsigned Integer Elements (16-Bit) 6-38
6-14 vadduwm—Add Four Integer Elements (32-Bit).. 6-39
6-15 vadduws—Add Saturating Four Unsigned Integer Elements (32-Bit) 6-40
6-16 vand—Logical Bitwise AND .. 6-41
6-17 vand—Logical Bitwise AND with Complement .. 6-42
6-18 vavgsb— Average Sixteen Signed Integer Elements (8-Bit) 6-43
6-19 vavgsh—Average Eight Signed Integer Elements (16-bits)...................................... 6-44
6-20 vavgsw— Average Four Signed Integer Elements (32-Bit) 6-45
6-21 vavgub—Average Sixteen Unsigned Integer Elements (8-bits)................................ 6-46
6-22 vavgsh— Average Eight Signed Integer Elements (16-Bit)...................................... 6-47
6-23 vavguw—Average Four Unsigned Integer Elements (32-Bit) 6-48
6-24 vcfsx—Convert Four Signed Integer Elements to Four Floating-Point Elements

(32-Bit) ... 6-49
6-25 vcfux—Convert Four Unsigned Integer Elements to Four Floating-Point Elements

(32-Bit) ... 6-50
6-26 vcmpbfp—Compare Bounds of Four Floating-Point Elements (32-Bit) 6-52
6-27 vcmpeqfp—Compare Equal of Four Floating-Point Elements (32-Bit) 6-53
6-28 vcmpequb—Compare Equal of Sixteen Integer Elements (8-bits)........................... 6-54
6-29 vcmpequh—Compare Equal of Eight Integer Elements (16-Bit) 6-55
6-30 vcmpequw—Compare Equal of Four Integer Elements (32-Bit) 6-56
6-31 vcmpgefp—Compare Greater-Than-or-Equal of Four Floating-Point Elements

(32-Bit) ... 6-57
6-32 vcmpgtfp—Compare Greater-Than of Four Floating-Point Elements (32-Bit)........ 6-58
6-33 vcmpgtsb—Compare Greater-Than of Sixteen Signed Integer Elements (8-Bit)..... 6-59
6-34 vcmpgtsh—Compare Greater-Than of Eight Signed Integer Elements (16-Bit) 6-60
6-35 vcmpgtsw—Compare Greater-Than of Four Signed Integer Elements (32-Bit) 6-61
6-36 vcmpgtub—Compare Greater-Than of Sixteen Unsigned Integer Elements (8-Bit) 6-62
6-37 vcmpgtuh—Compare Greater-Than of Eight Unsigned Integer Elements (16-Bit) . 6-63
6-38 vcmpgtuw—Compare Greater-Than of Four Unsigned Integer Elements (32-Bit) . 6-64
6-39 vctsxs—Convert Four Floating-Point Elements to Four Signed Integer Elements

(32-Bit) ... 6-65
6-40 vctuxs—Convert Four Floating-Point Elements to Four Unsigned Integer Elements

(32-Bit) ... 6-66
6-41 vexptefp—2 Raised to the Exponent Estimate Floating-Point for Four Floating-Point

Elements (32-Bit) ... 6-68
xii AltiVec Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Figures

Figure
Number Title

Page
Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

6-42 vexptefp—Log2 Estimate Floating-Point for Four Floating-Point Elements
(32-Bit) ... 6-70

6-43 vmaddfp—Multiply-Add Four Floating-Point Elements (32-Bit) 6-71
6-44 vmaxfp—Maximum of Four Floating-Point Elements (32-Bit) 6-72
6-45 vmaxsb—Maximum of Sixteen Signed Integer Elements (8-Bit) 6-73
6-46 vmaxsh—Maximum of Eight Signed Integer Elements (16-Bit) 6-74
6-47 vmaxsw—Maximum of Four Signed Integer Elements (32-Bit).............................. 6-75
6-48 vmaxub—Maximum of Sixteen Unsigned Integer Elements (8-Bit) 6-76
6-49 vmaxuh—Maximum of Eight Unsigned Integer Elements (16-Bit)......................... 6-77
6-50 vmaxuw—Maximum of Four Unsigned Integer Elements (32-Bit) 6-78
6-51 vmhaddshs—Multiply-High and Add Eight Signed Integer Elements (16-Bit) 6-79
6-52 vmhraddshs—Multiply-High Round and Add Eight Signed Integer Elements

(16-Bit) ... 6-80
6-53 vminfp—Minimum of Four Floating-Point Elements (32-Bit) 6-81
6-54 vminsb—Minimum of Sixteen Signed Integer Elements (8-Bit) 6-82
6-55 vminsh—Minimum of Eight Signed Integer Elements (16-Bit)............................... 6-83
6-56 vminsw—Minimum of Four Signed Integer Elements (32-Bit) 6-84
6-57 vminub—Minimum of Sixteen Unsigned Integer Elements (8-Bit)......................... 6-85
6-58 vminuh—Minimum of Eight Unsigned Integer Elements (16-Bit) 6-86
6-59 vminuw—Minimum of Four Unsigned Integer Elements (32-Bit) 6-87
6-60 vmladduhm—Multiply-Add of Eight Integer Elements (16-Bit) 6-88
6-61 vmrghb—Merge Eight High-Order Elements (8-Bit) ... 6-89
6-62 vmrghh—Merge Four High-Order Elements (16-Bit) .. 6-90
6-63 vmrghw—Merge Four High-Order Elements (32-Bit) ... 6-91
6-64 vmrglb—Merge Eight Low-Order Elements (8-Bit)... 6-92
6-65 vmrglh—Merge Four Low-Order Elements (16-Bit).. 6-93
6-66 vmrglw—Merge Four Low-Order Elements (32-Bit)... 6-94
6-67 vmsummbm—Multiply-Sum of Integer Elements (8-Bit to 32-Bit) 6-95
6-68 vmsumshm—Multiply-Sum of Signed Integer Elements

(16-Bit to 32-Bit).. 6-96
6-69 vmsumshs—Multiply-Sum of Signed Integer Elements

(16-Bit to 32-Bit).. 6-97
6-70 vmsumubm—Multiply-Sum of Unsigned Integer Elements

(8-Bit to 32-Bit).. 6-98
6-71 vmsumuhm—Multiply-Sum of Unsigned Integer Elements

(16-Bit to 32-Bit).. 6-99
6-72 vmsumuhs—Multiply-Sum of Unsigned Integer Elements

(16-Bit to 32-Bit).. 6-100
6-73 vmulesb—Even Multiply of Eight Signed Integer Elements (8-Bit)...................... 6-101
6-74 vmulesb—Even Multiply of Four Signed Integer Elements (16-Bit) 6-102
6-75 vmuleub—Even Multiply of Eight Unsigned Integer Elements (8-Bit) 6-103
MOTOROLA Contents xiii

For More Information On This Product,
 Go to: www.freescale.com

Figures

Figure
Number Title

Page
Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

6-76 vmuleuh—Even Multiply of Four Unsigned Integer Elements (16-Bit) 6-104
6-77 vmulosb—Odd Multiply of Eight Signed Integer Elements (8-Bit) 6-105
6-78 vmuleuh—Odd Multiply of Four Unsigned Integer Elements (16-Bit).................. 6-106
6-79 vmuloub—Odd Multiply of Eight Unsigned Integer Elements (8-Bit) 6-107
6-80 vmulouh—Odd Multiply of Four Unsigned Integer Elements (16-Bit) 6-108
6-81 vnmsubfp—Negative Multiply-Subtract of

Four Floating-Point Elements (32-Bit)... 6-109
6-82 vnor—Bitwise NOR of 128-bit Vector.. 6-110
6-83 vor—Bitwise OR of 128-bit Vector... 6-111
6-84 vperm—Concatenate Sixteen Integer Elements (8-Bit).. 6-112
6-85 How a Word is Packed to a Half Word.. 6-113
6-86 vpkpx—Pack Eight Elements (32-Bit) to Eight Elements (16-Bit) 6-114
6-87 vpkshss—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen Signed Integer

Elements (8-Bit) ... 6-115
6-88 vpkshus—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen Unsigned Integer

Elements (8-Bit) ... 6-116
6-89 vpkswss—Pack Eight Signed Integer Elements (32-Bit) to Eight Signed Integer

Elements (16-Bit) ... 6-117
6-90 vpkswus—Pack Eight Signed Integer Elements (32-Bit) to Eight Unsigned Integer

Elements (16-Bit) ... 6-118
6-91 vpkuhum—Pack Sixteen Unsigned Integer Elements (16-Bit)

to Sixteen Unsigned Integer Elements (8-Bit) ... 6-119
6-92 vpkuhus—Pack Sixteen Unsigned Integer Elements (16-Bit)

to Sixteen Unsigned Integer Elements (8-Bit) ... 6-120
6-93 vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit)

to Eight Unsigned Integer Elements (16-Bit)... 6-121
6-94 vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit)

to Eight Unsigned Integer Elements (16-Bit)... 6-122
6-95 vrefp—Reciprocal Estimate of Four Floating-Point Elements (32-Bit) 6-124
6-96 vrfim— Round to Minus Infinity of Four Floating-Point

Integer Elements (32-Bit) ... 6-125
6-97 vrfin—Nearest Round to Nearest of Four

Floating-Point Integer Elements (32-Bit)... 6-126
6-98 vrfip—Round to Plus Infinity of Four Floating-Point

Integer Elements (32-Bit) ... 6-127
6-99 vrfiz—Round-to-Zero of Four Floating-Point Integer Elements (32-Bit) 6-128
6-100 vrlb—Left Rotate of Sixteen Integer Elements (8-Bit)... 6-129
6-101 vrlh—Left Rotate of Eight Integer Elements (16-Bit) .. 6-130
6-102 vrlw—Left Rotate of Four Integer Elements (32-Bit) .. 6-131
6-103 vrsqrtefp—Reciprocal Square Root Estimate of Four Floating-Point Elements

(32-Bit) ... 6-132
xiv AltiVec Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Figures

Figure
Number Title

Page
Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

6-104 vsel—Bitwise Conditional Select of Vector Contents(128-bit) 6-133
6-105 vsl—Shift Bits Left in Vector (128-Bit) .. 6-134
6-106 vslb—Shift Bits Left in Sixteen Integer Elements (8-Bit) 6-135
6-107 vsldoi—Shift Left by Bytes Specified .. 6-136
6-108 vslh—Shift Bits Left in Eight Integer Elements (16-Bit) 6-137
6-109 vslo—Left Byte Shift of Vector (128-Bit)... 6-138
6-110 vslw—Shift Bits Left in Four Integer Elements (32-Bit).. 6-139
6-111 vspltb—Copy Contents to Sixteen Elements (8-Bit) .. 6-140
6-112 vsplth—Copy Contents to Eight Elements (16-Bit).. 6-141
6-113 vspltisb—Copy Value into Sixteen Signed Integer Elements (8-Bit) 6-142
6-114 vspltish—Copy Value to Eight Signed Integer Elements (16-Bit).......................... 6-143
6-115 vspltisw—Copy Value to Four Signed Elements (32-Bit) 6-144
6-116 vspltw—Copy contents to Four Elements (32-Bit)... 6-145
6-117 vsr—Shift Bits Right for Vectors (128-Bit) .. 6-147
6-118 vsrab—Shift Bits Right in Sixteen Integer Elements (8-Bit).................................. 6-148
6-119 vsrah—Shift Bits Right for Eight Integer Elements (16-Bit).................................. 6-149
6-120 vsraw—Shift Bits Right in Four Integer Elements (32-Bit) 6-150
6-121 vsrb—Shift Bits Right in Sixteen Integer Elements (8-Bit).................................... 6-151
6-122 vsrh—Shift Bits Right for Eight Integer Elements (16-Bit) 6-152
6-123 vsro—Vector Shift Right Octet ... 6-153
6-124 vsrw—Shift Bits Right in Four Integer Elements (32-Bit) 6-154
6-125 vsubcuw—Subtract Carryout of Four Unsigned Integer Elements (32-Bit)........... 6-155
6-126 vsubfp—Subtract Four Floating Point Elements (32-Bit) 6-156
6-127 vsubsbs—Subtract Sixteen Signed Integer Elements (8-Bit).................................. 6-157
6-128 vsubshs—Subtract Eight Signed Integer Elements (16-Bit) 6-158
6-129 vsubsws—Subtract Four Signed Integer Elements (32-Bit) 6-159
6-130 vsububm—Subtract Sixteen Integer Elements (8-Bit).. 6-160
6-131 vsububs—Subtract Sixteen Unsigned Integer Elements (8-Bit) 6-161
6-132 vsubuhm—Subtract Eight Integer Elements (16-Bit) ... 6-162
6-133 vsubuhs—Subtract Eight Signed Integer Elements (16-Bit)................................... 6-163
6-134 vsubuwm—Subtract Four Integer Elements (32-Bit) ... 6-164
6-135 vsubuws—Subtract Four Signed Integer Elements (32-Bit)................................... 6-165
6-136 vsumsws—Sum Four Signed Integer Elements (32-Bit) .. 6-166
6-137 vsum2sws—Two Sums in the Four Signed Integer Elements (32-Bit)................... 6-167
6-138 vsum4sbs—Four Sums in the Integer Elements (32-Bit) 6-168
6-139 vsum4shs—Four Sums in the Integer Elements (32-Bit) 6-169
6-140 vsum4ubs—Four Sums in the Integer Elements (32-Bit) 6-170
6-141 vupkhpx—Unpack High-Order Elements (16 bit) to Elements (32-Bit) 6-171
6-142 vupkhsb—Unpack HIgh-Order Signed Integer Elements (8-Bit) to Signed Integer

Elements (16-Bit) ... 6-172
MOTOROLA Contents xv

For More Information On This Product,
 Go to: www.freescale.com

Figures

Figure
Number Title

Page
Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

6-143 vupkhsh—Unpack Signed Integer Elements (16-Bit) to Signed Integer Elements
(32-Bit) ... 6-173

6-144 vupklpx—Unpack Low-order Elements (16-Bit) to Elements (32-Bit) 6-174
6-145 vupklsb—Unpack Low-Order Elements (8-Bit) to Elements (16-Bit) 6-175
6-146 vupklsh—Unpack Low-Order Signed Integer Elements (16-Bit) to Signed Integer

Elements (32-Bit) ... 6-176
6-147 vxor—Bitwise XOR (128-Bit).. 6-177
xvi AltiVec Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Tables

Table
Number Title

 Page
Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

i Acronyms and Abbreviated Terms .. xxiv
ii Terminology Conventions ... xxvii
iii Instruction Field Conventions ... xxvii
2-1 VSCR Field Descriptions.. 2-5
2-2 VRSAVE Bit Settings ... 2-7
2-3 CR6 Field’s Bit Settings for Vector Compare Instructions ... 2-8
2-4 MSR Bit Settings .. 2-10
3-1 Memory Operand Alignment .. 3-2
3-2 Effective Address Modifications ... 3-5
4-1 Vector Integer Arithmetic Instructions .. 4-6
4-2 CR6 Field Bit Settings for Vector Integer Compare Instructions.............................. 4-13
4-3 Vector Integer Compare Instructions .. 4-14
4-4 Vector Integer Logical Instructions... 4-16
4-5 Vector Integer Rotate Instructions... 4-16
4-6 Vector Integer Shift Instructions ... 4-17
4-7 Floating-Point Arithmetic Instructions.. 4-19
4-8 Floating-Point Multiply-Add Instructions .. 4-21
4-9 Floating-Point Rounding and Conversion Instructions ... 4-21
4-10 Common Mathematical Predicates ... 4-23
4-11 Other Useful Predicates .. 4-23
4-12 Floating-Point Compare Instructions .. 4-24
4-13 Floating-Point Estimate Instructions... 4-25
4-14 Effective Address Alignment... 4-26
4-15 Integer Load Instructions .. 4-28
4-16 Vector Load Instructions Supporting Alignment .. 4-29
4-17 Shift Values for lvsl Instruction... 4-29
4-18 Shift Values for lvsr Instruction .. 4-29
4-19 Integer Store Instructions .. 4-30
4-20 Vector Pack Instructions.. 4-32
4-21 Vector Unpack Instructions ... 4-34
4-22 Vector Merge Instructions ... 4-35
4-23 Vector Splat Instructions ... 4-36
4-24 Vector Permute Instruction.. 4-36
4-25 Vector Select Instruction ... 4-37
4-26 Vector Shift Instructions.. 4-37
MOTOROLA Tables xvii

For More Information On This Product,
 Go to: www.freescale.com

Tables

Table
Number Title

Page
Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

4-27 Coding Various Shifts and Rotates with the vsidoi Instruction................................. 4-38
4-28 Move to/from Condition Register Instructions ... 4-40
4-29 Simplified Mnemonics for Data Stream Touch (dst) .. 4-40
4-30 User-Level Cache Instructions .. 4-42
5-1 AltiVec Unavailable Exception—Register Settings .. 5-11
5-2 Exception Priorities (Synchronous/Precise Exceptions)... 5-12
6-1 Instruction Syntax Conventions .. 6-2
6-2 Notation and Conventions ... 6-2
6-3 Instruction Field Conventions ... 6-7
6-4 Precedence Rules .. 6-7
6-5 Special Values of the Element in vB ... 6-67
6-6 Special Values of the Element in vB ... 6-69
6-7 Special Values of the Element in vB ... 6-123
6-8 Special Values of the Element in vB ... 6-132
A-1 Instruction Sorted by Mnemonic in Decimal Format .. A-1
B-1 Instructions Sorted by Mnemonic in Binary Format...B-1
C-1 Instructions Sorted by Opcode in Decimal Format...C-1
D-1 Instructions Sorted by Opcode in Binary Format .. D-1
E-1 VA-Form..E-1
E-2 VX-Form...E-2
E-3 X-Form..E-5
E-4 VXR-Form ..E-6
F-1 AltiVec Instruction Set Legend ...F-1
xviii AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

U

V

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

About This Book

The primary objective of this manual is to help programmers provide software that is
compatible with processors that implement the PowerPC architecture and the AltiVec™
technology. This book describes how the AltiVec technology relates to the 32-bit portions
of the PowerPC architecture.

To locate any published errata or updates for this document, refer to the web at
http://www.motorola.com/semiconductors.

This book is one of two that discuss the AltiVec technology. The two books are as follows.

• AltiVec Technology Programming Interface Manual (AltiVec PIM) is a reference
guide for high-level programmers. The AltiVec PIM describes how programmers
can access AltiVec functionality from programming languages such as C and C++.
The AltiVec PIM defines a programming model for use with the AltiVec instruction
set. Processor that implement the PowerPC architecture use the AltiVec instruction
set as an extension of the PowerPC instruction set.

• AltiVec Technology Programming Environments Manual (AltiVec PEM) is used as a
reference guide for assembler programmers. The AltiVec PEM uses a standardized
format instruction to describe each instruction, showing syntax, instruction format,
register translation language (RTL) code that describes how the instruction works,
and a listing of which, if any, registers are affected. At the bottom of each instruction
entry is a figure that shows the operations on elements within source operands and
where the results of those operations are placed in the destination operand.

Because it is important to distinguish between the levels of the PowerPC architecture to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book. This document stays consistent with the PowerPC architecture in
referring to three levels, or programming environments, which are as follows:

• PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. he UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

• PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
MOTOROLA Preface xix
For More Information On This Product,

 Go to: www.freescale.com

O

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

access external memory and defines aspects of the cache model and cache control
instructions from a user-level perspective. VEA resources are particularly useful for
optimizing memory accesses and for managing resources in an environment in
which other processors and other devices can access external memory.

Implementations that conform to the VEA also conform to the UISA but may not
necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)—The OEA defines
supervisor-level resources typically required by an operating system. It defines the
memory management model, supervisor-level registers, and the exception model.

Implementations that conform to the OEA also conform to the UISA and VEA.

Most of the discussions on the AltiVec technology are at the UISA level. The level of the
architecture to which text refers is indicated in the outer margin, using the conventions
shown in Section , “Conventions,” on page -xxiii.

For ease in reference, this book and the processor user’s manuals have arranged the
architecture information into topics that build upon one another, beginning with a
description and complete summary of registers and instructions (for all three environments)
and progressing to more specialized topics such as the cache, exception, and memory
management models. As such, chapters may include information from multiple levels of the
architecture, but when discussing OEA and VEA, the level is noted in the text.

It is beyond the scope of this manual to describe individual AltiVec technology
implementations on processors that implement the PowerPC architecture. It must be kept
in mind that each processor that implements the PowerPC architecture and AltiVec
technology is unique in its implementation.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers’ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative or visit our web
site at http://www.mot.com/semiconductors.

Audience
This manual is intended for system software and hardware developers and application
programmers who want to develop products using the AltiVec technology extension to the
PowerPC architecture. It is assumed that the reader understands operating systems,
microprocessor system design, and the basic principles of RISC processing and details of
the PowerPC architecture.

This book describes how the AltiVec technology interacts with the 32-bit portions of the
PowerPC architecture
xx AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Organization
Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “Overview,” is useful for those who want a general understanding of the
features and functions of the AltiVec technology. This chapter provides an overview
of how the AltiVec technology defines the register set, operand conventions,
addressing modes, instruction set, cache model, and exception model.

• Chapter 2, “AltiVec Register Set,” is useful for software engineers who need to
understand the PowerPC programming model for the three programming
environments. The chapter also discusses the functionality of the AltiVec technology
registers and how they interact with the other PowerPC registers.

• Chapter 3, “Operand Conventions,” describes how the AltiVec technology interacts
with the PowerPC conventions for storing data in memory, including information
regarding alignment, single-precision floating-point conventions, and big- and
little-endian byte ordering.

• Chapter 4, “Addressing Modes and Instruction Set Summary,” provides an overview
of the AltiVec technology addressing modes and a brief description of the AltiVec
technology instructions organized by function.

• Chapter 5, “Cache, Exceptions, and Memory Management,” provides a discussion
of the cache and memory model defined by the VEA and aspects of the cache model
that are defined by the OEA. It also describes the exception model defined in the
UISA.

• Chapter 6, “AltiVec Instructions,” functions as a handbook for the AltiVec
instruction set. Instructions are sorted by mnemonic. Each instruction description
includes the instruction formats and figures where it helps in understanding what the
instruction does.

• Appendices A, B, C, D, E, F, and G list all of the AltiVec instructions, grouped
according to mnemonic, opcode, and form, in both decimal and binary order.

• Appendix G, “User’s Manual Revision History,” describes changes since the
previous revision of this document.

• This manual also includes a glossary and an index.

Suggested Reading
This section lists additional reading that provides background for the information in this
manual as well as general information about the AltiVec technology and PowerPC
architecture.
MOTOROLA Preface xxi
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

General Information

The following documentation, available through Morgan-Kaufmann Publishers, 340 Pine
Street, Sixth Floor, San Francisco, CA, provides useful information about the PowerPC
architecture and computer architecture in general:

• The PowerPC Architecture: A Specification for a New Family of RISC Processors,
Second Edition, by International Business Machines, Inc.

For updates to the specification, see http://www.austin.ibm.com/tech/ppc-chg.html.

• PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc., and
Motorola, Inc.

• Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson

• Computer Organization and Design: The Hardware/Software Interface, Second
Edition, David A. Patterson and John L. Hennessy

Related Documentation

Motorola documentation is available from the sources listed on the back cover of this
manual; the document order numbers are included in parentheses for ease in ordering:

• Programming Environments Manual for 32-Bit Implementations of the PowerPC
Architecture (Programming Environments Manual)—Describes resources defined
by the PowerPC architecture (documentation order number: MPCFP32B/AD).

• User’s manuals—These books provide details about individual implementations and
are intended for use with the Programming Environments Manual.

• Addenda/errata to user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and functionality
changes. These addenda are intended for use with the corresponding user’s manuals.

• Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations.

• Technical summaries—Each device has a technical summary that provides an
overview of its features. This document is roughly the equivalent to the overview
(Chapter 1) of an implementation’s user’s manual.

• Application notes—These short documents address specific design issues useful to
programmers and engineers working with Motorola processors.

Additional literature is published as new processors become available. For a current list of
documentation, refer to http://www.motorola.com/semiconductors.
xxii AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Conventions
This document uses the following notational conventions:

cleared/set When a bit takes the value zero, it is said to be cleared; when it takes
a value of one, it is said to be set.

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.

Book titles in text are set in italics

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source general-purpose register
(GPR)

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source floating-point register
(FPR)

frD Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations for registers are shown in uppercase text. Specific bits,
fields, or ranges appear in brackets. For example, MSR[LE] refers to
the little-endian mode enable bit in the machine state register.

vA, vB, vC Instruction syntax used to identify a source vector register (VR)

vD Instruction syntax used to identify a destination VR

x In some contexts, such as signal encodings, an unitalicized x
indicates a don’t care.

x An italicized x indicates an alphanumeric variable.

n An italicized n indicates an numeric variable.

¬ NOT logical operator

& AND logical operator

| OR logical operator

This symbol identifies text that is relevant with respect to the
PowerPC user instruction set architecture (UISA). This symbol is
used both for information that can be found in the UISA specification
as well as for explanatory information related to that programming
environment.

U

MOTOROLA Preface xxiii
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This symbol identifies text that is relevant with respect to the
PowerPC virtual environment architecture (VEA). This symbol is
used both for information that can be found in the VEA specification
as well as for explanatory information related to that programming
environment.

This symbol identifies text that is relevant with respect to the
PowerPC operating environment architecture (OEA). This symbol is
used both for information that can be found in the OEA specification
as well as for explanatory information related to that programming
environment.

Indicates functionality defined by the AltiVec technology.

Indicates reserved bits or bit fields in a register. Although these bits
may be written to as ones or zeros, they are always read as zeros.

Additional conventions used with instruction encodings are described in Section 6.1,
“Instruction Formats.”

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document. Note that the
meanings for some acronyms (such as SDR1 and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

AltiVec PEM AltiVec Technology Programming Environments Manual

AltiVec PIM AltiVec Technology Programming Interface Manual

ALU Arithmetic logic unit

BAT Block address translation

CR Condition register

CTR Count register

DABR Data address breakpoint register

DAR Data address register

DBAT Data BAT

DEC Decrementer register

DSISR Register used for determining the source of a DSI exception

EA Effective address

ECC Error checking and correction

V

O

0 0 0 0
xxiv AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

FPR Floating-point register

FPSCR Floating-point status and control register

FPU Floating-point unit

GPR General-purpose register

IABR Instruction address breakpoint register

IBAT Instruction BAT

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation lookaside buffer

IU Integer unit

L2 Secondary cache

L3 Level 3 cache

LIFO Last-in-first-out

LR Link register

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

LSU Load/store unit

LSQ Least-significant quad-word

lsq Least-significant quad-word

MESI Modified/exclusive/shared/invalid—cache coherency protocol

MMCRn Monitor mode control registers

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSQ Most-significant quad-word

msq Most-significant quad-word

MSR Machine state register

NaN Not a number

NIA Next instruction address

No-op No operation

OEA Operating environment architecture

PEM Programming Environments Manual For 32-Bit Implementations of the PowerPC Architecture

PMCn Performance monitor counter registers

PTE Page table entry

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
MOTOROLA Preface xxv
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PTEG Page table entry group

PVR Processor version register

RISC Reduced instruction set computing

RTL Register transfer language

RWITM Read with intent to modify

RWNITM Read with no intent to modify

SDA Sampled data address register

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

SIA Sampled instruction address register

SIMM Signed immediate value

SPR Special-purpose register

SRn Segment register

SRR0 Machine status save/restore register 0

SRR1 Machine status save/restore register 1

STE Segment table entry

TB Time base facility

TBL Time base lower register

TBU Time base upper register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

UMMCRn User monitor mode control registers

UPMCn User performance monitor counter registers

VA Virtual address

VEA Virtual environment architecture

VPU Vector permute unit

VR Vector register

VSCR Vector status and control register

VTQ Vector touch queue

XER Register used for indicating conditions such as carries and overflows for integer operations

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
xxvi AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Terminology Conventions
Table ii lists certain terms used in this manual that differ from the architecture terminology
conventions.

Table iii describes instruction field notation conventions used in this manual.

Table ii. Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Fixed-point unit (FXU) Integer unit (IU)

Instruction storage interrupt (ISI) ISI exception

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

Store in Write back

Store through Write through

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

VA, VB, VT, VS vA, vB, vD, vS (respectively)
MOTOROLA Preface xxvii
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

VEC AltiVec technology

/, //, /// 0...0 (shaded)

Table iii. Instruction Field Conventions (continued)

The Architecture Specification Equivalent to:
xxviii AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 1
Overview
This chapter provide an overview of AltiVec™ technology, including general concepts
which helps in understanding the features that AltiVec technology provides. There is also
information on how AltiVec technology works with PowerPC architecture.

1.1 Overview
AltiVec™ technology provides a software model that accelerates the performance of
various software applications as it runs on reduced instruction set computing (RISC)
microprocessors. AltiVec technology extends the instruction set architecture (ISA) of
PowerPC architecture. AltiVec ISA is based on separate vector/SIMD-style (single
instruction stream, multiple data streams) execution units that have high data parallelism.
That is, AltiVec technology operates on multiple data items in a single instruction which
allows for a highly efficient way to process large quantities of information. High degrees of
parallelism are achievable with simple in-order instruction dispatch and low-instruction
time processing. However, the ISA is designed so as not to impede additional parallelism
through dispatch to multiple execution units or multithreaded execution unit pipelines.

AltiVec technology is an architecture that defines a set of registers and execution units
which can be used in conjunction with the PowerPC architecture. All instructions are
designed to be easily pipelined with pipeline latencies no greater than the scalar,
double-precision, floating-point multiply-add. There are no operating mode switches which
make interleaving of instructions with the existing floating-point and integer instructions
possible. The vector unit minimizes exceptions and has few shared resources. This requires
it to be tightly synchronized with other execution units that prevent delays in executing
instructions.

AltiVec technology’s SIMD-style extension provides an approach to accelerating the
processing of data streams. That is, in SIMD parallel processing, the vector unit will fetch
and interpret instructions and process multiple pieces of data simultaneously. By
processing whole streams of data at once, it provides a fast and efficient was to manipulate
large quantities of information. AltiVec instructions provide a significant speedup for
communications, multimedia, and other performance-driven applications by using the
data-level parallelism and keeping processing of data to the vector register file. By having
separate register files, the execution units data accesses by different register files can be
MOTOROLA Chapter 1. Overview 1-1

For More Information On This Product,
 Go to: www.freescale.com

Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

done concurrently. The data stream engine in AltiVec supports data-intensive prefetching,
minimizing latency in memory access bottlenecks. By using the SIMD parallelism in
AltiVec technology, performance can be accelerated on processors that implement the
PowerPC architecture to a level that allows real-time processing of one or more data
streams at the same time.

A majority of audio and visual applications require no more that 8- or 16-bit data types to
represent satisfactory color and sound. AltiVec ISA can help accelerate the processing of
the following types of applications:

• Voice over IP (VoIP). VoIP transmits voice as compressed digital data packets over
the Internet.

• Access Concentrators/DSLAMS. An access concentrator strips data traffic off POTS
lines and inserts it onto the Internet. Digital subscriber loop access multiplexer
(DSLAM) pulls data off at a switch and immediately routes it to the Internet. This
allows it to concentrate ADSL digital traffic at the switch and off-load the network.

• Speech recognition. Speech processing allows voice recognition for use in
applications such as directory assistance and automatic dialing.

• Voice/sound processing (audio encode and decode): Voice processing uses signal
processing to improve sound quality on lines.

• Communications:

— Multi-channel modems

— Modem banks can use AltiVec technology to replace signal processors in DSP
farms.

• 2D and 3D graphics: arcade-type games

• Image and video processing: JPEG, filters

• Echo cancellation. Echo cancellation is used to eliminate echo on long delay calls
(250–500 milliseconds, as in satellite communications).

• Array number processing

• Basestation Processing: Cellular basestation compresses digital voice data for
transmission within the Internet.

• Video conferencing: H.261, H.263

In this document, the term ‘implementation’ refers to a hardware device (typically a
microprocessor) that complies with PowerPC architecture.

AltiVec technology can be used as an extension to various RISC microprocessors; however,
in this book it is discussed within the context of PowerPC architecture, described as
follows:
1-2 AltiVec Technology Programming Enviroments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Programming model

— Instruction set. The AltiVec instruction set specifies instructions that extend the
PowerPC instruction set. These instructions are organized similar to PowerPC
instructions (vector integer, vector floating-point, vector load/store, and vector
permutation and formatting instructions). The specific instructions, and the
forms used for encoding them, are provided in Appendix A, “Instruction Set.”

— Register set. The AltiVec programming model defines new AltiVec registers,
additions to the PowerPC register set, and how existing PowerPC registers are
affected by the AltiVec technology. The model also addresses memory
conventions including details regarding the byte ordering for quad words.

• Memory model. AltiVec technology specifies additional cache management
instructions. That is, AltiVec instructions can control software-directed data
prefetching.

• Exception model. AltiVec technology provides very few exceptions, so processing
is efficient. Among the few exceptions are an AltiVec unavailable (VUI) exception
and a DSI exception.

• Memory management model. The memory model for AltiVec technology is the
same as for PowerPC architecture. AltiVec memory accesses are always assumed to
be aligned. If an operand is misaligned, additional AltiVec instructions can be used
to ensure that the operand is placed correctly in the vector register.

• Time-keeping model. The PowerPC time-keeping model is not affected by AltiVec
technology.

To locate published errata or updates for this document, refer to the website at
http://www.motorola.com/semiconductors.

1.2 AltiVec Technology Overview
AltiVec technology expands PowerPC architecture through the addition of a 128-bit vector
execution unit, which operates concurrently with the existing integer- and floating-point
units. The dispatch unit can issue more than one instruction at a time so there is no penalty
for mingling different types of instructions. A new vector execution unit can provide both
a vector permute unit (VPERM) and vector arithmetic logical unit (VALU). By having a
separate permute unit, data reorganization instructions can proceed concurrently with
arithmetic instructions.

AltiVec technology can be thought of as a set of registers and execution units that can be
added to PowerPC architecture in a manner analogous to the addition of floating-point
units. Floating-point units were added to provide support for high-precision scientific
calculations, and AltiVec technology is added to PowerPC architecture to accelerate the
next level of performance-driven, high-bandwidth communications and computing
MOTOROLA Chapter 1. Overview 1-3

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

applications. Figure 1-1 provides a high-level overview of the PowerPC architecture with
the AltiVec technology.

.

Figure 1-1. Overview of PowerPC architecture with AltiVec Technology

AltiVec technology is purposefully simple so that there are minimal exceptions, no
hardware misaligned access support, and no complex functions. AltiVec technology is
scaled down to the necessary pieces only, in order to facilitate efficient cycle time, latency,
and throughput on hardware implementations.

AltiVec technology defines the following:

• Fixed 128-bit-wide vector length that can be subdivided into sixteen 8-bit bytes,
eight 16-bit half words, or four 32-bit words

• Vector register file (VRF) architecturally separate from floating-point registers
(FPRs) and general-purpose registers (GPRs)

• Vector integer and floating-point arithmetic

• Four operands for most instructions (three source operands and one result)

• Saturation clamping (that is, unsigned results are clamped to zero on underflow and
to the maximum positive integer value (2n-1, for example, 255 for byte fields) on
overflow. For signed results, saturation clamps results to the smallest representable
negative number (-2n-1, for example, -128 for byte fields) on underflow, and to the
largest representable positive number (2n-1-1, for example, +127 for byte fields) on
overflow)

Dispatch Unit

Integer Floating-Point
Vector Unit/sUnit

VRs

INST INST INST

Cache / Memory

Unit

FPRs
(32 bits) (64 bits) (128 bits)

Instruction Stream

GPRs
1-4 AltiVec Technology Programming Enviroments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Operations selected based on utility to digital signal processing algorithms
(including 3D).

• AltiVec instructions provide a vector compare and select mechanism to implement
conditional execution as the preferred way to control data flow in AltiVec programs.

• Instructions that enhance the cache/memory interface

1.2.1 Levels of AltiVec ISA

AltiVec ISA follows the layering of PowerPC architecture. PowerPC architecture has three
levels, defined as follows:

• Jser instruction set architecture (UISA) —The UISA defines the level of the
architecture to which user-level (referred to as problem state in the architecture
specification) software should conform. The UISA defines the base user-level
instruction set, user-level registers, data types, floating-point memory conventions,
and exception model as seen by user programs, and the memory and programming
models. The icon shown in the margin identifies text that is relevant to the UISA.

• Virtual environment architecture (VEA)—The VEA defines additional user-level
functionality that falls outside typical user-level software requirements. The VEA
describes the memory model for an environment in which multiple devices can
access memory, defines aspects of the cache model, defines cache control
instructions, and defines the time base facility from a user-level perspective. The
icon shown in the margin identifies text that is relevant to the VEA.

Implementations that conform to the VEA also adhere to the UISA, but may not
necessarily adhere to the OEA.

• Operating environment architecture (OEA)—The OEA defines supervisor-level
(referred to as privileged state in the architecture specification) resources typically
required by an operating system. The OEA defines the memory management model,
supervisor-level registers, synchronization requirements, and the exception model.
The OEA also defines the time base feature from a supervisor-level perspective. The
icon shown in the margin identifies text that is relevant to the OEA.

Implementations that conform to the OEA also conform to the UISA and VEA.

AltiVec technology defines instructions at the UISA and VEA levels. There are no AltiVec
instructions defined at the OEA level. The distinctions between the levels are noted in the
text throughout the document This book describes the 32-bit PowerPC architecture mode.
and instructions are described from a 32-bit perspective.

U

V

O

MOTOROLA Chapter 1. Overview 1-5

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Architectural Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1.2.2 Features Not Defined by AltiVec ISA

Because flexibility is an important design goal of AltiVec technology, there are many
aspects of the microprocessor design, typically relating to the hardware implementation,
that AltiVec ISA does not define. For example, the number and the nature of execution units
are not defined. AltiVec ISA is a vector/SIMD architecture, and as such makes it easier to
implement pipelining instructions and parallel execution units to maximize instruction
throughput. However, AltiVec ISA does not define the internal hardware details of
implementations. For example, one processor may use a simple implementation having two
vector execution units, whereas another may provide a bigger, faster microprocessor design
with several concurrently pipelined vector arithmetic logical units (ALUs) with separate
load/store units (LSUs) and prefetch units.

1.3 AltiVec Architectural Model
This section provides overviews of aspects defined by AltiVec ISA, following the same
order as the rest of this book. The topics are as follows:

• Registers and programming model

• Operand conventions

• Addressing modes and instruction set

• Cache, exceptions, and memory management models

1.3.1 AltiVec Registers and Programming Model

In AltiVec technology, the ALU operates on from one to three source vectors and produces
a single destination vector on each instruction. The ALU is a SIMD-style arithmetic unit
that performs the same operation on all the data elements comprising each vector. This scheme
allows efficient code scheduling in a highly parallel processor. Load and store instructions
are the only instructions that transfer data between registers and memory. The vector unit
and vector register file are shown in Figure 1-2.
1-6 AltiVec Technology Programming Enviroments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Architectural Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 1-2. AltiVec Top-Level Diagram

The vector unit is a SIMD-style unit in which an instruction performs operations in parallel
with the data elements that comprise each vector. Architecturally, the vector register file
(VRF) is separate from the GPRs and FPRs. The AltiVec programming model incorporates
the 32 registers of the VRFs; each register is 128 bits wide.

1.3.2 Operand Conventions

Operand conventions define how data is stored in vector registers and memory.

1.3.2.1 Byte Ordering

The default mapping for AltiVec ISA is PowerPC big-endian, but AltiVec ISA provides the
option of operating in either big- or little-endian mode. The endian support of PowerPC
architecture does not address any data element larger than a double word; the basic memory
unit for vectors is a quad word.

Vector Register File (VRF)

128

VR0

VR1

VR2

VR30

VR31

128 128 128

Result/Destination Vector Register

Vector Unit
MOTOROLA Chapter 1. Overview 1-7

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Architectural Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Big-endian byte ordering is shown in Figure 1-3
.

As shown in Figure 1-3, the elements in vector registers are numbered using big-endian
byte ordering. For example, the high-order (or most significant) byte element is numbered
0 and the low-order (or least significant) byte element is numbered 15.

When defining high order and low order for elements in a vector register, be careful not to
confuse its meaning based on the bit numbering. That is, in Figure 1-4, the high-order half
word for word 0 (bits 0–31) would be half word 0 (bits 0–15), and the low-order half word
for word 0 would be half word 1 (bits 16–31).

In big-endian mode, an AltiVec quad word load instruction for which the effective address
(EA) is quad-word aligned places the byte addressed by EA into byte element 0 of the target
vector register. The byte addressed by EA + 1 is placed in byte element 1, and so forth.
Similarly, an AltiVec quad word store instruction for which the EA is quad word-aligned
places byte element 0 of the source vector register into the byte addressed by EA. Byte
element 1 is placed into the byte addressed by EA + 1, and so forth.

1.3.2.2 Floating-Point Conventions

AltiVec ISA basically has two modes for floating-point, that is a
Java-/IEEE-/C9X-compliant mode or a possibly faster non-Java/non-IEEE mode. AltiVec
ISA conforms to the Java Language Specification 1 (hereafter referred to as Java), that is a
subset of the default environment specified by the IEEE standard (ANSI/IEEE Standard
754-1985, IEEE Standard for Binary Floating-Point Arithmetic). For aspects of
floating-point behavior that are not defined by Java but are defined by the IEEE standard,
AltiVec ISA conforms to the IEEE standard. For aspects of floating-point behavior that are
defined neither by Java nor by the IEEE standard but are defined by the C9X Floating-Point

Quad Word

Word 0 Word 1 Word 2 Word 3

Half Word 0 Half Word 1 Half Word 2 Half Word 3 Half Word 4 Half Word 5 Half Word 6 Half Word 7

Byte
0

Byte
1

Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

Byte
12

Byte
13

Byte
14

Byte
15

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

↑
MSB
(High
Order)

↑
LSB
(Low

Order)

Figure 1-3. Big-Endian Byte Ordering for a Vector Register

Word 0

High-Order half word Low-Order half word

0 15 16 31

Figure 1-4. Bit Ordering
1-8 AltiVec Technology Programming Enviroments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Architectural Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Proposal WG14/N546 X3J11/96-010 (Draft 2/26/96) (hereafter referred to as C9X),
AltiVec ISA conforms to C9X when in Java-compliant mode.

1.3.3 AltiVec Addressing Modes

As with PowerPC instructions, AltiVec instructions are encoded as single-word (32-bit)
instructions. Instruction formats are consistent among all instruction types, permitting
decoding to be parallel with operand accesses. This fixed instruction length and consistent
format simplifies instruction pipelining. AltiVec load, store, and stream prefetch
instructions use secondary opcodes in primary opcode 31 (0b011111). AltiVec ALU-type
instructions use primary opcode 4 (0b000100).

AltiVec ISA supports both intraelement and interelement operations. In an intraelement
operation, elements work in parallel with the corresponding elements from multiple source
operand registers and place the results in the corresponding fields in the destination operand
register. An example of an intraelement operation is the Vector Add Signed Word Saturate
(vaddsws) instruction shown in Figure 1-5

Figure 1-5. Intraelement Example, vaddsbs

In this example, the sixteen elements (8 bits per element) in register vA are added to the
corresponding sixteen elements (8 bits per element) in register vB and the sixteen results
are placed in the corresponding elements in register vD.

In interelement operations data paths cross over. That is, different elements from each
source operand are used in the resulting destination operand. An example of an interelement
operation is the Vector Permute (vperm) instruction shown in Figure 1-6.

Figure 1-6. Interelement Example, vperm

0Element→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+ +++++++++++++++

vA

vB

vD

0Element→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vC1 14 18 10 16 15 19 1A 1C 1C 1C 13 8 1D 1B E

vA

vB

vD

0 1 2 3 4 5 6 7 8 9 A B C D E F

10 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1F11 1E
MOTOROLA Chapter 1. Overview 1-9

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Architectural Model

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In this example, vperm allows any byte in the two source vector registers (vA and vB) to
be copied to any byte in the destination vector register, vD. The bytes in a third source
vector register (vC) specify from which byte in the first two source vector registers the
corresponding target byte is to be copied. So in the interelement example, the elements
from the source vector registers do not have corresponding elements that operate on the
destination register.

Most arithmetic and logical instructions are intraelement operations. The crossover data
paths have been restricted as much as possible to the interelement manipulation instructions
(unpack, pack, permute, etc.) with the idea to implement the ALU and shift/permute as
separate execution units. The following list of instructions distinguishes between
interelement and intraelement instructions:

• Vector intraelement instructions

— Vector integer instructions

– Vector integer arithmetic instructions

– Vector integer compare instructions

– Vector integer rotate and shift instructions

— Vector floating-point instructions

– Vector floating-point arithmetic instructions

– Vector floating-point rounding and conversion instructions

– Vector floating-point compare instruction

– Vector floating-point estimate instructions

— Vector memory access instructions

• Vector interelement instructions

— Vector alignment support instructions

— Vector permutation and formatting instructions

– Vector pack instructions

– Vector unpack instructions

– Vector merge instructions

– Vector splat instructions

– Vector permute instructions

– Vector shift left/right instructions
1-10 AltiVec Technology Programming Enviroments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Architectural Model

U

U

U

U

U

V

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1.3.4 AltiVec Instruction Set

Although these categories are not defined by AltiVec ISA, AltiVec instructions can be
grouped as follows:

• Vector integer arithmetic instructions—These instructions are defined by the UISA.
They include computational, logical, rotate, and shift instructions.

— Vector integer arithmetic instructions

— Vector integer compare instructions

— Vector integer logical instructions

— Vector integer rotate and shift instructions

• Vector floating-point arithmetic instructions—These include floating-point
arithmetic instructions defined by the UISA.

— Vector floating-point arithmetic instructions

— Vector floating-point multiply/add instructions

— Vector floating-point rounding and conversion instructions

— Vector floating-point compare instruction

— Vector floating-point estimate instructions

• Vector load and store instructions—These include load and store instructions for
vector registers defined by the UISA.

• Vector permutation and formatting instructions—These instructions are defined by
the UISA.

– Vector pack instructions

– Vector unpack instructions

– Vector merge instructions

– Vector splat instructions

– Vector permute instructions

– Vector select instructions

– Vector shift instructions

• Processor control instructions—These instructions are used to read and write from
the AltiVec status and control register (VSCR). These instructions are defined by the
UISA.

• Memory control instructions—These instructions are used for managing of caches
(user level and supervisor level). The instructions are defined by VEA and include
data stream instructions.
MOTOROLA Chapter 1. Overview 1-11

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Architectural Model

U
V

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1.3.5 AltiVec Cache Model

AltiVec ISA defines several instructions for enhancements to cache management. These
instructions allow software to indicate to the cache hardware how it should prefetch and
prioritize writeback of data. The AltiVec ISA does not define hardware aspects of cache
implementations.

1.3.6 AltiVec Exception Model

AltiVec vector instructions generate very few exceptions. Data stream instructions will
never cause an exception themselves. Vector load and store instructions that attempt to
access a direct-store segment will cause a DSI exception.

The AltiVec unit does not report IEEE exceptions; there are no status flags and the unit has
no architecturally visible traps. Default results are produced for all exception conditions as
specified first by the Java specification. If no default exists, the IEEE standard’s default is
used. Then, if no default exists, the C9X default is used.

Exceptions have been minimized so that the vector unit does not have to be tightly
synchronized with the existing floating-point and integer units. By simplifying the
communications path with other units there can be fine grain interleaving of instructions
that increases the instruction through-put.

1.3.7 Memory Management Model

In a processor that implement the PowerPC architecture the MMU’s primary functions are
to translate logical (effective) addresses to physical addresses for memory accesses and I/O
accesses (most I/O accesses are assumed to be memory-mapped) and to provide access
protection on a block or page basis. Some protection is also available even if translation is
disabled. Typically, it is not programmable. The AltiVec ISA does not provide any
additional instructions to the PowerPC memory management model, but AltiVec
instructions have options to ensure that an operand is correctly placed in a vector register
or in memory.
1-12 AltiVec Technology Programming Enviroments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 2
AltiVec Register Set
This chapter describes the register organization defined by AltiVec technology. It also
describes how AltiVec instructions affect some of the registers in the PowerPC architecture.
AltiVec Instruction Set Architecture (ISA) defines register-to-register operations for all
computational instructions. Source data for these instructions is accessed from the on-chip
vector registers (VRs) or are provided as immediate values embedded in the opcode.
Architecturally, the VRs are separate from the general-purpose registers (GPRs) and
floating-point registers (FPRs). Data is transferred between memory and vector registers
with explicit AltiVec load and store instructions only.

Note that the handling of reserved bits in any register is implementation-dependent.
Software is permitted to write any value to a reserved bit in a register. However, a
subsequent reading of the reserved bit returns 0 if the value last written to the bit was 0 and
returns an undefined value (may be 0 or 1) otherwise. This means that even if the last value
written to a reserved bit was 1, reading that bit may return 0.

2.1 Overview on the AltiVec and PowerPC Registers
The addition of AltiVec technology adds some additional new registers as well as affecting
bit settings in some of the PowerPC registers when AltiVec instructions are executed.
Figure 2-1 shows a graphic representation of the entire PowerPC register set and how the
AltiVec register set resides within the PowerPC architecture. The PowerPC registers
affected by AltiVec instructions are shaded and AltiVec registers are highlighted as well.
Note that a processor that implements the PowerPC architecture may have additional
registers specific only to that processor.
MOTOROLA Chapter 2. AltiVec Register Set 2-1

For More Information On This Product,
 Go to: www.freescale.com

Overview on the AltiVec and PowerPC Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2-1. Programming Model—All Registers

1 These registers are defined as optional by the
 PowerPC architecture.
2 These registers are defined by the AltiVec
 technology.

DSISRData Address Register

SPRGs

Exception Handling Registers

Save and Restore Registers

Instruction BAT
Registers

Data BAT
Registers

Memory Management Registers

Machine State Register

MSR (32)

Processor Version Register

SPR 287PVR (32)

Configuration Registers

USER MODEL—UISA

Condition Register

General-Purpose
Registers

SPR 8

Link Register

LR (32)

SUPERVISOR MODEL—OEA

Decrementer 1

External Address Register1

EAR (32)

SPR 9

Count Register

Miscellaneous Registers

Segment
Registers

CR (32)

Vector Registers 2

Time Base Facility
(For Writing) 1

USER MODEL—VEA

TBL (3 2) TBR 268

Time Base Facility (For Reading)

CTR (32)

TBU (32) TBR 269

IBAT0U (32)

IBAT0L (32)

IBAT1U (32)

IBAT1L (32)

IBAT2U (32)

IBAT2L (32)

IBAT3U (32)

IBAT3L (32)

SPR 528

SPR 529

SPR 530

SPR 531

SPR 532

SPR 533

SPR 534

SPR 535

SPR 536

SPR 537

SPR 538

SPR 539

SPR 540

SPR 541

SPR 542

SPR 543

DBAT0U (32)

DBAT0L (32)

DBAT1U (32)

DBAT1L (32)

DBAT2U (32)

DBAT2L (32)

DBAT3U (32)

DBAT3L (32)

SDR1 (32) SPR 25

SPRG0 (32)

SPRG1 (32)

SPRG2 (32)

SPRG3 (32)

SPR 272

SPR 273

SPR 274

SPR 275

DAR (32) DSISR (32)SPR 19 SPR 18

SRR0 (32) SPR 26

SRR1 (32) SPR 27

SPR 282

TBL (32) TBR 284

TBU (32) TBR 285

DEC (32) SPR 22

Data Address
Breakpoint Register 1

DABR (32) SPR 1013

Vector Status and
Control Register 2

VSCR (32)

Processor ID Register 1

PIR (32) SPR 1023

AltiVec Registers

AltIVec Save
Register 2

VRSAVE (32) SPR 256

Floating-Point Registers

FPR0 (64)

FPR1 (64)

FPR31 (64)

GPR0 (32)

GPR1 (32)

GPR31 (32)

VR0 (128)

VR1 (128)

VR31 (128)

SR0 (32)

SR1 (32)

SR15 (32)

= AltiVec Registers

= PowerPC Registers Used In the AltiVec Technology

SDR1

Floating-Point Exception
Cause Register 1

FPECR (32) SPR 1022

SPR 1

XER

XER (32)

Floating-Point
Status and Control
Register

FPSCR (32)
2-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Register Set Overview

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2 AltiVec Register Set Overview
AltiVec registers, shown in Figure 2-2 can be accessed by user or supervisor-level
instructions. The vector registers (VRs) are accessed as instruction operands. Access to the
registers can be explicit (that is, through the use of specific instructions for that purpose
such as Move from Vector Status and Control Register (mfvscr) and Move to Vector Status
and Control Register (mtvscr) instructions) or implicit as part of the execution of an
instruction. The VRs are accessed both explicitly and implicitly.

The number to the right of the register name indicates the number used in the syntax of the
instruction operands to access the register (for example, the number used to access the
VRSAVE is SPR 256).

Figure 2-2. AltiVec Register Set

The user-level registers can be accessed by all software with either user or supervisor
privileges. The user-level register set for AltiVec technology includes the following:

• Vector registers (VRs): The vector register file consists of 32 VRs designated as
VR0–VR31. The VRs serve as vector source and vector destination registers for all
vector instructions. See Section 2.3.2, “Vector Status and Control Register
(VSCR),” for more information.

• Vector status and control register (VSCR): The VSCR contains the non-Java and
saturation bit with the remaining bits being reserved. See Section 2.3.2, “Vector
Status and Control Register (VSCR),” for more details.

• Vector save/restore register (VRSAVE): The VRSAVE assists the application and
operating system software in saving and restoring the architectural state across
context-switched events. The bits in the VRSAVE can indicate whether the vector
register is live (1) or dead (0). See Section 2.3.3, “Vector Save/Restore Register
(VRSAVE),” for more information.

Vector Registers

VR0

VR1

VR31

Vector Status and Control Register

VSCR

Vector Save /Restore Register

VRSAVE SPR 256

0 31

310

0 128
MOTOROLA Chapter 2. AltiVec Register Set 2-3

For More Information On This Product,
 Go to: www.freescale.com

Registers defined by AltiVec ISA

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.3 Registers defined by AltiVec ISA
AltiVec ISA has defined several registers. The new AltiVec registers for the most part only
interact with AltiVec instructions, with the exception of the VRSAVE register that is read
or written by the PowerPC instructions mfspr or mtspr, respectively.

2.3.1 AltiVec Vector Register File (VRF)

The VRF, shown in Figure 2-3, has 32 registers, each 128 bits wide. Each vector register
can hold sixteen 8-bit elements, eight 16-bit elements, or four 32-bit elements.

Figure 2-3. Vector Registers (VRs)

The vector registers are accessed as vector instruction operands. Access to registers are
explicit as part of the execution of an AltiVec instruction.

2.3.2 Vector Status and Control Register (VSCR)

The vector status and control register (VSCR) is a 32-bit vector register (not an SPR) that
is read and written in a manner similar to the FPSCR in the PowerPC scalar floating-point
unit. The VSCR is shown in Figure 2-4

VR0

VR1

VR2

VR30

VR31

VR3

32-Bits

16-Bits

8-Bits

128-Bits

32
Vector

Registers

1 9 10 11 12 13 14 15 16

1

1

2

2

2

3

3

3

4

4

4

5

5

6

6

7

7

8

8

0 128

Sixteen 8-bit Elements

Eight 16-bit Elements

Four 32-bit Elements

VR4

VR5
2-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Registers defined by AltiVec ISA

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The VSCR has two defined bits, the AltiVec non-Java mode (NJ) bit (VSCR[15]) and the
AltiVec saturation (SAT) bit (VSCR[31]); the remaining bits are reserved.

Special instructions Move from Vector Status and Control Register (mfvscr) and Move to
Vector Status and Control Register (mtvscr) are provided to move the contents of VSCR
from and to a vector register. When moved to or from a vector register, the 32-bit VSCR is
right-justified in the 128-bit vector register. When moved to a vector register, the upper 96
bits VRn [0–95] of the vector register are cleared, so the VSCR in a vector register looks as
shown in Figure 2-5

VSCR bit settings are shown in Table 2-1.

0 1 2 3 4 5

Field Reserved NJ Reserved SAT

Reset Implementation Specific

R/W R/W with mfvscr or mtvscr instruction

Figure 2-4. Vector Status and Control Register (VSCR)

0 95 96 110 111 112 126 127

Reserved Reserved NJ Reserved SAT

Figure 2-5. 32-bit VSCR Moved to a 128-bit Vector Register

Table 2-1. VSCR Field Descriptions

Bit Name Description

0–14 — Reserved.
The handling of reserved bits is the same as that for other PowerPC registers. Software is permitted
to write any value to such a bit. A subsequent reading of the bit returns 0 if the value last written to
the bit was 0 and returns an undefined value (0 or 1) otherwise.

15 NJ Non-Java.
This bit determines whether AltiVec floating-point operations are performed in a
Java-IEEE-C9X–compliant mode or a possibly faster non-Java/non-IEEE mode.
0 The Java-IEEE-C9X–compliant mode is selected. Denormalized values are handled as specified

by Java, IEEE, and the C9X standard.
1 The non-Java/non-IEEE–compliant mode is selected. If an element in a source vector register

contains a denormalized value, the value 0 is used instead. If an instruction causes an underflow
exception, the corresponding element in the target VR is cleared to 0. In both cases the 0 has the
same sign as the denormalized or underflowing value.

This mode is described in detail in the floating–point overview Section 3.2.1, “Floating-Point Modes.”
MOTOROLA Chapter 2. AltiVec Register Set 2-5

For More Information On This Product,
 Go to: www.freescale.com

Registers defined by AltiVec ISA

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The mtvscr is context synchronizing. This implies that all AltiVec instructions logically
preceding an mtvscr in the program flow execute in the architectural context (NJ mode)
that existed before completion of mtvscr, and that all instructions logically following after
mtvscr execute in the new context (NJ mode) established by the mtvscr.

After an mfvscr instruction executes, the result in the target vector register is architecturally
precise. That is, it reflects all updates to the SAT bit that could have been made by vector
instructions logically preceding it in the program flow, and further, it will not reflect any
SAT updates that may be made to it by vector instructions logically following it in the
program flow. Because it is context synchronizing, mfvscr can be much slower than typical
AltiVec instructions, and therefore care must be taken in reading it to avoid performance
problems.

2.3.3 Vector Save/Restore Register (VRSAVE)

The VRSAVE register shown in Figure 2-6 is a user-level 32-bit SPR used to assist in
application and operating system software in saving and restoring the architectural state
across process context-switched events. The VRSAVE is SPR 256 and is entirely
maintained and managed by software.

16–30 — Reserved.
The handling of reserved bits is the same as that for other PowerPC registers. Software is permitted
to write any value to such a bit. A subsequent reading of the bit returns 0 if the value last written to
the bit was 0 and returns an undefined value (0 or 1) otherwise.

