Freescale Semiconductor, Inc.

ALTIVECPEM/D
2/2002
Rev. 2.0

AltiVec™ Technology
Programming Environments Manual

““Digital DNA (M) moToroLa

fram Motorala

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec is a trademark of Motorola, Inc.
DigitaIDNA is a trademark of Motorola, Inc.

The PowerPC name and the PowerPC logotype are trademarks of International Business Machines Corporation used by Motorola under license from
International Business Machines Corporation.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.
Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express or
implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this
document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do
vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical
experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other
application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the design or manufacture of the part. Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

Motorola Literature Distribution Centers:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 5405; Denver, Colorado 80217; Tel.: 1-800-441-2447 or 1-303-675-2140/

JAPAN: Nippon Motorola Ltd SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141, Japan Tel.: 81-3-5487-8488
ASIA/PACIFC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong; Tel.: 852-26629298

World Wide Web Address: http://sps.motorola.com/mfax
INTERNET: http://motorola.com/sps

Technical Information: Motorola Inc. SPS Customer Support Center 1-800-521-6274; electronic mail address: crc@wmkmail.sps.mot.com.
Document Comments: FAX (512) 933-2625, Attn: RISC Applications Engineering.

World Wide Web Addresses: http://www.mot.com/PowerPC
http://www.mot.com/netcomm

© Motorola Inc. 2001. All rights reserved.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Overview

AltiVec Register Set

Operand Conventions

Addressing Modes and Instruction Set Summary

Cache, Exceptions, and Memory Management

AltiVec Instructions

Appendix A: Instruction Set Mnemonics - Decimal

Appendix B: Instruction Set Mnemonics - Binary

Appendix C: Opcodes - Decimal

Appendix D: Opcodes - Binary

Appendix E: Forms

Appendix F: Legends

Appendix G: Revision History

Glossary of Terms and Abbreviations

Index

For More Information On This Product,
Go to: www.freescale.com

@

O

L

IND

@

LN am

O

L

IND

Freescale Semiconductor, Inc.

Overview

AltiVec Register Set

Operand Conventions

Addressing Modes and Instruction Set Summary

Cache, Exceptions, and Memory Management

AltiVec Instructions

Appendix A: Instruction Set Mnemonics - Decimal

Appendix B: Instruction Set Mnemonics - Binary

Appendix C: Opcodes - Decimal

Appendix D: Opcodes - Binary

Appendix E: Forms

Appendix F: Legends

Appendix G: Revision History

Glossary of Terms and Abbreviations

Index

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Contents

Paragraph Page
Number Title Number
U 1= 0[S XX
(@70 01 1= 1o 1SS XXI
SUQQESIEd REAING......cueeueeieeiie sttt XXI
General INfFOrMELION.........cceiieeiiese et ere s XXil
Related DOCUMENEALiONccveeiiieiiieiie et e XXil
(@01 017/= 0110 1S3 RSOSSN XXiii
Acronyms and ADBrevialions...........c.coeeveieiicie e XXIV
Terminology CONVENLIONS.........ccviiiieiie et XXVii

Chapter 1

Overview
11 OVEIVIBIW ...ttt ettt s e et e st s b e s abe e ebe e s s e e abeesaseeebeesaneeaseesaneeareenans 1-1
1.2 AltiVec Technology OVEIVIEWccoiiieiiciece e 1-3
121 LevelSOf AILIVEC ISA ...ttt 1-5
122 Features Not Defined by AITIVEC ISA ... 1-6
1.3 AltiVec Architectural MOE!ccoooieiiieece e 1-6
131 AltiVec Registers and Programming Model ... 1-6
132 Operand COMVENTIONS.........ceirieiereriesieseseee e e se e e b e ens 1-7
1321 V(=X @ o = 1 o S 1-7
1322 Floating-Point COMVENTIONScoeoiirie e 1-8
133 AltIVEC AdAressing MOGESooiiiriirirecee e 1-9
134 AITVEC INSITUCHION SEL ..o 1-11
135 AltIVEC CaChe MOE!ooeeeeece e e 1-12
1.3.6 AltIVeC EXCEPtion MOEL.........oooiiiiieeeeee s 1-12
1.3.7 Memory Management MOdEcccvoeeiieie e 1-12

Chapter 2

AltiVec Register Set

21 Overview on the AltiVec and PowerPC RegISLEIScccovveeveereeie e 2-1
2.2 AltIVeC ReQIStEr Set OVEIVIEWccuveieieieceierie et 2-3
2.3 Registersdefined by AItIVEC ISA ... 2-4
231 AltiVec Vector Register FIle (VRF) ..o 2-4
232 Vector Status and Control Register (VSCR)....cccevvveevieie e 2-4
2.3.3 Vector Save/Restore Register (VRSAVE)......oov e 2-6
MOTOROLA Contents %

For More Information On This Product,
Go to: www.freescale.com

Paragraph
Number

24
241
2.5
251
252
2521
2522

31
311
312
3121
3122
3.1.3
314
3.15
3.1.6
3.1.6.1
3.16.2
3.1.6.3
3.1.64
3.1.7
3.2
321
3211
3212
322
323
324
3241
3242
3243
3244
3.245
3.24.6
3.25
3251
3.25.2
3253

Vi

Freescale Semiconductor, Inc.

Contents
Page
Title Number
Additions to POWErPC UISA REJISIEISccuveieeiereeer e 2-7
PowerPC Condition REJISLENcoeiirieieieresie st 2-8
Additions to POWErPC OEA REJISIENS......ccceieriirieeiesienieerie e 2-9
AltiVec Field added in the PowerPC Machine State Register (MSR) 2-9
Machine Status Save/Restore RegiSters (SRRS)ccvverererreenenene e 2-10
Machine Status Save/Restore Register 0 (SRRO)ooeevveeevieeienieiennns 2-10
Machine Status Save/Restore Register 1 (SRR1)covvevvvcevveieiiesieenns 2-11
Chapter 3
Operand Conventions
Data Organization iN IMEMOTYcccveiieeiieiieeieeste e sre e st e e e sneas 31
Aligned and Misaligned ACCESSEScoirierierierierie sttt 31
F N LEAY L= ol 2 (=X @ o U= 1 o 3-2
Big-Endian Byte Ordering.........ccocceeeieiieeiie e sre st 33
Little-Endian Byte Ordering.........ccoeeereeeeiienieriene s 3-3
Quad Word Byte Ordering EXample........cccooerveienierene e see e see s 33
Aligned Scalarsin Little-Endian Mode..........ccocoevveiieiieciie e 34
Vector Register and Memory AcCessAlIgNMENTcoovvveierieieiencne e 3-6
Quad-Word Data AligNMmEeNLtccceeieeiereereece e see e ee e eaeas 3-7
Accessing a Misaligned Quad Word in Big-Endian Mode.............ccccue...... 3-8
Accessing a Misaligned Quad Word in Little-Endian Mode..................... 3-10
Scalar LOads and SLOFES.........covriereriirierieierie et 311
Misaligned Scalar Loads and SLOres...........cccevvuveieeiiieeiieesiieeseesieesee e 311
Mixed-Endian SYySIEMS.........ccouiiiiriiieeee e 3-12
AltiVec Floating-Point INStructions—UISAc.oooe e 312
Floating-POIiNt MOUESc.coiiieiie ettt 3-13
2 7= 11, o o[3-13
NON-JAVAMOUE........ciiiieiieieeeie e 3-14
Floating-Point INfINITIES........ccviiieiecce e e 3-14
Floating-Point ROUNGING.........coiiirieieieieesese e 3-14
Floating-Point EXCEPLIONS........c.oiveiieeeeeseesie et 3-14
NaN Operand EXCERLION.........cccveiiieiiecieesee e 3-15
Invalid Operation EXCEPLIONccvrerieieieie et 3-16
Zer0 Divide EXCEPLION......c.ccieciceece e 3-16
LOQg Of ZEro EXCEPLION.......eeiveeiiiecieeitie et s st ene e 3-16
OVErTlOW EXCEPLION ... 3-17
Underflow EXCEPLIONcoiieieeecciece st 3-17
Floating-POINt NANSccciiiiiiieceecee e sneas 3-17
NAN PreCOUBNCE.cee ittt e e e sse e 3-18
SNaAN AFTAMELIC ..o 3-18
QNAN ATTNMELIC...ccceieecee e e e 3-18
AltiVec Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Paragraph
Number

3254
3.255

4.1
41.1
4.1.2
4.1.3
4.1.4
4141
4.1.4.2
4.2
4.2.1
4211
4.2.1.2
4.2.1.3
42.1.4
4.2.1.5
4.2.2
4221
42211
42212
4.2.2.2
4.2.2.3
4224
4.2.2.5
4.2.2.6
4.2.3
42.3.1
4.2.3.2
4233
4.2.3.4
4.2.4
4.2.5
4251
4.2.5.2
4253
4254
4.25.5
4.25.6

MOTOROLA

Freescale Semiconductor, Inc.

Contents
Page
Title Number
NaN COnversion t0 INEEGEYccooeieriririeeee e 3-18
AN E= I 0o (0 (o] o SRS 3-18
Chapter 4

Addressing Modes and Instruction Set Summary
CONVENTIONSeeeieeieeie sttt eee sttt e e te e sseetesseesseeseesseesseensesseesseeneesneensennenns 4-2
EXECULION MOOE ...t 4-2
CoMPULALION MOTES.eeeiieciie ettt re e sseeereens 4-2
ClasseS Of INSITUCLTIONS........coiieieiierie et e e e 4-2
MeEMOrY AAArESSING.......ccceeiieeeereere et esreenesnee s 4-3
MeEMOFY OPEraNGScciuieeiieiie et e e e 4-3
Effective Address CalCUlalion...........cocvevvveereeiesiese e 4-3
AIIVEC UISA INSITUCLIONS....cueiiiiiieiiesie s 4-4
VeCtor INteger INSIIUCLIONS........c.coiiiiiiecie e 4-4
SAtUration DELECLIONcovveeiieeesieeie et sne e 4-4
Vector Integer Arithmetic INStructions.........ccccceeveece e 4-5
Vector Integer Compare INStrUCtioNS.........ccoeveeecieeiie e 4-13
Vector Integer Logical INSITUCLIONS.........cccooiierinenenieeeeeee e 4-15
Vector Integer Rotate and Shift INStructions...........cccccvveevieeveeceseesece 4-16
Vector Floating-Point INSIFUCLIONS..........ccocceeiieiiiecie e 4-17
Floating-Point Division and SQUare-ROOL............c.ccoererereeienesese e 4-18
Floating-PoiNt DIVISIONccveiiiiieiecie e 4-18
Floating-Point SQUare-ROO0Lcccveiiieiie e 4-19
Floating-Point Arithmetic INStructions...........ccoevevinnneieeee e 4-19
Floating-Point Multiply-Add INStructions...........ccceceveeiesceseece e 4-20
Floating-Point Rounding and Conversion InStructions............c.ccceeeeveeneens 4-21
Floating-Point Compare INSIUCLIONS..........ccooirerenereseeeeeeeese e 4-22
Floating-Point Estimate INSIrUCLIONSoocviievece e 4-24
Load and StOre INSEIUCLIONS..........coiieeieeienieesie e 4-25
ATTGNMENT .. 4-26
Load and Store Address GENErationcccevererenesesesenneenie s 4-26
Vector Load INSIIUCHIONS.........coiiiiiiieriee et 4-27
VECLOr SLOre INSIIUCHIONS.ccveeieeeie et 4-30
CONEFOl FIOW ...ttt ettt 4-31
Vector Permutation and Formatting INStructions.............ceecvveereeienenniennnne 4-31
VeCtor Pack INSITUCHIONSccveiiieiecierie et 4-31
Vector Unpack INSIFUCLIONS.......cc.vccieiieieeicceese e 4-33
VeCtor Merge INSIIUCHIONS........ooueeiiiieiieeie e 4-34
Vector Splat INSITUCHIONS.........ooviiirieieee s 4-35
Vector Permute INSIFUCIONcoueeeeieieierese s 4-36
VeCtor SElCt INSLIUCLION......cc.ceiieiiiieciee e e 4-36
Contents Vi

For More Information On This Product,
Go to: www.freescale.com

4.25.7
4.25.7.1
4.25.7.2
4.25.7.3
4.2.6
4.2.6.1
4.2.7

4.3

43.1
4.3.2

5.1

5.2
521
5211
5212
5.2.1.3
5214
5215
5.2.1.6
5.2.1.7
5218
5.2.1.9
5.2.2
523
5.3

5.4

6.1
6.1.1
6.1.2
6.2

viii

Freescale Semiconductor, Inc.

Contents
Vector Shift INSIIUCHIONScceeiiee e 4-37
Immediate Interelement ShiftROtates..........ccceevevveceviesece e, 4-37
Computed Interelement Shifts/ROtaLES...........ccccveeereerierereeeeeee e 4-38
Variable Interelement ShiftS......ccoceiieciciereceseeeee e 4-39
Processor Control Instructions—UISAcov e 4-39
AltiVec Status and Control Register INStructions........ccccoeeeveeieneesennns 4-40
Recommended Simplified MNEMONICS..........cccoevinininenieeesese e 4-40
AITVECVEA INSITUCLIONS ...ttt 4-40
Memory Control INStruCtioNS—VEA ..o 4-41
User-Level Cache INStructionS—VEA ..o 4-41
Chapter 5
Cache, Exceptions, and Memory Management
PoWerPC Shared MEMOTYcoouiiiieie e 51
AltiVec Memory Bandwidth Managementccceoveeereeneneeseesesee e 5-1
Software-Directed PrefetCh...........cooveieece e 5-2
Data Stream TOUCH (ASt)evcveeiieciecee e e 5-2
TraNSIENt SITEAIMS ..o s esreeneas 5-4
Storing to Streams (ASESL) ..vveveeeerece e 5-4
SLOPPING SIEAMS ...t sre e ere e sree s 5-5
Exception Behavior of Prefetch Streams..........cccooveveniciecicicnccences 5-6
Synchronization Behavior Of SIreamsS.........cccceveeveieseeie e 5-7
Address Tranglation for Streams..........ccceeieiiieiee e 5-7
Stream USAgE NOLES........coiieiireesteee et 5-7
Stream Implementation ASSUMPLIONS........cccveuerieieiiereere e 5-9
Prioritizing Cache Block Replacement...........ccceveevieciieevie e, 5-9
Partially Executed AltiVEC INSIFUCIONSoccoiiiinirieeeeeeeese e 5-10
DSI Exception—Data Address Breakpoint............cccceeveeveseeseeieeseeneseeseeens 5-10
AltiVec Unavailable Exception (OXO0F20)ccoceeiieeieeciieesee e 5-10
Chapter 6
AltiVec Instructions
INSLFUCHION FOIMELSecuiicieeiecie et e e esre e e 6-1
INSLFUCLION FIEIAS ... 6-1
Notation and CONVENLIONS..........coeereriereerieree et nee e 6-2
AITVEC INSITUCHION SEL.......eeceieece et 6-8
AltiVec Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Contents
Paragraph Page
Number Title Number
Appendix A
AltiVec Instruction Set Listings
Al Instructions Sorted by Mnemonic in Decimal Format............ccccoceeveeiieccieennnnn, A-1
Appendix B
Instructions Sorted by Mnemonic in Binary Format
B.1 Instructions Sorted by Mnemonic in Binary FOrmatcoceoveevienenenenennne B-1
Appendix C
Instructions Sorted by Opcode
C1l Instructions Sorted by Opcode in Decimal FOrmat............ccoevevvieeiiecceeseecnens C-1
Appendix D
Instructions Sorted by Opcode
D.1 Instructions Sorted by Opcodein Binary FOrmatcccooevevenenenenencneenen, D-1
Appendix E
Instructions Sorted by Form
E.1l INStructions Sorted DY FOMM..........ccueeiiiiiecee e E-1
Appendix F
Instruction Set Legend
F1 INSErUCLION St LEJENGoiiiiiiiiieieie ettt e F-1
Appendix G
User’'s Manual Revision History
G.1 REVISION HISLONY ..ottt et e G-1
Glossary
Index
MOTOROLA Contents iX

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Contents
Paragraph Page
Number Title Number
X AltiVec Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Figures
Figure Page
Number Title Number
1-1 Overview of PowerPC architecture with AltiVec Technologycccocevveveieenieenne 1-4
1-2 AlIVEC TOP-LEVEl DIAQramcooueeeiieieieee ettt e 1-7
1-3 Big-Endian Byte Ordering for aVector REQISLENccccoveriiirinieeeeee e 1-8
1-4 2 T @0 = o 1-8
1-5 Intraelement Example, vaddshscooeiiriieee e 1-9
1-6 Interelement EXample, VPEIM ..o 1-9
2-1 Programming Model—All REQISLEISccoviieiieeceeceee e 2-2
2-2 AITVEC REGISIEN SEL ...ttt ettt st sne e 2-3
2-3 VECtOr REJISIEIS (VRS)...ceiiiiiirieeiieee ettt 2-4
2-4 Vector Status and Control Register (VSCR)oovviieviiecieseeeeeeese e 2-5
2-5 32-bit VSCR Moved to a 128-bit Vector REQISIENccceeiiriereerieeie e 2-5
2-6 Vector Save/Restore Register (VRSAVE) ..o 2-7
2-7 Condition REGISLEN (CR)cccveeeeeeeie ettt ene e 2-8
2-8 Machine State RegISIEr (MSR)coouiiiiiieie et 2-9
2-9 Machine Status Save/Restore Register 0 (SRRO)cooevirerininerieeeee e 2-11
2-10 Machine Status Save/Restore Register 0 (SRR1)ocvevveievieveeeceeceeie e 2-11
31 Big-Endian Mapping of aQUad WOIdcoeeiiiiiiinieneereee e 33
32 Little-Endian Mapping of 2 QUad WOIcccceiiiiiinirenesereeee e 34
3-3 Little-Endian Mapping of Quad Word—Alternate Viewccccccevveveveeneesiesneene 34
3-4 Quad Word Load with PowerPC Munged Little-Endian Applied..........ccccooovvenennnnne 35
3-5 AltiVec Little Endian Double-Word SWap..........cccceeeerirenineneneseeee e 3-6
3-6 Misaligned Vector in Big-Endian MOGE............cccoveieiieieciese e 3-7
3-8 Big-Endian Quad Word AlIGNMENtooeeiiiirieiieseee e 3-8
37 Misaligned Vector in Little-Endian Addressing Mode...........ccooveeieieienenenenesenens 3-8
39 Little-Endian ALIGNMENTcoveieieeee e 311
4-1 Register Indirect with Index Addressing for Loads/StOres.........ccoccvveeneeinneenennnne 4-27
51 Format Of B in dSt INSIIUCLION.......c.eeieieeieeee et 5-2
5-2 Data SIream TOUCKcuiiiiieecieie ettt e snenne s 5-3
5-3 SRR1 Bit Settings after an AltiVec Unavailable Exception...........ccccocovveiieeinieenee. 5-11
6-1 Format of rB in dst instruction (32-Dit).........cccceoriiiiiirire e 6-13
6-2 Effects of Example Load/Store INStrUCtioNScccveeeveeie e 6-15
6-3 Load Vector for SNift LEft ... 6-18
6-4 Instruction vperm Used in Aligning Data..........ccccooeviiereninenineeese e 6-19
6-5 vaddcuw—Determine Carries of Four Unsigned Integer Adds (32-Bit) 6-30
6-6 vaddfp—Add Four Floating-Point Elements (32-Bit)cccoceieriininnenieneenieene 6-31
MOTOROLA Contents Xi

For More Information On This Product,
Go to: www.freescale.com

Figure
Number

6-7

6-8

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24

6-25

6-26
6-27
6-28
6-29
6-30
6-31

6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39

6-40

6-41

Xii

Freescale Semiconductor, Inc.

Figures

Page
Title Number
vaddsbs—Add Saturating Sixteen Signed Integer Elements (8-Bit)ccccevuennee. 6-32
vaddshs— Add Saturating Eight Signed Integer Elements (16-Bit)c.ccccccveenee. 6-33
vaddsws—Add Saturating Four Signed Integer Elements (32-Bit)ccccvceeveenne 6-34
vaddubm—Add Sixteen Integer Elements (8-Bit)ccccvevevireniniiieicc e 6-35
vaddubs—Add Saturating Sixteen Unsigned Integer Elements (8-Bit).................... 6-36
vadduhm—Add Eight Integer Elements (16-Bit)cccovovriiieenieniineeneee e 6-37
vadduhs—Add Saturating Eight Unsigned Integer Elements (16-Bit) 6-38
vadduwm—Add Four Integer Elements (32-Bit)........ccccoveeeieeiicie e 6-39
vadduws—Add Saturating Four Unsigned Integer Elements (32-Bit)cccce..e. 6-40
vand—L ogical BItWISEANDcc.ooiiiiie s 6-41
vand—L ogical Bitwise AND with Complementcccecevievieeieceese e 6-42
vavgsb— Average Sixteen Signed Integer Elements (8-Bit)ccccoeveviriiiiiiennnne 6-43
vavgsh—Average Eight Signed Integer Elements (16-bitS)........ccccceeeveieniicniennene 6-44
vavgsw— Average Four Signed Integer Elements (32-Bit)cccccceveevecceveeiieennnne 6-45
vavgub—Average Sixteen Unsigned Integer Elements (8-bitS).........cccocevvvveeriennnnne 6-46
vavgsh— Average Eight Signed Integer Elements (16-Bit)........ccccvevvinenircnennne 6-47
vavguw—AVverage Four Unsigned Integer Elements (32-Bit)cccccevveceveecieennne 6-48

vcfsx—Convert Four Signed Integer Elements to Four Floating-Point Elements
S 722 = 1) SO 6-49

vcfux—Convert Four Unsigned Integer Elements to Four Floating-Point Elements

(S 722 =) SRS 6-50
vempbfp—Compare Bounds of Four Floating-Point Elements (32-Bit).................. 6-52
vempegfp—Compare Equal of Four Floating-Point Elements (32-Bit).................... 6-53
vempequb—Compare Equal of Sixteen Integer Elements (8-bitS)........cccccevceeveenee 6-54
vecmpequh—Compare Equal of Eight Integer Elements (16-Bit)ccccoevvevienee 6-55
vempequw—Compare Equal of Four Integer Elements (32-Bit)cccccoccevvevieenee 6-56

vempgefp—Compare Greater-Than-or-Equal of Four Floating-Point Elements
S 722 = |) PSSRSO 6-57

vempgtfp—Compare Greater-Than of Four Floating-Point Elements (32-Bit)........ 6-58
vcmpgtsb—Compare Greater-Than of Sixteen Signed Integer Elements (8-Bit)..... 6-59
vempgtsh—Compare Greater-Than of Eight Signed Integer Elements (16-Bit)...... 6-60
vempgtsw—Compare Greater-Than of Four Signed Integer Elements (32-Bit) 6-61
vcmpgtub—Compare Greater-Than of Sixteen Unsigned Integer Elements (8-Bit) 6-62
vempgtuh—Compare Greater-Than of Eight Unsigned Integer Elements (16-Bit) . 6-63
vempgtuw—Compare Greater-Than of Four Unsigned Integer Elements (32-Bit) . 6-64
vctsxs—Convert Four Floating-Point Elements to Four Signed Integer Elements

S 722 = |) PSSO 6-65
vctuxs—Convert Four Floating-Point Elements to Four Unsigned Integer Elements
(S 722 = |) RSSO 6-66
vexptefp—2 Raised to the Exponent Estimate Floating-Point for Four Floating-Point
E1emMENtS (B2-Bit) ..ocueeceeciece ettt ettt 6-68
AltiVec Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Figures

Figure Page
Number Title Number
6-42 vexptefp—Log2 Estimate Floating-Point for Four Floating-Point Elements

(722 = |) SRS 6-70
6-43 vmaddfp—Multiply-Add Four Floating-Point Elements (32-Bit)ccccceveeiennne 6-71
6-44 vmaxfp—Maximum of Four Floating-Point Elements (32-Bit)ccccocvvvnerienene 6-72
6-45 vmaxsb—Maximum of Sixteen Signed Integer Elements (8-Bit)ccccevvvevieeneee 6-73
6-46 vmaxsh—Maximum of Eight Signed Integer Elements (16-Bit)ccccccevceevennnnne 6-74
6-47 vmaxsw—Maximum of Four Signed Integer Elements (32-Bit).........cccocevvrerenene 6-75
6-48 vmaxub—Maximum of Sixteen Unsigned Integer Elements (8-Bit)c...cccueeee. 6-76
6-49 vmaxuh—Maximum of Eight Unsigned Integer Elements (16-Bit).........cccccccveneee 6-77
6-50 vmaxuw—NMaximum of Four Unsigned Integer Elements (32-Bit)cccccoeveennee 6-78
6-51 vmhaddshs—M ultiply-High and Add Eight Signed Integer Elements (16-Bit) 6-79
6-52 vmhraddshs—M ultiply-High Round and Add Eight Signed Integer Elements

(G =) PSSO 6-80
6-53 vminfp—Minimum of Four Floating-Point Elements (32-Bit)cccccveevvveieennnne 6-81
6-54 vminsb—Minimum of Sixteen Signed Integer Elements (8-Bit)cccoccvveevennnnne 6-82
6-55 vminsh—Minimum of Eight Signed Integer Elements (16-Bit).........ccccccevvrirenene 6-83
6-56 vminsw—Minimum of Four Signed Integer Elements (32-Bit)ccccccceeveeiieennne 6-84
6-57 vminub—Minimum of Sixteen Unsigned Integer Elements (8-Bit).........ccccceveenee 6-85
6-58 vminuh—Minimum of Eight Unsigned Integer Elements (16-Bit)cccccccevuenee. 6-86
6-59 vminuw—NM inimum of Four Unsigned Integer Elements (32-Bit)cccccceevvenene 6-87
6-60 vmladduhm—Multiply-Add of Eight Integer Elements (16-Bit)cccccceveevennnne 6-88
6-61 vmrghb—Merge Eight High-Order Elements (8-Bit)ccccoovvenriiiciencne e 6-89
6-62 vmrghh—M erge Four High-Order Elements (16-Bit)cccccvevveieiieevecie e 6-90
6-63 vmrghw—Merge Four High-Order Elements (32-Bit)ccoooeveeiiiieneeerecneene 6-91
6-64 vmrglb—Merge Eight Low-Order Elements (8-Bit)........ccvceverererieieiercrie e 6-92
6-65 vmrglh—Merge Four Low-Order Elements (16-Bit).........ccccoveeveeieieesieccie e 6-93
6-66 vmrglw—M erge Four Low-Order Elements (32-Bit)........ccvoereeiinieenenie e 6-94
6-67 vmsummbm—M ultiply-Sum of Integer Elements (8-Bit to 32-Bit)cccccevuennee 6-95
6-68 vmsumshm—Multiply-Sum of Signed Integer Elements

(16-Bit t0 32-Bit) .eveceeeeieeieeeieesese et 6-96
6-69 vmsumshs—Multiply-Sum of Signed Integer Elements

(16-Bit t0 32-Bil) .cveceeieeeiieieeeeesie e 6-97
6-70 vmsumubm—Multiply-Sum of Unsigned Integer Elements

(2 ST (o2 =T SRS 6-98
6-71 vmsumuhm—Multiply-Sum of Unsigned Integer Elements

(16-Bit t0 32-Bil) .cveceeeeeeeieeeeese e e 6-99
6-72 vmsumuhs—Multiply-Sum of Unsigned Integer Elements

QGRS =T R (o JC ¥ = | | SR 6-100
6-73 vmulesb—Even Multiply of Eight Signed Integer Elements (8-Bit).........ccccocu...... 6-101
6-74 vmulesb—Even Multiply of Four Signed Integer Elements (16-Bit)cc..c..... 6-102
6-75 vmuleub—Even Multiply of Eight Unsigned Integer Elements (8-Bit) 6-103
MOTOROLA Contents Xiii

For More Information On This Product,
Go to: www.freescale.com

Figure
Number
6-76
6-77
6-78
6-79
6-80
6-81

6-82
6-83
6-84
6-85
6-86
6-87
6-88
6-89
6-90
6-91
6-92
6-93
6-94

6-95
6-96

6-97
6-98
6-99
6-100
6-101

6-102
6-103

Xiv

Freescale Semiconductor, Inc.