31 SAT Saturation.
A sticky status bit indicating that some field in a saturating instruction saturated since the last time
SAT was cleared. In other words, when SAT = 1 it remains set to 1 until it is cleared to 0 by an mtvscr
instruction. For further discussion refer to Section 4.2.1.1, “Saturation Detection.”
0 Indicates no saturation occurred; mtvscr can explicitly clear this bit.
1 The AltiVec saturate instruction is set when saturation occurs for the results one of AltiVec

instructions having saturate in its name as follows:
Move to VSCR (mtvscr)
Vector Add Integer with Saturation (vaddubs, vadduhs, vadduws, vaddsbs, vaddshs,
vaddsws)
Vector Subtract Integer with Saturation (vsububs, vsubuhs, vsubuws, vsubsbs,
vsubshs, vsubsws)
Vector Multiply-Add Integer with Saturation (vmhaddshs, vmhraddshs)
Vector Multiply-Sum with Saturation (vmsumuhs, vmsumshs, vsumsws)
Vector Sum-Across with Saturation (vsumsws, vsum2sws, vsum4sbs, vsum4shs,
vsum4ubs)
Vector Pack with Saturation (vpkuhus, vpkuwus, vpkshus, vpkswus, vpkshss,
vpkswss)
Vector Convert to Fixed-Point with Saturation (vctuxs, vctsxs)

Table 2-1. VSCR Field Descriptions (continued)

Bit Name Description
2-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Additions to PowerPC UISA Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 Figure 2-6. Vector Save/Restore Register (VRSAVE)

VRSAVE bit settings are shown in Figure 2-2

The VRSAVE register can be accessed only by the mfspr and mtspr instructions. Each bit
in this register corresponds to a vector register (VR) and indicates whether the
corresponding register contains data that is currently in use by the executing process.
Therefore, the operating system needs to save and restore only those VRs when an
exception occurs. If this approach is taken, it must be applied rigorously; if a program fails
to indicate that a given VR is in use, software errors may occur that are difficult to detect
and correct because they are timing-dependent. Some operating systems save and restore
VRSAVE only for programs that also use other AltiVec registers.

2.4 Additions to PowerPC UISA Registers
The PowerPC UISA registers can be accessed by either user- or supervisor-level
instruction. The one register affected by AltiVec architecture is the condition register (CR).
The CR is a 32-bit register, divided into eight 4-bit fields, CR0–CR7, that reflects the results
of certain arithmetic operations and provides a mechanism for testing and branching. For
more details refer to Chapter 2, “Register Set,” in the Programming Environments Manual
for 32-Bit Implementations of the PowerPC Architecture.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field VR0 VR1 VR2 VR3 VR4 VR5 VR6 VR7 VR8 VR9 VR10 VR11 VR12 VR13 VR14 VR15

Reset 0000_0000_0000_0000

R/W R/W with mfspr or mtspr instruction

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field VR16 VR17 VR18 VR19 VR20 VR21 VR22 VR23 VR24 VR25 VR26 VR27 VR28 VR29 VR30 VR31

Reset 0000_0000_0000_0000

R/W R/W with mfspr or mtspr instructions

SPR SPR256

Table 2-2. VRSAVE Bit Settings

Bits Name Description

0-31 VRn Each bit in the VRSAVE register indicates whether the corresponding VR contains data in use
by the executing process.
0 VRn is not being used for the current process
1 VRn is using VRn for the current process
MOTOROLA Chapter 2. AltiVec Register Set 2-7

For More Information On This Product,
 Go to: www.freescale.com

Additions to PowerPC UISA Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.4.1 PowerPC Condition Register

The PowerPC condition register (CR) is a 32-bit register that reflects the result of certain
operations and provides a mechanism for testing and branching. For AltiVec ISA, the CR6
field can optionally be used, that is if an AltiVec instruction field’s record bit (Rc) is set in
a vector compare instruction. The CR6 field is updated. The CR is divided into eight 4-bit
fields, CR0–CR7, as shown in Figure 2-7

Figure 2-7. Condition Register (CR)

For more details on the CR see Chapter 2, “Register Set,” in Programming Environments
Manual for 32-Bit Implementations of the PowerPC Architecture.

To control program flow based on vector data, all vector compare instructions can
optionally update CR6. If the instruction field’s record bit (Rc) is set in a vector compare
instruction, CR6 is updated according to Table 2-3.

The Rc bit should be used sparingly because when Rc = 1 it can cause a somewhat longer
latency or be more disruptive to instruction pipeline flow than when Rc = 0. Therefore
techniques of accumulating results and testing infrequently are advised.

0 3 4 7 8 11 12 15

Field CR0 CR1 CR2 CR3

Reset Implementation Specific

R/W R/W with mtcrf or mfcr instructions (CR6 can be the implicit result of vector compare instructions)

16 19 20 23 24 27 28 31

Field CR4 CR5 CR6 CR7

Reset Implementation Specific

R/W R/W with mtcrf or mfcr instructions (CR6 can be the implicit result of vector compare instructions)

Table 2-3. CR6 Field’s Bit Settings for Vector Compare Instructions

CR Bit
CR6

Field Bit
Vector Compare Vector Compare Bounds

24 0 1 Relation is true for all
element pairs

0

25 1 0 0

26 2 1 Relation is false for all
element pairs

0 All fields were in bounds

1 All fields are in bounds for the vcmpbfp instruction
so the result code of all fields is 0b00

0 One of the fields is out of bounds for the vcmpbfp
instruction

27 3 0 0
2-8 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Additions to PowerPC OEA Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.5 Additions to PowerPC OEA Registers
The PowerPC operating environment architecture (OEA) can be accessed only by
supervisor-level instructions. Any attempt to access these SPRs with user-level instructions
results in a supervisor-level exception. For more details on the MSR and SRR see Chapter
2, “Register Set,” in Programming Environments Manual for 32-Bit Implementations of the
PowerPC Architecture.

2.5.1 AltiVec Field added in the PowerPC Machine State
Register (MSR)

An AltiVec available field is added to the PowerPC machine state register (MSR). The MSR
is 32 bits wide as shown in Figure 2-8.

Figure 2-8. Machine State Register (MSR)

In 32-bit PowerPC implementations, bit 6, the VEC field, is added to the MSR as shown in
Figure 2-8 Also AltiVec data stream prefetching instructions will be suspended and
resumed based on MSR[PR] and MSR[DR]. The Data Stream Touch (dst) and Data Stream
Touch for Store (dstst) instructions are supported whenever MSR[DR] = 1. If either
instruction is executed when MSR[DR] = 0 (real addressing mode), the results are
boundedly undefined. For each existing data stream, prefetching is enabled if MSR[DR] =
1 and MSR[PR] has the value it had when the dst or dstst instruction that specified the data
stream was executed. Otherwise prefetching for the data stream is suspended. In particular,
the occurrence of an exception suspends all data stream prefetching.

Table 2-4 shows AltiVec bit definitions for the MSR as well as how the PR and DR bits are
affected by AltiVec data stream instructions.

0 5 6 7 12 13 14 15

Field Reserved VEC Reserved POW Res. ILE

Reset Implementation Specific

R/W R with mfmsr, W with exception occurrence, mtmsr, sc, or rfi instructions

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field EE PR FP ME FE0 SE BE FE1 Res. IP IR DR Res. RI LE

Reset Implementation Specific

R/W R with mfmsr, W with exception occurrence, mtmsr, sc, or rfi instructions
MOTOROLA Chapter 2. AltiVec Register Set 2-9

For More Information On This Product,
 Go to: www.freescale.com

Additions to PowerPC OEA Registers

O

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For more detailed information including the other bit settings for MSR, refer to Chapter 2,
“Register Set,” in Programming Environments Manual for 32-Bit Implementations of the
PowerPC Architecture.

2.5.2 Machine Status Save/Restore Registers (SRRs)

The machine status save/restore registers (SRRs) are part of the PowerPC OEA
supervisor-level registers. The SRR0 and SRR1 registers are used to save machine status
on exceptions and to restore machine status when an rfi instruction is executed. For more
detailed information, refer to Chapter 2, “Register Set,” in Programming Environments
Manual for 32-Bit Implementations of the PowerPC Architecture.

2.5.2.1 Machine Status Save/Restore Register 0 (SRR0)

The SRR0 is a 32-bit register in 32-bit implementation. SRR0 is used to save machine
status on exceptions and restore machine status when an rfi instruction is executed. For
AltiVec ISA, it holds the effective address (EA) for the instruction that caused the AltiVec
unavailable exception. The AltiVec unavailable exception occurs when no higher priority
exception exists, and an attempt is made to execute an AltiVec instruction when
MSR[VEC] = 0. The format of SRR0 is shown in Figure 2-9.

Table 2-4. MSR Bit Settings

Bits Name Description

6 VEC AltiVec Available
0 AltiVec is disabled.
1 AltiVec is enabled.
Note: Any attempt to execute a non-stream AltiVec instruction when the bit is cleared causes the
processor to execute an “AltiVec Unavailable Exception” when the instruction accesses the VRF or
VSCR register. This exception does not happen for data streaming instructions (dst(t), dstst(t), and
dss), that is, the VRF and VSCR registers are available to the data streaming instructions even
when the MSR[VEC] is cleared.
The VRSAVE register is not protected by MSR [VEC], that is, it can be accessed
even when MSR[VEC] is cleared.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

Note: Care should be taken if data stream prefetching is used in supervisor mode (MSR[PR] = 0).
For each existing data stream, prefetching is enabled if MSR[DR] = 1 and MSR[PR] has the value
it had when the dst or dstst instruction that specified the data stream was executed. Otherwise
prefetching for the data stream is suspended.

27 DR Data address translation
0 Data address translation is disabled. If data stream touch (dst) and data stream touch for store

(dstst) instructions are executed whenever DR = 0, the results are boundedly undefined
1 Data address translation is enabled. Data stream touch (dst) and data stream touch for store

(dstst) instructions are supported whenever DR = 1.
2-10 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Additions to PowerPC OEA Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.5.2.2 Machine Status Save/Restore Register 1 (SRR1)

The SRR1 is a 32-bit register in 32-bit implementation. SRR1 is used to save machine
status on exceptions and to restore machine status when an rfi instruction is executed. The
format of SRR1 is shown in Figure 2-10.

When an AltiVec unavailable exception occurs, SRR1[1–4] and SRR[10–15] are cleared
and all other SRR1 bits are loaded from the MSR as it was just prior to the interrupt. So
MSR[0], MSR[5–9], and MSR[16–31] are placed into the corresponding bit positions of
SRR1 as they were before the exception was taken.

0 31

Field Holds effective address (EA) for instruction in interrupted program flow

Reset Implementation Specific

R/W R/W with rfi

Figure 2-9. Machine Status Save/Restore Register 0 (SRR0)

0 31

Field Exception-specific information and MSR bit values

Reset Implementation Specific

R/W R/W with rfi

Figure 2-10. Machine Status Save/Restore Register 0 (SRR1)
MOTOROLA Chapter 2. AltiVec Register Set 2-11

For More Information On This Product,
 Go to: www.freescale.com

Additions to PowerPC OEA Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2-12 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 3
Operand Conventions
This chapter describes the operand conventions as they are represented in AltiVec
technology at the user instruction set architecture (UISA) level. Detailed descriptions are
provided of conventions used for transferring data between vector registers and memory,
and representing data in these vector registers using both big- and little-endian byte
ordering. Additionally, the floating-point default conditions for exceptions are described.

3.1 Data Organization in Memory
In addition to supporting byte, half-word and word operands, as defined in the PowerPC
architecture UISA, AltiVec instruction set architecture (ISA) supports quad-word (128-bit)
operands.

The following sections describe the concepts of alignment and byte ordering of data for
quad words, otherwise alignment is the same as described in Chapter 3, “Operand
Conventions,” in the Programming Environments Manual for 32-Bit Implementations of the
PowerPC Architecture.

3.1.1 Aligned and Misaligned Accesses

Vectors are accessed from memory with instructions such as Vector Load Indexed (lvx) and
Store Vector Indexed (stvx) instructions. The operand of a vector register to memory access
instruction has a natural alignment boundary equal to the operand length. In other words,
the natural address of an operand is an integral multiple of the operand length. A memory
operand is said to be aligned if it is aligned at its natural boundary; otherwise it is
misaligned. Each AltiVec instruction is a 4-byte word and is word-aligned like PowerPC
instructions.

U

MOTOROLA Chapter 3. Operand Conventions 3-1

For More Information On This Product,
 Go to: www.freescale.com

Data Organization in Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operands for vector register to memory access instructions have the characteristics shown
in Table 3-1.

The concept of alignment is also applied more generally to data in memory. For example,
an 8-byte data item is said to be half-word–aligned if its address is a multiple of two; that
is, the effective address (EA) points to the next effective address that is 2 bytes (a half word)
past the current effective address (EA + 2 bytes), and then the next being the EA + 4 bytes,
and effective address would continue skipping every 2 bytes (2 bytes = 1 half word). This
ensures that the effective address is half-word aligned as it points to each successive half
word in memory.

It is important to understand that AltiVec memory operands are assumed to be aligned, and
AltiVec memory accesses are performed as if the appropriate number of low-order bits of
the specified effective address were zero. This assumption is different from PowerPC
integer and floating-point memory access instructions where alignment is not always
assumed. So for AltiVec ISA, the low-order bit of the effective address is ignored for
half-word AltiVec memory access instructions, and the low-order four bits of the effective
address are ignored for quad-word AltiVec memory access instructions. The effect is to load
or store the memory operand of the specified length that contains the byte addressed by the
effective address.

If a memory operand is misaligned, additional instructions must be used to correctly place
the operand in a vector register or in memory. AltiVec technology provides instructions to
shift and merge the contents of two vector registers. These instructions facilitate copying
misaligned quad-word operands between memory and the vector registers.

3.1.2 AltiVec Byte Ordering

For processors that implement the PowerPC architecture and AltiVec technology, the
smallest addressable memory unit is the byte (8 bits), and scalars are composed of one or
more sequential bytes. AltiVec ISA supports both big- and little-endian byte ordering. The
default byte ordering is big-endian. However, the code sequence used to switch from big-
to little-endian mode may differ among processors.

Table 3-1. Memory Operand Alignment

Operand Length
32-bit Aligned

Address (28–31) 1

1 An x in an address bit position indicates that the bit can be 0 or 1
independent of the state of other bits in the address

Byte 8 bits (1 byte) xxxx

Half word 2 bytes xxx0

Word 4 bytes xx00

Quad word 16 bytes 0000
3-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Data Organization in Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The PowerPC architecture uses the machine state register (MSR) for specifying byte
ordering in little-endian mode (LE). A value of 0 specifies big-endian mode and a value of
1 specifies little-endian mode. For further details on byte ordering in the PowerPC
architecture, refer to Chapter 3, “Operand Conventions,” in the Programming Environments
Manual for 32-Bit Implementations of the PowerPC Architecture.

AltiVec ISA follows the endian support of the PowerPC architecture for elements up to
double words with additional support for quad words. In AltiVec ISA when a 64-bit scalar
is moved from a register to memory, it occupies eight consecutive bytes in memory and a
decision must be made regarding byte ordering in these eight addresses.

3.1.2.1 Big-Endian Byte Ordering

For big-endian scalars, the most-significant byte (MSB) is stored at the lowest (or starting)
address while the least-significant byte (LSB) is stored at the highest (or ending) address.
This is called big-endian because the big end of the scalar comes first in memory.

3.1.2.2 Little-Endian Byte Ordering

For little-endian scalars, the LSB is stored at the lowest (or starting) address while the MSB
is stored at the highest (or ending) address. This is called little-endian because the little end
of the scalar comes first in memory.

3.1.3 Quad Word Byte Ordering Example

The idea of big- and little-endian byte ordering is best illustrated in an example of a quad
word such as 0x0011_2233_4455_6677_8899_AABB_CCDD_EEFF located in memory.
This quad word is used throughout this section to demonstrate how the bytes that comprise
a quad word are mapped into memory.

The quad word (0x0011_2233_4455_6677_8899_AABB_CCDD_EEFF) is shown in
big-endian mapping in Figure 3-1. A hexadecimal representation is used for showing
address values and the values in the contents of each byte. The address is shown below each
byte’s contents. The big-endian model addresses the quad word at address 0x00, which is
the MSB (0x00), proceeding to the address 0x0F, which contains the LSB (0xFF)

Figure 3-1. Big-Endian Mapping of a Quad Word

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quad Word

Contents 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

↑
MSB

↑
LSB
MOTOROLA Chapter 3. Operand Conventions 3-3

For More Information On This Product,
 Go to: www.freescale.com

Data Organization in Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-2 shows the same quad word using little-endian mapping. In the little-endian
model, the quad word’s 0x00 address specifies the LSB (0xFF) and proceeds to address
0x0F which contains its MSB (0x00).

Figure 3-2 shows the sequence of bytes laid out with addresses increasing from left to right.
Programmers familiar with little-endian byte ordering may be more accustomed to viewing
quad words laid out with addresses increasing from right to left, as shown in Figure 3-3.

This allows the little-endian programmer to view each scalar in its natural byte order of
MSB to LSB. This section uses both conventions based on ease of understanding for the
specific example.

3.1.4 Aligned Scalars in Little-Endian Mode

The effective address (EA) calculation for the load and store instructions is described in
Chapter 4, “Addressing Modes and Instruction Set Summary.” For processors that
implement the PowerPC architecture in little-endian mode, the effective address is modified
before being used to access memory. In the PowerPC architecture, the three low-order
address bits of the effective address are exclusive-ORed (XOR) with a three-bit value that
depends on the length of the operand (1, 2, 4, or 8 bytes), as shown in Table 3-2. This
address modification is called munging.

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quad Word

Contents FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 00

Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

↑
LSB

↑
MSB

Figure 3-2. Little-Endian Mapping of a Quad Word

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quad Word

Contents 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

Address 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

↑
MSB

↑
LSB

Figure 3-3. Little-Endian Mapping of Quad Word—Alternate View
3-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Data Organization in Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The munged physical address is passed to the cache or to main memory, and the specified
width of the data is transferred (in big-endian order—that is, MSB at the lowest address,
LSB at the highest address) between a GPR or FPR and the addressed memory locations
(as modified).

Munging makes it appear to the processor that individual aligned scalars are stored as
little-endian, when in fact they are stored in big-endian order but at different byte addresses
within double words. Only the address is modified, not the byte order. For further details
on how to align scalars in little-endian mode see Chapter 3, “Operand Conventions,” in
Programming Environments Manual for 32-Bit Implementations of the PowerPC
Architecture.

The PowerPC address munging is performed on double-word units. In the PowerPC
architecture, little-endian mode would have the double words of a quad word appear
swapped. When the quad word in memory shown at the top of Figure 3-4, loads from
address 0x00, the bottom of Figure 3-4 shows how it appears to the processor as it munges
the address.

Note that double words are swapped. The byte element addressed by the quad word’s base
address, 0x0F, contains 0x28, while its MSB at address 0x00 contains 0x27. This is due to
the PowerPC munging being applied to offsets within double words; AltiVec ISA requires
a munge within quad words.

Table 3-2. Effective Address Modifications

Data Width (Bytes) EA Modification

1 XOR with 0b111

2 XOR with 0b110

4 XOR with 0b100

8 No change

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quad Word

Contents 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

↑
LSB

↑
MSB

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quad Word

Contents 27 26 25 24 23 22 21 20 2F 2E 2D 2C 2B 2A 29 28

Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Figure 3-4. Quad Word Load with PowerPC Munged Little-Endian Applied
MOTOROLA Chapter 3. Operand Conventions 3-5

For More Information On This Product,
 Go to: www.freescale.com

Data Organization in Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

To accommodate the quad-word operands, the PowerPC architecture cannot simply be
extended by munging an extra address bit. It would break existing code or platforms.
Processors that implement AltiVec technology could not be mixed with non-AltiVec
processors. Instead, AltiVec processors implement a double-word swap when moving quad
words between vector registers and memory.

Figure 3-5 shows how this swapping could be implemented. This diagram represents the
load path double-word swapping; the store path looks the same, except that the memory and
internal boxes are reversed.

Figure 3-5. AltiVec Little Endian Double-Word Swap

In the diagram, the numbers at the bottom of the byte boxes represent the offset address of
that byte; the numbers at the top are the values of the bytes at that offset.The little-endian
ordering is discontinuous because the PowerPC munging is performed only on
double-word units. The purpose of the double word swap within the AltiVec unit is to
perform an additional swap that is not part of the PowerPC architecture.

When MSR[LE] = 1, double words are swapped and the bytes appear in their expected
ordering. When MSR[LE] = 0, no swapping occurs.

To summarize, in little-endian mode, the load vector element indexed instructions (lvebx,
lvehx, and lvewx) and the store vector element indexed instructions (stvebx, stvehx, and
stvewx) have the same 3-bit address munge applied to the memory address as is specified
by the PowerPC architecture for integer and floating-point loads and stores. For the quad
word load vector indexed instructions (lvx and lvxl) and the store vector indexed
instructions (stvx, stvxl), the two double words of the quad-word scalar data are munged
and swapped as they are moved between the vector register and memory.

3.1.5 Vector Register and Memory Access Alignment

When loading an aligned byte, half word, or word memory operand into a vector register,
the element that receives the data is the element that would have received the data had the
entire aligned quad word containing the memory operand addressed by the effective
address been loaded. Similarly, when an element in a vector register is stored into an
aligned memory operand, the element selected to be stored is the element that would have
been stored into the memory operand addressed by the effective address had the entire

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

27 26 25 24 23 22 21 20 2F 2E 2D 2C 2B 2A 29 28

0 1MSR[LE] 0 1MSR[LE]

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Memory Image

Internal Image
Contents
Address

Contents
Address

2F 2E 2D 2C 2B 2A 29 28 27 26 25 24 23 22 21 20
3-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Data Organization in Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vector register been stored to the aligned quad word containing the memory operand
addressed by the effective address. The position of the element in the target or source vector
register depends on the endian mode, as described above. (Byte memory operands are
always aligned.)

For aligned byte, half word, and word memory operands, if the corresponding element
number is known when the program is written, the appropriate vector splat and vector
permute instructions can be used to copy or replicate the data contained in the memory
operand after loading the operand into a vector register. Vector splat instructions will take
the contents of an element in a vector register and replicates them into each element in the
destination vector register. A vector permute instruction is the concatenation of the contents
of two vectors. An example of this is given in detail in Section 3.1.6, “Quad-Word Data
Alignment.” Another method is to replicate the element across an entire vector register
before storing it into an arbitrary aligned memory operand of the same length; the
replication ensures that the correct data is stored regardless of the offset of the memory
operand in its aligned quad word in memory.

Because vector loads and stores are size-aligned, application binary interfaces (ABIs)
should specify, and programmers should take care to align data on quad-word boundaries
for maximum performance.

3.1.6 Quad-Word Data Alignment

AltiVec ISA does not provide for alignment exceptions for loading and storing data. When
performing vector loads and stores, the effect is as if the low-order four bits of the address
are 0x0, regardless of the actual effective address generated. Because vectors may often be
misaligned due to the nature of the algorithm, AltiVec ISA provides support for
post-alignment of quad-word loads and pre-alignment for quad-word stores. Note that in
the following diagrams, the effect of the swapping described above is assumed and the
memory diagrams will be shown with respect to the logical mapping of the data.

Figure 3-6 and Figure 3-7 show misaligned vectors in memory for both big- and
little-endian ordering. The big-endian and little-endian examples assumes that the desired
vector begins at address 0x03. In the figure, HI denotes high-order quad word, and LO
means low-order quad word.

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Quad Word HI Quad Word LO

Contents 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

↑
MSB

↑
LSB

Figure 3-6. Misaligned Vector in Big-Endian Mode
MOTOROLA Chapter 3. Operand Conventions 3-7

For More Information On This Product,
 Go to: www.freescale.com

Data Organization in Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-6 and Figure 3-7 show how such misaligned data causes data to be split across
aligned quad words; only aligned quad words are loaded or stored by AltiVec load/store
instructions. To align this vector, a program must load both (aligned) quad words that
contain a portion of the misaligned vector data and then execute a Vector Permute (vperm)
instruction to align the result.

3.1.6.1 Accessing a Misaligned Quad Word in Big-Endian Mode

Figure 3-1 shows the big-endian alignment model. Using the example in Figure 3-8, vHI
and vLO represent vector registers that contain the misaligned quad words containing the
MSBs and LSBs, respectively, of the misaligned quad word; vD is the target vector register.

Figure 3-8. Big-Endian Quad Word Alignment

Alignment is performed by left-rotating the combined 32-byte quantity (vHI:vLO) by an
amount determined by the address of the first byte of the desired data. This left-rotation is
done by means of a vperm instruction whose control vector is generated by a Load Vector
for Shift Left (lvsl) instruction after loading the most-significant quad word (MSQ) and
least-significant quad word (LSQ) that contain the desired vector. The lvsl instruction uses
the same address specification as the load vector indexed that loads the vHI component,
which for big-endian ordering is the address of the desired vector.

The following instruction sequence extracts the quad word in big-endian mode:
lvx vHI,rA,rB # load the MSQ

lvsl vP,rA,rB # set the permute vector

addi rB,rB,16 # address of LSQ

lvx vLO,rA,rB # load LSQ component

vperm vD,vHI,vLO,vP # align the data

Byte 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Quad Word HI Quad Word LO

Contents 2F 2E 2D 2C 2B 2A 29 28 27 26 25 24 23 22 21 20

Address 1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

↑
MSB

↑
LSB

Figure 3-7. Misaligned Vector in Little-Endian Addressing Mode

10
vHI

00

0F00

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

vLO

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

vD

0F 1F
3-8 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Data Organization in Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note that when data streaming is used, the overhead of generating the alignment permute
vector can be spread out and the latency of the loads may be absorbed by using loop
unrolling.

The process of storing a misaligned vector is essentially the reverse of that for loading,
except that the code has a read-modify-write sequence. The logical algorithm is that the
vector source must be right-shifted and split into two parts, each of which is merged (via a
Vector Select (vsel) instruction) with the current contents of its MSQ and its LSQ and
stored back using a Store Vector Indexed (svx) instruction.

The Load Vector for Shift Right (lvsr) instruction is used to produce the permute control
vector to be used for the right-shifting. Note that a single register can be used for the shifted
contents if a right-rotate is done. The rotate is performed by specifying the source register
for both components of the Vector Permute (vperm); that is, a shift of a double register with
the same contents in both parts results in a rotate. In addition, the same permute control
vector can be used on a sequence of ones and zeros to generate a mask for use by the vsel
instruction to do the merging.

The complete code sequence for the store case is as follows:

lvx vHI,rA,rB # load current MSQ for update

lvsr vP,rA,rB # load the alignment vector

addi rB,rB,16 # address of LSQ

lvx vLO,rA,rB # load the current LSQ’s data

vspltisbv1s,-1 # generate the select mask bits

vspltisbv0s,0

vperm vMask,v0s,v1s,vP # right shift the select mask

vperm vSrc,vSrc,vSrc,vP # right rotate the data

vsel vLO,vSrc,vLO,vMask # insert LSQ component

vsel vHI,vHI,vSrc,vMask # insert MSQ component

stvx vLO,rA,rB # store LSQ

addi rB,rB,-16 # address of MSQ

stvx vHI,rA,rB # store MSQ

When fetching a misaligned stream, the control vector need only be computed once. Thus
the time required for aligned fetches on the ends of the stream is proportioned out. None of
the data fetched internally to the stream is wasted and only gets fetched once. The average
time spent for a misaligned lvx instruction in a long sequence approaches the latency of one
lvx and one vperm instruction.
MOTOROLA Chapter 3. Operand Conventions 3-9

For More Information On This Product,
 Go to: www.freescale.com

Data Organization in Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.1.6.2 Accessing a Misaligned Quad Word in Little-Endian Mode

The instruction sequences used to access misaligned quad-word operands in little-endian
mode are similar to those used in big-endian mode. The following instruction sequence can
be used to load the misaligned quad word shown in Figure 3-7 into a vector register in
little-endian mode. The load alignment case is shown in Figure 3-9. The vector register vHI
and vLO receive the MSQ and LSQ respectively; vD is the target vector register. The lvsr
instruction uses the same address specification as an lvx that loads vLO; in little-endian
byte ordering this is the address of the desired misaligned quad word.

lvx vLO,rA,rB # load the LSQ

lvsr vP,rA,rB # set the permute vector

addi rB,rB,16 # address of MSQ

lvx vHI,rA,rB # load MSQ component

vperm vD,vHI,vLO,vP # align the data

Similarly, the following sequence of instructions stores the contents of register vD into a
misaligned quad word in memory in little-endian mode.

lvx vLO,rA,rB # load current LSQ for update

lvsl vP,rA,rB # load the alignment vector

addi rB,rB,16 # address of MSQ

lvx vHI,rA,rB # load the current MSQ’s data

vspltib v1s,-1 # generate the select mask bits

vspltib v0s,0

vperm vMask,v0s,v1s,vP # left rotate the select mask

vperm vSrc,vSrc,vSrc,vP # left rotate the data

vsel vHI,vHI,vSrc,vMask # insert MSQ component

vsel vLO,vSrc,vLO,vMask # insert LSQ component

stvx vHI,rA,rB # store MSQ

addi rB,rB,-16 # address of LSQ

stvx vLO,rA,rB # store LSQ
3-10 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Data Organization in Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-9. Little-Endian Alignment

3.1.6.3 Scalar Loads and Stores

No alignment is performed for scalar load or store instructions in AltiVec ISA. If a vector
load or store address is not properly size aligned, the suitable number of least significant
bits are ignored and a size aligned transfer occurs instead. Data alignment must be
performed explicitly after being brought into the registers. No assistance is provided for
aligning individual scalar elements that are not aligned on their natural boundary. The
placement of scalar data in a vector element depends upon its address. That is, the
placement of the addressed scalar is the same as if a load vector indexed instruction has
been performed, except that only the addressed scalar is accessed (for cache-inhibited
space); the values in the other vector elements are boundedly undefined. Also, data in the
specified scalar is the same as if a store vector indexed instruction had been performed,
except that only the scalar addressed is affected. No instructions are provided to assist in
aligning individual scalar elements that are not aligned on their natural size boundary.

When a program knows the location of a scalar, it can perform the correct vector splats and
vector permutes to move data to where it is required. For example, if a scalar is to be used
as a source for a vector multiply (that is, each element multiplied by the same value), the
scalar must be splatted into a vector register. Likewise, a scalar stored to an arbitrary
memory location must be splatted into a vector register, and that register must be specified
as the source of the store. This guarantees that the data appears in all possible positions of
that scalar size for the store.

3.1.6.4 Misaligned Scalar Loads and Stores

Although no direct support of misaligned scalars is provided, the load-aligning sequence
for big-endian vectors described in Section 3.1.6.1, “Accessing a Misaligned Quad Word in
Big-Endian Mode,” can be used to position the scalar to the left vector element, which can
then be used as the source for a splat. That is, the address of a scalar is also the address of
the left-most element of the quad word at that address. Similarly, the read-modify-write
sequences, with the mask adjusted for the scalar size, can be used to store misaligned
scalars. The same is true for little-endian mode, the load-aligning sequence for little-endian
vectors described Section 3.1.6.2, “Accessing a Misaligned Quad Word in Little-Endian
Mode” can be used to position the scalar to the right vector element, which can then be used

0F
vHI

1F

0F 00

2122232425262728292A2C2D2E2F

vLO

2F 2E 2D 2C 2B 2A 29 28 27 26 25 24 22 21 20

vD

0010

23

202B
MOTOROLA Chapter 3. Operand Conventions 3-11

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Floating-Point Instructions—UISA

U

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

as the source for a splat. That is, the address of a scalar is also the address of the right-most
element of the quad word at that address.

Note that while these sequences work in cache-inhibited space, the physical accesses are
not guaranteed to be atomic.

3.1.7 Mixed-Endian Systems

In many systems, the memory model is not as simple as the examples in this chapter. In
particular, big-endian systems with subordinate little-endian buses (such as PCI) comprise
a mixed-endian environment.

The basic mechanism to handle this is to use the Vector Permute (vperm) instruction to
swap bytes within data elements. The value of the permute control vector depends on the
size of the elements (8, 16, 32). That is, the permute control vector performs a parallel
equivalent of the Load Word Byte-Reverse Indexed (lwbrx) PowerPC instruction within
the vector registers.

The ultimate problem occurs when there are misaligned, mixed-endian vectors. This can be
handled by applying a vector permute of the data as required for the misaligned case,
followed by the swapping vector permute on that result. Note that for streaming cases, the
effect of this double permute can be accomplished by computing the swapping permute of
the alignment permute vector and then applying the resulting permute control vector to
incoming data.

3.2 AltiVec Floating-Point Instructions—UISA
There are two kinds of floating-point instructions defined for the PowerPC ISA and AltiVec
ISA:

• computational

• noncomputational

Computational instructions are defined by the IEEE-754 standard for 32-bit arithmetic
(those that perform addition, subtraction, multiplication, and division) and the multiply-add
defined by the architecture. Noncomputational floating-point instructions consist of the
floating-point load and store instructions. Only the computational instructions are
considered floating-point operations throughout this chapter.

The single-precision format, value representations, and computational model to be defined
in Chapter 3, “Operand Conventions,” in the Programming Environments Manual for
32-Bit Implementations of the PowerPC Architecture, apply to AltiVec floating-point
except as follows:
3-12 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Floating-Point Instructions—UISA

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• In general, no status bits are set to reflect the results of floating-point operations. The
only exception is that VSCR[SAT] may be set by the Vector Convert to Fixed-Point
Word instructions.

• With the exception of the two Vector Convert to Fixed-Point Word (vctuxs, vctsxs)
instructions and three of the four Vector Round to Floating-Point Integer (vrfiz,
vrfip, vrfim) instructions, all AltiVec floating-point instructions that round use the
round-to-nearest rounding mode.

• Floating-point exceptions cannot cause the system error handler to be invoked.

If a function is required that is specified by the IEEE standard, is not supported by AltiVec
ISA, and cannot be emulated satisfactorily using the functions that are supported by AltiVec
ISA, the functions provided by the floating-point processor should be used; see Chapter 4,
“Addressing Modes and Instruction Set Summary,” in Programming Environments Manual
for 32-Bit Implementations of the PowerPC Architecture.

3.2.1 Floating-Point Modes

AltiVec ISA supports two floating-point modes of operation—a Java mode and a non-Java
mode of operation that is useful in circumstances where real-time performance is more
important than strict Java and IEEE-standard compliance.

When VSCR[NJ] is 0 (default), operations are performed in Java mode. When VSCR[NJ]
is 1, operations are carried out in the non-Java mode.

3.2.1.1 Java Mode

Java compliance requires compliance with only a subset of the Java/IEEE/C9X standard.
The Java subset helps simplify floating-point implementations, as follows:

• Reducing the number of operations that must be supported

• Eliminating exception status flags and traps

• Producing results corresponding to all disabled exceptions, thus eliminating
enabling control flags

• Requiring only round-to-nearest rounding mode eliminates directed rounding
modes and the associated rounding control flags.

Java compliance requires the following aspects of the IEEE standard:

• Supporting denorms as inputs and results (gradual underflow) for arithmetic
operations

• Providing NaN results for invalid operations

• NaNs compare unordered with respect to everything, so that the result of any
comparison of any NaN to any data type is always false.
MOTOROLA Chapter 3. Operand Conventions 3-13

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Floating-Point Instructions—UISA

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In some implementations, floating-point operations in Java mode may have somewhat
longer latency on normal operands and possibly much longer latency on denormalized
operands than operations in non-Java mode. This means that in Java mode overall real-time
response may be somewhat worse and deadline scheduling may be subject to much larger
variance than non-Java mode.

3.2.1.2 Non-Java Mode

In the non-Java/non-IEEE/non-C9X mode (VSCR[NJ] = 1), gradual underflow is not
performed. Instead, any instruction that would have produced a denormalized result in Java
mode substitutes a correctly signed zero (±0.0) as the final result. Also, denormalized input
operands are flushed to the correctly signed zero (±0.0) before being used by the
instruction.

The intent of this mode is to give programmers a way to assure optimum, data-insensitive,
real-time response across implementations. Another way to improved response time would
be to implement denormalized operations through software emulation.

It is architecturally permitted, but strongly discouraged, for an implementation to
implement only non-Java mode. In such an implementation, the VSCR[NJ] does not
respond to attempts to clear it and is always read back as a 1.

No other architecturally visible, implementation-specific deviations from this specification
are permitted in either mode.

3.2.2 Floating-Point Infinities

Valid operations on infinities are processed according to the IEEE standard.

3.2.3 Floating-Point Rounding

All AltiVec floating-point arithmetic instructions use the IEEE default rounding mode,
round-to-nearest. The IEEE directed rounding modes are not provided.

3.2.4 Floating-Point Exceptions

The following floating-point exceptions may occur during execution of AltiVec
floating-point instructions.

• NaN operand exception
• Invalid operation exception
• Zero divide exception
• Log of zero exception
• Overflow exception
• Underflow exception
3-14 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Floating-Point Instructions—UISA

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

If an exception occurs, a result is placed into the corresponding target element as described
in the following subsections. This result is the default result specified by Java, the IEEE
standard, or C9X, as applicable. Recall that denormalized source values are treated as if
they were zero when VSCR[NJ] =1. The consequences regarding exceptions are as follows:

• Exceptions that can be caused by a zero source value can be caused by a
denormalized source value when VSCR[NJ] = 1.

• Exceptions that can be caused by a nonzero source value cannot be caused by a
denormalized source value when VSCR[NJ] = 1.

3.2.4.1 NaN Operand Exception

If the exponent of a floating-point number is 255 and the fraction is non-zero, then the value
is a NaN. If the most significant bit of the fraction field of a NaN is zero, then the value is
a signaling NaN (SNaN), otherwise it is a quiet NaN (QNaN). In all cases the sign of a NaN
is irrelevant.

A NaN operand exception occurs when a source value for any of the following instructions
is a NaN:

• An AltiVec instruction that would normally produce floating-point results

• Either of the two, Vector Convert to Unsigned Fixed-Point Word Saturate (vctuxs)
or Vector Convert to Signed Fixed-Point Word Saturate (vctsxs) instructions

• Any of the four vector floating-point compare instructions.

The following actions can be taken:

• If the AltiVec instruction would normally produce floating-point results, the
corresponding result is a source NaN selected as follows. In all cases, if the selected
source NaN is an SNaN, it is converted to the corresponding QNaN (by setting the
high-order bit of the fraction field to 1 before being placed into the target element).

if the element in register vA is a NaN

then the result is that NaN

else if the element in register vB is a NaN

then the result is that NaN

else if the element in register vC is a NaN

then the result is that NaN

• If the instruction is either of the two vector convert to fixed-point word instructions
(vctuxs, vctsxs), the corresponding result is 0x0000_0000. VSCR[SAT] is not
affected.
MOTOROLA Chapter 3. Operand Conventions 3-15

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Floating-Point Instructions—UISA

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• If the instruction is Vector Compare Bounds Floating-Point (vcmpbfp[.]), the
corresponding result is 0xC000_0000.

• If the instruction is one of the other three vector floating-point compare instructions
(vcmpeqfp[.], vcmpfgefp[.], vcmpbfp[.]), the corresponding result is
0x0000_0000.

3.2.4.2 Invalid Operation Exception

An invalid operation exception occurs when a source value is invalid for the specified
operation. The invalid operations are as follows:

• Magnitude subtraction of infinities

• Multiplication of infinity by zero

• Vector Reciprocal Square Root Estimate Float (vrsqrtefp) of a negative, nonzero
number or -X

• Log base 2 estimate (vlogefp) of a negative, nonzero number or -X

The corresponding result is the QNaN 0x7FC0_0000. This is the single-precision format
analogy of the double precision format generated QNaN described in Chapter 3, “Operand
Conventions,” in Programming Environments Manual for 32-Bit Implementations of the
PowerPC Architecture.

3.2.4.3 Zero Divide Exception

A zero divide exception occurs when a Vector Reciprocal Estimate Floating-Point (vrefp)
or Vector Reciprocal Square Root Estimate Floating-Point (vrsqrtefp) instruction is
executed with a source value of zero.

The corresponding result is infinity, where the sign is the sign of the source value, as
follows:

• 1/+0.0 → +∞
• 1/-0.0 → -∞
•

•

3.2.4.4 Log of Zero Exception

A log of zero exception occurs when a Vector Log Base 2 Estimate Floating-Point
instruction (vlogefp) is executed with a source value of zero. The corresponding result is
infinity. The exception cases are as follows:

• vlogefp log2(±0.0) → -∞
• vlogefp log2(-x) → QNaN, where x≠0

1 +0.0()⁄ +∞→
1 0.0–()⁄ -∞→
3-16 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Floating-Point Instructions—UISA

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.2.4.5 Overflow Exception

An overflow exception happens when either of the following conditions occurs:

• For an AltiVec instruction that would normally produce floating-point results, the
magnitude of what would have been the result if the exponent range were unbounded
exceeds that of the largest finite single-precision number.

• For either of the two Vector Convert To Fixed-Point Word instructions (vctuxs,
vctsxs), either a source value is an infinity or the product of a source value and 2
unsigned immediate value (UIMM) is a number too large to be represented in the
target integer format.

The following actions can be taken:

• If the AltiVec instruction would normally produce floating-point results, the
corresponding result is infinity, where the sign is the sign of the intermediate result.

• If the instruction is Vector Convert to Unsigned Fixed-Point Word Saturate (vctuxs),
the corresponding result is 0xFFFF_FFFF if the source value is a positive number or
+X, and is 0x0000_0000 if the source value is a negative number or -X. VSCR[SAT]
is set.

• If the instruction is Vector Convert to Signed Fixed-Point Word Saturate (vcfsx), the
corresponding result is 0x7FFF_FFFF if the source value is a positive number or +X,
and is 0x8000_0000 if the source value is a negative number or -X. VSCR[SAT] is
set.

3.2.4.6 Underflow Exception

Underflow exceptions occur only for AltiVec instructions that would normally produce
floating-point results. Underflow is detected before rounding. Underflow occurs when a
nonzero intermediate result, computed as though both the precision and the exponent range
were unbounded, is less in magnitude than the smallest normalized single-precision
number (2-126).

The following actions can be taken:

• If VSCR[NJ] = 0, the corresponding result is the value produced by denormalizing
and rounding the intermediate result.

• If VSCR[NJ] = 1, the corresponding result is a zero, where the sign is the sign of the
intermediate result.

3.2.5 Floating-Point NaNs

The AltiVec floating-point data format is compliant with the Java/IEEE/C9X
single-precision format. A quantity in this format can represent a signed normalized
number, a signed denormalized number, a signed zero, a signed infinity, a quiet not a
number (QNaN), or a signaling NaN (SNaN).
MOTOROLA Chapter 3. Operand Conventions 3-17

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Floating-Point Instructions—UISA

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.2.5.1 NaN Precedence

Whenever only one source operand of an instruction that returns a floating-point result is a
NaN, then that NaN is selected as the input NaN to the instruction. When more than one
source operand is a NaN, the precedence order for selecting the NaN is first from vA then
from vB and then from vC. If the selected NaN is an SNaN, it is processed as described in
Section 3.2.5.2, “SNaN Arithmetic.” QNaN’s, are processed according to Section 3.2.5.3,
“QNaN Arithmetic.”

3.2.5.2 SNaN Arithmetic

Whenever the input NaN to an instruction is an SNaN, a QNaN is delivered as the result,
as specified by the IEEE standard when no trap occurs. The delivered QNaN is an exact
copy of the original SNaN except that it is quieted; that is, the most-significant bit (msb) of
the fraction is a one.

3.2.5.3 QNaN Arithmetic

Whenever the input NaN to an instruction is a QNaN, it is propagated as the result
according to the IEEE standard. All information in the QNaN is preserved through all
arithmetic operations.

3.2.5.4 NaN Conversion to Integer

All NaNs convert to zero on conversions to integer instructions such as vctuxs and vctsxs.

3.2.5.5 NaN Production

Whenever the result of an AltiVec operation is a NaN (for example, an invalid operation),
the NaN produced is a QNaN with the sign bit = 0, exponent field = 255, msb of the fraction
field = 1, and all other bits = 0.
3-18 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

U

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 4
Addressing Modes and Instruction Set
Summary
This chapter describes instructions and addressing modes defined by AltiVec Instruction
Set Architecture (ISA) and according to the levels used by PowerPC architecture—user
instruction set architecture (UISA) and virtual environment architecture (VEA). AltiVec
instructions are primarily UISA; if otherwise, they are noted in the chapter. These
instructions are divided into the following categories:

• Vector integer arithmetic instructions—These include arithmetic, logical, compare,
rotate, and shift instructions, described in Section 4.2.1, “Vector Integer
Instructions.”

• Vector floating-point arithmetic instructions—These include floating-point
arithmetic instructions as well as a discussion on floating-point modes, described in
Section 4.2.2, “Vector Floating-Point Instructions.”

• Vector load and store instructions—These include load and store instructions for
vector registers, described in Section 4.2.3, “Load and Store Instructions.”

• Vector permutation and formatting instructions—These include pack, unpack,
merge, splat, permute, select, and shift instructions, described in Section 4.2.5,
“Vector Permutation and Formatting Instructions.”

• Processor control instructions—These instructions are used to read and write from
the AltiVec Status and Control Register, described in Section 4.2.6, “Processor
Control Instructions—UISA.”

• Memory control instructions—These instructions are used for managing caches
(user level and supervisor level), described in Section 4.3.1, “Memory Control
Instructions—VEA.”

This grouping of instructions does not necessarily indicate the execution unit that processes
a particular instruction or group of instructions within a processor implementation.

AltiVec integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision operands. AltiVec ISA uses word-length
instructions that are word-aligned. It provides for byte, half-word, and word operand
fetches and stores between memory and the vector registers (VRs).

V

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-1

For More Information On This Product,
 Go to: www.freescale.com

Conventions

U

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation for an arithmetic or logical instruction, the following
steps are taken:

1. The memory contents must be loaded into a register with a load instruction.

2. The contents are then modified.

3. The modified contents are written to the target location using a store instruction.

4.1 Conventions
This section describes conventions used for the AltiVec instruction set. Descriptions of
memory addressing, synchronization, and the AltiVec exception summary follow.

4.1.1 Execution Model

When used with PowerPC instructions, AltiVec instructions can be viewed as simply new
PowerPC instructions that are freely intermixed with existing ones to provide additional
functionality. Processors that implement the PowerPC architecture appear to execute
instructions in program order. Some AltiVec implementations may not allow out-of-order
execution and completion. Non-data dependent vector instructions may issue and execute
while longer latency instructions issued previously are still in the execute stage. Register
renaming avoids stalling dispatch on false dependencies and allows maximum register
name reuse in heavily unrolled loops. The execution of a sequence of instructions will not
be interrupted by exceptions since the unit does not report IEEE exceptions, but rather
produces the default results as specified in the Java/IEEE/C9X standards. The execution of
a sequence of instructions may be interrupted only by a vector load or store instruction;
otherwise, AltiVec instructions do not generate any exceptions.

4.1.2 Computation Modes

AltiVec ISA supports the PowerPC ISA. The AltiVec ISA supports the 32-bit
implementation of the PowerPC architecture in that all registers except FPRs and VRs are
32 bits long and the effective addresses are 32 bits long.

This chapter describes only the instructions defined for 32-bit implementations of the
PowerPC architecture.

4.1.3 Classes of Instructions

AltiVec instructions follow the illegal instruction class defined by PowerPC architecture in
the section, “Classes of Instructions,” in Chapter 4, “Addressing Modes and Instruction Set
Summary,” of the Programming Environments Manual for 32-Bit Implementations of the
PowerPC Architecture. For AltiVec ISA, all unspecified encodings within the major opcode
4-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

(04) that are not defined are illegal PowerPC instructions. The only exclusion in defining
an unspecified encoding is an unused bit in an immediate field or specifier field (///).

4.1.4 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, or cache instruction, and when it fetches the next
sequential instruction.

4.1.4.1 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

Memory operands may be bytes, half words, words, or quad words for AltiVec instructions.
The address of a memory operand is the address of its first byte (that is, of its
lowest-numbered byte). Operand length is implicit for each instruction. AltiVec ISA
supports both big-endian and little-endian byte ordering. The default byte and bit ordering
is big-endian; see Section 3.1.2, “AltiVec Byte Ordering,” for more information.

The natural alignment boundary of an operand of a single-register memory access
instruction is equal to the operand length. In other words, the natural address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Section 3.1, “Data Organization in Memory.”

4.1.4.2 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or when fetching the next sequential instruction. For a memory access
instruction, if the sum of the EA and the operand length exceeds the maximum EA, the
memory operand is considered to wrap around from the maximum EA through EA 0, as
described in the Chapter 4, “Addressing Modes and Instruction Set Summary,” in the
Programming Environments Manual for 32-Bit Implementations of the PowerPC
Architecture.

A zero in the rA field indicates the absence of the corresponding address component. For
the absent component, a value of zero is used for the address. This is shown in the
instruction description as (rA|0).

In all implementations of processors that support the PowerPC architecture, the processor
can modify the three low-order bits of the calculated effective address before accessing
memory if the system is operating in little-endian mode. The double words of a quad word
may be swapped as well. See Section 3.1.2, “AltiVec Byte Ordering,” for more information
about little-endian mode.
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-3

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AltiVec load and store operations use register indirect with index mode and boundary align
to generate effective addresses. For further details see Section 4.2.3.2, “Load and Store
Address Generation.”

4.2 AltiVec UISA Instructions
AltiVec instructions can provide additional supporting instructions to PowerPC
architecture. This section discusses the instructions defined in AltiVec user instruction set
architecture (UISA).

4.2.1 Vector Integer Instructions

The following are categories for vector integer instructions:

• Arithmetic

• Compare

• Logical

• Rotate and shift

Integer instructions use the content of the vector registers (VRs) as source operands and
place results into VRs as well. Setting the Rc bit of a vector compare instruction causes the
PowerPC condition register (CR) to be updated.

AltiVec integer instructions treat source operands as signed integers unless the instruction
is explicitly identified as performing an unsigned operation. For example, Vector Add
Unsigned Word Modulo (vadduwm) and Vector Multiply Odd Unsigned Byte (vmuloub)
instructions interpret both operands as unsigned integers.

4.2.1.1 Saturation Detection

Most integer instructions have both signed and unsigned versions and many have both
modulo (wrap-around) and saturating clamping modes. Saturation occurs whenever the
result of a saturating instruction does not fit in the result field. Unsigned saturation clamps
results to zero on underflow and to the maximum positive integer value (2n-1, for example,
255 for byte fields) on overflow. Signed saturation clamps results to the smallest
representable negative number (-2n-1, for example, -128 for byte fields) on underflow, and
to the largest representable positive number (2n-1-1, for example, +127 for byte fields) on
overflow. When a modulo instruction is used, the resultant number truncates overflow or
underflow for the length (byte, half word, word, quad word) and type of operand (unsigned,
signed). The AltiVec ISA provides a way to detect saturation and sets the SAT bit in the
Vector Status and Control Register (VSCR[SAT]) in a saturating instruction.
4-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Borderline cases that generate results equal to saturation values, for example unsigned 0+0
→ 0 and unsigned byte 1+254 → 255, are not considered saturation conditions and do not
cause VSCR[SAT] to be set.

The VSCR[SAT] can be set by the following types of integer, floating-point, and formatting
instructions:

• Move to VSCR (mtvscr)

• Vector add integer with saturation (vaddubs, vadduhs, vadduws, vaddsbs,
vaddshs, vaddsws)

• Vector subtract integer with saturation (vsububs, vsubuhs, vsubuws, vsubsbs,
vsubshs, vsubsws)

• Vector multiply-add integer with saturation (vmhaddshs, vmhraddshs)

• Vector multiply-sum with saturation (vmsumuhs, vmsumshs, vsumsws)

• Vector sum-across with saturation (vsumsws, vsum2sws, vsum4sbs, vsum4shs,
vsum4ubs)

• Vector pack with saturation (vpkuhus, vpkuwus, vpkshus, vpkswus, vpkshss,
vpkswss)

• Vector convert to fixed-point with saturation (vctuxs, vctsxs)

Note that only instructions that explicitly call for saturation can set VSCR[SAT]. Modulo
integer instructions and floating-point arithmetic instructions never set VSCR[SAT]. For
further details see Section 2.3.2, “Vector Status and Control Register (VSCR).”

4.2.1.2 Vector Integer Arithmetic Instructions

Table 4-1 lists the integer arithmetic instructions for processors that implement the
PowerPC architecture.
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-5

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 4-1. Vector Integer Arithmetic Instructions

Name Mnemonic Syntax Operation

Vector Add
Unsigned

Integer [b,h,w]
Modulo

vaddubm
vadduhm
vadduwm

vD,vA,vB Places the sum (vA[unsigned integer elements]) + (vB[unsigned
integer elements]) into vD[unsigned integer elements] using modulo
arithmetic.

For b, byte, integer length = 8 bits =1 byte, add sixteen unsigned
integers from vA to the corresponding sixteen unsigned integers from
vB.

For h, half word, integer length =16 bits = 2 bytes, add eight unsigned
integers from vA to the corresponding eight unsigned integers from
vB.

For w, word, integer length = 32 bits = 4 bytes, add four unsigned
integers from vA to the corresponding four unsigned integers from
vB.

Note: unsigned or signed integers can be used with these
instructions.

Vector Add
Unsigned

Integer [b,h,w]
Saturate

vaddubs
vadduhs
vadduws

vD,vA,vB Place the sum (vA[unsigned integer elements]) + (vB[unsigned
integer elements]) into vD[unsigned integer elements] using saturate
clamping mode. Saturate clamping mode means if the resulting sum
is >(2n-1) saturate to (2n-1), where n = b,h,w.

For b, byte, integer length = 8 bits = 1 byte, add sixteen unsigned
integers from vA to the corresponding sixteen unsigned integers from
vB.

For h, half word, integer length = 16 bits = 2 bytes, add eight
unsigned integers from vA to the corresponding eight unsigned
integers formable.

For w, word, integer length = 32 bits = 4 bytes, add four unsigned
integers from vA to the corresponding four unsigned integers from
vB.

If the result saturates, VSCR[SAT] is set.

Vector Add
Signed

Integer[b,h,w]
Saturate

vaddsbs
vaddshs
vddsws

vD,vA,vB Place the sum (vA[signed integer elements]) + (vB[signed integer
elements]) into vD[signed integer elements] using saturate clamping
mode. Saturate clamping mode means:

if the sum is >(2n-1-1) saturate to (2n-1-1) and

if < (- 2n-1) saturate to (-2n-1), where n = b,h,w.

For b, byte, integer length = 8 bits = byte, add sixteen signed integers
from vA to the corresponding sixteen signed integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, add eight signed
integers from vA to the corresponding eight signed integers from vB.

For w, word, integer length = 32 bits = 4 bytes, add four signed
integers from vA to the corresponding four signed integers from vB.

If the result saturates, VSCR[SAT] is set.

Vector Add and
Write

Carry-out
Unsigned

Word

vaddcuw vD,vA,vB Take the carry out of summing (vA) + (vB) and place it into vD.

For w, word, integer length = 32 bits = 2 bytes, add four unsigned
integers from vA to the corresponding four unsigned integers from vB
and the resulting carry outs are correspondingly placed in vD.
4-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Vector
Subtract
Unsigned

Integer Modulo
[b,h,w]

vsububm
vsubuhm
vsubuwm

vD,vA,vB Place the unsigned integer sum (vA) - (vB) into vD using modulo
arithmetic.

For b, byte, integer length = 8 bits =1 byte, subtract sixteen unsigned
integers in vB from the corresponding sixteen unsigned integers in
vA.

For h, half word, integer length = 16 bits = 2 bytes, subtract eight
unsigned integers in vB from the corresponding eight unsigned
integers in vA.

For w, word, integer length = 32 bits = 4 bytes, subtract four unsigned
integers in vB from the corresponding four unsigned integers in vA.

Note that unsigned or signed integers can be used with these
instructions.

Vector
Subtract
Unsigned
Integer

Saturate
[b,h,w]

vsububs
vsubuhs
vsubuws

vD,vA,vB Place the unsigned integer sum vA - vB into vD using saturate
clamping mode, that is, if the sum < 0, it saturates to 0 corresponding
to b,h,w.

For b, byte, integer length = 8 bits = 1 byte, subtract sixteen unsigned
integers in vB from the corresponding sixteen unsigned integers in
vA.

For h, half word, integer length =16 bits = 2 bytes, subtract eight
unsigned integers in vB from the corresponding eight unsigned
integers in vA.

For w, word, integer length = 32 bits = 4 bytes, subtract four unsigned
integers in vB from the corresponding four unsigned integers in vA.

If the result saturates, VSCR[SAT] is set.

Vector
Subtract

Signed Integer
Saturate
[b,h,w]

vsubsbs
vsubshs
vsubsws

vD,vA,vB Place the signed integer sum (vA) - (vB) into vD using saturate
clamping mode. Saturate clamping mode means:

if the sum is >(2n-1-1) saturate to (2n-1-1) and

if < (- 2n-1) saturate to (-2n-1), where n= b,h,w.

For b, byte, integer length = 8 bits = 1 byte, subtract sixteen signed
integers in vB from the corresponding sixteen signed integers in vA.

For h, half word, integer length = 16 bits = 2 bytes, subtract eight
signed integers in vB from the corresponding eight signed integers in
vA.

For w, word, integer length = 32 bits = 4 bytes, subtract four signed
integers in vB from the corresponding four signed integers in vA.

Vector
Subtract and

Write
Carry-out
Unsigned

Word

vsubcuw vD,vA,vB Take the carry out of the sum (vA) - (vB) and place it into vD.

For w, word, integer length = 32 bits = 2 bytes, subtract four unsigned
integers in vB from the corresponding four unsigned integers in vA
and place the resulting carry outs into vD.

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-7

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Vector Multiply
Odd Unsigned
Integer [b,h]

Modulo

vmuloub
vmulouh

vD,vA,vB Place the unsigned integer products of (vA) * (vB) into vD using
modulo arithmetic mode.

For b, byte, integer length = 8 bits =1 byte, multiply 8 odd-numbered
unsigned integer byte elements from vA to the corresponding 8
odd-numbered unsigned integer byte elements from vB resulting in
eight unsigned integer half-word products in vD.

For h, half word, integer length =16 bits = 2 bytes, multiply 4
odd-numbered unsigned integer half word elements from vA to the
corresponding 4 odd numbered unsigned integer half-word elements
from vB resulting in four unsigned integer word products in vD.

Vector Multiply
Odd Signed
Integer [b,h]

Modulo

vmulosb
vmulosh

vD,vA,vB Place the signed integer product of (vA) * (vB) into vD using modulo
arithmetic mode.

For b, byte, integer length = 8 bits = 1 byte, multiply 8 odd-numbered
signed integer byte elements from vA to 8 odd-numbered signed
integer byte elements from vB resulting in eight signed integer
half-word products in vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply 4
odd-numbered signed integer half word elements from vA to 4
odd-numbered signed integer half word elements from vB resulting in
four signed integer word products in vD.

Vector Multiply
Even Unsigned

Integer [b,h]
Modulo

vmuleub
vmuleuh

vD,vA,vB Place the unsigned integer products of (vA) * (vB) into vD using
modulo arithmetic mode.

For b, byte, integer length = 8 bits =1 byte, multiply 8 even-numbered
unsigned integer byte elements from vA to 8 even-numbered
unsigned integer byte elements from vB resulting in eight unsigned
integer half-word products in vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply 4
even-numbered unsigned integer half-word elements from vA to 4
even numbered unsigned integer half- word elements from vB
resulting in four unsigned integer word products in vD

Vector Multiply
Even Signed
Integer [b,h]

Modulo

vmulesb
vmulesh

vD,vA,vB Place the signed integer product of (vA) * (vB) into vD using modulo
arithmetic mode.

For b, byte, integer length = 8 bits = 1 byte, multiply 8 even-numbered
signed integer byte elements from vA to 8 even-numbered signed
integer byte elements from vB resulting in eight signed integer
half-word products in vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply 4
even-numbered signed integer half-word elements from vA to 4
even-numbered signed integer half-word elements from vB resulting
in four signed integer word products in vD.

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
4-8 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Vector
Multiply-High

and Add
Signed

Half-Word
Saturate

vmhaddshs vD,vA,vB, vC The 17 most significant bits (msb’s)of the product of (vA) * (vB) adds
to sign-extended vC and places the result into vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply the eight
signed half words from vA with the corresponding eight signed half
words from vB to produce a 32-bit intermediate product and then
take the 17 msb’s (bits 0–16) of the 8 intermediate products and add
them to the 8 sign-extended half words in vC, place the 8 half-word
saturated results in vD. If the intermediate product is as follows:

> (215–1) saturate to (215–1) and if

< –215 saturate to –215.

If the results saturates, VSCR[SAT] is set.

Vector
Multiply-High
Round and
Add Signed
Half-Word
Saturate

vmhraddshs vD,vA,vB,vC Add the rounded product of (vA) * (vB) to sign-extended vC and
place the result into vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply the eight
signed integers from vA to the corresponding eight signed integers
from vB and then round the 8 immediate products by adding the
value 0x0000_4000 to it. Then add the most significant bits (msb),
bits 0–16, of the 8 rounded immediate products to the 8
sign-extended values in vC and place the eight signed half-word
saturated results into vD. If the intermediate product is:

> (215–1) saturate to (215–1) or if

< –215 saturate to –215.

If the result saturates, VSCR[SAT] is set.

Vector
Multiply-Low

and Add
Unsigned
Half-Word

Modulo

vmladduhm vD,vA,vB,vC Add the product of (vA) * (vB) to zero-extended vC and place into vD.

For h, half word, integer length =16 bits = 2 bytes, multiply the eight
signed integers from vA to the corresponding eight signed integers
from vB to produce a 32-bit intermediate product. The 16-bit value in
vC is zero-extended to 32 bits and added to the intermediate product
and the lower 16 bits of the sum (bit 16–31) is placed in vD.

Note that unsigned or signed integers can be used with these
instructions.

Vector
Multiply-Sum

Unsigned
Integer [b,h]

Modulo

vmsumubm
vmsumuhm

vD,vA,vB,vC The product of (vA) * (vB) is added to zero-extended vC and placed
into vD using modulo arithmetic.

For b, byte, integer length = 8 bits = 1 byte, multiply four unsigned
integer bytes from a word element in vA by the corresponding four
unsigned integer bytes in a word element in vB and the sum of these
products are added to the zero-extended unsigned integer word
element in vC and then placed the unsigned integer word result into
vD, following this process for each 4-word element in vA and vB.

For h, half word, integer length = 16 bits = 2 bytes, multiply 2
unsigned integer half words from a word element in vA by the
corresponding 2 unsigned integer half words in a word element in vB
and the sum of these products are added to zero-extended unsigned
integer word element in vC and then place the unsigned integer word
result into vD, following this process for each 4 word element in vA
and vB.

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-9

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Vector
Multiply-Sum

Signed
Half-Word
Saturate

vmsumshs vD,vA,vB,vC Add the product of (vA) * (vB) to vC and place the result into vD
using saturate clamping mode.

For h, half word, integer length = 16 bits = 2 bytes, multiply 2 signed
integer half words from a word element in vA by the corresponding 2
signed integer half words in a word element in vB. Add the sum of
these products to the signed integer word element in vC and then
place the signed integer word result into vD, (following this process
for each 4-word element in vA and vB). If the intermediate result is >
(231–1), saturate to (231–1) and if the result is < -231, saturate to -231.

If the result saturates, VSCR[SAT] is set.

Vector
Multiply-Sum

Unsigned
Half-Word
Saturate

vmsumuhs vD,vA,vB,vC Add the product of (vA) * (vB) to zero-extended vC and place the
result into vD using saturate clamping mode.

For h, half word, integer length = 16 bits = 2 bytes, multiply 2
unsigned integer half words from a word element in vA by the
corresponding 2 unsigned integer half words in a word element in vB.
Add the sum of these products to the zero-extended unsigned integer
word element in vC and then place the unsigned integer word result
into vD, (following this process for each 4-word element in vA and
vB). If the intermediate result is > (232–1) saturate to (232–1).

If the result saturates, VSCR[SAT] is set.

Vector
Multiply-Sum
Mixed Sign

Byte Modulo

vmsummbm vD,vA,vB,vC Add the product of (vA) * (vB) to vC and place into vD using modulo
arithmetic.

For b, byte, integer length = 8 bits = 1 byte, multiply four signed
integer bytes from a word element in vA by the corresponding four
unsigned integer bytes from a word element in vB. Add the sum of
these four signed products to the signed integer word element in vC
and then place the signed integer word result into vD, following this
process for each 4-word element in vA and vB.

Vector
Multiply-Sum

Signed
Half-Word

Modulo

vmsumshm vD,vA,vB,vC Add the product of (vA) * (vB) to vC and place into vD using modulo
arithmetic.

For h, half word, integer length = 16 bits = 2 bytes, multiply 2 signed
integer half words from a word element in vA by the corresponding 2
signed integer half words in a word element in vB. Add the sum of
these 2 products to the signed integer word element in vC and then
place the signed integer word result into vD, following this process for
each 4-word element in vA and vB.

Vector Sum
Across Signed
Word Saturate

vsumsws vD,vA,vB Place the sum of signed word elements in vA and the word in
vB[96–127] into vD.

For w, word, integer length = 32 bits = 4 bytes, add the sum of the
four signed integer word elements in vA to the word element in
vB[96-127]. If the intermediate product is > (231–1) saturate to
(231–1) and if < –231 saturate to –231. Place the signed integer result
in vD[96-127],vD[0-95] are cleared.

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
4-10 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Vector Sum
Across Partial
(1/2) Signed

Word Saturate

vsum2sws vD,vA,vB Add vA[word 0 + word 1] + vB[word 1] and place in vD[word 1].
Repeat only add vA[word 2 + word 3] + vB[word 3] and place in
vD[word 3].

word 0 = Bits 0–31

word 1 = Bits 32-63

word 2 = Bits 64-95

word 3 = Bits 96-127,

Figure1-2 shows a picture of what the word elements would look like
in a vector register.

Add the sum of word 0 and word 1 of vA to word 1 of vB using
saturate clamping mode and place the result is into word 1of vD.
Then add the sum of word 2 and word 3 of (vA) to word 3 of vB using
saturate clamping mode and place those results into word 3 in vD. If
the intermediate result for either calculation is > (231–1) then saturate
to (231–1) and if < –231 then saturate to –231.

If the result saturates, VSCR[SAT] is set.

Vector Sum
Across Partial
(1/4) Unsigned
Byte Saturate

vsum4ubs vD,vA,vB Add vA[4 byte elements sum to a word] and vB[word element] then
place in vD[word element] using saturate clamping mode.

For b, byte, integer length = 8 bits = 1 byte, for each word element in
vB, add the sum of four unsigned bytes in the word in vA to the
unsigned word element in vB and then place the results into the
corresponding unsigned word element in vD. If the intermediate
result for is > (232–1) it saturates to (232–1).

If the result saturates, VSCR[SAT] is set.

Vector Sum
Across Partial
(1/4) Signed

Integer
Saturate

vsum4sbs
vsum4shs

vD,vA,vB Add vA[sum of signed integer elements in word] and vB[word
element] then place in vD[word element] using saturate clamping
mode.

For b, byte, integer length = 8 bits = 1 byte, for each word element in
vB, add the sum of four signed bytes in the word in vA to the signed
word element in vB and then place the results into the corresponding
signed word element in vD. If the intermediate result is > (231–1) then
saturate to (231–1) and if < –231 then saturate to –231.

For h, half word, integer length = 16 bits = 2 bytes, for each word
element in vB, add the sum of 2 signed half words in the word in vA
to the signed word element in vB and then place the results into the
corresponding signed word element in vD. If the intermediate result is
> (231–1) then saturate to (231–1) and if < –231 then saturate to –231.

If the result saturates, VSCR[SAT] is set.

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-11

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Vector Average
Unsigned

Integer [b,h,w]

vavgub
vavguh
vavguw

vD,vA,vB Add the sum of (vA[unsigned integer elements]+ vB[unsigned integer
elements]) +1 and place into vD using modulo arithmetic.

For b, byte, integer length = 8 bits = 1 byte, add sixteen unsigned
integers from vA to sixteen unsigned integers from vB and then add
1 to the sums and place the high order result in vD.

For h, half word, integer length = 16 bits = 2 bytes, add eight
unsigned integers from vA to eight unsigned integers from vB and
then add 1 to the sums and place the high order result in vD.

For w, word, integer length = 32 bits = 4 bytes, add four unsigned
integers from vA to four unsigned integers from vB and then add 1 to
the sums and place the high order result in vD.

If the result saturates, VSCR[SAT] is set.

Vector Average
Signed Integer

[b,h,w]

vavgsb
vavgsh
vavgsw

vD,vA,vB Add the sum of (vA[signed integer elements]+ vB[signed integer
elements]) +1 and place into vD using modulo arithmetic.

For b, byte, integer length = 8 bits = 1 byte, add sixteen signed
integers from vA to sixteen signed integers from vB and then add 1
to the sums and place the high order result in vD.

For h, half word, integer length = 16 bits = 2 bytes, add eight signed
integers from vA to eight signed integers from vB and then add 1 to
the sums and place the high order result in vD.

For w, word, integer length = 32 bits = 4 bytes, add four signed
integers from vA to four signed integers from vB and then add 1 to
the sums and place the high order result in vD.

Vector
Maximum
Unsigned

Integer [b,h,w]

vmaxub
vmaxuh
vmaxuw

vD,vA,vB Compare the maximum of vA and vB unsigned integers for each
integer value and which ever value is larger, place that unsigned
integer value into vD

For b, byte, integer length = 8 bits = 1 byte, compare sixteen
unsigned integers from vA with sixteen unsigned integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, compare eight
unsigned integers from vA with eight unsigned integers from vB.

For w, word, integer length = 32 bits = 4 bytes, compare four
unsigned integers from vA with four unsigned integers from vB.

Vector
Maximum

Signed Integer
[b,h,w]

vmaxsb
vmaxsh
vmaxsw

vD,vA,vB Compare the maximum of vA and vB signed integers for each
integer value and which ever value is larger, place that signed integer
value into vD

For b, byte, integer length = 8 bits =1 byte, compare sixteen signed
integers from vA with sixteen signed integers from vB.

For h, half word, integer length =16 bits = 2 bytes, compare eight
signed integers from vA with eight signed integers from vB.

For w, word, integer length = 32 bits = 4 bytes, compare four signed
integers from vA with four signed integers from vB.

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
4-12 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.1.3 Vector Integer Compare Instructions

The vector integer compare instructions algebraically or logically compare the contents of
the elements in vector register vA with the contents of the elements in vB. Each compare
result vector is comprised of TRUE (0xFF, 0xFFFF, 0xFFFFFFFF) or FALSE (0x00,
0x0000, 0x00000000) elements of the size specified by the compare source operand
element (byte, half word, or word). The result vector can be directed to any vector register
and can be manipulated with any of the instructions as normal data, for example, combining
condition results. Vector compares provide equal-to and greater-than predicates. Others are
synthesized from these by logically combining or inverting result vectors.

If the record bit (Rc) is set in the integer compare instructions (shown in Table 4-3), it can
optionally set the CR6 field of the PowerPC condition register. If Rc = 1 in the vector
integer compare instruction, then CR6 reflects the result of the comparison, as shown in
Table 4-2.

Vector
Minimum
Unsigned

Integer [b,h,w]

vminub
vminuh
vminuw

vD,vA,vB Compare the minimum of vA and vB unsigned integers for each
integer value and which ever value is smaller, place that unsigned
integer value into vD.

For b, byte, integer length = 8 bits = 1 byte, compare sixteen
unsigned integers from vA with sixteen unsigned integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, compare eight
unsigned integers from vA with eight unsigned integers from vB.

For w, word, integer length = 32 bits = 4 bytes, compare four
unsigned integers from vA with four unsigned integers from vB.

Vector
Minimum

Signed Integer
[b,h,w]

vminsb
vminsh
vminsw

vD,vA,vB Compare the minimum of vA and vB signed integers for each integer
value and which ever value is smaller, place that signed integer value
into vD.

For b, byte, integer length = 8 bits = 1 byte, compare sixteen signed
integers from vA with sixteen signed integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, compare eight
signed integers from vA with eight signed integers from vB.

For w, word, integer length = 32 bits = 4 bytes, compare four signed
integers from vA with four signed integers from vB.

Table 4-2. CR6 Field Bit Settings for Vector Integer Compare Instructions

CR Bit CR6 Bit Vector Compare

24 0 1 Relation is true for all element pairs (that is, vD is set to all ones).

25 1 0

26 2 1 Relation is false for all element pairs (that is, register vD is cleared).

27 3 0

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-13

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 4-3 summarizes the vector integer compare instructions.

Table 4-3. Vector Integer Compare Instructions

Name Mnemonic Syntax Operation

Vector
Compare
Greater

than
Unsigned
Integer
[b,h,w]

vcmpgtub[.]
vcmpgtuh[.]
vcmpgtuw[.]

vD,vA,vB Compare the value in vA with the value in vB, treating the
operands as unsigned integers. Place the result of the comparison
into the vD field specified by operand vD.

If vA > vB then vD = 1’s; otherwise vD = 0’s.

If the record bit (Rc) is set in the vector compare instruction, then

vD == 1’s, (all elements true) then CR6[0] is set

vD == 0’s, (all elements false) then CR6[2] is set.

For b, byte, integer length = 8 bits = 1 byte, compare sixteen
unsigned integers from vA to sixteen unsigned integers from vB
and place the results in the corresponding 16 elements in vD.

For h, half word, integer length = 16 bits = 2 bytes, compare eight
unsigned integers from vA to eight unsigned integers from vB and
place the results in the corresponding 8 elements in vD.

For w, word, integer length = 32 bits = 4 bytes, compare four
unsigned integers from vA to four unsigned integers from vB and
place the results in the corresponding 4 elements in vD.
4-14 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.1.4 Vector Integer Logical Instructions

The vector integer logical instructions shown in Table 4-4 perform bit-parallel operations
on the operands.

Vector
Compare
Greater
Than

Signed
Integer
[b,h,w]

vcmpgtsb[.]
vcmpgtsh[.]
vcmpgtsw[.]

vD,vA,vB Compare the value in vA with the value in vB, treating the
operands as signed integers. Place the result of the comparison
into the vD field specified by operand vD.

If vA > vB then vD =1’s; otherwise vD = 0’s

If the record bit (Rc) is set in the vector compare instruction, then

vD == 1’s, (all elements true) then CR6[0] is set

vD == 0’s, (all elements false) then CR6[2] is set.

For b, byte, integer length = 8 bits = 1 byte, compare sixteen
signed integers from vA to sixteen signed integers from vB

and place the results in the 16 corresponding elements in vD.

For h, half word, integer length = 16 bits = 2 bytes, compare eight
signed integers from vA to eight signed integers from vB and
place the results in the 8 corresponding elements in vD.

For w, word, integer length = 32 bits = 4 bytes, compare four
signed integers from vA to four signed integers from vB and place
the results in the 4 corresponding elements in vD.

Vector
Compare
Equal To
Unsigned
Integer
[b,h,w]

vcmpequb[.]
vcmpequh[.]
vcmpequw[.]

vD,vA,vB Compare the value in vA with the value in vB, treating the
operands as unsigned integers. Place the result of the comparison
into the vD field specified by operand vD.

If vA = vB then vD =1’s; otherwise vD = 0’s.

If the record bit (Rc) is set in the vector compare instruction then

vD == 1’s, (all elements true) then CR6[0] is set

VD == 0’s, (all elements false) then CR6[2] is set.

For b, byte, integer length = 8 bits =1 byte, compare sixteen
unsigned integers from vA to sixteen unsigned integers from vB
and place the results in the corresponding 16 elements in vD.

For h, half word, integer length =16 bits = 2 bytes, compare eight
unsigned integers from vA to eight unsigned integers from vB and
place the results in the corresponding 8 elements in vD.

For w, word, integer length=32 bits = 4 bytes, compare four
unsigned integers from vA to four unsigned integers from vB and
place the results in the corresponding 4 elements in vD.

Note: vcmpequb[.], vcmpequh[.], and vcmpequw[.] can use
both unsigned and signed integers.

Table 4-3. Vector Integer Compare Instructions (continued)

Name Mnemonic Syntax Operation
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-15

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.1.5 Vector Integer Rotate and Shift Instructions

The vector integer rotate instructions are summarized in Table 4-5.

The vector integer shift instructions are summarized in Table 4-6.

Table 4-4. Vector Integer Logical Instructions

Name Mnemonic Syntax Operation

Vector Logical AND vand vD,vA,vB AND the contents of vA with vB and place the result into vD.

Vector Logical OR vor vD,vA,vB OR the contents of vA with vB and place the result into vD.

Vector Logical XOR vxor vD,vA,vB XOR the contents of vA with vB and place the result into vD.

Vector Logical AND
with Complement

vandc vD,vA,vB AND the contents of vA with the complement of vB and place the
result into vD.

Vector Logical NOR vnor vD,vA,vB NOR the contents of vA a with vB and place the result into vD.

Table 4-5. Vector Integer Rotate Instructions

Name Mnemonic Syntax Operation

Vector Rotate
Left Integer

[b,h,w]

vrlb
vrlh
vrlw

vD,vA,vB Rotate each element in vA left by the number of bits specified in the
low-order log2(n) bits of the corresponding element in vB. Place the result
into the corresponding element of vD.

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with
16 integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from vA
with 8 integers from vB.

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with
4 integers from vB.
4-16 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.2 Vector Floating-Point Instructions

This section describes the vector floating-point instructions, which include the following:

• Arithmetic

• Rrounding and conversion

• Compare

• Estimate

The AltiVec floating-point data format complies with the ANSI/IEEE-754 standard. A
quantity in this format represents a signed normalized number, a signed denormalized
number, a signed zero, a signed infinity, a quiet not a number (QNaN), or a signalling NaN
(SNaN). Operations perform to a Java/IEEE/C9X-compliant subset of the IEEE standard,

Table 4-6. Vector Integer Shift Instructions

Name Mnemonic Syntax Operation

Vector Shift
Left Integer

[b,h,w]

vslb
vslh
vslw

vD,vA,vB Shift each element in vA left by the number of bits specified in the low-order
log2(n) bits of the corresponding element in vB. If bits are shifted out of bit 0 of
the element they are lost. Supply zeros to the vacated bits on the right. Place
the result into the corresponding element of vD.

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with 16
integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from vA with
8 integers from vB.

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with 4
integers from vB.

Vector Shift
Right

Integer
[b,h,w]

vsrb
vsrh
vsrw

vD,vA,vB Shift each element in vA right by the number of bits specified in the low-order
log2(n) bits of the corresponding element in vB. If bits are shifted out of bit n–1
of the element they are lost. Supply zeros to the vacated bits on the left. Place
the result into the corresponding element of vD.

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with 16
integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from vA with
8 integers from vB.

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with 4
integers from vB.

Vector Shift
Right

Algebraic
Integer
[b,h,w]

vsrab
vsrah
vsraw

vD,vA,vB Shift each element in vA right by the number of bits specified in the low-order
log2(n) bits of the corresponding element in vB. If bits are shifted out of bit n–1
of the element they are lost. Replicate bit 0 of the element to fill the vacated
bits on the left. Place the result into the corresponding element of vD.

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with 16
integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from vA with
8 integers from vB.

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with 4
integers from vB.
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-17

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

for further details on the Java or Non-Java mode see Section 3.2.1, “Floating-Point Modes.”
AltiVec ISA does not report IEEE exceptions but rather produces default results as specified
by the Java/IEEE/C9X Standard. For further details on exceptions, see Section 3.2.4,
“Floating-Point Exceptions.”

4.2.2.1 Floating-Point Division and Square-Root

AltiVec instructions do not have division or square-root instructions. AltiVec ISA
implements Vector Reciprocal Estimate Floating-Point (vrefp) and Vector
Reciprocal-Square-Root Estimate Floating-Point (vrsqrtefp) instructions along with a
Vector Negative Multiply-Subtract Floating-Point (vnmsubfp) instruction assisting in the
Newton-Raphson refinement of the estimates. To accomplish division, simply multiply the
dividend (x/y = x * 1/y) and square-root by multiplying the original number (√x = x * 1/√x).
In this way, AltiVec ISA provides inexpensive divides and square-roots that are fully
pipelined, sub-operation scheduled, and faster even than many hardware dividers. Software
methods are available to further refine these to correct IEEE results.

4.2.2.1.1 Floating-Point Division

The Newton-Raphson refinement step for the reciprocal 1/B looks like this:

y1 = y0 + y0*(1 - B*y0), where y0 = recip_est(B)

This is implemented in the AltiVec ISA as follows:

y0 = vrefp(B)

 t = vnmsubfp(y0,B,1)

y1 = vmaddfp(y0,t,y0)

This produces a result accurate to almost 24 bits of precision, except where B is a
sufficiently small denormalized number that vrefp generates an infinity that, if important,
must be explicitly guarded against.

To get a correctly rounded IEEE quotient from the above result, a second Newton-Raphson
iteration is performed to get a correctly rounded reciprocal (y2) to the required 24 bits of
precision, then the residual.

R = A - B*Q

is computed with vnmsubfp (where A is the dividend, B the divisor, and Q an
approximation of the quotient from A*y2). The correctly rounded quotient can then be
obtained.

Q' = Q + R*y2

The additional accuracy provided by the fused nature of the AltiVec instruction
multiply-add is essential to producing the correctly rounded quotient by this method.
4-18 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The second Newton-Raphson iteration may ultimately not be needed but more work must
be done to show that the absolute error after the first refinement step would always be less
than 1 ulp, which is a requirement of this method.

4.2.2.1.2 Floating-Point Square-Root

The Newton-Raphson refinement step for reciprocal square root looks like the following:

y1 = y0 + 0.5*y0*(1 - B*y0*y0), where y0 = recip_sqrt_est(B)

That can be implemented as follows:

y0 = vrsqrtefp(B)

t0 = vmaddfp(y0,y0,0.0)

t1 = vmaddfp(y0,0.5,0.0)

t0 = vnmsubfp(B,t0,1)

y1 = vmaddfp(t0,t1,y0)

Various methods can further refine a correctly rounded IEEE result, all more elaborate than
the simple residual correction for division, and therefore are not presented here, but most
of which also benefit from the negative multiply-subtract instruction.

4.2.2.2 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are summarized in Table 4-7.

Table 4-7. Floating-Point Arithmetic Instructions

Name Mnemonic Syntax Operation

Vector Add
Floating-P

oint

vaddfp vD,vA,
vB

Add the 4-word (32-bit) floating-point elements in vA to the 4-word (32-bit)
floating-point elements in vB. Round the four intermediate results to the nearest
single-precision number and placed into vD.

Vector
Subtract

Floating-P
oint

vsubfp vD,vA,
vB

The 4-word (32-bit) floating-point values in vB are subtracted from the 4 32-bit
values in vB. The four intermediate results are rounded to the nearest
single-precision floating-point and placed into vD.
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-19

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.2.3 Floating-Point Multiply-Add Instructions

Vector multiply-add instructions are critically important to performance because multiply
followed by a data-dependent addition is the most common idiom in DSP algorithms. In
most implementations, floating-point multiply-add instructions perform with the same
latency as either a multiply or add alone, thus doubling performance in comparing to the
otherwise serial multiply and adds. This will make performance twice as fast as using
separate multiply and add instructions.

AltiVec floating-point multiply-adds instructions fuse (a multiply-add fuse implies that the
full product participates in the add operation without rounding; only the final result rounds).
This not only simplifies the implementation and reduces latency (by eliminating the
intermediate rounding) but also increases the accuracy compared to separate multiply and
adds.

Be careful as Java-compliant programs can not use multiply-add instructions fused directly
because Java requires both the product and sum to round separately. Thus to achieve strict
Java compliance, perform the multiply and add with separate instructions.

To realize multiply in AltiVec ISA use multiply-add instructions with a zero addend (for
example, vmaddfp vD,vA,vC,vB where (vB = 0.0).

Note that to use multiply-add instructions to perform an IEEE- or Java-compliant multiply,
the addend must be -0.0. This is necessary to ensure that the sign of a zero result is correct
when the product is either +0.0 or -0.0 (+0.0 + -0.0 ⇒ +0.0, and -0.0 + -0.0 ⇒ -0.0). When
the sign of a resulting 0.0 is not important, then use +0.0 as the addend that may, in some

Vector
Maximum
Floating-P

oint

vmaxfp vD,vA,
vB

Compare each of the 4 single-precision word elements in vA to the
corresponding 4 single-precision word elements in vB and place the larger
value within each pair into the corresponding word element in vD.

vmaxfp is sensitive to the sign of 0.0. When both operands are ±0.0:

max(+0.0,±0.0) = max(±0.0,+0.0) ⇒ +0.0

max(-0.0,-0.0) ⇒ -0.0

max(NaN,x) ⇒ QNaN, where x = any value

Vector
Minimum
Floating-P

oint

vminfp vD,vA,
vB

Compare each of the 4 single-precision word elements in vA to the
corresponding 4 single-precision word elements in vB

For each of the four elements, place the smaller value within each pair into vD.

vminfp is sensitive to the sign of 0.0. When both operands are ±0.0:

min(-0.0,±0.0) = min(±0.0,-0.0) ⇒ -0.0

min(+0.0,+0.0) ⇒ +0.0

min(NaN,x) ⇒ QNaN where x = any value

Table 4-7. Floating-Point Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
4-20 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

cases, avoiding the need for a second register to hold a -0.0 in addition to the integer
0/floating-point +0.0 that may already be available.

The floating-point multiply-add instructions are summarized in Table 4-8.

4.2.2.4 Floating-Point Rounding and Conversion Instructions

All AltiVec floating-point arithmetic instructions use the IEEE default rounding mode,
round-to-nearest. AltiVec ISA does not provide the IEEE directed rounding modes.

AltiVec ISA provides separate instructions for converting floating-point numbers to
integral floating-point values for all IEEE rounding modes as follows:

• Round-to-nearest (vrfin) (round)

• Round-toward-zero (vrfiz) (truncate)

• Round-toward-minus-infinity (vrfim) (floor)

• Round-toward-positive-infinity (vrfip) (ceiling).

Floating-point conversions to integers (vctuxs, vctsxs) use round-toward-zero (truncate).
The floating-point rounding instructions are described in Table 4-9.

Table 4-8. Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax Operation

Vector
Multiply-

Add
Floating-P

oint

vmaddfp vD,vA,vC,vB Multiply the four word floating-point elements in vA by the corresponding
four word elements in vC. Add the four word elements in vB to the four
intermediate products. Round the results to the nearest single-precision
numbers and place the corresponding word elements into vD.

Vector
Negative
Multiply-
Subtract

Floating-P
oint

vnmsubfp vD,vA,vC,vB Multiply the four word floating-point elements in vA by the corresponding
four word elements in vC. Subtract the four word floating-point elements in
vB from the four intermediate products and invert the sign of the difference.
Round the results to the nearest single-precision numbers and place the
corresponding word elements into vD.

Table 4-9. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax Operation

Vector Round to
Floating-Point Integer

Nearest

vrfin vD,vB Round to the nearest the four word floating-point elements in
vB and place the four corresponding word elements into vD.

Vector Round to
Floating-Point Integer

toward Zero

vrfiz vD,vB Round towards zero the four word floating-point elements in vB
and place the four corresponding word elements into vD.

Vector Round to
Floating-Point Integer
toward Positive Infinity

vrfip vD,vB Round towards +Infinity the four word floating-point elements in
vB and place the four corresponding word elements into vD.
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-21

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.2.5 Floating-Point Compare Instructions

This section describes floating-point unordered compare instructions.

All AltiVec floating-point compare instructions (vcmpeqfp, vcmpgtfp, vcmpgefp, and
vcmpbfp) return FALSE if either operand is a NaN. Not equal-to, not greater-than, not
greater-than-or-equal-to, and not-in-bounds NaNs compare to everything, including
themselves.

Compares always return a Boolean mask (TRUE = 0xFFFF_FFFF, FALSE =
0x0000_0000) and never return a NaN. The vcmpeqfp instruction is recommended as the
Isnan(vX) test. No explicit unordered compare instructions or traps are provided. However,
the greater-than-or-equal-to predicate (≥) (vcmpgefp) is provided—in addition to the > and
= predicates available for integer comparison—specifically to enable IEEE unordered
comparison that would not be possible with just the > and = predicates. Table 4-10 lists the
six common mathematical predicates and how they would be realized in AltiVec code.

Vector Round to
Floating-Point Integer
toward Minus Infinity

vrfim vD,vB Round towards -Infinity the four word floating-point elements in
vB and place the four corresponding word elements into vD.

Vector Convert from
Unsigned Fixed-Point

Word

vcfux vD,vB, UIMM Convert each of the four unsigned fixed-point integer word
elements in vB to the nearest single-precision value. Divide the
result by 2UIMM and place into the corresponding word element
of vD.

Vector Convert from
Signed Fixed-Point

Word

vcfsx vD,vB, UIMM Convert each signed fixed-point integer word element in vB to
the nearest single-precision value. Divide the result by 2UIMM
and place into the corresponding word element of vD.

Vector Convert to
Unsigned Fixed-Point

Word Saturate

vctuxs vD,vB, UIMM Multiply each of the four single-precision word elements in vB
by 2UIMM. The products are converted to unsigned fixed-point
integers using the Round toward Zero mode. If the intermediate
results are > 232–1 saturate to 232–1 and if it is < 0 saturate to
0. Place the unsigned integer results into the corresponding
word elements of vD.

Vector Convert to
Signed Fixed-Point

Word Saturate

vctsxs vD,vB, UIMM Multiply each of the four single-precision word elements in vB
by 2UIMM. The products are converted to signed fixed-point
integers using Round toward Zero mode. If the intermediate
results are > 232–1 saturate to 232–1 and if it is < –231 saturate
to –231. Place the unsigned integer results into the
corresponding word elements of vD.

Table 4-9. Floating-Point Rounding and Conversion Instructions (continued)

Name Mnemonic Syntax Operation
4-22 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table Table 4-11 shows the remaining eight useful predicates and how they might be
realized in AltiVec code.

The vector floating-point compare instructions compare the elements in two vector registers
word-by-word, interpreting the elements as single-precision numbers. With the exception
of the Vector Compare Bounds Floating-Point (vcmpbfp) instruction they set the target
vector register, and CR[6] if Rc = 1, in the same manner as do the vector integer compare
instructions.

The Vector Compare Bounds Floating-Point (vcmpbfp) instruction sets the target vector
register, and CR[6] if Rc = 1, to indicate whether the elements in vA are within the bounds
specified by the corresponding element in vB, as explained in the instruction description. A

Table 4-10. Common Mathematical Predicates

Case
Mathematical

Predicate
AltiVec

Realization

Relations

a>b a<b a=b ?

1 a = b a = b F F T F

2 a ≠ b (?<>) ¬ (a = b) T T F T

3 a > b a > b T F F F

4 a < b b > a F T F F

5 a ≥ b ¬ (b > a) T F T *T

6 a ≤ b ¬ (a > b) F T T *T

5a a ≥ b a ≥ b T F T F

6a a ≤ b b ≥ a F T T F

* Note: Cases 5 and 6 implemented with greater-than (vcmpgtfp and vnor) would not yield
the correct IEEE result when the relation is unordered.

Table 4-11. Other Useful Predicates

Case Predicate
AltiVec

Realization

Relations

a>b a<b a=b ?

7 a ? b ¬ ((a=b) ∨ (b>a) ∨ (a>b)) F F F T

8 a <> b (a ≥ b) ⊕ (b ≥ a) T T F F

9 a <=> b (a ≥ b) ∨ (b ≥ a) T T T F

10 a ?> b ¬ (b ≥ a) T F F T

11 a ?>= b ¬ (b > a) T F T T

12 a ?< b ¬ (a ≥ b) F T F T

13 a ?<= b ¬ (a > b) F T T T

14 a ?= b ¬ ((a > b) ∨ (b > a)) F F T T
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-23

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

single-precision value x is said to be within the bounds specified by a single-precision value
y if (-y ≤ x ≤ y).

The floating-point compare instructions are summarized in Table 4-12.

4.2.2.6 Floating-Point Estimate Instructions

The floating-point estimate instructions are summarized in Table 4-13.

Table 4-12. Floating-Point Compare Instructions

Name Mnemonic Syntax Operation

Vector
Compare
Greater
Than

Floating-P
oint

[Record]

vcmpgtfp[.] vD,vA,vB Compare each of the four single-precision word elements in vA to the
corresponding four single-precision word elements in vB

For each element, if vA > vB then set the corresponding element in vD
to all 1’s otherwise clear the element in vD to all 0’s

If the record bit is set (Rc = 1) in the vector compare instruction, then

vD ==1, (all elements true) then CR6[0] is set

vD == 0, (all elements false) then CR6[2] is set

Vector
Compare
Equal to

Floating-P
oint

[Record]

vcmpeqfp[.] vD,vA,vB Compare each of the 4 single-precision word elements in vA to the
corresponding 4 single-precision word elements in vB.

For each element, if vA = vB then set the corresponding element in vD
to all 1’s otherwise clear the element in vD to all 0’s

If the record bit is set (Rc = 1) in the vector compare instruction then

vD ==1, (all elements true) then CR6[0] is set

vD == 0, (all elements false) then CR6[2] is set

Vector
Compare
Greater
Than or
Equal to

Floating-P
oint

[Record]

vcmpgefp[.] vD,vA,vB Compare each of the 4 single-precision word elements in vA to the
corresponding 4 single-precision word elements in vB.

For each element, if vA >= vB then set the corresponding element in vD
to all 1’s otherwise clear the element in vD to all 0’s

If the record bit is set (Rc = 1) in the vector compare instruction then

vD ==1, (all elements true) then CR6[0] is set

vD == 0, (all elements false) then CR6[2] is set

Vector
Compare
Bounds

Floating-P
oint

[Record]

vcmpbfp[.] vD,vA,vB Compare each of the 4 single-precision word elements in vA to the
corresponding single-precision word elements in vB. A 2-bit value is
formed that indicates whether the element in vA is within the bounds
specified by the element in vB, as follows.

Bit 0 of the two-bit value is cleared if the element in vA is <= to the
element in vB, and is set otherwise.

Bit 1 of the two-bit value is cleared if the element in vA is >= to the
negation of the element in vB, and is set otherwise.

The two-bit value is placed into the high-order two bits of the
corresponding word element of vD and the remaining bits of the element
are cleared to 0.

If Rc = 1, CR6[2] is set when all four elements in vA are within the
bounds specified by the corresponding element in vB
4-24 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.3 Load and Store Instructions

Only very basic load and store operations are provided in AltiVec ISA. This keeps the
circuitry in the memory path fast so the latency of memory operations will be low. Instead,
a powerful set of field manipulation instructions are provided to manipulate data into the
desired alignment and arrangement after the data has been brought into the vector registers.

Load vector indexed (lvx, lvxl) and store vector indexed (stvx, stvxl) instructions transfer
an aligned quad-word vector between memory and vector registers. Load vector element
indexed (lvebx, lvehx, lvewx) and store vector element indexed instructions (stvebx,
stvehx, stvewx) transfer byte, half-word, and word scalar elements between memory and
vector registers.

All vector loads and vector stores use the index (rA|0 + rB) addressing mode to specify the
target memory address. AltiVec ISA does not provide any update forms. An lvebx, lvehx,
or lvewx instruction transfers a scalar data element from memory into the destination vector
register, leaving other elements in the vector with boundedly-undefined values. A stvebx,
stvehx, or stvewx instruction transfers a scalar data element from the source vector register
to memory leaving other elements in the quad word unchanged. No data alignment occurs,
that is, all scalar data elements are transferred directly on their natural memory byte-lanes
to or from the corresponding element in the vector register. Quad word memory accesses
made by lvx, lvxl, stvx, and stvxl instructions are not guaranteed to be atomic. Direct-store
segments (T=1) are not supported by AltiVec ISA. Any vector load or store that attempts to
access a direct-store segment will cause a DSI exception.

Table 4-13. Floating-Point Estimate Instructions

Name Mnemonic Syntax Operation

Vector Reciprocal
Estimate

Floating-Point

vrefp vD,vB Place estimates of the reciprocal of each of the four word floating-point
source elements in vB in the corresponding four word elements in vD.

Vector Reciprocal
Square Root

Estimate
Floating-Point

vrsqrtefp vD,vB Place estimates of the reciprocal square-root of each of the four word
source elements in vB in the corresponding four word elements in vD.

Vector Log2
Estimate

Floating-Point

vlogefp vD,vB Place estimates of the base 2 logarithm of each of the four word source
elements in vB in the corresponding four word elements in vD.

Vector 2 Raised to
the Exponent

Estimate
Floating-Point

vexptefp vD,vB Place estimates of 2 raised to the power of each of the four word source
elements in vB in the corresponding four word elements in vD.
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-25

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.3.1 Alignment

All memory references must be size aligned. If a vector load or store address is not properly
size aligned, the suitable number of least significant bits are ignored, and a size aligned
transfer occurs instead. Data alignment must be performed by software after being brought
into the registers. No assistance is provided for aligning individual scalar elements that are
not aligned on their natural size boundary. However, assistance is provided for justifying
non-size-aligned vectors. This is provided through the Load Vector for Shift Left (lvsl) and
Load Vector for Shift Right (lvsr) instructions that compute the proper Vector Permute
(vperm) control vector from the misaligned memory address. For details on how to use
these instructions to align data see Section 3.1.6, “Quad-Word Data Alignment.”

The lvx, lvxl, stvx, and stvxl instructions can be used to move data, not just multimedia
data, in PowerPC environments. Therefore, because vector loads and stores are
size-aligned, care should be taken to align data on even quad-word boundaries for
maximum performance.

4.2.3.2 Load and Store Address Generation

Vector load and store operations generate effective addresses using register indirect with
index mode.

All AltiVec load and store instructions use register indirect with index addressing mode
that cause the contents of two GPRs (specified as operands rA and rB) to be added in the
generation of the effective address (EA). A zero in place of the rA operand causes a zero
to be added to the value specified by rB. The option to specify rA or 0 is shown in the
instruction descriptions as (rA|0). If the address becomes misaligned, for a half word, word,
or quad word when combining addresses (rA|0 + rB), the effective address is ANDed with
the appropriate zero values to boundary align the address and is summarized in Table 4-14.

Table 4-14. Effective Address Alignment

Operand Effective Address Bit Setting

Indexed half word EA[63] 0b0

Indexed word EA[62–63] 0b00

Indexed quad word EA[60–63] 0b0000
4-26 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4-1 shows how an effective address is generated when using register indirect with
index addressing.

Figure 4-1. Register Indirect with Index Addressing for Loads/Stores

4.2.3.3 Vector Load Instructions

For vector load instructions, the byte, half word, or word addressed by the EA (effective
address) is loaded into rD.

The default byte and bit ordering is big-endian as in the PowerPC architecture; see
Section 3.1.2, “AltiVec Byte Ordering,” for information about little-endian byte ordering.

No

0 63

GPR (rA)

0

+

0 63

VR (vD)
Memory
Interface

Store
Load

Yes

0 63

GPR (rB)

Instruction Encoding:

rA=0?

0 63

Effective Address

0 5 6 1011 15 16 20 21 30 31

Opcode vD/vS rA rB Subopcode 0Reserved

Boundary
Align EA
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-27

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 4-15 summarizes the vector load instructions.

The lvsl and lvsr instructions can be used to create the permute control vector to be used
by a subsequent vperm instruction. Let X and Y be the contents of vA and vB specified by
vperm. The control vector created by lvsl causes the vperm to select the high-order 16
bytes of the result of shifting the 32-byte value X || Y left by sh bytes (sh = the value in
EA[60-63]). The control vector created by lvsr causes the vperm to select the low-order 16
bytes of the result of shifting X || Y right by sh bytes.

These instructions can also be used to rotate or shift the contents of a vector register left lvsl
or right lvsr by sh bytes. The sh values for the lvsl instruction are shown in Table 4-17, and
those for the lvsr instruction are shown in Table 4-18.For rotating, the vector register to be
rotated should be specified as both the vA and the vB register for vperm. For shifting left,
the vB register for vperm should be a register containing all zeros and vA should contain
the value to be shifted, and vice versa for shifting right. For further examples on how to
align the data see Section 3.1.6, “Quad-Word Data Alignment.” The default byte and bit

Table 4-15. Integer Load Instructions

Name Mnemonic Syntax Operation

Load Vector
Element Integer
Indexed [b,h,w]

lvebx
lvehx
lvewx

vD,rA,rB The EA is the sum (rA|0) + (rB). Load the byte, half word, or word in
memory addressed by the EA into the low-order bits of vD. The remaining
bits in vD are set to boundedly undefined values.

Because memory must stay aligned, the EA is set to default to alignment:

For b, byte, integer length = 8 bits = 1 byte,

For h, half word, integer length = 16 bits = 2 bytes, EA[62–63] is set to 0b0

For w, word, integer length = 32 bits = 4 bytes, EA[61-63] is set to 0b00

Load Vector
Indexed

lvx vD,rA,rB The EA is the sum (rA|0) + (rB). Load the double word in memory
addressed by the EA into vD.

Because memory needs to stay aligned, the EA is set to default to
alignment:

For a quad word, integer length = 128 bits = 8 bytes, EA[60–63] is set to
0b0000

LRU = 0

If the processor is in little-endian mode, load the double word in memory
addressed by EA into vD[64–127] and load the double word in memory
addressed by EA+8 into vD[0–63].

Load Vector
Indexed LRU

lvxl vD,rA,rB The EA is the sum (rA|0) + (rB). Load the double word in memory
addressed by the EA into vD.

For the double word, integer length = 64 bits = 4 bytes, the EA[60–63] is set
to 0b0000

LRU =1, least recently used, hints that the quad word in the memory
addressed by EA will probably not be needed again by the program in the
near future.

If the processor is in little-endian mode, load the double word in memory
addressed by EA into vD[64–127] and load the double word in memory
addressed by EA+8 into vD[0–63].
4-28 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ordering is big-endian as in the PowerPC architecture; see Section 3.1.2.2, “Little-Endian
Byte Ordering,” for information about little-endian byte ordering.

Table 4-16 summarizes the vector alignment instructions.

Table 4-16. Vector Load Instructions Supporting Alignment

Name Mnemonic Syntax Operation

Load Vector for
Shift Left

lvsl vD,rA,rB The EA is the sum (rA|0) + (rB). The EA[60–63] = sh, then based
onTable 4-17, place the value in vD

Load Vector for
Shift Right

lvsr vD,rA,rB The EA is the sum (rA|0) + (rB). The EA[60–63] = sh, then based on
Table 4-18, place the value in vD

Table 4-17. Shift Values for lvsl Instruction

Shift (sh) vD[0-127]

0x0 0x000102030405060708090A0B0C0D0E0F

0x1 0x0102030405060708090A0B0C0D0E0F10

0x2 0x02030405060708090A0B0C0D0E0F1011

0x3 0x0D0E0F101112131415161718191A1B1C

0x4 0x0405060708090A0B0C0D0E0F10111213

0x5 0x05060708090A0B0C0D0E0F1011121314

0x6 0x060708090A0B0C0D0E0F101112131415

0x7 0x0708090A0B0C0D0E0F10111213141516

0x8 0x08090A0B0C0D0E0F1011121314151617

0x9 0x090A0B0C0D0E0F101112131415161718

0xA 0x0A0B0C0D0E0F10111213141516171819

0xB 0x0B0C0D0E0F101112131415161718191A

0xC 0x0C0D0E0F101112131415161718191A1B

0xD 0x0D0E0F101112131415161718191A1B1C

0xE 0x0E0F101112131415161718191A1B1C1D

0xF 0x0F101112131415161718191A1B1C1D1E

Table 4-18. Shift Values for lvsr Instruction

Shift (sh) vD[0-127]

0x0 0x101112131415161718191A1B1C1D1E1F

0x1 0x0F101112131415161718191A1B1C1D1E

0x2 0x0E0F101112131415161718191A1B1C1D

0x3 0x0D0E0F101112131415161718191A1B1C

0x4 0x0C0D0E0F101112131415161718191A1B
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-29

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.3.4 Vector Store Instructions

For vector store instructions, the contents of vector register used as a source (vS) are stored
into the byte, half word, word or quad word in memory addressed by the effective address
(EA). Table 4-19 provides a summary of the vector store instructions.

0x5 0x0B0C0D0E0F101112131415161718191A

0x6 0x0A0B0C0D0E0F10111213141516171819

0x7 0x090A0B0C0D0E0F101112131415161718

0x8 0x08090A0B0C0D0E0F1011121314151617

0x9 0x0708090A0B0C0D0E0F10111213141516

0xA 0x060708090A0B0C0D0E0F101112131415

0xB 0x05060708090A0B0C0D0E0F1011121314

0xC 0x0405060708090A0B0C0D0E0F10111213

0xD 0x030405060708090A0B0C0D0E0F101112

0xE 0x02030405060708090A0B0C0D0E0F1011

0xF 0x0102030405060708090A0B0C0D0E0F10

Table 4-19. Integer Store Instructions

Name Mnemonic Syntax Operation

Store
Vector

Element
Integer
Indexed
[b,h,w]

stvebx
stvehx
stvewx

vS,rA,rB The EA is the sum (rA|0) + (rB). Store the contents of the low-order bits of
vS into the integer in memory addressed by the EA.

Because memory needs to stay aligned, the EA is set to default to
alignment:

For b, byte, integer length = 8 bits =1 byte,

For h, half word, integer length = 16 bits = 2 bytes, EA[62–63] is set to 0b0

For w, word, integer length = 32 bits = 4 bytes, EA[61–63] is set to 0b00

Table 4-18. Shift Values for lvsr Instruction (continued)

Shift (sh) vD[0-127]
4-30 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.4 Control Flow

AltiVec instructions can be freely intermixed with existing PowerPC instructions to form a
complete program. AltiVec instructions do provide a vector compare and select mechanism
to implement conditional execution as a mechanism to control data flow in AltiVec
programs. And AltiVec vector compare instructions can update the condition register thus
providing the communication from AltiVec execution units to PowerPC branch instructions
necessary to modify program flow based on vector data.

4.2.5 Vector Permutation and Formatting Instructions

Vector pack, unpack, merge, splat, permute, and select can be used to accelerate various
vector math and vector formatting. Details of the various instructions follow.

4.2.5.1 Vector Pack Instructions

Half-word vector pack instructions (vpkuhum, vpkuhus, vpkshus, vpkshss) truncate the
sixteen half words from two concatenated source operands producing a single result of
sixteen bytes (quad word) using either modulo(28), 8-bit signed-saturation, or 8-bit
unsigned-saturation to perform the truncation. Similarly, word vector pack instructions
(vpkuwum, vpkuwus, vpkswus, and vpksws) truncate the eight words from two
concatenated source operands producing a single result of eight half words using

Store
Vector

Indexed

stvx vS,rA,rB The EA is the sum (rA|0) + (rB). Store the contents of vS into the quad word
in memory addressed by the EA.

For q, quad word, integer length = 64 bits = 4 bytes, the EA[60–63] is set to
0b0000

LRU = 0

If the processor is in little-endian mode, store the contents of vS[64–127]
into the double word in memory addressed by EA, and store the contents of
vS[0–63] into the double word in memory addressed by EA+8.

Store
Vector

Indexed
LRU

stvxl vD,rA,rB The EA is the sum (rA|0) + (rB). Store the contents of vS into the quad word
in memory addressed by the EA.

For d, double word, integer length=64 bits = 4 bytes, the EA[60–63] is set to
0b0000

LRU = 1, least recently used, hints that the quad word in the memory
addressed by EA will probably not be needed again by the program in the
near future.

If the processor is in little-endian mode, store the contents of vS[64–127]
into the double word in memory addressed by EA, and store the contents of
vS[0–63] into the double word in memory addressed by EA+8.

Table 4-19. Integer Store Instructions (continued)

Name Mnemonic Syntax Operation
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-31

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

modulo(2^16), 16-bit signed-saturation, or 16-bit unsigned-saturation to perform the
truncation.

One special form of Vector Pack Pixel (vpkpx) instruction packs eight 32-bit (8/8/8/8)
pixels from two concatenated source operands into a single result of eight 16-bit 1/5/5/5
αRGB pixels. The least significant bit of the first 8-bit element becomes the 1-bit α field,
and each of the three 8-bit R, G, and B fields are reduced to 5 bits by ignoring the 3 lsbs.

Table 4-20 describes the vector pack instructions.

Table 4-20. Vector Pack Instructions

Name Mnemonic Syntax Operation

Vector Pack
Unsigned

Integer [h,w]
Unsigned
Modulo

vpkuhum
vpkuwum

vD, vA, vB Concatenate the low-order unsigned integers of vA and the low-order
unsigned integers of vB and place into vD using unsigned modulo arithmetic.
vA is placed in the lower order double word of vD and vB is placed into the
higher order double word of vD.

For h, half word, integer length = 16 bits = 2 bytes, eight unsigned integers,
in other words the 8 low-order bytes of the half words from vA and vB

For w, word, integer length = 32 bits = 4 bytes, four unsigned integers, in
other words the 4 low-order half words of the words from vA and vB

Vector Pack
Unsigned

Integer [h,w]
Unsigned
Saturate

vpkuhus
vpkuwus

vD, vA, vB Concatenate the low-order unsigned integers of vA and the low-order
unsigned integers of vB and place into vD using unsigned saturate clamping
mode. vA is placed in the lower order double word of vD and vB is placed
into the higher order double word of vD.

For h, half word, integer length = 16 bits = 2 bytes, eight unsigned integers,
in other words the 8 low-order bytes of the half words from vA and vB

For w, word, integer length = 32 bits = 4 bytes,four unsigned integers, in
other words the 4 low-order words of the half words from vA and vB

Vector Pack
Signed

Integer [h,w]
Unsigned
Saturate

vpkshus
vpkswus

vD, vA, vB Concatenate the low-order signed integers of vA and the low-order signed
integers of vB and place into vD using unsigned saturate clamping mode. vA
is placed in the lower order double word of vD and vB is placed into the
higher order double word of vD.

For h, half word, integer length = 16 bits = 2 bytes, eight signed integers, in
other words the 8 low-order bytes of the half word from vA and vB

For w, word, integer length = 32 bits = 4 bytes, four signed integers, in other
words the 4 low-order half words of the words from vA and vB

Vector Pack
Signed

Integer [h,w]
Signed

Saturate

vpkshss
vpkswss

vD, vA, vB Concatenate the low-order signed integers of vA and the low-order signed
integers of vB are concatenated and place into vD using signed saturate
clamping mode. vA is placed in the lower order double word of vD and vB is
placed into the higher order double word of vD.

For h, half word, integer length = 16 bits = 2 bytes, eight signed integers, in
other words the 8 low-order bytes of the half word from vA and vB

For w, word, integer length = 32 bits = 4 bytes, four signed integers, in other
words the 4 low-order half words of the words from vA and vB
4-32 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.5.2 Vector Unpack Instructions

Byte vector unpack instructions unpack the 8 low bytes (or 8 high bytes) of one source
operand into 8 half words using sign extension to fill the MSBs. Half word vector unpack
instructions unpack the 4 low half words (or 4 high half words) of one source operand into
4 words using sign extension to fill the MSbs.

A special purpose form of vector unpack is provided, the Vector Unpack Low Pixel
(vupklpx) and the Vector Unpack High Pixel (vupkhpx) instructions for 1/5/5/5 αRGB
pixels. The 1/5/5/5 pixel vector unpack, unpacks the four low 1/5/5/5 pixels (or four 1/5/5/5
high pixels) into four 32-bit (8/8/8/8) pixels. The 1-bit α element in each pixel is sign
extended to 8 bits, and the 5-bit R, G, and B elements are each zero extended to 8 bits.

Table 4-21 describes the unpack instructions.

Vector Pack
Pixel

vpkpx vD, vA, vB Each word element in vA and vB is packed to 16 bits and the half word is
placed into vD. Each word from vA and vB is packed to 16 bits in the
following order:

[bit 7 of the first byte (bit 7 of the word)]

[bits 0–4 of the second byte (bits 8–12 of the word)

[bits 0–4 of the third byte (bits 16–20 of the word)]

[bits 0–4 of the fourth byte (bits 24–28 of the word)]

vA half words are placed in the lower order double word of vD and vB half
words are placed into the higher order double word of vD.

For h, half word, integer length = 16 bits = 2 bytes, eight signed integers, in
other words the 8 low-order bytes of the half word from vA and vB

For w, word, integer length = 32 bits = 4 bytes, four signed integers, in other
words the 4 low-order half words of the words from vA and vB

Table 4-20. Vector Pack Instructions (continued)

Name Mnemonic Syntax Operation
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-33

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.5.3 Vector Merge Instructions

Byte vector merge instructions interleave the 8 low bytes (or 8 high bytes) from two source
operands producing a result of 16 bytes. Similarly, half-word vector merge instructions
interleave the 4 low half words (or 4 high half words) of two source operands producing a
result of 8 half words, and word vector merge instructions interleave the 2 low words (or 2
high words) from two source operands producing a result of 4 words. The vector merge
instruction has many uses, notable among them is a way to efficiently transpose SIMD
vectors. Table 4-22 describes the merge instructions.

Table 4-21. Vector Unpack Instructions

Name Mnemonic Syntax Operation

Vector
Unpack High

Signed
Integer [b,h]

vupkhsb
vupkhsh

vD, vB Each signed integer element in the high order double word of vB is sign
extended to fill the MSBs in a signed integer and then is placed into vD.

For b, byte, integer length = 8 bits = 1 byte, eight signed bytes from the high
order double word of vB are unpacked and sign extended to 8 half words
into vD.

For h, half word, integer length = 16 bits = 2 bytes, eight signed half words
from the high order double word of vB are unpacked and sign extended to
4 words into vD

Vector
Unpack High

Pixel

vupkhpx vD, vB Each half-word element in the high order double word of vB is unpacked to
produce a 32-bit word that is then placed in the same order into vD.

A half-word element is unpacked to 32 bits by concatenating, in order, the
results of the following operations.

sign-extend bit 0 of the half word to 8 bits
zero-extend bits 1–5 of the half word to 8 bits
zero-extend bits 6–10 of the half word to 8 bits
zero-extend bits 11–15 of the half word to 8 bits

Vector
Unpack Low

Signed
Integer [b,h]

vupklsb
vupklsh

vD, vB Each signed integer element in the low-order double word of vB is sign
extended to fill the MSBs in a signed integer and then is placed into vD.

For b, byte, integer length = 8 bits = 1 byte, eight signed bytes from the
low-order double word of vB are unpacked and sign extended to 8 half
words into vD.

For h, half word, integer length = 16 bits = 2 bytes, eight signed half words
from the low-order double word of vB are unpacked and sign extended into
4 words in vD

Vector
Unpack Low

Pixel

vupklpx vD, vB Each half-word element in the low-order double word of vB is unpacked to
produce a 32-bit word that is then placed in the same order into vD.

A half-word element is unpacked to 32 bits by concatenating, in order, the
results of the following operations.

sign-extend bit 0 of the half word to 8 bits
zero-extend bits 1–5 of the half word to 8 bits
zero-extend bits 6–10 of the half word to 8 bits
zero-extend bits 11–15 of the half word to 8 bits
4-34 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.5.4 Vector Splat Instructions

When a program needs to perform arithmetic vector, the vector splat instructions can be
used in preparation for performing arithmetic for which one source vector is to consist of
elements that all have the same value (for example, multiplying all elements of a Vector
Register by a constant). Vector splat instructions can be used to move data where it is
required. For example to multiply all elements of a vector register by a constant, the vector
splat instructions can be used to splat the scalar into the vector register. Likewise, when
storing a scalar into an arbitrary memory location, it must be splatted into a vector register,
and that register must be specified as the source of the store. This will guarantee that the
data appears in all possible positions of that scalar size for the store. Table 4-23 describes
the vector splat instructions.

Table 4-22. Vector Merge Instructions

Name Mnemonic Syntax Operation

Vector
Merge
High

Integer
[b,h,w]

vmrghb
vmrghh
vmrghw

vD, vA, vB Each integer element in the high order double word of vA is placed into the
low-order integer element in vD. Each integer element in the high order
double word of vB is placed into the high order integer element in vD.

For b, byte, integer length = 8 bits = 1 byte, 8 bytes from the high order
double word of vA are placed into the low-order byte of each half word in vD
and 8 bytes from the high order double word of vB are placed into the high
order byte of each half word in vD.

For h, half word, integer length = 16 bits = 2 bytes, 4 half words from the high
order double word of vA are placed into the low-order half word of each word
in vD and 4 half words from the high order double word of vB are placed into
the high order half word of each word in vD.

For w, word, integer length = 32 bits = 4 bytes, 2 words from the high order
double word of vA are placed into the low-order word of each double word in
vD and 2 words from the high order double word of vB are placed into the
high order word of each double word in vD.

Vector
Merge Low

Integer
[b,h,w]

vmrglb
vmrglh
vmrglw

vD, vA, vB Each integer element in the low-order double word of vA is placed into the
low-order integer element in vD. Each integer element in the low-order
double word of vB is placed into the high order integer element in vD.

For b, byte, integer length = 8 bits = 1 byte, 8 bytes from the low-order double
word of vA are placed into the low-order byte of each half word in vD and 8
bytes from the low-order double word of vB are placed into the high order
byte of each half word in vD.

For h, half word, integer length = 16 bits = 2 bytes, 4 half words from the
low-order double word of vA are placed into the low-order half word of each
word in vD and 4 half words from the low-order double word of vB are placed
into the high order half word of each word in vD.

For w, word, integer length = 32 bits = 4 bytes, 2 words from the low-order
double word of vA are placed into the low-order word of each double word in
vD and 2 words from the low-order double word of vB are placed into the
high order word of each double word in vD.
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-35

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.5.5 Vector Permute Instruction

Permute instructions allow any byte in any two source vector registers to be directed to any
byte in the destination vector. The fields in a third source operand specify from which field
in the source operands the corresponding destination field will be taken. The Vector
Permute (vperm) instruction is a very powerful one that provides many useful functions.
For example, it provides a good way to perform table-lookups and data alignment
operations. An example of how to use the command in aligning data see Section 3.1.6,
“Quad-Word Data Alignment.” Table 4-24 describes the vector permute instruction.

4.2.5.6 Vector Select Instruction

Data flow in the vector unit can be controlled without branching by using a vector compare
and the vector select (vsel) instructions. In this use, the compare result vector is used
directly as a mask operand to vector select instructions.The vsel instruction selects one field
from one or the other of two source operands under control of its mask operand. Use of the
TRUE/FALSE compare result vector with select in this manner produces a two instruction
equivalent of conditional execution on a per-field basis. Table 4-25 describes the vsel
instruction.

Table 4-23. Vector Splat Instructions

Name Mnemonic Syntax Operation

Vector
Splat

Integer
[b,h,w]

vspltb
vsplth
vspltw

vD, vB, UIMM Replicate the contents of element UIMM in vB and place into each
element in vD.

For b, byte, integer length = 8 bits = 1 byte, each element is a byte.

For h, half word, integer length = 16 bits = 2 bytes, each element is a half
word.

For w, word, integer length = 32 bits = 4 bytes, 2 words each element is a
word.

Vector
Splat

Immediate
Signed
Integer
[b,h,w]

vspltisb
vspltish
vspltisw

vD, SIMM Sign-extend the value of the SIMM field to the length of the element and
replicate that value and place into each element in vD.

For b, byte, integer length = 8 bits = 1 byte, each element is a byte.

For h, half word, integer length = 16 bits = 2 bytes, each element is a half
word.

For w, word, integer length = 32 bits = 4 bytes, 2 words each element is a
word.

Table 4-24. Vector Permute Instruction

Name Mnemonic Syntax Operation

Vector
Permute

vperm vD, vA,vB,vC vC specifies which bytes from vA and vB are to be copied and placed
into the byte elements in vD.
4-36 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.5.7 Vector Shift Instructions

The vector shift instructions shift the contents of a vector register or of a pair of vector
registers left or right by a specified number of bytes (vslo, vsro, vsldoi) or bits (vsl, vsr).
Depending on the instruction, this shift count is specified either by low-order bits of a
vector register or by an immediate field in the instruction. In the former case the low-order
7 bits of the shift count register give the shift count in bits (0 ≤ count ≤ 127). Of these 7 bits,
the high-order 4 bits give the number of complete bytes by which to shift and are used by
vslo and vsro; the low-order 3 bits give the number of remaining bits by which to shift and
are used by vsl and vsr.