Figures
Page
Title Number
vmuleuh—Even Multiply of Four Unsigned Integer Elements (16-Bit) 6-104
vmulosb—Odd Multiply of Eight Signed Integer Elements (8-Bit)............cc.c........ 6-105
vmuleuh—Odd Multiply of Four Unsigned Integer Elements (16-Bit).................. 6-106
vmuloub—Odd Multiply of Eight Unsigned Integer Elements (8-Bit) 6-107
vmulouh—Odd Multiply of Four Unsigned Integer Elements (16-Bit) 6-108
vnmsubfp—Negative Multiply-Subtract of
Four Floating-Point Elements (32-Bit)........ccccooeiininenineseneeeeeeee e 6-109
vnor—Bitwise NOR Of 128-hit VECIOr.........c.coeiiiiriieseseeeeee e 6-110
VOr—Bitwise OR Of 128-Dit VECION........c.coiiiieiiiiereeie s 6-111
vperm—Concatenate Sixteen Integer Elements (8-Bit).......ccccvvvierininineneniennns 6-112
How aWord is Packed to a Half WOrd..........ccoceeieiininic e 6-113
vpkpx—~Pack Eight Elements (32-Bit) to Eight Elements (16-Bit)ccccceeueeee. 6-114
vpkshss—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen Signed Integer
E1emMentS (8-Bit)cceeiieee e s 6-115
vpkshus—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen Unsigned I nteger
E1ements (8-Bil)coeeeeieieee s 6-116
vpkswss—Pack Eight Signed Integer Elements (32-Bit) to Eight Signed Integer
E1emMENtS (16-BIt) ..ocueeeeeeeiieeieee ettt 6-117
vpkswus—Pack Eight Signed Integer Elements (32-Bit) to Eight Unsigned Integer
E1emMENtS (16-Bit)cceeeieieiie ettt 6-118
vpkuhum—~Pack Sixteen Unsigned Integer Elements (16-Bit)
to Sixteen Unsigned Integer Elements (8-Bit)cccoverireriiiiiiicine e 6-119
vpkuhus—Pack Sixteen Unsigned Integer Elements (16-Bit)
to Sixteen Unsigned Integer Elements (8-Bit)ccccceveeieieeienceneeeeeeieee 6-120
vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit)
to Eight Unsigned Integer Elements (16-Bit)........cccccevveieeieeieccee e 6-121
vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit)
to Eight Unsigned Integer Elements (16-Bit).........ccoceverererinienenenese s 6-122
vrefp—Reciprocal Estimate of Four Floating-Point Elements (32-Bit) 6-124
vrfim— Round to Minus Infinity of Four Floating-Point
Integer Elements (32-Bit)cooooiiereineeee s 6-125
vrfin—Nearest Round to Nearest of Four
Floating-Point Integer Elements (32-Bit)ccooeeieienieieseseee e 6-126
vrfip—Round to Plus Infinity of Four Floating-Point
Integer Elements (32-Bit)ccoveiiiiiieeie et 6-127
vrfiz—Round-to-Zero of Four Floating-Point Integer Elements (32-Bit) 6-128
vrib—L eft Rotate of Sixteen Integer Elements (8-Bit)........ccoovevvieniiinineneniennns 6-129
vrih—L eft Rotate of Eight Integer Elements (16-Bit)cccccveeeveeceveeneccieceene, 6-130
vriw—L eft Rotate of Four Integer Elements (32-Bit)cccceevveeverinneeneeeeeene, 6-131
vrsgrtefp—Reciprocal Square Root Estimate of Four Floating-Point Elements
(722 = 1) ST 6-132
AltiVec Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Figures

Figure Page
Number Title Number
6-104 vsel—Bitwise Conditional Select of Vector Contents(128-bit)cccocevvrereennene 6-133
6-105 vd—Shift Bits Left inVector (128-Bit)ccoveceveevieeieciececse e 6-134
6-106 vslb—Shift Bits Left in Sixteen Integer Elements (8-Bit)cccevevveveeneicinneenee. 6-135
6-107 vsldoi—Shift Left by Bytes Specifiedccooveeeveicieecece e 6-136
6-108 vdh—Shift Bits Left in Eight Integer Elements (16-Bit)cccoevevvecviceevecieeee, 6-137
6-109 vslo—L eft Byte Shift of Vector (128-Bit).......cccoooeierienieneeiceeeee e 6-138
6-110 vslw—Shift Bits Left in Four Integer Elements (32-Bit).......ccoovevvvienencncsiennene 6-139
6-111 vspltb—Copy Contentsto Sixteen Elements (8-Bit)ccccoveveveevecvecce e 6-140
6-112 vsplth—Copy Contentsto Eight Elements (16-Bit)........ccooceevirieenenieneeneeeeeee 6-141
6-113 vspltisb—Copy Vaue into Sixteen Signed Integer Elements (8-Bit)cccueu.e.. 6-142
6-114 vspltish—Copy Value to Eight Signed Integer Elements (16-Bit)............ccccu....... 6-143
6-115 vspltiswv—Copy Value to Four Signed Elements (32-Bit)cccoceveeiencenieniienenne 6-144
6-116 vspltw—Copy contents to Four Elements (32-Bit).......cccccevvevereereernsieeneeie s 6-145
6-117 vsr—Shift Bits Right for Vectors (128-Bit)ccccoveveeeeiecie e 6-147
6-118 vsrab—Shift Bits Right in Sixteen Integer Elements (8-Bit).........ccccceveieeinneenee. 6-148
6-119 vsrah—Shift Bits Right for Eight Integer Elements (16-Bit)........ccccooeverireriennene 6-149
6-120 vsraw—Shift Bits Right in Four Integer Elements (32-Bit)cccoeevveievivccieenene, 6-150
6-121 vsrb—Shift Bits Right in Sixteen Integer Elements (8-Bit).......ccccoeevveeieriinneenee. 6-151
6-122 vsrh—Shift Bits Right for Eight Integer Elements (16-Bit)ccocceveveiiieriennene 6-152
6-123 vsro—Vector Shift Right OCLEL.........ccccviieeciee e 6-153
6-124 vsrw—Shift Bits Right in Four Integer Elements (32-Bit)ccccoveveviiiiieecinnenne 6-154
6-125 vsubcuw—Subtract Carryout of Four Unsigned Integer Elements (32-Bit)........... 6-155
6-126 vsubfp—Subtract Four Floating Point Elements (32-Bit)cccccoevevviieeieccienee, 6-156
6-127 vsubsbs—Subtract Sixteen Signed Integer Elements (8-Bit)........cccceevvevveeiinnnenne 6-157
6-128 vsubshs—Subtract Eight Signed Integer Elements (16-Bit)ccccceveveiiieriennene 6-158
6-129 vsubsws—Subtract Four Signed Integer Elements (32-Bit)ccccceevveeeivccieenene 6-159
6-130 vsububm—Subtract Sixteen Integer Elements (8-Bit)........cccoveviiieeiiiieneeieene 6-160
6-131 vsububs—Subtract Sixteen Unsigned Integer Elements (8-Bit)cccccevvverienene 6-161
6-132 vsubuhm—Subtract Eight Integer Elements (16-Bit)ccccoovvveeveevecceceecieee 6-162
6-133 vsubuhs—Subtract Eight Signed Integer Elements (16-Bit).......cccccevveeiininnnenne 6-163
6-134 vsubuwm—Subtract Four Integer Elements (32-Bit)cccoovverniniinenece e 6-164
6-135 vsubuws—Subtract Four Signed Integer Elements (32-Bit).......ccccceevveeeviveiieenee 6-165
6-136 vsumsws—Sum Four Signed Integer Elements (32-Bit)ccccooveveeeeicenencneeenee, 6-166
6-137 vsum2sws—Two Sumsin the Four Signed Integer Elements (32-Bit)................... 6-167
6-138 vsumdsbs—Four Sumsin the Integer Elements (32-Bit)cccccceveeveiceeciecciecee, 6-168
6-139 vsumdshs—Four Sumsin the Integer Elements (32-Bit)ccoooeveiieieenencinicenee. 6-169
6-140 vsumdubs—Four Sumsin the Integer Elements (32-Bit)ccccoovveienencncniennne 6-170
6-141 vupkhpx—Unpack High-Order Elements (16 bit) to Elements (32-Bit)................. 6-171
6-142 vupkhsb—Unpack High-Order Signed Integer Elements (8-Bit) to Signed Integer

E1eMENtS (16-Bit)cceeeiiiiiesieste et 6-172
MOTOROLA Contents XV

For More Information On This Product,
Go to: www.freescale.com

Figure
Number

6-143
6-144
6-145
6-146

6-147

XVi

Freescale Semiconductor, Inc.

Figures
Page
Title Number
vupkhsh—Unpack Signed Integer Elements (16-Bit) to Signed Integer Elements

S 722 = 1 SR 6-173
vupklpx—Unpack Low-order Elements (16-Bit) to Elements (32-Bit) 6-174
vupklsb—Unpack Low-Order Elements (8-Bit) to Elements (16-Bit) 6-175

vupklsh—Unpack Low-Order Signed Integer Elements (16-Bit) to Signed Integer
L= 1 0 K (7220 =T 1 T 6-176
VXOr—Bitwise XOR (128-Bit)ccccceieeecieieieere e 6-177
AltiVec Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Tables

Table

Number Title

i Acronyms and Abbreviated TErMS.........cccccevveveiieerecce e
i Terminology CONMVENTIONScccceiieiieiiereee e e
i Instruction Field CONVENLIONScocveereereeeseere e
2-1 VSCR Field DESCIIPLIONS.ccvecieeiiecie ettt
2-2 VRSAVE Bit SEHINGS ...cveeieiiiiierieeee e
2-3 CR6 Field's Bit Settings for Vector Compare Instructions.....................
2-4 MSR Bit SELINGS ...eoiveeieciecierie et snee e e
31 Memory Operand AlIGNMENEceoiiriinierere e
3-2 Effective Address ModifiCationS..........cccceveereecieseeseeieseese e seeneens
4-1 Vector Integer Arithmetic INStructions...........occvveeveece e
4-2 CR6 Field Bit Settings for Vector Integer Compare Instructions............
4-3 Vector Integer Compare INSIrUCHIONScocovverereneneneeesesee e
4-4 Vector Integer Logical INStrUCIONS.........ccvevveeieeiesece e
4-5 Vector Integer Rotate INSIrUCtiONS..........coveeienieneeieseeeee e
4-6 Vector Integer Shift INSIrUCLIONScoveiiiiieee e
4-7 Floating-Point Arithmetic INStruCtions.............ccceveeveeiesieese e,
4-8 Floating-Point Multiply-Add INStructionsccovoeeeineenenieneeseeenns
4-9 Floating-Point Rounding and Conversion Instructions.............c.cceeeeue.
4-10 Common Mathematical PrediCates...........ocvvvevenineriieieneec e
4-11 Other Useful PrediCatescocoverinieieee e
4-12 Floating-Point Compare INSLrUCLIONS...........covvrerererieeeree e
4-13 Floating-Point Estimate INStrUCtionS............coveveieeneeie e
4-14 Effective Address AlIgnment..........occooeeeneeneeie e
4-15 Integer Load INStIUCHIONScovivirierierieeeie e
4-16 Vector Load Instructions Supporting Alignmentcccccveeeeeerieeneene.
4-17 Shift Values for [vSl INSIrUCtiON..........ooeeiiriiiieee e
4-18 Shift Values for [VSr INSLIUCLIONc.ccvevieeieiiere e
4-19 INteger Store INSIIUCHIONS.........ocveiieece e
4-20 Vector Pack INSIFUCHIONS.......c...oiiiiiiieeeee e
4-21 Vector UnNpack INSLIUCHIONS........c..eieeieieieie e
4-22 Vector Merge INSrUCHIONS........cccuvieeiicic e
4-23 Vector Splat INSIIUCHIONSc..coieeieie e e
4-24 Vector PErmute INSLIUCLION.ccuvieereeie e
4-25 Vector SEleCt INSIIUCTIONocveiveieiiieeee e s
4-26 Vector Shift INSIIUCHIONS.......ooviiieieee e
MOTOROLA Tables

For More Information On This Product,
Go to: www.freescale.com

Page
Number

XVii

Table
Number

4-27
4-28
4-29
4-30
5-1
5-2
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
A-1
B-1
C-1

E-1
E-2

E-4
F-1

XViii

Freescale Semiconductor, Inc.

Tables
Page
Title Number
Coding Various Shifts and Rotates with the vsidoi Instruction.............cccccevevenennene 4-38
Move to/from Condition Register INStrUCtIONSccveiieiieviereeeceece e 4-40
Simplified Mnemonics for Data Stream Touch (dSt)cocveveriinienenie e, 4-40
User-Level Cache INSIIUCLIONS.........coovieirieeie et sne e 4-42
AltiVec Unavailable Exception—Register SEttings.......ccoecvveeieeieseese e 5-11
Exception Priorities (Synchronous/Precise EXCEPLIONS).........ceveeevreenieriinseeniennnns 5-12
INstruction Syntax CONVENTIONScoeiiririeieierese e 6-2
Notation and CONVENTIONS........ccceueriiriiieresieseeeeee e sae e e srenreas 6-2
INStruction Field CONVENTIONScoiiiiiiieieee et 6-7
PreCedenCe RUIESooeeee et enneees 6-7
Special Values of the Element iN VBcccooov i 6-67
Specia Values of the Element iN VB ... 6-69
Special Values of the EIemMent iN VB ..o 6-123
Special Values of the Element iNVBcooeiieie i 6-132
Instruction Sorted by Mnemonic in Decimal FOrmatccoovevevenenienieeneeeee A-1
Instructions Sorted by Mnemonic in Binary FOrmMat...........ccovvreieienenencse e B-1
Instructions Sorted by Opcode in Decimal Format............cccecveveeveeieccevecse e C-1
Instructions Sorted by Opcode in Binary FOrmatcccccveenenienenenieseeseeeee D-1
VWA O M. ettt e e st e e et e e e st e e e s s e e e anr e e ennne e eneeenneeean E-1
BT o 1 0 F PRSP URTUPPPPRPURRPIN E-2
D 1 1 1 T TSP TOPRROPRIN E-5
VXIRAFOIMN <ttt e e st e e s an e e e sar e e e enneeeneeesneeeens E-6
AIIVEC INSLruCtion Set LEGENTcceeiuieieieeieee ettt F-1
AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

About This Book

The primary objective of this manual is to help programmers provide software that is
compatible with processors that implement the PowerPC architecture and the AltiVec™
technology. This book describes how the AltiVec technology relates to the 32-bit portions
of the PowerPC architecture.

To locate any published errata or updates for this document, refer to the web at
http://www.motorola.com/semiconductors.

Thisbook is one of two that discuss the AltiVec technology. The two books are as follows.

» AltiVec Technology Programming Interface Manual (AltiVec PIM) is areference
guide for high-level programmers. The AltiVec PIM describes how programmers
can access AltiVec functionality from programming languages such as C and C++.
TheAltiVec PIM defines a programming model for use with the AltiVec instruction
set. Processor that implement the PowerPC architecture use the AltiVec instruction
set as an extension of the PowerPC instruction set.

» AltiVec Technology Programming Environments Manual (AltiVec PEM) isused asa
reference guide for assembler programmers. The AltiVec PEM uses a standardized
format instruction to describe each instruction, showing syntax, instruction format,
register trandation language (RTL) code that describes how the instruction works,
and alisting of which, if any, registersare affected. At the bottom of each instruction
entry is afigure that shows the operations on elements within source operands and
where the results of those operations are placed in the destination operand.

Because it is important to distinguish between the levels of the PowerPC architecture to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book. This document stays consistent with the PowerPC architecture in
referring to three levels, or programming environments, which are as follows:

» PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. he UISA defines the
base user-level instruction set, user-level registers, datatypes, memory conventions,
and the memory and programming models seen by application programmers.

» PowerPC virtua environment architecture (VEA)—TheVEA, whichisthe smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devicescan

MOTOROLA Preface XiX

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

access external memory and defines aspects of the cache model and cache control
instructions from a user-level perspective. VEA resources are particularly useful for
optimizing memory accesses and for managing resources in an environment in
which other processors and other devices can access external memory.

Implementations that conform to the VEA also conform to the UISA but may not
necessarily adhere to the OEA.

» PowerPC operating environment architecture (OEA)—The OEA defines
supervisor-level resources typically required by an operating system. It defines the
memory management model, supervisor-level registers, and the exception model.

I mplementations that conform to the OEA also conform to the UISA and VEA.

Most of the discussions on the AltiVec technology are at the UISA level. The level of the
architecture to which text refers is indicated in the outer margin, using the conventions
shown in Section , “Conventions,” on page -xxiii.

For ease in reference, this book and the processor user’'s manuals have arranged the
architecture information into topics that build upon one another, beginning with a
description and complete summary of registersand instructions (for all three environments)
and progressing to more specialized topics such as the cache, exception, and memory
management models. As such, chapters may include information from multiplelevels of the
architecture, but when discussing OEA and VEA, the level is noted in the text.

It is beyond the scope of this manual to describe individual AltiVec technology
implementations on processors that implement the PowerPC architecture. It must be kept
in mind that each processor that implements the PowerPC architecture and AltiVec
technology is unigue in its implementation.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative or visit our web
site at http://www.mot.com/semiconductors.

Audience

This manual is intended for system software and hardware developers and application
programmers who want to develop products using the AltiVec technology extension to the
PowerPC architecture. It is assumed that the reader understands operating systems,
microprocessor system design, and the basic principles of RISC processing and details of
the PowerPC architecture.

This book describes how the AltiVec technology interacts with the 32-bit portions of the
PowerPC architecture

XX AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Organization

Following is a summary and a brief description of the major sections of this manual:

Chapter 1, “Overview,” is useful for those who want a general understanding of the
features and functions of the AltiVec technology. This chapter provides an overview
of how the AltiVec technology defines the register set, operand conventions,
addressing modes, instruction set, cache model, and exception model.

Chapter 2, “AltiVec Register Set,” is useful for software engineers who need to
understand the PowerPC programming model for the three programming
environments. The chapter al so discussesthe functionality of theAltiVec technology
registers and how they interact with the other PowerPC registers.

Chapter 3, “Operand Conventions,” describes how the AltiVec technology interacts
with the PowerPC conventions for storing datain memory, including information
regarding alignment, single-precision floating-point conventions, and big- and
little-endian byte ordering.

Chapter 4, “Addressing Modesand I nstruction Set Summary,” providesan overview
of the AltiVec technology addressing modes and a brief description of the AltiVec
technol ogy instructions organized by function.

Chapter 5, “ Cache, Exceptions, and Memory Management,” provides a discussion
of the cache and memory model defined by the VEA and aspects of the cache model
that are defined by the OEA. It also describes the exception model defined in the
UISA.

Chapter 6, “AltiVec Instructions,” functions as a handbook for the AltiVec
Instruction set. Instructions are sorted by mnemonic. Each instruction description
includestheinstruction formats and figureswhereit hel psin understanding what the
instruction does.

Appendices A, B, C, D, E, F, and G list all of the AltiVec instructions, grouped
according to mnemonic, opcode, and form, in both decimal and binary order.

Appendix G, “User's Manual Revision History,” describes changes since the
previous revision of this document.

This manual aso includes aglossary and an index.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual as well as genera information about the AltiVec technology and PowerPC
architecture.

MOTOROLA Preface XXi

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

General Information

The following documentation, available through Morgan-Kaufmann Publishers, 340 Pine
Street, Sixth Floor, San Francisco, CA, provides useful information about the PowerPC
architecture and computer architecture in general:

* The PowerPC Architecture: A Specification for a New Family of RISC Processors,
Second Edition, by International Business Machines, Inc.

For updates to the specification, see http://www.austin.ibm.com/tech/ppc-chg.html.

» PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc., and
Motorola, Inc.

» Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson

» Computer Organization and Design: The Hardware/Software I nterface, Second
Edition, David A. Patterson and John L. Hennessy

Related Documentation

Motorola documentation is available from the sources listed on the back cover of this
manual; the document order numbers are included in parentheses for ease in ordering:

* Programming Environments Manual for 32-Bit |mplementations of the Power PC
Architecture (Programming Environments Manual)—Describes resources defined
by the PowerPC architecture (documentation order number: MPCFP32B/AD).

» User'smanuals—These books provide detailsabout individual implementationsand
are intended for use with the Programming Environments Manual.

* Addendal/erratato user’s manual s—Because some processors have follow-on parts
an addendum is provided that describes the additional features and functionality
changes. These addendaare intended for use with the corresponding user’s manuals.

» Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, aswell as
other design considerations.

» Technical summaries—Each device has atechnical summary that provides an
overview of itsfeatures. This document is roughly the equivalent to the overview
(Chapter 1) of an implementation’s user’s manual.

» Application notes—These short documents address specific design issues useful to
programmers and engineers working with Motorola processors.

Additional literature is published as new processors become available. For a current list of
documentation, refer to http://www.motorola.com/semiconductors.

XXii AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Conventions

Freescale Semiconductor, Inc.

This document uses the following notational conventions:

cleared/set

mnemonics
italics

Ox0
ObO
rA,rB

rbD
frA, frB, frC

frD
REG[FIELD]

VA, VB, vC
vD
X

S5 X

g &~

MOTOROLA

When abit takes the value zero, it is said to be cleared; when it takes
avalue of ong, it is said to be set.

Instruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters, for example, bectr x.
Book titlesin text are set in italics

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source general-purpose register
(GPR)

Instruction syntax used to identify a destination GPR

Instruction syntax used to identify a source floating-point register
(FPR)

Instruction syntax used to identify a destination FPR

Abbreviationsfor registersare shown in uppercasetext. Specific bits,
fields, or ranges appear in brackets. For example, MSR[LE] refersto
the little-endian mode enable bit in the machine state register.

Instruction syntax used to identify a source vector register (VR)
Instruction syntax used to identify a destination VR

In some contexts, such as signal encodings, an unitalicized x
indicates adon't care.

Anitalicized x indicates an aphanumeric variable.
Anitalicized n indicates an numeric variable.
NOT logica operator

AND logical operator

OR logical operator

This symbol identifies text that is relevant with respect to the
PowerPC user instruction set architecture (UISA). This symbol is
used both for information that can be foundinthe UI SA specification
aswell asfor explanatory information related to that programming
environment.

Preface XXiii

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

v This symbol identifies text that is relevant with respect to the
PowerPC virtual environment architecture (VEA). This symbol is
used both for information that can be found in the VEA specification
aswell asfor explanatory information related to that programming
environment.

® This symbol identifies text that is relevant with respect to the
PowerPC operating environment architecture (OEA). Thissymbol is
used both for information that can be found in the OEA specification
aswell asfor explanatory information related to that programming
environment.

Q) Indicates functionality defined by the AltiVec technology.

0000 Indicates reserved bits or bit fields in aregister. Although these bits
may be written to as ones or zeros, they are always read as zeros.

Additional conventions used with instruction encodings are described in Section 6.1,
“Instruction Formats.”

Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this document. Note that the
meanings for some acronyms (such as SDR1 and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

AltiVec PEM | AltiVec Technology Programming Environments Manual

AltiVec PIM | AltiVec Technology Programming Interface Manual

ALU Arithmetic logic unit
BAT Block address translation
CR Condition register
CTR Count register
DABR Data address breakpoint register
DAR Data address register

DBAT Data BAT

DEC Decrementer register
DSISR Register used for determining the source of a DSI exception
EA Effective address
ECC Error checking and correction
XXV AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
IABR Instruction address breakpoint register
IBAT Instruction BAT
IEEE Institute of Electrical and Electronics Engineers
ITLB Instruction translation lookaside buffer
U Integer unit
L2 Secondary cache
L3 Level 3 cache
LIFO Last-in-first-out
LR Link register
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
LSU Load/store unit
LSQ Least-significant quad-word
Isq Least-significant quad-word
MESI Modified/exclusive/shared/invalid—cache coherency protocol

MMCRn Monitor mode control registers

MMU Memory management unit
MSB Most-significant byte
msb Most-significant bit
MSQ Most-significant quad-word
msq Most-significant quad-word
MSR Machine state register
NaN Not a number
NIA Next instruction address
No-op No operation
OEA Operating environment architecture
PEM Programming Environments Manual For 32-Bit Implementations of the PowerPC Architecture
PMCn Performance monitor counter registers
PTE Page table entry
MOTOROLA Preface XXV

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
PTEG Page table entry group
PVR Processor version register
RISC Reduced instruction set computing
RTL Register transfer language
RWITM Read with intent to modify
RWNITM Read with no intent to modify
SDA Sampled data address register
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SIA Sampled instruction address register
SIMM Signed immediate value
SPR Special-purpose register
SRn Segment register
SRRO Machine status save/restore register 0
SRR1 Machine status save/restore register 1
STE Segment table entry
B Time base facility
TBL Time base lower register
TBU Time base upper register
TLB Translation lookaside buffer
UMM Unsigned immediate value
UISA User instruction set architecture
UMMCRN | User monitor mode control registers
UPMCn User performance monitor counter registers
VA Virtual address
VEA Virtual environment architecture
VPU Vector permute unit
VR Vector register
VSCR Vector status and control register
VTQ Vector touch queue
XER Register used for indicating conditions such as carries and overflows for integer operations
XXVi AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Terminology Conventions

Tableii lists certain terms used in this manual that differ from the architecture terminology

conventions.

Table ii. Terminology Conventions

The Architecture Specification

This Manual

Data storage interrupt (DSI)

DSI exception

Extended mnemonics

Simplified mnemonics

Fixed-point unit (FXU)

Integer unit (IU)

Instruction storage interrupt (ISI)

ISI exception

Interrupt

Exception

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state)

User-level privilege

Real address

Physical address

Relocation Translation
Storage (locations) Memory
Storage (the act of) Access

Store in Write back
Store through Write through

Tableiii describes instruction field notation conventions used in this manual .

Table iii. Instruction Field Conventions

The Architecture Specification

Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS

frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

Sl SIMM

U IMM

ul UIMM

VA, VB, VT, VS VA, vB, vD, VS (respectively)
MOTOROLA Preface XXVii

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Table iii. Instruction Field Conventions (continued)

The Architecture Specification

Equivalent to:

VEC AltiVec technology
1,11, 11 0...0 (shaded)
XXVili AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 1
Overview

This chapter provide an overview of AltiVec™ technology, including general concepts
which helps in understanding the features that AltiVec technology provides. There is also
information on how AltiVec technology works with PowerPC architecture.

1.1 Overview

AltiVec™ technology provides a software model that accelerates the performance of
various software applications as it runs on reduced instruction set computing (RISC)
microprocessors. AltiVec technology extends the instruction set architecture (ISA) of
PowerPC architecture. AltiVec ISA is based on separate vector/SIMD-style (single
instruction stream, multiple data streams) execution units that have high data parallelism.
That is, AltiVec technology operates on multiple data items in a single instruction which
allowsfor ahighly efficient way to process large quantities of information. High degrees of
paralelism are achievable with simple in-order instruction dispatch and low-instruction
time processing. However, the ISA is designed so as not to impede additional parallelism
through dispatch to multiple execution units or multithreaded execution unit pipelines,

AltiVec technology is an architecture that defines a set of registers and execution units
which can be used in conjunction with the PowerPC architecture. All instructions are
designed to be easily pipelined with pipeline latencies no greater than the scalar,
double-precision, floating-point multiply-add. There are no operating mode switcheswhich
make interleaving of instructions with the existing floating-point and integer instructions
possible. The vector unit minimizes exceptions and has few shared resources. Thisrequires
it to be tightly synchronized with other execution units that prevent delays in executing
instructions.

AltiVec technology’s SIMD-style extension provides an approach to accelerating the
processing of data streams. That is, in SIMD parallel processing, the vector unit will fetch
and interpret instructions and process multiple pieces of data simultaneously. By
processing whole streams of data at once, it provides afast and efficient was to manipul ate
large quantities of information. AltiVec instructions provide a significant speedup for
communications, multimedia, and other performance-driven applications by using the
data-level parallelism and keeping processing of data to the vector register file. By having
separate register files, the execution units data accesses by different register files can be

MOTOROLA Chapter 1. Overview 1-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Overview

done concurrently. The data stream engine in AltiVec supports data-intensive prefetching,
minimizing latency in memory access bottlenecks. By using the SIMD parallelism in
AltiVec technology, performance can be accelerated on processors that implement the
PowerPC architecture to a level that alows real-time processing of one or more data
streams at the same time.

A majority of audio and visual applications require no more that 8- or 16-bit data types to
represent satisfactory color and sound. AltiVec ISA can help accelerate the processing of
the following types of applications:

» Voiceover IP (VolP). Vol P transmits voice as compressed digital data packets over
the Internet.

» AccessConcentratorsDSLAMS. An access concentrator stripsdatatraffic off POTS
lines and inserts it onto the Internet. Digital subscriber loop access multiplexer
(DSLAM) pulls data off at a switch and immediately routes it to the Internet. This
allowsit to concentrate ADSL digital traffic at the switch and off-load the network.

» Speech recognition. Speech processing allows voice recognition for usein
applications such as directory assistance and automatic dialing.