There are two methods of specifying an inter-element shift or rotate of two source vector
registers, extracting 16 bytes as the result vector. There is also a method for shifting a single
source vector register left or right by any number of bits.

Table 4-26 describes the various vector shift instructions.

4.2.5.7.1 Immediate Interelement Shifts/Rotates

The Vector Shift Left Double by Octet Immediate (vsidoi) instruction provides the basic
mechanism that can be used to provide inter-element shifts and/or rotates. This instruction
is like a vperm, except that the shift count is specified as a literal in the instruction rather

Table 4-25. Vector Select Instruction

Name Mnemonic Syntax Operation

Vector
Select

vsel vD,vA,vB,vC For each bit, compare the value in vC to the value 0b0 and if it equals 0b0
then load vD with vA’s corresponding bit value otherwise compare the value
in vC to the value 0b1 and if it equals 0b1 then load vD with vB’s
corresponding bit value.

Table 4-26. Vector Shift Instructions

Name Mnemonic Syntax Operation

Vector Shift Left vsl vD,vA,vB Shift vA left by the 3 lsbs of vB, and place the result into vD

If vB value in invalid, the default result is boundely undefined

Vector Shift Right vsr vD,vA,vB Shift vA right by the 3 lsbs of vB, and place the result into vD

If vB value in invalid, the default result is boundely undefined

Vector Shift Left
Double by Octet

Immediate

vsldoi vD,vA,vB,SH Shift vB left by the 3 lsbs of SH value and then OR with vA, place
the result is into vD

If vB value in invalid, the default result is 0

Vector Shift Left by
Octet

vslo vD,vA,vB Shift vA left by the 3 lsbs of vB, and place the result into vD

If vB value in invalid, the default result is 0b000

Vector Shift Right
by Octet

vsro vD,vA,vB Shift vA right by the 3 lsbs of vB, and place the result into vD

If vB value in invalid, the default result is 0b000
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-37

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

than as a control vector in another vector register, as is required by vperm. The result vector
consists of the left-most 16 bytes of the rotated 32-byte concatenation of vA:vB, where shift
(SH) is the rotate count. Table 4-27 below enumerates how various shift functions can be
achieved using the vsidoi instruction.

4.2.5.7.2 Computed Interelement Shifts/Rotates

The Load Vector for Shift Left (lvsl) instruction and Load Vector for Shift Right (lvsr)
instruction are supplied to assist in shifting and/or rotating vector registers by an amount
determined at run time. The input specifications have the same form as the vector load and
store instructions, that is, it uses register indirect with index addressing mode(rA|0 +rB).
This is because one of their primary purposes is to compute the permute control vector
necessary for post-load and pre-store shifting necessary for dealing with misaligned
vectors.

This lvsl instruction can be used to align a big-endian misaligned vector after loading the
(aligned) vectors that contain its pieces. The lvsl instruction can be used to misalign a
vector register for use in a read-modify-write sequence that will store an misaligned
little-endian vector.

The lvsr instruction can be used to align a little-endian misaligned vector after loading the
(aligned) vectors that contain its pieces. The lvsl instruction can be used to misalign a
vector register for use in a read-modify-write sequence that will store an misaligned
big-endian vector.

For an example on how the lvsl instruction is used to align a vector in big-endian mode see
Section 3.1.6.1, “Accessing a Misaligned Quad Word in Big-Endian Mode.” For an
example on how lvsr is used to align a vector in little-endian mode see Section 3.1.6.2,
“Accessing a Misaligned Quad Word in Little-Endian Mode.”

Table 4-27. Coding Various Shifts and Rotates with the vsidoi Instruction

To Get This: Code This:

Operation sh Instruction Immediate vA vB

Rotate left double 0–15 vsidoi 0–15 MSV LSV

Rotate left double 16–31 vsidoi mod16(SH) LSV MSV

Rotate right double 0–15 vsidoi 16–sh MSV LSV

Rotate right double 16–31 vsidoi 16–mod16(SH) LSV MSV

Shift left single, zero fill 0–15 vsidoi 0–15 MSV 0x0

Shift right single, zero fill 0–15 vsidoi 16–SH 0x0 MSV

Rotate left single 0–15 vsidoi 0–15 MSV =VA

Rotate right single 0–15 vsidoi 16–SH MSV =VA
4-38 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec UISA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.5.7.3 Variable Interelement Shifts

A vector register may be shifted left or right by a number of bits specified in a vector
register. This operation is supported with four instructions, two for right shift and two for
left shift.

The Vector Shift Left by Octet (vslo) and Vector Shift Right by Octet (vsro) instructions
shift a vector register from 0 to 15 bytes as specified in bits 121–124 of another vector
register. The Vector Shift Left (vsl) and Vector Shift Right (vsr) instructions shift a vector
register from 0 to 7 bits as specified in another vector register (the shift count must be
specified in the three lsbs of each byte in the vector and must be identical in all bytes or the
result is boundedly undefined). In all of these instructions, zeros are shifted into vacated
element and bit positions.

Used sequentially with the same shift-count vector register, these instructions will shift a
vector register left or right from 0 to 127 bits as specified in bits 121–127 of the shift-count
vector register. For example:

vslo VZ, VX, VY

vspltb VY, VY, 15

vsl VZ, VZ, VY

will shift vX by the number of bits specified in vY and place the results in vZ.

With these instructions a full double-register shift can be performed in seven instructions.
The following code will shift vW||vX left by the number of bits specified in vY placing the
result in vZ:

vslo t1, VW, VY ; shift the most significant. register left

vspltb VY, VY, 15

vsl t1, t1, VY

vsububm VY, V0, VY ; adjust count for right shift (V0=0)

vsro t2, VX, VY ; right shift least sign. register

vsr t2, t2, VY

vor VZ, t1, t2 ; merge to get the final result

4.2.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the PowerPC condition
register (CR), machine state register (MSR), and special-purpose registers (SPRs). See
Chapter 4, “Addressing Mode and Instruction Set Summary,” in the Programming
Environments Manual for 32-Bit Implementations of the PowerPC Architecture, for
information about the instructions used for reading from and writing to the MSR and SPRs.
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-39

For More Information On This Product,
 Go to: www.freescale.com

AltiVec VEA Instructions

U

V

O

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.6.1 AltiVec Status and Control Register Instructions

Table 4-28 summarizes the instructions for reading from or writing to the Vector Status and
Control Register (VSCR). For more information on VSCR see section in Section 2.3.2,
“Vector Status and Control Register (VSCR).”

4.2.7 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for
some of the most frequently used operations (such as no-op, load immediate, load address,
move register, and complement register). Assemblers could provide the simplified
mnemonics listed below. Programs written to be portable across the various assemblers for
PowerPC architecture should not assume the existence of mnemonics not described in this
document.

Simplified mnemonics are provided for the Data Stream Touch (dst) and Data Stream Touch
for Store (dstst) instructions so that they can be coded with the transient indicator as part
of the mnemonic rather than as a numeric operand. Similarly, simplified mnemonics are
provided for the Data Stream Stop (dss) instruction so that it can be coded with the all
streams indicator is part of the mnemonic. These are shown as examples with the
instructions in Table 4-29.

4.3 AltiVec VEA Instructions
PowerPC virtual environment architecture (VEA) describes the semantics of the memory
model that can be assumed by software processes, and includes descriptions of the cache
model, cache-control instructions, address aliasing, and other related issues.

Table 4-28. Move to/from Condition Register Instructions

Name Mnemonic Syntax Operation

Move to Vector Status and Control Register mtvscr CRM,rS Place the contents of vB into VSCR.

Move from Vector Status and Control
Register

mfvscr vB Place the contents of VSCR into vB.

Table 4-29. Simplified Mnemonics for Data Stream Touch (dst)

Operation Simplified Mnemonic Equivalent to

Data Stream Touch (non-transient) dst rA, rB, STRM dst rA, rB, STRM,0

Data Stream Touch Transient dstt rA, rB, STRM dst rA, rB, STRM,1

Data Stream Touch for Store (non-transient) dstst rA, rB, STRM dstst rA, rB, STRM,0

Data Stream Touch for Transient dststt rA, rB, STRM dststt rA, rB, STRM,1

Data Stream Stop (one stream) dss STRM dss STRM,0

Data Stream Stop All dssall dss 0,1
4-40 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec VEA Instructions

O

V

V

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA. For further details see Chapter 4, “Addressing Mode and Instruction Set
Summary,” in the Programming Environments Manual for 32-Bit Implementations of the
PowerPC Architecture.

This section describes the additional AltiVec instructions defined for the VEA.

4.3.1 Memory Control Instructions—VEA

Memory control instructions include the following types:

• Cache management instructions (user-level and supervisor-level)

• Segment register manipulation instructions

• Segment lookaside buffer management instructions

• Translation lookaside buffer (TLB) management instructions

This section describes the user-level cache management instructions defined by the VEA.
See Chapter 4, “Addressing Mode and Instruction Set Summary,” in Programming
Environments Manual for 32-Bit Implementations of the PowerPC Architecture for more
information about supervisor-level cache, segment register manipulation, and TLB
management instructions.

4.3.2 User-Level Cache Instructions—VEA

The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches if they are implemented. See Chapter 5, “Cache Model and
Memory Coherency,” in The Programming Environments Manual for 32-Bit
Implementations of the PowerPC Architecture for more information about cache topics.

Bandwidth between the processor and memory is managed explicitly by the programmer
through the use of cache management instructions. These instructions give software a way
to communicate to the cache hardware how it should prefetch and prioritize writeback of
data. The principal instruction for this purpose is a software directed cache prefetch
instruction called Data Stream Touch (dst). Other related instructions are provided for
complete control of the software directed cache prefetch mechanism.

Table 4-30 summarizes the directed prefetch cache instructions defined by the VEA. Note
that these instructions are accessible to user-level programs. See Section 5.2.1,
“Software-Directed Prefetch for further details on the prefetch cache instructions.

V

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-41

For More Information On This Product,
 Go to: www.freescale.com

AltiVec VEA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 4-30. User-Level Cache Instructions

Name Mnemonic Syntax Operation

Data
Stream
Touch

dst rA,rB,STRM,T This instruction associates the data stream specified by the contents of rA
and rB with the stream ID specified by STRM.

The specified data stream is defined by the following.

EA: (rA), where rA ≠ 0
unit size: (rB)[3–7] if (rB)[3–7] ≠ 0; otherwise 32
count: (rB)[8–15] if (rB)[8–15] ≠0; otherwise 256
stride: (rB)[16–31] if (rB)[16–31] ≠ 0; otherwise 32768

The T bit of the instruction indicates whether the data stream is likely to be
stored into fairly frequently in the near future (T=0) or to be transient (T=1).

If rA=0, the instruction form is invalid.

See Section 5.2.1.1, “Data Stream Touch (dst),” for further details on the dst
instruction.

Data
Stream
Touch

dstt rA,rB,STRM,T This instruction associates the data stream specified by the contents of
registers rA and rB with the stream ID specified by STRM.

This instruction is a hint that performance will probably be improved if the
cache blocks containing the specified data stream are not fetched into the
data cache, because the program will probably not load from the
stream.That is, the data stream will be relatively transient in nature. That is,
it will have poor locality and is likely to be referenced a very few times or
over a very short period of time. The memory subsystem can use this
persistent/transient knowledge to manage the data as is most appropriate
for the specific design of the cache/memory hierarchy of the processor on
which the program is executing. An implementation is free to ignore dstt, in
that case it should simply be executed as a dst. However, software should
always attempt to use the correct form of dst or dstt regardless of whether
the intended processor implements dstt. In this way the program will
automatically benefit when run on processors that support dstt.

The specified data stream is defined by the following.

EA: (rA), where rA ≠ 0
unit size: (rB)[3–7] if (rB)[3–7] ≠0; otherwise 32
count: (rB)[8–15] if (rB)[8–15] ≠ 0; otherwise 256
stride: (rB)[16–31] if (rB)[16–31]≠ 0; otherwise 32768

The T bit of the instruction indicates whether the data stream is likely to be
accessed into fairly frequently in the near future (T=0) or to be transient
(T=1).

If rA=0, the instruction form is invalid.

See Section 5.2.1.2, “Transient Streams,” for further details on the dstt
instruction.
4-42 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec VEA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Data
Stream

Touch for
Store

(non-tran
sient)

dstst rA,rB,STRM,T This instruction associates the data stream specified by the contents of
registers rA and rB with the stream ID specified by STRM.

This instruction is a hint that performance will probably be improved if the
cache blocks containing the specified data stream are fetched into the data
cache, because the program will probably soon access into the stream, and
that prefetching from any data stream that was previously associated with
the specified stream ID is no longer needed. The hint is ignored for blocks
that are caching inhibited.

The specified data stream is defined by the following.

EA: (rA), where rA ≠ 0
unit size: (rB)[3–7] if (rB)[3-7] ≠ 0; otherwise 32
count: (rB)[8–15] if (rB)[8–15] ≠ 0; otherwise 256
stride: (rB)[16–31] if (rB)[16–31] ≠ 0; otherwise 32768

The T bit of the instruction indicates whether the data stream is likely to be
stored into fairly frequently in the near future (T=0) or to be transient (T=1).

If rA=0, the instruction form is invalid.

See Section 5.2.1.3, “Storing to Streams (dstst),” for further details on the
dstst instruction.

Data
Stream

Touch for
Store

dststt rA,rB,STRM,T This instruction associates the data stream specified by the contents of rA
and rB with the stream ID specified by STRM.

This instruction is a hint that performance will probably not be improved if
the cache blocks containing the specified data stream are fetched into the
data cache, because the program will probably not access the stream. That
is, the data stream will be relatively transient in nature. That is, it will have
poor locality and is likely to be referenced a very few times or over a very
short period of time. The memory subsystem can use this
persistent/transient knowledge to manage the data as is most appropriate
for the specific design of the cache/memory hierarchy of the processor on
which the program is executing.

The specified data stream is defined by the following.

EA: (rA), where rA ≠ 0
unit size: (rB)[3–7] if (rB)[3-7] ≠ 0; otherwise 32
count: (rB)[8–15] if (rB)[8–15] ≠ 0; otherwise 256
stride: (rB)[16–31] if (rB)[16–31] ≠ 0; otherwise 32768

The T bit of the instruction indicates whether the data stream is likely to be
stored into fairly frequently in the near future (T=0) or to be transient (T=1).

If rA=0, the instruction form is invalid.

See Section 5.2.1.3, “Storing to Streams (dstst),” for further details on the
dststt instruction.

Table 4-30. User-Level Cache Instructions (continued)

Name Mnemonic Syntax Operation
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-43

For More Information On This Product,
 Go to: www.freescale.com

AltiVec VEA Instructions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Data
Stream

Stop

dss STRM,A If A = 0 and a data stream associated with the stream ID specified by STRM
exists, this instruction terminates prefetching of that data stream.

If A = 1, this instruction terminates prefetching of all existing data streams.
(The STRM field is ignored.)

In addition, executing a dss instruction ensures that all memory accesses
associated with data stream prefetching caused by preceding dst and dstst
instructions that specified the same stream ID as that specified by the dss
instruction (A = 0), or by all preceding dst and dstst instructions (A = 1), will
be in group G1 with respect to the memory barrier created by a subsequent
sync instruction.

dss serves as both a basic and an extended mnemonic. The assembler will
recognize a dss mnemonic with two operands as the basic form, and a dss
mnemonic with one operand as the extended form.

Execution of a dss instruction causes address translation for the specified
data stream(s) to cease. Prefetch requests for which the effective address
has already been translated may complete and may place the
corresponding data into the data cache

See Section 5.2.1.4, “Stopping Streams,” for further details on the dss
instruction.

Data
Stream

Stop
All

dssall Terminates prefetching of all existing data streams. All active streams may
be stopped.

If the optional data stream prefetch facility is implemented, dssall (extended
mnemonic for dss), to terminate any data stream prefetching requested by
the interrupted program, in order to avoid prefetching data in the wrong
context, consuming memory bandwidth fetching data that are not likely to be
needed by the other program, and interfering with data cache use by the
other program. The dssall must be followed by a sync, and additional
software synchronization may be required.

See Section 5.2.1.4, “Stopping Streams,” for further details on the dssall
instruction.

Table 4-30. User-Level Cache Instructions (continued)

Name Mnemonic Syntax Operation
4-44 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 5
Cache, Exceptions, and Memory
Management
This chapter summarizes details of AltiVec™ technology that pertain to cache and memory
management models. Note that AltiVec technology defines most of its instructions at the
user level (UISA). Because most AltiVec instructions are computational, there is little effect
on the VEA and OEA portions of the PowerPC architecture definition.

Because the AltiVec instruction set architecture (ISA) uses 128-bit operands, additional
instructions are provided to optimize cache and memory bus use.

5.1 PowerPC Shared Memory
To fully understand the data stream prefetch instructions for AltiVec, one needs a
knowledge of PowerPC architecture for shared memory. The PowerPC architecture
supports the sharing of memory between programs, between different instances of the same
program, and between processors and other mechanisms. It also supports access to memory
by one or more programs using different effective addresses. All these cases are considered
memory sharing. Memory is shared in blocks that are an integral number of pages.

When the same memory has different effective addresses, the addresses are called aliases.
Each application can be granted separate access privileges to aliased pages. For more
details on how the PowerPC architecture supports the sharing of memory see Chapter 5,
“Cache Model and Memory Coherency” in the Programming Environments Manual for
32-Bit Implementations of the PowerPC Architecture.

5.2 AltiVec Memory Bandwidth Management
The AltiVec ISA provides a way for software to speculatively load larger blocks of data
from memory. That is, bandwidth otherwise idle can be used to permit software to take
advantage of locality and reduces the number of system memory accesses.

V

U

MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-1

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Memory Bandwidth Management

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.2.1 Software-Directed Prefetch

Bandwidth between the processor and memory is managed explicitly by the programmer
using cache management instructions. These instructions let software indicate to the cache
hardware how to prefetch and prioritize data writeback. The principle instruction for this
purpose is a software-directed cache prefetch instruction, Data Stream Touch (dst),
described in the following section.

5.2.1.1 Data Stream Touch (dst)

The data stream prefetch facility permits a program to indicate that a sequence of units of
memory is likely to be accessed soon by memory access instructions. Such a sequence is
called a data stream or, when the context is clear, simply a stream. A data stream is defined
by the following:

• EA—The effective address of the first unit in the sequence

• Unit size—The number of quad words in each unit; 0 < unit size ≤ 32

• Count—The number of units in the sequence; 0 < count ≤ 256

• Stride—The number of bytes between the effective address of one unit in the
sequence and the effective address of the next unit in the sequence (that is, the
effective address of the nth unit in the sequence is EA + (n - 1) x stride); (-32768 ≤
stride < 0 or 0 < stride ≤ 32768)

The units need not be aligned on a particular memory boundary. The stride may be negative.

The dst instruction specifies a starting address, a block size (1–32 vectors), a number of
blocks to prefetch (1–256 blocks), and a signed stride in bytes (-32,768 to +32,768 bytes),
The 2-bit tag, specified as an immediate field in the opcode, identifies one of four possible
touch streams. The starting address of the stream is specified in rA (if rA = 0, the
instruction form is invalid). BlockSize, BlockCount, and BlockStride are specified in rB.
Do not confuse the term ‘cache block’: the term ‘block’ always indicates a PowerPC cache
block.

The format of the rB register is shown in Figure 5-1.

Figure 5-1. Format of rB in dst Instruction

There is no zero-length block size, block count, or block stride. A BlockSize of 0 indicates
32 vectors, a BlockCount of 0 indicates 256 blocks, and a BlockStride of 0 indicates
+32,768 bytes. Otherwise, these fields correspond to the numerical value of the size, count,
and stride. Do not specify strides smaller than 1 block (16 bytes).

BlockSize

31161587320

BlockCount Signed BlockStride0 0 0
5-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Memory Bandwidth Management

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The programmer specifies block size in terms of vectors (16 bytes), regardless of the
cache-block size. Hardware automatically optimizes the number of cache blocks it fetches
to bring a block into the cache. The number of cache blocks fetched into the cache for each
block is the fewest natural cache blocks needed to fetch the entire block, including the
effects of block misalignment to cache blocks, as shown in the following:

The address of each block in a stream is a function of the stream’s starting address, the
block stride, and the block being fetched. The starting address may be any 32-bit byte
address. Each block’s address is computed as a full 32-bit byte address from the following:

The address of the first cache block fetched in each block is that block’s address aligned to
the next lower natural cache-block boundary by ignoring log2(CacheBlockSize) least
significant bits (lsbs) (for example, for 32-byte cache-blocks, the five lsbs are ignored).
Cache blocks are then fetched sequentially forward until the entire block of vectors is
brought into the cache. An example of a six-block data stream is shown in Figure 5-2

Figure 5-2. Data Stream Touch

Executing a dst instruction notifies the cache/memory subsystem that the program will
soon need specified data. If bandwidth is available, the hardware starts loading the specified
stream into the cache. To the extent that hardware can acquire the data, when the loads
requiring the data finally execute, the target data will be in the cache. Executing a second
dst to the tag of a stream in progress aborts the existing stream (at hardware’s earliest
convenience) and establishes a new stream with the same stream tag ID.

The dst instruction is a hint to hardware and has no architecturally visible effects (in the
PowerPC UISA sense). The hardware is free to ignore it, to start the prefetch when it can,
to abort the stream at any time, or to prioritize other memory operations ahead of it. If a
stream is aborted, the program still functions properly, but subsequent loads experience the
full latency of a cache miss.

CacheBlocksFetched = ceiling
BlockSize + mod(BlockAddr,CacheBlockSize)

CacheBlockSize

BlockAddrn = (rA) + n (rB)16–31
where n = {0 ... (BlockCount – 1)}
and if ((rB)16–31 = 0) then ((rB)16–31 32768)

0 1 2 3 4 5

Starting Address = (rA)

BlockSize = (rB)3–7

BlockStride = (rB)16–31

BlockAdd rn (n = 3)

Memory

Stream

BlockCount = (rB)8–15 = 6
MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-3

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Memory Bandwidth Management

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The dst instruction does not introduce implementation problems like those of load/store
multiple/string instructions. Because dst does not affect the architectural state, it does not
cause interlock problems associated with load/store multiple/string instructions. Also, dst
does take exceptions and requires no complex recovery mechanism.

Touch instructions should be considered strong hints. Using them in highly speculative
situations could waste considerable bandwidth. Implementations that do not implement the
stream mechanism treat stream instructions (dst, dstt, dsts, dstst, dss, and dssall) as
no-ops. If the stream mechanism is implemented, all four streams must be provided.

5.2.1.2 Transient Streams

The memory subsystem considers dst an indication that its stream data is likely to have
some reasonable degree of locality and be referenced several times or over some reasonably
long period. This is called persistence. The Data Stream Touch Transient instruction (dstt)
indicates to the memory system that its stream data is transient, that is, it has poor locality
and is likely to be used very few times or only for a very short time. A memory subsystem
can use this knowledge to manage data for the processor’s cache/memory design. An
implementation may ignore the distinction between transience and persistence; in that case,
dstt acts like dst. However, portable software should always use the correct form of dst or
dstt regardless of whether the intended processor makes that distinction.

5.2.1.3 Storing to Streams (dstst)

A dst instruction brings a cache block into the cache subsystem in a state most efficient for
subsequent reading of data from it (load). The companion instruction, Data Stream Touch
for Store (dstst), brings the cache block into the cache subsystem in a state most efficient
for subsequent writing to it (store). For example, in a MESI cache subsystem, a dst might
bring a cache block in shared (S) state, whereas a dstst would bring the cache block in
exclusive (E) state to avoid a subsequent demand-driven bus transaction to take ownership
of the cache block so the store can proceed.

The dstst streams are the same physical streams as dst streams, that is, dstst stream tags
are aliases of dst tags. If not implemented, dstst defaults to dst. If dst is not implemented,
it is a no-op. The dststt instruction is a transient version of dstst.

Data stream prefetching of memory locations is not supported when bit 57 of the segment
table entry or bit 0 of the segment register (SR) is set. If a dst or dstst instruction specifies
a data stream containing these memory locations, results are undefined.
5-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Memory Bandwidth Management

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.2.1.4 Stopping Streams

The dst instructions have a counterpart called Data Stream Stop (dss). A program can stop
any given stream prefetch by executing dss with that stream’s tag. This is useful when a
program speculatively starts a stream prefetch but later determines that the instruction
stream went the wrong way. The dss instruction can stop the stream so that no more
bandwidth is wasted. All active streams may be stopped by using dssall. This is useful when
the operating system needs to stop all active streams (process switch), but does not know
how many streams are in progress.

Because dssall does not specify the number of implemented streams, it should always be
used instead of a sequence of dss instructions to stop all streams.

Neither dss nor dssall is execution synchronizing; the time between when a dss is issued
and the stream stops is not specified. Therefore, when software must ensure that the stream
is physically stopped before continuing (for example, before changing virtual memory
mapping), a special sequence of synchronizing instructions is required. The sequence can
differ for different situations, but the following sequence works in all contexts:

dssall ; stop all streams
sync ; insert a barrier in memory pipe
lwz Rn,... ; stick one more operation in memory pipe
cmpd Rn,Rn ;
bne- *-4 ; make sure load data is back
isync ; wait for all previous instructions to

; complete to ensure
; memory pipe is clear and nothing is
; pending in the old context

Data stream prefetching for a given stream is terminated by executing the appropriate dss
instruction. The termination can be synchronized by executing a sync instruction after the
dss instruction if the memory barrier created by sync orders all address translation effects
of the subsequent context-altering instructions. Otherwise, data dependencies are also
required. For example, the following instruction sequence terminates all data stream
prefetching before altering the contents of an segment register (SR):

dssall ; stop all data stream prefetching
sync ; order dssall before load
lwz Ry,sr_y(Rx); load new SR value
mtsr y,Ry ; alter rY

The mtsr instruction cannot be executed until the lwz loads the SR value into rY. The
memory access caused by the lwz cannot be performed until the dssall instruction takes
effect (that is, until address translation stops for all data streams and all memory accesses
associated with data stream prefetches for which the effective address was translated before
the translation stops are performed).
MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-5

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Memory Bandwidth Management

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.2.1.5 Exception Behavior of Prefetch Streams

In general, exceptions do not cancel streams. Streams are sensitive to whether the processor
is in user or supervisor mode (determined by MSR[PR]) and whether data address
translation is used (determined by MSR[DR]). This allows prefetch streams to behave
predictably when an exception occurs.

Streams are suspended in real addressing mode (MSR[DR] = 0) and remain suspended until
translation is turned back on (MSR[DR] is set). A dst instruction issued while MSR[DR] =
0 produces boundedly undefined results.

A stream is suspended whenever the MSR[PR] is different from what it was when the dst
that established it was issued. For example, if a dst is issued in user mode (MSR[PR] = 1),
the resulting stream is suspended when the processor enters supervisor mode (MSR[PR] =
0) and remains suspended until the processor returns to user mode. Conversely, if the dst
were issued in supervisor mode, it is suspended if the machine enters user mode.

Because exceptions do not cancel streams automatically, the operating system must stop
streams explicitly when warranted, for example, when switching processes or changing
virtual memory context. Care must be taken if data stream prefetching is used in
supervisor-level state (MSR[PR] = 0).

After an exception is taken, the supervisor-level program that next changes MSR[DR] from
0 to 1 causes data-stream prefetching to resume for any data streams for which the
corresponding dst or dstst instruction was executed in supervisor mode; such streams are
called supervisor-level data streams. This program is unlikely to be the one that executed
the corresponding dst or dstst instruction and is unlikely to use the same address translation
context as that in which the dst or dstst was executed. Suspension and resumption of data
stream prefetching work more naturally for user level data streams, because the next
application program to be dispatched after an exception occurs is likely to be the most
recently interrupted program. An exception handler that changes the context in which data
addresses are translated may need to terminate data-stream prefetching for supervisor-level
data streams and to synchronize the termination before changing MSR[DR] to 1.

Although terminating all data stream prefetching in this case would satisfy the
requirements of the architecture, doing so would adversely affect the performance of
applications that use data-stream prefetching. Thus, it may be better for the operating
system to record stream IDs associated with any supervisor-level data streams and to
terminate prefetching for those streams only.

Cache effects of supervisor-level data-stream prefetching can also adversely affect
performance of applications that use data stream prefetching, as supervisor-level use of the
associated stream ID can take over an application’s data stream.

Data stream instructions cannot cause exceptions directly. Therefore, any event that would
cause an exception on a normal load or store, such as a page fault or protection violation,
is instead aborted and ignored.
5-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Memory Bandwidth Management

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Suspension or termination of data stream prefetching for a given data stream need not
cancel prefetch requests for that data stream for which the effective address has been
translated and need not cause data returned by such requests to be discarded. However, to
improve software’s ability to pace data stream prefetching with data consumption, it may
be better to limit the number of these pending requests that can exist simultaneously.

5.2.1.6 Synchronization Behavior of Streams

Streams are not affected (stopped or suspended) by execution of any PowerPC
synchronization instructions (sync, isync, or eieio). This permits these instructions to be
used for synchronizing multiple processors without disturbing background prefetch
streams. Prefetch streams have no architecturally observable effects and are not affected by
synchronization instructions. Synchronizing the termination of data stream prefetching is
needed only by the operating system

5.2.1.7 Address Translation for Streams

Like dcbt and dcbtst instructions, dst, dstst, dstt, and dststt are treated as loads with
respect to address translation, memory protection, and reference and change recording.

Unlike dcbt and dcbtst instructions, stream instructions that cause a TLB miss cause a page
table search and the page descriptor to be loaded into the TLB. Conceptually, address
translation and protection checking is performed on every cache-block access in the stream
and proceeds normally across page boundaries and TLB misses, terminating only on page
faults or protection violations that cause a DSI exception.

Stream instructions operate like normal PowerPC cache instructions (such as dcbt) with
respect to guarded memory; they are not subject to normal restrictions against prefetching
in guarded space because they are program-directed. However, speculative dst instructions
can not start a prefetch stream to guarded space.

If the effective address of a cache block within a data stream cannot be translated, or if
loading from the block would violate memory protection, the processor will terminate
prefetching of that stream. (Continuing to prefetch subsequent cache blocks within the
stream might cause prefetching to get too far ahead of consumption of prefetched data.) If
the effective address can be translated, a TLB miss can cause such termination, even on
implementations for which TLBs are reloaded in software.

5.2.1.8 Stream Usage Notes

A given data stream exists if a dst or dstst instruction has been executed that specifies the
stream and prefetching of the stream has neither completed, terminated, or been supplanted.
Prefetching of the stream has completed, when all the memory locations within the stream
that will ever be prefetched as a result of executing the dst or dstst instruction have been
prefetched (for example, locations for which the effective address cannot be translated will
MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-7

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Memory Bandwidth Management

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

never be prefetched). Prefetching of the stream is terminated by executing the appropriate
dss instruction; it is supplanted by executing another dst or dstst instruction that specifies
the stream ID associated with the given stream. Because there are four stream IDs, as many
as four data streams may exist simultaneously.

The maximum block count of dst is small because of its preferred usage. It is not intended
for a single dst instruction to prefetch an entire data stream. Instead, dst instructions should
be issued periodically, for example on each loop iteration, for the following reasons:

• Short, frequent dst instructions better synchronize the stream with the consumption
of data.

• With prefetch closely synchronized just ahead of consumption, another activity is
less likely to inadvertently evict prefetched data from the cache before it is needed.

• The prefetch stream is restarted automatically after an exception (that could have
caused the stream to be terminated by the operating system) with no additional
complex hardware mechanisms needed to restart the prefetch stream.

Issuing new dst instructions to stream tag IDs in progress terminates old streams—dst
instructions cannot be queued.

For example, when multiple dst instructions are used to prefetch a large stream, it would
be poor strategy to issue a second dst whose stream begins at the specified end of the first
stream before it was certain that the first stream had completed. This could terminate the
first stream prematurely, leaving much of the stream unprefetched.

Paradoxically, it would also be unwise to wait for the first stream to complete before issuing
the second dst. Detecting completion of the first stream is not possible, so the program
would have to introduce a pessimistic waiting period before restarting the stream and then
incur the full start-up latency of the second stream.

The correct strategy is to issue the second dst well before the anticipated completion of the
first stream and begin it at an address overlapping the first stream by an amount sufficient
to cover any portion of the first stream that could not yet have been prefetched. Issuing the
second dst too early is not a concern because blocks prefetched by the first stream hit in the
cache and need not be refetched. Thus, even if issued prematurely and overlapped
excessively, the second dst rapidly advances to the point of prefetching new blocks. This
strategy allows a smooth transition from the first stream to the second without significant
breaks in the prefetch stream.

For the greatest performance benefit from data-stream prefetching, use the dst and dstst
(and dss) instructions so that the prefetched data is used soon after it is available in the data
cache. Pacing data stream prefetching with consumption increases the likelihood that
prefetched data is not displaced from the cache before it is used, and reduces the likelihood
that prefetched data displaces other data needed by the program.
5-8 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Memory Bandwidth Management

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Specifying each logical data stream as a sequence of shorter data streams helps achieve the
desired pacing, even in the presence of exceptions, and address translation failures. The
components of a given logical data stream should have the following attributes:

• The same stream ID should be associated with each component.

• The components should partially overlap (that is, the first part of a component
should consist of the same memory locations as the last part of the preceding
component).

• The memory locations that do not overlap with the next component should be large
enough that a substantial portion of the component is prefetched. That is, prefetch
enough memory locations for the current component before it is taken over by the
prefetching being done for the next component.

5.2.1.9 Stream Implementation Assumptions

Some processors can treat dst instructions as no-ops. However, if a processor implements
dst, a minimum level of functionality is provided to create as consistent a programming
model across different machines as possible. A program can assume the following
functionality in a dst instruction:

• Implements all four tagged streams

• Implements each tagged stream as a separate, independent stream with arbitration
for memory access performed on a round-robin basis.

• Searches the table for each stream access that misses in the TLB.

• Does not abort streams on page boundary crossings

• Does not abort streams on exceptions (except DSI exceptions caused by the stream).

• Does not abort streams, or delay execution pending completion of streams, on
PowerPC synchronization instructions sync, isync, or eieio.

• Does not abort streams on TLB misses that occur on loads or stores issued
concurrently with running streams. However, a DSI exception from one of those
loads or stores may cause streams to abort.

5.2.2 Prioritizing Cache Block Replacement

Load Vector Indexed LRU (lvxl) and Store Vector Indexed LRU (stvxl) instructions provide
explicit control over cache block replacement by letting the programmer indicate whether
an access is likely to be the last reference made to the cache block containing this load or
store. The cache hardware can then prioritize replacement of this cache block over others
with older but more useful data.

Data accessed by a normal load or store is likely to be needed more than once. Marking this
data as most-recently used (MRU) indicates that it should be a low-priority candidate for
MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-9

For More Information On This Product,
 Go to: www.freescale.com

DSI Exception—Data Address Breakpoint

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

replacement. However, some data, such as that used in DSP multimedia algorithms, is
rarely reused and should be marked as the highest priority candidate for replacement.

Normal accesses mark data MRU. Data unlikely to be reused can be marked LRU. For
example, on replacing a cache block marked LRU by one of these instructions, a processor
may improve cache performance by evicting the cache block without storing it in
intermediate levels of the cache hierarchy (except to maintain cache consistency).

5.2.3 Partially Executed AltiVec Instructions

The OEA permits certain instructions to be partially executed when an alignment or DSI
exception occurs. In the same way that the target register may be altered when
floating-point load instructions cause a DSI exception, if the AltiVec facility is
implemented, the target register (vD) may be altered when lvx or lvxl is executed and the
TLB entry is invalidated before the access completes.

Exceptions cause data stream prefetching to be suspended for all existing data streams.
Prefetching for a given data stream resumes when control is returned to the interrupted
program, if the stream still exists (for example, the operating system did not terminate
prefetching for the stream).

5.3 DSI Exception—Data Address Breakpoint
A data address breakpoint register (DABR) match causes a DSI exception in
implementations that support the data breakpoint feature. When a DABR match occurs on
a non-AltiVec processor that support the PowerPC architecture, the DAR is set to any
effective address between and including the word (for a byte, half word, or word access)
specified by the effective address computed by the instruction and the effective address of
the last byte in the word or double word in which the match occurred. In processors that
support the AltiVec technology, this would include a quad-word access from an lvx, lvxl,
stvx, or stvxl instruction to a segment or BAT area.

5.4 AltiVec Unavailable Exception (0x00F20)
The AltiVec facility includes an additional instruction-caused, precise exception to those
defined by the OEA and discussed in Chapter 6, “Exceptions,” in the Programming
Environments Manual for 32-Bit Implementations of the PowerPC Architecture. An AltiVec
unavailable exception occurs when no higher priority exception exists (see Table 5-2), an
attempt is made to execute an AltiVec instruction, and MSR[VEC] = 0.
5-10 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Unavailable Exception (0x00F20)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Register settings for AltiVec unavailable exceptions are described in Table 5-1 and shown
in Figure 5-3.

When an AltiVec unavailable exception is taken, instruction execution resumes as offset
0x00F20 from the base address determined by MSR[IP].

The dst and dstst instructions are supported if MSR[DR] = 1. If either instruction is
executed when MSR[DR] = 0 (real addressing mode), results are boundedly undefined.

Conditions that cause this exception are prioritized among instruction-caused
(synchronous), precise exceptions as shown in Table 5-2, taken from the section
“Exception Priorities,” in Chapter 6, “Exceptions,” in the Programming Environments
Manual for 32-Bit Implementations of the PowerPC Architecture.

Table 5-1. AltiVec Unavailable Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception

SRR1 32-Bit
0Loaded with equivalent bits from the MSR
1–4Cleared
5–9Loaded with equivalent bits from the MSR
10–15Cleared

16–31 Loaded with equivalent bits from the MSR
Note that depending on the implementation, additional MSR bits may be copied to SRR1.

MSR SF 1
ISF —
VEC 0
POW 0
ILE —

EE 0
PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

0 1 4 5 9 10 15

Setting After
Exception

MSR[0] 0000 MSR[5–9] 00_0000

16 31

Setting After
Exception

MSR[16–31]

Figure 5-3. SRR1 Bit Settings after an AltiVec Unavailable Exception
MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-11

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Unavailable Exception (0x00F20)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 5-2. Exception Priorities (Synchronous/Precise Exceptions)

Priority Exception

3 1

1 The exceptions are third in priority after system reset and machine check exceptions

Instruction dependent—When an instruction causes an exception, the exception mechanism waits for any
instructions prior to the excepting instruction in the instruction stream to complete. Any exceptions caused by
these instructions are handled first. It then generates the appropriate exception if no higher priority exception
exists when the exception is to be generated.
Note that a single instruction can cause multiple exceptions. When this occurs, those exceptions are ordered
in priority as indicated in the following:
A. Integer loads and stores

a. Alignment
b. DSI
c. Trace (if implemented)

B. Floating-point loads and stores
a. Floating-point unavailable
b. Alignment
c. DSI
d. Trace (if implemented)

C. Other floating-point instructions
a. Floating-point unavailable
b. Program—Precise-mode floating-point enabled exception
c. Floating-point assist (if implemented)
d. Trace (if implemented)

D. AltiVec loads and stores (if AltiVec facility implemented)
a. AltiVec unavailable
b. DSI
c. Trace (if implemented)

E. Other AltiVec Instructions (if AltiVec facility implemented)
a. AltiVec unavailable
b. Trace (if implemented)

F. The rfi and mtmsr
a. Program—Supervisor level Instruction
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented), for mtmsr only
If precise-mode IEEE floating-point enabled exceptions are enabled and FPSCR[FEX] is set, a program
exception occurs no later than the next synchronizing event.

G. Other instructions
a. These exceptions are mutually exclusive and have the same priority:

— Program: Trap
— System call (sc)
— Program: Supervisor level instruction
— Program: Illegal Instruction

b. Trace (if implemented)
F. ISI exception
The ISI exception has the lowest priority in this category. It is only recognized when all instructions prior to the
instruction causing this exception appear to have completed and that instruction is to be executed. The priority
of this exception is specified for completeness and to ensure that it is not given more favorable treatment. An
implementation can treat this exception as though it had a lower priority.
5-12 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Chapter 6
AltiVec Instructions
This chapter lists the AltiVec instruction set in alphabetical order by mnemonic. Note that
each entry includes the instruction format and a graphical representation of the instruction.
All the instructions are 32 bit and a description of the instruction fields and pseudocode
conventions are also provided. For more information on the AltiVec instruction set, refer to
Chapter 4 “Addressing Modes and Instruction Set Summary.” For more information on the
PowerPC instruction set, refer to Chapter 8, “Instruction Set,” in the Programming
Environments Manual for 32-Bit Implementations of the PowerPC Architecture.

6.1 Instruction Formats
AltiVec instructions are four bytes (32 bits) long and are word-aligned. AltiVec instruction
set architecture (ISA) has four operands, three source vectors, and one result vector. Bits
0–5 always specify the primary opcode for AltiVec instructions. AltiVec ALU-type
instructions specify the primary opcode point 4 (0b00_01_00). AltiVec load, store, and
stream prefetch instructions use secondary opcode in primary opcode 31 (0b01_11_11).

Within a vector register, a byte, half-word, or word element are referred to as follows:

• Byte elements, each byte = 8 bits; in the pseudocode, n = 8 with a total of 16
elements

• Half-word elements, each byte = 16 bits; in the pseudocode, n = 16 with a total of 8
elements

• Word elements, each byte = 32 bits; in the pseudocode, n = 32 with a total of 4
elements

Refer to Figure 1-3 for an example of how elements are placed in a vector register.

6.1.1 Instruction Fields

Table 6-1 describes the instruction fields used in the various instruction formats.
MOTOROLA Chapter 6. AltiVec Instructions 6-1

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.1.2 Notation and Conventions

The operation of some instructions is described by a semiformal language (pseudocode).
See Table 6-2 for a list of additional pseudocode notation and conventions used throughout
this section.

Table 6-1. Instruction Syntax Conventions

Field Description

OPCD (0–5) Primary opcode field

rA, A (11–15) Specifies a GPR to be used as a source or destination

rB, B (16–20) Specifies a GPR to be used as a source

Rc (31) Record bit
0 Does not update the condition register (CR).
1 For the optional AltiVec facility, set CR field 6 to control program flow as described in

Section 2.4.1, “PowerPC Condition Register”

vA (11–15) Specifies a vector register to be used as a source

vB (16–20) Specifies a vector register to be used as a source

vC (21–25) Specifies a vector register to be used as a source

vD (6–10) Specifies a vector register to be used as a destination

vS (6–10) Specifies a vector register to be used as a source

SHB (22–25) Specifies a shift amount in bytes.

SIMM (11–15) This immediate field is used to specify a (5-bit) signed integer.

UIMM (11–15) This immediate field is used to specify a 4-, 8-,12-, or 16-bit unsigned integer.

Table 6-2. Notation and Conventions

Notation/Convention Meaning

← Assignment

¬ NOT logical operator

do i=X to Y by Z Do the following starting at X and iterating to Y by Z

+int 2’s complement integer add

-int 2’s complement integer subtract

+ui Unsigned integer add

-ui Unsigned integer subtract

*ui Unsigned integer multiply

+si Signed integer add

-si Signed integer subtract

*si Signed integer multiply
6-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instruction Formats

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

*sui Signed integer (first operand) multiplied by unsigned integer (second operand)
producing signed result

/ Integer divide

+fp Single-precision floating-point add

-fp Single-precision floating-point subtract

*fp Single-precision floating-point multiply

÷fp Single-precision floating-point divide

√ fp Single-precision floating-point square root

<ui, ≤ui, >ui, ≥ui Unsigned integer comparison relations

<si, ≤si, >si, ≥si Signed integer comparison relations

<fp, ≤fp, >fp, ≥fp Single precision floating point comparison relations

≠ Not equal

=int Integer equal to

=ui Unsigned integer equal to

=si Signed integer equal to

=fp Floating-point equal to

X >>ui Y Shift X right by Y bits extending Xs vacated bits with zeros

X >>si Y Shift X right by Y bits extending Xs vacated bits with the sign bit of X

X << ui Y Shift X left by Y bits inserting Xs vacated bits with zeros

|| Used to describe the concatenation of two values (that is, 010 || 111 is the same
as 010111)

& AND logical operator

 | OR logical operator

⊕ , ≡ Exclusive-OR, Equivalence logical operators (for example, (a ≡ b) = (a ⊕ ¬ b))

0bnnnn A number expressed in binary format.

0xnnnn A number expressed in hexadecimal format.

? Unordered comparison relation

X0 X zeros

X1 X ones

XY X copies of Y

XY bit Y of X

XY:Z bits Y through Z, inclusive, of X

LENGTH(x) Length of x, in bits. If x is the word “elemen,” LENGTH(x) is the length, in bits, of
the element implied by the instruction mnemonic.

Table 6-2. Notation and Conventions (continued)

Notation/Convention Meaning
MOTOROLA Chapter 6. AltiVec Instructions 6-3

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROTL(x,y) Result of rotating x left by y bits

UItoUImod(X,Y) Chop unsigned integer X- to Y-bit unsigned integer

UItoUIsat(X,Y) Result of converting the unsigned-integer x to a y-bit unsigned-integer with
unsigned-integer saturation

SItoUIsat(X,Y) Result of converting the signed-integer x to a y-bit unsigned-integer with
unsigned-integer saturation

SItoSImod(X,Y) Chop integer X- to Y-bit integer

SItoSIsat(X,Y) Result of converting the signed-integer x to a y-bit signed-integer with
signed-integer saturation

RndToNearFP32 The single-precision floating-point number that is nearest in value to the
infinitely-precise floating-point intermediate result x (in case of a tie, the even
single-precision floating-point value is used).

RndToFPInt32Near The value x if x is a single-precision floating-point integer; otherwise the
single-precision floating-point integer that is nearest in value to x (in case of a tie,
the even single-precision floating-point integer is used).

RndToFPInt32Trunc The value x if x is a single-precision floating-point integer; otherwise the largest
single-precision floating-point integer that is less than x if x>0, or the smallest
single-precision floating-point integer that is greater than x if x<0

RndToFPInt32Ceil The value x if x is a single-precision floating-point integer; otherwise the smallest
single-precision floating-point integer that is greater than x

RndToFPInt32Floor The value x if x is a single-precision floating-point integer; otherwise the largest
single-precision floating-point integer that is less than x

CnvtFP32ToUI32Sat(x) Result of converting the single-precision floating-point value x to a 32-bit
unsigned-integer with unsigned-integer saturation

CnvtFP32ToSI32Sat(x) Result of converting the single-precision floating-point value x to a 32-bit
signed-integer with signed-integer saturation

CnvtUI32ToFP32(x) Result of converting the 32-bit unsigned-integer x to floating-point single format

CnvtSI32ToFP32(x) Result of converting the 32-bit signed-integer x to floating-point single format

MEM(X,Y) Value at memory location X of size Y bytes

SwapDouble Swap the doublewords in a quadword vector

ZeroExtend(X,Y) Zero-extend X on the left with zeros to produce Y-bit value

SignExtend(X,Y) Sign-extend X on the left with sign bits (that is, with copies of bit 0 of x) to produce
Y-bit value

RotateLeft(X,Y) Rotate X left by Y bits

mod(X,Y) Remainder of X/Y

UImaximum(X,Y) Maximum of 2 unsigned integer values, X and Y

SImaximum(X,Y) Maximum of 2 unsigned integer values, X and Y

FPmaximum(X,Y) Maximum of 2 floating-point values, X and Y

UIminimum(X,Y) Minimum of 2 unsigned integer values, X and Y

Table 6-2. Notation and Conventions (continued)

Notation/Convention Meaning
6-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instruction Formats

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SIminimum(X,Y) Minimum of 2 unsigned integer values, X and Y

FPminimum(X,Y) Minimum of 2 floating-point values, X and Y

FPReciprocalEstimate12(X) 12-bit-accurate floating-point estimate of 1/X

FPReciprocalSQRTEstimate12(X) 12-bit-accurate floating-point estimate of 1/(sqrt(X))

FPLog2Estimate3(X) 3-bit-accurate floating-point estimate of log2(X)

FPPower2Estimate3(X) 3-bit-accurate floating-point estimate of 2**X

CarryOut(X + Y) Carry out of the sum of X and Y

ROTL[64](x, y) Result of rotating the 64-bit value x left y positions

ROTL[32](x, y) Result of rotating the 32-bit value x || x left y positions, where x is 32 bits long

0bnnnn A number expressed in binary format.

0xnnnn A number expressed in hexadecimal format.

(n)x The replication of x, n times (that is, x concatenated to itself n – 1 times).
(n)0 and (n)1 are special cases. A description of the special cases follows:
• (n)0 means a field of n bits with each bit equal to 0. Thus (5)0 is equivalent to

0b00000.
• (n)1 means a field of n bits with each bit equal to 1. Thus (5)1 is equivalent to

0b11111.

(rA|0) The contents of rA if the rA field has the value 1–31, or the value 0 if the rA field
is 0.

(rX) The contents of rX

x[n] n is a bit or field within x, where x is a register

xn x is raised to the nth power

ABS(x) Absolute value of x

CEIL(x) Least integer ≥ x

Characterization Reference to the setting of status bits in a standard way that is explained in the
text.

CIA Current instruction address.
The 32-bit address of the instruction being described by a sequence of
pseudocode. Used by relative branches to set the next instruction address (NIA)
and by branch instructions with LK = 1 to set the link register. Does not
correspond to any architected register.

Clear Clear the leftmost or rightmost n bits of a register to 0. This operation is used for
rotate and shift instructions.

Clear left and shift left Clear the leftmost b bits of a register, then shift the register left by n bits. This
operation can be used to scale a known non-negative array index by the width of
an element. These operations are used for rotate and shift instructions.

Cleared Bits = 0.

Table 6-2. Notation and Conventions (continued)

Notation/Convention Meaning
MOTOROLA Chapter 6. AltiVec Instructions 6-5

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Do Do loop.
• Indenting shows range.
• “To” and/or “by” clauses specify incrementing an iteration variable.
• “While” clauses give termination conditions.

DOUBLE(x) Result of converting x from floating-point single-precision format to floating-point
double-precision format

Extract Select a field of n bits starting at bit position b in the source register, right or left
justify this field in the target register, and clear all other bits of the target register
to zero. This operation is used for rotate and shift instructions.

EXTS(x) Result of extending x on the left with sign bits

GPR(x) General-purpose register x

if...then...else... Conditional execution, indenting shows range, else is optional

Insert Select a field of n bits in the source register, insert this field starting at bit position
b of the target register, and leave other bits of the target register unchanged. (No
simplified mnemonic is provided for insertion of a field when operating on double
words; such an insertion requires more than one instruction.) This operation is
used for rotate and shift instructions. (Note that simplified mnemonics are
referred to as extended mnemonics in the architecture specification.)

Leave Leave innermost do loop, or the do loop described in leave statement.

MASK(x, y) Mask having ones in positions x through y (wrapping if x > y) and zeros
elsewhere.

MEM(x, y) Contents of y bytes of memory starting at address x.

NIA Next instruction address, which is the 32-bit address of the next instruction to be
executed (the branch destination) after a successful branch. In pseudocode, a
successful branch is indicated by assigning a value to NIA. For instructions which
do not branch, the next instruction address is CIA + 4. Does not correspond to
any architected register.

OEA PowerPC operating environment architecture

Rotate Rotate the contents of a register right or left n bits without masking. This
operation is used for rotate and shift instructions.

ROTL[64](x, y) Result of rotating the 64-bit value x left y positions

ROTL[32](x, y) Result of rotating the 64-bit value x || x left y positions, where x is 32 bits long

Set Bits are set to 1.

Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical
shift). This operation is used for rotate and shift instructions.

SINGLE(x) Result of converting x from floating-point double-precision format to
floating-point single-precision format.

SPR(x) Special-purpose register x

TRAP Invoke the system trap handler.

Undefined An undefined value. The value may vary from one implementation to another,
and from one execution to another on the same implementation.

Table 6-2. Notation and Conventions (continued)

Notation/Convention Meaning
6-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instruction Formats

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 6-3 describes instruction field notation conventions used throughout this chapter.

Precedence rules for pseudocode operators are summarized in Table 6-4.

Operators higher in Table 6-4 are applied before those lower in the table. Operators at the
same level in the table associate from left to right, from right to left, or not at all, as shown
in the Associativity column. For example, ‘-’ (unary minus) associates from left to right, so
a - b - c = (a - b) - c. Parentheses are used to override the evaluation order implied by

UISA PowerPC user instruction set architecture

VEA PowerPC virtual environment architecture

Table 6-3. Instruction Field Conventions

The PowerPC Architecture
Specification

Equivalent in AltiVec Technology
PEM as:

RA, RB, RT, RS rA, rB, rD, rS

SI SIMM

U IMM

UI UIMM

VA, VB, VC, VT, VS vA, vB, vC, vD, vS

/, //, /// 0...0 (shaded)

Table 6-4. Precedence Rules

Operators Associativity

x[n], function evaluation Left to right

(n)x or replication,
x(n) or exponentiation

Right to left

unary –, ¬ Right to left

∗ , ÷ Left to right

+, - Left to right

|| Left to right

=, ≠, <, ≤, >, ≥, <U, >U, ? Left to right

&, ⊕ , ≡ Left to right

| Left to right

– (range), : (range) None

←, ←iea None

Table 6-2. Notation and Conventions (continued)

Notation/Convention Meaning
MOTOROLA Chapter 6. AltiVec Instructions 6-7

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 6-4, or to increase clarity; parenthesized expressions are evaluated before serving as
operands.

6.2 AltiVec Instruction Set
The remainder of this chapter lists and describes the instruction set for the AltiVec
architecture. The instructions are listed in alphabetical order by mnemonic. The diagram
below shows the format for each instruction description page.

vaddsbs vaddsbs
Vector Add Signed Byte Saturate

vaddsbs vD,vA,vB Form VX

do i=0 to 127 by 8

aop0:8 ← SignExtend((vA)i:i+7,9)

bop0:8 ← SignExtend((vB)i:i+7,9)

temp0:8← aop0:8 +int bop0:8
vDi:i+7 ← SItoSIsat(temp0:8,8)

end

Eacj element of vaddsbs is a byte.

Each signed-integer element in vA is added to the corresponding signed-integer element
in vB.

If the sum is greater than (27-1) it saturates to (27-1) and if it is less than -27 it saturates to
-27. If saturations occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):
Affected: SAT

Figure 6-11 shows the usage of the vaddsbs instruction. Each of the sixteen elements in the vectors, vA, vB, and

vD, is 8 bits long..

Figure 6-11. vaddsbs— Add Saturating Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 768

0 5 6 1011 1516 2021 25262728 31

+ +++++++++++++++

vA

vB

vD

Instruction name

Instruction syntax
and form

Instruction encoding
in decimal

Pseudocode description
of instruction operation

Text description of
instruction operation

Figure showing
instruction usage
6-8 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

dss dss
Data Stream Stop

dss STRM (A=0) Form X
dssall STRM (A=1)

DataStreamPrefetchControl ← “stop” || STRM

Note that A does not represent rA in this instruction.

If A=0 and a data stream associated with the stream ID specified by STRM exists, this
instruction terminates prefetching of that data stream. It has no effect if the specified stream
does not exist.

If A=1, this instruction terminates prefetching of all existing data streams (the STRM field
is ignored.)

In addition, executing a dss instruction ensures that all accesses associated with data stream
prefetching caused by preceding dst and dstst instructions that specified the same stream ID
as that specified by the dss instruction (A=0), or by all preceding dst and dstst instructions
(A=1), will be in group G1 with respect to the memory barrier created by a subsequent sync
instruction, refer to Section 5.1, “PowerPC Shared Memory,” for more information.

See Section 5.2.1, “Software-Directed Prefetch” for more information on using the dss
instruction.

Other registers altered:

• None

Simplified mnemonics:

dss STRM equivalent to dss STRM, 0

dssall equivalent to dss 0, 1

For more information on the dss instruction, refer to Chapter 5, “Cache, Exceptions, and
Memory Management.”

31 A 0_0 STRM 0_0000 0000_0 822 0

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 30 31
MOTOROLA Chapter 6. AltiVec Instructions 6-9

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

dst dst
Data Stream Touch

dst rA,rB,STRM (T=0) Form X
dstt rA,rB,STRM (T=1)

addr0:63 ← (rA)
DataStreamPrefetchControl ← “start” || STRM || T || (rB) || addr

This instruction initiates a software directed cache prefetch. The instruction is a hint to
hardware that performance will probably be improved if the cache blocks containing the
specified data stream are fetched into the data cache because the program will probably
soon load from the stream.

The instruction associates the data stream specified by the contents of rA and rB with the
stream ID specified by STRM. The instruction defines a data stream STRM as starting at
an effective address (rA) and having count units of size quad words separated by stride
bytes (as specified in rB). The T bit of the instruction indicates whether the data stream is
likely to be loaded from fairly frequently in the near future (T = 0) or to be transient and
referenced very few times (T = 1).

The dst instruction does the following:

• Defines the characteristics of a data stream STRM by the contents of rA and rB

• Associates the stream with a specified stream ID, STRM (Range for STRM is 0-3)

• Indicates that the data in the specified stream STRM starting at the address in rA
may soon be loaded

• Indicates whether memory locations within the stream are likely to be needed over
a longer period of time (T=0) or be treated as transient data (T=1)

• Terminates prefetching from any stream that was previously associated with the
specified stream ID, STRM.

31 T 0_0 STRM A B 342 0

0 5 6 7 8 9 10 11 15 16 20 21 30 31

0 1 2 3 4 5

StartingAddress

Block Size

BlockStride

BlockAddrn (n=3)

Memory

Stream

Block Block Block Block Block Block
6-10 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The specified data stream is encoded for 32-bit follows:

• Effective address: rA, where rA ≠ 0

• Block size: rB[3–7] if rB[3–7] ≠ 0; otherwise 32

• Block count: rB[8–15] if rB[8–15] ≠ 0; otherwise 256

• Block stride: rB[16–31] if rB[16–31] ≠ 0; otherwise 32768

Other registers altered:

• None

Simplified mnemonics:

dst rA,rB,STRM equivalent to dst rA,rB,STRM,0

dstt rA,rB,STRM equivalent to dst rA,rB,STRM,1

For more information on the dst instruction, refer to Chapter 5, “Cache, Exceptions, and
Memory Management.”

 /// Block Size Block Count Block Stride

0 2 3 7 8 15 16 31
MOTOROLA Chapter 6. AltiVec Instructions 6-11

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

dstst dstst
Data Stream Touch for Store

dstst rA,rB,STRM (T=0) Form X
dststt rA,rB,STRM (T=1)

addr0:63 ← (rA)
DataStreamPrefetchControl ← “start” || T || static || (rB) || addr

This instruction initiates a software directed cache prefetch. The instruction is a hint to
hardware that performance will probably be improved if the cache blocks containing the
specified data stream are fetched into the data cache because the program will probably
soon write to (store into) the stream.

The instruction associates the data stream specified by the contents of rA and rB with the
stream ID specified by STRM. The instruction defines a data stream STRM as starting at
an effective address (rA) and having count units of size quad words separated by stride
bytes (as specified in rB). The T bit of the instruction indicates whether the data stream is
likely to be stored into fairly frequently in the near future (T = 0) or to be transient and
referenced very few times (T = 1).

The dstst instruction does the following:

• Defines the characteristics of a data stream STRM by the contents of rA and rB

• Associates the stream with a specified stream ID, STRM (Range for STRM is 0-3)

• Indicates that the data in the specified stream STRM starting at the address in rA
may soon be stored in to memory

• Indicates whether memory locations within the stream are likely to be stored into
fairly frequently in the near future (T=0) or be treated as transient data (T=1)

• Terminates prefetching from any stream that was previously associated with the
specified stream ID, STRM.