» Voice/sound processing (audio encode and decode): Voice processing uses signal
processing to improve sound quality on lines.

e Communications;
— Multi-channel modems

— Modem banks can use AltiVec technology to replace signal processorsin DSP
farms.

» 2D and 3D graphics: arcade-type games
* Image and video processing: JPEG, filters

» Echo cancellation. Echo cancellation is used to eliminate echo on long delay calls
(250-500 milliseconds, as in satellite communications).

* Array number processing

» Basestation Processing: Cellular basestation compresses digital voice data for
transmission within the Internet.

» Video conferencing: H.261, H.263

In this document, the term ‘implementation’ refers to a hardware device (typically a
microprocessor) that complies with PowerPC architecture.

AltiVec technology can be used as an extension to various RI SC microprocessors; however,
in this book it is discussed within the context of PowerPC architecture, described as
follows:

1-2 AltiVec Technology Programming Enviroments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Overview

* Programming model

— Instruction set. The AltiVec instruction set specifies instructions that extend the
PowerPC instruction set. These instructions are organized similar to PowerPC
instructions (vector integer, vector floating-point, vector |oad/store, and vector
permutation and formatting instructions). The specific instructions, and the
forms used for encoding them, are provided in Appendix A, “Instruction Set.”

— Register set. The AltiVec programming model defines new AltiVec registers,
additions to the PowerPC register set, and how existing PowerPC registers are
affected by the AltiVec technology. The model also addresses memory
conventions including details regarding the byte ordering for quad words.

» Memory model. AltiVec technology specifies additional cache management
instructions. That is, AltiVec instructions can control software-directed data
prefetching.

» Exception model. AltiVec technology provides very few exceptions, so processing
Is efficient. Among the few exceptions are an AltiVec unavailable (VUI) exception
and aDSl exception.

* Memory management model. The memory model for AltiVec technology isthe
same as for PowerPC architecture. AltiVec memory accesses are always assumed to
be aligned. If an operand is misaligned, additional AltiVec instructions can be used
to ensure that the operand is placed correctly in the vector register.

» Time-keeping model. The PowerPC time-keeping model is not affected by AltiVec
technol ogy.

To locate published errata or updates for this document, refer to the website at
http://www.motorol a.com/semiconductors.

1.2 AltiVec Technology Overview

AltiVec technology expands PowerPC architecture through the addition of a 128-bit vector
execution unit, which operates concurrently with the existing integer- and floating-point
units. The dispatch unit can issue more than one instruction at atime so thereis no penalty
for mingling different types of instructions. A new vector execution unit can provide both
a vector permute unit (VPERM) and vector arithmetic logical unit (VALU). By having a
separate permute unit, data reorganization instructions can proceed concurrently with
arithmetic instructions.

AltiVec technology can be thought of as a set of registers and execution units that can be
added to PowerPC architecture in a manner analogous to the addition of floating-point
units. Floating-point units were added to provide support for high-precision scientific
calculations, and AltiVec technology is added to PowerPC architecture to accelerate the
next level of performance-driven, high-bandwidth communications and computing

MOTOROLA Chapter 1. Overview 1-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec Technology Overview

applications. Figure 1-1 provides a high-level overview of the PowerPC architecture with
the AltiVec technol ogy.

Instruction Stream Dispatch Unit

INST INST INST

)

In&(;?ter FIoauS%i-romt Vector Unitls
GPRs FPRs VRs
(32 bits) (64 bits) (128 bits)
A A
| / / Y
— > Cache / Memory

Figure 1-1. Overview of PowerPC architecture with AltiVec Technology

AltiVec technology is purposefully ssmple so that there are minimal exceptions, no
hardware misaligned access support, and no complex functions. AltiVec technology is
scaled down to the necessary pieces only, in order to facilitate efficient cycle time, latency,
and throughput on hardware implementations.

AltiVec technology defines the following:

1-4

Fixed 128-bit-wide vector length that can be subdivided into sixteen 8-hbit bytes,
eight 16-bit half words, or four 32-bit words

Vector register file (VRF) architecturally separate from floating-point registers
(FPRs) and general-purpose registers (GPRs)

Vector integer and floating-point arithmetic

Four operands for most instructions (three source operands and one result)

Saturation clamping (that is, unsigned results are clamped to zero on underflow and
to the maximum positive integer value (2"-1, for example, 255 for byte fields) on
overflow. For signed results, saturation clamps results to the smallest representable
negative number (-2, for example, -128 for byte fields) on underflow, and to the
largest representable positive number (271-1, for example, +127 for byte fields) on
overflow)

AltiVec Technology Programming Enviroments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Overview

» Operations selected based on utility to digital signal processing algorithms
(including 3D).

» AltiVec instructions provide a vector compare and select mechanism to implement
conditional execution asthe preferred way to control dataflow in AltiVec programs.

* Instructions that enhance the cache/memory interface

1.2.1 Levels of AltiVec ISA

AltiVec | SA follows the layering of PowerPC architecture. PowerPC architecture has three
levels, defined as follows:

» Jser instruction set architecture (UISA) —The UISA defines the level of the U]
architecture to which user-level (referred to as problem state in the architecture
specification) software should conform. The UISA defines the base user-level
instruction set, user-level registers, data types, floating-point memory conventions,
and exception model as seen by user programs, and the memory and programming
models. Theicon shown in the margin identifies text that is relevant to the UISA.

» Virtual environment architecture (VEA)—The VEA defines additional user-level W
functionality that falls outside typical user-level software requirements. The VEA
describes the memory model for an environment in which multiple devices can
access memory, defines aspects of the cache model, defines cache control
instructions, and defines the time base facility from a user-level perspective. The
icon shown in the margin identifies text that is relevant to the VEA.

I mplementations that conform to the VEA also adhere to the UISA, but may not
necessarily adhere to the OEA.

» Operating environment architecture (OEA)—The OEA defines supervisor-level (0]
(referred to as privileged state in the architecture specification) resources typically
required by an operating system. The OEA definesthe memory management model,
supervisor-level registers, synchronization requirements, and the exception model.
The OEA also definesthe time base feature from a supervisor-level perspective. The
icon shown in the margin identifies text that is relevant to the OEA.

Implementations that conform to the OEA aso conform to the UISA and VEA.
AltiVec technology defines instructions at the UISA and VEA levels. There are no AltiVec
instructions defined at the OEA level. The distinctions between the levels are noted in the

text throughout the document This book describes the 32-bit PowerPC architecture mode.
and instructions are described from a 32-bit perspective.

MOTOROLA Chapter 1. Overview 1-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Architectural Model

1.2.2 Features Not Defined by AltiVec ISA

Because flexibility is an important design goal of AltiVec technology, there are many
aspects of the microprocessor design, typically relating to the hardware implementation,
that AltiVec | SA does not define. For exampl e, the number and the nature of execution units
are not defined. AltiVec ISA is avector/SIMD architecture, and as such makes it easier to
implement pipelining instructions and parallel execution units to maximize instruction
throughput. However, AltiVec ISA does not define the internal hardware details of
implementations. For example, one processor may use asimpleimplementation having two
vector execution units, whereas another may provide a bigger, faster microprocessor design
with several concurrently pipelined vector arithmetic logical units (ALUs) with separate
load/store units (L SUs) and prefetch units.

1.3 AltiVec Architectural Model

This section provides overviews of aspects defined by AltiVec I1SA, following the same
order asthe rest of this book. The topics are as follows:

* Registers and programming model

» Operand conventions

* Addressing modes and instruction set

» Cache, exceptions, and memory management models

1.3.1 AltiVec Registers and Programming Model

In AltiVec technology, the ALU operates on from one to three source vectors and produces
a single destination vector on each instruction. The ALU is a SIMD-style arithmetic unit
that performs the same operation on all the data elements comprising each vector. This scheme
allows efficient code scheduling in ahighly parallel processor. Load and store instructions
are the only instructions that transfer data between registers and memory. The vector unit
and vector register file are shown in Figure 1-2.

1-6 AltiVec Technology Programming Enviroments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Architectural Model

VRO
VR1
VR2

e Vector Register File (VRF) e

VR30
VR31 |

128 128 128 128
Y Y

Vector Unit

Result/Destination Vector Register

Figure 1-2. AltiVec Top-Level Diagram

The vector unit isa SIMD-style unit in which an instruction performs operationsin parallel
with the data elements that comprise each vector. Architecturally, the vector register file
(VRF) is separate from the GPRs and FPRs. The AltiVec programming model incorporates
the 32 registers of the VRFs; each register is 128 bits wide.

1.3.2 Operand Conventions

Operand conventions define how datais stored in vector registers and memory.

1.3.2.1 Byte Ordering

The default mapping for AltiVec ISA is PowerPC big-endian, but AltiVec ISA providesthe
option of operating in either big- or little-endian mode. The endian support of PowerPC
architecture does not address any data element larger than adouble word; the basic memory
unit for vectorsis a quad word.

MOTOROLA Chapter 1. Overview 1-7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Architectural Model

Big-endian byte ordering is shown in Figure 1-3

Quad Word

Word 0 Word 1 Word 2 Word 3

Half Word O | Half Word 1 | Half Word 2 | Half Word 3 | Half Word 4 | Half Word 5 | Half Word 6 | Half Word 7

Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

1 1

MSB LSB
(High (Low
Order) Order)

Figure 1-3. Big-Endian Byte Ordering for a Vector Register

As shown in Figure 1-3, the elements in vector registers are numbered using big-endian
byte ordering. For example, the high-order (or most significant) byte element is numbered
0 and the low-order (or least significant) byte element is numbered 15.

When defining high order and low order for elements in a vector register, be careful not to
confuse its meaning based on the bit numbering. That is, in Figure 1-4, the high-order half
word for word 0 (bits 0-31) would be half word O (bits 0-15), and the low-order half word
for word 0 would be half word 1 (bits 16-31).

Word 0

High-Order half word Low-Order half word

0 15 16 31

Figure 1-4. Bit Ordering

In big-endian mode, an AltiVec quad word load instruction for which the effective address
(EA) isquad-word aligned placesthe byte addressed by EA into byte element O of the target
vector register. The byte addressed by EA + 1 is placed in byte element 1, and so forth.
Similarly, an AltiVec quad word store instruction for which the EA is quad word-aligned
places byte element 0 of the source vector register into the byte addressed by EA. Byte
element 1 is placed into the byte addressed by EA + 1, and so forth.

1.3.2.2 Floating-Point Conventions

AltiVec ISA basicaly has two modes for floating-point, that is a
Java-/|EEE-/C9X-compliant mode or a possibly faster non-Java/non-IEEE mode. AltiVec
|SA conforms to the Java Language Specification 1 (hereafter referred to as Java), that isa
subset of the default environment specified by the IEEE standard (ANSI/IEEE Standard
754-1985, IEEE Standard for Binary Floating-Point Arithmetic). For aspects of
floating-point behavior that are not defined by Java but are defined by the IEEE standard,
AltiVec | SA conformsto the |EEE standard. For aspects of floating-point behavior that are
defined neither by Java nor by the | EEE standard but are defined by the C9X Floating-Point

1-8 AltiVec Technology Programming Enviroments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Architectural Model

Proposal WG14/N546 X3J11/96-010 (Draft 2/26/96) (hereafter referred to as C9X),
AltiVec ISA conformsto CO9X when in Java-compliant mode.

1.3.3 AltiVec Addressing Modes

As with PowerPC instructions, AltiVec instructions are encoded as single-word (32-bit)
instructions. Instruction formats are consistent among al instruction types, permitting
decoding to be parallel with operand accesses. This fixed instruction length and consistent
format simplifies instruction pipelining. AltiVec load, store, and stream prefetch
instructions use secondary opcodes in primary opcode 31 (0b011111). AltiVec ALU-type
instructions use primary opcode 4 (0b000100).

AltiVec ISA supports both intraelement and interelement operations. In an intraelement
operation, elementswork in parallel with the corresponding elements from multiple source
operand registers and place the resultsin the corresponding fieldsin the destination operand
register. An example of an intraelement operation is the Vector Add Signed Word Saturate
(vaddsws) instruction shown in Figure 1-5

Element — 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lo b T b Iy T e b I B I Iy 0y v
| liNiNinininnininininmn

YY VY YV VY YV VY YV YY YY YY YV VY VV
+ 0+ 4+ + + + o+ 4+ o+ o+ o+ o+ o+ 4+ 4+
Y Y Y Y Y Y Y Y Y Y Y Y Y ¥ ¥
L]

Figure 1-5. Intraelement Example, vaddsbs

‘|VB

<

\/ Yyvy YY YY YY YV Y Yyvy

-€

Vv
+
Y

In this example, the sixteen elements (8 bits per element) in register vA are added to the
corresponding sixteen elements (8 bits per element) in register vB and the sixteen results
are placed in the corresponding elementsin register vD.

In interelement operations data paths cross over. That is, different elements from each
source operand are used in the resulting destination operand. An example of an interelement
operation is the Vector Permute (vper m) instruction shown in Figure 1-6.

Element - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[1[14]18]10]/16][15[19]1A]1Cc|[1C[1C[13] 8 [1D[1B] E | vC

[o[1]2]3]4][5][6[7]/8]9[A[B[C|IDJ/E]F]|vA

[10 11 [12 [18 [14 [15 [16 17 [18 |19 [1A (1B [1C [1D 1E |1F | vB

[S R e

Figure 1-6. Interelement Example, vperm

MOTOROLA Chapter 1. Overview 1-9

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Architectural Model

In this example, vper m allows any byte in the two source vector registers (VA and vB) to
be copied to any byte in the destination vector register, vD. The bytes in a third source
vector register (vC) specify from which byte in the first two source vector registers the
corresponding target byte is to be copied. So in the interelement example, the elements
from the source vector registers do not have corresponding elements that operate on the
destination register.

Most arithmetic and logical instructions are intraelement operations. The crossover data
paths have been restricted as much as possibl e to the interel ement mani pulation instructions
(unpack, pack, permute, etc.) with the idea to implement the ALU and shift/permute as
separate execution units. The following list of instructions distinguishes between
interelement and intraelement instructions:

» Vector intraglement instructions
— Vector integer instructions
— Vector integer arithmetic instructions
— Vector integer compare instructions
— Vector integer rotate and shift instructions
— Vector floating-point instructions
— Vector floating-point arithmetic instructions
— Vector floating-point rounding and conversion instructions
— Vector floating-point compare instruction
— Vector floating-point estimate instructions
— Vector memory access instructions
» Vector interelement instructions
— Vector alignment support instructions
— Vector permutation and formatting instructions
— Vector pack instructions
— Vector unpack instructions
— Vector merge instructions
— Vector splat instructions
— Vector permute instructions
— Vector shift left/right instructions

1-10 AltiVec Technology Programming Enviroments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Architectural Model

1.3.4 AltiVec Instruction Set

Although these categories are not defined by AltiVec ISA, AltiVec instructions can be
grouped as follows:

Vector integer arithmetic instructions—These instructions are defined by the UISA.
They include computational, logical, rotate, and shift instructions.

— Vector integer arithmetic instructions

— Vector integer compare instructions

— Vector integer logical instructions

— Vector integer rotate and shift instructions

Vector floating-point arithmetic instructions—These include fl oating-point
arithmetic instructions defined by the UISA.

— Vector floating-point arithmetic instructions

— Vector floating-point multiply/add instructions

— Vector floating-point rounding and conversion instructions
— Vector floating-point compare instruction

— Vector floating-point estimate instructions

Vector load and store instructions—These include |load and store instructions for
vector registers defined by the UISA.

Vector permutation and formatting instructions—These instructions are defined by
the UISA.,

— Vector pack instructions

— Vector unpack instructions
— Vector merge instructions
— Vector splat instructions

— Vector permute instructions
— Vector select instructions
— Vector shift instructions

Processor control instructions—These instructions are used to read and write from
theAltiVec status and control register (V SCR). Theseinstructions are defined by the
UISA.

Memory control instructions—These instructions are used for managing of caches
(user level and supervisor level). Theinstructions are defined by VEA and include
data stream instructions.

MOTOROLA Chapter 1. Overview 1-11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Architectural Model

m 1.3.5 AltiVec Cache Model

V AltiVec 1SA defines severa instructions for enhancements to cache management. These
instructions allow software to indicate to the cache hardware how it should prefetch and
prioritize writeback of data. The AltiVec ISA does not define hardware aspects of cache
implementations.

1.3.6 AltiVec Exception Model

AltiVec vector instructions generate very few exceptions. Data stream instructions will
never cause an exception themselves. Vector load and store instructions that attempt to
access a direct-store segment will cause a DSI exception.

The AltiVec unit does not report | EEE exceptions; there are no status flags and the unit has
no architecturally visible traps. Default results are produced for all exception conditions as
specified first by the Java specification. If no default exists, the |EEE standard’s default is
used. Then, if no default exists, the C9X default is used.

Exceptions have been minimized so that the vector unit does not have to be tightly
synchronized with the existing floating-point and integer units. By simplifying the
communications path with other units there can be fine grain interleaving of instructions
that increases the instruction through-put.

1.3.7 Memory Management Model

In a processor that implement the PowerPC architecture the MMU’ s primary functions are
to trandlate logical (effective) addresses to physical addresses for memory accesses and I/O
accesses (most 1/0 accesses are assumed to be memory-mapped) and to provide access
protection on a block or page basis. Some protection is also available even if trandlation is
disabled. Typically, it is not progranmable. The AltiVec ISA does not provide any
additional instructions to the PowerPC memory management model, but AltiVec
instructions have options to ensure that an operand is correctly placed in a vector register
or in memory.

1-12 AltiVec Technology Programming Enviroments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 2
AltiVec Register Set

This chapter describes the register organization defined by AltiVec technology. It also
describes how AltiVec instructions affect some of the registersin the PowerPC architecture.
AltiVec Instruction Set Architecture (ISA) defines register-to-register operations for all
computational instructions. Source data for these instructionsis accessed from the on-chip
vector registers (VRs) or are provided as immediate values embedded in the opcode.
Architecturaly, the VRs are separate from the general-purpose registers (GPRs) and
floating-point registers (FPRs). Data is transferred between memory and vector registers
with explicit AltiVec load and store instructions only.

Note that the handling of reserved bits in any register is implementation-dependent.
Software is permitted to write any value to a reserved hit in a register. However, a
subsequent reading of the reserved bit returns O if the value last written to the bit was 0 and
returns an undefined value (may be 0 or 1) otherwise. This meansthat even if the last value
written to areserved bit was 1, reading that bit may return 0.

2.1 Overview on the AltiVec and PowerPC Registers

The addition of AltiVec technology adds some additional new registers aswell as affecting
bit settings in some of the PowerPC registers when AltiVec instructions are executed.
Figure 2-1 shows a graphic representation of the entire PowerPC register set and how the
AltiVec register set resides within the PowerPC architecture. The PowerPC registers
affected by AltiVec instructions are shaded and AltiVec registers are highlighted as well.
Note that a processor that implements the PowerPC architecture may have additional
registers specific only to that processor.

MOTOROLA Chapter 2. AltiVec Register Set 2-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Overview on the AltiVec and PowerPC Registers

f USER MODEL—VEA
Time Base Facility (For Reading)
TBL(32) TBU (32)

TBR 268 TBR 269

~

USER MODEL—UISA

General-Purpose

~

Count Register

CTR(32) |SPR9 Registers
Link Register GPRO (32)
LR(32) |SPR8 GPR1(32)
XER .
XER(32) |SPR1 I
GPR31 (32)

Floating-Point Registers Floating-Point

Status and Control

| FPRO (64) Register
| FPRI (64) FPSCR (32)
: Condition Register
) CR (32)
FPR31 (64)

AltiVec Registers

AltlVec Save Vector Status and
Register 2 Control Register 2
VRSAVE (32) SPR 256 VSCR (32)
Vector Registers 2
VRO (128)
VR1 (128)
VR31 (128)

&5

J
J

SUPERVISOR MODEL—OEA

~

Configuration Registers

Machine State Register

MSR (32)

Memory Management Registers

Instruction BAT

Registers
IBATOU (32) | SPR 528
IBATOL (32) | SPR 529
IBAT1U (32) | SPR 530
IBATIL (32) |SPR 531
IBAT2U (32) | SPR 532
IBAT2L (32) | SPR 533
IBAT3U (32) | SPR 534
IBAT3L (32) | SPR535
SDR1
SDR1(32) | SPR25

Exception Handling Registers

Data Address Register
DAR(32) |SPR19
SPRGs
SPRGO (32
SPRG1 (32
SPRG2 (32
SPRG3 (32

SPR 272
SPR 273
SPR 274
SPR 275

)
)
)
)

Miscellaneous Registers

Time Base Facility
(For Writing) 1

TBL(32) |TBR284

1 These registers are defined as optional by the
PowerPC architecture.

2 These registers are defined by the AltiVec
technology.

[= AttiVec Registers
@ = PowerPC Registers Used In the AltiVec Technology

TBU (32) |TBR285
Decrementer 1
DEC (32) |SPR22

Processor Version Register

PVR (32) SPR 287

Data BAT
Registers
DBATOU (32) | SPR 536
DBATOL (32) | SPR 537
DBAT1U (32) | SPR 538
DBATIL (32) | SPR 539
DBAT2U (32) | SPR 540
DBAT2L (32) | SPR 541
DBAT3U (32) | SPR 542
DBATSL (32) | SPR 543
Segment
Registers
SR0 (32)
SR1 (32)
SR15(32)

DSISR
DSISR (32) SPR 18
Save and Restore Registers
SRR0 (32) | SPR26
SRR1(32) | SPR27

Floating-Point Exception
Cause Register 1

FPECR(32) |SPR 1022

Data Address
Breakpoint Register 1

DABR(32) |SPR 1013

External Address Register!
EAR(32) |SPR282

Processor ID Register 1
PIR(32) |SPR1023

Figure 2-1. Programming Model—All Registers

2-2

AltiVec Technology Programming Environments Manual

MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Register Set Overview

2.2 AltiVec Register Set Overview

AltiVec registers, shown in Figure2-2 can be accessed by user or supervisor-level
instructions. The vector registers (VRs) are accessed as instruction operands. Accessto the
registers can be explicit (that is, through the use of specific instructions for that purpose
such as Move from Vector Status and Control Register (mfvscr) and Move to Vector Status
and Control Register (mtvscr) instructions) or implicit as part of the execution of an
instruction. TheVRs are accessed both explicitly and implicitly.

The number to the right of the register name indicates the number used in the syntax of the
instruction operands to access the register (for example, the number used to access the
VRSAVE is SPR 256).

Vector Registers

Vector Save /Restore Register

VRO
VRSAVE SPR 256

0 31 VR1
Vector Status and Control Register P
VSCR °
L]

0 31
VR31

0 128

Figure 2-2. AltiVec Register Set

The user-level registers can be accessed by all software with either user or supervisor
privileges. The user-level register set for AltiVec technology includes the following:

Vector registers (VRS): The vector register file consists of 32 VRs designated as
VRO-VR31. TheVRs serve as vector source and vector destination registersfor all
vector instructions. See Section 2.3.2, “Vector Status and Control Register
(VSCR),” for more information.

Vector status and control register (VSCR): The VSCR contains the non-Java and
saturation bit with the remaining bits being reserved. See Section 2.3.2, “Vector
Status and Control Register (VSCR),” for more details.

Vector savelrestore register (VRSAVE): The VRSAVE assists the application and
operating system software in saving and restoring the architectural state across
context-switched events. The bitsin the VRSAVE can indicate whether the vector
register islive (1) or dead (0). See Section 2.3.3, “Vector Save/Restore Register
(VRSAVE),” for more information.

MOTOROLA Chapter 2. AltiVec Register Set 2-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Registers defined by AltiVec ISA

2.3 Registers defined by AltiVec ISA

AltiVec | SA has defined several registers. The new AltiVec registers for the most part only
interact with AltiVec instructions, with the exception of the VRSAVE register that is read
or written by the PowerPC instructions mfspr or mtspr, respectively.

2.3.1 AltiVec Vector Register File (VRF)

The VRF, shown in Figure 2-3, has 32 registers, each 128 bits wide. Each vector register
can hold sixteen 8-bit elements, eight 16-bit elements, or four 32-bit elements.

128-Bits —>f -
32-Bits —>

16-Bits —>

<
-
8-Bits —> F

VRO
VR1 |1
VR2

9 ‘10 ‘ 11 ‘ 12 ‘ 13 ‘14 ‘ 15 ‘ 16| Sixteen 8-bit Elements

VR3 1 | 2 | 3 | 4 | 5 | 6| 7 8 Eight 16-bit Elements

VR4

32
Vector

Registers
o o . e

VR5 1 2 3 4 Four 32-bit Elements

VR30

VR31

0 128

Figure 2-3. Vector Registers (VRs)

The vector registers are accessed as vector instruction operands. Access to registers are
explicit as part of the execution of an AltiVec instruction.

2.3.2 Vector Status and Control Register (VSCR)

The vector status and control register (VSCR) is a 32-bit vector register (not an SPR) that
is read and written in a manner similar to the FPSCR in the PowerPC scalar floating-point
unit. TheVVSCR is shown in Figure 2-4

2-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Registers defined by AltiVec ISA

0 1 2 3 4 5
Field Reserved NJ Reserved SAT
Reset Implementation Specific
R/W R/W with mfvscr or mtvscr instruction

Figure 2-4. Vector Status and Control Register (VSCR)

The VSCR has two defined bits, the AltiVec non-Java mode (NJ) bit (VSCR[15]) and the
AltiVec saturation (SAT) bit (VSCR[31]); the remaining bits are reserved.

Special instructions Move from Vector Status and Control Register (mfvscr) and Move to
Vector Status and Control Register (mtvscr) are provided to move the contents of VSCR
from and to a vector register. When moved to or from a vector register, the 32-bit VSCR is
right-justified in the 128-bit vector register. When moved to a vector register, the upper 96
bitsVRn [0-95] of the vector register are cleared, so theVSCR in avector register looks as
shown in Figure 2-5

95 96 110 111 112 126 127

Reserved Reserved |NJ| Reserved |SAT

Figure 2-5. 32-bit VSCR Moved to a 128-bit Vector Register

V SCR bit settings are shown in Table 2-1.

Table 2-1. VSCR Field Descriptions

Bit | Name

Description

0-14 | —

Reserved.

The handling of reserved bits is the same as that for other PowerPC registers. Software is permitted
to write any value to such a bit. A subsequent reading of the bit returns 0 if the value last written to
the bit was 0 and returns an undefined value (0O or 1) otherwise.

15 NJ

Non-Java.

This bit determines whether AltiVec floating-point operations are performed in a

Java-IEEE-C9X—-compliant mode or a possibly faster non-Java/non-IEEE mode.

0 The Java-IEEE-C9X—compliant mode is selected. Denormalized values are handled as specified
by Java, IEEE, and the C9X standard.

1 The non-Java/non-IEEE—compliant mode is selected. If an element in a source vector register
contains a denormalized value, the value O is used instead. If an instruction causes an underflow
exception, the corresponding element in the target VR is cleared to 0. In both cases the 0 has the
same sign as the denormalized or underflowing value.

This mode is described in detail in the floating—point overview Section 3.2.1, “Floating-Point Modes.”

MOTOROLA

Chapter 2. AltiVec Register Set 2-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Registers defined by AltiVec ISA

Table 2-1. VSCR Field Descriptions (continued)

Bit |Name Description

16-30| — |Reserved.

The handling of reserved bits is the same as that for other PowerPC registers. Software is permitted
to write any value to such a bit. A subsequent reading of the bit returns 0 if the value last written to
the bit was 0 and returns an undefined value (0 or 1) otherwise.

31 SAT | Saturation.
A sticky status bit indicating that some field in a saturating instruction saturated since the last time
SAT was cleared. In other words, when SAT = 1 it remains set to 1 until it is cleared to 0 by an mtvscr
instruction. For further discussion refer to Section 4.2.1.1, “Saturation Detection.”
0 Indicates no saturation occurred; mtvscr can explicitly clear this bit.
1 The AltiVec saturate instruction is set when saturation occurs for the results one of AltiVec
instructions having saturate in its name as follows:
Move to VSCR (mtvscr)
Vector Add Integer with Saturation (vaddubs, vadduhs, vadduws, vaddsbs, vaddshs,
vaddsws)
Vector Subtract Integer with Saturation (vsububs, vsubuhs, vsubuws, vsubsbs,
vsubshs, vsubsws)
Vector Multiply-Add Integer with Saturation (vmhaddshs, vmhraddshs)
Vector Multiply-Sum with Saturation (vmsumuhs, vmsumshs, vsumsws)
Vector Sum-Across with Saturation (vsumsws, vsum2sws, vsum4sbs, vsum4shs,
vsum4ubs)
Vector Pack with Saturation (vpkuhus, vpkuwus, vpkshus, vpkswus, vpkshss,
vpkswss)
Vector Convert to Fixed-Point with Saturation (vctuxs, vctsxs)

The mtvscr is context synchronizing. This implies that all AltiVec instructions logically
preceding an mtvscr in the program flow execute in the architectural context (NJ mode)
that existed before completion of mtvscr, and that al instructions logically following after
mtvscr execute in the new context (NJ mode) established by the mtvscr.

After an mfvscr instruction executes, theresult in the target vector register isarchitecturally
precise. That is, it reflects all updates to the SAT bit that could have been made by vector
instructions logically preceding it in the program flow, and further, it will not reflect any
SAT updates that may be made to it by vector instructions logically following it in the
program flow. Because it is context synchronizing, mfvscr can be much slower than typical
AltiVec instructions, and therefore care must be taken in reading it to avoid performance
problems.

2.3.3 Vector Save/Restore Register (VRSAVE)

The VRSAVE register shown in Figure 2-6 is a user-level 32-bit SPR used to assist in
application and operating system software in saving and restoring the architectural state
across process context-switched events. The VRSAVE is SPR 256 and is entirely
maintained and managed by software.

2-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Additions to PowerPC UISA Registers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Field| VRO | VR1 | VR2 | VR3 | VR4 | VR5 | VR6 | VR7 | VR8 | VR9 |VR10|VR11|VR12|VR13|VR14|VR15

Reset 0000_0000_0000_0000

R/W R/W with mfspr or mtspr instruction

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Field|VR16|VR17|VR18|VR19|VR20|VR21|VR22|VR23|VR24|VR25|VR26|VR27|VR28|VR29 |VR30|VR31

Reset 0000_0000_0000_0000
R/W R/W with mfspr or mtspr instructions
SPR SPR256

Figure 2-6. Vector Save/Restore Register (VRSAVE)

VRSAVE bhit settings are shown in Figure 2-2
Table 2-2. VRSAVE Bit Settings

Bits Name Description

0-31 VRN Each bit in the VRSAVE register indicates whether the corresponding VR contains data in use
by the executing process.

0 VRn is not being used for the current process

1 VRnis using VRn for the current process

The VRSAVE register can be accessed only by the mfspr and mtspr instructions. Each bit
in this register corresponds to a vector register (VR) and indicates whether the
corresponding register contains data that is currently in use by the executing process.
Therefore, the operating system needs to save and restore only those VRs when an
exception occurs. If thisapproach istaken, it must be applied rigoroudly; if aprogram fails
to indicate that a given VR is in use, software errors may occur that are difficult to detect
and correct because they are timing-dependent. Some operating systems save and restore
VRSAVE only for programs that also use other AltiVec registers.

2.4 Additions to PowerPC UISA Registers

The PowerPC UISA registers can be accessed by either user- or supervisor-level
instruction. The one register affected by AltiVec architecture isthe condition register (CR).
The CRisa32-hit register, divided into eight 4-bit fields, CRO-CR7, that reflectsthe results
of certain arithmetic operations and provides a mechanism for testing and branching. For
more details refer to Chapter 2, “Register Set,” in the Programming Environments Manual
for 32-Bit Implementations of the Power PC Architecture.

MOTOROLA Chapter 2. AltiVec Register Set 2-7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Additions to PowerPC UISA Registers

2.4.1 PowerPC Condition Register

The PowerPC condition register (CR) is a 32-hit register that reflects the result of certain
operations and provides a mechanism for testing and branching. For AltiVec ISA, the CR6
field can optionally be used, that isif an AltiVec instruction field's record bit (Rc) isset in
avector compare instruction. The CR6 field is updated. The CR is divided into eight 4-bit
fields, CRO—CR7, as shown in Figure 2-7

0 3 4 7 8 11 12 15
Field CRO CR1 CR2 CR3

Reset Implementation Specific
R/W R/W with mtcrf or mfcr instructions (CR6 can be the implicit result of vector compare instructions)

16 19 20 23 24 27 28 31

Field CR4 CR5 CR6 CR7

Reset Implementation Specific
R/W R/W with mtcrf or mfer instructions (CR6 can be the implicit result of vector compare instructions)

Figure 2-7. Condition Register (CR)

For more details on the CR see Chapter 2, “Register Set,” in Programming Environments
Manual for 32-Bit Implementations of the Power PC Architecture.

To control program flow based on vector data, al vector compare instructions can
optionally update CR6. If the instruction field's record bit (Rc) is set in a vector compare
instruction, CR6 is updated according to Table 2-3.

Table 2-3. CR6 Field’s Bit Settings for Vector Compare Instructions

. CR6
CR Bit Field Bit Vector Compare Vector Compare Bounds
24 0 1 Relation is true for all 0

element pairs

25 1 0 0
26 2 1 Relation is false for all 1 Allfields are in bounds for the vempbfp instruction
element pairs so the result code of all fields is Ob00
0 All fields were in bounds 0 One of the fields is out of bounds for the vempbfp
instruction
27 3 0 0

The Rc bit should be used sparingly because when Rc = 1 it can cause a somewhat longer
latency or be more disruptive to instruction pipeline flow than when Rc = 0. Therefore
techniques of accumulating results and testing infrequently are advised.

2-8 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Additions to PowerPC OEA Registers

2.5 Additions to PowerPC OEA Registers

The PowerPC operating environment architecture (OEA) can be accessed only by
supervisor-level instructions. Any attempt to access these SPRs with user-level instructions
results in a supervisor-level exception. For more details on the MSR and SRR see Chapter
2, “Register Set,” in Programming Environments Manual for 32-Bit |mplementations of the
Power PC Architecture.

2.5.1 AltiVec Field added in the PowerPC Machine State
Register (MSR)

AnAltiVec availablefield is added to the PowerPC machine stateregister (MSR). The MSR
Is 32 bits wide as shown in Figure 2-8.

0 5 6 7 12 13 14 15
Field Reserved VEC Reserved POW |Res. | ILE
Reset Implementation Specific
R/W R with mfmsr, W with exception occurrence, mtmsr, sc, or rfi instructions

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field| EE | PR | FP | ME |FEO| SE | BE |FE1 |Res.| IP | IR | DR Res. Rl | LE
Reset Implementation Specific
R/W R with mfmsr, W with exception occurrence, mtmsr, sc, or rfi instructions

Figure 2-8. Machine State Register (MSR)

In 32-bit PowerPC implementations, bit 6, the VEC field, is added to the MSR as shown in
Figure 2-8 Also AltiVec data stream prefetching instructions will be suspended and
resumed based on MSR[PR] and MSR[DR]. The Data Stream Touch (dst) and Data Stream
Touch for Store (dstst) instructions are supported whenever MSR[DR] = 1. If ether
instruction is executed when MSR[DR] = O (real addressing mode), the results are
boundedly undefined. For each existing data stream, prefetching isenabled if MSR[DR] =
1 and MSR[PR] hasthe value it had when the dst or dstst instruction that specified the data
stream was executed. Otherwise prefetching for the data stream is suspended. In particular,
the occurrence of an exception suspends all data stream prefetching.

Table 2-4 showsAltiVec bit definitions for the M SR aswell as how the PR and DR bits are
affected by AltiVec data stream instructions.

MOTOROLA Chapter 2. AltiVec Register Set 2-9

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Additions to PowerPC OEA Registers

Table 2-4. MSR Bit Settings

Bits Name Description

6 VEC | AltiVec Available

0 AltiVec is disabled.

1 AltiVec is enabled.

Note: Any attempt to execute a non-stream AltiVec instruction when the bit is cleared causes the
processor to execute an “AltiVec Unavailable Exception” when the instruction accesses the VRF or
VSCR register. This exception does not happen for data streaming instructions (dst(t), dstst(t), and
dss), that is, the VRF and VSCR registers are available to the data streaming instructions even
when the MSR[VEC] is cleared.

The VRSAVE register is not protected by MSR [VEC], that is, it can be accessed

even when MSR[VEC] is cleared.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

Note: Care should be taken if data stream prefetching is used in supervisor mode (MSR[PR] = 0).
For each existing data stream, prefetching is enabled if MSR[DR] = 1 and MSR[PR] has the value
it had when the dst or dstst instruction that specified the data stream was executed. Otherwise
prefetching for the data stream is suspended.

27 DR Data address translation

0 Data address translation is disabled. If data stream touch (dst) and data stream touch for store
(dstst) instructions are executed whenever DR = 0, the results are boundedly undefined

1 Data address translation is enabled. Data stream touch (dst) and data stream touch for store
(dstst) instructions are supported whenever DR = 1.

For more detailed information including the other bit settings for MSR, refer to Chapter 2,
“Register Set,” in Programming Environments Manual for 32-Bit Implementations of the
Power PC Architecture.

2.5.2 Machine Status Save/Restore Registers (SRRs)

The machine status savelrestore registers (SRRs) are part of the PowerPC OEA
supervisor-level registers. The SRRO and SRR1 registers are used to save machine status
on exceptions and to restore machine status when an rfi instruction is executed. For more
detailed information, refer to Chapter 2, “Register Set,” in Programming Environments
Manual for 32-Bit Implementations of the Power PC Architecture.

2.5.2.1 Machine Status Save/Restore Register 0 (SRRO)

The SRRO is a 32-bit register in 32-bit implementation. SRRO is used to save machine
status on exceptions and restore machine status when an rfi instruction is executed. For
AltiVec ISA, it holds the effective address (EA) for the instruction that caused the AltiVec
unavailable exception. The AltiVec unavailable exception occurs when no higher priority
exception exists, and an attempt is made to execute an AltiVec instruction when
MSR[VEC] = 0. The format of SRRO is shown in Figure 2-9.

2-10 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Additions to PowerPC OEA Registers

0 31
Field Holds effective address (EA) for instruction in interrupted program flow
Reset Implementation Specific
R/W R/W with rfi

Figure 2-9. Machine Status Save/Restore Register 0 (SRRO)

2.5.2.2 Machine Status Save/Restore Register 1 (SRR1)

The SRR1 is a 32-bit register in 32-bit implementation. SRR1 is used to save machine
status on exceptions and to restore machine status when an rfi instruction is executed. The
format of SRR1 is shown in Figure 2-10.

0 31
Field Exception-specific information and MSR bit values
Reset Implementation Specific
R/W R/W with rfi

Figure 2-10. Machine Status Save/Restore Register 0 (SRR1)

When an AltiVec unavailable exception occurs, SRR1[1-4] and SRR[10-15] are cleared
and al other SRR1 bits are loaded from the MSR as it was just prior to the interrupt. So
MSRI[0], MSR[5-9], and MSR[16-31] are placed into the corresponding bit positions of
SRR1 as they were before the exception was taken.

MOTOROLA Chapter 2. AltiVec Register Set 2-11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Additions to PowerPC OEA Registers

2-12 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 3
Operand Conventions

This chapter describes the operand conventions as they are represented in AltiVec
technology at the user instruction set architecture (UISA) level. Detailed descriptions are
provided of conventions used for transferring data between vector registers and memory,
and representing data in these vector registers using both big- and little-endian byte
ordering. Additionally, the floating-point default conditions for exceptions are described.

3.1 Data Organization in Memory

In addition to supporting byte, half-word and word operands, as defined in the PowerPC
architecture UISA, AltiVec instruction set architecture (1SA) supports quad-word (128-bit)
operands.

The following sections describe the concepts of alignment and byte ordering of data for
guad words, otherwise alignment is the same as described in Chapter 3, “Operand
Conventions,” in the Programming Environments Manual for 32-Bit | mplementations of the
Power PC Architecture.

3.1.1 Aligned and Misaligned Accesses

Vectors are accessed from memory with instructions such asVector Load Indexed (lvx) and
Store Vector Indexed (stvx) instructions. The operand of avector register to memory access
instruction has a natural alignment boundary equal to the operand length. In other words,
the natural address of an operand is an integral multiple of the operand length. A memory
operand is said to be aligned if it is aligned at its natural boundary; otherwise it is
misaligned. Each AltiVec instruction is a 4-byte word and is word-aligned like PowerPC
Instructions.

MOTOROLA Chapter 3. Operand Conventions 3-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Data Organization in Memory

Operands for vector register to memory access instructions have the characteristics shown
in Table 3-1.

Table 3-1. Memory Operand Alignment

Operand Length Asgrglsts,?lzlgfgf) 1
Byte 8 bits (1 byte) XXXX

Half word 2 bytes xxx0
Word 4 bytes xx00

Quad word 16 bytes 0000

1 An xin an address bit position indicates that the bit can be 0 or 1
independent of the state of other bits in the address

The concept of alignment is also applied more generally to datain memory. For example,
an 8-byte data item is said to be half-word-aligned if its address is a multiple of two; that
IS, the effective address (EA) pointsto the next effective addressthat is 2 bytes (ahalf word)
past the current effective address (EA + 2 bytes), and then the next being the EA + 4 bytes,
and effective address would continue skipping every 2 bytes (2 bytes = 1 half word). This
ensures that the effective address is half-word aligned as it points to each successive half
word in memory.

It isimportant to understand that AltiVec memory operands are assumed to be aligned, and
AltiVec memory accesses are performed as if the appropriate number of low-order bits of
the specified effective address were zero. This assumption is different from PowerPC
integer and floating-point memory access instructions where alignment is not always
assumed. So for AltiVec ISA, the low-order bit of the effective address is ignored for
half-word AltiVec memory access instructions, and the low-order four bits of the effective
address areignored for quad-word AltiVec memory accessinstructions. Theeffectistoload
or store the memory operand of the specified length that contains the byte addressed by the
effective address.

If amemory operand is misaligned, additional instructions must be used to correctly place
the operand in a vector register or in memory. AltiVec technology provides instructions to
shift and merge the contents of two vector registers. These instructions facilitate copying
misaligned quad-word operands between memory and the vector registers.

3.1.2 AltiVec Byte Ordering

For processors that implement the PowerPC architecture and AltiVec technology, the
smallest addressable memory unit is the byte (8 bits), and scalars are composed of one or
more sequential bytes. AltiVec ISA supports both big- and little-endian byte ordering. The
default byte ordering is big-endian. However, the code sequence used to switch from big-
to little-endian mode may differ among processors.

3-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Data Organization in Memory

The PowerPC architecture uses the machine state register (MSR) for specifying byte
ordering in little-endian mode (LE). A value of O specifies big-endian mode and a value of
1 specifies little-endian mode. For further details on byte ordering in the PowerPC
architecture, refer to Chapter 3, “ Operand Conventions,” in the Programming Environments
Manual for 32-Bit Implementations of the Power PC Architecture.

AltiVec I1SA follows the endian support of the PowerPC architecture for elements up to
double words with additional support for quad words. In AltiVec |SA when a 64-bit scalar
is moved from a register to memory, it occupies eight consecutive bytes in memory and a
decision must be made regarding byte ordering in these eight addresses.

3.1.2.1 Big-Endian Byte Ordering

For big-endian scalars, the most-significant byte (MSB) is stored at the lowest (or starting)
address while the least-significant byte (LSB) is stored at the highest (or ending) address.
Thisis caled big-endian because the big end of the scalar comes first in memory.

3.1.2.2 Little-Endian Byte Ordering

For little-endian scalars, the LSB is stored at the lowest (or starting) addresswhilethe M SB
Isstored at the highest (or ending) address. Thisis called little-endian because the little end
of the scalar comesfirst in memory.

3.1.3 Quad Word Byte Ordering Example

The idea of big- and little-endian byte ordering is best illustrated in an example of a quad
word such as 0x0011 2233 4455 6677 8899 AABB_ CCDD_EEFF located in memory.
This quad word is used throughout this section to demonstrate how the bytes that comprise
aquad word are mapped into memory.

The quad word (0x0011 2233 4455 6677_8899 AABB_CCDD_EEFF) is shown in
big-endian mapping in Figure 3-1. A hexadecimal representation is used for showing
address values and the valuesin the contents of each byte. The addressis shown below each
byte's contents. The big-endian model addresses the quad word at address 0x00, which is
the MSB (0x00), proceeding to the address OxOF, which contains the LSB (OxFF)

Byte 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 15

Quad Word

Contents| 00 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | AA | BB | CC | DD | EE | FF

Address| 00 01| 02| 03| 04| 05| O6 | O7 | 08 | 09 | OA | OB | OC | OD | OE | OF

MSB LSB

Figure 3-1. Big-Endian Mapping of a Quad Word

MOTOROLA Chapter 3. Operand Conventions 3-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Data Organization in Memory

Figure 3-2 shows the same quad word using little-endian mapping. In the little-endian
model, the quad word’'s 0x00 address specifies the LSB (OxFF) and proceeds to address
OxOF which containsits MSB (0x00).

Byte| O 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15

Quad Word
Contents| FF EE | DD | CC | BB | AA | 99 88 77 66 55 44 33 22 11 00

Address| 00 | 01 | 02| 03| 04| 05| 06 | 07| 08 | 09 | OA| OB | OC | OD | OE | OF

LSB MSB
Figure 3-2. Little-Endian Mapping of a Quad Word
Figure 3-2 showsthe sequence of byteslaid out with addressesincreasing from left to right.

Programmersfamiliar with little-endian byte ordering may be more accustomed to viewing
guad words laid out with addresses increasing from right to left, as shown in Figure 3-3.

Byte| O 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15

Quad Word
Contents| 00 11 22 33 44 55 66 77 88 99 | AA| BB | CC | DD | EE | FF

Address| OF | OE| OD | OC | OB | OA | 09 | 08 | O7 | 06 | O5 | 04 | 03 | 02 | 01 | OO

1 1
MSB LSB

Figure 3-3. Little-Endian Mapping of Quad Word—Alternate View

This allows the little-endian programmer to view each scalar in its natural byte order of
MSB to LSB. This section uses both conventions based on ease of understanding for the
specific example.

3.1.4 Aligned Scalars in Little-Endian Mode

The effective address (EA) calculation for the load and store instructions is described in
Chapter 4, “Addressing Modes and Instruction Set Summary.” For processors that
implement the PowerPC architecturein little-endian mode, the effective addressismodified
before being used to access memory. In the PowerPC architecture, the three low-order
address bits of the effective address are exclusive-ORed (XOR) with a three-bit value that
depends on the length of the operand (1, 2, 4, or 8 bytes), as shown in Table 3-2. This
address modification is called munging.

3-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Data Organization in Memory

Table 3-2. Effective Address Modifications

Data Width (Bytes) EA Modification
1 XOR with Ob111
2 XOR with 0b110
4 XOR with 0b100
8 No change

The munged physical addressis passed to the cache or to main memory, and the specified
width of the data is transferred (in big-endian order—that is, MSB at the lowest address,
LSB at the highest address) between a GPR or FPR and the addressed memory locations
(as modified).

Munging makes it appear to the processor that individual aligned scalars are stored as
little-endian, when in fact they are stored in big-endian order but at different byte addresses
within double words. Only the address is modified, not the byte order. For further details
on how to align scalars in little-endian mode see Chapter 3, “Operand Conventions,” in

Programming Environments Manual for 32-Bit Implementations of the PowerPC
Architecture.

The PowerPC address munging is performed on double-word units. In the PowerPC
architecture, little-endian mode would have the double words of a quad word appear
swapped. When the quad word in memory shown at the top of Figure 3-4, loads from
address 0x00, the bottom of Figure 3-4 shows how it appears to the processor asit munges
the address.

Byte| O 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15

Quad Word
Contents| 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 2A | 2B | 2C | 2D | 2E | 2F

Address| 00 | 01 | 02 | 03 | 04 | 05| 06 | O7 | 08 | 09 | OA| OB | OC | OD | OE | OF

LSB MSB

Byte| O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Quad Word
Contents| 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 2F |2E [2D | 2C | 2B | 2A | 29 | 28

Address| 00 | 01 | 02| 03| 04| 05| 06 | 07 | 08 | 09 | OA| OB | OC | OD | OE | OF
Figure 3-4. Quad Word Load with PowerPC Munged Little-Endian Applied

Note that double words are swapped. The byte element addressed by the quad word's base
address, OxOF, contains 0x28, while its MSB at address 0x00 contains 0x27. Thisis due to

the PowerPC munging being applied to offsets within double words; AltiVec ISA requires
amunge within quad words.

MOTOROLA Chapter 3. Operand Conventions 3-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Data Organization in Memory

To accommodate the quad-word operands, the PowerPC architecture cannot simply be
extended by munging an extra address bit. It would break existing code or platforms.
Processors that implement AltiVec technology could not be mixed with non-AltiVec
processors. | nstead, AltiVec processorsimplement a double-word swap when moving quad
words between vector registers and memory.

Figure 3-5 shows how this swapping could be implemented. This diagram represents the
load path double-word swapping; the store path |ooks the same, except that the memory and
internal boxes are reversed.

Contents [27 [26 [25 [24 [23 [22 [21 [20 [2F [2E [2D [2C [2B [2A [29 [28
Address | 00 | 01| 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | OA | OB | 0C | 0D | OE | OF | Memory Image

- P < >

y

MSRILE] J\ 0

Contents [2F [2E [2D [2C [2B[2A[29 [28 [27 |26 | 25 | 24 |23 [22 [21 [20 | juornor
Address [00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | 0B | OC | OD | OE | OF | 'ternaiimage

y y

Y
1 / MSR[LE]J\ 0 1 /
P < /K >

'

A

Figure 3-5. AltiVec Little Endian Double-Word Swap

In the diagram, the numbers at the bottom of the byte boxes represent the offset address of
that byte; the numbers at the top are the values of the bytes at that offset.The little-endian
ordering is discontinuous because the PowerPC munging is performed only on
double-word units. The purpose of the double word swap within the AltiVec unit is to
perform an additional swap that is not part of the PowerPC architecture.

When MSR[LE] = 1, double words are swapped and the bytes appear in their expected
ordering. When MSR[LE] = 0, no swapping occurs.

To summarize, in little-endian mode, the load vector el ement indexed instructions (Ivebx,
lvehx, and lvewx) and the store vector element indexed instructions (stvebx, stvehx, and
stvewx) have the same 3-bit address munge applied to the memory address asis specified
by the PowerPC architecture for integer and floating-point loads and stores. For the quad
word load vector indexed instructions (lvx and lvxl) and the store vector indexed
instructions (stvx, stvxl), the two double words of the quad-word scalar data are munged
and swapped as they are moved between the vector register and memory.

3.1.5 Vector Register and Memory Access Alignment

When loading an aligned byte, half word, or word memory operand into a vector register,
the element that receives the datais the element that would have received the data had the
entire aligned quad word containing the memory operand addressed by the effective
address been loaded. Similarly, when an element in a vector register is stored into an
aligned memory operand, the element selected to be stored is the element that would have
been stored into the memory operand addressed by the effective address had the entire

3-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Data Organization in Memory

vector register been stored to the aligned quad word containing the memory operand
addressed by the effective address. The position of the element in the target or source vector
register depends on the endian mode, as described above. (Byte memory operands are
aways aligned.)

For aligned byte, half word, and word memory operands, if the corresponding element
number is known when the program is written, the appropriate vector splat and vector
permute instructions can be used to copy or replicate the data contained in the memory
operand after loading the operand into a vector register. Vector splat instructions will take
the contents of an element in a vector register and replicates them into each element in the
destination vector register. A vector permuteinstruction isthe concatenation of the contents
of two vectors. An example of this is given in detail in Section 3.1.6, “Quad-Word Data
Alignment.” Another method is to replicate the element across an entire vector register
before storing it into an arbitrary aligned memory operand of the same length; the
replication ensures that the correct data is stored regardless of the offset of the memory
operand in its aligned quad word in memory.

Because vector loads and stores are size-aligned, application binary interfaces (ABIS)
should specify, and programmers should take care to align data on quad-word boundaries
for maximum performance.

3.1.6 Quad-Word Data Alignment

AltiVec | SA does not provide for alignment exceptions for loading and storing data. When
performing vector loads and stores, the effect is asif the low-order four bits of the address
are 0x0, regardless of the actual effective address generated. Because vectors may often be
misaligned due to the nature of the algorithm, AltiVec ISA provides support for
post-alignment of quad-word loads and pre-alignment for quad-word stores. Note that in
the following diagrams, the effect of the swapping described above is assumed and the
memory diagrams will be shown with respect to the logical mapping of the data.

Figure3-6 and Figure3-7 show misaligned vectors in memory for both big- and
little-endian ordering. The big-endian and little-endian examples assumes that the desired
vector begins at address 0x03. In the figure, HI denotes high-order quad word, and LO
means |low-order quad word.

Byte|0|1|2(3|4|5|6|7|8|9]10|11|12|13|14|15|16|17|18|19/20|21(22|23|24|25|26 (27|28 |29 |30 |31

Quad Word HlI Quad Word LO

Contents 20(21(22|23|24(25|26|27|28|29 |2A|2B|2C (2D |2E|2F

Address|00(01{02(03|04|05|06|07|08|09|0A|0B|OC|OD|OE|OF|10|11|12(13|14|15|16(17(18(19|1A|1B|1C|1D |1E|1F

MSB LSB

Figure 3-6. Misaligned Vector in Big-Endian Mode

MOTOROLA Chapter 3. Operand Conventions 3-7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Data Organization in Memory

Byte|31|30|29|28|27|26|25|24|23(22(21|20|19|18|17|16|15|14|13|12|11|10| 9|8 |7 |6 |5 |4 3| 2|1]|0

Quad Word HI Quad Word LO

Contents 2F [2E|2D [2C|2B|2A|29(28|27|26(25|24|23|22 (21|20

Address|1F|1E|1D|1C|1B|1A|19|18 |17 |16|15|14 |13 |12 |11 |10 |0F |0E |0D|0C|0B|0A|09 |08 |07 (06|05 |04 | 03| 02 |01 |00

1 1
MSB LSB

Figure 3-7. Misaligned Vector in Little-Endian Addressing Mode

Figure 3-6 and Figure 3-7 show how such misaligned data causes data to be split across
aligned quad words; only aligned quad words are loaded or stored by AltiVec load/store
instructions. To align this vector, a program must load both (aligned) quad words that
contain a portion of the misaligned vector data and then execute aVector Permute (vperm)
instruction to align the result.

3.1.6.1 Accessing a Misaligned Quad Word in Big-Endian Mode

Figure 3-1 shows the big-endian alignment model. Using the example in Figure 3-8, vHI
and vL O represent vector registers that contain the misaligned quad words containing the
MSBsand L SBs, respectively, of the misaligned quad word; vD isthetarget vector register.

00 vHI OF 10 VLo 1F

20121|22|23 |24 25|26 |27 | 28|29 |2A |2B|2C|2D |2E|2F

2021|22|23 |24 25|26 |27 (28|29 |2A |2B|2C|2D |2E |2F

00 D OF

Figure 3-8. Big-Endian Quad Word Alignment

Alignment is performed by |eft-rotating the combined 32-byte quantity (vHI:vLO) by an
amount determined by the address of the first byte of the desired data. This left-rotation is
done by means of avper m instruction whose control vector is generated by a L oad Vector
for Shift Left (Ivdl) instruction after loading the most-significant quad word (MSQ) and
least-significant quad word (L SQ) that contain the desired vector. The Ivdl instruction uses
the same address specification as the load vector indexed that |oads the vHI component,
which for big-endian ordering is the address of the desired vector.

The following instruction sequence extracts the quad word in big-endian mode:

I vx vH ,rA rB # | oad the MBQ

I vsl VP, rA rB # set the pernute vector
addi rB,rB, 16 # address of LSQ

[vx VLO rA rB # | oad LSQ conponent

vperm vD,vH ,vLO vP # align the data

3-8 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Data Organization in Memory

Note that when data streaming is used, the overhead of generating the alignment permute
vector can be spread out and the latency of the loads may be absorbed by using loop
unrolling.

The process of storing a misaligned vector is essentially the reverse of that for loading,
except that the code has a read-modify-write sequence. The logical algorithm is that the
vector source must be right-shifted and split into two parts, each of which ismerged (viaa
Vector Select (vsel) instruction) with the current contents of its MSQ and its LSQ and
stored back using a Store Vector Indexed (svx) instruction.

The Load Vector for Shift Right (Ivsr) instruction is used to produce the permute control
vector to be used for the right-shifting. Note that asingleregister can be used for the shifted
contentsif aright-rotate is done. The rotate is performed by specifying the source register
for both components of the Vector Permute (vper m); that is, ashift of adouble register with
the same contents in both parts results in a rotate. In addition, the same permute control
vector can be used on a sequence of ones and zeros to generate a mask for use by the vsel
instruction to do the merging.