31 T 0_0 STRM A B 374 0

0 5 6 7 8 9 10 11 15 16 20 21 30 31

0 1 2 3 4 5

StartingAddress

Block Size

BlockStride

BlockAddrn (n=3)

Memory

Stream

Block Block Block Block Block Block
6-12 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The specified data stream is encoded for 32-bit follows:

• Effective address: rA, where rA ≠ 0

• Block size: rB[3–7] if rB[3–7] ≠ 0; otherwise 32

• Block count: rB[8–15] if rB[8–15] ≠ 0; otherwise 256

• Block stride: rB[16–31] if rB[16–31] ≠ 0; otherwise 32768

Other registers altered:

• None

Simplified mnemonics:

dstst rA,rB,STRM equivalent to dstst rA,rB,STRM,0

dststt rA,rB,STRM equivalent to dstst rA,rB,STRM,1

For more information on the dstst instruction, refer to Chapter 5, “Cache, Exceptions, and
Memory Management.”

 /// Block Size Block Count Block Stride

0 2 3 7 8 1
5

1
6

31

Figure 6-1. Format of rB in dst instruction (32-bit)
MOTOROLA Chapter 6. AltiVec Instructions 6-13

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

lvebx lvebx
Load Vector Element Byte Indexed

lvebx vD,rA,rB Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← b + (rB)
eb ← EA28:31
vD ← undefined
if the processor is in big-endian mode
 then vDeb*8:(eb*8)+7← MEM(EA,1)
 else vD120-(eb*8):127-(eb*8)← MEM(EA,1)

— EA = (rA|0)+(rB); m = EA[28-31] (the offset of the byte in its aligned
quadword).

For big-endian mode, the byte addressed by EA is loaded into byte m of vD. In little-endian
mode, it is loaded into byte (15–m) of vD. Remaining bytes in vD are undefined.

Other registers altered:

• None

31 vD A B 7 0

0 5 6 10 11 15 16 20 21 30 31
6-14 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6-2. Effects of Example Load/Store Instructions

x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x

x x

x x

x x

x x

x x

x x

x x

x x

x x0x0000_0000

0x0000_0010

0x0000_0020

0x0000_0030

0x0000_0040

0x0000_0050

0x0000_0060

0x0000_0070

0x0000_0080

0x0000_0090

0x0000_00A0

0x0000_00B0

Byte at x1E

Half at x2A

Word at x54

Quad at A0

vR

vR

vR

vR

Load or Store:

Memory

x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x x x x

x x

Note: In vector registers, x means boundedly undefined after a load and don’t care after a store. In memory, x means don’t care
after a load, and leave at current value after a store.
MOTOROLA Chapter 6. AltiVec Instructions 6-15

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

lvehx lvehx
Load Vector Element Half Word Indexed

lvehx vD,rA,rB Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~1)
eb ← EA28:31
vD ← undefined
if the processor is in big-endian mode
 then vD(eb*8):(eb*8)+15← MEM(EA,2)
 else vD112-(eb*8):127-(eb*8)← MEM(EA,2)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~1. Let m =
EA[28-30]; m is the half-word offset of the half-word in its aligned quadword in
memory.

If the processor is in big-endian mode, the half-word addressed by EA is loaded into
half-word m of vD. If the processor is in little-endian mode, the half-word addressed by EA
is loaded into half-word (7-m) of vD. The remaining half-word s in vD are set to undefined
values. Figure 6-2 shows this instruction.

Other registers altered:

• None

31 vD A B 39 0

0 5 6 10 11 15 16 20 21 30 31
6-16 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

lvewx lvewx
Load Vector Element Word Indexed

lvewx vD,rA,rB Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~3)
eb ← EA28:31
vD ← undefined
if the processor is in big-endian mode
 then vDeb*8:(eb*8)+31← MEM(EA,4)
 else vD96-(eb*8):127-(eb*8)← MEM(EA,4)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~3. Let m =
EA[28–29]; m is the word offset of the word in its aligned quadword in memory.

If the processor is in big-endian mode, the word addressed by EA is loaded into word m of
vD. If the processor is in little-endian mode, the word addressed by EA is loaded into word
(3-m) of vD. The remaining words in vD are set to undefined values. Figure 6-2 shows this
instruction.

Other registers altered:

• None

31 vD A B 71 0

0 5 6 10 11 15 16 20 21 30 31
MOTOROLA Chapter 6. AltiVec Instructions 6-17

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

lvsl lvsl
Load Vector for Shift Left

lvsl vD,rA,rB Form X

• For 32-bit:

if rA = 0 then b ← 0
 else b ← (rA)
addr0:31 ← b + (rB)
sh ← addr28-31
if sh = 0x0 then (vD)0:127 ← 0x000102030405060708090A0B0C0D0E0F
if sh = 0x1 then (vD)0:127 ← 0x0102030405060708090A0B0C0D0E0F10
if sh = 0x2 then (vD)0:127 ← 0x02030405060708090A0B0C0D0E0F1011
if sh = 0x3 then (vD)0:127 ← 0x030405060708090A0B0C0D0E0F101112
if sh = 0x4 then (vD)0:127 ← 0x0405060708090A0B0C0D0E0F10111213
if sh = 0x5 then (vD)0:127 ← 0x05060708090A0B0C0D0E0F1011121314
if sh = 0x6 then (vD)0:127 ← 0x060708090A0B0C0D0E0F101112131415
if sh = 0x7 then (vD)0:127 ← 0x0708090A0B0C0D0E0F10111213141516
if sh = 0x8 then (vD)0:127 ← 0x08090A0B0C0D0E0F1011121314151617
if sh = 0x9 then (vD)0:127 ← 0x090A0B0C0D0E0F101112131415161718
if sh = 0xA then (vD)0:127 ← 0x0A0B0C0D0E0F10111213141516171819
if sh = 0xB then (vD)0:127 ← 0x0B0C0D0E0F101112131415161718191A
if sh = 0xC then (vD)0:127 ← 0x0C0D0E0F101112131415161718191A1B
if sh = 0xD then (vD)0:127 ← 0x0D0E0F101112131415161718191A1B1C
if sh = 0xE then (vD)0:127 ← 0x0E0F101112131415161718191A1B1C1D
if sh = 0xF then (vD)0:127 ← 0x0F101112131415161718191A1B1C1D1E

— Let the EA be the sum (rA|0)+(rB). Let sh = EA[28–31].

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || ... || 0x1E || 0x1F. Bytes sh:sh+15 of X are
placed into vD. Figure 6-3 shows how this instruction works.

Other registers altered:

• None

Figure 6-3. Load Vector for Shift Left

31 vD A B 6 0

0 5 6 10 11 15 16 20 21 30 31

0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B

rA0 0 0 0 0 0 0 8

rB

Temp

vD

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 CTable Lookup

+

=

6-18 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The above lvsl instruction followed by a Vector Permute (vperm) would do a simulated
alignment of a four-element floating-point vector misaligned on quad-word boundary at
address 0x0....C.

Figure 6-4. Instruction vperm Used in Aligning Data

Refer, also, to the description of the lvsr instruction for suggested uses of the lvsl
instruction.

vCC D E F 10 11 12 13 14 15 16 17 18 19 1A 1B

vA

vB

vD

0 1 2 3 4 5 6 7 8 9 A B C D E F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
MOTOROLA Chapter 6. AltiVec Instructions 6-19

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

lvsr lvsr
Load Vector for Shift Right

lvsr vD,rA,rB Form X

• For 32-bit:

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
sh ← EA28:31
if sh=0x0 then vD ← 0x101112131415161718191A1B1C1D1E1F
if sh=0x1 then vD ← 0x0F101112131415161718191A1B1C1D1E
if sh=0x2 then vD ← 0x0E0F101112131415161718191A1B1C1D
if sh=0x3 then vD ← 0x0D0E0F101112131415161718191A1B1C
if sh=0x4 then vD ← 0x0C0D0E0F101112131415161718191A1B
if sh=0x5 then vD ← 0x0B0C0D0E0F101112131415161718191A
if sh=0x6 then vD ← 0x0A0B0C0D0E0F10111213141516171819
if sh=0x7 then vD ← 0x090A0B0C0D0E0F101112131415161718
if sh=0x8 then vD ← 0x08090A0B0C0D0E0F1011121314151617
if sh=0x9 then vD ← 0x0708090A0B0C0D0E0F10111213141516
if sh=0xA then vD ← 0x060708090A0B0C0D0E0F101112131415
if sh=0xB then vD ← 0x05060708090A0B0C0D0E0F1011121314
if sh=0xC then vD ← 0x0405060708090A0B0C0D0E0F10111213
if sh=0xD then vD ← 0x030405060708090A0B0C0D0E0F101112
if sh=0xE then vD ← 0x02030405060708090A0B0C0D0E0F1011
if sh=0xF then vD ← 0x0102030405060708090A0B0C0D0E0F10

— Let the EA be the sum (rA|0)+(rB). Let sh = EA[28–31].

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || ... || 0x1E || 0x1F. Bytes (16-sh):(31-sh) of
X are placed into vD.

Note that lvsl and lvsr can be used to create the permute control vector to be used by a
subsequent vperm instruction. Let X and Y be the contents of vA and vB specified by the
vperm. The control vector created by lvsl causes the vperm to select the high-order 16
bytes of the result of shifting the 32-byte value X || Y left by sh bytes. The control vector
created by vsr causes the vperm to select the low-order 16 bytes of the result of shifting X
|| Y right by sh bytes.

These instructions can also be used to rotate or shift the contents of a vector register by sh
bytes. For rotating, the vector register to be rotated should be specified as both vA and vB
for vperm. For shifting left, the vB register for vperm should contain all zeros and vA
should contain the value to be shifted, and vice versa for shifting right. Figure 6-3 shows a
similar instruction only in that figure the shift is to the left

No other registers altered.

31 vD A B 38 0

0 5 6 10 11 15 16 20 21 30 31
6-20 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

lvx lvx
Load Vector Indexed

lvx vD,rA,rB (LRU = 0) Form X

• For 32-bitt:

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~0xF)
if the processor is in big-endian mode
 then vD ← MEM(EA,16)
 else vD ← MEM(EA+8,8) || MEM(EA,8)

Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~0xF.

If the processor is in big-endian mode, the quadword in memory addressed by EA is loaded
into vD.

If the processor is in little-endian mode, the doubleword addressed by EA is loaded into
vD[64–127] and the doubleword addressed by EA+8 is loaded into vD[0–63]. Note that
normal little-endian PowerPC address swizzling is also performed. See Section 3.1, “Data
Organization in Memory,” for more information.

Figure 6-3 shows this instruction.

Other registers altered:

• None

31 vD A B 103 0

0 5 6 10 11 15 16 20 21 30 31
MOTOROLA Chapter 6. AltiVec Instructions 6-21

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

lvxl lvxl
Load Vector Indexed LRU

lvxl vD,rA,rB (LRU = 1) Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~0xF)
if the processor is in big-endian mode
 then vD ← MEM(EA,16)
 else vD ← MEM(EA+8,8) || MEM(EA,8)

Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~0xF.

If the processor is in big-endian mode, the quadword addressed by EA is loaded into vD.

If the processor is in little-endian mode, the doubleword addressed by EA is loaded into
vD[64–127] and the doubleword addressed by EA+8 is loaded into vD[0–63]. Note that
normal little-endian PowerPC address swizzling is also performed. See Section 3.1, “Data
Organization in Memory,” for more information.

lvxl provides a hint that the program may not need quadword addressed by EA again soon.

Note that on some implementations, the hint provided by the lvxl instruction and the
corresponding hint provided by the Store Vector Indexed LRU (stvxl) instruction (see
Section 5.2.1.2, “Transient Streams”) are applied to the entire cache block containing the
specified quadword. On such implementations, the effect of the hint may be to cause that
cache block to be considered a likely candidate for reuse when space is needed in the cache
for a new block. Thus, on such implementations, the hint should be used with caution if the
cache block containing the quadword also contains data that may be needed by the program
in the near future. Also, the hint may be used before the last reference in a sequence of
references to the quadword if the subsequent references are likely to occur sufficiently soon
that the cache block containing the quadword is not likely to be displaced from the cache
before the last reference. Figure 6-3 shows this instruction.

Other registers altered:

• None

31 vD A B 359 0

0 5 6 10 11 15 16 20 21 30 31
6-22 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mfvscr mfvscr
Move from Vector Status and Control Register

mfvscr vD Form VX

vD ← 960 || (VSCR)

The contents of the VSCR are placed into vD.

Note that the programmer should assume that mtvscr and mfvscr take substantially longer
to execute than other VX instructions

Other registers altered:

• None

04 vD 0_0000 0000_0 1540

0 5 6 10 11 15 16 20 21 31
MOTOROLA Chapter 6. AltiVec Instructions 6-23

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mtvscr mtvscr
Move to Vector Status and Control Register

mtvscr vB Form VX

VSCR ← (vB)96:127

The contents of vB are placed into the VSCR.

Other registers altered:

• None

04 00_000 0_0000 vB 1604

0 5 6 10 11 15 16 20 21 31
6-24 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

stvebx stvebx
Store Vector Element Byte Indexed

stvebx vS,rA,rB Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← b + (rB)
eb ← EA28:31
if the processor is in big-endian mode
 then MEM(EA,1) ← (vS)eb*8:(eb*8)+7
 else MEM(EA,1) ← (vS)120-(eb*8):127-eb*8

— Let the EA be the sum (rA|0)+(rB). Let m = EA[28–31]; m is the byte offset of
the byte in its aligned quadword in memory.

If the processor is in big-endian mode, byte m of vS is stored into the byte in memory
addressed by EA. If the processor is in little-endian mode, byte (15-m) of vS is stored into
the byte addressed by EA. Figure 6-2 shows how a store instruction is performed for a
vector register.

Other registers altered:

• None

31 vS A B 135 0

0 5 6 10 11 15 16 20 21 30 31
MOTOROLA Chapter 6. AltiVec Instructions 6-25

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

stvehx stvehx
Store Vector Element Half Word Indexed

stvehx vS,rA,rB Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~0x1)
eb ← EA28:31
if the processor is in big-endian mode
 then MEM(EA,2) ← (vS)eb*8:(eb*8)+15
 else MEM(EA,2) ← (vS)112-eb*8:127-(eb*8)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~0x1. Let m =
EA[28–30]; m is the half-word offset of the half-word in its aligned quadword in
memory.

If the processor is in big-endian mode, half-word m of vS is stored into the half-word
addressed by EA. If the processor is in little-endian mode, half-word (7-m) of vS is stored
into the half-word addressed by EA. Figure 6-2 shows how a store instruction is performed
for a vector register.

Other registers altered:

• None

31 vS A B 167 0

0 5 6 10 11 15 16 20 21 30 31
6-26 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

stvewx stvewx
Store Vector Element Word Indexed

stvewx vS,rA,rB Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFFC
eb ← EA28:31
if the processor is in big-endian mode
 then MEM(EA,4) ← (vS)eb*8:(eb*8)+31
 else MEM(EA,4) ← (vS)96-eb*8:127-(eb*8)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFFC.
Let m = EA[28-29]; m is the word offset of the word in its aligned quadword in
memory.

If the processor is in big-endian mode, word m of vS is stored into the word addressed by
EA. If the processor is in little-endian mode, word (3-m) of vS is stored into the word
addressed by EA. Figure 6-2 shows how a store instruction is performed for a vector
register.

Other registers altered:

• None

31 vS A B 199 0

0 5 6 10 11 15 16 20 21 30 31
MOTOROLA Chapter 6. AltiVec Instructions 6-27

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

stvx stvx
Store Vector Indexed

stvx vS,rA,rB (LRU = 0) Form X

• For 32-bit:

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFF0
if the processor is in big-endian mode
 then MEM(EA,16) ← (vS)
 else MEM(EA,16) ← (vS)64:127 || (vS)0:63

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFF0.

If the processor is in big-endian mode, the contents of vS are stored into the quadword
addressed by EA. If the processor is in little-endian mode, the contents of vS[64–127] are
stored into the doubleword addressed by EA, and the contents of vS[0–63] are stored into
the doubleword addressed by EA+8.

stvxl and stvxlt provide a hint that the quadword addressed by EA will probably not be
needed again by the program in the near future.

Figure 6-2 shows how a store instruction is performed for a vector register.

Other registers altered:

• None

31 vS A B 231 0

0 5 6 10 11 15 16 20 21 30 31
6-28 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

stvxl stvxl
Store Vector Indexed LRU

stvxl vS,rA,rB (LRU = 1) Form X

• For 32-bit:
if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFF0
if the processor is in big-endian mode
 then MEM(EA,16) ← (vS)
 else MEM(EA,16) ← (vS)64:127 || (vS)0:63

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFF0.

Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFFF_FFFF_FFF0.
If the processor is in big-endian mode, the contents of vS are stored into the quadword
addressed by EA. If the processor is in little-endian mode, the contents of vS[64–127] are
stored into the doubleword addressed by EA, and the contents of vS[0–63] are stored into
the doubleword addressed by EA+8. The stvxl and stvxlt instructions provide a hint that
the quad word addressed by EA will probably not be needed again by the program in the
near future.

Note that on some implementations, the hint provided by the stvxl instruction (see
Section 5.2.2, “Prioritizing Cache Block Replacement”) is applied to the entire cache block
containing the specified quadword. On such implementations, the effect of the hint may be
to cause that cache block to be considered a likely candidate for reuse when space is needed
in the cache for a new block. Thus, on such implementations, the hint should be used with
caution if the cache block containing the quadword also contains data that may be needed
by the program in the near future. Also, the hint may be used before the last reference in a
sequence of references to the quadword if the subsequent references are likely to occur
sufficiently soon that the cache block containing the quadword is not likely to be displaced
from the cache before the last reference. Figure 6-2 shows how a store instruction is
performed on the vector registers.

Other registers altered:
• None

31 vS A B 487 0

0 5 6 10 11 15 16 20 21 30 31
MOTOROLA Chapter 6. AltiVec Instructions 6-29

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vaddcuw vaddcuw
Vector Add Carryout Unsigned Word

vaddcuw vD,vA,vB Form VX

do i=0 to 127 by 32

aop0:32← ZeroExtend((vA)i:i+31,33)
bop0:32← ZeroExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int bop0:32
vDi:i+31← ZeroExtend(temp0,32)

end

Each unsigned-integer word element in vA is added to the corresponding unsigned-integer
word element in vB. The carry out of bit 0 of the 32-bit sum is zero-extended to 32 bits and
placed into the corresponding word element of vD.

Other registers altered:

• None

Figure 6-5 shows the usage of the vaddcuw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-5. vaddcuw—Determine Carries of Four Unsigned Integer Adds (32-Bit)

04 vD vA vB 384

0 5 6 10 11 15 16 20 21 31

vA

vB

33-bit Intermedediate

vD

+ + + +
6-30 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vaddfp vaddfp
Vector Add Floating Point

vaddfp vD,vA,vB Form VX

do i = 0,127,32

(vD)i:i+31 ← RndToNearFP32((vA)i:i+31 +fp (vB)i:i+31)

end

The four 32-bit floating-point values in vA are added to the four 32-bit floating-point values
in vB. The four intermediate results are rounded and placed in VD.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

Other registers altered:

• None

Figure 6-6 shows the usage of the vaddfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-6. vaddfp—Add Four Floating-Point Elements (32-Bit)

04 vD vA vB 10

0 5 6 10 11 15 16 20 21 31

++++

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-31

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vaddsbs vaddsbs
Vector Add Signed Byte Saturate

vaddsbs vD,vA,vB Form VX

do i=0 to 127 by 8

aop0:8← SignExtend((vA)i:i+7,9)
bop0:8← SignExtend((vB)i:i+7,9)
temp0:8← aop0:8 +int bop0:8
vDi:i+7← SItoSIsat(temp0:8,8)

end

Each element of vaddsbs is a byte.

Each signed-integer element in vA is added to the corresponding signed-integer element
in vB.

If the sum is greater than (27-1) it saturates to (27-1) and if it is less than -27 it saturates to
-27. If saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-7 shows the usage of the vaddsbs instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-7. vaddsbs—Add Saturating Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 768

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD
6-32 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vaddshs vaddshs
Vector Add Signed Half Word Saturate

vaddshs vD,vA,vB Form VX

do i=0 to 127 by 16

aop0:16← SignExtend((vA)i:i+15,16)
bop0:16← SignExtend((vB)i:i+15,16)
temp0:16← aop0:16 +int bop0:16
vDi:i+15← SItoSIsat(temp0:16,16)

end

Each element of vaddshs is a half word.

Each signed-integer element in vA is added to the corresponding signed-integer element
in vB.

If the sum is greater than (215-1) it saturates to (215-1) and if it is less than -215 it saturates to
-215. If saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-8 shows the usage of the vaddshs instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-8. vaddshs— Add Saturating Eight Signed Integer Elements (16-Bit)

04 vD vA vB 832

0 5 6 10 11 15 16 20 21 31

++++++++

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-33

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vaddsws vaddsws
Vector Add Signed Word Saturate

vaddsws vD,vA,vB Form VX

do i=0 to 127 by 32

aop0:32← SignExtend((vA)i:i+31,33)
bop0:32← SignExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int bop0:32
vDi:i+31← SItoSIsat(temp0:32,32)

end

Each element of vaddsws is a word.

Each signed-integer element in vA is added to the corresponding signed-integer element
in vB.

If the sum is greater than (231-1) it saturates to (231-1) and if it is less than (-231) it saturates
to (-231). If saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-9 shows the usage of the vaddsws instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-9. vaddsws—Add Saturating Four Signed Integer Elements (32-Bit)

04 vD vA vB 896

0 5 6 10 11 15 16 20 21 31

++++

vA

vB

vD
6-34 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vaddubm vaddubm
Vector Add Unsigned Byte Modulo

vaddubm vD,vA,vB Form VX

do i=0 to 127 by 8

vDi:i+7← (vA)i:i+7 +int (vB)i:i+7

end

Each element of vaddubm is a byte.

Each integer element in vA is modulo added to the corresponding integer element in vB.
The integer result is placed into the corresponding element of vD.

Note that the vaddubm instruction can be used for unsigned or signed integers.

Other registers altered:

• None

Figure 6-10 shows the vaddubm instruction usage. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-10. vaddubm—Add Sixteen Integer Elements (8-Bit)

04 vD vA vB 0

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-35

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vaddubs vaddubs
Vector Add Unsigned Byte Saturate

vaddubs vD,vA,vB Form VX

do i=0 to 127 by 8

aop0:8← ZeroExtend((vA)i:i+7,9)
bop0:8← ZeroExtend((vB)i:i+7,9)
temp0:8← aop0:8 +int bop0:8
vDi:i+7← UItoUIsat(temp0:8,8)

end

Each element of vaddubs is a byte.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer
element in vB.

If the sum is greater than (28-1) it saturates to (28-1) and the SAT bit is set.

The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-11 shows the usage of the vaddubs instruction. Each of the sixteen elements in
the vectors, vA, vB, and vD, is 8 bits long.

Figure 6-11. vaddubs—Add Saturating Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 512

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD
6-36 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vadduhm vadduhm
Vector Add Unsigned Half Word Modulo

vadduhm vD,vA,vB Form VX

do i=0 to 127 by 16

vDi:i+15← (vA)i:i+15 +int (vB)i:i+15

end

Each element of vadduhm is a half word.

Each integer element in vA is added to the corresponding integer element in vB. The integer
result is placed into the corresponding element of vD.

Note that the vadduhm instruction can be used for unsigned or signed integers.

Other registers altered:

• None

Figure 6-12 shows the usage of the vadduhm instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-12. vadduhm—Add Eight Integer Elements (16-Bit)

04 vD vA vB 64

0 5 6 10 11 15 16 20 21 31

++++++++

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-37

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vadduhs vadduhs
Vector Add Unsigned Half Word Saturate

vadduhs vD,vA,vB Form VX

do i=0 to 127 by 16

aop0:16← ZeroExtend((vA)i:i+15,17)
bop0:16← ZeroExtend((vB)i:i+15,17)
temp0:16← aop0:16 +int bop0:16
vDi:i+15← UItoUIsat(temp0:16,16)

end

Each element of vadduhs is a half word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer
element in vB.

If the sum is greater than (216-1) it saturates to (216-1) and the SAT bit is set.

The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-13 shows the usage of the vadduhs instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-13. vadduhs—Add Saturating Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 576

0 5 6 10 11 15 16 20 21 31

++++++++

vA

vB

vD
6-38 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vadduwm vadduwm
Vector Add Unsigned Word Modulo

vadduwm vD,vA,vB Form: VX

do i=0 to 127 by 32

vDi:i+31← (vA)i:i+31 +int (vB)i:i+31

end

Each element of vadduwm is a word.

Each integer element in vA is modulo added to the corresponding integer element in vB.
The integer result is placed into the corresponding element of vD.

Note that the vadduwm instruction can be used for unsigned or signed integers.

Other registers altered:

• None

Form:

• VX

Figure 6-14 shows the usage of the vadduwm instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-14. vadduwm—Add Four Integer Elements (32-Bit)

04 vD vA vB 128

0 5 6 10 11 15 16 20 21 31

++++

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-39

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vadduws vadduws
Vector Add Unsigned Word Saturate

vadduws vD,vA,vB Form: VX

do i=0 to 127 by 3

aop0:32← ZeroExtend((vA)i:i+31,33)
bop0:32← ZeroExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int bop0:32
vDi:i+31← UItoUIsat(temp0:32,32)

end

Each element of vadduws is a word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer
element in vB.

If the sum is greater than (232-1) it saturates to (232-1) and the SAT bit is set.

The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-15 shows the usage of the vadduws instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-15. vadduws—Add Saturating Four Unsigned Integer Elements (32-Bit)

04 vD vA vB 640

0 5 6 10 11 15 16 20 21 31

++++

vA

vB

vD
6-40 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vand vand
Vector Logical AND

vand vD,vA,vB Form: VX

vD ← (vA) & (vB)

The contents of vA are bitwise ANDed with the contents of vB and the result is placed into
vD.

Other registers altered:

• None

Figure 6-16 shows usage of the vand instruction.

Figure 6-16. vand—Logical Bitwise AND

04 vD vA vB 1028

0 5 6 10 11 15 16 20 21 31

&

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-41

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vandc vandc
Vector Logical AND with Complement

vandc vD,vA,vB Form: VX

vD ← (vA) & ¬(vB)

The contents of vA are ANDed with the one’s complement of the contents of vB and the
result is placed into vD.

Other registers altered:

• None

Figure 6-16 shows usage of the vandc instruction.

Figure 6-17. vand—Logical Bitwise AND with Complement

04 vD vA vB 1092

0 5 6 10 11 15 16 20 21 31

&

vB

Intermediate

vA

vD

¬

6-42 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vavgsb vavgsb
Vector Average Signed Byte

vavgsb vD,vA,vB Form: VX

do i=0 to 127 by 8

aop0:8← SignExtend((vA)i:i+7,9)
bop0:8← SignExtend((vB)i:i+7,9)
temp0:8← aop0:8 +int bop0:8 +int 1
vDi:i+7← temp0:7

end

Each element of vavgsb is a byte.

Each signed-integer byte element in vA is added to the corresponding signed-integer byte
element in vB, producing an 9-Bit signed-integer sum. The sum is incremented by 1. The
high-order 8 bits of the result are placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-18 shows the usage of the vavgsb instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-18. vavgsb— Average Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 1282

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD

+1 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

Temp

Temp

8 bits

9 bits
MOTOROLA Chapter 6. AltiVec Instructions 6-43

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vavgsh vavgsh
Vector Average Signed Half Word

vavgsh vD,vA,vB Form: VX

do i=0 to 127 by 16

aop0:16← SignExtend((vA)i:i+15,17)
bop0:16← SignExtend((vB)i:i+15,17)
temp0:16← aop0:15 +int bop0:15 +int 1
vDi:i+15← temp0:15

end

Each element of vavgsh is a half word.

Each signed-integer element in vA is added to the corresponding signed-integer element in
vB, producing an 17-bit signed-integer sum. The sum is incremented by 1. The high-order
16 bits of the result are placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-19 shows the usage of the vavgsh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-19. vavgsh—Average Eight Signed Integer Elements (16-bits)

04 vD vA vB 1346

0 5 6 10 11 15 16 20 21 31

+++++++

vA

vB

+1+1+1+1+1+1+1

Temp

16 bits

17 bits

+

+1

Temp
6-44 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vavgsw vavgsw
Vector Average Signed Word

vavgsw vD,vA,vB Form: VX

do i=0 to 127 by 32

aop0:32← SignExtend((vA)i:i+31,33)
bop0:32← SignExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int bop0:32 +int 1
vDi:i+31← temp0:31

end

Each element of vavgsw is a word.

Each signed-integer element in vA is added to the corresponding signed-integer element in
vB, producing an 33-bit signed-integer sum. The sum is incremented by 1. The high-order
32 bits of the result are placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-20 shows the usage of the vavgsw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-20. vavgsw— Average Four Signed Integer Elements (32-Bit)

04 vD vA vB 1410

0 5 6 10 11 15 16 20 21 31

+++

vA

vB

+1+1+1

Temp

32 bits

33 bits

+

+1

Temp
MOTOROLA Chapter 6. AltiVec Instructions 6-45

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vavgub vavgub
Vector Average Unsigned Byte

vavgub vD,vA,vB Form: VX

do i=0 to 127 by 8

aop0:8← ZeroExtend((vA)i:i+7,9)
bop0:n← ZeroExtend((vB)i:i+71,9)
temp0:n← aop0:8 +int bop0:8 +int 1
vDi:i+7← temp0:7

end

Each element of vavgub is a byte.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer
element in vB, producing an 9-bit unsigned-integer sum. The sum is incremented by 1. The
high-order 8 bits of the result are placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-21 shows the usage of the vavgub instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

.

Figure 6-21. vavgub—Average Sixteen Unsigned Integer Elements (8-bits)

04 vD vA vB 1026

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD

+1 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

Temp

Temp

8 bits

9 bits
6-46 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vavguh vavguh
Vector Average Unsigned Half Word

vavguh vD,vA,vB Form: VX

do i=0 to 127 by 16

aop0:16← ZeroExtend((vA)i:i+15,17)
bop0:16← ZeroExtend((vB)i:i+15,17)
temp0:16← aop0:16 +int bop0:16 +int 1
vDi:i+15← temp0:15

end

Each element of vavguh is a half word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer
element in vB, producing a 17-bit unsigned-integer. The sum is incremented by 1. The
high-order 16 bits of the result are placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-22 shows the usage of the vavgsh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-22. vavgsh— Average Eight Signed Integer Elements (16-Bit)

04 vD vA vB 1090

0 5 6 10 11 15 16 20 21 31

+++++++

vA

vB

+1+1+1+1+1+1+1

Temp

16 bits

17 bits

+

+1

Temp
MOTOROLA Chapter 6. AltiVec Instructions 6-47

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vavguw vavguw
Vector Average Unsigned Word

vavguw vD,vA,vB Form: VX

do i=0 to 127 by 32

aop0:32← ZeroExtend((vA)i:i+31,33)
bop0:32← ZeroExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int bop0:32 +int 1
vDi:i+31← temp0:31

end

Each element of vavguw is a word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer
element in vB, producing an 33-bit unsigned-integer sum. The sum is incremented by 1.
The high-order 32 bits of the result are placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-23 shows the usage of the vavguw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-23. vavguw—Average Four Unsigned Integer Elements (32-Bit)

04 vD vA vB 1154

0 5 6 10 11 15 16 20 21 31

+++

vA

vB

+1+1+1

Temp

32 bits

33 bits

+

+1

Temp
6-48 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcfsx vcfsx
Vector Convert from Signed Fixed-Point Word

vcfsx vD,vB,UIMM Form: VX

do i=0 to 127 by 32

vDi:i+31 ← CnvtSI32ToFP32((vB)i:i+31) ÷fp 2UIMM

end

Each signed fixed-point integer word element in vB is converted to the nearest
single-precision floating-point value. The result is divided by 2UIMM (UIMM = Unsigned
immediate value) and placed into the corresponding word element of vD.

Other registers altered:

• None

Figure 6-24 shows the usage of the vcfsx instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-24. vcfsx—Convert Four Signed Integer Elements to Four Floating-Point
Elements (32-Bit)

04 vD UIMM vB 842

0 5 6 10 11 15 16 20 21 31

vB

vD

÷÷÷÷

Scale Factor from Opcode (2UIMM)
MOTOROLA Chapter 6. AltiVec Instructions 6-49

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcfux vcfux
Vector Convert from Unsigned Fixed-Point Word

vcfux vD,vB,UIMM Form: VX

do i=0 to 127 by 32

vDi:i+31 ← CnvtUI32ToFP32((vB)i:i+31) ÷fp 2UIMM

end

Each unsigned fixed-point integer word element in vB is converted to the nearest
single-precision floating-point value. The result is divided by 2UIMM and placed into the
corresponding word element of vD.

Other registers altered:

• None

Figure 6-25 shows the usage of the vcfux instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-25. vcfux—Convert Four Unsigned Integer Elements to Four
Floating-Point Elements (32-Bit)

04 vD UIMM vB 778

0 5 6 10 11 15 16 20 21 31

vB

vD

÷÷÷÷

Scale Factor from Opcode (2UIMM)
6-50 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpbfpx vcmpbfpx
Vector Compare Bounds Floating Point

vcmpbfp vD,vA,vB (Rc = 0) Form: VXR
vcmpbfp. vD,vA,vB (Rc = 1)

do i=0 to 127 by 32

le ← ((vA)i:i+31 ≤fp (vB)i:i+31)
ge ← ((vA)i:i+31 ≥fp -(vB)i:i+31)
vDi:i+31 ← −le || −ge || 300

end
if Rc=1 then do

ib ← (vD = 1280)
CR24:27 ← 0b00 || ib || 0b0

end

Each single-precision word element in vA is compared to the corresponding element in vB.
A 2-bit value is formed that indicates whether the element in vA is within the bounds
specified by the element in vB, as follows.

Bit 0 of the 2-bit value is zero if the element in vA is less than or equal to the element in
vB, and is one otherwise. Bit 1 of the 2-bit value is zero if the element in vA is greater than
or equal to the negative of the element in vB, and is one otherwise.

The 2-bit value is placed into the high-order two bits of the corresponding word element
(bits 0–1 for word element 0, bits 32–33 for word element 1, bits 64–65 for word element
2, bits 96–97 for word element 3) of vD and the remaining bits of the element are cleared.

If Rc=1, CR Field 6 is set to indicate whether all four elements in vA are within the bounds
specified by the corresponding element in vB, as follows.

• CR6 = 0b00 || all_within_bounds || 0

Note that if any single-precision floating-point word element in vB is negative; the
corresponding element in vA is out of bounds. Note that if a vA or a vB element is a NaN,
the two high order bits of the corresponding result will both have the value 1.

If VSCR[NJ] = 1, every denormalized operand element is truncated to 0 before the
comparison is made.

Other registers altered:

• Condition register (CR6):

Affected: Bit 2 (if Rc = 1)

04 vD vA vB Rc 966

0 5 6 10 11 15 16 20 21 22 31
MOTOROLA Chapter 6. AltiVec Instructions 6-51

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6-26 shows the usage of the vcmpbfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-26. vcmpbfp—Compare Bounds of Four Floating-Point Elements (32-Bit)

≤

vA

vB

vD
0 32 64 961 33

≥ ≤ ≥

65 97

≤ ≥ ≤ ≥
6-52 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpeqfpx vcmpeqfpx
Vector Compare Equal-to-Floating Point

vcmpeqfp vD,vA,vB Form: VXR
vcmpeqfp. vD,vA,vB

do i=0 to 127 by 32

if (vA)i:i+31 =fp (vB)i:i+31

then vDi:i+31 ← 0xFFFF_FFFF
else vDi:i+31 ← 0x0000_0000

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in vA is compared to the corresponding
single-precision floating-point word element in vB. The corresponding word element in vD
is set to all 1s if the element in vA is equal to the element in vB, and is cleared to all 0s
otherwise.

If Rc = 1. CR6 filed is set according to all, some, or none of the elements pairs compare
equal.

• CR6 = all_equal || 0b0 || none_equal || 0b0

Note that if a vA or vB element is a NaN, the corresponding result will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-27 shows the usage of the vcmpeqfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-27. vcmpeqfp—Compare Equal of Four Floating-Point Elements (32-Bit)

04 vD vA vB Rc 198

0 5 6 10 11 15 16 20 21 22 31

= = = =

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-53

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpequbx vcmpequbx
Vector Compare Equal-to Unsigned Byte

vcmpequb vD,vA,vB Form: VXR
vcmpequb. vD,vA,vB

do i=0 to 127 by 8

if (vA)i:i+7 =int (vB)i:i+7
then vDi:i+7 ← 81
else vDi:i+7 ← 80

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)

CR[24:27] ← t || 0b0 || f || 0b0

end

Each element of vcmpequb is a byte.

Each integer element in vA is compared to the corresponding integer element in vB. The
corresponding element in vD is set to all 1s if the element in vA is equal to the element in
vB, and is cleared to all 0s otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal.

• CR6 = all_equal || 0b0 || none_equal || 0b0

Note that vcmpequb[.] can be used for unsigned or signed integers.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0–3 (if Rc = 1)

Figure 6-28 shows the usage of the vcmpequb instruction. Each of the sixteen elements in
the vectors, vA, vB, and vD, is 8 bits long.

Figure 6-28. vcmpequb—Compare Equal of Sixteen Integer Elements (8-bits)

04 vD vA vB Rc 6

0 5 6 10 11 15 16 20 21 22 31

 = = = = = = = = = = = = = == =

vA

vB

vD
6-54 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpequhx vcmpequhx
Vector Compare Equal-to Unsigned Half Word

vcmpequh vD,vA,vB Form: VXR
vcmpequh. vD,vA,vB

do i=0 to 127 by 16

if (vA)i:i+15 =int (vB)i:i+15
then vDi:i+15 ← 161
else vDi:i+15 ← 160

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)

CR[24:27] ← t || 0b0 || f || 0b0

end

Each element of vcmpequh is a half word.

Each integer element in vA is compared to the corresponding integer element in vB. The
corresponding element in vD is set to all 1s if the element in vA is equal to the element in
vB, and is cleared to all 0s otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal.

• CR6 = all_equal || 0b0 || none_equal || 0b0.

Note that vcmpequh[.] can be used for unsigned or signed integers.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0–3 (if Rc = 1)

Figure 6-29 shows the usage of the vcmpequh instruction. Each of the eight elements in
the vectors, vA, vB, and vD, is 16 bits long.

Figure 6-29. vcmpequh—Compare Equal of Eight Integer Elements (16-Bit)

04 vD vA vB Rc 70

0 5 6 10 11 15 16 20 21 22 31

 = = ======

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-55

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpequwx vcmpequwx
Vector Compare Equal-to Unsigned Word

vcmpequw vD,vA,vB Form: VXR
vcmpequw. vD,vA,vB

do i=0 to 127 by 32

if (vA)i:i+311 =int (vB)i:i+31
 then vDi:i+31 ← n1
 else vDi:i+31 ← n0

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)

CR[24:27] ← t || 0b0 || f || 0b0

end

Each element of vcmpequw is a word.

Each integer element in vA is compared to the corresponding integer element in vB. The
corresponding element in vD is set to all 1s if the element in vA is equal to the element in
vB, and is cleared to all 0s otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal.

• CR6 = all_equal || 0b0 || none_equal || 0b0

Note that vcmpequw[.] can be used for unsigned or signed integers.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-30 shows the usage of the vcmpequw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-30. vcmpequw—Compare Equal of Four Integer Elements (32-Bit)

04 vD vA vB Rc 134

0 5 6 10 11 15 16 20 21 22 31

 = = = =

vA

vB

vD
6-56 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpgefpx vcmpgefpx
Vector Compare Greater-Than-or-Equal-to Floating Point

vcmpgefp vD,vA,vB (Rc = 0) Form: VXR
vcmpgefp. vD,vA,vB (Rc = 1)

do i=0 to 127 by 32
if (vA)i:i+31 ≥fp (vB)i:i+31
then vDi:i+31 ← 0xFFFF_FFFF
else vDi:i+31 ← 0x0000_0000

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)

CR24:27 ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in vA is compared to the corresponding
single-precision floating-point word element in vB. The corresponding word element in vD
is set to all 1s if the element in vA is greater than or equal to the element in vB, and is
cleared to all 0s otherwise.
If Rc = 1, CR6 is set according to all_greater_or_equal || some_greater_or_equal ||
none_great_or_equal.

CR6 = all_greater_or_equal || 0b0 || none greater_or_equal || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.
Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-31 shows the usage of the vcmpgefp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long

Figure 6-31. vcmpgefp—Compare Greater-Than-or-Equal of Four Floating-Point
Elements (32-Bit)

04 vD vA vB Rc 454

0 5 6 10 11 15 16 20 21 22 31

≥≥≥≥

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-57

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpgtfpx vcmpgtfpx
Vector Compare Greater-Than Floating-Point

vcmpgtfp vD,vA,vB Form: VXR
vcmpgtfp. vD,vA,vB

do i=0 to 127 by 32
if (vA)i:i+31 >fp (vB)i:i+31
 then vDi:i+31 ← 0xFFFF_FFFF
 else vDi:i+31 ← 0x0000_0000

end
if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR[24:27] ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in vA is compared to the corresponding
single-precision floating-point word element in vB. The corresponding word element in vD
is set to all 1s if the element in vA is greater than the element in vB, and is cleared to all 0s
otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than ||
none_greater_than.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-32 shows the usage of the vcmpgtfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-32. vcmpgtfp—Compare Greater-Than of Four Floating-Point Elements
(32-Bit)

04 vD vA vB Rc 710

0 5 6 10 11 15 16 20 21 22 31

>>>>

vA

vB

vD
6-58 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpgtsbx vcmpgtsbx
Vector Compare Greater-Than Signed Byte

vcmpgtsb vD,vA,vB Form: VXR
vcmpgtsb. vD,vA,vB

do i=0 to 127 by 8

if (vA)i:i+7 >si (vB)i:i+7
 then vDi:i+7 ← 81
 else vDi:i+7 ← 80

end
if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each element of vcmpgtsb is a byte.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The corresponding element in vD is set to all 1s if the element in vA is
greater than the element in vB, and is cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-33 shows the usage of the vcmpgtsb instruction. Each of the sixteen elements in
the vectors, vA, vB, and vD, is 8 bits long.

Figure 6-33. vcmpgtsb—Compare Greater-Than of Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB Rc 774

0 5 6 10 11 15 16 20 21 22 31

> >>>>>>>>>>>>>>>

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-59

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpgtshx vcmpgtshx
Vector Compare Greater-Than Condition Register Signed Half Word

vcmpgtsh vD,vA,vB Form: VXR
vcmpgtsh. vD,vA,vB

do i=0 to 127 by 16

if (vA)i:i+15 >si (vB)i:i+15
 then vDi:i+15 ← 161
 else vDi:i+15 ← 160

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each element of vcmpgtsh is a half word.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The corresponding element in vD is set to all 1s if the element in vA is
greater than the element in vB, and is cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-34 shows the usage of the vcmpgtsh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-34. vcmpgtsh—Compare Greater-Than of Eight Signed Integer Elements (16-Bit)

04 vD vA vB Rc 838

0 5 6 10 11 15 16 20 21 22 31

>>>>>>>>

vA

vB

vD
6-60 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpgtswx vcmpgtswx
Vector Compare Greater-Than Signed Word

vcmpgtsw vD,vA,vB Form: VXR
vcmpgtsw. vD,vA,vB

do i=0 to 127 by 32

if (vA)i:i+31 >si (vB)i:i+31
 then vDi:i+31 ← 321
 else vDi:i+31 ← 320

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each element of vcmpgtsw is a word.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The corresponding element in vD is set to all 1s if the element in vA is
greater than the element in vB, and is cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-35 shows the usage of the vcmpgtsw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-35. vcmpgtsw—Compare Greater-Than of Four Signed Integer Elements (32-Bit)

04 vD vA vB Rc 902

0 5 6 10 11 15 16 20 21 22 31

>>>>

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-61

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpgtubx vcmpgtubx
Vector Compare Greater-Than Unsigned Byte

vcmpgtub vD,vA,vB Form: VXR
vcmpgtub. vD,vA,vB

do i=0 to 127 by 8

if (vA)i:i+7 >ui (vB)i:i+7
 then vDi:i+7 ← 81
 else vDi:i+7 ← 80

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each element of vcmpgtub is a byte. Each unsigned-integer element in vA is compared to
the corresponding unsigned-integer element in vB. The corresponding element in vD is set
to all 1s if the element in vA is greater than the element in vB, and is cleared to all 0s
otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-36 shows the usage of the vcmpgtub instruction. Each of the sixteen elements in
the vectors, vA, vB, and vD, is 8 bits long.

Figure 6-36. vcmpgtub—Compare Greater-Than of Sixteen Unsigned Integer Elements
(8-Bit)

04 vD vA vB Rc 518

0 5 6 10 11 15 16 20 21 22 31

> >>>>>>>>>>>>>>>

vA

vB

vD
6-62 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpgtuhx vcmpgtuhx
Vector Compare Greater-Than Unsigned Half Word

vcmpgtuh vD,vA,vB Form: VXR
vcmpgtuh. vD,vA,vB

do i=0 to 127 by 16

if (vA)i:i+151 >ui (vB)i:i+15
 then vDi:i+15 ← 161
 else vDi:i+15 ← 160

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each element of vcmpgtuh is a half word. Each unsigned-integer element in vA is
compared to the corresponding unsigned-integer element in vB. The corresponding
element in vD is set to all 1s if the element in vA is greater than the element in vB, and is
cleared to all 0s otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-37 shows the usage of the vcmpgtuh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-37. vcmpgtuh—Compare Greater-Than of Eight Unsigned Integer Elements
(16-Bit)

04 vD vA vB Rc 582

0 5 6 10 11 15 16 20 21 22 31

>>>>>>>>

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-63

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpgtuwx vcmpgtuwx
Vector Compare Greater-Than Unsigned Word

vcmpgtuw vD,vA,vB Form: VXR
vcmpgtuw. vD,vA,vB

do i=0 to 127 by 32

if (vA)i:i+31 >ui (vB)i:i+31
 then vDi:i+31 ← 321
 else vDi:i+31 ← 320

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each element of vcmpgtuw is a word. Each unsigned-integer element in vA is compared
to the corresponding unsigned-integer element in vB. The corresponding element in vD is
set to all 1s if the element in vA is greater than the element in vB, and is cleared to all 0s
otherwise.

If Rc = 1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6 = all_greater_than || 0b0 || none_greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition register (CR6):

Affected: Bits 0-3 (if Rc = 1)

Figure 6-38 shows the usage of the vcmpgtuw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-38. vcmpgtuw—Compare Greater-Than of Four Unsigned Integer
Elements (32-Bit)

04 vD vA vB Rc 646

0 5 6 10 11 15 16 20 21 22 31

>>>>

vA

vB

vD
6-64 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vctsxs vctsxs
Vector Convert to Signed Fixed-Point Word Saturate

vctsxs vD,vB,UIMM Form: VX

do i=0 to 127 by 32

if (vB)i+1:i+8=255 | (vB)i+1:i+8 + UIMM ≤ 254 then
 vDi:i+31 ← CnvtFP32ToSI32Sat((vB)i:i+31 *fp 2

UIMM)
 else
 do

if (vB)i=0 then vDi:i+31 ← 0x7FFF_FFFF
 else vDi:i+31 ← 0x8000_0000
 VSCRSAT ← 1

end

end

Each single-precision word element in vB is multiplied by 2UIMM. The product is converted
to a signed integer using the rounding mode, Round toward Zero. If the intermediate result
is greater than (231-1) it saturates to (231-1); if it is less than -231 it saturates to -231. A
signed-integer result is placed into the corresponding word element of vD.

Fixed-point integers used by the vector convert instructions can be interpreted as consisting
of 32-UIMM integer bits followed by UIMM fraction bits. The vector convert to
fixed-point word instructions support only the rounding mode, Round toward Zero. A
single-precision number can be converted to a fixed-point integer using any of the other
three rounding modes by executing the appropriate vector round to floating-point integer
instruction before the vector convert to fixed-point word instruction.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-39 shows the usage of the vctsxs instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-39. vctsxs—Convert Four Floating-Point Elements to Four Signed Integer
Elements (32-Bit)

04 vD UIMM vB 970

0 5 6 10 11 15 16 20 21 31

vB

vD

xxxx

Scale Factor from Opcode (2UIMM)
MOTOROLA Chapter 6. AltiVec Instructions 6-65

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vctuxs vctuxs
Vector Convert to Unsigned Fixed-Point Word Saturate

vctuxs vD,vB,UIMM Form: VX

do i=0 to 127 by 32

if (vB)i+1:i+8=255 | (vB)i+1:i+8 + UIMM ≤ 254 then
 vDi:i+31 ← CnvtFP32ToUI32Sat((vB)i:i+31 *fp 2

UIM)
 else
 do
 if (vB)i=0 thenvDi:i+31 ← 0xFFFF_FFFF
 elsevDi:i+31 ← 0x0000_0000
 VSCRSAT ← 1

end

end

Each single-precision floating-point word element in vB is multiplied by 2UIM. The product
is converted to an unsigned fixed-point integer using the rounding mode Round toward
Zero.

If the intermediate result is greater than (232-1) it saturates to (232-1) and if it is less than 0
it saturates to 0.

The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-40 shows the usage of the vctuxs instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-40. vctuxs—Convert Four Floating-Point Elements to Four Unsigned
Integer Elements (32-Bit)

04 vD UIMM vB 906

0 5 6 10 11 15 16 20 21 31

vB

vD

xxxx

Scale Factor from Opcode (2UIMM)
6-66 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vexptefp vexptefp
Vector 2 Raised to the Exponent Estimate Floating Point

vexptefp vD,vB Form: VX

do i=0 to 127 by 32

x ← (vB)i:i+31

vDi:i+31 ← 2x

end

The single-precision floating-point estimate of 2 raised to the power of each
single-precision floating-point element in vB is placed into the corresponding element of
vD.

The estimate has a relative error in precision no greater than one part in 16, that is,

where x is the value of the element in vB. The most significant 12 bits of the estimate's
significant are monotonic. Note that the value placed into the element of vD may vary
between implementations, and between different executions on the same implementation.

If an operation has an integral value and the resulting value is not 0 or +∞, the result is exact.

Operation with various special values of the element in vB is summarized in Table 6-5
below.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

04 vD 0_0000 vB 394

0 5 6 10 11 15 16 20 21 31

Table 6-5. Special Values of the Element in vB

Value of
Element in vB

Result

-∞ +0

-0 +1

+0 +1

+∞ +∞

NaN QNaN

estimate 2
x

–

2
x

1
16
------≤
MOTOROLA Chapter 6. AltiVec Instructions 6-67

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Other registers altered:

• None

Figure 6-41 shows the usage of the vexptefp instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-41. vexptefp—2 Raised to the Exponent Estimate Floating-Point for Four
Floating-Point Elements (32-Bit)

2x2x2x 2x

vB

vD

x x x x
6-68 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vlogefp vlogefp
Vector Log2 Estimate Floating Point

vlogefp vD,vB Form: VX

do i=0 to 127 by 32

x ← (vB)i:i+31

vDi:i+31 ← log2(x)

end

The single-precision floating-point estimate of the base 2 logarithm of each
single-precision floating-point element in vB is placed into the corresponding element of
vD.

The estimate has an absolute error in precision (absolute value of the difference between
the estimate and the infinitely precise value) no greater than 2-5. The estimate has a relative
error in precision no greater than one part in 8, as described below:

where x is the value of the element in vB, except when |x-1| ≤ 1 ÷ 8. The most significant
12 bits of the estimate's significant are monotonic. Note that the value placed into the
element of vD may vary between implementations, and between different executions on the
same implementation.

Operation with various special values of the element in vB is summarized below in
Table 6-6.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

04 vD 0_0000 vB 458

0 5 6 10 11 15 16 20 21 31

Table 6-6. Special Values of the Element in vB

Value Result

-∞ QNaN

less than 0 QNaN

±0 -∞

+∞ +∞

NaN QNaN

estimate - log2 x() 1
32
------≤ 

  unless x 1–
1
8
---≤
MOTOROLA Chapter 6. AltiVec Instructions 6-69

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Other registers altered:

• None

Figure 6-42 shows the usage of the vexptefp instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-42. vexptefp—Log2 Estimate Floating-Point for Four Floating-Point
Elements (32-Bit)

log2(x)log2(x)log2(x)log2(x)

vB

vD

x x x x
6-70 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmaddfp vmaddfp
Vector Multiply Add Floating Point

vmaddfp vD,vA,vC,vB Form: VA

do i=0 to 127 by 32

vDi:i+31 ← RndToNearFP32(((vA)i:i+31 *fp (vC)i:i+31) +fp (vB)i:i+31)

end

Each single-precision floating-point word element in vA is multiplied by the corresponding
single-precision floating-point word element in vC. The corresponding single-precision
floating-point word element in vB is added to the product. The result is rounded to the
nearest single-precision floating-point number and placed into the corresponding word
element of vD.

Note that a vector multiply floating-point instruction is not provided. The effect of such an
instruction can be obtained by using vmaddfp with vB containing the value -0.0
(0x8000_0000) in each of its four single-precision floating-point word elements. (The value
must be -0.0, not +0.0, in order to obtain the IEEE-conforming result of -0.0 when the result
of the multiplication is -0.)

Other registers altered:

• None

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign. Figure 6-43 shows the usage of the vmaddfp instruction. Each of the four
elements in the vectors, vA, vB, and vD, is 32 bits long.

Figure 6-43. vmaddfp—Multiply-Add Four Floating-Point Elements (32-Bit)

04 vD vA vB vC 46

0 5 6 10 11 15 16 20 21 26 31

+

Prod

vB

vD

* * * *

+ + +

vC

vA
MOTOROLA Chapter 6. AltiVec Instructions 6-71

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmaxfp vmaxfp
Vector Maximum Floating Point

vmaxfp vD,vA,vB Form: VX

do i=0 to 127 by 32

if (vA)i:i+31 ≥fp (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each single-precision floating-point word element in vA is compared to the corresponding
single-precision floating-point word element in vB. The larger of the two single-precision
floating-point values is placed into the corresponding word element of vD.

The maximum of +0 and -0 is +0. The maximum of any value and a NaN is a QNaN.

Other registers altered:

• None

Figure 6-44 shows the usage of the vmaxfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-44. vmaxfp—Maximum of Four Floating-Point Elements (32-Bit)

04 vD vA vB 1034

0 5 6 10 11 15 16 20 21 31

≥fp≥fp≥fp≥fp

vA

vB

vD
6-72 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmaxsb vmaxsb
Vector Maximum Signed Byte

vmaxsb vD,vA,vB Form: VX

do i=0 to 127 by 8

if (vA)i:i+7 ≥si (vB)i:i+7
 then vDi:i+7 ← (vA)i:i+7
 else vDi:i+7 ← (vB)i:i+7

end

Each element of vmaxsb is a byte.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer values is placed into the corresponding
element of vD.

Other registers altered:

• None

Figure 6-45 shows the usage of the vmaxsb instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-45. vmaxsb—Maximum of Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 258

0 5 6 10 11 15 16 20 21 31

≥si ≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-73

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmaxsh vmaxsh
Vector Maximum Signed Half Word

vmaxsh vD,vA,vB Form: VX

do i=0 to 127 by 16

if (vA)i:i+7 ≥si (vB)i:i+15
 then vDi:i+15← (vA)i:i+15
 else vDi:i+15 ← (vB)i:i+15

end

Each element of vmaxsh is a half word.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer values is placed into the corresponding
element of vD.

Other registers altered:

• None

Figure 6-46 shows the usage of the vmaxsh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits longlong.

Figure 6-46. vmaxsh—Maximum of Eight Signed Integer Elements (16-Bit)

04 vD vA vB 322

0 5 6 10 11 15 16 20 21 31

≥si≥si≥si≥si≥si≥si≥si≥si

vA

vB

vD
6-74 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmaxsw vmaxsw
Vector Maximum Signed Word

vmaxsw vD,vA,vB Form: VX

do i=0 to 127 by 32

if (vA)i:i+31 ≥si (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each element of vmaxsw is a word.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer values is placed into the corresponding
element of vD.

Other registers altered:

• None

Figure 6-47 shows the usage of the vmaxsw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-47. vmaxsw—Maximum of Four Signed Integer Elements (32-Bit)

04 vD vA vB 386

0 5 6 10 11 15 16 20 21 31

≥si≥si≥si≥si

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-75

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmaxub vmaxub
Vector Maximum Signed Byte

vmaxub vD,vA,vB Form: VX

do i=0 to 127 by 8

if (vA)i:i+7 ≥ui (vB)i:i+7
 then vDi:i+7 ← (vA)i:i+7
 else vDi:i+7 ← (vB)i:i+7

end

Each element of vmaxub is a byte.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-48 shows the usage of the vmaxub instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-48. vmaxub—Maximum of Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 2

0 5 6 10 11 15 16 20 21 31

≥ui ≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui

vA

vB

vD
6-76 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmaxuh vmaxuh
Vector Maximum Unsigned Half Word

vmaxuh vD,vA,vB Form: VX

do i=0 to 127 by 16

if (vA)i:i+15 ≥ui (vB)i:i+15
 then vDi:i+15 ← (vA)i:i+15
 else vDi:i+15 ← (vB)i:i+15

end

Each element of vmaxuh is a half word.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-49 shows the usage of the vmaxuh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-49. vmaxuh—Maximum of Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 66

0 5 6 10 11 15 16 20 21 31

≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-77

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmaxuw vmaxuw
Vector Maximum Unsigned Word

vmaxuw vD,vA,vB Form: VX

do i=0 to 127 by 32

if (vA)i:i+31 ≥ui (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each element of vmaxuw is a word.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-50 shows the usage of the vmaxuw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-50. vmaxuw—Maximum of Four Unsigned Integer Elements (32-Bit)

04 vD vA vB 130

0 5 6 10 11 15 16 20 21 31

≥ui≥ui≥ui≥ui

vA

vB

vD
6-78 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmhaddshs vmhaddshs
Vector Multiply High and Add Signed Half Word Saturate

vmhaddshs vD,vA,vB,vC Form: VA

do i=0 to 127 by 16

prod0:31← (vA)i:i+15 *si (vB)i:i+15
 temp0:16← prod0:16 +int SignExtend((vC)i:i+15,17)
 vDi:i+15← SItoSIsat(temp0:16,16)

end

Each signed-integer half word element in vA is multiplied by the corresponding
signed-integer half word element in vB, producing a 32-bit signed-integer product. Bits
0-16 of the intermediate product are added to the corresponding signed-integer half-word
element in vC after they have been sign extended to 17-bits. The 16-bit saturated result from
each of the eight 17-bit sums is placed in register vD.

If the intermediate result is greater than (215-1) it saturates to (215-1) and if it is less than
(-215) it saturates to (-215).

The signed-integer result is placed into the corresponding half-word element of vD.

Other registers altered:

• Vector status and control register (VSCR):

Affected: SAT

Figure 6-51 shows the usage of the vmhaddshs instruction. Each of the eight elements in
the vectors, vA, vB, vC, and vD, is 16 bits long.