The complete code sequence for the store case is as follows:

| vx vVH ,rA rB # load current MSQ for update

| vsr VP, rA rB # |l oad the alignnent vector

addi rB,rB, 16 # address of LSQ

| vx VLO rA rB # load the current LSQ s data
vspltisbvls, -1 # generate the select mask bits

vspl tisbv0s, O

vperm vMask, v0s, vls, vP # right shift the select mask
vperm vSrc,vSrc,vSrc, vP # right rotate the data

vsel vLO, vSrc, vLO, vMask # insert LSQ component

vsel vHI , vHI , vSr c, vMask # insert MSQ comnponent

stvx vLO, rA rB # store LSQ

addi rB, rB,-16 # address of MBQ

st vx vHI , rA rB # store MSQ

When fetching a misaligned stream, the control vector need only be computed once. Thus
the time required for aligned fetches on the ends of the stream is proportioned out. None of
the data fetched internally to the stream is wasted and only gets fetched once. The average
time spent for amisaligned lvx instruction in along sequence approaches the latency of one
lvx and one vperm instruction.

MOTOROLA Chapter 3. Operand Conventions 3-9

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Data Organization in Memory

3.1.6.2 Accessing a Misaligned Quad Word in Little-Endian Mode

The instruction sequences used to access misaligned quad-word operands in little-endian
mode are similar to those used in big-endian mode. The following instruction sequence can
be used to load the misaligned quad word shown in Figure 3-7 into a vector register in
little-endian mode. The load alignment caseis shown in Figure 3-9. The vector register vHI
and vL O receive the MSQ and L SQ respectively; vD is the target vector register. The lvsr
instruction uses the same address specification as an Ivx that loads vLO; in little-endian
byte ordering thisis the address of the desired misaligned quad word.

I vX VLO rA rB # | oad the LSQ

[vsr VP, rA rB # set the pernute vector
addi rB, rB, 16 # address of MSQ

[vx VH ,rA rB # | oad MSQ conponent

vperm vD,vH ,vLO VvP # align the data

Similarly, the following sequence of instructions stores the contents of register vD into a
misaligned quad word in memory in little-endian mode.

| vx vLO rA rB # load current LSQ for update
[vsl VP, rA rB # |l oad the alignnent vector
addi rB,rB, 16 # address of MBQ
| vx vVH ,rA rB # load the current MSQ s data
vspltib vls, -1 # generate the select mask bits
vspltib v0s, 0
vperm vMask, v0s, vls, vP # left rotate the sel ect nmask
vperm vSrc,vSrc,vSrc, vP # left rotate the data
vsel VvHI , vHI , vSrc, vMask # insert MSQ conponent
vsel vLO, vSrc, vLO vMask # insert LSQ conponent
stvx vHI , rA rB # store MSQ
addi rB, rB,-16 # address of LSQ
st vx VLO rA rB # store LSQ

3-10 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Data Organization in Memory

1F vHI 10 OF vL.O 00

2F |2E|2D|2C |2B | 2A| 29|28 | 27| 26|25 |24 |23 |22 |21| 20

2F |2E 2D |2C|2B |2A | 29|28 | 27| 26| 25|24 | 23| 22| 21| 20
00

OF vD

Figure 3-9. Little-Endian Alignment

3.1.6.3 Scalar Loads and Stores

No alignment is performed for scalar load or store instructions in AltiVec ISA. If avector
load or store address is not properly size aligned, the suitable number of least significant
bits are ignored and a size aligned transfer occurs instead. Data alignment must be
performed explicitly after being brought into the registers. No assistance is provided for
aligning individual scalar elements that are not aligned on their natural boundary. The
placement of scalar data in a vector element depends upon its address. That is, the
placement of the addressed scalar is the same as if a load vector indexed instruction has
been performed, except that only the addressed scalar is accessed (for cache-inhibited
space); the values in the other vector elements are boundedly undefined. Also, data in the
specified scalar is the same as if a store vector indexed instruction had been performed,
except that only the scalar addressed is affected. No instructions are provided to assist in
aligning individual scalar elements that are not aligned on their natural size boundary.

When a program knows the location of ascalar, it can perform the correct vector splats and
vector permutes to move datato where it isrequired. For example, if ascalar isto be used
as a source for a vector multiply (that is, each element multiplied by the same value), the
scalar must be splatted into a vector register. Likewise, a scalar stored to an arbitrary
memory location must be splatted into a vector register, and that register must be specified
as the source of the store. This guarantees that the data appearsin all possible positions of
that scalar size for the store.

3.1.6.4 Misaligned Scalar Loads and Stores

Although no direct support of misaligned scalars is provided, the load-aligning sequence
for big-endian vectors described in Section 3.1.6.1, “Accessing aMisaligned Quad Word in
Big-Endian Mode,” can be used to position the scalar to the left vector element, which can
then be used as the source for a splat. That is, the address of a scalar is also the address of
the left-most element of the quad word at that address. Similarly, the read-modify-write
sequences, with the mask adjusted for the scalar size, can be used to store misaligned
scalars. The sameistruefor little-endian mode, the load-aligning sequence for little-endian
vectors described Section 3.1.6.2, “Accessing a Misaligned Quad Word in Little-Endian
Mode” can be used to position the scalar to the right vector element, which can then be used

MOTOROLA Chapter 3. Operand Conventions 3-11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Floating-Point Instructions—UISA

asthe source for asplat. That is, the address of a scalar is also the address of the right-most
element of the quad word at that address.

Note that while these sequences work in cache-inhibited space, the physical accesses are
not guaranteed to be atomic.

3.1.7 Mixed-Endian Systems

In many systems, the memory model is not as simple as the examples in this chapter. In
particular, big-endian systems with subordinate little-endian buses (such as PCI) comprise
amixed-endian environment.

The basic mechanism to handle this is to use the Vector Permute (vperm) instruction to
swap bytes within data elements. The value of the permute control vector depends on the
size of the elements (8, 16, 32). That is, the permute control vector performs a parallel
equivalent of the Load Word Byte-Reverse Indexed (Iwbrx) PowerPC instruction within
the vector registers.

The ultimate problem occurs when there are misaligned, mixed-endian vectors. Thiscan be
handled by applying a vector permute of the data as required for the misaligned case,
followed by the swapping vector permute on that result. Note that for streaming cases, the
effect of this double permute can be accomplished by computing the swapping permute of
the alignment permute vector and then applying the resulting permute control vector to
incoming data.

3.2 AltiVec Floating-Point Instructions—UISA

There are two kinds of floating-point instructions defined for the PowerPC | SA and AltiVec
[SA:

e computational
* noncomputational

Computational instructions are defined by the IEEE-754 standard for 32-bit arithmetic
(those that perform addition, subtraction, multiplication, and division) and the multiply-add
defined by the architecture. Noncomputational floating-point instructions consist of the
floating-point load and store instructions. Only the computational instructions are
considered floating-point operations throughout this chapter.

The single-precision format, value representations, and computational model to be defined
in Chapter 3, “Operand Conventions,” in the Programming Environments Manual for
32-Bit Implementations of the PowerPC Architecture, apply to AltiVec floating-point
except as follows:

3-12 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Floating-Point Instructions—UISA

* Ingeneral, no statusbitsare set to reflect the results of floating-point operations. The
only exception isthat VSCR[SAT] may be set by the Vector Convert to Fixed-Point
Word instructions.

» With the exception of the two Vector Convert to Fixed-Point Word (vctuxs, vctsxs)
instructions and three of the four Vector Round to Floating-Point Integer (vrfiz,
vrfip, vrfim) instructions, al AltiVec floating-point instructions that round use the
round-to-nearest rounding mode.

» Floating-point exceptions cannot cause the system error handler to be invoked.
If afunctionisrequired that is specified by the IEEE standard, is not supported by AltiVec
| SA, and cannot be emul ated satisfactorily using the functionsthat are supported by AltiVec
ISA, the functions provided by the floating-point processor should be used; see Chapter 4,

“Addressing Modes and Instruction Set Summary,” in Programming Environments Manual
for 32-Bit |mplementations of the Power PC Architecture.

3.2.1 Floating-Point Modes

AltiVec | SA supports two floating-point modes of operation—a Java mode and a non-Java
mode of operation that is useful in circumstances where real-time performance is more
important than strict Java and | EEE-standard compliance.

When VSCR[NJ] is O (default), operations are performed in Java mode. When VSCR[NJ]
IS 1, operations are carried out in the non-Java mode.

3.2.1.1 Java Mode
Java compliance requires compliance with only a subset of the Java/ll EEE/C9X standard.
The Java subset helps simplify floating-point implementations, as follows:

* Reducing the number of operations that must be supported

» Eliminating exception status flags and traps

* Producing results corresponding to all disabled exceptions, thus eliminating
enabling control flags

» Requiring only round-to-nearest rounding mode eliminates directed rounding
modes and the associated rounding control flags.
Java compliance requires the following aspects of the |EEE standard:

» Supporting denorms as inputs and results (gradual underflow) for arithmetic
operations

* Providing NaN results for invalid operations

» NaNs compare unordered with respect to everything, so that the result of any
comparison of any NaN to any datatypeis always false.

MOTOROLA Chapter 3. Operand Conventions 3-13

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Floating-Point Instructions—UISA

In some implementations, floating-point operations in Java mode may have somewhat
longer latency on normal operands and possibly much longer latency on denormalized
operands than operations in non-Java mode. This means that in Java mode overall real-time
response may be somewhat worse and deadline scheduling may be subject to much larger
variance than non-Java mode.

3.2.1.2 Non-Java Mode

In the non-Java/non-lEEE/non-C9X mode (VSCR[NJ] = 1), gradual underflow is not
performed. Instead, any instruction that would have produced a denormalized result in Java
mode substitutes a correctly signed zero (£0.0) asthefinal result. Also, denormalized input
operands are flushed to the correctly signed zero (+0.0) before being used by the
Instruction.

The intent of this mode isto give programmers away to assure optimum, data-insensitive,
real -time response across implementations. Another way to improved response time would
be to implement denormalized operations through software emulation.

It is architecturally permitted, but strongly discouraged, for an implementation to
implement only non-Java mode. In such an implementation, the VSCR[NJ] does not
respond to attemptsto clear it and is always read back asa 1.

No other architecturally visible, implementation-specific deviations from this specification
are permitted in either mode.

3.2.2 Floating-Point Infinities
Valid operations on infinities are processed according to the | EEE standard.

3.2.3 Floating-Point Rounding

All AltiVec floating-point arithmetic instructions use the IEEE default rounding mode,
round-to-nearest. The |EEE directed rounding modes are not provided.

3.2.4 Floating-Point Exceptions

The following floating-point exceptions may occur during execution of AltiVec
floating-point instructions.

» NaN operand exception

» Invalid operation exception

o Zero divide exception

* Log of zero exception

* Overflow exception

» Underflow exception

3-14 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Floating-Point Instructions—UISA

If an exception occurs, aresult is placed into the corresponding target element as described
in the following subsections. This result is the default result specified by Java, the IEEE
standard, or C9X, as applicable. Recall that denormalized source values are treated as if
they were zero whenV SCR[NJ] =1. The consequences regarding exceptions are asfollows:

» Exceptions that can be caused by a zero source value can be caused by a
denormalized source value when VSCR[NJ] = 1.

» Exceptions that can be caused by a honzero source value cannot be caused by a
denormalized source value when VSCR[NJ] = 1.

3.2.4.1 NaN Operand Exception

If the exponent of afloating-point number is 255 and the fraction is non-zero, then the value
isaNaN. If the most significant bit of the fraction field of a NaN is zero, then the valueis
asignaling NaN (SNaN), otherwiseitisaquiet NaN (QNaN). In all casesthe sign of aNaN
isirrelevant.

A NaN operand exception occurs when a source value for any of the following instructions
isaNaN:

* AnAltiVec instruction that would normally produce floating-point results

» Either of the two, Vector Convert to Unsigned Fixed-Point Word Saturate (vctuxs)
or Vector Convert to Signed Fixed-Point Word Saturate (vctsxs) instructions

* Any of the four vector floating-point compare instructions.

The following actions can be taken:

» If the AltiVec instruction would normally produce floating-point results, the
corresponding result isasource NaN selected asfollows. In all cases, if the selected
source NaN isan SNaN, it is converted to the corresponding QNaN (by setting the
high-order bit of the fraction field to 1 before being placed into the target element).

if the element in register vVAis a NaN
then the result is that NaN

else if the element in register vBis a NaN
then the result is that NaN

else if the elenent in register vCis a NaN

then the result is that NaN

» If theinstruction is either of the two vector convert to fixed-point word instructions
(vctuxs, vetsxs), the corresponding result is 0x0000_0000. VSCR[SAT] is not
affected.

MOTOROLA Chapter 3. Operand Conventions 3-15

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Floating-Point Instructions—UISA

» |f theinstruction isVector Compare Bounds Floating-Point (vempbfp[.]), the
corresponding result is 0xC000_0000.

» |f theinstruction isone of the other three vector floating-point compare instructions
(vempegfpl.], vempfgefp[.], vempbfp[.]), the corresponding result is
0x0000_0000.

3.2.4.2 Invalid Operation Exception
An invalid operation exception occurs when a source value is invalid for the specified
operation. The invalid operations are as follows:

* Magnitude subtraction of infinities

* Multiplication of infinity by zero

» Vector Reciprocal Square Root Estimate Float (vrsgrtefp) of a negative, nonzero
number or -X

* Log base 2 estimate (vlogefp) of a negative, nonzero number or -X
The corresponding result is the QNaN 0x7FCO0_0000. This is the single-precision format
analogy of the double precision format generated QNaN described in Chapter 3, “ Operand

Conventions,” in Programming Environments Manual for 32-Bit Implementations of the
Power PC Architecture.

3.2.4.3 Zero Divide Exception

A zero divide exception occurs when aVector Reciprocal Estimate Floating-Point (vrefp)
or Vector Reciproca Square Root Estimate Floating-Point (vrsgrtefp) instruction is
executed with a source value of zero.

The corresponding result is infinity, where the sign is the sign of the source value, as
follows:

e 1/40.0 - +o0

e 1/-00 - -

e 1/(J40.0) - +o

* 1/(J-00) - -0

3.2.4.4 Log of Zero Exception

A log of zero exception occurs when a Vector Log Base 2 Estimate Floating-Point
instruction (vliogefp) is executed with a source value of zero. The corresponding result is
infinity. The exception cases are as follows:

* viogefp 1ogy(+0.0) - -0
* vlogefp logy(-xX) — QNaN, where x£0

3-16 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Floating-Point Instructions—UISA

3.2.45 Overflow Exception

An overflow exception happens when either of the following conditions occurs:

» For an AltiVec instruction that would normally produce floating-point results, the
magnitude of what would have been theresult if the exponent range were unbounded
exceeds that of the largest finite single-precision number.

» For either of the two Vector Convert To Fixed-Point Word instructions (vctuxs,
vctsxs), either a source value is an infinity or the product of a source value and 2
unsigned immediate value (UIMM) is a number too large to be represented in the
target integer format.

The following actions can be taken:

» |f the AltiVec instruction would normally produce floating-point results, the
corresponding result isinfinity, where the sign is the sign of the intermediate result.

» |ftheinstructionisVector Convert to Unsigned Fixed-Point Word Saturate (vctuxs),
the corresponding result is OXFFFF_FFFF if the source valueisapositive number or
+X, and is0x0000_0000 if the source valueisanegative number or -X.V SCR[SAT]
IS Set.

» If theinstructionisVector Convert to Signed Fixed-Point Word Saturate (vcfsx), the
corresponding result isOx7FFF_FFFF if the source valueisapositive number or +X,
and is 0x8000_0000 if the source value is a negative number or -X. VSCR[SAT] is
Set.

3.2.4.6 Underflow Exception

Underflow exceptions occur only for AltiVec instructions that would normally produce
floating-point results. Underflow is detected before rounding. Underflow occurs when a
nonzero intermediate result, computed as though both the precision and the exponent range
were unbounded, is less in magnitude than the smallest normalized single-precision
number (2-125).

The following actions can be taken:

* |fVSCR[NJ] = 0, the corresponding result is the value produced by denormalizing
and rounding the intermediate resullt.

* |fVSCR[NJ] =1, the corresponding result isa zero, wherethe sign isthe sign of the
intermediate result.

3.2.5 Floating-Point NaNs

The AltiVec floating-point data format is compliant with the Java/lEEE/C9X
single-precision format. A quantity in this format can represent a signed normalized
number, a signed denormalized number, a signed zero, a signed infinity, a quiet not a
number (QNaN), or asignaling NaN (SNaN).

MOTOROLA Chapter 3. Operand Conventions 3-17

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Floating-Point Instructions—UISA

3.2.5.1 NaN Precedence

Whenever only one source operand of an instruction that returns a floating-point result isa
NaN, then that NaN is selected as the input NaN to the instruction. When more than one
source operand is a NaN, the precedence order for selecting the NaN is first from vA then
from vB and then from vC. If the selected NaN isan SNaN, it is processed as described in
Section 3.2.5.2, “SNaN Arithmetic.” QNaN'’s, are processed according to Section 3.2.5.3,
“QNaN Arithmetic.”

3.2.5.2 SNaN Arithmetic

Whenever the input NaN to an instruction is an SNaN, a QNaN is delivered as the resullt,
as specified by the IEEE standard when no trap occurs. The delivered QNaN is an exact
copy of the original SNaN except that it is quieted; that is, the most-significant bit (msb) of
the fraction isaone.

3.2.5.3 QNaN Arithmetic

Whenever the input NaN to an instruction is a QNaN, it is propagated as the result
according to the IEEE standard. All information in the QNaN is preserved through all
arithmetic operations.

3.2.5.4 NaN Conversion to Integer

All NaNs convert to zero on conversions to integer instructions such as vctuxs and vctsxs.

3.2.5.5 NaN Production

Whenever the result of an AltiVec operation isaNaN (for example, an invalid operation),
the NaN produced isaQNaN with the sign bit = 0, exponent field = 255, msb of the fraction
field = 1, and all other bits= 0.

3-18 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 4
Addressing Modes and Instruction Set
Summary

This chapter describes instructions and addressing modes defined by AltiVec Instruction

Set Architecture (ISA) and according to the levels used by PowerPC architecture—user [ij
instruction set architecture (UISA) and virtual environment architecture (VEA). AltiVec v
instructions are primarily UISA; if otherwise, they are noted in the chapter. These
instructions are divided into the following categories:

» Vector integer arithmetic instructions—These include arithmetic, logical, compare,
rotate, and shift instructions, described in Section 4.2.1, “Vector |nteger
Instructions.”

» Vector floating-point arithmetic instructions—These include floating-point
arithmetic instructions aswell as a discussion on floating-point modes, described in
Section 4.2.2, “Vector Floating-Point Instructions.”

* Vector load and store instructions—These include load and store instructions for
vector registers, described in Section 4.2.3, “Load and Store Instructions.”

» Vector permutation and formatting instructions—These include pack, unpack,
merge, splat, permute, select, and shift instructions, described in Section 4.2.5,
“Vector Permutation and Formatting Instructions.”

e Processor control instructions—These instructions are used to read and write from
the AltiVec Status and Control Register, described in Section 4.2.6, “ Processor
Control Instructions—UISA”

* Memory control instructions—These instructions are used for managing caches
(user level and supervisor level), described in Section 4.3.1, “Memory Control
Instructions—VEA.”

This grouping of instructions does not necessarily indicate the execution unit that processes
aparticular instruction or group of instructions within a processor implementation.

AltiVec integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision operands. AltiVec ISA uses word-length
instructions that are word-aligned. It provides for byte, haf-word, and word operand
fetches and stores between memory and the vector registers (VRS).

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Conventions

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation for an arithmetic or logical instruction, the following
steps are taken:

1. The memory contents must be loaded into aregister with aload instruction.
2. The contents are then modified.
3. The modified contents are written to the target location using a store instruction.

4.1 Conventions

This section describes conventions used for the AltiVec instruction set. Descriptions of
memory addressing, synchronization, and the AltiVec exception summary follow.

4.1.1 Execution Model

When used with PowerPC instructions, AltiVec instructions can be viewed as simply new
PowerPC instructions that are freely intermixed with existing ones to provide additional
functionality. Processors that implement the PowerPC architecture appear to execute
instructions in program order. Some AltiVec implementations may not allow out-of-order
execution and completion. Non-data dependent vector instructions may issue and execute
while longer latency instructions issued previoudy are still in the execute stage. Register
renaming avoids stalling dispatch on false dependencies and allows maximum register
name reuse in heavily unrolled loops. The execution of a sequence of instructions will not
be interrupted by exceptions since the unit does not report IEEE exceptions, but rather
produces the default results as specified in the Java/| EEE/C9X standards. The execution of
a sequence of instructions may be interrupted only by a vector load or store instruction;
otherwise, AltiVec instructions do not generate any exceptions.

4.1.2 Computation Modes

AltiVec I1SA supports the PowerPC ISA. The AltiVec ISA supports the 32-bit
implementation of the PowerPC architecture in that all registers except FPRs and VRs are
M 32 bits long and the effective addresses are 32 hits long.

This chapter describes only the instructions defined for 32-bit implementations of the
PowerPC architecture.

4.1.3 Classes of Instructions

AltiVec instructions follow theillegal instruction class defined by PowerPC architecturein
the section, “ Classes of Instructions,” in Chapter 4, “Addressing Modes and I nstruction Set
Summary,” of the Programming Environments Manual for 32-Bit |mplementations of the
Power PC Architecture. For AltiVec | SA, all unspecified encodings within the major opcode

4-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Conventions

(04) that are not defined are illegal PowerPC instructions. The only exclusion in defining
an unspecified encoding is an unused bit in an immediate field or specifier field (///).

4.1.4 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes aload, store, or cache instruction, and when it fetches the next
sequential instruction.

4.1.4.1 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

Memory operands may be bytes, half words, words, or quad wordsfor AltiVec instructions.
The address of a memory operand is the address of its first byte (that is, of its
lowest-numbered byte). Operand length is implicit for each instruction. AltiVec ISA
supports both big-endian and little-endian byte ordering. The default byte and bit ordering
is big-endian; see Section 3.1.2, “AltiVec Byte Ordering,” for more information.

The natural alignment boundary of an operand of a single-register memory access
instruction is equal to the operand length. In other words, the natural address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
isaligned at itsnatural boundary; otherwiseit ismisaligned. For adetail ed discussion about
memory operands, see Section 3.1, “Data Organization in Memory.”

4.1.4.2 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or when fetching the next sequential instruction. For a memory access
instruction, if the sum of the EA and the operand length exceeds the maximum EA, the
memory operand is considered to wrap around from the maximum EA through EA 0, as
described in the Chapter 4, “Addressing Modes and Instruction Set Summary,” in the
Programming Environments Manual for 32-Bit Implementations of the PowerPC
Architecture.

A zero intherA field indicates the absence of the corresponding address component. For
the absent component, a value of zero is used for the address. This is shown in the
instruction description as (rA|0).

In al implementations of processors that support the PowerPC architecture, the processor
can modify the three low-order bits of the calculated effective address before accessing
memory if the system is operating in little-endian mode. The double words of a quad word
may be swapped aswell. See Section 3.1.2, “AltiVec Byte Ordering,” for more information
about little-endian mode.

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

AltiVec |oad and store operations use register indirect with index mode and boundary align
to generate effective addresses. For further details see Section 4.2.3.2, “Load and Store
Address Generation.”

4.2 AltiVec UISA Instructions

AltiVec instructions can provide additional supporting instructions to PowerPC
architecture. This section discusses the instructions defined in AltiVec user instruction set
architecture (UISA).

4.2.1 Vector Integer Instructions

The following are categories for vector integer instructions:
e Arithmetic
 Compare
* Logica
* Rotate and shift

Integer instructions use the content of the vector registers (VRs) as source operands and
place resultsinto VRs aswell. Setting the Rc bit of avector compare instruction causes the
PowerPC condition register (CR) to be updated.

AltiVec integer instructions treat source operands as signed integers unless the instruction
is explicitly identified as performing an unsigned operation. For example, Vector Add
Unsigned Word Modulo (vadduwm) and Vector Multiply Odd Unsigned Byte (vmuloub)
instructions interpret both operands as unsigned integers.

4.2.1.1 Saturation Detection

Most integer instructions have both signed and unsigned versions and many have both
modulo (wrap-around) and saturating clamping modes. Saturation occurs whenever the
result of a saturating instruction does not fit in the result field. Unsigned saturation clamps
results to zero on underflow and to the maximum positive integer value (2"-1, for example,
255 for byte fields) on overflow. Signed saturation clamps results to the smallest
representable negative number (-2"1, for example, -128 for byte fields) on underflow, and
to the largest representable positive number (271-1, for example, +127 for byte fields) on
overflow. When a modulo instruction is used, the resultant number truncates overflow or
underflow for the length (byte, half word, word, quad word) and type of operand (unsigned,
signed). The AltiVec ISA provides a way to detect saturation and sets the SAT hit in the
Vector Status and Control Register (VSCR[SAT]) in a saturating instruction.

4-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Borderline cases that generate results equal to saturation values, for example unsigned 0+0
— 0 and unsigned byte 1+254 —, 255, are not considered saturation conditions and do not
cause VSCR[SAT] to be set.

TheV SCR[SAT] can be set by the following types of integer, floating-point, and formatting
Instructions:
* MovetoVSCR (mtvscr)

» Vector add integer with saturation (vaddubs, vadduhs, vadduws, vaddsbs,
vaddshs, vaddsws)

» Vector subtract integer with saturation (vsububs, vsubuhs, vsubuws, vsubsbs,
vsubshs, vsubsws)

» Vector multiply-add integer with saturation (vmhaddshs, vmhraddshs)
» Vector multiply-sum with saturation (vmsumuhs, vmsumshs, vsumsws)

* Vector sum-across with saturation (VvSumsws, vsumz2sws, vsum4sbs, vsumd4shs,
vsum4ubs)

» Vector pack with saturation (vpkuhus, vpkuwus, vpkshus, vpkswus, vpkshss,
vpkswss)
» Vector convert to fixed-point with saturation (VCtuxs, vctsxs)

Note that only instructions that explicitly call for saturation can set VSCR[SAT]. Modulo
integer instructions and floating-point arithmetic instructions never set VSCR[SAT]. For
further details see Section 2.3.2, “Vector Status and Control Register (VSCR).”

4.2.1.2 \Vector Integer Arithmetic Instructions

Table 4-1 lists the integer arithmetic instructions for processors that implement the
PowerPC architecture.

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-1. Vector Integer Arithmetic Instructions

Name

Mnemonic

Syntax

Operation

Vector Add
Unsigned
Integer [b,h,w]
Modulo

vaddubm
vadduhm
vadduwm

vD,vA,vB

Places the sum (vA[unsigned integer elements]) + (vB[unsigned
integer elements]) into vD[unsigned integer elements] using modulo
arithmetic.

For b, byte, integer length = 8 bits =1 byte, add sixteen unsigned
integers from VA to the corresponding sixteen unsigned integers from
vB.

For h, half word, integer length =16 bits = 2 bytes, add eight unsigned
integers from VA to the corresponding eight unsigned integers from
vB.

For w, word, integer length = 32 bits = 4 bytes, add four unsigned
integers from vA to the corresponding four unsigned integers from
vB.

Note: unsigned or signed integers can be used with these
instructions.

Vector Add
Unsigned
Integer [b,h,w]
Saturate

vaddubs
vadduhs
vadduws

vD,vA,vB

Place the sum (vA[unsigned integer elements]) + (vB[unsigned
integer elements]) into vD[unsigned integer elements] using saturate
clamping mode. Saturate clamping mode means if the resulting sum
is >(2"-1) saturate to (2"-1), where n = b,h,w.

For b, byte, integer length = 8 bits = 1 byte, add sixteen unsigned
integers from VA to the corresponding sixteen unsigned integers from
vB.

For h, half word, integer length = 16 bits = 2 bytes, add eight
unsigned integers from vA to the corresponding eight unsigned
integers formable.

For w, word, integer length = 32 bits = 4 bytes, add four unsigned
integers from VA to the corresponding four unsigned integers from
vB.

If the result saturates, VSCR[SAT] is set.

Vector Add
Signed
Integer[b,h,w]
Saturate

vaddsbs
vaddshs
vddsws

vD,vA,vB

Place the sum (vA[signed integer elements]) + (vB[signed integer
elements]) into vD[signed integer elements] using saturate clamping
mode. Saturate clamping mode means:

if the sum is >(2"1-1) saturate to (2"1-1) and
if < (- 2™1) saturate to (-2"1), where n = b,h,w.

For b, byte, integer length = 8 bits = byte, add sixteen signed integers
from VA to the corresponding sixteen signed integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, add eight signed
integers from vA to the corresponding eight signed integers from vB.

For w, word, integer length = 32 bits = 4 bytes, add four signed
integers from VA to the corresponding four signed integers from vB.

If the result saturates, VSCR[SAT] is set.

Vector Add and
Write
Carry-out
Unsigned
Word

vaddcuw

vD,vA,vB

Take the carry out of summing (vA) + (vB) and place it into vD.

For w, word, integer length = 32 bits = 2 bytes, add four unsigned
integers from vA to the corresponding four unsigned integers from vB
and the resulting carry outs are correspondingly placed in vD.

4-6

AltiVec Technology Programming Environments Manual

MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec UISA Instructions

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation

Vector vsububm vD,vA,vB Place the unsigned integer sum (vA) - (vB) into vD using modulo
Subtract vsubuhm arithmetic.

Intgnesrl?\;gg o vsubuwm For b, byte, integer length = 8 bits =1 byte, subtract sixteen unsigned
gb hw u integers in vB from the corresponding sixteen unsigned integers in
[b.hw] VA.

For h, half word, integer length = 16 bits = 2 bytes, subtract eight
unsigned integers in vB from the corresponding eight unsigned
integers in VA.

For w, word, integer length = 32 bits = 4 bytes, subtract four unsigned
integers in vB from the corresponding four unsigned integers in VA.
Note that unsigned or signed integers can be used with these
instructions.

Vector vsububs vD,vA,vB Place the unsigned integer sum vA - vB into vD using saturate
Subtract vsubuhs clamping mode, that is, if the sum < 0, it saturates to 0 corresponding
Unsigned vsubuws to b,h,w.

Sln‘iegetr For b, byte, integer length = 8 bits = 1 byte, subtract sixteen unsigned
z Era € integers in vB from the corresponding sixteen unsigned integers in
[b,h,w] VA.

For h, half word, integer length =16 bits = 2 bytes, subtract eight
unsigned integers in vB from the corresponding eight unsigned
integers in VA.

For w, word, integer length = 32 bits = 4 bytes, subtract four unsigned
integers in vB from the corresponding four unsigned integers in VA.
If the result saturates, VSCR[SAT] is set.

Vector vsubsbs vD,vA,vB Place the signed integer sum (vA) - (vB) into vD using saturate
Subtract vsubshs clamping mode. Saturate clamping mode means:

Signedinteger | - vsubsws if the sum is >(2"-1-1) saturate to (2™1-1) and
Saturate
[b,h,w] if < (- 271 saturate to (-2"1), where n=b,h,w.

For b, byte, integer length = 8 bits = 1 byte, subtract sixteen signed
integers in vB from the corresponding sixteen signed integers in VA.
For h, half word, integer length = 16 bits = 2 bytes, subtract eight
signed integers in vB from the corresponding eight signed integers in
VA.

For w, word, integer length = 32 bits = 4 bytes, subtract four signed
integers in vB from the corresponding four signed integers in VA.

Vector vsubcuw vD,vA,vB Take the carry out of the sum (VA) - (vB) and place it into vD.

SUb\t/:/e:ﬁt and For w, word, integer length = 32 bits = 2 bytes, subtract four unsigned

c € ¢ integers in vB from the corresponding four unsigned integers in vA
arry-ou and place the resulting carry outs into vD.

Unsigned
Word

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name

Mnemonic

Syntax

Operation

Vector Multiply
Odd Unsigned
Integer [b,h]
Modulo

vmuloub
vmulouh

vD,vA,vB

Place the unsigned integer products of (vA) * (vB) into vD using
modulo arithmetic mode.

For b, byte, integer length = 8 bits =1 byte, multiply 8 odd-numbered
unsigned integer byte elements from VA to the corresponding 8
odd-numbered unsigned integer byte elements from vB resulting in
eight unsigned integer half-word products in vD.

For h, half word, integer length =16 bits = 2 bytes, multiply 4
odd-numbered unsigned integer half word elements from VA to the
corresponding 4 odd numbered unsigned integer half-word elements
from vB resulting in four unsigned integer word products in vD.

Vector Multiply
Odd Signed
Integer [b,h]

Modulo

vmulosb
vmulosh

vD,vA,vB

Place the signed integer product of (vA) * (vB) into vD using modulo
arithmetic mode.

For b, byte, integer length = 8 bits = 1 byte, multiply 8 odd-numbered
signed integer byte elements from vA to 8 odd-numbered signed
integer byte elements from vB resulting in eight signed integer
half-word products in vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply 4
odd-numbered signed integer half word elements from vA to 4
odd-numbered signed integer half word elements from vB resulting in
four signed integer word products in vD.

Vector Multiply
EvenUnsigned
Integer [b,h]
Modulo

vmuleub
vmuleuh

vD,vA,vB

Place the unsigned integer products of (vA) * (vB) into vD using
modulo arithmetic mode.

For b, byte, integer length = 8 bits =1 byte, multiply 8 even-numbered
unsigned integer byte elements from vA to 8 even-numbered
unsigned integer byte elements from vB resulting in eight unsigned
integer half-word products in vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply 4
even-numbered unsigned integer half-word elements from vA to 4
even numbered unsigned integer half- word elements from vB
resulting in four unsigned integer word products in vD

Vector Multiply
Even Signed
Integer [b,h]

Modulo

vmulesb
vmulesh

vD,vA,vB

Place the signed integer product of (vA) * (vB) into vD using modulo
arithmetic mode.

For b, byte, integer length = 8 bits = 1 byte, multiply 8 even-numbered
signed integer byte elements from vA to 8 even-numbered signed
integer byte elements from vB resulting in eight signed integer
half-word products in vD.

For h, half word, integer length = 16 bits = 2 bytes, multiply 4
even-numbered signed integer half-word elements from vA to 4
even-numbered signed integer half-word elements from vB resulting
in four signed integer word products in vD.

4-8

AltiVec Technology Programming Environments Manual

MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec UISA Instructions

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
Vector vmhaddshs | vD,vA,vB, vC | The 17 most significant bits (msb’s)of the product of (vA) * (vB) adds
Multiply-High to sign-extended vC and places the result into vD.
ag.d A%d For h, half word, integer length = 16 bits = 2 bytes, multiply the eight
H ll]?\r}\(/a d signed half words from vA with the corresponding eight signed half
Sa t- c;r words from vB to produce a 32-bit intermediate product and then
aturate take the 17 msb’s (bits 0-16) of the 8 intermediate products and add
them to the 8 sign-extended half words in vC, place the 8 half-word
saturated results in vD. If the intermediate product is as follows:
> (215-1) saturate to (21°-1) and if
< —215 saturate to —215.
If the results saturates, VSCR[SAT] is set.
Vector vmhraddshs | vD,vA,vB,vC |Add the rounded product of (vA) * (vB) to sign-extended vC and
Multiply-High place the result into vD.
Egglgd an(éij For h, half word, integer length = 16 bits = 2 bytes, multiply the eight
'gne signed integers from VA to the corresponding eight signed integers
Half-Word . h -
Saturat from vB and then round the 8 immediate products by adding the
aturate value 0x0000_4000 to it. Then add the most significant bits (msb),
bits 0-16, of the 8 rounded immediate products to the 8
sign-extended values in vC and place the eight signed half-word
saturated results into vD. If the intermediate product is:
> (215-1) saturate to (21°-1) or if
< —215 saturate to —21°.
If the result saturates, VSCR[SAT] is set.
Vector vmladduhm | vD,vA,vB,vC | Add the product of (vA) * (vB) to zero-extended vC and place into vD.
Multlgl')l_/\-(lj_(;)w For h, half word, integer length =16 bits = 2 bytes, multiply the eight
Sn ioned signed integers from VA to the corresponding eight signed integers
H nl?l\gj\llqed from vB to produce a 32-bit intermediate product. The 16-bit value in
:1/' -d ?r vC is zero-extended to 32 bits and added to the intermediate product
odulo and the lower 16 bits of the sum (bit 16—-31) is placed in vD.
Note that unsigned or signed integers can be used with these
instructions.
Vector vmsumubm | vD,vA,vB,vC |The product of (vA) * (vB) is added to zero-extended vC and placed
Multiply-Sum | vmsumuhm into vD using modulo arithmetic.
Unsigned For b, byte, integer length = 8 bits = 1 byte, multiply four unsigned
Integer [b,h] . . .
integer bytes from a word element in VA by the corresponding four
Modulo h . . ;
unsigned integer bytes in a word element in vB and the sum of these
products are added to the zero-extended unsigned integer word
element in vC and then placed the unsigned integer word result into
vD, following this process for each 4-word element in vA and vB.
For h, half word, integer length = 16 bits = 2 bytes, multiply 2
unsigned integer half words from a word element in VA by the
corresponding 2 unsigned integer half words in a word element in vB
and the sum of these products are added to zero-extended unsigned
integer word element in vC and then place the unsigned integer word
result into vD, following this process for each 4 word element in VA
and vB.
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-9

For More Information On This Product,
Go to: www.freescale.com

AltiVec UISA Instructions

Freescale Semiconductor, Inc.

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
Vector vmsumshs | vD,vA,vB,vC |Add the product of (vA) * (vB) to vC and place the result into vD
Multiply-Sum using saturate clamping mode.
Hillf?\r/]\(/ec()jrd For h, half word, integer length = 16 bits = 2 bytes, multiply 2 signed
Saturat integer half words from a word element in vA by the corresponding 2
aturate signed integer half words in a word element in vB. Add the sum of
these products to the signed integer word element in vC and then
place the signed integer word result into vD, (following this process
for each 4-word element in vA and vB). If the intermediate result is >
(231-1), saturate to (231-1) and if the result is < -231, saturate to -231,
If the result saturates, VSCR[SAT] is set.
Vector vmsumuhs | vD,vA,vB,vC |Add the product of (vA) * (vB) to zero-extended vC and place the
Multiply-Sum result into vD using saturate clamping mode.
I:JQI?-I\%\?;(; For h, half word, integer length = 16 bits = 2 bytes, multiply 2
Saturat unsigned integer half words from a word element in VA by the
alurate corresponding 2 unsigned integer half words in a word element in vB.
Add the sum of these products to the zero-extended unsigned integer
word element in vC and then place the unsigned integer word result
into vD, (following this process for each 4-word element in vA and
vB). If the intermediate result is > (232—1) saturate to (232—1).
If the result saturates, VSCR[SAT] is set.
Vector vmsummbm | vD,vA,vB,vC |Add the product of (vA) * (vB) to vC and place into vD using modulo
Multiply-Sum arithmetic.
BMItxeltj/I S(;g? For b, byte, integer length = 8 bits = 1 byte, multiply four signed
yte Modulo integer bytes from a word element in vA by the corresponding four
unsigned integer bytes from a word element in vB. Add the sum of
these four signed products to the signed integer word element in vC
and then place the signed integer word result into vD, following this
process for each 4-word element in vA and vB.
Vector vmsumshm | vD,vA,vB,vC |Add the product of (vA) * (vB) to vC and place into vD using modulo
Multiply-Sum arithmetic.
Hillf?\r/]\(/ec?rd For h, half word, integer length = 16 bits = 2 bytes, multiply 2 signed
Modul integer half words from a word element in vA by the corresponding 2
odulo signed integer half words in a word element in vB. Add the sum of
these 2 products to the signed integer word element in vC and then
place the signed integer word result into vD, following this process for
each 4-word element in vA and vB.
Vector Sum VSUmsws vD,vA,vB Place the sum of signed word elements in vA and the word in

Across Signed
Word Saturate

vB[96-127] into vD.

For w, word, integer length = 32 bits = 4 bytes, add the sum of the
four signed integer word elements in VA to the word element in
vB[96-127]. If the intermediate product is > (231-1) saturate to
(231-1) and if < —231 saturate to —231. Place the signed integer result
in vD[96-127],vD[0-95] are cleared.

4-10

AltiVec Technology Programming Environments Manual

MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec UISA Instructions

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name

Mnemonic

Syntax

Operation

Vector Sum
Across Partial
(1/2) Signed
Word Saturate

vsSum2sws

vD,vA,vB

Add vA[word 0 + word 1] + vB[word 1] and place in vD[word 1].
Repeat only add vA[word 2 + word 3] + vB[word 3] and place in
vD[word 3].

word 0 = Bits 0-31
word 1 = Bits 32-63
word 2 = Bits 64-95
word 3 = Bits 96-127,

Figurel-2 shows a picture of what the word elements would look like
in a vector register.

Add the sum of word 0 and word 1 of vA to word 1 of vB using
saturate clamping mode and place the result is into word 1of vD.
Then add the sum of word 2 and word 3 of (vA) to word 3 of vB using
saturate clamping mode and place those results into word 3 in vD. If
the intermediate result for either calculation is > (231-1) then saturate
to (231-1) and if < —231 then saturate to —231.

If the result saturates, VSCR[SAT] is set.

Vector Sum
Across Partial
(1/4) Unsigned
Byte Saturate

vsum4ubs

vD,vA,vB

Add vA[4 byte elements sum to a word] and vB[word element] then
place in vD[word element] using saturate clamping mode.

For b, byte, integer length = 8 bits = 1 byte, for each word element in
vB, add the sum of four unsigned bytes in the word in VA to the
unsigned word element in vB and then place the results into the
corresponding unsigned word element in vD. If the intermediate
result for is > (232-1) it saturates to (232-1).

If the result saturates, VSCR[SAT] is set.

Vector Sum
Across Partial
(1/4) Signed
Integer
Saturate

vsum4sbs
vsum4shs

vD,vA,vB

Add vA[sum of signed integer elements in word] and vB[word
element] then place in vD[word element] using saturate clamping
mode.

For b, byte, integer length = 8 bits = 1 byte, for each word element in
vB, add the sum of four signed bytes in the word in VA to the signed
word element in vB and then place the results into the corresponding
signed word element in vD. If the intermediate result is > (231-1) then
saturate to (231-1) and if < —231 then saturate to —231.

For h, half word, integer length = 16 bits = 2 bytes, for each word

element in vB, add the sum of 2 signed half words in the word in vA
to the signed word element in vB and then place the results into the
corresponding signed word element in vD. If the intermediate result is
> (231-1) then saturate to (231-1) and if < =231 then saturate to —231.

If the result saturates, VSCR[SAT] is set.

MOTOROLA

Chapter 4. Addressing Modes and Instruction Set Summary

4-11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation
Vector Average vavgub vD,vA,vB | Add the sum of (vA[unsigned integer elements]+ vB[unsigned integer
Unsigned vavguh elements]) +1 and place into vD using modulo arithmetic.
Integer [b,h,w] vavguw

For b, byte, integer length = 8 bits = 1 byte, add sixteen unsigned
integers from VA to sixteen unsigned integers from vB and then add
1 to the sums and place the high order result in vD.

For h, half word, integer length = 16 bits = 2 bytes, add eight
unsigned integers from vA to eight unsigned integers from vB and
then add 1 to the sums and place the high order result in vD.

For w, word, integer length = 32 bits = 4 bytes, add four unsigned
integers from vA to four unsigned integers from vB and then add 1 to
the sums and place the high order result in vD.

If the result saturates, VSCR[SAT] is set.

Vector Average vavgsh vD,vA,vB Add the sum of (vA[signed integer elements]+ vB[signed integer
Signed Integer vavgsh elements]) +1 and place into vD using modulo arithmetic.
[b,h,w] vavgsw

For b, byte, integer length = 8 bits = 1 byte, add sixteen signed
integers from VA to sixteen signed integers from vB and then add 1
to the sums and place the high order result in vD.

For h, half word, integer length = 16 bits = 2 bytes, add eight signed
integers from VA to eight signed integers from vB and then add 1 to
the sums and place the high order result in vD.

For w, word, integer length = 32 bits = 4 bytes, add four signed
integers from VA to four signed integers from vB and then add 1 to
the sums and place the high order result in vD.

Vector vmaxub vD,vA,vB Compare the maximum of vA and vB unsigned integers for each
Maximum vmaxuh integer value and which ever value is larger, place that unsigned
Unsigned vmaxuw integer value into vD

Integer [b,h,w] For b, byte, integer length = 8 bits = 1 byte, compare sixteen

unsigned integers from vA with sixteen unsigned integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, compare eight
unsigned integers from vA with eight unsigned integers from vB.

For w, word, integer length = 32 bits = 4 bytes, compare four
unsigned integers from vA with four unsigned integers from vB.

Vector vmaxsh vD,vA,vB Compare the maximum of vA and vB signed integers for each
Maximum vmaxsh integer value and which ever value is larger, place that signed integer
Signed Integer vmaxsw value into vD
[b,h,w]

For b, byte, integer length = 8 bits =1 byte, compare sixteen signed
integers from vA with sixteen signed integers from vB.

For h, half word, integer length =16 bits = 2 bytes, compare eight
signed integers from vA with eight signed integers from vB.

For w, word, integer length = 32 bits = 4 bytes, compare four signed
integers from vA with four signed integers from vB.

4-12 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation

Vector vminub vD,vA,vB Compare the minimum of vA and vB unsigned integers for each
Minimum vminuh integer value and which ever value is smaller, place that unsigned
Unsigned vminuw integer value into vD.

Integer [b,h,w] For b, byte, integer length = 8 bits = 1 byte, compare sixteen

unsigned integers from vA with sixteen unsigned integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, compare eight
unsigned integers from vA with eight unsigned integers from vB.

For w, word, integer length = 32 bits = 4 bytes, compare four
unsigned integers from vA with four unsigned integers from vB.

Vector vminsb vD,vA,vB Compare the minimum of vA and vB signed integers for each integer
Minimum vminsh value and which ever value is smaller, place that signed integer value
Signed Integer vminsw into vD.
[b,h,w]

For b, byte, integer length = 8 bits = 1 byte, compare sixteen signed
integers from vA with sixteen signed integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, compare eight
signed integers from vA with eight signed integers from vB.

For w, word, integer length = 32 bits = 4 bytes, compare four signed
integers from vA with four signed integers from vB.

4.2.1.3 Vector Integer Compare Instructions

The vector integer compare instructions algebraically or logically compare the contents of
the elements in vector register vA with the contents of the elements in vB. Each compare
result vector is comprised of TRUE (OxFF, OxFFFF, OxFFFFFFFF) or FALSE (0x00,
0x0000, 0x00000000) elements of the size specified by the compare source operand
element (byte, half word, or word). The result vector can be directed to any vector register
and can be manipul ated with any of theinstructions as normal data, for example, combining
condition results. Vector compares provide equal-to and greater-than predicates. Others are
synthesized from these by logically combining or inverting result vectors.

If the record bit (Rc) is set in the integer compare instructions (shown in Table 4-3), it can
optionally set the CR6 field of the PowerPC condition register. If Rc = 1 in the vector
integer compare instruction, then CR6 reflects the result of the comparison, as shown in
Table 4-2.

Table 4-2. CRG6 Field Bit Settings for Vector Integer Compare Instructions

CR Bit | CR6 Bit Vector Compare
24 0 1 Relation is true for all element pairs (that is, vD is set to all ones).
25 1 0
26 2 1 Relation is false for all element pairs (that is, register vD is cleared).
27 3 0
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-13

For More Information On This Product,
Go to: www.freescale.com

AltiVec UISA Instructions

Freescale Semiconductor, Inc.

Table 4-3 summarizes the vector integer compare instructions.

Table 4-3. Vector Integer Compare Instructions

Name

Mnemonic

Syntax

Operation

Vector
Compare
Greater
than
Unsigned
Integer
[b,h,w]

vempgtubl.]
vempgtuhl.]
vempgtuw].]

vD,vA,vB

Compare the value in vA with the value in vB, treating the
operands as unsigned integers. Place the result of the comparison
into the vD field specified by operand vD.

If vA > vB then vD = 1's; otherwise vD = 0’s.

If the record bit (Rc) is set in the vector compare instruction, then
vD == 1's, (all elements true) then CR6[0] is set

vD == 0’s, (all elements false) then CR6[2] is set.

For b, byte, integer length = 8 bits = 1 byte, compare sixteen
unsigned integers from VA to sixteen unsigned integers from vB
and place the results in the corresponding 16 elements in vD.

For h, half word, integer length = 16 bits = 2 bytes, compare eight
unsigned integers from VA to eight unsigned integers from vB and
place the results in the corresponding 8 elements in vD.

For w, word, integer length = 32 bits = 4 bytes, compare four
unsigned integers from VA to four unsigned integers from vB and
place the results in the corresponding 4 elements in vD.

4-14

AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-3. Vector Integer Compare Instructions (continued)

Name Mnemonic Syntax Operation

Vector vempgtsbl.] vD,vA,vB Compare the value in vA with the value in vB, treating the
Compare vempgtsh[.] operands as signed integers. Place the result of the comparison
Greater vempgtswl.] into the vD field specified by operand vD.

Than If vA > vB then vD =1's; otherwise vD = 0's

Signed

Integer If the record bit (Rc) is set in the vector compare instruction, then

(b.hw] vD == 1’s, (all elements true) then CR6[0] is set

vD == 0's, (all elements false) then CR6[2] is set.

For b, byte, integer length = 8 bits = 1 byte, compare sixteen
signed integers from VA to sixteen signed integers from vB

and place the results in the 16 corresponding elements in vD.

For h, half word, integer length = 16 bits = 2 bytes, compare eight
signed integers from VA to eight signed integers from vB and
place the results in the 8 corresponding elements in vD.

For w, word, integer length = 32 bits = 4 bytes, compare four
signed integers from vA to four signed integers from vB and place
the results in the 4 corresponding elements in vD.

Vector vempequbl.] vD,vA,vB Compare the value in vA with the value in vB, treating the
Compare vempequh[.] operands as unsigned integers. Place the result of the comparison
Equal To vcmpequwl[.] into the vD field specified by operand vD.

Unsigned If vA = vB then vD =1's; otherwise vD = 0’s.
Integer
[b,h,w] If the record bit (Rc) is set in the vector compare instruction then

vD == 1’s, (all elements true) then CR6[0] is set
VD == 0’s, (all elements false) then CR6[2] is set.

For b, byte, integer length = 8 bits =1 byte, compare sixteen
unsigned integers from vA to sixteen unsigned integers from vB
and place the results in the corresponding 16 elements in vD.

For h, half word, integer length =16 bits = 2 bytes, compare eight
unsigned integers from VA to eight unsigned integers from vB and
place the results in the corresponding 8 elements in vD.

For w, word, integer length=32 bits = 4 bytes, compare four
unsigned integers from vA to four unsigned integers from vB and
place the results in the corresponding 4 elements in vD.

Note: vempequbl[.], vempequhl.], and vempequw].] can use
both unsigned and signed integers.

4.2.1.4 Vector Integer Logical Instructions

The vector integer logical instructions shown in Table 4-4 perform bit-parallel operations
on the operands.

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-15

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-4. Vector Integer Logical Instructions

Name Mnemonic Syntax Operation
Vector Logical AND vand vD,vA,vB | AND the contents of vA with vB and place the result into vD.
Vector Logical OR vor vD,vA,vB |OR the contents of vA with vB and place the result into vD.
Vector Logical XOR vxor vD,vVA,vB | XOR the contents of vA with vB and place the result into vD.
Vector Logical AND vandc vD,vA,vB | AND the contents of vA with the complement of vB and place the
with Complement result into vD.
Vector Logical NOR vnor vD,vA,vB [NOR the contents of VA a with vB and place the result into vD.

4.2.1.5 Vector Integer Rotate and Shift Instructions
The vector integer rotate instructions are summarized in Table 4-5.

Table 4-5. Vector Integer Rotate Instructions

Name Mnemonic Syntax Operation
Vector Rotate vrib vD,vA,vB |Rotate each element in VA left by the number of bits specified in the
Left Integer vrlh low-order log,(n) bits of the corresponding element in vB. Place the result
[b,h,w] vriw into the corresponding element of vD.

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with
16 integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from vA
with 8 integers from vB.

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with
4 integers from vB.

The vector integer shift instructions are summarized in Table 4-6.

4-16 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-6. Vector Integer Shift Instructions

Name Mnemonic Syntax Operation
Vector Shift vslb vD,vA,vB | Shift each element in VA left by the number of bits specified in the low-order
Left Integer vslh log,(n) bits of the corresponding element in vB. If bits are shifted out of bit O of
[b,h,w] vsiw the element they are lost. Supply zeros to the vacated bits on the right. Place

the result into the corresponding element of vD.

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with 16
integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from vA with
8 integers from vB.

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with 4
integers from vB.

Vector Shift vsrb vD,vA,vB | Shift each element in VA right by the number of bits specified in the low-order
Right vsrh log,(n) bits of the corresponding element in vB. If bits are shifted out of bit n—1
Integer VSrw of the element they are lost. Supply zeros to the vacated bits on the left. Place
[b,h,w] the result into the corresponding element of vD.

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with 16
integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from vA with
8 integers from vB.

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with 4
integers from vB.

Vector Shift vsrab vD,vA,vB | Shift each element in VA right by the number of bits specified in the low-order
Right vsrah log,(n) bits of the corresponding element in vB. If bits are shifted out of bit n—1
Algebraic vsraw of the element they are lost. Replicate bit O of the element to fill the vacated
Integer bits on the left. Place the result into the corresponding element of vD.
[b,h,w]

For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with 16
integers from vB.

For h, half word, integer length = 16 bits = 2 bytes, use 8 integers from vA with
8 integers from vB.

For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with 4
integers from vB.

4.2.2 Vector Floating-Point Instructions

This section describes the vector floating-point instructions, which include the following:
* Arithmetic
* Rrounding and conversion
 Compare
» Estimate
The AltiVec floating-point data format complies with the ANSI/IEEE-754 standard. A
quantity in this format represents a signed normalized number, a signed denormalized

number, asigned zero, asigned infinity, aquiet not anumber (QNaN), or asignalling NaN
(SNaN). Operations perform to a Javal/l EEE/CI9X-compliant subset of the |IEEE standard,

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-17

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

for further details on the Java or Non-Javamode see Section 3.2.1, “Floating-Point Modes.”
AltiVec | SA doesnot report | EEE exceptions but rather produces default results as specified
by the Java/lEEE/COX Standard. For further details on exceptions, see Section 3.2.4,
“Fl oating-Point Exceptions.”

4.2.2.1 Floating-Point Division and Square-Root

AltiVec instructions do not have division or sguare-root instructions. AltiVec ISA
implements Vector Reciproca Estimate Floating-Point (vrefp) and Vector
Reciprocal-Square-Root Estimate Floating-Point (vrsgrtefp) instructions along with a
Vector Negative Multiply-Subtract Floating-Point (vnmsubfp) instruction assisting in the
Newton-Raphson refinement of the estimates. To accomplish division, simply multiply the
dividend (x/y =x* 1/y) and square-root by multiplying the original number (Vx =x* 1/vx).
In this way, AltiVec ISA provides inexpensive divides and square-roots that are fully
pipelined, sub-operation scheduled, and faster even than many hardware dividers. Software
methods are available to further refine these to correct |EEE results.

4.2.2.1.1 Floating-Point Division

The Newton-Raphson refinement step for the reciprocal 1/g looks like this:
yl = y0 + yO*(1 - B*y0), where y0 = recip_est(B)

Thisisimplemented in the AltiVec | SA asfollows:

y0 = vrefp(B)
t = vnnsubfp(y0, B, 1)
y1l = vmaddf p(yO,t, yO0)

This produces a result accurate to almost 24 bits of precision, except where B is a
sufficiently small denormalized number that vrefp generates an infinity that, if important,
must be explicitly guarded against.

To get acorrectly rounded | EEE quotient from the above result, a second Newton-Raphson
iteration is performed to get a correctly rounded reciprocal (y2) to the required 24 bits of
precision, then the residual.

R=A- BQ

is computed with vnmsubfp (where A is the dividend, B the divisor, and Q an
approximation of the quotient from A*y2). The correctly rounded quotient can then be
obtained.

Q =Q+ Ry2

The additional accuracy provided by the fused nature of the AltiVec instruction
multiply-add is essential to producing the correctly rounded quotient by this method.

4-18 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

The second Newton-Raphson iteration may ultimately not be needed but more work must
be done to show that the absolute error after the first refinement step would always be less
than 1 ulp, which is arequirement of this method.

4.2.2.1.2 Floating-Point Square-Root

The Newton-Raphson refinement step for reciprocal square root looks like the following:
yl = y0 + 0.5*y0*(1 - B*y0*yO0), where y0 = recip_sqrt_est(B)

That can be implemented as follows:

y0 = vrsqrtefp(B)

t0 = vnaddf p(y0, y0, 0.0)
t1l = vmaddf p(yO0, 0.5, 0.0)
t0 = vnnsubfp(B,t0, 1)

y1l = vnaddf p(t0,t1, y0)

Various methods can further refine a correctly rounded | EEE result, all more elaborate than
the simple residual correction for division, and therefore are not presented here, but most
of which aso benefit from the negative multiply-subtract instruction.