Figure 6-51. vmhaddshs—Multiply-High and Add Eight Signed Integer Elements
(16-Bit)

04 vD vA vB vC 32

0 5 6 10 11 15 16 20 21 25 26 31

+

S

vA

vB

Prod

vC

Temp

vD

* * * * * * * *

+

S

Sat

1716

16
+

S

+

S

+

S

+

S

+

S

+

S

MOTOROLA Chapter 6. AltiVec Instructions 6-79

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmhraddshs vmhraddshs
Vector Multiply High Round and Add Signed Half Word Saturate

vmhraddshs vD,vA,vB,vC Form: VA

do i=0 to 127 by 16

prod0:31 ← (vA)i:i+15 *si (vB)i:i+15

prod0:31 ← prod0:31 +int 0x0000_4000
temp0:16 ← prod0:16 +int SignExtend((vC)i:i+15,17)

(vD)i:i+15 ← SItoSIsat(temp0:16,16)

end

Each signed integer halfword element in register vA is multiplied by the corresponding
signed integer halfword element in register vB, producing a 32-bit signed integer product.
The value 0x0000_4000 is added to the product, producing a 32-bit signed integer sum. Bits
0—16 of the sum are added to the corresponding signed integer halfword element in
register vD.

If the intermediate result is greater than (215-1) it saturates to (215-1) and if it is less than
(-215) it saturates to (-215).

The signed integer result is and placed into the corresponding halfword element of register
vD.

Figure 6-52 shows the usage of the vmhraddshs instruction. Each of the eight elements in
the vectors, vA, vB, vC, and vD, is 16 bits long.

Figure 6-52. vmhraddshs—Multiply-High Round and Add Eight Signed Integer
Elements (16-Bit)

04 vD vA vB vC 33

0 5 6 10 11 15 16 20 21 25 26 31

+

vA

vB

Prod

Const

Temp

vD

* * * * * * * *

+

Sat

1716

16
+ + ++++

0......01

S vCS S S SSSS
18

0......01 0......01 0......01 0......01 0......01 0......01 0......01
6-80 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vminfp vminfp
Vector Minimum Floating Point

vminfp vD,vA,vB Form: VX

do i=0 to 127 by 32

if (vA)i:i+31 <fp (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each single-precision floating-point word element in register vA is compared to the
corresponding single-precision floating-point word element in register vB. The smaller of
the two single-precision floating-point values is placed into the corresponding word
element of register vD.

The minimum of + 0.0 and - 0.0 is - 0.0. The minimum of any value and a NaN is a QNaN.

If VSCR[NJ] = 1, every denormalized operand element is truncated to 0 before the
comparison is made.

Figure 6-53 shows the usage of the vminfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-53. vminfp—Minimum of Four Floating-Point Elements (32-Bit)

04 vD vA vB 1098

0 5 6 10 11 15 16 20 21 31

<fp<fp<fp<fp

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-81

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vminsb vminsb
Vector Minimum Signed Byte

vminsb vD,vA,vB Form: VX

do i=0 to 127 by 8

if (vA)i:i+7 <si (vB)i:i+7
 then vDi:i+7 ← (vA)i:i+7
 else vDi:i+7 ← (vB)i:i+7

end

Each element of vminsb is a byte.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer values is placed into the corresponding
element of vD.

Other registers altered:

• None

Figure 6-54 shows the usage of the vminsb instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-54. vminsb—Minimum of Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 770

0 5 6 10 11 15 16 20 21 31

<si <si<si<si<si<si<si<si<si<si<si<si<si<si<si<si

vA

vB

vD
6-82 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vminsh vminsh
Vector Minimum Signed Half Word

vminsh vD,vA,vB Form: VX

do i=0 to 127 by 16

if (vA)i:i+15<si (vB)i:i+15
 then vDi:i+15 ← (vA)i:i+15
 else vDi:i+15 ← (vB)i:i+15

end

Each element of vminsh is a half word.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer values is placed into the corresponding
element of vD.

Other registers altered:

• None

Figure 6-55 shows the usage of the vminsh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-55. vminsh—Minimum of Eight Signed Integer Elements (16-Bit)

04 vD vA vB 834

0 5 6 10 11 15 16 20 21 31

<si<si<si<si<si<si<si<si

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-83

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vminsw vminsw
Vector Minimum Signed Word

vminsw vD,vA,vB Form: VX

do i=0 to 127 by 32

if (vA)i:i+31 <si (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each element of vminsw is a word.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer values is placed into the corresponding
element of vD.

Other registers altered:

• None

Figure 6-56 shows the usage of the vminsw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-56. vminsw—Minimum of Four Signed Integer Elements (32-Bit)

04 vD vA vB 898

0 5 6 10 11 15 16 20 21 31

<si<si<si<si

vA

vB

vD
6-84 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vminub vminub
Vector Minimum Unsigned Byte

vminub vD,vA,vB Form: VX

do i=0 to 127 by 8

if (vA)i:i+7 <ui (vB)i:i+7
 then vDi:i+7 ← (vA)i:i+7
 else vDi:i+7 ← (vB)i:i+7

end

Each element of vminub is a byte.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-57 shows the usage of the vminub instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-57. vminub—Minimum of Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 514

0 5 6 10 11 15 16 20 21 31

<ui <ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-85

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vminuh vminuh
Vector Minimum Unsigned Half Word

vminuh vD,vA,vB Form: VX

do i=0 to 127 by 16

if (vA)i:i+15 <ui (vB)i:i+15
 then vDi:i+15 ← (vA)i:i+15
 else vDi:i+15 ← (vB)i:i+15

end

Each element of vminuh is a half word.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-58 shows the usage of the vminuh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-58. vminuh—Minimum of Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 578

0 5 6 10 11 15 16 20 21 31

<ui<ui<ui<ui<ui<ui<ui<ui

vA

vB

vD
6-86 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vminuw vminuw
Vector Minimum Unsigned Word

vminuw vD,vA,vB Form: VX

do i=0 to 127 by 32

if (vA)i:i+31 <ui (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each element of vminuw is a word.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-59 shows the usage of the vminuw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-59. vminuw—Minimum of Four Unsigned Integer Elements (32-Bit)

04 vD vA vB 642

0 5 6 10 11 15 16 20 21 31

<ui<ui<ui<ui

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-87

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmladduhm vmladduhm
Vector Multiply Low and Add Unsigned Half Word Modulo

vmladduhm vD,vA,vB,vC Form: VA

do i=0 to 127 by 16

prod0:31← (vA)i:i+15 *ui (vB)i:i+15
vDi:i+15← prod0:31 +int (vC)i:i+15

end

Each integer half-word element in vA is multiplied by the corresponding integer half-word
element in vB, producing a 32-bit integer product. The product is added to the
corresponding integer half-word element in vC. The integer result is placed into the
corresponding half-word element of vD.

Note that vmladduhm can be used for unsigned or signed integers.

Other registers altered:

• None

Figure 6-60 shows the usage of the vmladduhm instruction. Each of the eight elements in
the vectors, vA, vB, vC, and vD, is 16 bits long.

Figure 6-60. vmladduhm—Multiply-Add of Eight Integer Elements (16-Bit)

04 vD vA vB vC 34

0 5 6 10 11 15 16 20 21 25 26 31

+

vA

vB

Prod

vC

Temp

vD

* * * * * * * *

+ + + ++++
6-88 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmrghb vmrghb
Vector Merge High Byte

vmrghb vD,vA,vB Form: VX

do i=0 to 63 by 8

vDi*2:(i*2)+15 ← (vA)i:i+7 || (vB)i:i+7

end

Each element of vmrghb is a byte.

The elements in the high-order half of vA are placed, in the same order, into the
even-numbered elements of vD. The elements in the high-order half of vB are placed, in the
same order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-61 shows the usage of the vmrghb instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-61. vmrghb—Merge Eight High-Order Elements (8-Bit)

04 vD vA vB 12

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-89

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmrghh vmrghh
Vector Merge High Half word

vmrghh vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi*2:(i*2)+31 ← (vA)i:i+15 || (vB)i:i+15

end

Each element of vmrghh is a half word.

The elements in the high-order half of vA are placed, in the same order, into the
even-numbered elements of vD. The elements in the high-order half of vB are placed, in the
same order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-62 shows the usage of the vmrghh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-62. vmrghh—Merge Four High-Order Elements (16-Bit)

04 vD vA vB 76

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
6-90 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmrghw vmrghw
Vector Merge High Word

vmrghw vD,vA,vB Form: VX

do i=0 to 63 by 32

vDi*2:(i*2)+63 ← (vA)i:i+31 || (vB)i:i+31

end

Each element of vmrghw is a word.

The elements in the high-order half of vA are placed, in the same order, into the
even-numbered elements of vD. The elements in the high-order half of vB are placed, in the
same order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-63 shows the usage of the vmrghw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-63. vmrghw—Merge Four High-Order Elements (32-Bit)

04 vD vA vB 140

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-91

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmrglb vmrglb
Vector Merge Low Byte

vmrglb vD,vA,vB Form: VX

do i=0 to 63 by 8

vDi*2:(i*2)+15 ← (vA)i+64:i+71 || (vB)i+64:i+71

end

Each element offer vmrglb is a byte.

The elements in the low-order half of vA are placed, in the same order, into the
even-numbered elements of vD. The elements in the low-order half of vB are placed, in the
same order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-64 shows the usage of the vmrglb instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-64. vmrglb—Merge Eight Low-Order Elements (8-Bit)

04 vD vA vB 268

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
6-92 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmrglh vmrglh
Vector Merge Low Half Word

vmrglh vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi*2:(i*2)+31 ← (vA)i+64:i+79 || (vB)i+64:i+79

end

Each element of vmrglh is a half word.

The elements in the low-order half of vA are placed, in the same order, into the
even-numbered elements of vD. The elements in the low-order half of vB are placed, in the
same order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-65 shows the usage of the vmrglh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-65. vmrglh—Merge Four Low-Order Elements (16-Bit)

04 vD vA vB 332

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-93

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmrglw vmrglw
Vector Merge Low Word

vmrglw vD,vA,vB Form: VX

do i=0 to 63 by 32

vDi*2:(i*2)+63 ← (vA)i+64:i+95 || (vB)i+64:i+95

end

Each element of vmrglw is a word.

The elements in the low-order half of vA are placed, in the same order, into the
even-numbered elements of vD. The elements in the low-order half of vB are placed, in the
same order, into the odd-numbered elements of vD.

Other registers altered:

• None

Figure 6-66 shows the usage of the vmrglw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-66. vmrglw—Merge Four Low-Order Elements (32-Bit)

04 vD vA vB 396

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
6-94 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmsummbm vmsummbm
Vector Multiply Sum Mixed-Sign Byte Modulo

vmsummbm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 8

prod0:15 ← (vA)i+j:i+j+7 *sui (vB)i+j:i+j+7
temp0:31 ← temp0:31 +int SignExtend(prod0:15,32)
end

vDi:i+31 ← temp0:31

end

For each word element in vC the following operations are performed in the order shown.

• Each of the four signed-integer byte elements contained in the corresponding word
element of vA is multiplied by the corresponding unsigned-integer byte element in
vB, producing a signed-integer 16-bit product.

• The signed-integer modulo sum of these four products is added to the signed-integer
word element in vC.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:

• None

Figure 6-67 shows the usage of the vmsummbm instruction. Each of the sixteen elements
in the vectors, vA, and vB, are 8 bits long. Each of the four elements in the vectors, vC and
vD are 32 bits long.

Figure 6-67. vmsummbm—Multiply-Sum of Integer Elements (8-Bit to 32-Bit)

04 vD vA vB vC 37

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * * * * * * * * * * *

+ + + +
MOTOROLA Chapter 6. AltiVec Instructions 6-95

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmsumshm vmsumshm
Vector Multiply Sum Signed Half Word Modulo

vmsumshm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *si (vB)i+j:i+j+15
temp0:31 ← temp0:31 +int prod0:31
vDi:i+31 ← temp0:31

end

end

For each word element in vC the following operations are performed in the order shown.

• Each of the two signed-integer half-word elements contained in the corresponding
word element of vA is multiplied by the corresponding signed-integer half-word
element in vB, producing a signed-integer 32-bit product.

• The signed-integer modulo sum of these two products is added to the signed-integer
word element in vC.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:

• None

Figure 6-68 shows the usage of the vmsumshm instruction. Each of the eight elements in
the vectors, vA, and vB, are 16 bits long. Each of the four elements in the vectors, vC and
vD are 32 bits long.

Figure 6-68. vmsumshm—Multiply-Sum of Signed Integer Elements
(16-Bit to 32-Bit)

04 vD vA vB vC 40

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * *

+ + + +

*

6-96 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmsumshs vmsumshs
Vector Multiply Sum Signed Half Word Saturate

vmsumshs vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:33 ← SignExtend((vC)i:i+31,34)
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *si (vB)i+j:i+j+15
temp0:33 ← temp0:33 +int SignExtend(prod0:31,34)
vDi:i+31 ← SItoSIsat(temp0:33,32)

end

end

For each word element in vC the following operations are performed in the order shown.

• Each of the two signed-integer half-word elements in the corresponding word
element of vA is multiplied by the corresponding signed-integer half-word element
in vB, producing a signed-integer 32-bit product.

• The signed-integer sum of these two products is added to the signed-integer word
element in vC.

• If this intermediate result is greater than (231-1) it saturates to (231-1) and if it is less
than -231 it saturates to -231.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:
• SAT

Figure 6-69 shows the usage of the vmsumshs instruction. Each of the eight elements in
the vectors, vA, and vB, are 16 bits long. Each of the four elements in the vectors, vC and
vD are 32 bits long.

Figure 6-69. vmsumshs—Multiply-Sum of Signed Integer Elements
(16-Bit to 32-Bit)

04 vD vA vB vC 41

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * *

+ + + +

*

MOTOROLA Chapter 6. AltiVec Instructions 6-97

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmsumubm vmsumubm
Vector Multiply Sum Unsigned Byte Modulo

vmsumubm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 8

prod0:15 ← (vA)i+j:i+j+7 *ui (vB)i+j:i+j+7
temp0:32 ← temp0:32 +int ZeroExtend(prod0:15,32)
vDi:i+31 ← temp0:31

end

end

For each word element in vC the following operations are performed in the order shown.

• Each of the four unsigned-integer byte elements contained in the corresponding
word element of vA is multiplied by the corresponding unsigned-integer byte
element in vB, producing an unsigned-integer 16-bit product.

• The unsigned-integer modulo sum of these four products is added to the
unsigned-integer word element in vC.

• The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:

• None

Figure 6-70 shows the usage of the vmsumubm instruction. Each of the sixteen elements
in the vectors, vA, and vB, are 8 bits long. Each of the four elements in the vectors, vC and
vD are 32 bits long.

Figure 6-70. vmsumubm—Multiply-Sum of Unsigned Integer Elements
(8-Bit to 32-Bit)

04 vD vA vB vC 36

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * * * * * * * * * * *

+ + + +
6-98 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmsumuhm vmsumuhm
Vector Multiply Sum Unsigned Half Word Modulo

vmsumuhm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *ui (vB)i+j:i+j+15
temp0:31 ← temp0:31 +int prod0:31
vDi:i+31 ← temp2:33

end

end

For each word element in vC the following operations are performed in the order shown.

• Each of the two unsigned-integer half-word elements contained in the corresponding
word element of vA is multiplied by the corresponding unsigned-integer half-word
element in vB, producing a unsigned-integer 32-bit product.

• The unsigned-integer sum of these two products is added to the unsigned-integer
word element in vC.

• The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:

• None

Figure 6-71 shows the usage of the vmsumuhm instruction. Each of the eight elements in
the vectors, vA, and vB, are 16 bits long. Each of the four elements in the vectors, vC and
vD are 32 bits long.

Figure 6-71. vmsumuhm—Multiply-Sum of Unsigned Integer Elements
(16-Bit to 32-Bit)

04 vD vA vB vC 38

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * *

+ + + +

*

MOTOROLA Chapter 6. AltiVec Instructions 6-99

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmsumuhs vmsumuhs
Vector Multiply Sum Unsigned Half Word Saturate

vmsumuhs vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:33 ← ZeroExtend((vC)i:i+31,34)
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *ui (vB)i+j:i+j+15
temp0:33 ← temp0:33 +int ZeroExtend(prod0:31,34)
vDi:i+31 ← UItoUIsat(temp0:33,32)

end

end

For each word element in vC the following operations are performed in the order shown.

• Each of the two unsigned-integer half-word elements contained in the corresponding
word element of vA is multiplied by the corresponding unsigned-integer half-word
element in vB, producing an unsigned-integer 32-bit product.

• The unsigned-integer sum of these two products is saturate-added to the
unsigned-integer word element in vC.

• The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:

• SAT

Figure 6-72 shows the usage of the vmsumuhs instruction. Each of the eight elements in
the vectors, vA, and vB, are 16 bits long. Each of the four elements in the vectors, vC and
vD are 32 bits long.

Figure 6-72. vmsumuhs—Multiply-Sum of Unsigned Integer Elements
(16-Bit to 32-Bit)

04 vD vA vB vC 39

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * *

+ + + +

*

6-100 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmulesb vmulesb
Vector Multiply Even Signed Byte

vmulesb vD,vA,vB Form: VX

do i=0 to 127 by 16

prod0:15← (vA)i:i+7 *si (vB)i:i+7
 vDi:i+15← prod0:15

end

Each even-numbered signed-integer byte element in vA is multiplied by the corresponding
signed-integer byte element in vB. The eight 16-bit signed-integer products are placed, in
the same order, into the eight half-words of vD.

Other registers altered:

• None

Figure 6-73 shows the usage of the vmulesb instruction. Each of the sixteen elements in
the vectors, vA, and vB, is 8 bits long. Each of the eight elements in the vector vD, is 16
bits long.

Figure 6-73. vmulesb—Even Multiply of Eight Signed Integer Elements (8-Bit)

04 vD vA vB 776

0 5 6 10 11 15 16 20 21 31

** * * * * * *

vA

vB

vD

ØØØØØØØØ

ØØØØØØØØ
MOTOROLA Chapter 6. AltiVec Instructions 6-101

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmulesh vmulesh
Vector Multiply Even Signed Half Word

vmulesh vD,vA,vB Form: VX

do i=0 to 127 by 32

prod0:31← (vA)i:i+15 *si (vB)i:i+15
vDi:i+31← prod0:31

end

Each even-numbered signed-integer half-word element in vA is multiplied by the
corresponding signed-integer half-word element in vB. The four 32-bit signed-integer
products are placed, in the same order, into the four words of vD.

Other registers altered:

• None

Figure 6-74 shows the usage of the vmulesh instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the four elements in the vector vD, is 32 bits
long.

Figure 6-74. vmulesb—Even Multiply of Four Signed Integer Elements (16-Bit)

04 vD vA vB 840

0 5 6 10 11 15 16 20 21 31

ØØØØ

*

vA

vB

vD

ØØØØ

6-102 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmuleub vmuleub
Vector Multiply Even Unsigned Byte

vmuleub vD,vA,vB Form: VX

do i=0 to 127 by 16

prod0:15 ← (vA)i:i+7 *ui (vB)i:i+7
(vD)i:i+15 ← prod0:15

end

Each even-numbered unsigned-integer byte element in register vA is multiplied by the
corresponding unsigned-integer byte element in register vB. The eight 16-bit
unsigned-integer products are placed, in the same order, into the eight halfwords of register
vD.

Other registers altered:

• None

Figure 6-75 shows the usage of the vmuleub instruction. Each of the sixteen elements in
the vectors, vA, and vB, is 8 bits long. Each of the eight elements in the vector vD, is 16
bits long.

Figure 6-75. vmuleub—Even Multiply of Eight Unsigned Integer Elements (8-Bit)

04 vD vA vB 520

0 5 6 10 11 15 16 20 21 31

** * * * * * *

vA

vB

vD

ØØØØØØØØ

ØØØØØØØØ
MOTOROLA Chapter 6. AltiVec Instructions 6-103

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmuleuh vmuleuh
Vector Multiply Even Unsigned Half Word

vmuleuh vD,vA,vB Form: VX

do i=0 to 127 by 32

prod0:31 ← (vA)i:i+15 *ui (vB)i:i+15
(vD)i:i+31 ← prod0:31

end

Each even-numbered unsigned-integer halfword element in register vA is multiplied by the
corresponding unsigned-integer halfword element in register vB. The four 32-bit
unsigned-integer products are placed, in the same order, into the four words of register vD.

Other registers altered:

• None

Figure 6-76 shows the usage of the vmuleuh instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the four elements in the vector vD, is 32 bits
long.

Figure 6-76. vmuleuh—Even Multiply of Four Unsigned Integer Elements (16-Bit)

04 vD vA vB 584

0 5 6 10 11 15 16 20 21 31

ØØØØ

*

vA

vB

vD

ØØØØ

6-104 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmulosb vmulosb
Vector Multiply Odd Signed Byte

vmulosb vD,vA,vB Form: VX

do i=0 to 127 by 16

prod0:15← (vA)i+8:i+15 *si (vB)i+8:i+15
vDi:i+15← prod0:15

end

Each odd-numbered signed-integer byte element in vA is multiplied by the corresponding
signed-integer byte element in vB. The eight 16-bit signed-integer products are placed, in
the same order, into the eight half-words of vD.

Other registers altered:

• None

Figure 6-77 shows the usage of the vmulosb instruction. Each of the sixteen elements in
the vectors, vA, and vB, is 8 bits long. Each of the eight elements in the vector vD, is 16
bits long.

Figure 6-77. vmulosb—Odd Multiply of Eight Signed Integer Elements (8-Bit)

04 vD vA vB 264

0 5 6 10 11 15 16 20 21 31

* *******

vA

vB

vD

Ø Ø Ø Ø Ø Ø Ø Ø

Ø Ø Ø Ø Ø Ø Ø Ø
MOTOROLA Chapter 6. AltiVec Instructions 6-105

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmulosh vmulosh
Vector Multiply Odd Signed Half Word

vmulosh vD,vA,vB Form: VX

do i=0 to 127 by 32

prod0:31← (vA)i+16:i+31 *si (vB)i+16:i+31
vDi:i+31← prod0:31

end

Each odd-numbered signed-integer half-word element in vA is multiplied by the
corresponding signed-integer half-word element in vB. The four 32-bit signed-integer
products are placed, in the same order, into the four words of vD.

Other registers altered:

• None

Figure 6-78 shows the usage of the vmuleuh instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the four elements in the vector vD, is 32 bits
long.

Figure 6-78. vmuleuh—Odd Multiply of Four Unsigned Integer Elements (16-Bit)

04 vD vA vB 328

0 5 6 10 11 15 16 20 21 31

Ø Ø Ø Ø

vA

vB

vD

Ø Ø Ø Ø
6-106 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmuloub vmuloub
Vector Multiply Odd Unsigned Byte

vmuloub vD,vA,vB Form: VX

do i=0 to 127 by 8

prod0:15← (vA)i+8:i+15 *ui (vB)i+n:i+15
vDi:i+15← prod0:15

end

Each odd-numbered unsigned-integer byte element in vA is multiplied by the
corresponding unsigned-integer byte element in vB. The eight 16-bit unsigned-integer
products are placed, in the same order, into the eight half-word s of vD.

Other registers altered:

• None

Figure 6-79 shows the usage of the vmuloub instruction. Each of the sixteen elements in
the vectors, vA, and vB, is 8 bits long. Each of the eight elements in the vector vD, is 16
bits long.

Figure 6-79. vmuloub—Odd Multiply of Eight Unsigned Integer Elements (8-Bit)

04 vD vA vB 8

0 5 6 10 11 15 16 20 21 31

* *******

vA

vB

vD

Ø Ø Ø Ø Ø Ø Ø Ø

Ø Ø Ø Ø Ø Ø Ø Ø
MOTOROLA Chapter 6. AltiVec Instructions 6-107

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmulouh vmulouh
Vector Multiply Odd Unsigned Half Word

vmulouh vD,vA,vB Form: VX

do i=0 to 127 by 16

prod0:31← (vA)i+16:i+31 *ui (vB)i+n:i+311
vDi:i+31← prod0:31

end

Each odd-numbered unsigned-integer half-word element in vA is multiplied by the
corresponding unsigned-integer half-word element in vB. The four 32-bit unsigned-integer
products are placed, in the same order, into the four words of vD.

Other registers altered:

• None

Figure 6-80 shows the usage of the vmulouh instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the four elements in the vector vD, is 32 bits
long.

Figure 6-80. vmulouh—Odd Multiply of Four Unsigned Integer Elements (16-Bit)

04 vD vA vB 72

0 5 6 10 11 15 16 20 21 31

Ø Ø Ø Ø

vA

vB

vD

Ø Ø Ø Ø
6-108 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vnmsubfp vnmsubfp
Vector Negative Multiply-Subtract Floating Point

vnmsubfp vD,vA,vC,vB Form: VA

do i=0 to 127 by 32

vDi:i+31 ← -RndToNearFP32(((vA)i:i+31 *fp (vC)i:i+31) -fp (vB)i:i+31)

end

Each single-precision floating-point word element in vA is multiplied by the corresponding
single-precision floating-point word element in vC. The corresponding single-precision
floating-point word element in vB is subtracted from the product. The sign of the difference
is inverted. The result is rounded to the nearest single-precision floating-point number and
placed into the corresponding word element of vD.

Note that only one rounding occurs in this operation. Also note that a QNaN result is not
negated.

Other registers altered:

• None

Figure 6-81 shows the usage of the vnmsubfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-81. vnmsubfp—Negative Multiply-Subtract of
Four Floating-Point Elements (32-Bit)

04 vD vA vB vC 47

0 5 6 10 11 15 16 20 21 25 26 31

-

vA

vC

Prod

vB

Invert

* * * *

- - -

vD

&
 Round
MOTOROLA Chapter 6. AltiVec Instructions 6-109

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vnor vnor
Vector Logical NOR

vnor vD,vA,vB Form: VX

vD ← ¬((vA) | (vB))

The contents of vA are bitwise ORed with the contents of vB and the complemented result
is placed into vD.

Other registers altered:

• None

Simplified mnemonics:

vnot vD, vS equivalent to vnor vD, vS, vS

Figure 6-82 shows the usage of the vnor instruction.

Figure 6-82. vnor—Bitwise NOR of 128-bit Vector

04 vD vA vB 1284

0 5 6 10 11 15 16 20 21 31

|

vB

Intermediate

vA

vD

¬

6-110 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vor vor
Vector Logical OR

vor vD,vA,vB Form: VX

vD ← (vA) | (vB)

The contents of vA are ORed with the contents of vB and the result is placed into vD.

Other registers altered:

• None

Simplified mnemonics:

vmr vD, vS equivalent to vor vD, vS, vS

Figure 6-83 shows the usage of the vor instruction.

Figure 6-83. vor—Bitwise OR of 128-bit Vector

04 vD vA vB 1156

0 5 6 10 11 15 16 20 21 31

|

vB

vA

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-111

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vperm vperm
Vector Permute

vperm vD,vA,vB,vC Form: VA

temp0:255 ← (vA) || (vB)
do i=0 to 127 by 8

b ← (vC)i+3:i+7 || 0b000
vDi:i+7 ← tempb:b+7

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB. For each integer i in the range 0–15, the contents of the byte element in the source
vector specified in bits 3–7 of byte element i in vC are placed into byte element i of vD.

Other registers altered:

• None

Programming note: See the programming notes with the Load Vector for Shift Left and
Load Vector for Shift Right instructions for examples of usage on the vperm instruction.

Figure 6-84 shows the usage of the vperm instruction. Each of the sixteen elements in the
vectors, vA, vB, vC, and vD, is 8 bits long.

Figure 6-84. vperm—Concatenate Sixteen Integer Elements (8-Bit)

04 vD vA vB vC 43

0 5 6 10 11 15 16 20 21 25 26 31

vC1 14 18 10 16 15 19 1A 1C 1C 1C 13 8 1D 1B 0E

vA

vB

vD

0 1 2 3 4 5 6 7 8 9 A B C D E F

10 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1F11 1E
6-112 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vpkpx vpkpx
Vector Pack Pixel32

vpkpx vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi ← (vA)i*2+7
vDi+1:i+5← (vA)(i*2)+8:(i*2)+12
vDi+6:i+10← (vA)(i*2)+16:(i*2)+20
vDi+11:i+15← (vA)((i*2)+24:(i*2)+28
vDi+64← (vB)(i*2)+7
vDi+65:i+69← (vB)(i*2)+8:(i*2)+12
vDi+70:i+74← (vB)(i*2)+16:(i*2)+20
vDi+75:i+79← (vB)(i*2)+24:(i*2)+28

end

The source vector is the concatenation of the contents of vA followed by the contents of
vB. Each 32-bit word element in the source vector is packed to produce a 16-bit half-word
value as described below and placed into the corresponding half-word element of vD. A
word is packed to 16 bits by concatenating, in order, the following bits.

• bit 7 of the first byte (bit 7 of the word)

• bits 0–4 of the second byte (bits 8–12 of the word)

• bits 0–4 of the third byte (bits 16–20 of the word)

• bits 0–4 of the fourth byte (bits 24–28 of the word)

Figure 6-85 shows which bits of the source word are packed to form the half word in the
destination register.

Figure 6-85. How a Word is Packed to a Half Word

04 vD vA vB 782

0 5 6 10 11 15 16 20 21 31

Source Word

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vD Packed Half Word

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 8 9 10 11 12 12 17 18 19 20 24 25 26 27 28
MOTOROLA Chapter 6. AltiVec Instructions 6-113

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Other registers altered:

• None

Programming note: Each source word can be considered to be a 32-bit pixel consisting of
four 8-bit channels. Each target half-word can be considered to be a 16-bit pixel consisting
of one 1-bit channel and three 5-bit channels. A channel can be used to specify the intensity
of a particular color, such as red, green, or blue, or to provide other information needed by
the application.

Figure 6-86 shows the usage of the vpkpx instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-86. vpkpx—Pack Eight Elements (32-Bit) to Eight Elements (16-Bit)

vA vB

vD
6-114 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vpkshss vpkshss
Vector Pack Signed Half Word Signed Saturate

vpkshss vD,vA,vB Form: VX

do i=0 to 63 by 8

vDi:i+7← SItoSIsat((vA)i*2:(i*2)+15,8)
vDi+64:i+71← SItoSIsat((vB)i*2:(i*2)+15,8)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each signed integer half-word element in the source vector is converted to an 8-bit signed
integer. If the value of the element is greater than (2 7 - 1) the result saturates to (27 - 1) and
if the value is less than -27 the result saturates to -27. The result is placed into the
corresponding byte element of vD.

Other registers altered:

• SAT

Figure 6-87 shows the usage of the vpkshss instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the sixteen elements in the vector vD, is 8 bits
long.

Figure 6-87. vpkshss—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen
Signed Integer Elements (8-Bit)

04 vD vA vB 398

0 5 6 10 11 15 16 20 21 31

vA vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-115

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vpkshus vpkshus
Vector Pack Signed Half Word Unsigned Saturate

vpkshus vD,vA,vB Form: VX

do i=0 to 63 by 8

vDi:i+7← SItoUIsat((vA)i*2:(i*2)+7,8)
vDi+64:i+71← SItoUIsat((vB)i*2:(i*2)+7,8)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each signed integer half-word element in the source vector is converted to an 8-bit unsigned
integer. If the value of the element is greater than (28 - 1) the result saturates to (28 - 1) and
if the value is less than 0 the result saturates to 0. The result is placed into the corresponding
byte element of vD.

Other registers altered:

• SAT

Figure 6-88 shows the usage of the vpkshus instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the sixteen elements in the vector vD, is 8 bits
long.

Figure 6-88. vpkshus—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen
Unsigned Integer Elements (8-Bit)

04 vD vA vB 270

0 5 6 10 11 15 16 20 21 31

vA vB

vD
6-116 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vpkswss vpkswss
Vector Pack Signed Word Signed Saturate

vpkswss vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi:i+15← SItoSIsat((vA)i*2:(i*2)+31,16)
vDi+64:i+79← SItoSIsat((vB)i*2:(i*2)+31,16)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each signed integer word element in the source vector is converted to a 16-bit signed
integer half word. If the value of the element is greater than (215 - 1) the result saturates to
(215 - 1) and if the value is less than -215 the result saturates to -215. The result is placed into
the corresponding half-word element of vD.

Other registers altered:

• SAT

Figure 6-89 shows the usage of the vpkswss instruction. Each of the four elements in the
vectors, vA, and vB, is 32 bits long. Each of the eight elements in the vector vD, is 16 bits
long.

g

Figure 6-89. vpkswss—Pack Eight Signed Integer Elements (32-Bit) to Eight Signed
Integer Elements (16-Bit)

04 vD vA vB 462

0 5 6 10 11 15 16 20 21 31

vA vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-117

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vpkswus vpkswus
Vector Pack Signed Word Unsigned Saturate

vpkswus vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi:i+15← SItoUIsat((vA)i*2:(i*2)+31,16)
vDi+64:i+79← SItoUIsat((vB)i*2:(i*2)+31,16)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each signed integer word element in the source vector is converted to a 16-bit unsigned
integer. If the value of the element is greater than (216 - 1) the result saturates to (216 - 1) and
if the value is less than 0 the result saturates to 0. The result is placed into the corresponding
half-word element of vD.

Other registers altered:

• SAT

Figure 6-90 shows the usage of the vpkswus instruction. Each of the four elements in the
vectors, vA, and vB, is 32 bits long. Each of the eight elements in the vector vD, is 16 bits
long.

Figure 6-90. vpkswus—Pack Eight Signed Integer Elements (32-Bit) to Eight
Unsigned Integer Elements (16-Bit)

04 vD vA vB 334

0 5 6 10 11 15 16 20 21 31

vA vB

vD
6-118 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vpkuhum vpkuhum
Vector Pack Unsigned Half Word Unsigned Modulo

vpkuhum vD,vA,vB Form: VX

do i=0 to 63 by 8

vDi:i+7← (vA)(i*2)+8:(i*2)+15
vDi+64:i+71← (vB)(i*2)+8:(i*2)+15

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

The low-order byte of each half-word element in the source vector is placed into the
corresponding byte element of vD.

Other registers altered:

• None

Figure 6-91 shows the usage of the vpkuhum instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the sixteen elements in the vector vD, is 8 bits
long.

Figure 6-91. vpkuhum—Pack Sixteen Unsigned Integer Elements (16-Bit)
to Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 14

0 5 6 10 11 15 16 20 21 31

vA vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-119

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vpkuhus vpkuhus
Vector Pack Unsigned Half Word Unsigned Saturate

vpkuhus vD,vA,vB Form: VX

do i=0 to 63 by 8

vDi:i+7← UItoUIsat((vA)i*2:(i*2)+15,8)
vDi+64:i+71← UItoUIsat((vB)i*2:(i*2)+15,8)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each unsigned integer half-word element in the source vector is converted to an 8-bit
unsigned integer. If the value of the element is greater than (28 - 1) the result saturates to (28

- 1). The result is placed into the corresponding byte element of vD.

Other registers altered:

• SAT

Figure 6-92 shows the usage of the vpkuhus instruction. Each of the eight elements in the
vectors, vA, and vB, is 16 bits long. Each of the sixteen elements in the vector vD, is 8 bits
long.

Figure 6-92. vpkuhus—Pack Sixteen Unsigned Integer Elements (16-Bit)
to Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 142

0 5 6 10 11 15 16 20 21 31

vA vB

vD
6-120 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vpkuwum vpkuwum
Vector Pack Unsigned Word Unsigned Modulo

vpkuwum vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi:i+15← (vA)(i*2)+16:(i*2)+31
vDi+64:i+79← (vB)(i*2)+16:(i*2)+31

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

The low-order half-word of each word element in the source vector is placed into the
corresponding half-word element of vD.

Other registers altered:

• None

Figure 6-93 shows the usage of the vpkuwum instruction. Each of the four elements in the
vectors, vA, and vB, is 32 bits long. Each of the eight elements in the vector vD, is 16 bits
long.

Figure 6-93. vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit)
to Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 78

0 5 6 10 11 15 16 20 21 31

vA vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-121

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vpkuwus vpkuwus
Vector Pack Unsigned Word Unsigned Saturate

vpkuwus vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi:i+15← UItoUIsat((vA)i*2:(i*2)+31,16)
vDi+64:i+79← UItoUIsat((vB)i*2:(i*2)+31,16)

end

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB.

Each unsigned integer word element in the source vector is converted to a 16-bit unsigned
integer. If the value of the element is greater than (216 - 1) the result saturates to (216 - 1).
The result is placed into the corresponding half-word element of vD.

Other registers altered:

• SAT

Figure 6-94 shows the usage of the vpkuwus instruction. Each of the four elements in the
vectors, vA, and vB, is 32 bits long. Each of the eight elements in the vector vD, is 16 bits
long.

Figure 6-94. vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit)
to Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 206

0 5 6 10 11 15 16 20 21 31

vA vB

vD
6-122 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vrefp vrefp
Vector Reciprocal Estimate Floating Point

vrefp vD,vB Form: VX

do i=0 to 127 by 32

x ← (vB)i:i+31

vDi:i+31 ← 1/x

end

The single-precision floating-point estimate of the reciprocal of each single-precision
floating-point element in vB is placed into the corresponding element of vD.

For results that are not a +0, -0, +∞, -∞, or QNaN, the estimate has a relative error in
precision no greater than one part in 4096, that is:

where x is the value of the element in vB. Note that the value placed into the element of vD
may vary between implementations, and between different executions on the same
implementation.

Operation with various special values of the element in vB is summarized below in
Table 6-7.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

Other registers altered:

• None

04 vD 0_0000 vB 266

0 5 6 10 11 15 16 20 21 31

Table 6-7. Special Values of the Element in vB

Value Result

-∞ -0

-0 -∞

+0 +∞

+∞ +0

NaN QNaN

estimate 1 x⁄–
1 x⁄

--
1

4096
-------------≤
MOTOROLA Chapter 6. AltiVec Instructions 6-123

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6-95 shows the usage of the vrefp instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-95. vrefp—Reciprocal Estimate of Four Floating-Point Elements (32-Bit)

1 / x1 / x1 /x1 /x

vB

vD

x x x x
6-124 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vrfim vrfim
Vector Round to Floating-Point Integer toward Minus Infinity

vrfim vD,vB Form: VX

do i=0 to 127 by 32

vDi:i+31 ← RndToFPInt32Floor((vB)i:i+31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision
floating-point integer, using the rounding mode Round toward -Infinity, and placed into the
corresponding word element of vD.

Other registers altered:

• None

Figure 6-96 shows the usage of the vrfim instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-96. vrfim— Round to Minus Infinity of Four Floating-Point
Integer Elements (32-Bit)

04 vD 0_0000 vB 714

0 5 6 10 11 15 16 20 21 31

RndToFPInt32FloorRndToFPInt32FloorRndToFPInt32FloorRndToFPInt32Floor

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-125

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vrfin vrfin
Vector Round to Floating-Point Integer Nearest

vrfin vD,vB Form: VX

do i=0 to 127 by 32

vDi:i+31 ← RndToFPInt32Near((vB)i:i+31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision
floating-point integer, using the rounding mode Round to Nearest, and placed into the
corresponding word element of vD.

Note the result is independent of VSCR[NJ].

Other registers altered:

• None

Figure 6-97 shows the usage of the vrfin instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-97. vrfin—Nearest Round to Nearest of Four
Floating-Point Integer Elements (32-Bit)

04 vD 0_0000 vB 522

0 5 6 10 11 15 16 20 21 31

RndToFPInt32NearRndToFPInt32NearRndToFPInt32NeaRndToFPInt32Near

vB

vD
6-126 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vrfip vrfip
Vector Round to Floating-Point Integer toward Plus Infinity

vrfip vD,vB Form: VX

do i=0 to 127 by 32

vDi:i+31 ← RndToFPInt32Ceil((vB)i:i+31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision
floating-point integer, using the rounding mode Round toward +Infinity, and placed into the
corresponding word element of vD.

If VSCR[NJ] = 1, every denormalized operand element is truncated to 0 before the
comparison is made.

Other registers altered:

• None

Figure 6-98 shows the usage of the vrfip instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-98. vrfip—Round to Plus Infinity of Four Floating-Point
Integer Elements (32-Bit)

04 vD 0_0000 vB 650

0 5 6 10 11 15 16 20 21 31

RndToFPInt32CeilRndToFPInt32CeilRndToFPInt32CeilRndToFPInt32Ceil

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-127

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vrfiz vrfiz
Vector Round to Floating-Point Integer toward Zero

vrfiz vD,vB Form: VX

do i=0 to 127 by 32

vDi:i+31 ← RndToFPInt32Trunc((vB)i:i+31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision
floating-point integer, using the rounding mode Round toward Zero, and placed into the
corresponding word element of vD.

Note, the result is independent of VSCR[NJ].

Other registers altered:

• None

Figure 6-99 shows the usage of the vrfiz instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

Figure 6-99. vrfiz—Round-to-Zero of Four Floating-Point Integer Elements (32-Bit)

04 vD 0_0000 vB 586

0 5 6 10 11 15 16 20 21 31

RndToFPInt32TruncRndToFPInt32TruncRndToFPInt32TruncRndToFPInt32Trunc

vB

vD
6-128 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vrlb vrlb
Vector Rotate Left Integer Byte

vrlb vD,vA,vB Form: VX

do i=0 to 127 by 8

sh ← (vB)i+5:i+7
vDi:i+7 ← ROTL((vA)i:i+7,sh)

end

Each element is a byte. Each element in vA is rotated left by the number of bits specified
in the low-order 3 bits of the corresponding element in vB. The result is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-100 shows the usage of the vrlb instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

g

Figure 6-100. vrlb—Left Rotate of Sixteen Integer Elements (8-Bit)

04 vD vA vB 4

0 5 6 10 11 15 16 20 21 31

vA

vD

vB
MOTOROLA Chapter 6. AltiVec Instructions 6-129

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vrlh vrlh
Vector Rotate Left Integer Half Word

vrlh vD,vA,vB Form: VX

do i=0 to 127 by 16

sh ← (vB)i+12:i+15
vDi:i+15 ← ROTL((vA)i:i+15,sh)

end

Each element is a half word

Each element in vA is rotated left by the number of bits specified in the low-order 4 bits of
the corresponding element in vB. The result is placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-101 shows the usage of the vrlh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-101. vrlh—Left Rotate of Eight Integer Elements (16-Bit)

04 vD vA vB 68

0 5 6 10 11 15 16 20 21 31

vA

vD

vB
6-130 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vrlw vrlw
Vector Rotate Left Integer Word

vrlw vD,vA,vB Form: VX

do i=0 to 127 by 32

sh ← (vB)i+27:i+31
vDi:i+31 ← ROTL((vA)i:i+31,sh)

end

Each element is a word. Each element in vA is rotated left by the number of bits specified
in the low-order 5 bits of the corresponding element in vB. The result is placed into the
corresponding element of vD.

Other registers altered:

• None

Figure 6-102 shows the usage of the vrlw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-102. vrlw—Left Rotate of Four Integer Elements (32-Bit)

04 vD vA vB 132

0 5 6 10 11 15 16 20 21 31

vA

vD

vB
MOTOROLA Chapter 6. AltiVec Instructions 6-131

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vrsqrtefp vrsqrtefp
Vector Reciprocal Square Root Estimate Floating Point

vrsqrtefp vD,vB Form: VX

do i=0 to 127 by 32

x ← (vB)i:i+31
vDi:i+31 ← 1 ÷fp (√fp(x))

end

The single-precision estimate of the reciprocal of the square root of each single-precision
element in vB is placed into the corresponding word element of vD. The estimate has a
relative error in precision no greater than one part in 4096, as explained below:

where x is the value of the element in vB. Note that the value placed into the element of vD
may vary between implementations and between different executions on the same
implementation. Operation with various special values of the element in vB is summarized
below in Table 6-8.

Other registers altered:

• None

Figure 6-103 shows the usage of the vrsqrtefp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-103. vrsqrtefp—Reciprocal Square Root Estimate of Four Floating-Point
Elements (32-Bit)

04 vD 0_0000 vB 330

0 5 6 10 11 15 16 20 21 31

Table 6-8. Special Values of the Element in vB

Value Result Value Result

-∞ QNaN +0 +∞

less than 0 QNaN +∞ +0

-0 -∞ NaN QNaN

estimate 1 x⁄–

1 x⁄
--

1
4096
-------------≤

1 / √x

vB

vD

1 / √x1 / √x 1 / √x
6-132 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsel vsel
Vector Conditional Select

vsel vD,vA,vB,vC Form: VA

do i=0 to 127

if (vC)i=0 then vDi ← (vA)i
 else vDi ← (vB)i

end

For each bit in vC that contains the value 0, the corresponding bit in vA is placed into the
corresponding bit of vD. For each bit in vC that contains the value 1, the corresponding bit
in vB is placed into the corresponding bit of vD.

Other registers altered:

• None

Figure 6-104 shows the usage of the vsel instruction. Each of the vectors, vA, vB, vC, and
vD, is 128 bits long.

Figure 6-104. vsel—Bitwise Conditional Select of Vector Contents(128-bit)

04 vD vA vB vC 42

0 5 6 10 11 15 16 20 21 25 26 31

vB

vA

vC0 1 0 0 1 1 0 0 • • • • • • • • • • •

vD

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • •
MOTOROLA Chapter 6. AltiVec Instructions 6-133

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsl vsl
Vector Shift Left

vsl vD,vA,vB Form: VX

sh ← (vB)125:127
t ← 1
do i = 0 to 127 by 8

t ← t & ((vB)i+5:i+7 = sh)
if t = 1 then vD ← (vA) <<ui sh
else vD ← undefined

end

The contents of vA are shifted left by the number of bits specified in vB[125–127]. Bits
shifted out of bit 0 are lost. Zeros are supplied to the vacated bits on the right. The result is
placed into vD.

The contents of the low-order three bits of all byte elements in vB must be identical to
vB[125–127]; otherwise the value placed into vD is undefined.

Other registers altered:

• None

Figure 6-105 shows the usage of the vsl instruction.

Figure 6-105. vsl—Shift Bits Left in Vector (128-Bit)

04 vD vA vB 452

0 5 6 10 11 15 16 20 21 31

vA

vD

• • • • • • • • • •

*6 = sh = Shift Count

125 127

sh zeros

vB6*

 0_0000 0

Shift
6-134 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vslb vslb
Vector Shift Left Integer Byte

vslb vD,vA,vB Form: VX

do i=0 to 127 by 8

sh ← (vB)i+5):i+7
vDi:i+7 ← (vA)i:i+7 <<ui sh

end

Each element is a byte. Each element in vA is shifted left by the number of bits specified
in the low-order 3 bits of the corresponding element in vB. Bits shifted out of bit 0 of the
element are lost. Zeros are supplied to the vacated bits on the right. The result is placed into
the corresponding element of vD.

Other registers altered:

• None

Figure 6-106 shows the usage of the vslb instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-106. vslb—Shift Bits Left in Sixteen Integer Elements (8-Bit)

04 vD vA vB 260

0 5 6 10 11 15 16 20 21 31

666 66666 666666 vB

vA

vD

*6 = sh = Shift Count

*6

125 127

0...0

sh

6

0..00..00..00..00..00..00..00..00..00..00..00..00..00..00..0

zeros
MOTOROLA Chapter 6. AltiVec Instructions 6-135

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsldoi vsldoi
Vector Shift Left Double by Octet Immediate

vsldoi vD, vA, vB, SHB Form: VA

vD ← ((vA) || (vB)) <<ui (SHB || 0b000)

Let the source vector be the concatenation of the contents of vA followed by the contents
of vB. Bytes SHB:SHB+15 of the source vector are placed into vD.

Other registers altered:

• None

Figure 6-107 shows the usage of the vsldoi instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-107. vsldoi—Shift Left by Bytes Specified

04 vD vA vB 0 SH 44

0 5 6 10 11 15 16 20 21 22 25 26 31

vA

vB

vD

SHB
6-136 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vslh vslh
Vector Shift Left Integer Half Word

vslh vD,vA,vB Form: VX

do i=0 to 127 by 16

sh ← (vB)i+12:i+15
vDi:i+15 ← (vA)i:i+15 <<ui sh

end

Each element is a half word. Each element in vA is shifted left by the number of bits
specified in the low-order 4 bits of the corresponding element in vB. Bits shifted out of bit
0 of the element are lost. Zeros are supplied to the vacated bits on the right. The result is
placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-108 shows the usage of the vslh instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-108. vslh—Shift Bits Left in Eight Integer Elements (16-Bit)

04 vD vA vB 324

0 5 6 10 11 15 16 20 21 31

6 666666 vB

vA

vD

*6 = sh = Shift Count

*6

124 127

0...0

sh

0...00...00...00...00...00...00...0

*x
MOTOROLA Chapter 6. AltiVec Instructions 6-137

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vslo vslo
Vector Shift Left by Octet

vslo vD,vA,vB Form: VX

shb ← (vB)121:124
vD ← (vA) <<ui (shb || 0b000)

The contents of vA are shifted left by the number of bytes specified in vB[121–124]. Bytes
shifted out of byte 0 are lost. Zeros are supplied to the vacated bytes on the right. The result
is placed into vD.

Other registers altered:

• None

Figure 6-109 shows the usage of the vslo instruction.

Figure 6-109. vslo—Left Byte Shift of Vector (128-Bit)

04 vD vA vB 1036

0 5 6 10 11 15 16 20 21 31

vB

vA

vD

• • • • • • • • • • *4 = shb = Shift Count

Don’t Care

121 124

0 00 00 00 0

*4
6-138 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vslw vslw
Vector Shift Left Integer Word

vslw vD,vA,vB Form: VX

do i=0 to 127 by 32

sh ← (vB)i+27:i+31
vDi:i+31 ← (vA)i:i+31 <<ui sh

end

Each element is a word. Each element in vA is shifted left by the number of bits specified
in the low-order 5 bits of the corresponding element in vB. Bits shifted out of bit 0 of the
element are lost. Zeros are supplied to the vacated bits on the right. The result is placed into
the corresponding element of vD.

Other registers altered:

• None

Figure 6-110 shows the usage of the vslw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-110. vslw—Shift Bits Left in Four Integer Elements (32-Bit)

04 vD vA vB 388

0 5 6 10 11 15 16 20 21 31

666 vB

vA

vD

*6 = sh = Shift Count

*6

123 127

sh

000000000000000000

zeros

000000
MOTOROLA Chapter 6. AltiVec Instructions 6-139

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vspltb vspltb
Vector Splat Byte

vspltb vD,vB,UIMM Form: VX

b ← UIMM*8
do i=0 to 127 by 8

vDi:i+7 ← (vB)b:b+7

end

Each element of vspltb is a byte.

The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:

• None

Programming note: The vector splat instructions can be used in preparation for performing
arithmetic for which one source vector is to consist of elements that all have the same value
(for example, multiplying all elements of a vector register by a constant).

Figure 6-111 shows the usage of the vspltb instruction. Each of the sixteen elements in the
vectors vB and vD is 8 bits long.

Figure 6-111. vspltb—Copy Contents to Sixteen Elements (8-Bit)

04 vD UIMM vB 524

0 5 6 10 11 15 16 20 21 31

vB

vD
6-140 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsplth vsplth
Vector Splat Half Word

vsplth vD,vB,UIMM Form: VX

b ← UIMM*16
do i=0 to 127 by 16

vDi:i+15 ← (vB)b:b+15

end

Each element of vsplth is a half word.

The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:

• None

Programming note: The vector splat instructions can be used in preparation for performing
arithmetic for which one source vector is to consist of elements that all have the same value
(for example, multiplying all elements of a vector register by a constant).

Figure 6-112 shows the usage of the vsplth instruction. Each of the eight elements in the
vectors vB and vD is 16 bits long.

Figure 6-112. vsplth—Copy Contents to Eight Elements (16-Bit)

04 vD UIMM vB 588

0 5 6 10 11 15 16 20 21 31

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-141

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vspltisb vspltisb
Vector Splat Immediate Signed Byte

vspltisb vD,SIMM Form: VX

do i=0 to 127 by 8

vDi:i+7 ← SignExtend(SIMM,8)

end

Each element of vspltisb is a byte.

The value of the SIMM field, sign-extended to the length of the element, is replicated into
each element of vD.

Other registers altered:

• None

Figure 6-113 shows the usage of the vspltisb instruction. Each of the sixteen elements in
the vector, vD, is 8 bits long.

Figure 6-113. vspltisb—Copy Value into Sixteen Signed Integer Elements (8-Bit)

04 vD SIMM 0000_0 780

0 5 6 10 11 15 16 20 21 31

SIMM

vD
6-142 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vspltish vspltish
Vector Splat Immediate Signed Half Word

vspltish vD,SIMM Form: VX

do i=0 to 127 by 16

vDi:i+15 ← SignExtend(SIMM,16)

end

Each element of vspltish is a half word.

The value of the SIMM field, sign-extended to the length of the element, is replicated into
each element of vD.

Other registers altered:

• None

Figure 6-114 shows the usage of the vspltish instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-114. vspltish—Copy Value to Eight Signed Integer Elements (16-Bit)

04 vD SIMM 0000_0 844

0 5 6 10 11 15 16 20 21 31

SIMM

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-143

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vspltisw vspltisw
Vector Splat Immediate Signed Word

vspltisw vD,SIMM Form: VX

do i=0 to 127 by 32

vDi:i+31 ← SignExtend(SIMM,32)

end

Each element of vspltisw is a word.

The value of the SIMM field, sign-extended to the length of the element, is replicated into
each element of vD.

Other registers altered:

• None

Figure 6-115 shows the usage of the vspltisw instruction. Each of the four elements in the
vector, and vD, is 32 bits long.

Figure 6-115. vspltisw—Copy Value to Four Signed Elements (32-Bit)

04 vD SIMM 0000_0 908

0 5 6 10 11 15 16 20 21 31

vD

SIMM
6-144 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vspltw vspltw
Vector Splat Word

vspltw vD,vB,UIMM Form: VX

b ← UIMM*32
do i=0 to 127 by 32

vDi:i+31 ← (vB)b:b+31

end

Each element of vspltw is a word.

The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:

• None

Programming note: The Vector Splat instructions can be used in preparation for performing
arithmetic for which one source vector is to consist of elements that all have the same value
(for example, multiplying all elements of a Vector Register by a constant).

Figure 6-116 shows the usage of the vspltw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-116. vspltw—Copy contents to Four Elements (32-Bit)

04 vD UIMM vB 652

0 5 6 10 11 15 16 20 21 31

vD

UIMM
MOTOROLA Chapter 6. AltiVec Instructions 6-145

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsr vsr
Vector Shift Right

vsr vD,vA,vB Form: VX

sh ← (vB)125:127
t ← 1
do i = 0 to 127 by 8

t ← t & ((vB)i+5:i+7 = sh)
if t = 1 then vD ← (vA) >>ui sh
elsevD ← undefined

end

Let sh = vB[125–127]; sh is the shift count in bits (0≤sh≤7). The contents of vA are shifted
right by sh bits. Bits shifted out of bit 127 are lost. Zeros are supplied to the vacated bits on
the left. The result is placed into vD.

The contents of the low-order three bits of all byte elements in register vB must be identical
to vB[125-127]; otherwise the value placed into register vD is undefined.

Other registers altered:

• None

Programming notes:

A pair of vslo and vsl or vsro and vsr instructions, specifying the same shift count register,
can be used to shift the contents of a vector register left or right by the number of bits
(0–127) specified in the shift count register. The following example shifts the contents of
vX left by the number of bits specified in vY and places the result into vZ.

vslo VZ,VX,VY
vsl VZ,VZ,VY

A double-register shift by a dynamically specified number of bits (0–127) can be performed
in six instructions. The following example shifts (vW) || (vX) left by the number of bits
specified in vY and places the high-order 128 bits of the result into vZ.

vslo t1,VW,VY #shift high-order reg left
vsl t1,t1,VY
vsububm t3,V0,VY #adjust shift count ((V0)=0)
vsro t2,VX,t3 #shift low-order reg right
vsr t2,t2,t3
vor VZ,t1,t2 #merge to get final result

04 vD vA vB 708

0 5 6 10 11 15 16 20 21 31
6-146 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6-117 shows the usage of the vsr instruction. Each of the sixteen elements in the
vectors, vA, vB, and vD, is 8 bits long.

Figure 6-117. vsr—Shift Bits Right for Vectors (128-Bit)

vB

vA

vD

• • • • • • • • • • *6 = sh = Shift Count

6*

125 127

0...0

sh
zeros
MOTOROLA Chapter 6. AltiVec Instructions 6-147

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsrab vsrab
Vector Shift Right Algebraic Byte

vsrab vD,vA,vB Form: VX

do i=0 to 127 by 8

sh ← (vB)i+2:i+7
vDi:i+7 ← (vA)i:i+7 >>si sh

end

Each element is a byte. Each element in vA is shifted right by the number of bits specified
in the low-order 3 bits of the corresponding element in vB. Bits shifted out of bit n-1 of the
element are lost. Bit 0 of the element is replicated to fill the vacated bits on the left. The
result is placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-118 shows the usage of the vsrab instruction. Each of the sixteen elements in the
vectors, vA, and vD, is 8 bits long.

Figure 6-118. vsrab—Shift Bits Right in Sixteen Integer Elements (8-Bit)

04 vD vA vB 772

0 5 6 10 11 15 16 20 21 31

666 66666 666666 vB

vA

vD

*6 = sh = Shift Count

*6

125 127

x..x

sh

6

x..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..x

*bit x *bit x = bit 0 of each element
6-148 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsrah vsrah
Vector Shift Right Algebraic Half Word

vsrah vD,vA,vB Form: VX

do i=0 to 127 by 16

sh ← (vB)i+12:i+15
vDi:i+15 ← (vA)i:i+15 >>si sh

end

Each element is a half word. Each element in vA is shifted right by the number of bits
specified in the low-order 4 bits of the corresponding element in vB. Bits shifted out of bit
15 of the element are lost. Bit 0 of the element is replicated to fill the vacated bits on the
left. The result is placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-119 shows the usage of the vsrah instruction. Each of the eight elements in the
vectors, vA, and vD, is 16 bits long.

Figure 6-119. vsrah—Shift Bits Right for Eight Integer Elements (16-Bit)

04 vD vA vB 836

0 5 6 10 11 15 16 20 21 31

6 666666 vB

vA

vD

*6 = sh = Shift Count

*6

124 127

x...x

sh

x...xx...xx...xx...xx...xx...xx...x

*x *x = bit 0 of each element
MOTOROLA Chapter 6. AltiVec Instructions 6-149

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsraw vsraw
Vector Shift Right Algebraic Word

vsraw vD,vA,vB Form: VX

do i=0 to 127 by 32

sh ← (vB)i+27:i+31
vDi:i+31 ← (vA)i:i+31 >>si sh

end

Each element is a word. Each element in vA is shifted right by the number of bits specified
in the low-order 5 bits of the corresponding element in vB. Bits shifted out of bit 31 of the
element are lost. Bit 0 of the element is replicated to fill the vacated bits on the left. The
result is placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-120 shows the usage of the vsraw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-120. vsraw—Shift Bits Right in Four Integer Elements (32-Bit)

04 vD vA vB 900

0 5 6 10 11 15 16 20 21 31

666 vB

vA

vD

*6 = sh = Shift Count

*6

123 127

sh

x...xx...xx....x

*x

x...x

*x = bit 0 of each element
6-150 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsrb vsrb
Vector Shift Right Byte

vsrb vD,vA,vB Form: VX

do i=0 to 127 by 8

sh ← (vB)i+5:i+7
vDi:i+7 ← (vA)i:i+7 >>ui sh

end

Each element is a byte. Each element in vA is shifted right by the number of bits specified
in the low-order 3 bits of the corresponding element in vB. Bits shifted out of bit 7 of the
element are lost. Zeros are supplied to the vacated bits on the left. The result is placed into
the corresponding element of vD.

Other registers altered:

• None

Figure 6-121 shows the usage of the vsrb instruction. Each of the sixteen elements in the
vectors, vA, and vD, is 8 bits long.

Figure 6-121. vsrb—Shift Bits Right in Sixteen Integer Elements (8-Bit)

04 vD vA vB 516

0 5 6 10 11 15 16 20 21 31

666 66666 666666 vB

vA

vD

*6 = sh = Shift Count

*6

125 127

0..0

sh

6

0..00..00..00..00..00..00..00..00..00..00..00..00..00..00..0

zeros
MOTOROLA Chapter 6. AltiVec Instructions 6-151

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsrh vsrh
Vector Shift Right Half Word

vsrh vD,vA,vB Form: VX

do i=0 to 127 by 16

sh ← (vB)i+12:i+15
vDi:i+15 ← (vA)i:i+15 >>ui sh

end

Each element is a half word. Each element in vA is shifted right by the number of bits
specified in the low-order 4 bits of the corresponding element in vB. Bits shifted out of bit
15 of the element are lost. Zeros are supplied to the vacated bits on the left. The result is
placed into the corresponding element of vD.

Other registers altered:

• None

Figure 6-122 shows the usage of the vsrh instruction. Each of the eight elements in the
vectors, vA, and vD, is 16 bits long.

Figure 6-122. vsrh—Shift Bits Right for Eight Integer Elements (16-Bit)

04 vD vA vB 580

0 5 6 10 11 15 16 20 21 31

6 666666 vB

vA

vD

*6 = sh = Shift Count

*6

124 127

0...0

sh

0...00...00...00...00...00...00...0

zeros
6-152 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsro vsro
Vector Shift Right Octet

vsro vD,vA,vB Form: VX

shb ← (vB)121:124
vD ← (vA) >>ui (shb || 0b000)

The contents of vA are shifted right by the number of bytes specified in vB[121–124]. Bytes
shifted out of vA are lost. Zeros are supplied to the vacated bytes on the left. The result is
placed into vD.

Other registers altered:

• None

Figure 6-123. vsro—Vector Shift Right Octet

04 vD vA vB 1100

0 5 6 10 11 15 16 20 21 31

vB

vA

vD

• • • • • • • • • • *5 = Shift Count

Don’t Care *5

121 124

0 00 00 00 0 0 0
MOTOROLA Chapter 6. AltiVec Instructions 6-153

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsrw vsrw
Vector Shift Right Word

vsrw vD,vA,vB Form: VX

do i=0 to 127 by 32

sh ← (vB)i+(27):i+31
vDi:i+31 ← (vA)i:i+31 >>ui sh

end

Each element is a word. Each element in vA is shifted right by the number of bits specified
in the low-order 5 bits of the corresponding element in vB. Bits shifted out of bit 31 of the
element are lost. Zeros are supplied to the vacated bits on the left. The result is placed into
the corresponding element of vD.

Other registers altered:

• None

Figure 6-124 shows the usage of the vsrw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-124. vsrw—Shift Bits Right in Four Integer Elements (32-Bit)

04 vD vA vB 644

0 5 6 10 11 15 16 20 21 31

666 vB

vA

vD

*6 = sh = Shift Count

*6

123 127

sh

0...00...00...0

zeros

0...0
6-154 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsubcuw vsubcuw
Vector Subtract Carryout Unsigned Word

vsubcuw vD,vA,vB Form: VX

do i=0 to 127 by 32

aop0:32← ZeroExtend((vA)i:i+31,33)
bop0:32← ZeroExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int −bop0:32 +int 1
vDi:i+31← ZeroExtend(temp0,32)

end

Each unsigned-integer word element in vB is subtracted from the corresponding
unsigned-integer word element in vA. The complement of the borrow out of bit 0 of the
32-bit difference is zero-extended to 32 bits and placed into the corresponding word
element of vD.

Other registers altered:

• None

Figure 6-125 shows the usage of the vsubcuw instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

g

Figure 6-125. vsubcuw—Subtract Carryout of Four Unsigned Integer Elements
(32-Bit)

04 vD vA vB 1408

0 5 6 10 11 15 16 20 21 31

vB

vA

Zero-Ext

vD

- - - -
MOTOROLA Chapter 6. AltiVec Instructions 6-155

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsubfp vsubfp
Vector Subtract Floating Point

vsubfp vD,vA,vB Form: VX

do i=0 to 127 by 32

vDi:i+31 ← RndToNearFP32((vA)i:i+31 -fp (vB)i:i+31)

end

Each single-precision floating-point word element in vB is subtracted from the
corresponding single-precision floating-point word element in vA. The result is rounded to
the nearest single-precision floating-point number and placed into the corresponding word
element of vD.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operation is carried out, and each denormalized result element truncates to a 0 of
the same sign.

Other registers altered:

• None

Figure 6-126 shows the usage of the vsubfp instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-126. vsubfp—Subtract Four Floating Point Elements (32-Bit)

04 vD vA vB 74

0 5 6 10 11 15 16 20 21 31

-fp-fp-fp-fp

vA

vB

vD
6-156 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsubsbs vsubsbs
Vector Subtract Signed Byte Saturate

vsubsbs vD,vA,vB Form: VX

do i=0 to 127 by 8

aop0:8← SignExtend((vA)i:i+7,9)
bop0:8← SignExtend((vB)i:i+7,9)
temp0:8← aop0:8 +int −bop0:8 +int 1
vDi:i+7← SItoSIsat(temp0:8,8)

end

Each element is a byte. Each signed-integer element in vB is subtracted from the
corresponding signed-integer element in vA.

If the intermediate result is greater than (27-1) it saturates to (27-1) and if it is less than -27

it saturates to -27, where 8 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-127 shows the usage of the vsubsbs instruction. Each of the sixteen elements in
the vectors, vA, vB, and vD, is 8 bits long.

Figure 6-127. vsubsbs—Subtract Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 1792

0 5 6 10 11 15 16 20 21 31

- ---------------

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-157

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsubshs vsubshs
Vector Subtract Signed Half Word Saturate

vsubshs vD,vA,vB Form: VX

do i=0 to 127 by 16

aop0:16← SignExtend((vA)i:i+15,17)
bop0:16← SignExtend((vB)i:i+15,17)
temp0:16← aop0:16 +int -bop0:16 +int 1
vDi:i+15← SItoSIsat(temp0:16,16)

end

Each element is a half word. Each signed-integer element in vB is subtracted from the
corresponding signed-integer element in vA.

If the intermediate result is greater than (215-1) it saturates to (215-1) and if it is less than -215

it saturates to -215, where 16 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-128 shows the usage of the vsubshs instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-128. vsubshs—Subtract Eight Signed Integer Elements (16-Bit)

04 vD vA vB 1856

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
6-158 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsubsws vsubsws
Vector Subtract Signed Word Saturate

vsubsws vD,vA,vB Form: VX

do i=0 to 127 by 32

aop0:32← SignExtend((vA)i:i+31,33)
bop0:32← SignExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int −bop0:32 +int 1
vDi:i+31← SItoSIsat(temp0:32,32)

end

Each element is a word. Each signed-integer element in vB is subtracted from the
corresponding signed-integer element in vA.

If the intermediate result is greater than (231-1) it saturates to (231-1) and if it is less than -231

it saturates to -231, where 32 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-129 shows the usage of the vsubsws instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-129. vsubsws—Subtract Four Signed Integer Elements (32-Bit)

04 vD vA vB 1920

0 5 6 10 11 15 16 20 21 31

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-159

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsububm vsububm
Vector Subtract Unsigned Byte Modulo

vsububm vD,vA,vB Form: VX

do i=0 to 127 by 8

vDi:i+7← (vA)i:i+7 +int −(vB)i:i+7

end

Each element of vsububm is a byte.

Each integer element in vB is subtracted from the corresponding integer element in vA. The
integer result is placed into the corresponding element of vD.

Other registers altered:

• None

Note the vsububm instruction can be used for unsigned or signed integers.

Figure 6-130 shows the usage of the vsububm instruction. Each of the sixteen elements in
the vectors, vA, vB, and vD, is 8 bits long.

Figure 6-130. vsububm—Subtract Sixteen Integer Elements (8-Bit)

04 vD vA vB 1024

0 5 6 10 11 15 16 20 21 31

- ---------------

vA

vB

vD
6-160 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsububs vsububs
Vector Subtract Unsigned Byte Saturate

vsububs vD,vA,vB Form: VX

do i=0 to 127 by 8

aop0:8← ZeroExtend((vA)i:i+7,9)
bop0:8← ZeroExtend((vB)i:i+7,9)
temp0:8← aop0:8 +int −bop0:8 +int 1
vDi:i+7← SItoUIsat(temp0:8,8)

end

Each element is a byte. Each unsigned-integer element in vB is subtracted from the
corresponding unsigned-integer element in vA.

If the intermediate result is less than 0 it saturates to 0, where 8 is the length of the element.
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-131 shows the usage of the vsububs instruction. Each of the sixteen elements in
the vectors, vA, vB, and vD, is 8 bits long.

Figure 6-131. vsububs—Subtract Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 1536

0 5 6 10 11 15 16 20 21 31

- ---------------

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-161

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsubuhm vsubuhm
Vector Subtract Signed Half Word Modulo

vsubuhm vD,vA,vB Form: VX

do i=0 to 127 by 16

vDi:i+15← (vA)i:i+15 +int −(vB)i:i+15

end

Each element is a half word. Each integer element in vB is subtracted from the
corresponding integer element in vA. The integer result is placed into the corresponding
element of vD.

Other registers altered:

• None

Note the vsubuhm instruction can be used for unsigned or signed integers.

Figure 6-132 shows the usage of the vsubuhm instruction. Each of the eight elements in
the vectors, vA, vB, and vD, is 16 bits long.

Figure 6-132. vsubuhm—Subtract Eight Integer Elements (16-Bit)

04 vD vA vB 1088

0 5 6 10 11 15 16 20 21 31

vB

vD
6-162 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsubuhs vsubuhs
Vector Subtract Signed Half Word Saturate

vsubuhs vD,vA,vB Form: VX

do i=0 to 127 by 16

aop0:16← ZeroExtend((vA)i:i+15,17)
bop0:16← ZeroExtend((vB)i:i+n:1,17)
temp0:16← aop0:n +int −bop0:16 +int 1
vDi:i+15← SItoUIsat(temp0:16,16)

end

Each element is a half word. Each unsigned-integer element in vB is subtracted from the
corresponding unsigned-integer element in vA.

If the intermediate result is less than 0 it saturates to 0, where 16 is the length of the element.
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-133 shows the usage of the vsubuhs instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-133. vsubuhs—Subtract Eight Signed Integer Elements (16-Bit)

04 vD vA vB 1600

0 5 6 10 11 15 16 20 21 31

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-163

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsubuwm vsubuwm
Vector Subtract Unsigned Word Modulo

vsubuwm vD,vA,vB Form: VX

do i=0 to 127 by 32

vDi:i+31← (vA)i:i+31 +int −(vB)i:i+31

end

Each element of vsubuwm is a word.

Each integer element in vB is subtracted from the corresponding integer element in vA. The
integer result is placed into the corresponding element of vD.

Other registers altered:

• None

Note the vsubuwm instruction can be used for unsigned or signed integers.

Figure 6-134 shows the usage of the vsubuwm instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-134. vsubuwm—Subtract Four Integer Elements (32-Bit)

04 vD vA vB 1152

0 5 6 10 11 15 16 20 21 31

vB

vD
6-164 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsubuws vsubuws
Vector Subtract Unsigned Word Saturate

vsubuws vD,vA,vB Form: VX

do i=0 to 127 by 32

aop0:32← ZeroExtend((vA)i:i+31,33)
bop0:32← ZeroExtend((vB)i:i+31,33)
temp0:32← aop0:32 +int −bop0:32 +int 1
vDi:i+31← SItoUIsat(temp0:32,32)

end

Each element is a word. Each unsigned-integer element in vB is subtracted from the
corresponding unsigned-integer element in vA.

If the intermediate result is less than 0 it saturates to 0, where 32 is the length of the element.
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:

• SAT

Figure 6-135 shows the usage of the vsubuws instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-135. vsubuws—Subtract Four Signed Integer Elements (32-Bit)

04 vD vA vB 1664

0 5 6 10 11 15 16 20 21 31

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-165

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsumsws vsumsws
Vector Sum Across Signed Word Saturate

vsumsws vD,vA,vB Form: VX

temp0:34 ← SignExtend((vB)96:127,35)
do i=0 to 127 by 32

temp0:34 ← temp0:34 +int SignExtend((vA)i:i+31,35)
vD ← 960 || SItoSIsat(temp0:34,32)

end

The signed-integer sum of the four signed-integer word elements in vA is added to the
signed-integer word element in bits of vB[96-127]. If the intermediate result is greater than
(231-1) it saturates to (231-1) and if it is less than -231 it saturates to -231. The signed-integer
result is placed into bits vD[96–127]. Bits vD[0–95] are cleared.

Other registers altered:

• SAT

Figure 6-136 shows the usage of the vsumsws instruction. Each of the four elements in the
vectors, vA, vB, and vD, is 32 bits long.

Figure 6-136. vsumsws—Sum Four Signed Integer Elements (32-Bit)

04 vD vA vB 1928

0 5 6 10 11 15 16 20 21 31

+

vA

vB

vD
6-166 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsum2sws vsum2sws
Vector Sum Across Partial (1/2) Signed Word Saturate

vsum2sws vD,vA,vB Form: VX

do i=0 to 127 by 64

temp0:33 ← SignExtend((vB)i+32:i+63,34)
do j=0 to 63 by 32

temp0:33 ← temp0:33 +int SignExtend((vA)i+j:i+j+31,34)

end

vDi:i+63 ← 320 || SItoSIsat(temp0:33,32)

end

The signed-integer sum of the first two signed-integer word elements in register vA is added
to the signed-integer word element in vB[32–63]. If the intermediate result is greater than
(231-1) it saturates to (231-1) and if it is less than -231 it saturates to -231. The signed-integer
result is placed into vD[32–63]. The signed-integer sum of the last two signed-integer word
elements in register vA is added to the signed-integer word element in vB[96-127]. If the
intermediate result is greater than (231-1) it saturates to (231-1) and if it is less than -231 it
saturates to -231. The signed-integer result is placed into vD[96–127]. The register
vD[0–31,64–95] are cleared to 0.

Other registers altered:

• SAT

Figure 6-137 shows the usage of the vsum2sws instruction. Each of the four elements in
the vectors, vA, vB, and vD, is 32 bits long.

Figure 6-137. vsum2sws—Two Sums in the Four Signed Integer Elements (32-Bit)

04 vD vA vB 1672

0 5 6 10 11 15 16 20 21 31

+

vA

vB

vD0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

+

MOTOROLA Chapter 6. AltiVec Instructions 6-167

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsum4sbs vsum4sbs
Vector Sum Across Partial (1/4) Signed Byte Saturate

vsum4sbs vD,vA,vB Form: VX

do i=0 to 127 by 32

temp0:32 ← SignExtend((vB)i:i+31,33)
 do j=0 to 31 by 8

temp0:32 ← temp0:32 +int SignExtend((vA)i+j:i+j+7,33)

end

vDi:i+31 ← SItoSIsat(temp0:32,32)

end

For each word element in vB the following operations are performed in the order shown.

• The signed-integer sum of the four signed-integer byte elements contained in the
corresponding word element of register vA is added to the signed-integer word
element in register vB.

• If the intermediate result is greater than (231-1) it saturates to (231-1) and if it is less
than -231 it saturates to -231.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:

• SAT

Figure 6-138 shows the usage of the vsum4sbs instruction. Each of the sixteen elements in
the vector vA, is 8 bits long. Each of the four elements in the vectors vB and vD is 32 bits
long.

Figure 6-138. vsum4sbs—Four Sums in the Integer Elements (32-Bit)

04 vD vA vB 1800

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

++++
6-168 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsum4shs vsum4shs
Vector Sum Across Partial (1/4) Signed Half Word Saturate

vsum4shs vD,vA,vB Form: VX

do i=0 to 127 by 32

temp0:32 ← SignExtend((vB)i:i+31,33)
do j=0 to 31 by 16

temp0:32 ← temp0:32 +int SignExtend((vA)i+j:i+j+15,33)

end

vDi:i+31 ← SItoSIsat(temp0:32,32)

end

For each word element in register vB the following operations are performed, in the order
shown.

• The signed-integer sum of the two signed-integer halfword elements contained in
the corresponding word element of register vA is added to the signed-integer word
element in vB.

• If the intermediate result is greater than (231-1) it saturates to (231-1) and if it is less
than -231 it saturates to -231.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:

• SAT

Figure 6-139 shows the usage of the vsum4shs instruction. Each of the eight elements in
the vector vA, is 16 bits long. Each of the four elements in the vectors vB and vD is 32 bits
long.

Figure 6-139. vsum4shs—Four Sums in the Integer Elements (32-Bit)

04 vD vA vB 1608

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

++++
MOTOROLA Chapter 6. AltiVec Instructions 6-169

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsum4ubs vsum4ubs
Vector Sum Across Partial (1/4) Unsigned Byte Saturate

vsum4ubs vD,vA,vB Form: VX

do i=0 to 127 by 32

temp0:32 ← ZeroExtend((vB)i:i+31,33)
do j=0 to 31 by 8

temp0:32 ← temp0:32 +int ZeroExtend((vA)i+j:i+j+7,33)

end

vDi:i+31 ← UItoUIsat(temp0:32,32)

end

For each word element in vB the following operations are performed in the order shown.

• The unsigned-integer sum of the four unsigned-integer byte elements contained in
the corresponding word element of register vA is added to the unsigned-integer
word element in register vB.

• If the intermediate result is greater than (232-1) it saturates to (232-1).

• The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:

• SAT

Figure 6-140 shows the usage of the vsum4ubs instruction. Each of the four elements in
the vector vA, is 8 bits long. Each of the four elements in the vectors vB and vD is 32 bits
long.

Figure 6-140. vsum4ubs—Four Sums in the Integer Elements (32-Bit)

04 vD vA vB 1544

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

++++
6-170 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vupkhpx vupkhpx
Vector Unpack High Pixel16

vupkhpx vD,vB Form: VX

do i=0 to 63 by 16

vDi*2:(i*2)+7← SignExtend((vB)i,8)
vD(i*2)+8:(i*2)+15← ZeroExtend((vB)i+1:i+5,8)
vD(i*2)+16:(i*2)+23← ZeroExtend((vB)i+6:i+10,8)
vD(i*2)+24:(i*2)+31← ZeroExtend((vB)i+11:i+15,8)

end

Each halfword element in the high-order half of register vB is unpacked to produce a 32-bit
value as described below and placed, in the same order, into the four words of vD.

A halfword is unpacked to 32 bits by concatenating, in order, the results of the following
operations.

• sign-extend bit 0 of the halfword to 8 bits

• zero-extend bits 1–5 of the halfword to 8 bits

• zero-extend bits 6–10 of the halfword to 8 bits

• zero-extend bits 11–15 of the halfword to 8 bits

Other registers altered:

• None

The source and target elements can be considered to be 16-bit and 32-bit "pixels"
respectively, having the formats described in the programming note for the Vector Pack
Pixel instruction.

Figure 6-141 shows the usage of the vupkhpx instruction. Each of the eight elements in the
vectors, vB, is 16 bits long. Each of the four elements in the vectors, vD, is 32 bits long.

Figure 6-141. vupkhpx—Unpack High-Order Elements (16 bit) to Elements (32-Bit)

04 vD 0_0000 vB 846

0 5 6 10 11 15 16 20 21 31

vB

vD000 000 000 000
MOTOROLA Chapter 6. AltiVec Instructions 6-171

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vupkhsb vupkhsb
Vector Unpack High Signed Byte

vupkhsb vD,vB Form: VX

do i=0 to 63 by 8

vDi*2:(i*2)+15 ← SignExtend((vB)i:i+7,16)

end

Each signed integer byte element in the high-order half of register vB is sign-extended to
produce a 16-bit signed integer and placed, in the same order, into the eight halfwords of
register vD.

Other registers altered:

• None

Figure 6-142 shows the usage of the vupkhsb instruction. Each of the sixteen elements in
the vectors, vB, is 8 bits long. Each of the eight elements in the vectors, vD, is 16 bits long.

Figure 6-142. vupkhsb—Unpack HIgh-Order Signed Integer Elements (8-Bit) to
Signed Integer Elements (16-Bit)

04 vD 0_0000 vB 526

0 5 6 10 11 15 16 20 21 31

SSSSSSSSSSSSSSSS

vB

vD
6-172 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vupkhsh vupkhsh
Vector Unpack High Signed Half Word

vupkhsh vD,vB Form: VX

do i=0 to 63 by 16

vDi*2:(i*2)+31 ← SignExtend((vB)i:i+15,32)

end

Each signed integer halfword element in the high-order half of register vB is sign-extended
to produce a 32-bit signed integer and placed, in the same order, into the four words of
register vD.

Other registers altered:

• None

Figure 6-143 shows the usage of the vupkhsh instruction. Each of the eight elements in the
vectors vB and vD is 16 bits long.

Figure 6-143. vupkhsh—Unpack Signed Integer Elements (16-Bit) to Signed Integer
Elements (32-Bit)

04 vD 0_0000 vB 590

0 5 6 10 11 15 16 20 21 31

vB

vDSSSSSSSSSSSSSSSS
MOTOROLA Chapter 6. AltiVec Instructions 6-173

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vupklpx vupklpx
Vector Unpack Low Pixel16

vupklpx vD,vB Form: VX

do i=0 to 63 by 16

vDi*2:(i*2)+7← SignExtend((vB)i+64,8)
vD(i*2)+8:(i*2)+15← ZeroExtend((vB)i+65:i+69,8)
vD(i*2)+16:(i*2)+23← ZeroExtend((vB)i+70:i+74,8)
vD(i*2)+24:(i*2)+31← ZeroExtend((vB)i+75:i+79,8)

end

Each halfword element in the low-order half of register vB is unpacked to produce a 32-bit
value as described below and placed, in the same order, into the four words of register vD.

A halfword is unpacked to 32 bits by concatenating, in order, the results of the following
operations.

• sign-extend bit 0 of the halfword to 8 bits

• zero-extend bits 1–5 of the halfword to 8 bits

• zero-extend bits 6–10 of the halfword to 8 bits

• zero-extend bits 11–15 of the halfword to 8 bits

Other registers altered:

• None

Programming note: Notice that the unpacking done by the Vector Unpack Pixel instructions
does not reverse the packing done by the Vector Pack Pixel instruction. Specifically, if a
16-bit pixel is unpacked to a 32-bit pixel which is then packed to a 16-bit pixel, the resulting
16-bit pixel will not, in general, be equal to the original 16-bit pixel (because, for each
channel except the first, Vector Unpack Pixel inserts high-order bits while Vector Pack Pixel
discards low-order bits).

Figure 6-144 shows the usage of the vupklpx instruction. Each of the eight elements in the
vectors, vB, is 16 bits long. Each of the four elements in the vectors, vD, is 32 bits long.

Figure 6-144. vupklpx—Unpack Low-order Elements (16-Bit) to Elements (32-Bit)

04 vD 0_0000 vB 974

0 5 6 10 11 15 16 20 21 31

vB

vD000000000 000000
6-174 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vupklsb vupklsb
Vector Unpack Low Signed Byte

vupklsb vD,vB Form: VX

do i=0 to 63 by 8

vDi*2:(i*2)+15 ← SignExtend((vB)i+64:i+71,16)

end

Each signed integer byte element in the low-order half of register vB is sign-extended to
produce a 16-bit signed integer and placed, in the same order, into the eight halfwords of
register vD.

Other registers altered:

• None

Figure 6-145 shows the usage of the vaddubs instruction. Each of the sixteen elements in
the vectors vB and vD is 8 bits long.

Figure 6-145. vupklsb—Unpack Low-Order Elements (8-Bit) to Elements (16-Bit)

04 vD 0_0000 vB 654

0 5 6 10 11 15 16 20 21 31

vB

vDSSSSSSSSSSSSSSSS
MOTOROLA Chapter 6. AltiVec Instructions 6-175

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vupklsh vupklsh
Vector Unpack Low Signed Half Word

vupklsh vD,vB Form: VX

do i=0 to 63 by 16

vDi*2:(i*2)+31 ← SignExtend((vB)i+64:i+79,32)

end

Each signed integer half word element in the low-order half of register vB is sign-extended
to produce a 32-bit signed integer and placed, in the same order, into the four words of
register vD.

Other registers altered:

• None

Figure 6-146 shows the usage of the vupklpx instruction. Each of the eight elements in the
vectors, vA, vB, and vD, is 16 bits long.

Figure 6-146. vupklsh—Unpack Low-Order Signed Integer Elements (16-Bit) to
Signed Integer Elements (32-Bit)

04 vD 0_0000 vB 718

0 5 6 10 11 15 16 20 21 31

vB

vDSSSSSSSSSSSSSSSS
6-176 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vxor vxor
Vector Logical XOR

vxor vD,vA,vB Form: VX

vD ← (vA) ⊕ (vB)

The contents of vA are XORed with the contents of register vB and the result is placed into
register vD.

Other registers altered:

• None

Figure 6-147 shows the usage of the vxor instruction.

Figure 6-147. vxor—Bitwise XOR (128-Bit)

04 vD vA vB 1220

0 5 6 10 11 15 16 20 21 31

⊕

vA

vB

vD
MOTOROLA Chapter 6. AltiVec Instructions 6-177

For More Information On This Product,
 Go to: www.freescale.com

AltiVec Technology Programming Environments Manual

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6-178 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix A
AltiVec Instruction Set Listings
This appendix lists the instruction set for AltiVec™ technology. Instructions are sorted by
mnemonic, opcode, and form. Also included in this appendix is a quick reference table that
contains general information, such as the architecture level, privilege level, and form, and
indicates if the instruction is optional.

Note that split fields, which represent the concatenation of sequences from left to right, are
shown in lower case.

A.1 Instructions Sorted by Mnemonic in Decimal
Format

Table A-1 lists the instructions implemented in the AltiVec architecture in alphabetical
order by mnemonic.The primary and extended opcodes are decimal numbers.

Table A-1. Instruction Sorted by Mnemonic in Decimal Format

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dss 31 0 0_0 STRM 0_0000 0000_0 822 0

dssall 31 1 0_0 STRM 0_0000 0000_0 822 0

dst 31 0 0_0 STRM A B 342 0

dstst 31 0 0_0 STRM A B 374 0

dststt 31 1 0_0 STRM A B 374 0

dstt 31 1 0_0 STRM A B 342 0

lvebx 31 vD A B 7 0

lvehx 31 vD A B 39 0

lvewx 31 vD A B 71 0

lvsl 31 vD A B 6 0

lvsr 31 vD A B 38 0

lvx 31 vD A B 103 0

Reserved bits

Key:
MOTOROLA Appendix A. AltiVec Instruction Set Listings A-1

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Mnemonic in Decimal Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

lvxl 31 vD A B 359 0

mfvscr 04 vD 0_0000 0000_0 1540

mtvscr 04 00_000 0_0000 vB 1604

stvebx 31 vS A B 135 0

stvehx 31 vS A B 167 0

stvewx 31 vS A B 199 0

stvx 31 vS A B 231 0

stvxl 31 vS A B 487 0

vaddcuw 04 vD vA vB 384

vaddfp 04 vD vA vB 10

vaddsbs 04 vD vA vB 768

vaddshs 04 vD vA vB 832

vaddsws 04 vD vA vB 896

vaddubm 04 vD vA vB 0

vaddubs 04 vD vA vB 512

vadduhm 04 vD vA vB 64

vadduhs 04 vD vA vB 576

vadduwm 04 vD vA vB 128

vadduws 04 vD vA vB 640

vand 04 vD vA vB 1028

vandc 04 vD vA vB 1092

vavgsb 04 vD vA vB 1282

vavgsh 04 vD vA vB 1346

vavgsw 04 vD vA vB 1410

vavgub 04 vD vA vB 1026

vavguh 04 vD vA vB 1090

vavguw 04 vD vA vB 1154

vcfsx 04 vD UIMM vB 842

vcfux 04 vD UIMM vB 778

vcmpbfpx 04 vD vA vB Rc 966

vcmpeqfpx 04 vD vA vB Rc 198

vcmpequbx 04 vD vA vB Rc 6

vcmpequhx 04 vD vA vB Rc 70

Table A-1. Instruction Sorted by Mnemonic in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Mnemonic in Decimal Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpequwx 04 vD vA vB Rc 134

vcmpgefpx 04 vD vA vB Rc 454

vcmpgtfpx 04 vD vA vB Rc 710

vcmpgtsbx 04 vD vA vB Rc 774

vcmpgtshx 04 vD vA vB Rc 838

vcmpgtswx 04 vD vA vB Rc 902

vcmpgtubx 04 vD vA vB Rc 518

vcmpgtuhx 04 vD vA vB Rc 582

vcmpgtuwx 04 vD vA vB Rc 646

vctsxs 04 vD UIMM vB 970

vctuxs 04 vD UIMM vB 906

vexptefp 04 vD 0_0000 vB 394

vlogefp 04 vD 0_0000 vB 458

vmaddfp 04 vD vA vB vC 46

vmaxfp 04 vD vA vB 1034

vmaxsb 04 vD vA vB 258

vmaxsh 04 vD vA vB 322

vmaxsw 04 vD vA vB 386

vmaxub 04 vD vA vB 2

vmaxuh 04 vD vA vB 66

vmaxuw 04 vD vA vB 130

vmhaddshs 04 vD vA vB vC 32

vmhraddshs 04 vD vA vB vC 33

vminfp 04 vD vA vB 1098

vminsb 04 vD vA vB 770

vminsh 04 vD vA vB 834

vminsw 04 vD vA vB 898

vminub 04 vD vA vB 514

vminuh 04 vD vA vB 578

vminuw 04 vD vA vB 642

vmladduhm 04 vD vA vB vC 34

vmrghb 04 vD vA vB 12

vmrghh 04 vD vA vB 76

Table A-1. Instruction Sorted by Mnemonic in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
MOTOROLA Appendix A. AltiVec Instruction Set Listings A-3

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Mnemonic in Decimal Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmrghw 04 vD vA vB 140

vmrglb 04 vD vA vB 268

vmrglh 04 vD vA vB 332

vmrglw 04 vD vA vB 396

vmsummbm 04 vD vA vB vC 37

vmsumshm 04 vD vA vB vC 40

vmsumshs 04 vD vA vB vC 41

vmsumubm 04 vD vA vB vC 36

vmsumuhm 04 vD vA vB vC 38

vmsumuhs 04 vD vA vB vC 39

vmulesb 04 vD vA vB 776

vmulesh 04 vD vA vB 840

vmuleub 04 vD vA vB 520

vmuleuh 04 vD vA vB 584

vmulosb 04 vD vA vB 264

vmulosh 04 vD vA vB 328

vmuloub 04 vD vA vB 8

vmulouh 04 vD vA vB 72

vnmsubfp 04 vD vA vB vC 47

vnor 04 vD vA vB 1284

vor 04 vD vA vB 1156

vperm 04 vD vA vB vC 43

vpkpx 04 vD vA vB 782

vpkshss 04 vD vA vB 398

vpkshus 04 vD vA vB 270

vpkswss 04 vD vA vB 462

vpkswus 04 vD vA vB 334

vpkuhum 04 vD vA vB 14

vpkuhus 04 vD vA vB 142

vpkuwum 04 vD vA vB 78

vpkuwus 04 vD vA vB 206

vrefp 04 vD 0_0000 vB 266

vrfim 04 vD 0_0000 vB 714

Table A-1. Instruction Sorted by Mnemonic in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Mnemonic in Decimal Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vrfin 04 vD 0_0000 vB 522

vrfip 04 vD 0_0000 vB 650

vrfiz 04 vD 0_0000 vB 586

vrlb 04 vD vA vB 4

vrlh 04 vD vA vB 68

vrlw 04 vD vA vB 132

vrsqrtefp 04 vD 0_0000 vB 330

vsel 04 vD vA vB vC 42

vsl 04 vD vA vB 452

vslb 04 vD vA vB 260

vsldoi 04 vD vA vB 0 SH 44

vslh 04 vD vA vB 324

vslo 04 vD vA vB 1036

vslw 04 vD vA vB 388

vspltb 04 vD UIMM vB 524

vsplth 04 vD UIMM vB 588

vspltisb 04 vD SIMM 0000_0 780

vspltish 04 vD SIMM 0000_0 844

vspltisw 04 vD SIMM 0000_0 908

vspltw 04 vD UIMM vB 652

vsr 04 vD vA vB 708

vsrab 04 vD vA vB 772

vsrah 04 vD vA vB 836

vsraw 04 vD vA vB 900

vsrb 04 vD vA vB 516

vsrh 04 vD vA vB 580

vsro 04 vD vA vB 1100

vsrw 04 vD vA vB 644

vsubcuw 04 vD vA vB 1408

vsubfp 04 vD vA vB 74

vsubsbs 04 vD vA vB 1792

vsubshs 04 vD vA vB 1856

vsubsws 04 vD vA vB 1920

Table A-1. Instruction Sorted by Mnemonic in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
MOTOROLA Appendix A. AltiVec Instruction Set Listings A-5

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Mnemonic in Decimal Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsububm 04 vD vA vB 1024

vsububs 04 vD vA vB 1536

vsubuhm 04 vD vA vB 1088

vsubuhs 04 vD vA vB 1600

vsubuwm 04 vD vA vB 1152

vsubuws 04 vD vA vB 1664

vsumsws 04 vD vA vB 1928

vsum2sws 04 vD vA vB 1672

vsum4sbs 04 vD vA vB 1800

vsum4shs 04 vD vA vB 1608

vsum4ubs 04 vD vA vB 1544

vupkhpx 04 vD 0_0000 vB 846

vupkhsb 04 vD 0_0000 vB 526

vupkhsh 04 vD 0_0000 vB 590

vupklpx 04 vD 0_0000 vB 974

vupklsb 04 vD 0_0000 vB 654

vupklsh 04 vD 0_0000 vB 718

vxor 04 vD vA vB 1220

Table A-1. Instruction Sorted by Mnemonic in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix B
Instructions Sorted by Mnemonic
in Binary Format

B.1 Instructions Sorted by Mnemonic in Binary
Format

Table B-1 lists the instructions implemented in the AltiVec architecture in alphabetical
order by mnemonic.The primary and extended opcodes are decimal numbers.

Table B-1. Instructions Sorted by Mnemonic in Binary Format

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dss 0111_11 0 0_0 STRM 0_0000 0000_0 110_0110_110 0

dssall 0111_11 1 0_0 STRM 0_0000 0000_0 110_0110_110 0

dst 0111_11 0 0_0 STRM A B 010_1010_110 0

dstst 0111_11 0 0_0 STRM A B 010_1110_110 0

dststt 0111_11 1 0_0 STRM A B 001__1110_110 0

dstt 0111_11 1 0_0 STRM A B 010_1010_110 0

lvebx 0111_11 vD A B 000_0000_111 0

lvehx 0111_11 vD A B 000_0100_111 0

lvewx 0111_11 vD A B 000_1000_111 0

lvsl 0111_11 vD A B 000_0000_110 0

lvsr 0111_11 vD A B 000_0100_110 0

lvx 0111_11 vD A B 000_1100_111 0

lvxl 0111_11 vD A B 010_1100_111 0

mfvscr 0001_00 vD 0_0000 0000_0 110_0000_0100

mtvscr 0001_00 00_000 0_0000 vB 110_0100_0100

stvebx 0111_11 vS A B 001_0000_111 0

stvehx 0111_11 vS A B 001_0100_111 0

Reserved bits

Key:
MOTOROLA Appendix B. Instructions Sorted by Mnemonic in Binary Format B-1

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Mnemonic in Binary Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

stvewx 0111_11 vS A B 001_1000_111 0

stvx 0111_11 vS A B 001_1100_111 0

stvxl 0111_11 vS A B 011_1100_111 0

vaddcuw 0001_00 vD vA vB 001_1000_0000

vaddfp 0001_00 vD vA vB 000_0000_1010

vaddsbs 0001_00 vD vA vB 011_0000_0000

vaddshs 0001_00 vD vA vB 011_0100_0000

vaddsws 0001_00 vD vA vB 011_1000_0000

vaddubm 0001_00 vD vA vB 000_0000_0000

vaddubs 0001_00 vD vA vB 010_0000_0000

vadduhm 0001_00 vD vA vB 000_0100_0000

vadduhs 0001_00 vD vA vB 010_0100_0000

vadduwm 0001_00 vD vA vB 000_1000_0000

vadduws 0001_00 vD vA vB 010_1000_0000

vand 0001_00 vD vA vB 100_0000_0100

vandc 0001_00 vD vA vB 100_0100_0100

vavgsb 0001_00 vD vA vB 101_0000_0010

vavgsh 0001_00 vD vA vB 101_0100_0010

vavgsw 0001_00 vD vA vB 101_1000_0010

vavgub 0001_00 vD vA vB 100_0000_0010

vavguh 0001_00 vD vA vB 100_0100_0010

vavguw 0001_00 vD vA vB 100_1000_0010

vcfsx 0001_00 vD UIMM vB 011_0100_1010

vcfux 0001_00 vD UIMM vB 011_0000_1010

vcmpbfpx 0001_00 vD vA vB Rc 11_1100_0110

vcmpeqfpx 0001_00 vD vA vB Rc 00_1100_0110

vcmpequbx 0001_00 vD vA vB Rc 00_0000_0110

vcmpequhx 0001_00 vD vA vB Rc 00_0100_0110

vcmpequwx 0001_00 vD vA vB Rc 00_1000_0110

vcmpgefpx 0001_00 vD vA vB Rc 01_1100_0110

vcmpgtfpx 0001_00 vD vA vB Rc 10_1100_0110

vcmpgtsbx 0001_00 vD vA vB Rc 11_0000_0110

vcmpgtshx 0001_00 vD vA vB Rc 11_0100_0110

Table B-1. Instructions Sorted by Mnemonic in Binary Format

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
B-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Mnemonic in Binary Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpgtswx 0001_00 vD vA vB Rc 11_1000_0110

vcmpgtubx 0001_00 vD vA vB Rc 10_0000_0110

vcmpgtuhx 0001_00 vD vA vB Rc 10_0100_0110

vcmpgtuwx 0001_00 vD vA vB Rc 10_1000_0110

vctsxs 0001_00 vD UIMM vB 011_1100_1010

vctuxs 0001_00 vD UIMM vB 011_1000_1010

vexptefp 0001_00 vD 0_0000 vB 001_1000_1010

vlogefp 0001_00 vD 0_0000 vB 001_1100_1010

vmaddfp 0001_00 vD vA vB vC 10_1110

vmaxfp 0001_00 vD vA vB 100_0000_1010

vmaxsb 0001_00 vD vA vB 001_0000_0010

vmaxsh 0001_00 vD vA vB 001_0100_0010

vmaxsw 0001_00 vD vA vB 001_1000_0010

vmaxub 0001_00 vD vA vB 0000_0000_0010

vmaxuh 0001_00 vD vA vB 0100_0010

vmaxuw 0001_00 vD vA vB 1000_0010

vmhaddshs 0001_00 vD vA vB vC 10_0000

vmhraddshs 0001_00 vD vA vB vC 10_0001

vminfp 0001_00 vD vA vB 100_0100_1010

vminsb 0001_00 vD vA vB 011_0000_0010

vminsh 0001_00 vD vA vB 011_0100_0010

vminsw 0001_00 vD vA vB 011_1000_0010

vminub 0001_00 vD vA vB 010_0000_0010

vminuh 0001_00 vD vA vB 010_0100_0010

vminuw 0001_00 vD vA vB 010_1000_0010

vmladduhm 0001_00 vD vA vB vC 10_0010

vmrghb 0001_00 vD vA vB 000_0000_1100

vmrghh 0001_00 vD vA vB 000_0100_1100

vmrghw 0001_00 vD vA vB 000_1000_1100

vmrglb 0001_00 vD vA vB 001_0000_1100

vmrglh 0001_00 vD vA vB 001_0100_1100

vmrglw 0001_00 vD vA vB 001_1000_1100

vmsummbm 0001_00 vD vA vB vC 10_0101

Table B-1. Instructions Sorted by Mnemonic in Binary Format

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
MOTOROLA Appendix B. Instructions Sorted by Mnemonic in Binary Format B-3

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Mnemonic in Binary Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmsumshm 0001_00 vD vA vB vC 10_1000

vmsumshs 0001_00 vD vA vB vC 10_1001

vmsumubm 0001_00 vD vA vB vC 10_0100

vmsumuhm 0001_00 vD vA vB vC 10_0110

vmsumuhs 0001_00 vD vA vB vC 10_0111

vmulesb 0001_00 vD vA vB 011_0000_1000

vmulesh 0001_00 vD vA vB 011_0100_1000

vmuleub 0001_00 vD vA vB 010_0000_1000

vmuleuh 0001_00 vD vA vB 010_0100_1000

vmulosb 0001_00 vD vA vB 001_0000_1000

vmulosh 0001_00 vD vA vB 001_0100_1000

vmuloub 0001_00 vD vA vB 000_0000_1000

vmulouh 0001_00 vD vA vB 000_0100_1000

vnmsubfp 0001_00 vD vA vB vC 10_1111

vnor 0001_00 vD vA vB 101_0000_0100

vor 0001_00 vD vA vB 100_1000_0100

vperm 0001_00 vD vA vB vC 10_1011

vpkpx 0001_00 vD vA vB 011_0000_1110

vpkshss 0001_00 vD vA vB 001_1000_1110

vpkshus 0001_00 vD vA vB 001_0000_1110

vpkswss 0001_00 vD vA vB 001_1100_1110

vpkswus 0001_00 vD vA vB 001_0100_1110

vpkuhum 0001_00 vD vA vB 000_0000_1110

vpkuhus 0001_00 vD vA vB 000_1000_1110

vpkuwum 0001_00 vD vA vB 000_100_1110

vpkuwus 0001_00 vD vA vB 000_1100_1110

vrefp 0001_00 vD 0_0000 vB 001_0000_1010

vrfim 0001_00 vD 0_0000 vB 010_1100_1010

vrfin 0001_00 vD 0_0000 vB 010_0000_1010

vrfip 0001_00 vD 0_0000 vB 010_1000_1010

vrfiz 0001_00 vD 0_0000 vB 010_0100_1010

vrlb 0001_00 vD vA vB 000_0000_0100

vrlh 0001_00 vD vA vB 000_0100_0100

Table B-1. Instructions Sorted by Mnemonic in Binary Format

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
B-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Mnemonic in Binary Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vrlw 0001_00 vD vA vB 000_1000_0100

vrsqrtefp 0001_00 vD 0_0000 vB 001_0100_1010

vsel 0001_00 vD vA vB vC 10_1010

vsl 0001_00 vD vA vB 1_1100_0100

vslb 0001_00 vD vA vB 1_0000_0100

vsldoi 0001_00 vD vA vB 0 SH 10_1100

vslh 0001_00 vD vA vB 01_0100_0100

vslo 0001_00 vD vA vB 100_0000_1100

vslw 0001_00 vD vA vB 001_1000_0100

vspltb 0001_00 vD UIMM vB 010_0000_1100

vsplth 0001_00 vD UIMM vB 010_0100_1100

vspltisb 0001_00 vD SIMM 0000_0 011_0000_1100

vspltish 0001_00 vD SIMM 0000_0 011_0100_1100

vspltisw 0001_00 vD SIMM 0000_0 011_1000_1100

vspltw 0001_00 vD UIMM vB 010_1000_1100

vsr 0001_00 vD vA vB 010_1100_0100

vsrab 0001_00 vD vA vB 011_0000_0100

vsrah 0001_00 vD vA vB 011_0100_0100

vsraw 0001_00 vD vA vB 011_1000_0100

vsrb 0001_00 vD vA vB 010_0000_0100

vsrh 0001_00 vD vA vB 010_0100_0100

vsro 0001_00 vD vA vB 100_0100_1100

vsrw 0001_00 vD vA vB 010_1000_0100

vsubcuw 0001_00 vD vA vB 101_1000_0000

vsubfp 0001_00 vD vA vB 000_0100_1010

vsubsbs 0001_00 vD vA vB 111_0000_0000

vsubshs 0001_00 vD vA vB 111_0100_0000

vsubsws 0001_00 vD vA vB 111_1000_0000

vsububm 0001_00 vD vA vB 100_0000_0000

vsububs 0001_00 vD vA vB 110_0000_0000

vsubuhm 0001_00 vD vA vB 100_0100_0000

vsubuhs 0001_00 vD vA vB 110_0100_0000

vsubuwm 0001_00 vD vA vB 100_1000_0000

Table B-1. Instructions Sorted by Mnemonic in Binary Format

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
MOTOROLA Appendix B. Instructions Sorted by Mnemonic in Binary Format B-5

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Mnemonic in Binary Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsubuws 0001_00 vD vA vB 110_1000_0000

vsumsws 0001_00 vD vA vB 111_1000_1000

vsum2sws 0001_00 vD vA vB 110_1000_1000

vsum4sbs 0001_00 vD vA vB 111_0000_1000

vsum4shs 0001_00 vD vA vB 110_0100_1000

vsum4ubs 0001_00 vD vA vB 110_0000_1000

vupkhpx 0001_00 vD 0_0000 vB 011_0100_1110

vupkhsb 0001_00 vD 0_0000 vB 010_0000_1110

vupkhsh 0001_00 vD 0_0000 vB 010_0100_1110

vupklpx 0001_00 vD 0_0000 vB 011_1100_1110

vupklsb 0001_00 vD 0_0000 vB 010_1000_1110

vupklsh 0001_00 vD 0_0000 vB 010_1100_1110

vxor 0001_00 vD vA vB 100_1100_0100

Table B-1. Instructions Sorted by Mnemonic in Binary Format

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
B-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix C
Instructions Sorted by Opcode

C.1 Instructions Sorted by Opcode in
Decimal Format

Table C-1 lists AltiVec instructions grouped by opcode in decimal format.

.

Table C-1. Instructions Sorted by Opcode in Decimal Format

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmhaddshs 04 vD vA vB vC 32

vmhraddshs 04 vD vA vB vC 33

vmladduhm 04 vD vA vB vC 34

vmsumubm 04 vD vA vB vC 36

vmsummbm 04 vD vA vB vC 37

vmsumuhm 04 vD vA vB vC 38

vmsumuhs 04 vD vA vB vC 39

vmsumshm 04 vD vA vB vC 40

vmsumshs 04 vD vA vB vC 41

vsel 04 vD vA vB vC 42

vperm 04 vD vA vB vC 43

vsldoi 04 vD vA vB 0 SH 44

vmaddfp 04 vD vA vB 46

vnmsubfp 04 vD vA vB vC 47

vaddubm 04 vD vA vB 0

vadduhm 04 vD vA vB 64

vadduwm 04 vD vA vB 128

vaddcuw 04 vD vA vB 384

vaddubs 04 vD vA vB 512

Reserved bits

Key:
MOTOROLA Appendix C. Instructions Sorted by Opcode C-1

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Opcode in Decimal Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vadduhs 04 vD vA vB 576

vadduws 04 vD vA vB 640

vaddsbs 04 vD vA vB 768

vaddshs 04 vD vA vB 832

vaddsws 04 vD vA vB 896

vsububm 04 vD vA vB 1024

vsubuhm 04 vD vA vB 1088

vsubuwm 04 vD vA vB 1152

vsubcuw 04 vD vA vB 1408

vsububs 04 vD vA vB 1536

vsubuhs 04 vD vA vB 1600

vsubuws 04 vD vA vB 1664

vsubsbs 04 vD vA vB 1792

vsubshs 04 vD vA vB 1856

vsubsws 04 vD vA vB 1920

vmaxub 04 vD vA vB 2

vmaxuh 04 vD vA vB 66

vmaxuw 04 vD vA vB 130

vmaxsb 04 vD vA vB 258

vmaxsh 04 vD vA vB 322

vmaxsw 04 vD vA vB 386

vminub 04 vD vA vB 514

vminuh 04 vD vA vB 578

vminuw 04 vD vA vB 642

vminsb 04 vD vA vB 770

vminsh 04 vD vA vB 834

vminsw 04 vD vA vB 898

vavgub 04 vD vA vB 1026

vavguh 04 vD vA vB 1090

vavguw 04 vD vA vB 1154

vavgsb 04 vD vA vB 1282

vavgsh 04 vD vA vB 1346

vavgsw 04 vD vA vB 1410

Table C-1. Instructions Sorted by Opcode in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
C-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Opcode in Decimal Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vrlb 04 vD vA vB 4

vrlh 04 vD vA vB 68

vrlw 04 vD vA vB 132

vslb 04 vD vA vB 260

vslh 04 vD vA vB 324

vslw 04 vD vA vB 388

vsl 04 vD vA vB 452

vsrb 04 vD vA vB 516

vsrh 04 vD vA vB 580

vsrw 04 vD vA vB 644

vsr 04 vD vA vB 708

vsrab 04 vD vA vB 772

vsrah 04 vD vA vB 836

vsraw 04 vD vA vB 900

vand 04 vD vA vB 1028

vandc 04 vD vA vB 1092

vor 04 vD vA vB 1156

vxor 04 vD vA vB 1220

vnor 04 vD vA vB 1284

mfvscr 04 vD 0_0000 0000_0 1540

mtvscr 04 00_000 0_0000 vB 1604

vcmpequbx 04 vD vA vB Rc 6

vcmpequhx 04 vD vA vB Rc 70

vcmpequwx 04 vD vA vB Rc 134

vcmpeqfpx 04 vD vA vB Rc 198

vcmpgefpx 04 vD vA vB Rc 454

vcmpgtubx 04 vD vA vB Rc 518

vcmpgtuhx 04 vD vA vB Rc 582

vcmpgtuwx 04 vD vA vB Rc 646

vcmpgtfpx 04 vD vA vB Rc 710

vcmpgtsbx 04 vD vA vB Rc 774

vcmpgtshx 04 vD vA vB Rc 838

vcmpgtswx 04 vD vA vB Rc 902

Table C-1. Instructions Sorted by Opcode in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
MOTOROLA Appendix C. Instructions Sorted by Opcode C-3

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Opcode in Decimal Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpbfpx 04 vD vA vB Rc 966

vmuloub 04 vD vA vB 8

vmulouh 04 vD vA vB 72

vmulosb 04 vD vA vB 264

vmulosh 04 vD vA vB 328

vmuleub 04 vD vA vB 520

vmuleuh 04 vD vA vB 584

vmulesb 04 vD vA vB 776

vmulesh 04 vD vA vB 840

vsum4ubs 04 vD vA vB 1544

vsum4sbs 04 vD vA vB 1800

vsum4shs 04 vD vA vB 1608

vsum2sws 04 vD vA vB 1672

vsumsws 04 vD vA vB 1928

vaddfp 04 vD vA vB 10

vsubfp 04 vD vA vB 74

vrefp 04 vD 0_0000 vB 266

vrsqrtefp 04 vD 0_0000 vB 330

vexptefp 04 vD 0_0000 vB 394

vlogefp 04 vD 0_0000 vB 458

vrfin 04 vD 0_0000 vB 522

vrfiz 04 vD 0_0000 vB 586

vrfip 04 vD 0_0000 vB 650

vrfim 04 vD 0_0000 vB 714

vcfux 04 vD UIMM vB 778

vcfsx 04 vD UIMM vB 842

vctuxs 04 vD UIMM vB 906

vctsxs 04 vD UIMM vB 970

vmaxfp 04 vD vA vB 1034

vminfp 04 vD vA vB 1098

vmrghb 04 vD vA vB 12

vmrghh 04 vD vA vB 76

vmrghw 04 vD vA vB 140

Table C-1. Instructions Sorted by Opcode in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
C-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Opcode in Decimal Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmrglb 04 vD vA vB 268

vmrglh 04 vD vA vB 332

vmrglw 04 vD vA vB 396

vspltb 04 vD UIMM vB 524

vsplth 04 vD UIMM vB 588

vspltw 04 vD UIMM vB 652

vspltisb 04 vD SIMM 0000_0 780

vspltish 04 vD SIMM 0000_0 844

vspltisw 04 vD SIMM 0000_0 908

vslo 04 vD vA vB 1036

vsro 04 vD vA vB 1100

vpkuhum 04 vD vA vB 14

vpkuwum 04 vD vA vB 78

vpkuhus 04 vD vA vB 142

vpkuwus 04 vD vA vB 206

vpkshus 04 vD vA vB 270

vpkswus 04 vD vA vB 334

vpkshss 04 vD vA vB 398

vpkswss 04 vD vA vB 462

vupkhsb 04 vD 0_0000 vB 526

vupkhsh 04 vD 0_0000 vB 590

vupklsb 04 vD 0_0000 vB 654

vupklsh 04 vD 0_0000 vB 718

vpkpx 04 vD vA vB 782

vupkhpx 04 vD 0_0000 vB 846

vupklpx 04 vD 0_0000 vB 974

lvsl 31 vD A B 6 0

lvsr 31 vD A B 38 0

dst 31 0 0_0 STRM A B 342 0

dstt 31 1 0_0 STRM A B 342 0

dstst 31 0 0_0 STRM A B 374 0

dststt 31 1 0_0 STRM A B 374 0

dss 31 0 0_0 STRM 0_0000 0000_0 822 0

Table C-1. Instructions Sorted by Opcode in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
MOTOROLA Appendix C. Instructions Sorted by Opcode C-5

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Opcode in Decimal Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

dssall 31 1 0_0 STRM 0_0000 0000_0 822 0

lvebx 31 vD A B 71 0

lvehx 31 vD A B 39 0

lvewx 31 vD A B 0 0

lvx 31 vD A B 103 0

lvxl 31 vD A B 359 0

stvebx 31 vS A B 135 0

stvehx 31 vS A B 167 0

stvewx 31 vS A B 199 0

stvx 31 vS A B 231 0

stvxl 31 vS A B 487 0

Table C-1. Instructions Sorted by Opcode in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
C-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix D
Instructions Sorted by Opcode

D.1 Instructions Sorted by Opcode in Binary Format
Table D-1 lists Altivec instructions grouped by opcode in binary format.

.

Table D-1. Instructions Sorted by Opcode in Binary Format

Name 0---------------5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmhaddshs 0001_00 vD vA vB vC 10_0000

vmhraddshs 0001_00 vD vA vB vC 10_0001

vmladduhm 0001_00 vD vA vB vC 10_0010

vmsumubm 0001_00 vD vA vB vC 10_0100

vmsummbm 0001_00 vD vA vB vC 10_0101

vmsumuhm 0001_00 vD vA vB vC 10_0110

vmsumuhs 0001_00 vD vA vB vC 10_0111

vmsumshm 0001_00 vD vA vB vC 10_1000

vmsumshs 0001_00 vD vA vB vC 10_1001

vsel 0001_00 vD vA vB vC 10_1010

vperm 0001_00 vD vA vB vC 10_1011

vsldoi 0001_00 vD vA vB 0 SH 10_1100

vmaddfp 0001_00 vD vA vB 000_0010_1110

vnmsubfp 0001_00 vD vA vB vC 10_1111

vaddubm 0001_00 vD vA vB 000_0000_0000

vadduhm 0001_00 vD vA vB 000_0100_0000

vadduwm 0001_00 vD vA vB 000_1000_0000

vaddcuw 0001_00 vD vA vB 001_1000_0000

vaddubs 0001_00 vD vA vB 010_0000_0000

vadduhs 0001_00 vD vA vB 010_0100_0000

Reserved bits

Key:
MOTOROLA Appendix D. Instructions Sorted by Opcode D-1

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Opcode in Binary Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vadduws 0001_00 vD vA vB 010_1000_0000

vaddsbs 0001_00 vD vA vB 011_0000_0000

vaddshs 0001_00 vD vA vB 011_0100_0000

vaddsws 0001_00 vD vA vB 011_1000_0000

vsububm 0001_00 vD vA vB 100_0000_0000

vsubuhm 0001_00 vD vA vB 100_0100_0000

vsubuwm 0001_00 vD vA vB 100_1000_0000

vsubcuw 0001_00 vD vA vB 101_1000_0000

vsububs 0001_00 vD vA vB 110_0000_0000

vsubuhs 0001_00 vD vA vB 110_0100_0000

vsubuws 0001_00 vD vA vB 110_1000_0000

vsubsbs 0001_00 vD vA vB 111_0000_0000

vsubshs 0001_00 vD vA vB 111_0100_0000

vsubsws 0001_00 vD vA vB 111_1000_0000

vmaxub 0001_00 vD vA vB 000_0000_0010

vmaxuh 0001_00 vD vA vB 000_0100_0010

vmaxuw 0001_00 vD vA vB 000_1000_0010

vmaxsb 0001_00 vD vA vB 001_0000_0010

vmaxsh 0001_00 vD vA vB 001_0100_0010

vmaxsw 0001_00 vD vA vB 001_1000_0010

vminub 0001_00 vD vA vB 010_0000_0010

vminuh 0001_00 vD vA vB 010_0100_0010

vminuw 0001_00 vD vA vB 010_1000_0010

vminsb 0001_00 vD vA vB 011_0000_0010

vminsh 0001_00 vD vA vB 011_0100_0010

vminsw 0001_00 vD vA vB 011_1000_0010

vavgub 0001_00 vD vA vB 100_0000_0010

vavguh 0001_00 vD vA vB 100_0100_0010

vavguw 0001_00 vD vA vB 100_1000_0010

vavgsb 0001_00 vD vA vB 101_0000_0010

vavgsh 0001_00 vD vA vB 101_0100_0010

vavgsw 0001_00 vD vA vB 101_1000_0010

vrlb 0001_00 vD vA vB 000_0000_0100

Table D-1. Instructions Sorted by Opcode in Binary Format (continued)

Name 0---------------5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
D-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Opcode in Binary Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vrlh 0001_00 vD vA vB 000_0100_0100

vrlw 0001_00 vD vA vB 000_1000_0100

vslb 0001_00 vD vA vB 001_0000_0100

vslh 0001_00 vD vA vB 001_0100_0100

vslw 0001_00 vD vA vB 001_1000_0100

vsl 0001_00 vD vA vB 001_1100_0100

vsrb 0001_00 vD vA vB 010_0000_0100

vsrh 0001_00 vD vA vB 010_0100_0100

vsrw 0001_00 vD vA vB 010_1000_0100

vsr 0001_00 vD vA vB 010_1100_0100

vsrab 0001_00 vD vA vB 011_0000_0100

vsrah 0001_00 vD vA vB 011_0100_0100

vsraw 0001_00 vD vA vB 011_1000_0100

vand 0001_00 vD vA vB 100_0000_0100

vandc 0001_00 vD vA vB 100_0100_0100

vor 0001_00 vD vA vB 100_1000_0100

vxor 0001_00 vD vA vB 100_1100_0100

vnor 0001_00 vD vA vB 101_0000_0100

mfvscr 0001_00 vD 0_0000 0000_0 110_0000_0100

mtvscr 0001_00 00_000 0_0000 vB 110_0100_0100

vcmpequbx 0001_00 vD vA vB Rc 00_0000_0110

vcmpequhx 0001_00 vD vA vB Rc 00_0100_0110

vcmpequwx 0001_00 vD vA vB Rc 00_1000_0110

vcmpeqfpx 0001_00 vD vA vB Rc 00_1100_0110

vcmpgefpx 0001_00 vD vA vB Rc 01_1100_0110

vcmpgtubx 0001_00 vD vA vB Rc 10_0000_0110

vcmpgtuhx 0001_00 vD vA vB Rc 10_0100_0110

vcmpgtuwx 0001_00 vD vA vB Rc 10_1000_0110

vcmpgtfpx 0001_00 vD vA vB Rc 10_1100_0110

vcmpgtsbx 0001_00 vD vA vB Rc 11_0000_0110

vcmpgtshx 0001_00 vD vA vB Rc 11_0100_0110

vcmpgtswx 0001_00 vD vA vB Rc 11_1000_0110

vcmpbfpx 0001_00 vD vA vB Rc 11_1100_0110

Table D-1. Instructions Sorted by Opcode in Binary Format (continued)

Name 0---------------5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
MOTOROLA Appendix D. Instructions Sorted by Opcode D-3

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Opcode in Binary Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmuloub 0001_00 vD vA vB 000_0000_1000

vmulouh 0001_00 vD vA vB 000_0100_1000

vmulosb 0001_00 vD vA vB 001_0000_1000

vmulosh 0001_00 vD vA vB 001_0100_1000

vmuleub 0001_00 vD vA vB 010_0000_1000

vmuleuh 0001_00 vD vA vB 010_0100_1000

vmulesb 0001_00 vD vA vB 011_0000_1000

vmulesh 0001_00 vD vA vB 011_0100_1000

vsum4ubs 0001_00 vD vA vB 110_0000_1000

vsum4sbs 0001_00 vD vA vB 111_0000_1000

vsum4shs 0001_00 vD vA vB 110_0100_1000

vsum2sws 0001_00 vD vA vB 110_1000_1000

vsumsws 0001_00 vD vA vB 111_1000_1000

vaddfp 0001_00 vD vA vB 000_0000_1010

vsubfp 0001_00 vD vA vB 000_0100_1010

vrefp 0001_00 vD 0_0000 vB 001_0000_1010

vrsqrtefp 0001_00 vD 0_0000 vB 001_0100_1010

vexptefp 0001_00 vD 0_0000 vB 001_1000_1010

vlogefp 0001_00 vD 0_0000 vB 001_1100_1010

vrfin 0001_00 vD 0_0000 vB 010_0000_1010

vrfiz 0001_00 vD 0_0000 vB 010_0100_1010

vrfip 0001_00 vD 0_0000 vB 010_1000_1010

vrfim 0001_00 vD 0_0000 vB 010_1100_1010

vcfux 0001_00 vD UIMM vB 011_0000_1010

vcfsx 0001_00 vD UIMM vB 011_0100_1010

vctuxs 0001_00 vD UIMM vB 011_1000_1010

vctsxs 0001_00 vD UIMM vB 011_1100_1010

vmaxfp 0001_00 vD vA vB 100_0000_1010

vminfp 0001_00 vD vA vB 100_0100_1010

vmrghb 0001_00 vD vA vB 000_0000_1100

vmrghh 0001_00 vD vA vB 000_0100_1100

vmrghw 0001_00 vD vA vB 000_1000_1100

vmrglb 0001_00 vD vA vB 001_0000_1100

Table D-1. Instructions Sorted by Opcode in Binary Format (continued)

Name 0---------------5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
D-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Opcode in Binary Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmrglh 0001_00 vD vA vB 001_0100_1100

vmrglw 0001_00 vD vA vB 001_1000_1100

vspltb 0001_00 vD UIMM vB 010_0000_1100

vsplth 0001_00 vD UIMM vB 010_0100_1100

vspltw 0001_00 vD UIMM vB 010_1000_1100

vspltisb 0001_00 vD SIMM 0000_0 011_0000_1100

vspltish 0001_00 vD SIMM 0000_0 011_0100_1100

vspltisw 0001_00 vD SIMM 0000_0 011_1000_1100

vslo 0001_00 vD vA vB 100_0000_1100

vsro 0001_00 vD vA vB 100_0100_1100

vpkuhum 0001_00 vD vA vB 000_0000_1110

vpkuwum 0001_00 vD vA vB 000_0100_1110

vpkuhus 0001_00 vD vA vB 000_1000_1110

vpkuwus 0001_00 vD vA vB 000_1100_1110

vpkshus 0001_00 vD vA vB 001_0000_1110

vpkswus 0001_00 vD vA vB 001_0100_1110

vpkshss 0001_00 vD vA vB 001_1000_1110

vpkswss 0001_00 vD vA vB 001_1100_1110

vupkhsb 0001_00 vD 0_0000 vB 010_0000_1110

vupkhsh 0001_00 vD 0_0000 vB 010_0100_1110

vupklsb 0001_00 vD 0_0000 vB 010_1000_1110

vupklsh 0001_00 vD 0_0000 vB 010_1100_1110

vpkpx 0001_00 vD vA vB 0110000_1110

vupkhpx 0001_00 vD 0_0000 vB 011_0100_1110

vupklpx 0001_00 vD 0_0000 vB 011_1100_1110

lvsl 0111_11 vD A B 000_0000_110 0

lvsr 0111_11 vD A B 000_0100_110 0

dst 0111_11 0 0_0 STRM A B 010_1010_110 0

dstt 0111_1 1 0_0 STRM A B 010_1010_110 0

dstst 0111_11 0 0_0 STRM A B 010_1110_110 0

dststt 0111_11 1 0_0 STRM A B 010_1110_110 0

dss 0111_11 0 0_0 STRM 0_0000 0000_0 110_0110_110 0

dssall 0111_11 1 0_0 STRM 0_0000 0000_0 110_0110_110 0

Table D-1. Instructions Sorted by Opcode in Binary Format (continued)

Name 0---------------5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
MOTOROLA Appendix D. Instructions Sorted by Opcode D-5

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Opcode in Binary Format

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

lvebx 0111_11 vD A B 000_0000_111 0

lvehx 0111_11 vD A B 000_0100_111 0

lvewx 0111_11 vD A B 000_1000_111 0

lvx 0111_11 vD A B 000_1100_111 0

lvxl 0111_11 vD A B 010_1100_111 0

stvebx 0111_11 vS A B 001_0000_111 0

stvehx 0111_11 vS A B 001_0100_111 0

stvewx 0111_11 vS A B 001_1000_111 0

stvx 0111_11 vS A B 001_1100_111 0

stvxl 0111_11 vS A B 011_1100_111 0

Table D-1. Instructions Sorted by Opcode in Binary Format (continued)

Name 0---------------5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
D-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix E
Instructions Sorted by Form

E.1 Instructions Sorted by Form
Table E-1 through Table E-4 list the AltiVec instructions grouped by form.