4.2.2.2 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 4-7.

Table 4-7. Floating-Point Arithmetic Instructions

Name Mnemonic | Syntax Operation
Vector Add vaddfp vD,vA, |Add the 4-word (32-bit) floating-point elements in VA to the 4-word (32-bit)
Floating-P vB floating-point elements in vB. Round the four intermediate results to the nearest
oint single-precision number and placed into vD.
Vector vsubfp vD,vA, |The 4-word (32-hit) floating-point values in vB are subtracted from the 4 32-bit
Subtract vB values in vB. The four intermediate results are rounded to the nearest
Floating-P single-precision floating-point and placed into vD.
oint
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-19

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-7. Floating-Point Arithmetic Instructions (continued)

Name Mnemonic | Syntax Operation
Vector vmaxfp vD,vA, |Compare each of the 4 single-precision word elements in VA to the
Maximum vB corresponding 4 single-precision word elements in vB and place the larger
Floating-P value within each pair into the corresponding word element in vD.
oint

vmaxfp is sensitive to the sign of 0.0. When both operands are +0.0:
max(+0.0,+0.0) = max(x0.0,+0.0) O +0.0
max(-0.0,-0.0) O -0.0

max(NaN,x) 0 QNaN, where x = any value

Vector vminfp vD,vA, |Compare each of the 4 single-precision word elements in VA to the
Minimum vB corresponding 4 single-precision word elements in vB
Floating-P

oint For each of the four elements, place the smaller value within each pair into vD.
vminfp is sensitive to the sign of 0.0. When both operands are +0.0:
min(-0.0,£0.0) = min(x0.0,-0.0) O -0.0

min(+0.0,+0.0) O +0.0

min(NaN,x) 0 QNaN where x = any value

4.2.2.3 Floating-Point Multiply-Add Instructions

Vector multiply-add instructions are critically important to performance because multiply
followed by a data-dependent addition is the most common idiom in DSP algorithms. In
most implementations, floating-point multiply-add instructions perform with the same
latency as either a multiply or add aone, thus doubling performance in comparing to the
otherwise serial multiply and adds. This will make performance twice as fast as using
separate multiply and add instructions.

AltiVec floating-point multiply-adds instructions fuse (a multiply-add fuse implies that the
full product participatesin the add operation without rounding; only thefinal result rounds).
This not only simplifies the implementation and reduces latency (by eliminating the
intermediate rounding) but also increases the accuracy compared to separate multiply and
adds.

Be careful as Java-compliant programs can not use multiply-add instructions fused directly
because Java requires both the product and sum to round separately. Thus to achieve strict
Java compliance, perform the multiply and add with separate instructions.

To realize multiply in AltiVec 1SA use multiply-add instructions with a zero addend (for
example, vmaddfp vD,vA,vC,vB where (vB = 0.0).

Note that to use multiply-add instructions to perform an |EEE- or Java-compliant multiply,
the addend must be -0.0. Thisis necessary to ensure that the sign of a zero result is correct
when the product is either +0.0 or -0.0 (+0.0 +-0.0 0 +0.0, and -0.0 + -0.0 [0 -0.0). When
the sign of aresulting 0.0 is not important, then use +0.0 as the addend that may, in some

4-20 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

cases, avoiding the need for a second register to hold a -0.0 in addition to the integer
O/floating-point +0.0 that may already be available.

The floating-point multiply-add instructions are summarized in Table 4-8.
Table 4-8. Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax Operation
Vector vmaddfp vD,vA,vC,vB | Multiply the four word floating-point elements in vA by the corresponding
Multiply- four word elements in vC. Add the four word elements in vB to the four
Add intermediate products. Round the results to the nearest single-precision
Floating-P numbers and place the corresponding word elements into vD.
oint
Vector vnmsubfp | vD,vA,vC,vB | Multiply the four word floating-point elements in VA by the corresponding
Negative four word elements in vC. Subtract the four word floating-point elements in
Multiply- vB from the four intermediate products and invert the sign of the difference.
Subtract Round the results to the nearest single-precision numbers and place the
Floating-P corresponding word elements into vD.
oint

4.2.2.4 Floating-Point Rounding and Conversion Instructions

All AltiVec floating-point arithmetic instructions use the IEEE default rounding mode,
round-to-nearest. AltiVec | SA does not provide the |EEE directed rounding modes.

AltiVec 1SA provides separate instructions for converting floating-point numbers to
integral floating-point values for all IEEE rounding modes as follows:

* Round-to-nearest (vrfin) (round)

* Round-toward-zero (vrfiz) (truncate)

* Round-toward-minus-infinity (vrfim) (floor)

* Round-toward-positive-infinity (vrfip) (ceiling).
Floating-point conversions to integers (vctuxs, vctsxs) use round-toward-zero (truncate).
The floating-point rounding instructions are described in Table 4-9.

Table 4-9. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax Operation

Vector Round to vrfin vD,vB Round to the nearest the four word floating-point elements in

Floating-Point Integer vB and place the four corresponding word elements into vD.
Nearest

Vector Round to vrfiz vD,vB Round towards zero the four word floating-point elements in vB

Floating-Point Integer and place the four corresponding word elements into vD.
toward Zero

Vector Round to vrfip vD,vB Round towards +Infinity the four word floating-point elements in

Floating-Point Integer vB and place the four corresponding word elements into vD.

toward Positive Infinity

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-21

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-9. Floating-Point Rounding and Conversion Instructions (continued)

Name Mnemonic Syntax Operation
Vector Round to vrfim vD,vB Round towards -Infinity the four word floating-point elements in
Floating-Point Integer vB and place the four corresponding word elements into vD.
toward Minus Infinity
Vector Convert from vefux vD,vB, UIMM | Convert each of the four unsigned fixed-point integer word
Unsigned Fixed-Point elements in vB to the nearest single-precision value. Divide the
Word result by 2Y'MM and place into the corresponding word element
of vD.

Vector Convert from vefsx vD,vB, UIMM | Convert each signed fixed-point integer word element in vB to
Signed Fixed-Point the nearest single-precision value. Divide the result by 2UMM
Word and place into the corresponding word element of vD.

Vector Convert to VCtuxs vD,vB, UIMM | Multiply each of the four single-precision word elements in vB
Unsigned Fixed-Point by 2UMM The products are converted to unsigned fixed-point

Word Saturate integers using the Round toward Zero mode. If the intermediate

results are > 232—1 saturate to 232—1 and if it is < O saturate to
0. Place the unsigned integer results into the corresponding
word elements of vD.

Vector Convert to VCtSXS vD,vB, UIMM | Multiply each of the four single-precision word elements in vB
Signed Fixed-Point by 2UMM The products are converted to signed fixed-point
Word Saturate integers using Round toward Zero mode. If the intermediate

results are > 232—1 saturate to 232—1 and if it is < —23! saturate
to —231. Place the unsigned integer results into the
corresponding word elements of vD.

4.2.2.5 Floating-Point Compare Instructions
This section describes floating-point unordered compare instructions.

All AltiVec floating-point compare instructions (vempeqfp, vempgtfp, vempgefp, and
vcmpbfp) return FALSE if either operand is a NaN. Not equal-to, not greater-than, not
greater-than-or-equal-to, and not-in-bounds NaNs compare to everything, including
themselves.

Compares aways return a Boolean mask (TRUE = OxFFFF_FFFF, FALSE =
0x0000_0000) and never return a NaN. The vempeqfp instruction is recommended as the
Isnan(vX) test. No explicit unordered compare instructions or traps are provided. However,
the greater-than-or-equal-to predicate (=) (vempgefp) is provided—in addition to the > and
= predicates available for integer comparison—specifically to enable IEEE unordered
comparison that would not be possible with just the > and = predicates. Table 4-10 lists the
six common mathematical predicates and how they would be realized in AltiVec code.

4-22 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-10. Common Mathematical Predicates

a>b a<b a=b ?
1 a=b a=b F F T F
2 azb (?<>) -(a=h) T T F T
3 a>b a>b T F = E
4 a<b b>a F T F F
5 azb - (b>a) T F T *T
6 as<b -(a>bh) F T T *T
5a azb azb T F T F
6a asb bxza F T T F
* Note: Cases 5 and 6 implemented with greater-than (vempgtfp and vnor) would not yield
the correct IEEE result when the relation is unordered.

Table Table 4-11 shows the remaining eight useful predicates and how they might be
realized in AltiVec code.

Table 4-11. Other Useful Predicates

Case Predicate Re':lltiiz\g;?on Relations

a>h a<b a=b ?
7 a?b = ((a=b) O (b>a) O (a>b)) F F F T
8 a<>b (azb)0(b=a) T T F F
9 a<=>b (azb)O(=a) T T T F
10 a?>b -(bza) T F F T
11 a?>=b - (b>a) T F T T
12 a?<b - (a=h) F T F T
13 a?<=b -(a>b) F T T T
14 a?=b - ((@>b)yd(>a)) F F T T

The vector floating-point compare instructions compare the elementsin two vector registers
word-by-word, interpreting the elements as single-precision numbers. With the exception
of the Vector Compare Bounds Floating-Point (vempbfp) instruction they set the target
vector register, and CR[6] if Rc = 1, in the same manner as do the vector integer compare
instructions.

The Vector Compare Bounds Floating-Point (vempbfp) instruction sets the target vector
register, and CR[6] if Rc = 1, to indicate whether the elementsin vA are within the bounds
specified by the corresponding element in vB, as explained in the instruction description. A

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-23

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

single-precision value x is said to be within the bounds specified by asingle-precision value
yif (-ysx<y).
The floating-point compare instructions are summarized in Table 4-12.

Table 4-12. Floating-Point Compare Instructions

Name Mnemonic Syntax Operation
Vector vempgtfpl[.] vD,vA,vB Compare each of the four single-precision word elements in VA to the
Compare corresponding four single-precision word elements in vB
G_lr_ﬁgtr?r For each element, if vA > vB then set the corresponding element in vD
) to all 1's otherwise clear the element in vD to all 0's
Floating-P
oint If the record bit is set (Rc = 1) in the vector compare instruction, then
[Record] vD ==1, (all elements true) then CR6[0] is set
vD == 0, (all elements false) then CR6[2] is set
Vector vempeqfp[.] vD,vA,vB Compare each of the 4 single-precision word elements in VA to the
Compare corresponding 4 single-precision word elements in vB.
Flliqti_al t?P For each element, if vA = vB then set the corresponding element in vD
Oiilnntg to all 1's otherwise clear the element in vD to all 0's
[Record] If the record bit is set (Rc = 1) in the vector compare instruction then
vD ==1, (all elements true) then CR6[0] is set
vD == 0, (all elements false) then CR6[2] is set
Vector vempgefp[.] vD,vA,vB Compare each of the 4 single-precision word elements in VA to the
Compare corresponding 4 single-precision word elements in vB.
(TBt:eater For each element, if vA >= vB then set the corresponding element in vD
anor to all 1's otherwise clear the element in vD to all O's
Equal to
Floating-P If the record bit is set (Rc = 1) in the vector compare instruction then
oint vD ==1, (all elements true) then CR6[0] is set
[Record]
vD == 0, (all elements false) then CR6[2] is set
Vector vempbfp[.] vD,vA,vB Compare each of the 4 single-precision word elements in VA to the
Compare corresponding single-precision word elements in vB. A 2-bit value is
Bounds formed that indicates whether the element in vA is within the bounds
Floating-P specified by the element in vB, as follows.
Romt d Bit O of the two-bit value is cleared if the element in VA is <= to the
[Record] element in vB, and is set otherwise.
Bit 1 of the two-bit value is cleared if the element in VA is >= to the
negation of the element in vB, and is set otherwise.
The two-bit value is placed into the high-order two bits of the
corresponding word element of vD and the remaining bits of the element
are cleared to 0.
If Rc = 1, CR6[2] is set when all four elements in VA are within the
bounds specified by the corresponding element in vB

4.2.2.6 Floating-Point Estimate Instructions

The floating-point estimate instructions are summarized in Table 4-13.

4-24 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-13. Floating-Point Estimate Instructions

Name Mnemonic | Syntax Operation
Vector Reciprocal vrefp vD,vB | Place estimates of the reciprocal of each of the four word floating-point
Estimate source elements in vB in the corresponding four word elements in vD.

Floating-Point

Vector Reciprocal vrsqrtefp vD,vB |Place estimates of the reciprocal square-root of each of the four word
Square Root source elements in vB in the corresponding four word elements in vD.
Estimate

Floating-Point

Vector Log2 vliogefp vD,vB |Place estimates of the base 2 logarithm of each of the four word source
Estimate elements in vB in the corresponding four word elements in vD.
Floating-Point

Vector 2 Raised to vexptefp vD,vB | Place estimates of 2 raised to the power of each of the four word source
the Exponent elements in vB in the corresponding four word elements in vD.
Estimate
Floating-Point

4.2.3 Load and Store Instructions

Only very basic load and store operations are provided in AltiVec I1SA. This keeps the
circuitry in the memory path fast so the latency of memory operationswill be low. Instead,
a powerful set of field manipulation instructions are provided to manipulate data into the
desired alignment and arrangement after the data has been brought into the vector registers.

Load vector indexed (Ivx, lvxl) and store vector indexed (stvx, stvxl) instructions transfer
an aligned quad-word vector between memory and vector registers. Load vector element
indexed (lvebx, lvehx, Ivewx) and store vector element indexed instructions (stvebx,
stvehx, stvewx) transfer byte, half-word, and word scalar el ements between memory and
vector registers.

All vector |oads and vector stores use theindex (rA|O + r B) addressing mode to specify the
target memory address. AltiVec |SA does not provide any update forms. An lvebx, Ivehx,
or lvewx instruction transfers ascalar dataelement from memory into the destination vector
register, leaving other elements in the vector with boundedly-undefined values. A stvebx,
stvehx, or stvewx instruction transfers ascalar data element from the source vector register
to memory leaving other elements in the quad word unchanged. No data alignment occurs,
that is, al scalar data elements are transferred directly on their natural memory byte-lanes
to or from the corresponding element in the vector register. Quad word memory accesses
made by lvx, lvxl, stvx, and stvxl instructions are not guaranteed to be atomic. Direct-store
segments (T=1) are not supported by AltiVec ISA. Any vector load or store that attempts to
access a direct-store segment will cause aDS| exception.

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-25

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

4.2.3.1 Alignment

All memory references must be size aligned. If avector |oad or store addressis not properly
size aligned, the suitable number of least significant bits are ignored, and a size aligned
transfer occursinstead. Data alignment must be performed by software after being brought
into the registers. No assistance is provided for aligning individual scalar elementsthat are
not aligned on their natural size boundary. However, assistance is provided for justifying
non-size-aligned vectors. Thisis provided through the L oad Vector for Shift Left (Ivsl) and
Load Vector for Shift Right (lvsr) instructions that compute the proper Vector Permute
(vperm) control vector from the misaligned memory address. For details on how to use
these instructions to align data see Section 3.1.6, “Quad-Word Data Alignment.”

The Ivx, lvxl, stvx, and stvxl instructions can be used to move data, not just multimedia
data, in PowerPC environments. Therefore, because vector loads and stores are
size-aligned, care should be taken to align data on even quad-word boundaries for
maximum performance.

4.2.3.2 Load and Store Address Generation

Vector load and store operations generate effective addresses using register indirect with
index mode.

All AltiVec load and store instructions use register indirect with index addressing mode
that cause the contents of two GPRs (specified as operandsr A and rB) to be added in the
generation of the effective address (EA). A zero in place of ther A operand causes a zero
to be added to the value specified by rB. The option to specify rA or O is shown in the
instruction descriptionsas (r A|0). If the address becomes misaligned, for ahalf word, word,
or quad word when combining addresses (r A|0 + r B), the effective addressis ANDed with
the appropriate zero values to boundary align the address and is summarized in Table 4-14.

Table 4-14. Effective Address Alignment

Operand Effective Address Bit Setting
Indexed half word EA[63] 0bO0
Indexed word EA[62-63] 0b00
Indexed quad word EA[60-63] 0b0000
4-26 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Figure 4-1 shows how an effective address is generated when using register indirect with
index addressing.

)) 0 56 1011 1516 20 21 30 31
[] Reserved Instruction Encoding: Opcode | vDIVS| rA rB | Subopcode |0
0 v 63

GPR (rB)

Yes n l

-(F
No
0 GSJ 0 63

GPR (rA) Effective Address

Y
Boundary
Align EA

Y

0 63

Store »| Memory
VR (vD) B Load Interface

Figure 4-1. Register Indirect with Index Addressing for Loads/Stores

4.2.3.3 Vector Load Instructions

For vector load instructions, the byte, half word, or word addressed by the EA (effective
address) isloaded into rD.

The default byte and bit ordering is big-endian as in the PowerPC architecture; see
Section 3.1.2, “AltiVec Byte Ordering,” for information about little-endian byte ordering.

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-27

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-15 summarizes the vector load instructions.

Table 4-15. Integer Load Instructions

Name Mnemonic | Syntax Operation
Load Vector Ivebx vD,rA;rB | The EA is the sum (rA|0) + (rB). Load the byte, half word, or word in
Element Integer Ivehx memory addressed by the EA into the low-order bits of vD. The remaining
Indexed [b,h,w] Ivewx bits in vD are set to boundedly undefined values.

Because memory must stay aligned, the EA is set to default to alignment:
For b, byte, integer length = 8 bits = 1 byte,

For h, half word, integer length = 16 bits = 2 bytes, EA[62—63] is set to 0b0
For w, word, integer length = 32 bits = 4 bytes, EA[61-63] is set to Ob00

Load Vector Ivx vD,rA,rB | The EA is the sum (rA|0) + (rB). Load the double word in memory
Indexed addressed by the EA into vD.

Because memory needs to stay aligned, the EA is set to default to
alignment:

For a quad word, integer length = 128 bits = 8 bytes, EA[60-63] is set to
0b0000
LRU=0

If the processor is in little-endian mode, load the double word in memory
addressed by EA into vD[64-127] and load the double word in memory
addressed by EA+8 into vD[0-63].

Load Vector Ivxl vD,rA;rB | The EA is the sum (rA|0) + (rB). Load the double word in memory

Indexed LRU addressed by the EA into vD.
For the double word, integer length = 64 bits = 4 bytes, the EA[60-63] is set
to Ob0000

LRU =1, least recently used, hints that the quad word in the memory
addressed by EA will probably not be needed again by the program in the
near future.

If the processor is in little-endian mode, load the double word in memory
addressed by EA into vD[64-127] and load the double word in memory
addressed by EA+8 into vD[0-63].

The lvd and Ivsr instructions can be used to create the permute control vector to be used
by a subsequent vper m instruction. Let X andY be the contents of VA and vB specified by
vperm. The control vector created by Ivsl causes the vperm to select the high-order 16
bytes of the result of shifting the 32-byte value X || Y left by sh bytes (sh = the value in
EA[60-63]). The control vector created by Ivsr causesthe vper m to select the low-order 16
bytes of the result of shifting X ||'Y right by sh bytes.

Theseinstructions can also be used to rotate or shift the contents of avector register |eft lvsl
or right Ivsr by sh bytes. The sh valuesfor thelvdl instruction are shown in Table 4-17, and
those for the [vsr instruction are shown in Table 4-18.For rotating, the vector register to be
rotated should be specified as both the vA and the vB register for vper m. For shifting left,
the vB register for vperm should be aregister containing all zeros and vA should contain
the value to be shifted, and vice versa for shifting right. For further examples on how to
align the data see Section 3.1.6, “Quad-Word Data Alignment.” The default byte and bit

4-28 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

ordering is big-endian as in the PowerPC architecture; see Section 3.1.2.2, “Little-Endian
Byte Ordering,” for information about little-endian byte ordering.

Table 4-16 summarizes the vector alignment instructions.
Table 4-16. Vector Load Instructions Supporting Alignment

Name Mnemonic | Syntax Operation
Load Vector for Ivsl vD,rA,rB | The EA is the sum (rA|0) + (rB). The EA[60-63] = sh, then based
Shift Left onTable 4-17, place the value in vD
Load Vector for Ivsr vD,rA,rB | The EA is the sum (rA|0) + (rB). The EA[60-63] = sh, then based on
Shift Right Table 4-18, place the value in vD

Table 4-17. Shift Values for lvsl Instruction

Shift (sh) vD[0-127]
0x0 0x000102030405060708090A0BOCODOEOF
Ox1 0x0102030405060708090A0BOCODOEOF10
0x2 0x02030405060708090A0BOCODOEOF1011
0x3 O0xODOEOF101112131415161718191A1B1C
0x4 0x0405060708090A0BOCODOEOF10111213
0x5 0x05060708090A0BOCODOEOF1011121314
0x6 0x060708090A0BOCODOEOF101112131415
0x7 0x0708090A0BOCODOEOF10111213141516
0x8 0x08090A0BOCODOEOF1011121314151617
0x9 0x090A0BOCODOEOF101112131415161718
OxA 0xOAOBOCODOEOF10111213141516171819
0xB 0xOBOCODOEOF101112131415161718191A
0xC 0xOCODOEOF101112131415161718191A1B
0xD O0xODOEOF101112131415161718191A1B1C
OXE OxOEOF101112131415161718191A1B1C1D
OxF 0x0F101112131415161718191A1B1C1D1E
Table 4-18. Shift Values for Ivsr Instruction
Shift (sh) vD[0-127]
0x0 0x101112131415161718191A1B1C1D1E1F
0x1 0x0F101112131415161718191A1B1C1D1E
0x2 O0xOEOF101112131415161718191A1B1C1D
0x3 O0xODOEOF101112131415161718191A1B1C
0x4 0xOCODOEOF101112131415161718191A1B
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-29

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-18. Shift Values for lvsr Instruction (continued)

Shift (sh) vD[0-127]
0x5 0xOBOCODOEOF101112131415161718191A
0x6 0XOAOBOCODOEOF10111213141516171819
0x7 0x090A0BOCODOEOF101112131415161718
0x8 0x08090A0BOCODOEOF1011121314151617
0x9 0x0708090A0BOCODOEOF10111213141516
OXA 0x060708090A0BOCODOEOF101112131415
0xB 0x05060708090A0BOCODOEOF1011121314
0xC 0x0405060708090A0BOCODOEOF10111213
0xD 0x030405060708090A0BOCODOEOF101112
OXE 0x02030405060708090A0BOCODOEOF1011
OXF 0x0102030405060708090A0BOCODOEOF10

4.2.3.4 \Vector Store Instructions

For vector store instructions, the contents of vector register used as asource (vS) are stored
into the byte, half word, word or quad word in memory addressed by the effective address
(EA). Table 4-19 provides a summary of the vector store instructions.

Table 4-19. Integer Store Instructions

Name Mnemonic Syntax Operation
Store stvebx vS,rA,rB | The EA is the sum (rA|0) + (rB). Store the contents of the low-order bits of
Vector stvehx vS into the integer in memory addressed by the EA.
I?:]et;ir;t stvewx Because memory needs to stay aligned, the EA is set to default to
Indexed alignment:
[b,h,w] For b, byte, integer length = 8 bits =1 byte,
For h, half word, integer length = 16 bits = 2 bytes, EA[62—-63] is set to Ob0
For w, word, integer length = 32 bits = 4 bytes, EA[61-63] is set to 0b00
4-30 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-19. Integer Store Instructions (continued)

Name Mnemonic Syntax Operation
Store stvx vS,rA,rB | The EA is the sum (rA|0) + (rB). Store the contents of vS into the quad word
Vector in memory addressed by the EA.
Indexed For g, quad word, integer length = 64 bits = 4 bytes, the EA[60—-63] is set to
0b0000
LRU=0

If the processor is in little-endian mode, store the contents of vS[64-127]
into the double word in memory addressed by EA, and store the contents of
vS[0-63] into the double word in memory addressed by EA+8.

Store stvxl vD,rA,rB | The EAis the sum (rA|0) + (rB). Store the contents of vS into the quad word
Vector in memory addressed by the EA.
Indexed

For d, double word, integer length=64 bits = 4 bytes, the EA[60-63] is set to
0b0000

LRU =1, least recently used, hints that the quad word in the memory
addressed by EA will probably not be needed again by the program in the
near future.

LRU

If the processor is in little-endian mode, store the contents of vS[64-127]
into the double word in memory addressed by EA, and store the contents of
vS[0-63] into the double word in memory addressed by EA+8.

4.2.4 Control Flow

AltiVec instructions can be freely intermixed with existing PowerPC instructions to form a
complete program. AltiVec instructions do provide a vector compare and select mechanism
to implement conditional execution as a mechanism to control data flow in AltiVec
programs. And AltiVec vector compare instructions can update the condition register thus
providing the communication from AltiVec execution unitsto PowerPC branch instructions
necessary to modify program flow based on vector data.

4.2.5 Vector Permutation and Formatting Instructions

Vector pack, unpack, merge, splat, permute, and select can be used to accelerate various
vector math and vector formatting. Details of the various instructions follow.

4.2.5.1 Vector Pack Instructions

Half-word vector pack instructions (vpkuhum, vpkuhus, vpkshus, vpkshss) truncate the
sixteen half words from two concatenated source operands producing a single result of
sixteen bytes (quad word) using either modulo(28), 8-bit signed-saturation, or 8-hit
unsigned-saturation to perform the truncation. Similarly, word vector pack instructions
(vpkuwum, vpkuwus, vpkswus, and vpksws) truncate the eight words from two
concatenated source operands producing a single result of eight half words using

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-31

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec UISA Instructions

modulo(2"16), 16-bit signed-saturation, or 16-bit unsigned-saturation to perform the

truncation.

One special form of Vector Pack Pixel (vpkpx) instruction packs eight 32-bit (8/8/8/8)
pixels from two concatenated source operands into a single result of eight 16-bit 1/5/5/5
0RGB pixels. The least significant bit of the first 8-bit element becomes the 1-bit a field,
and each of the three 8-bit R, G, and B fields are reduced to 5 bits by ignoring the 3 Isbs.

Table 4-20 describes the vector pack instructions.

Table 4-20. Vector Pack Instructions

Name Mnemonic Syntax Operation
Vector Pack | vpkuhum vD, VA, vB | Concatenate the low-order unsigned integers of vA and the low-order
Unsigned vpkuwum unsigned integers of vB and place into vD using unsigned modulo arithmetic.
Integer [h,w] VA is placed in the lower order double word of vD and vB is placed into the
Unsigned higher order double word of vD.
Modulo For h, half word, integer length = 16 bits = 2 bytes, eight unsigned integers,
in other words the 8 low-order bytes of the half words from vA and vB
For w, word, integer length = 32 bits = 4 bytes, four unsigned integers, in
other words the 4 low-order half words of the words from vA and vB
Vector Pack | vpkuhus vD, VA, vB | Concatenate the low-order unsigned integers of vA and the low-order
Unsigned vpkuwus unsigned integers of vB and place into vD using unsigned saturate clamping
Integer[h,w] mode. VA is placed in the lower order double word of vD and vB is placed
Unsigned into the higher order double word of vD.
Saturate For h, half word, integer length = 16 bits = 2 bytes, eight unsigned integers,
in other words the 8 low-order bytes of the half words from vA and vB
For w, word, integer length = 32 bits = 4 bytes,four unsigned integers, in
other words the 4 low-order words of the half words from vA and vB
Vector Pack vpkshus vD, VA, vB | Concatenate the low-order signed integers of vA and the low-order signed
Signed vpkswus integers of vB and place into vD using unsigned saturate clamping mode. vA
Integer [h,w] is placed in the lower order double word of vD and vB is placed into the
Unsigned higher order double word of vD.
Saturate For h, half word, integer length = 16 bits = 2 bytes, eight signed integers, in
other words the 8 low-order bytes of the half word from vA and vB
For w, word, integer length = 32 bits = 4 bytes, four signed integers, in other
words the 4 low-order half words of the words from vA and vB
Vector Pack vpkshss vD, VA, vB | Concatenate the low-order signed integers of vA and the low-order signed
Signed vpkswss integers of vB are concatenated and place into vD using signed saturate
Integer [h,w] clamping mode. VA is placed in the lower order double word of vD and vB is
Signed placed into the higher order double word of vD.
Saturate For h, half word, integer length = 16 bits = 2 bytes, eight signed integers, in
other words the 8 low-order bytes of the half word from vA and vB
For w, word, integer length = 32 bits = 4 bytes, four signed integers, in other
words the 4 low-order half words of the words from vA and vB
4-32 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec UISA Instructions

Table 4-20. Vector Pack Instructions (continued)

Name

Mnemonic

Syntax

Operation

Vector Pack
Pixel

vpkpx

vD, VA, vB

Each word element in vA and vB is packed to 16 bits and the half word is
placed into vD. Each word from vA and vB is packed to 16 bits in the
following order:

[bit 7 of the first byte (bit 7 of the word)]

[bits 0—4 of the second byte (bits 8—12 of the word)
[bits 0—4 of the third byte (bits 16—20 of the word)]
[bits 0—4 of the fourth byte (bits 24—28 of the word)]

VA half words are placed in the lower order double word of vD and vB half
words are placed into the higher order double word of vD.