Table E-1. VA-Form

OPCD vD vA vB vC XO

OPCD vD vA vB 0 SH XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmhaddshs 04 vD vA vB vC 32

vmhraddshs 04 vD vA vB vC 33

vmladduhm 04 vD vA vB vC 34

vmsumubm 04 vD vA vB vC 36

vmsummbm 04 vD vA vB vC 37

vmsumuhm 04 vD vA vB vC 38

vmsumuhs 04 vD vA vB vC 39

vmsumshm 04 vD vA vB vC 40

vmsumshs 04 vD vA vB vC 41

vsel 04 vD vA vB vC 42

vperm 04 vD vA vB vC 43

vsldoi 04 vD vA vB 0 SH 44

vmaddfp 04 vD vA vB vC 46

vnmsubfp 04 vD vA vB vC 47

Reserved bits

Key:
MOTOROLA Appendix E. Instructions Sorted by Form E-1

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Form

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table E-2. VX-Form

OPCD vD vA vB XO

OPCD vD 0_0000 0000_0 XO 0

OPCD 00_000 0_0000 vB XO 0

OPCD vD 0_0000 vB XO

OPCD vD UIMM vB XO

OPCD vD SIMM 0000_0 XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vaddubm 04 vD vA vB 0

vadduhm 04 vD vA vB 64

vadduwm 04 vD vA vB 128

vaddcuw 04 vD vA vB 384

vaddubs 04 vD vA vB 512

vadduhs 04 vD vA vB 576

vadduws 04 vD vA vB 640

vaddsbs 04 vD vA vB 768

vaddshs 04 vD vA vB 832

vaddsws 04 vD vA vB 896

vsububm 04 vD vA vB 1024

vsubuhm 04 vD vA vB 1088

vsubuwm 04 vD vA vB 1152

vsubcuw 04 vD vA vB 1408

vsububs 04 vD vA vB 1536

vsubuhs 04 vD vA vB 1600

vsubuws 04 vD vA vB 1664

vsubsbs 04 vD vA vB 1792

vsubshs 04 vD vA vB 1856

vsubsws 04 vD vA vB 1920

vmaxub 04 vD vA vB 2

vmaxuh 04 vD vA vB 66

vmaxuw 04 vD vA vB 130

vmaxsb 04 vD vA vB 258

vmaxsh 04 vD vA vB 322
E-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Form

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmaxsw 04 vD vA vB 386

vminub 04 vD vA vB 514

vminuh 04 vD vA vB 578

vminuw 04 vD vA vB 642

vminsb 04 vD vA vB 770

vminsh 04 vD vA vB 834

vminsw 04 vD vA vB 898

vavgub 04 vD vA vB 1026

vavguh 04 vD vA vB 1090

vavguw 04 vD vA vB 1154

vavgsb 04 vD vA vB 1282

vavgsh 04 vD vA vB 1346

vavgsw 04 vD vA vB 1410

vrlb 04 vD vA vB 4

vrlh 04 vD vA vB 68

vrlw 04 vD vA vB 132

vslb 04 vD vA vB 260

vslh 04 vD vA vB 324

vslw 04 vD vA vB 388

vsl 04 vD vA vB 452

vsrb 04 vD vA vB 516

vsrh 04 vD vA vB 580

vsrw 04 vD vA vB 644

vsr 04 vD vA vB 708

vsrab 04 vD vA vB 772

vsrah 04 vD vA vB 836

vsraw 04 vD vA vB 900

vand 04 vD vA vB 1028

vandc 04 vD vA vB 1092

vor 04 vD vA vB 1156

vnor 04 vD vA vB 1284

mfvscr 04 vD 0_0000 0000_0 1540

mtvscr 04 00_000 0_0000 vB 1604

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
MOTOROLA Appendix E. Instructions Sorted by Form E-3

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Form

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmuloub 04 vD vA vB 8

vmulouh 04 vD vA vB 72

vmulosb 04 vD vA vB 264

vmulosh 04 vD vA vB 328

vmuleub 04 vD vA vB 520

vmuleuh 04 vD vA vB 584

vmulesb 04 vD vA vB 776

vmulesh 04 vD vA vB 840

vsum4ubs 04 vD vA vB 1544

vsum4sbs 04 vD vA vB 1800

vsum4shs 04 vD vA vB 1608

vsum2sws 04 vD vA vB 1672

vsumsws 04 vD vA vB 1928

vaddfp 04 vD vA vB 10

vsubfp 04 vD vA vB 74

vrefp 04 vD 0_0000 vB 266

vrsqrtefp 04 vD 0_0000 vB 330

vexptefp 04 vD 0_0000 vB 394

vlogefp 04 vD 0_0000 vB 458

vrfin 04 vD 0_0000 vB 522

vrfiz 04 vD 0_0000 vB 586

vrfip 04 vD 0_0000 vB 650

vrfim 04 vD 0_0000 vB 714

vcfux 04 vD UIMM vB 778

vcfsx 04 vD UIMM vB 842

vctuxs 04 vD UIMM vB 906

vctsxs 04 vD UIMM vB 970

vmaxfp 04 vD vA vB 1034

vminfp 04 vD vA vB 1098

vmrghb 04 vD vA vB 12

vmrghh 04 vD vA vB 76

vmrghw 04 vD vA vB 140

vmrglb 04 vD vA vB 268

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
E-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Form

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmrglh 04 vD vA vB 332

vmrglw 04 vD vA vB 396

vspltb 04 vD UIMM vB 524

vsplth 04 vD UIMM vB 588

vspltw 04 vD UIMM vB 652

vspltisb 04 vD SIMM 0000_0 780

vspltish 04 vD SIMM 0000_0 844

vspltisw 04 vD SIMM 0000_0 908

vslo 04 vD vA vB 1036

vsro 04 vD vA vB 1100

vpkuhum 04 vD vA vB 14

vpkuwum 04 vD vA vB 78

vpkuhus 04 vD vA vB 142

vpkuwus 04 vD vA vB 206

vpkshus 04 vD vA vB 270

vpkswus 04 vD vA vB 334

vpkshss 04 vD vA vB 398

vpkswss 04 vD vA vB 462

vupkhsb 04 vD 0_0000 vB 526

vupkhsh 04 vD 0_0000 vB 590

vupklsb 04 vD 0_0000 vB 654

vupklsh 04 vD 0_0000 vB 718

vpkpx 04 vD vA vB 782

vupkhpx 04 vD 0_0000 vB 846

vupklpx 04 vD 0_0000 vB 974

vxor 04 vD vA vB 1220

Table E-3. X-Form

OPCD vD vA vB XO 0

OPCD vS vA vB XO 0

OPCD T 0_0 STRM A B XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
MOTOROLA Appendix E. Instructions Sorted by Form E-5

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Form

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Specific Instructions

Name 0---------------------5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dst 31 T 0_0 STRM A B 342 0

dstt 31 1 0_0 STRM A B 342 0

dstst 31 T 0_0 STRM A B 374 0

dststt 31 1 0_0 STRM A B 374 0

dss 31 A 0_0 STRM 0_0000 0000_0 822 0

dssall 31 1 0_0 STRM 0_0000 0000_0 822 0

lvebx 31 vD A B 7 0

lvehx 31 vD A B 39 0

lvewx 31 vD A B 71 0

lvsl 31 vD A B 6 0

lvsr 31 vD A B 38 0

lvx 31 vD A B 103 0

lvxl 31 vD A B 359 0

stvebx 31 vS A B 135 0

stvehx 31 vS A B 167 0

stvewx 31 vS A B 199 0

stvx 31 vS A B 231 0

stvxl 31 vS A B 487 0

Table E-4. VXR-Form

OPCD vD vA vB Rc XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vcmpbfpx 04 vD vA vB Rc 966

vcmpeqfpx 04 vD vA vB Rc 198

vcmpequbx 04 vD vA vB Rc 6

vcmpequhx 04 vD vA vB Rc 70

vcmpequwx 04 vD vA vB Rc 134

vcmpgefpx 04 vD vA vB Rc 454

vcmpgtfpx 04 vD vA vB Rc 710

vcmpgtsbx 04 vD vA vB Rc 774
E-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Form

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Specific Instructions

vcmpgtshx 04 vD vA vB Rc 838

vcmpgtswx 04 vD vA vB Rc 902

vcmpgtubx 04 vD vA vB Rc 518

vcmpgtuhx 04 vD vA vB Rc 582

vcmpgtuwx 04 vD vA vB Rc 646
MOTOROLA Appendix E. Instructions Sorted by Form E-7

For More Information On This Product,
 Go to: www.freescale.com

Instructions Sorted by Form

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E-8 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix F
Instruction Set Legend

F.1 Instruction Set Legend
Table F-1 provides general information on the AltiVec instruction set such as the
architectural level, privilege level, and form.

Table F-1. AltiVec Instruction Set Legend

UISA VEA OEA
Supervisor

Level
Optional Form

dss √ VX

dssall √ VX

dst √ VX

dstst √ VX

dststt √ VX

dstt √ VX

lvebx √ X

lvehx √ X

lvewx √ X

lvsl √ X

lvsr √ X

lvx √ X

lvxl √ X

mfvscr √ VX

mtvscr √ VX

stvebx √ X

stvehx √ X

stvewx √ X

stvx √ X

stvxl √ X
MOTOROLA Appendix F. Instruction Set Legend F-1

For More Information On This Product,
 Go to: www.freescale.com

Instruction Set Legend

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vaddcuw √ VX

vaddfp √ VX

vaddsbs √ VX

vaddshs √ VX

vaddsws √ VX

vaddubm √ VX

vaddubs √ VX

vadduhm √ VX

vadduhs √ VX

vadduwm √ VX

vadduws √ VX

vand √ VX

vandc √ VX

vavgsb √ VX

vavgsh √ VX

vavgsw √ VX

vavgub √ VX

vavguh √ VX

vavguw √ VX

vcfux √ VX

vcfsx √ VX

vcmpbfpx √ VXR

vcmpeqfpx √ VXR

vcmpequbx √ VXR

vcmpequhx √ VXR

vcmpequwx √ VXR

vcmpgefpx √ VXR

vcmpgtfpx √ VXR

vcmpgtsbx √ VXR

vcmpgtshx √ VXR

vcmpgtswx √ VXR

vcmpgtubx √ VXR

vcmpgtuhx √ VXR

Table F-1. AltiVec Instruction Set Legend (continued)

UISA VEA OEA
Supervisor

Level
Optional Form
F-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instruction Set Legend

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vcmpgtuwx √ VXR

vctsxs √ VX

vctuxs √ VX

vexptefp √ VX

vlogefp √ VX

vmaddfp √ VA

vmaxfp √ VX

vmaxsb √ VX

vmaxsh √ VX

vmaxsw √ VX

vmaxub √ VX

vmaxuh √ VX

vmaxuw √ VX

vmhaddshs √ VA

vmhraddshs √ VA

vminfp √ VX

vminsb √ VX

vminsh √ VX

vminsw √ VX

vminub √ VX

vminuh √ VX

vminuw √ VX

vmladduhm √ VA

vmrghb √ VX

vmrghh √ VX

vmrghw √ VX

vmrglb √ VX

vmrglh √ VX

vmrglw √ VX

vmsummbm √ VA

vmsumshm √ VA

vmsumshs √ VA

vmsumubm √ VA

Table F-1. AltiVec Instruction Set Legend (continued)

UISA VEA OEA
Supervisor

Level
Optional Form
MOTOROLA Appendix F. Instruction Set Legend F-3

For More Information On This Product,
 Go to: www.freescale.com

Instruction Set Legend

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vmsumuhm √ VA

vmsumuhs √ VA

vmulesb √ VX

vmulesh √ VX

vmuleub √ VX

vmuleuh √ VX

vmulosb √ VX

vmulosh √ VX

vmuloub √ VX

vmulouh √ VX

vnmsubfp √ VA

vnor √ VX

vor √ VX

vperm √ VA

vpkpx √ VX

vpkshss √ VX

vpkshus √ VX

vpkswss √ VX

vpkuhum √ VX

vpkuhus √ VX

vpkswus √ VX

vpkuwum √ VX

vpkuwus √ VX

vrefp √ VX

vrfim √ VX

vrfin √ VX

vrfip √ VX

vrfiz √ VX

vrlb √ VX

vrlh √ VX

vrlw √ VX

vrsqrtefp √ VX

vsel √ VA

Table F-1. AltiVec Instruction Set Legend (continued)

UISA VEA OEA
Supervisor

Level
Optional Form
F-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Instruction Set Legend

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsl √ VX

vslb √ VX

vsldoi √ VA

vslh √ VX

vslo √ VX

vslw √ VX

vspltb √ VX

vsplth √ VX

vspltisb √ VX

vspltish √ VX

vspltisw √ VX

vspltw √ VX

vsr √ VX

vsrab √ VX

vsrah √ VX

vsraw √ VX

vsrb √ VX

vsrh √ VX

vsro √ VX

vsrw √ VX

vsubcuw √ VX

vsubfp √ VX

vsubsbs √ VX

vsubshs √ VX

vsubsws √ VX

vsububm √ VX

vsubuhm √ VX

vsububs √ VX

vsubuhs √ VX

vsubuwm √ VX

vsubuws √ VX

vsumsws √ VX

vsum2sws √ VX

Table F-1. AltiVec Instruction Set Legend (continued)

UISA VEA OEA
Supervisor

Level
Optional Form
MOTOROLA Appendix F. Instruction Set Legend F-5

For More Information On This Product,
 Go to: www.freescale.com

Instruction Set Legend

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vsum4sbs √ VX

vsum4shs √ VX

vsum4ubs √ VX

vupkhpx √ VX

vupkhsb √ VX

vupkhsh √ VX

vupkhpx √ VX

vupklsh √ VX

vupklpx √ VX

vupklsb √ VX

vupklsh √ VX

vxor √ VX

Table F-1. AltiVec Instruction Set Legend (continued)

UISA VEA OEA
Supervisor

Level
Optional Form
F-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix G
User’s Manual Revision History
This appendix provides a list of the major differences between the AltiVec Programming
Environments Manual, Revision 0 and Revision 1. Note that the list only covers the major
changes to the user’s manual.

Only minor formatting upgrades comprised the changes in Revision 2.

No major changes were made top Revision 1.

The major changes to the AltiVec Programming Environments Manual, Revision 0, are as
follows:

Section, Page Change

2.1.2, Page 2-4 Replace Figure 2-4, “Saving/Restoring the AltiVec Context Register
(VRSAVE)” with the following:

2.2, Page 2-9 Figure 2-10—The vector registers are 128 bits wide not 64 bits wide
as shown.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field VR0 VR1 VR2 VR3 VR4 VR5 VR6 VR7 VR8 VR9 VR10 VR11 VR12 VR13 VR14 VR15

Reset 0000_0000_0000_0000

R/W R/W using mfspr or mtspr instructions

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field VR16 VR17 VR18 VR19 VR20 VR21 VR22 VR23 VR24 VR25 VR26 VR27 VR28 VR29 VR30 VR31

Reset 0000_0000_0000_0000

R/W R/W using mfspr or mtspr instructions

SPR SPR256
MOTOROLA Appendix G. User’s Manual Revision History G-1

For More Information On This Product,
 Go to: www.freescale.com

Section, Page No. Changes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.2.4, Page 4-20 Change Table 4-9 as follows:

• the mnemonic for Vector Round to Floating-Point Integer Nearest
should be vrfin not fvrfin.

• the mnemonic for Vector Round to Floating-Point Integer toward
Zero should be vrfiz,not fvrfiz.

• the mnemonic for Vector Round to Floating-Point Integer toward
Positive Infinity should be vrfip, not fvrfip.

• the mnemonic for Vector Round to Floating-Point Integer toward
Minus Infinity should be vrfim, not fvrfim.

6.2, Page 6-24 Change the mfvscr encoding as shown below (note: bit 31 is not 0):

6.2, Page 6-25 Change the mtvscr encoding as shown below (note: bit 31 is not 0):

A.1, Page A-2 Change the mfvscr encoding as shown below (note: bit 31 is not 0):

A.1, Page A-2 Change the mtvscr encoding as shown below (note: bit 31 is not 0 and
vD should be vB):

A.2, Page A-9 Change the mfvscr encoding as shown below (note: bit 31 is not 0):

A.2, Page A-9 Change the mtvscr encoding as shown below (note: bit 31 is not 0):

A.3, Page A-14 Change the mfvscr encoding as shown below (note: bit 31 is not 0):

A.3, Page A-14 Change the mtvscr encoding as shown below (note: bit 31 is not 0):

04 vD 0 0 0 0 0 0 0 0 0 0 1540

0 5 6 10 11 15 16 20 21 31

04 0 0 0 0 0 0 0 0 0 0 vB 1604

0 5 6 10 11 15 16 20 21 31

mfvscr 04 vD 0 0 0 0 0 0 0 0 0 0 1540

mtvscr 04 0 0 0 0 0 0 0 0 0 0 vB 1604

mfvscr 000100 vD 0 0 0 0 0 0 0 0 0 0 110 0000 0100

mtvscr 000100 0 0 0 0 0 0 0 0 0 0 vB 110 0100 0100

mfvscr 04 vD 0 0 0 0 0 0 0 0 0 0 1540

mtvscr 04 0 0 0 0 0 0 0 0 0 0 vB 1604
G-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprinted from IEEE
Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

A Architecture. A detailed specification of requirements for a processor or
computer system. It does not specify details of how the processor or
computer system must be implemented; instead it provides a
template for a family of compatible implementations.

Asynchronous exception. Exceptions that are caused by events external to
the processor’s execution. In this document, the term ‘asynchronous
exception’ is used interchangeably with the word interrupt.

Atomic access. A bus access that attempts to be part of a read-write
operation to the same address uninterrupted by any other access to
that address (the term refers to the fact that the transactions are
indivisible). The PowerPC architecture implements atomic accesses
through the lwarx/stwcx. instruction pair.

B BAT (block address translation) mechanism. A software-controlled array
that stores the available block address translations on-chip.

Beat. A single state on the 603e bus interface that may extend across
multiple bus cycles. A 603e transaction can be composed of multiple
address or data beats.

Biased exponent. An exponent whose range of values is shifted by a
constant (bias). Typically a bias is provided to allow a range of
positive values to express a range that includes both positive and
negative values.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most-significant byte. See Little-endian.
MOTOROLA Glossary of Terms and Abbreviations Glossary-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Block. An area of memory that ranges from 128 Kbyte to 256 Mbyte whose
size, translation, and protection attributes are controlled by the BAT
mechanism.

Boundedly undefined. A characteristic of certain operation results that are
not rigidly prescribed by the PowerPC architecture. Boundedly-
undefined results for a given operation may vary among
implementations and between execution attempts in the same
implementation.

Although the architecture does not prescribe the exact behavior for
when results are allowed to be boundedly undefined, the results of
executing instructions in contexts where results are allowed to be
boundedly undefined are constrained to ones that could have been
achieved by executing an arbitrary sequence of defined instructions,
in valid form, starting in the state the machine was in before
attempting to execute the given instruction.

Branch folding. The replacement with target instructions of a branch
instruction and any instructions along the not-taken path when a
branch is either taken or predicted as taken.

Branch prediction. The process of guessing whether a branch will be taken.
Such predictions can be correct or incorrect; the term ‘predicted’ as
it is used here does not imply that the prediction is correct
(successful). The PowerPC architecture defines a means for static
branch prediction as part of the instruction encoding.

Branch resolution. The determination of whether a branch is taken or not
taken. A branch is said to be resolved when the processor can
determine which instruction path to take. If the branch is resolved as
predicted, the instructions following the predicted branch that may
have been speculatively executed can complete. If the branch is not
resolved as predicted, instructions on the mispredicted path, and any
results of speculative execution, are purged from the pipeline and
fetching continues from the nonpredicted path.

Burst. A multiple-beat data transfer whose total size is typically equal to a
cache block.

Bus clock. Clock that causes the bus state transitions.

Bus master. The owner of the address or data bus; the device that initiates or
requests the transaction.
Glossary-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C Cache. High-speed memory containing recently accessed data or
instructions (subset of main memory).

Cache block. A small region of contiguous memory that is copied from
memory into a cache. The size of a cache block may vary among
processors; the maximum block size is one page. In PowerPC
processors, cache coherency is maintained on a cache-block basis.
Note that the term ‘cache block’ is often used interchangeably with
‘cache line’.

Cache coherency. An attribute wherein an accurate and common view of
memory is provided to all devices that share the same memory
system. Caches are coherent if a processor performing a read from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processor’s cache.

Cache flush. An operation that removes from a cache any data from a
specified address range. This operation ensures that any modified
data within the specified address range is written back to main
memory. This operation is generated typically by a Data Cache
Block Flush (dcbf) instruction.

Caching-inhibited. A memory update policy in which the cache is bypassed
and the load or store is performed to or from main memory.

Cast out. A cache block that must be written to memory when a cache miss
causes a cache block to be replaced.

Changed bit. One of two page history bits found in each page table entry
(PTE). The processor sets the changed bit if any store is performed
into the page. See also Page access history bits and Referenced bit.

Clean. An operation that causes a cache block to be written to memory, if
modified, and then left in a valid, unmodified state in the cache.

Clear. To cause a bit or bit field to register a value of zero. See also Set.

Context synchronization. An operation that ensures that all instructions in
execution complete past the point where they can produce an
exception, that all instructions in execution complete in the context
in which they began execution, and that all subsequent instructions
are fetched and executed in the new context. Context synchronization
may result from executing specific instructions (such as isync or rfi)
or when certain events occur (such as an exception).
MOTOROLA Glossary of Terms and Abbreviations Glossary-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Copy-back operation. A cache operation in which a cache line is copied
back to memory to enforce cache coherency. Copy-back operations
consist of snoop push-out operations and cache cast-out operations.

D Denormalized number. A nonzero floating-point number whose exponent
has a reserved value, usually the format's minimum, and whose
explicit or implicit leading significand bit is zero.

Direct-mapped cache. A cache in which each main memory address can
appear in only one location within the cache, operates more quickly
when the memory request is a cache hit.

Direct-store segment access. An access to an I/O address space. The 603
defines separate memory-mapped and I/O address spaces, or
segments, distinguished by the corresponding segment register T bit
in the address translation logic of the 603. If the T bit is cleared, the
memory reference is a normal memory-mapped access and can use
the virtual memory management hardware of the 603. If the T bit is
set, the memory reference is a direct-store access.

Double-word swap. AltiVec processors implement a double-word swap
when moving quad words between vector registers and memory. The
double word swap performs an additional swap to keep vector
registers and memory consistent in little-endian mode. Double-word
swap is referred to as ‘swizzling’ in the AltiVec technology
architecture specification. This feature is not supported by the
PowerPC architecture.

E Effective address (EA). The 32-bit address specified for a load, store, or an
instruction fetch. This address is then submitted to the MMU for
translation to either a physical memory address.

Exception. A condition encountered by the processor that requires special,
supervisor-level processing.

Exception handler. A software routine that executes when an exception is
taken. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task (that
may include aborting the program that caused the exception). The
address for each exception handler is identified by an exception
vector offset defined by the architecture and a prefix selected via the
MSR.
Glossary-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Extended opcode. A secondary opcode field generally located in instruction
bits 21–30, that further defines the instruction type. All PowerPC
instructions are one word in length. The most significant 6 bits of the
instruction are the primary opcode, identifying the type of
instruction. See also Primary opcode.

Exclusive state. MEI state (E) in which only one caching device contains
data that is also in system memory.

Execution synchronization. A mechanism by which all instructions in
execution are architecturally complete before beginning execution
(appearing to begin execution) of the next instruction. Similar to
context synchronization but doesn't force the contents of the
instruction buffers to be deleted and refetched.

Exponent. In the binary representation of a floating-point number, the
exponent is the component that normally signifies the integer power
to which the value two is raised in determining the value of the
represented number. See also Biased exponent.

F Feed-forwarding. A 603e feature that reduces the number of clock cycles
that an execution unit must wait to use a register. When the source
register of the current instruction is the same as the destination
register of the previous instruction, the result of the previous
instruction is routed to the current instruction at the same time that it
is written to the register file. With feed-forwarding, the destination
bus is gated to the waiting execution unit over the appropriate source
bus, saving the cycles which would be used for the write and read.

Fetch. Retrieving instructions from either the cache or main memory and
placing them into the instruction queue.

Floating-point register (FPR). Any of the 32 registers in the floating-point
register file. These registers provide the source operands and
destination results for floating-point instructions. Load instructions
move data from memory to FPRs and store instructions move data
from FPRs to memory. The FPRs are 64 bits wide and store
floating-point values in double-precision format

Floating-point unit. The functional unit in the 603e processor responsible
for executing all floating-point instructions.

Flush. An operation that causes a cache block to be invalidated and the data,
if modified, to be written to memory.
MOTOROLA Glossary of Terms and Abbreviations Glossary-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Fraction. In the binary representation of a floating-point number, the field
of the significand that lies to the right of its implied binary point.

Fully associative. Addressing scheme where every cache location (every
byte) can have any possible address.

G General-purpose register (GPR). Any of the 32 registers in the
general-purpose register file. These registers provide the source
operands and destination results for all integer data manipulation
instructions. Integer load instructions move data from memory to
GPRs and store instructions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. When a
page is designated as guarded, instructions and data cannot be
accessed out-of-order.

H Harvard architecture. An architectural model featuring separate caches
and other memory management resources for instructions and data.

Hashing. An algorithm used in the page table search process.

I IEEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that defines operations and representations of binary
floating-point numbers.

Illegal instructions. A class of instructions that are not implemented for a
particular PowerPC processor. These include instructions not defined
by the PowerPC architecture. In addition, for 32-bit
implementations, instructions that are defined only for 64-bit
implementations are considered to be illegal instructions. For 64-bit
implementations instructions that are defined only for 32-bit
implementations are considered to be illegal instructions.

Implementation. A particular processor that conforms to the PowerPC
architecture, but may differ from other architecture-compliant
implementations for example in design, feature set, and
implementation of optional features. The PowerPC architecture has
many different implementations.

Implementation-dependent. An aspect of a feature in a processor’s design
that is defined by a processor’s design specifications rather than by
the PowerPC architecture.
Glossary-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Implementation-specific. An aspect of a feature in a processor’s design that
is not required by the PowerPC architecture, but for which the
PowerPC architecture may provide concessions to ensure that
processors that implement the feature do so consistently.

Imprecise exception. A type of synchronous exception that is allowed not to
adhere to the precise exception model (see Precise exception). The
PowerPC architecture allows only floating-point exceptions to be
handled imprecisely.

Inexact. Loss of accuracy in an arithmetic operation when the rounded result
differs from the infinitely precise value with unbounded range.

Instruction queue. A holding place for instructions fetched from the current
instruction stream.

Integer unit. The functional unit in the 603e responsible for executing all
integer instructions.

In-order. An aspect of an operation that adheres to a sequential model. An
operation is said to be performed in-order if, at the time that it is
performed, it is known to be required by the sequential execution
model. See Out-of-order.

Instruction latency. The total number of clock cycles necessary to execute
an instruction and make ready the results of that instruction.

Instruction parallelism. A feature of PowerPC processors that allows
instructions to be processed in parallel.

Interrupt. An external signal that causes the 603e to suspend current
execution and take a predefined exception.

K Key bits. A set of key bits referred to as Ks and Kp in each segment register
and each BAT register. The key bits determine whether supervisor or
user programs can access a page within that segment or block.

Kill. An operation that causes a cache block to be invalidated without
writing any modified data to memory.

L Latency. The number of clock cycles necessary to execute an instruction and
make ready the results of that execution for a subsequent instruction.

L2 cache. See Secondary cache.
MOTOROLA Glossary of Terms and Abbreviations Glossary-7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Least-significant bit (lsb). The bit of least value in an address, register,
field, data element, or instruction encoding.

Least-significant byte (LSB). The byte of least value in an address, register,
data element, or instruction encoding.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most-significant byte. See Big-endian.

Loop unrolling. Loop unrolling provides a way of increasing performance
by allowing more instructions to be issued in a clock cycle. The
compiler replicates the loop body to increase the number of
instructions executed between a loop branch.

M Mantissa. The decimal part of logarithm.

MEI (modified/exclusive/invalid). Cache coherency protocol used to
manage caches on different devices that share a memory system.
Note that the PowerPC architecture does not specify the
implementation of a MEI protocol to ensure cache coherency.

MESI (modified/exclusive/shared/invalid). Cache coherency protocol used
to manage caches on different devices that share a memory system.
Note that the PowerPC architecture does not specify the
implementation of a MESI protocol to ensure cache coherency.

Memory access ordering. The specific order in which the processor
performs load and store memory accesses and the order in which
those accesses complete.

Memory-mapped accesses. Accesses whose addresses use the page or
block address translation mechanisms provided by the MMU and
that occur externally with the bus protocol defined for memory.

Memory coherency. An aspect of caching in which it is ensured that an
accurate view of memory is provided to all devices that share system
memory.

Memory consistency. Refers to agreement of levels of memory with respect
to a single processor and system memory (for example, on-chip
cache, secondary cache, and system memory).
Glossary-8 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Memory management unit (MMU). The functional unit that is capable of
translating an effective (logical) address to a physical address,
providing protection mechanisms, and defining caching methods.

Microarchitecture. The hardware details of a microprocessor’s design. Such
details are not defined by the PowerPC architecture.

Mnemonic. The abbreviated name of an instruction used for coding.

Modified state. MEI state (M) in which one, and only one, caching device
has the valid data for that address. The data at this address in external
memory is not valid.

Most-significant bit (msb). The highest-order bit in an address, registers,
data element, or instruction encoding.

Most-significant byte (MSB). The highest-order byte in an address,
registers, data element, or instruction encoding.

Munging. A modification performed on an effective address that allows it to
appear to the processor that individual aligned scalars are stored as
little-endian values, when in fact it is stored in big-endian order, but
at different byte addresses within double words. Note that munging
affects only the effective address and not the byte order. Note also
that this term is not used by the PowerPC architecture.

Multiprocessing. The capability of software, especially operating systems,
to support execution on more than one processor at the same time.

N NaN. An abbreviation for not a number; a symbolic entity encoded in
floating-point format. There are two types of NaNs—signaling NaNs
and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect registers
or generate bus activity.

Normalization. A process by which a floating-point value is manipulated
such that it can be represented in the format for the appropriate
precision (single- or double-precision). For a floating-point value to
be representable in the single- or double-precision format, the
leading implied bit must be a 1.

O OEA (operating environment architecture). The level of the architecture
that describes PowerPC memory management model,
supervisor-level registers, synchronization requirements, and the
MOTOROLA Glossary of Terms and Abbreviations Glossary-9

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

exception model. It also defines the time-base feature from a
supervisor-level perspective. Implementations that conform to the
PowerPC OEA also conform to the PowerPC UISA and VEA.

Optional. A feature, such as an instruction, a register, or an exception, that
is defined by the PowerPC architecture but not required to be
implemented.

Out-of-order. An aspect of an operation that allows it to be performed ahead
of one that may have preceded it in the sequential model, for
example, speculative operations. An operation is said to be
performed out-of-order if, at the time that it is performed, it is not
known to be required by the sequential execution model. See
In-order.

Out-of-order execution. A technique that allows instructions to be issued
and completed in an order that differs from their sequence in the
instruction stream.

Overflow. An condition that occurs during arithmetic operations when the
result cannot be stored accurately in the destination register(s). For
example, if two 32-bit numbers are multiplied, the result may not be
representable in 32 bits. Since the 32-bit registers of the 603e cannot
represent this sum, an overflow condition occurs.

P Page. A region in memory. The OEA defines a page as a 4-Kbyte area of
memory, aligned on a 4-Kbyte boundary.

Page access history bits. The changed and referenced bits in the PTE keep
track of the access history within the page. The referenced bit is set
by the MMU whenever the page is accessed for a read or write
operation. The changed bit is set when the page is stored into. See
Changed bit and Referenced bit.

Page fault. A page fault is a condition that occurs when the processor
attempts to access a memory location that does not reside within a
page not currently resident in physical memory. On PowerPC
processors, a page fault exception condition occurs when a
matching, valid page table entry (PTE[V] = 1) cannot be located.

Page table. A table in memory is comprised of page table entries, or PTEs.
It is further organized into eight PTEs per PTEG (page table entry
group). The number of PTEGs in the page table depends on the size
of the page table (as specified in the SDR1 register).
Glossary-10 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Page table entry (PTE). Data structures containing information used to
translate effective address to physical address on a 4-Kbyte page
basis. A PTE consists of 8 bytes of information in a 32-bit processor
and 16 bytes of information in a 64-bit processor.

Park. The act of allowing a bus master to maintain bus mastership without
having to arbitrate.

Persistent data stream. A data stream is considered to be persistent when it
is expected to be loaded from frequently.

Physical memory. The actual memory that can be accessed through the
system’s memory bus.

Pipelining. A technique that breaks operations, such as instruction
processing or bus transactions, into smaller distinct stages or tenures
(respectively) so that a subsequent operation can begin before the
previous one has completed.

Precise exceptions. A category of exception for which the pipeline can be
stopped so instructions that preceded the faulting instruction can
complete and subsequent instructions can be flushed and
redispatched after exception handling has completed. See Imprecise
exceptions.

Primary opcode. The most-significant 6 bits (bits 0–5) of the instruction
encoding that identifies the type of instruction.

Program order. The order of instructions in an executing program. More
specifically, this term is used to refer to the original order in which
program instructions are fetched into the instruction queue from the
cache

Protection boundary. A boundary between protection domains.

Protection domain. A protection domain is a segment, a virtual page, a BAT
area, or a range of unmapped effective addresses. It is defined only
when the appropriate relocate bit in the MSR (IR or DR) is 1.

Q Quad word. A group of 16 contiguous locations starting at an address
divisible by 16.

Quiesce. To come to rest. The processor is said to quiesce when an exception
is taken or a sync instruction is executed. The instruction stream is
stopped at the decode stage and executing instructions are allowed to
complete to create a controlled context for instructions that may be
MOTOROLA Glossary of Terms and Abbreviations Glossary-11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

affected by out-of-order, parallel execution. See Context
synchronization.

Quiet NaN. A type of NaN that can propagate through most arithmetic
operations without signaling exceptions. A quiet NaN is used to
represent the results of certain invalid operations, such as invalid
arithmetic operations on infinities or on NaNs, when invalid. See
Signaling NaN.

R rA. The rA instruction field is used to specify a GPR to be used as a source
or destination.

rB. The rB instruction field is used to specify a GPR to be used as a source.

rD. The rD instruction field is used to specify a GPR to be used as a
destination.

rS. The rS instruction field is used to specify a GPR to be used as a source.

Real address mode. An MMU mode when no address translation is
performed and the effective address specified is the same as the
physical address. The processor’s MMU is operating in real address
mode if its ability to perform address translation has been disabled
through the MSR registers IR and/or DR bits.

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set,
updates the condition register (CR) to reflect the result of the
operation.

Referenced bit. One of two page history bits found in each page table entry
(PTE). The processor sets the referenced bit whenever the page is
accessed for a read or write. See also Page access history bits.

Register indirect addressing. A form of addressing that specifies one GPR
that contains the address for the load or store.

Register indirect with immediate index addressing. A form of addressing
that specifies an immediate value to be added to the contents of a
specified GPR to form the target address for the load or store.

Register indirect with index addressing. A form of addressing that
specifies that the contents of two GPRs be added together to yield the
target address for the load or store.

Rename register. Temporary buffers used by instructions that have finished
execution but have not completed.
Glossary-12 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Reservation. The processor establishes a reservation on a cache block of
memory space when it executes an lwarx instruction to read a
memory semaphore into a GPR.

Reservation station. A buffer between the dispatch and execute stages that
allows instructions to be dispatched even though the results of
instructions on which the dispatched instruction may depend are not
available.

RISC (reduced instruction set computing). An architecture characterized
by fixed-length instructions with nonoverlapping functionality and
by a separate set of load and store instructions that perform memory
accesses.

S Scan interface. The 603e test interface.

Secondary cache. A cache memory that is typically larger and has a longer
access time than the primary cache. A secondary cache may be
shared by multiple devices. Also referred to as L2, or level-2, cache.

Set (v). To write a nonzero value to a bit or bit field; the opposite of clear.
The term ‘set’ may also be used to generally describe the updating of
a bit or bit field.

Set (n). A subdivision of a cache. Cacheable data can be stored in a given
location in one of the sets, typically corresponding to its lower-order
address bits. Because several memory locations can map to the same
location, cached data is typically placed in the set whose cache block
corresponding to that address was used least recently. See
Set-associative.

Set-associative. Aspect of cache organization in which the cache space is
divided into sections, called sets. The cache controller associates a
particular main memory address with the contents of a particular set,
or region, within the cache.

Shadowing. Shadowing allows a register to be updated by instructions that
are executed out of order without destroying machine state
information.

Signaling NaN. A type of NaN that generates an invalid operation program
exception when it is specified as arithmetic operands. See Quiet
NaN.
MOTOROLA Glossary of Terms and Abbreviations Glossary-13

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary
point and a fraction field to the right.

SIMD. Single instruction stream, multiple data streams. A vector instruction
can operate on several data elements within a single instruction in a
single functional unit. SIMD is a way to work with all the data at
once (in parallel), which can make execution faster.

Simplified mnemonics. Assembler mnemonics that represent a more
complex form of a common operation.

Slave. The device addressed by a master device. The slave is identified in the
address tenure and is responsible for supplying or latching the
requested data for the master during the data tenure.

Snooping. Monitoring addresses driven by a bus master to detect the need
for coherency actions.

Snoop push. Response to a snooped transaction that hits a modified cache
block. The cache block is written to memory and made available to
the snooping device.

Splat. A splat instruction will take one element and replicates (splats) that
value into a vector register. The purpose being to have all elements
have the same value so they can be used as a constant to multiply
other vector registers.

Split-transaction. A transaction with independent request and response
tenures.

Split-transaction bus. A bus that allows address and data transactions from
different processors to occur independently.

Stage. The term ‘stage’ is used in two different senses, depending on
whether the pipeline is being discussed as a physical entity or a
sequence of events. In the latter case, a stage is an element in the
pipeline during which certain actions are performed, such as
decoding the instruction, performing an arithmetic operation, or
writing back the results. Typically, the latency of a stage is one
processor clock cycle. Some events, such as dispatch, write-back,
and completion, happen instantaneously and may be thought to
occur at the end of a stage. An instruction can spend multiple cycles
in one stage. An integer multiply, for example, takes multiple cycles
in the execute stage. When this occurs, subsequent instructions may
stall. An instruction may also occupy more than one stage
Glossary-14 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

simultaneously, especially in the sense that a stage can be seen as a
physical resource—for example, when instructions are dispatched
they are assigned a place in the CQ at the same time they are passed
to the execute stage. They can be said to occupy both the complete
and execute stages in the same clock cycle.

Stall. An occurrence when an instruction cannot proceed to the next stage.

Static branch prediction. Mechanism by which software (for example,
compilers) can hint to the machine hardware about the direction a
branch is likely to take.

Sticky bit. A bit that when set must be cleared explicitly.

Superscalar machine. A machine that can issue multiple instructions
concurrently from a conventional linear instruction stream.

Supervisor mode. The privileged operation state of a processor. In
supervisor mode, software, typically the operating system, can
access all control registers and can access the supervisor memory
space, among other privileged operations.

Synchronization. A process to ensure that operations occur strictly in order.
See Context synchronization and Execution synchronization.

Synchronous exception. An exception that is generated by the execution of
a particular instruction or instruction sequence. There are two types
of synchronous exceptions, precise and imprecise.

System memory. The physical memory available to a processor.

T Tenure. The period of bus mastership. For the 603e, there can be separate
address bus tenures and data bus tenures. A tenure consists of three
phases: arbitration, transfer, and termination.

TLB (translation lookaside buffer). A cache that holds recently-used page
table entries.

Throughput. The measure of the number of instructions that are processed
per clock cycle.

Tiny. A floating-point value that is too small to be represented for a particular
precision format, including denormalized numbers; they do not
include ±0.
MOTOROLA Glossary of Terms and Abbreviations Glossary-15

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Transaction. A complete exchange between two bus devices. A transaction
is typically comprised of an address tenure and one or more data
tenures, which may overlap or occur separately from the address
tenure. A transaction may be minimally comprised of an address
tenure only.

Transfer termination. Signal that refers to both signals that acknowledge
the transfer of individual beats (of both single-beat transfer and
individual beats of a burst transfer) and to signals that mark the end
of the tenure.

Transient stream. A data stream is considered to be transient when it is likely
to be referenced from infrequently.

U UISA (user instruction set architecture). The level of the architecture to
which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types,
floating-point memory conventions and exception model as seen by
user programs, and the memory and programming models.

Underflow. A condition that occurs during arithmetic operations when the
result cannot be represented accurately in the destination register.
For example, underflow can happen if two floating-point fractions
are multiplied and the result requires a smaller exponent and/or
mantissa than the single-precision format can provide. In other
words, the result is too small to be represented accurately.

User mode. The operating state of a processor used typically by application
software. In user mode, software can access only certain control
registers and can access only user memory space. No privileged
operations can be performed. Also referred to as problem state.

V vA. The vA instruction field is used to specify a vector register to be used as
a source or destination.

vB. The vB instruction field is used to specify a vector register to be used as
a source.

vC. The vC instruction field is used to specify a vector register to be used as
a source.

vD. The vD instruction field is used to specify a vector register to be used as
a destination.
Glossary-16 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

vS. The vS instruction field is used to specify a vector register to be used as a
source.

VEA (virtual environment architecture). The level of the architecture that
describes the memory model for an environment in which multiple
devices can access memory, defines aspects of the cache model,
defines cache control instructions, and defines the time-base facility
from a user-level perspective. Implementations that conform to the
PowerPC VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

Vector. The spatial parallel processing of short, fixed-length one-dimensional
matrices performed by an execution unit.

Vector Register (VR). Any of the 32 registers in the vector register file. Each
vector register is 128 bits wide. These registers can provide the
source operands and destination results for AltiVec instructions.

Virtual address. An intermediate address used in the translation of an
effective address to a physical address.

Virtual memory. The address space created using the memory management
facilities of the processor. Program access to virtual memory is
possible only when it coincides with physical memory.

W Way. A location in the cache that holds a cache block, its tags and status bits.

Weak ordering. A memory access model that allows bus operations to be
reordered dynamically, which improves overall performance and in
particular reduces the effect of memory latency on instruction
throughput.

Word. A 32-bit data element.

Write-back. A cache memory update policy in which processor write cycles
are directly written only to the cache. External memory is updated
only indirectly, for example, when a modified cache block is cast out
to make room for newer data.

Write-through. A cache memory update policy in which all processor write
cycles are written to both the cache and memory.
MOTOROLA Glossary of Terms and Abbreviations Glossary-17

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Glossary-18 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

Index

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A
Acronyms and abbreviated terms, list, xxiv
Address bus

address calculation, 4-26
address modes, 1-9
address translation for streams, 5-7

Alignment
aligned scalars, LE mode, 3-4
effective address, 4-26
load and store, 4-26
load instruction support, 4-29
memory access and vector register, 3-6
misaligned accesses, 3-1
misaligned vectors, 3-7
partially executed instructions, 5-10
quad-word data alignment, 3-7
rules, 3-4

AltiVec technology
address modes, 1-9
cache overview, 1-12
exception handling, 1-12
features list, 1-4
features not defined, 1-6
instruction set, 1-11, 6-9, A-1-F-6
instruction set architecture support, 1-5
interelement operations, 1-9
intraelement operations, 1-9
levels of the PowerPC architecture, 1-5
operations supported, 1-9
overview, 1-3
PowerPC architecture extension, 1-2
programming model, 1-6
register file structure, 2-4
register set, 1-6, 2-4, 2-8
SIMD-style extension, 1-3, 1-7
structural overview, 1-4

Arithmetic instructions
floating-point, 4-19
integer, 4-1

B
Big-endian mode

accessing a misaligned quad word, 3-8

byte ordering, 1-7, 3-3
concept, 3-3
mapping, quad word, 3-3
misaligned vector, 3-7
mixed-endian systems, 3-12

Block count, 5-2
Block size, 5-2
Block stride, 5-2
Byte ordering

aligned scalars, LE mode, 3-4
big-endian mode, default, 3-3
concept, 3-2
default, 1-7
LE bit in MSR, 3-3
least-significant byte (LSB), 3-3
little-endian mode description, 3-3
most-significant byte (MSB), 3-3
quad-word example, 3-3

C
Cache

cache management instructions, 4-42
data stream touch, 5-2
dss instruction, 5-5
dst instruction, 5-2
dstst instruction, 5-4
dstt instruction, 5-4
overview, 1-12, 5-1
prefetch, software-directed, 5-2
prioritizing cache block replacement, 5-9
stopping streams, 5-5
storing to streams, 5-4
transient streams, 5-4

Cache management instructions, 4-42
Classes of instructions, 4-2
Compare instructions

floating-point, 4-22
integer, 4-13, 4-14

Computation modes
PowerPC architecture support, 4-2

Conventions, xxiii
classes of instructions, 4-2
computation modes, 4-2
MOTOROLA Index Index-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

execution model, 4-2
memory addressing, 4-3
operand conventions, 3-1
terminology, xxvii

CR (condition register)
bit fields, 2-8
CR6 field, compare instructions, 2-8
move to/from CR instructions, 4-40

D
Data organization, memory, 3-1
Data stream, 5-2
Double-word swap, 3-6

E
Echo cancellation, 1-2
Effective address calculation

EA modifications, 3-5
loads and stores, 4-26
overview, 4-3

Estimate instructions, 4-24
Exceptions

data address breakpoint, 5-10
DSI exception, 5-10
exception behavior of prefetch streams, 5-6
exception handling, 1-12
floating-point exceptions, 3-14
invalid operation exception, 3-16
log of zero exception, 3-16
NaN operand exception, 3-15
overflow exception, 3-17
overview, 5-1
precise exceptions, 5-12
priorities, 5-12
synchronous exceptions, 5-12
unavailable exception, 5-10
underflow exception, 3-17
zero divide exception, 3-16

Exclusive OR (XOR), 3-4
Execution model

conventions, 4-2
floating-point, 3-12

Extended mnemonics, see Simplified mnemonics

F
Features list

AltiVec technology features, 1-4
features not defined, 1-6

Floating-point model
arithmetic instructions, 4-19
compare instructions, 4-22
division function, 4-18

estimate instructions, 4-24
exceptions, 3-14
execution model, 3-12
infinities, 3-14
instructions, overview, 4-17
Java mode, 3-13
modes, 3-13
multiply-add instructions, 4-20
NaNs, 3-17
non-Java mode, 3-14
rounding mode, 3-14
rounding/conversion instructions, 4-21
square root functions, 4-19

Formatting instructions, 4-31

H
High-order byte numbering, 1-8

I
Instructions

cache management instructions, 4-42
classes of instructions, 4-2
computation modes, 4-2
control flow, 4-31
conventions, xxvii, 6-2
detailed descriptions, 6-9-6-177
floating-point

arithmetic, 4-19
compare, 4-22
computational instructions, 3-12
division function, 4-18
estimate instructions, 4-24
multiply-add, 4-20
noncomputational instructions, 3-12
overview, 4-17
rounding/conversion, 4-21
square root functions, 4-19

format, lists, E-1
formats, 6-1
formatting instructions, 4-31
general information, F-1, G-1
integer

arithmetic, 4-1, 4-4
compare, 4-13, 4-14
load, 4-27
logical, 4-1, 4-15
rotate/shift, 4-16
store, 4-30

listed by format, E-1
listed by mnemonic, 6-9-6-177, A-1
listed by opcode, C-1, D-1
load and store

address generation, integer, 4-26
Index-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

integer load, 4-27
integer store, 4-30

memory addressing, 4-3
memory control instructions, 4-41
merge instructions, 4-34
mnemonics, lists, A-1
notations, 6-2
opcodes, lists, C-1, D-1
overview, 1-11
pack instructions, 4-31
partially executed instructions, 5-10
permutation instructions, 4-31
permute instructions, 4-36
PowerPC instructions, list, A-1, B-1
processor control instructions, 4-39
quick reference, F-1, G-1
select instruction, 4-36
shift instructions, 4-37
splat instructions, 4-35
syntax conventions, xxvii, 6-2
unpack instructions, 4-33
vector integer, see integer

Integer instructions
arithmetic instructions, 4-1, 4-4
compare instructions, 4-13, 4-14
logical instructions, 4-1, 4-15
rotate/shift instructions, 4-16
store instructions, 4-30

Integer load instructions, 4-27
Interelement operations, 1-9
Intraelement operations, 1-9
Invalid operation exception, 3-16

J
Java mode, 3-13

L
Little-endian mode

accessing a misaligned quad word, 3-10
byte ordering, 3-3
description, 3-3
mapping, quad word, 3-4
misaligned vector, 3-7
mixed-endian systems, 3-12
swapping, 3-6

Load/store
address generation, integer, 4-26
integer load instructions, 4-27
integer store instructions, 4-30

Log of zero exception, 3-16
Logical instructions, integer, 4-1, 4-15
Low-order byte numbering, 1-8

M
Mathematical predicates, 4-23
Memory addressing, 4-3
Memory control instructions, 4-41
Memory management unit (MMU)

memory bandwidth, 5-1
overview, 1-12, 5-1
prefetch

data stream touch, 5-2
dss instruction, 5-5
dst instruction, 5-2
dstst instruction, 5-4
dstt instruction, 5-4
exception behavior, 5-6
software-directed, 5-2
stopping streams, 5-5
storing to streams, 5-4
transient streams, 5-4

Memory operands, 4-3
Memory sharing, 5-1
Memory, data organization, 3-1
Merge instructions, 4-34
Misalignment

accessing a quad word
big-endian mode, 3-8
little-endian mode, 3-10

misaligned accesses, 3-1
misaligned vectors, 3-7

Mixed-endian systems, 3-12
Modulo mode, 4-4
Move to/from CR instructions, 4-40
MSR (machine state register)

bit settings, 2-9
LE bit, 3-3

Multiply-add instructions, 4-20
Munging, description, 3-4

N
NaN (not a number)

conversion to integer, 3-18
floating-point NaNs, 3-17
operand exception, 3-15
precedence, 3-18
production, 3-18

Non-Java mode, 3-14

O
OEA (operating environment architecture)

definition, xx
programming model, 2-2

Operands
conventions, description, 1-7, 3-1
MOTOROLA Index Index-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

floating-point conventions, 1-8
memory operands, 4-3

Operating environment architecture, see OEA
Operations

interelement operations, 1-9
intraelement operations, 1-9

Overflow exception, 3-17

P
Pack instructions, 4-31
Permutation instructions, 4-31
Permute instructions, 4-36
PowerPC architecture support

computation modes, 4-2
execution model, 4-2
features summary

defined features, 1-4
features not defined, 1-6

instruction list, A-1, B-1
levels of the PowerPC architecture, 1-5
operating environment architecture, xx
programming model, 1-6
registers affected by AltiVec technology, 2-8
user instruction set architecture, xix, 1-5
virtual environment architecture, xix, 1-5

Prefetch, software-directed, 5-2
Processor control instructions, 4-39

Q
QNaN arithmetic, 3-18

R
Record bit (Rc), 6-2
Registers

CR, 2-8
overview, 1-6, 2-1
PowerPC register set, 2-1, 2-8
register file, 2-4
SRR0/SRR1, 2-10
VRs, 2-4
VRSAVE, 2-6
VSCR, 2-4

Rotate instructions, 4-16
Rounding/conversion instructions, FP, 4-21

S
Saturation detection, 4-4
Scalars

aligned, LE mode, 3-4
loads and stores, 3-11
misaligned loads and stores, 3-11

Segment registers
T bit, Glossary-4

Select instruction, 4-36
Shift instructions, 4-16, 4-37
SIMD-style extension, 1-3, 1-7
Simplified mnemonics, 4-40
SNaN arithmetic, 3-18
Splat instructions, 4-35
SRR0/SRR1 (status save/restore registers), 2-10
Streams

address translation, 5-7
definition, 5-3
implementation assumptions, 5-9
synchronization, 5-7
usage notes, 5-7

Stride, 5-2
Swizzle, see Double-word swap
Synchronization streams, 5-7

T
Terminology conventions, xxvii
Transient streams, 5-4

U
UISA (user instruction set architecture), xix, 1-5

programming model, 2-2
Underflow exception, 3-17
Unpack instructions, 4-33
User instruction set architecture, see UISA

V
VEA (virtual environment architecture)

definition, xix, 1-5
programming model, 2-2
user-level cache control instructions, 4-41

Vector formatting instructions, 4-31
Vector integer compare instructions, see Integer

compare instructions
Vector merge instructions, 4-34
Vector pack instructions, 4-31
Vector permutation instructions, 4-31
Vector permute instructions, 4-36
Vector select instruction, 4-36
Vector shift instructions, 4-37
Vector splat instructions, 4-35
Vector unpack instructions, 4-33
Virtual environment architecture, see VEA
VRs (vector registers)

memory access alignment and VR, 3-6
register file, 2-4

VRSAVE register, 2-6
VSCR (vector status and control register), 2-4
Index-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

X
XOR (exclusive OR), 3-4

Z
Zero divide exception, 3-16
MOTOROLA Index Index-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Index-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

1

2

3

4

Overview

AltiVec Register Set

Operand Conventions

Addressing Modes and Instruction Set Summary

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5

A

6

GLO

B

C

D

E

F

Cache, Exceptions, and Memory Management

AltiVec Instructions

Glossary of Terms and Abbreviations

Appendix A: Instruction Set Mnemonics - Decimal

Appendix B: Instruction Set Mnemonics - Binary

Appendix C: Opcodes - Decimal

Appendix D: Opcodes - Binary

Appendix E: Forms

Appendix F: Legends

GAppendix G: Revision History
INDIndex

For More Information On This Product,
 Go to: www.freescale.com

1

2

3

4

5

A

6

GLO

IND

B

C

D

E

F

Overview

AltiVec Register Set

Operand Conventions

Addressing Modes and Instruction Set Summary

G

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Cache, Exceptions, and Memory Management

AltiVec Instructions

Glossary of Terms and Abbreviations

Appendix A: Instruction Set Mnemonics - Decimal

Appendix B: Instruction Set Mnemonics - Binary

Appendix C: Opcodes - Decimal

Appendix D: Opcodes - Binary

Appendix E: Forms

Appendix F: Legends

Appendix G: Revision History
Index

For More Information On This Product,
 Go to: www.freescale.com