For h, half word, integer length = 16 bits = 2 bytes, eight signed integers, in
other words the 8 low-order bytes of the half word from vA and vB

For w, word, integer length = 32 bits = 4 bytes, four signed integers, in other
words the 4 low-order half words of the words from vA and vB

4.2.5.2 Vector Unpack Instructions

Byte vector unpack instructions unpack the 8 low bytes (or 8 high bytes) of one source
operand into 8 half words using sign extension to fill the MSBs. Half word vector unpack
instructions unpack the 4 low half words (or 4 high half words) of one source operand into
4 words using sign extension to fill the MSbs.

A special purpose form of vector unpack is provided, the Vector Unpack Low Pixel
(vupklpx) and the Vector Unpack High Pixel (vupkhpx) instructions for 1/5/5/5 aRGB
pixels. The 1/5/5/5 pixel vector unpack, unpacksthe four low 1/5/5/5 pixels (or four 1/5/5/5
high pixels) into four 32-bit (8/8/8/8) pixels. The 1-bit a element in each pixel is sign
extended to 8 bits, and the 5-bit R, G, and B elements are each zero extended to 8 bits.

Table 4-21 describes the unpack instructions.

MOTOROLA

Chapter 4. Addressing Modes and Instruction Set Summary 4-33

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-21. Vector Unpack Instructions

Name Mnemonic Syntax Operation

Vector vupkhsb vD, vB Each signed integer element in the high order double word of vB is sign
UnpackHigh | vupkhsh extended to fill the MSBs in a signed integer and then is placed into vD.

Signed

For b, byte, integer length = 8 bits = 1 byte, eight signed bytes from the high
order double word of vB are unpacked and sign extended to 8 half words
into vD.

Integer [b,h]

For h, half word, integer length = 16 bits = 2 bytes, eight signed half words
from the high order double word of vB are unpacked and sign extended to
4 words into vD

Vector vupkhpx vD, vB Each half-word element in the high order double word of vB is unpacked to
Unpack High produce a 32-bit word that is then placed in the same order into vD.
Pixel

A half-word element is unpacked to 32 bits by concatenating, in order, the
results of the following operations.

sign-extend bit O of the half word to 8 bits
zero-extend bits 1-5 of the half word to 8 bits
zero-extend bits 6—-10 of the half word to 8 bits
zero-extend bits 11-15 of the half word to 8 bits

Vector vupkisb vD, vB Each signed integer element in the low-order double word of vB is sign
Unpack Low vupkish extended to fill the MSBs in a signed integer and then is placed into vD.
Signed

For b, byte, integer length = 8 bits = 1 byte, eight sighed bytes from the
low-order double word of vB are unpacked and sign extended to 8 half
words into vD.

Integer [b,h]

For h, half word, integer length = 16 bits = 2 bytes, eight signed half words
from the low-order double word of vB are unpacked and sign extended into
4 words in vD

Vector vupklpx vD, vB Each half-word element in the low-order double word of vB is unpacked to
Unpack Low produce a 32-bit word that is then placed in the same order into vD.
Pixel

A half-word element is unpacked to 32 bits by concatenating, in order, the
results of the following operations.

sign-extend bit O of the half word to 8 bits
zero-extend bits 1-5 of the half word to 8 bits
zero-extend bits 6—-10 of the half word to 8 bits
zero-extend bits 11-15 of the half word to 8 bits

4.2.5.3 Vector Merge Instructions

Byte vector mergeinstructions interleave the 8 low bytes (or 8 high bytes) from two source
operands producing a result of 16 bytes. Similarly, half-word vector merge instructions
interleave the 4 low half words (or 4 high half words) of two source operands producing a
result of 8 half words, and word vector merge instructions interleave the 2 low words (or 2
high words) from two source operands producing a result of 4 words. The vector merge
instruction has many uses, notable among them is a way to efficiently transpose SIMD
vectors. Table 4-22 describes the merge instructions.

4-34 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-22. Vector Merge Instructions

Name Mnemonic Syntax Operation

Vector vmrghb vD, VA, vB | Each integer element in the high order double word of VA is placed into the

Merge vmrghh low-order integer element in vD. Each integer element in the high order
High vmrghw double word of vB is placed into the high order integer element in vD.

Integer

For b, byte, integer length = 8 bits = 1 byte, 8 bytes from the high order
double word of vA are placed into the low-order byte of each half word in vD
and 8 bytes from the high order double word of vB are placed into the high
order byte of each half word in vD.

[b,h,w]

For h, half word, integer length = 16 bits = 2 bytes, 4 half words from the high
order double word of vA are placed into the low-order half word of each word
in vD and 4 half words from the high order double word of vB are placed into
the high order half word of each word in vD.

For w, word, integer length = 32 bits = 4 bytes, 2 words from the high order
double word of vA are placed into the low-order word of each double word in
vD and 2 words from the high order double word of vB are placed into the
high order word of each double word in vD.

Vector vmrglb vD, VA, vB | Each integer element in the low-order double word of VA is placed into the
Merge Low vmrglh low-order integer element in vD. Each integer element in the low-order
Integer vmrglw double word of vB is placed into the high order integer element in vD.

[o.h.w] For b, byte, integer length = 8 bits = 1 byte, 8 bytes from the low-order double

word of VA are placed into the low-order byte of each half word in vD and 8
bytes from the low-order double word of vB are placed into the high order
byte of each half word in vD.

For h, half word, integer length = 16 bits = 2 bytes, 4 half words from the
low-order double word of vA are placed into the low-order half word of each
word in vD and 4 half words from the low-order double word of vB are placed
into the high order half word of each word in vD.

For w, word, integer length = 32 bits = 4 bytes, 2 words from the low-order
double word of VA are placed into the low-order word of each double word in
vD and 2 words from the low-order double word of vB are placed into the
high order word of each double word in vD.

4.2.5.4 Vector Splat Instructions

When a program needs to perform arithmetic vector, the vector splat instructions can be
used in preparation for performing arithmetic for which one source vector is to consist of
elements that all have the same value (for example, multiplying all elements of a Vector
Register by a constant). Vector splat instructions can be used to move data where it is
required. For example to multiply all elements of avector register by a constant, the vector
splat instructions can be used to splat the scalar into the vector register. Likewise, when
storing ascalar into an arbitrary memory location, it must be splatted into a vector register,
and that register must be specified as the source of the store. This will guarantee that the
data appears in al possible positions of that scalar size for the store. Table 4-23 describes
the vector splat instructions.

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-35

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-23. Vector Splat Instructions

Name Mnemonic Syntax Operation

Vector vspltb vD, vB, UIMM | Replicate the contents of element UIMM in vB and place into each

Splat vsplth element in vD.

Ir;)t(;ger vspltw For b, byte, integer length = 8 bits = 1 byte, each element is a byte.

[o.h.w] For h, half word, integer length = 16 bits = 2 bytes, each element is a half
word.
For w, word, integer length = 32 bits = 4 bytes, 2 words each element is a
word.

Vector vspltisb vD, SIMM Sign-extend the value of the SIMM field to the length of the element and

Splat vspltish replicate that value and place into each element in vD.

Imsmedlzte vspltisw For b, byte, integer length = 8 bits = 1 byte, each element is a byte.
Inlger;)eer For h, half word, integer length = 16 bits = 2 bytes, each element is a half
[b,hw] word.

For w, word, integer length = 32 bits = 4 bytes, 2 words each element is a
word.

4.2.5.5 Vector Permute Instruction

Permute instructions alow any byte in any two source vector registersto be directed to any
byte in the destination vector. The fields in athird source operand specify from which field
in the source operands the corresponding destination field will be taken. The Vector
Permute (vperm) instruction is a very powerful one that provides many useful functions.
For example, it provides a good way to perform table-lookups and data alignment
operations. An example of how to use the command in aligning data see Section 3.1.6,
“Quad-Word Data Alignment.” Table 4-24 describes the vector permute instruction.

Table 4-24. Vector Permute Instruction

Name Mnemonic Syntax Operation
Vector vperm vD, VA,vB,vC |vC specifies which bytes from vA and vB are to be copied and placed
Permute into the byte elements in vD.

4.2.5.6 Vector Select Instruction

Dataflow in the vector unit can be controlled without branching by using avector compare
and the vector select (vsel) instructions. In this use, the compare result vector is used
directly asamask operand to vector select instructions. The vsel instruction selectsonefield
from one or the other of two source operands under control of its mask operand. Use of the
TRUE/FALSE compare result vector with select in this manner produces a two instruction
equivalent of conditional execution on a per-field basis. Table 4-25 describes the vsel
instruction.

4-36 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

Table 4-25. Vector Select Instruction

Name Mnemonic Syntax Operation
Vector vsel vD,vA,vB,vC | For each bit, compare the value in vC to the value Ob0 and if it equals Ob0
Select then load vD with vA's corresponding bit value otherwise compare the value

in vC to the value Obl and if it equals Ob1 then load vD with vB’s
corresponding bit value.

4.25.7 Vector Shift Instructions

The vector shift instructions shift the contents of a vector register or of a pair of vector
registers left or right by a specified number of bytes (vslo, vsro, vsldoi) or bits (vsl, vsr).
Depending on the instruction, this shift count is specified either by low-order bits of a
vector register or by an immediate field in the instruction. In the former case the low-order
7 bits of the shift count register give the shift count in bits (0 < count < 127). Of these 7 bits,
the high-order 4 bits give the number of complete bytes by which to shift and are used by
vslo and vsr o; the low-order 3 bits give the number of remaining bits by which to shift and
are used by vsl and vsr.

There are two methods of specifying an inter-element shift or rotate of two source vector
registers, extracting 16 bytes astheresult vector. Thereisaso amethod for shifting asingle
source vector register left or right by any number of bits.

Table 4-26 describes the various vector shift instructions.
Table 4-26. Vector Shift Instructions

Name Mnemonic Syntax Operation
Vector Shift Left vsl vD,vA,vB Shift vA left by the 3 Isbs of vB, and place the result into vD
If vB value in invalid, the default result is boundely undefined
Vector Shift Right vsr vD,vA,vB Shift vA right by the 3 Isbs of vB, and place the result into vD
If vB value in invalid, the default result is boundely undefined
Vector Shift Left vsldoi vD,vA,vB,SH | Shift vB left by the 3 Isbs of SH value and then OR with vA, place
Double by Octet the result is into vD
Immediate If vB value in invalid, the default result is 0
Vector Shift Left by vslo vD,vA,vB Shift vA left by the 3 Isbs of vB, and place the result into vD
Octet If vB value in invalid, the default result is 0bO00
Vector Shift Right VSro vD,vA,vB Shift vA right by the 3 Isbs of vB, and place the result into vD
by Octet If vB value in invalid, the default result is 0b000
4.2.5.7.1 Immediate Interelement Shifts/Rotates

The Vector Shift Left Double by Octet Immediate (vsidoi) instruction provides the basic
mechanism that can be used to provide inter-element shifts and/or rotates. Thisinstruction
islike avperm, except that the shift count is specified as a literal in the instruction rather

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-37
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

than asacontrol vector in another vector register, asisrequired by vper m. Theresult vector
consists of theleft-most 16 bytes of the rotated 32-byte concatenation of vA:vB, where shift
(SH) is the rotate count. Table 4-27 below enumerates how various shift functions can be
achieved using the vsidoi instruction.

Table 4-27. Coding Various Shifts and Rotates with the vsidoi Instruction

To Get This: Code This:

Operation sh Instruction Immediate VA vB
Rotate left double 0-15 vsidoi 0-15 MSV LSV
Rotate left double 16-31 |vsidoi mod16(SH) LSV MSV
Rotate right double 0-15 vsidoi 16-sh MSV LSV
Rotate right double 16-31 |vsidoi 16—mod16(SH) LSV MSV
Shift left single, zero fill 0-15 vsidoi 0-15 MSV 0x0
Shift right single, zero fill 0-15 vsidoi 16-SH 0x0 MSV
Rotate left single 0-15 vsidoi 0-15 MSV =VA
Rotate right single 0-15 vsidoi 16-SH MSV =VA

4.25.7.2 Computed Interelement Shifts/Rotates

The Load Vector for Shift Left (Ivdl) instruction and Load Vector for Shift Right (lvsr)
instruction are supplied to assist in shifting and/or rotating vector registers by an amount
determined at run time. The input specifications have the same form as the vector load and
store instructions, that is, it uses register indirect with index addressing mode(r A|O +rB).
This is because one of their primary purposes is to compute the permute control vector
necessary for post-load and pre-store shifting necessary for dealing with misaligned
vectors.

This Ivdl instruction can be used to align a big-endian misaligned vector after loading the
(aligned) vectors that contain its pieces. The Ivd instruction can be used to misalign a
vector register for use in a read-modify-write sequence that will store an misaligned
little-endian vector.

Thelvsr instruction can be used to align alittle-endian misaligned vector after loading the
(aligned) vectors that contain its pieces. The Ivd instruction can be used to misalign a
vector register for use in a read-modify-write sequence that will store an misaligned
big-endian vector.

For an example on how the Ivdl instruction is used to align avector in big-endian mode see
Section 3.1.6.1, “Accessing a Misaligned Quad Word in Big-Endian Mode.” For an
example on how lvsr is used to align a vector in little-endian mode see Section 3.1.6.2,
“Accessing a Misaligned Quad Word in Little-Endian Mode.”

4-38 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec UISA Instructions

4.25.7.3 Variable Interelement Shifts

A vector register may be shifted left or right by a number of bits specified in a vector
register. This operation is supported with four instructions, two for right shift and two for
left shift.

The Vector Shift Left by Octet (vslo) and Vector Shift Right by Octet (vsro) instructions
shift a vector register from 0 to 15 bytes as specified in bits 121-124 of another vector
register. The Vector Shift Left (vsl) and Vector Shift Right (vsr) instructions shift a vector
register from O to 7 bits as specified in another vector register (the shift count must be
specified in the three Isbs of each byte in the vector and must be identical in all bytes or the
result is boundedly undefined). In all of these instructions, zeros are shifted into vacated
element and bit positions.

Used sequentially with the same shift-count vector register, these instructions will shift a
vector register left or right from 0 to 127 bits as specified in bits 121-127 of the shift-count
vector register. For example:

vsl o VZ, VX, VY
vsplth VY, VY, 15
vsl vz, VZ, VY

will shift vX by the number of bits specified in vY and place the resultsin vZ.

With these instructions a full double-register shift can be performed in seven instructions.
The following code will shift vW||vX left by the number of bits specified invY placing the
result in vZ:

vsl o t1, VW VY ; shift the nost significant. register left
vspltb VY, VY, 15

vsl t1, t1, VY

vsububm VY, VO, VY ; adjust count for right shift (V0=0)
VSro t2, VX, WY ; right shift |east sign. register
vVsr t2, t2, VWY

vor VzZ, t1, t2 ; merge to get the final result

4.2.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the PowerPC condition
register (CR), machine state register (MSR), and special-purpose registers (SPRs). See
Chapter 4, “Addressing Mode and Instruction Set Summary,” in the Programming
Environments Manual for 32-Bit Implementations of the PowerPC Architecture, for
information about the instructions used for reading from and writing to the MSR and SPRs.

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-39

For More Information On This Product,
Go to: www.freescale.com

odAd

Freescale Semiconductor, Inc.
AltiVec VEA Instructions
4.2.6.1 AltiVec Status and Control Register Instructions

Table 4-28 summarizestheinstructionsfor reading from or writing to theVector Status and
Control Register (VSCR). For more information on VSCR see section in Section 2.3.2,
“Vector Status and Control Register (VSCR).”

Table 4-28. Move to/from Condition Register Instructions

Name Mnemonic Syntax Operation
Move to Vector Status and Control Register | mtvscr CRM,rS Place the contents of vB into VSCR.
Move from Vector Status and Control mfvscr vB Place the contents of VSCR into vB.
Register

4.2.7 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for
some of the most frequently used operations (such as no-op, load immediate, |oad address,
move register, and complement register). Assemblers could provide the simplified
mnemonics listed below. Programs written to be portable across the various assemblers for
PowerPC architecture should not assume the existence of mnemonics not described in this
document.

Simplified mnemonicsare provided for the Data Stream Touch (dst) and Data Stream Touch
for Store (dstst) instructions so that they can be coded with the transient indicator as part
of the mnemonic rather than as a numeric operand. Similarly, simplified mnemonics are
provided for the Data Stream Stop (dss) instruction so that it can be coded with the all
streams indicator is part of the mnemonic. These are shown as examples with the
instructions in Table 4-29.

Table 4-29. Simplified Mnemonics for Data Stream Touch (dst)

Operation

Simplified Mnemonic

Equivalent to

Data Stream Touch (non-transient)

dst rA, rB, STRM

dst rA, rB, STRM,0

Data Stream Touch Transient

dstt rA, rB, STRM

dst rA, rB, STRM,1

Data Stream Touch for Store (non-transient)

dstst rA, rB, STRM

dstst rA, rB, STRM,0

Data Stream Touch for Transient

dststt rA, rB, STRM

dststt rA, rB, STRM,1

Data Stream Stop (one stream)

dss STRM

dss STRM,0

Data Stream Stop All

dssall

dss 0,1

4.3 AltiVec VEA Instructions

PowerPC virtual environment architecture (VEA) describes the semantics of the memory
model that can be assumed by software processes, and includes descriptions of the cache
model, cache-control instructions, address aliasing, and other related issues.

4-40 AltiVec Technology Programming Environments Manual MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec VEA Instructions

I mplementations that conform to the VEA also adhereto the UISA, but may not necessarily
adhereto the OEA. For further details see Chapter 4, “Addressing Mode and Instruction Set
Summary,” in the Programming Environments Manual for 32-Bit Implementations of the
Power PC Architecture.

This section describes the additional AltiVec instructions defined for the VEA.

4.3.1 Memory Control Instructions—VEA

Memory control instructions include the following types:

(ORS|

Cache management instructions (user-level and supervisor-level)
Segment register manipulation instructions

Segment lookaside buffer management instructions

Trandation lookaside buffer (TLB) management instructions

This section describes the user-level cache management instructions defined by the VEA.
See Chapter 4, “Addressing Mode and Instruction Set Summary,” in Programming
Environments Manual for 32-Bit Implementations of the Power PC Architecture for more
information about supervisor-level cache, segment register manipulation, and TLB
management instructions.

4.3.2 User-Level Cache Instructions—VEA

The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches if they are implemented. See Chapter 5, “Cache Model and
Memory Coherency,” in The Programming Environments Manual for 32-Bit

I mplementations of the Power PC Architecture for more information about cache topics.

Bandwidth between the processor and memory is managed explicitly by the programmer
through the use of cache management instructions. These instructions give software away
to communicate to the cache hardware how it should prefetch and prioritize writeback of
data. The principal instruction for this purpose is a software directed cache prefetch
instruction called Data Stream Touch (dst). Other related instructions are provided for
complete control of the software directed cache prefetch mechanism.

Table 4-30 summarizes the directed prefetch cache instructions defined by the VEA. Note W
that these instructions are accessible to user-level programs. See Section5.2.1,
“ Software-Directed Prefetch for further details on the prefetch cache instructions.

MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-41

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec VEA Instructions

Table 4-30. User-Level Cache Instructions

Name

Mnemonic

Syntax

Operation

Data
Stream
Touch

dst

rA,rB,STRM, T

This instruction associates the data stream specified by the contents of rA
and rB with the stream ID specified by STRM.

The specified data stream is defined by the following.

EA: (rA), where rA#0

unit size: (rB)[3-7] if (rB)[3-7] # O; otherwise 32

count: (rB)[8-15] if (rB)[8-15] #0; otherwise 256

stride: (rB)[16—-31] if (rB)[16—31] # O; otherwise 32768
The T bit of the instruction indicates whether the data stream is likely to be
stored into fairly frequently in the near future (T=0) or to be transient (T=1).
If rA=0, the instruction form is invalid.

See Section 5.2.1.1, “Data Stream Touch (dst),” for further details on the dst
instruction.

Data
Stream
Touch

dstt

rA,rB,STRM, T

This instruction associates the data stream specified by the contents of
registers rA and rB with the stream ID specified by STRM.

This instruction is a hint that performance will probably be improved if the
cache blocks containing the specified data stream are not fetched into the
data cache, because the program will probably not load from the
stream.That is, the data stream will be relatively transient in nature. That is,
it will have poor locality and is likely to be referenced a very few times or
over a very short period of time. The memory subsystem can use this
persistent/transient knowledge to manage the data as is most appropriate
for the specific design of the cache/memory hierarchy of the processor on
which the program is executing. An implementation is free to ignore dstt, in
that case it should simply be executed as a dst. However, software should
always attempt to use the correct form of dst or dstt regardless of whether
the intended processor implements dstt. In this way the program will
automatically benefit when run on processors that support dstt.

The specified data stream is defined by the following.

EA: (rA), where rA£0

unit size: (rB)[3—7] if (rB)[3—7] #0; otherwise 32

count: (rB)[8-15] if (rB)[8—15] # 0; otherwise 256

stride: (rB)[16-31] if (rB)[16—31]# O; otherwise 32768
The T bit of the instruction indicates whether the data stream is likely to be
accessed into fairly frequently in the near future (T=0) or to be transient
(T=1).

If rA=0, the instruction form is invalid.

See Section 5.2.1.2, “Transient Streams,” for further details on the dstt
instruction.

4-42

AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec VEA Instructions

Table 4-30. User-Level Cache Instructions (continued)

Name Mnemonic Syntax Operation
Data dstst rA,rB,STRM,T | This instruction associates the data stream specified by the contents of
Stream registers rA and rB with the stream ID specified by STRM.
Togtch for This instruction is a hint that performance will probably be improved if the
ore cache blocks containing the specified data stream are fetched into the data
(non-tran . .
ent cache, because the program will probably soon access into the stream, and
sient) that prefetching from any data stream that was previously associated with
the specified stream ID is no longer needed. The hint is ignored for blocks
that are caching inhibited.
The specified data stream is defined by the following.
EA: (rA), where rA#£0
unit size: (rB)[3-7] if (rB)[3-7] # O; otherwise 32
count: (rB)[8-15] if (rB)[8-15] # O; otherwise 256
stride: (rB)[16-31] if (rB)[16—31] # O; otherwise 32768
The T bit of the instruction indicates whether the data stream is likely to be
stored into fairly frequently in the near future (T=0) or to be transient (T=1).
If rA=0, the instruction form is invalid.
See Section 5.2.1.3, “Storing to Streams (dstst),” for further details on the
dstst instruction.
Data dststt rA,rB,STRM,T | This instruction associates the data stream specified by the contents of rA
Stream and rB with the stream ID specified by STRM.
Togtch for This instruction is a hint that performance will probably not be improved if
ore the cache blocks containing the specified data stream are fetched into the
data cache, because the program will probably not access the stream. That
is, the data stream will be relatively transient in nature. That is, it will have
poor locality and is likely to be referenced a very few times or over a very
short period of time. The memory subsystem can use this
persistent/transient knowledge to manage the data as is most appropriate
for the specific design of the cache/memory hierarchy of the processor on
which the program is executing.
The specified data stream is defined by the following.
EA: (rA), where rA# 0
unit size: (rB)[3-7] if (rB)[3-7] # O; otherwise 32
count: (rB)[8-15] if (rB)[8—15] # 0; otherwise 256
stride: (rB)[16-31] if (rB)[16—31] # 0; otherwise 32768
The T bit of the instruction indicates whether the data stream is likely to be
stored into fairly frequently in the near future (T=0) or to be transient (T=1).
If rA=0, the instruction form is invalid.
See Section 5.2.1.3, “Storing to Streams (dstst),” for further details on the
dststt instruction.
MOTOROLA Chapter 4. Addressing Modes and Instruction Set Summary 4-43

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec VEA Instructions

Table 4-30. User-Level Cache Instructions (continued)

Name

Mnemonic

Syntax

Operation

Data
Stream
Stop

dss

STRM,A

If A =0 and a data stream associated with the stream ID specified by STRM
exists, this instruction terminates prefetching of that data stream.

If A =1, this instruction terminates prefetching of all existing data streams.
(The STRM field is ignored.)

In addition, executing a dss instruction ensures that all memory accesses
associated with data stream prefetching caused by preceding dst and dstst
instructions that specified the same stream ID as that specified by the dss
instruction (A = 0), or by all preceding dst and dstst instructions (A = 1), will
be in group G1 with respect to the memory barrier created by a subsequent
sync instruction.

dss serves as both a basic and an extended mnemonic. The assembler will
recognize a dss mnemonic with two operands as the basic form, and a dss
mnemonic with one operand as the extended form.

Execution of a dss instruction causes address translation for the specified
data stream(s) to cease. Prefetch requests for which the effective address
has already been translated may complete and may place the
corresponding data into the data cache

See Section 5.2.1.4, “Stopping Streams,” for further details on the dss
instruction.

Data
Stream
Stop
All

dssall

Terminates prefetching of all existing data streams. All active streams may
be stopped.

If the optional data stream prefetch facility is implemented, dssall (extended
mnemonic for dss), to terminate any data stream prefetching requested by
the interrupted program, in order to avoid prefetching data in the wrong
context, consuming memory bandwidth fetching data that are not likely to be
needed by the other program, and interfering with data cache use by the
other program. The dssall must be followed by a sync, and additional
software synchronization may be required.

See Section 5.2.1.4, “Stopping Streams,” for further details on the dssall
instruction.

4-44

AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 5
Cache, Exceptions, and Memory
Management

This chapter summarizes details of AltiVec™ technology that pertain to cache and memory
management models. Note that AltiVec technology defines most of its instructions at the
user level (UISA). Because most AltiVec instructions are computational, thereislittle effect
on the VEA and OEA portions of the PowerPC architecture definition.

Because the AltiVec instruction set architecture (I1SA) uses 128-bit operands, additional
instructions are provided to optimize cache and memory bus use.

5.1 PowerPC Shared Memory v

To fully understand the data stream prefetch instructions for AltiVec, one needs a
knowledge of PowerPC architecture for shared memory. The PowerPC architecture
supportsthe sharing of memory between programs, between different instances of the same
program, and between processors and other mechanisms. It al so supports accessto memory
by one or more programs using different effective addresses. All these cases are considered
memory sharing. Memory is shared in blocks that are an integral number of pages.

When the same memory has different effective addresses, the addresses are called aliases.
Each application can be granted separate access privileges to aliased pages. For more
details on how the PowerPC architecture supports the sharing of memory see Chapter 5,
“Cache Model and Memory Coherency” in the Programming Environments Manual for
32-Bit Implementations of the Power PC Architecture.

5.2 AltiVec Memory Bandwidth Management U

The AltiVec ISA provides a way for software to speculatively load larger blocks of data
from memory. That is, bandwidth otherwise idle can be used to permit software to take
advantage of locality and reduces the number of system memory accesses.

MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Memory Bandwidth Management

5.2.1 Software-Directed Prefetch

Bandwidth between the processor and memory is managed explicitly by the programmer
using cache management instructions. These instructions let software indicate to the cache
hardware how to prefetch and prioritize data writeback. The principle instruction for this
purpose is a software-directed cache prefetch instruction, Data Stream Touch (dst),
described in the following section.

5.2.1.1 Data Stream Touch (dst)

The data stream prefetch facility permits a program to indicate that a sequence of units of
memory is likely to be accessed soon by memory access instructions. Such a sequence is
called a data stream or, when the context is clear, smply a stream. A data stream is defined
by the following:

» EA—The effective address of the first unit in the sequence
* Unit size—The number of quad words in each unit; O < unit size< 32
* Count—The number of unitsin the sequence; 0 < count < 256

» Stride—The number of bytes between the effective address of one unit in the
sequence and the effective address of the next unit in the sequence (that is, the
effective address of the nth unit in the sequenceisEA + (n - 1) x stride); (-32768 <
stride< 0 or 0 < stride < 32768)

The units need not be aligned on a particular memory boundary. The stride may be negative.

The dst instruction specifies a starting address, a block size (1-32 vectors), a number of
blocks to prefetch (1-256 blocks), and a signed stride in bytes (-32,768 to +32,768 bytes),
The 2-bit tag, specified as an immediate field in the opcode, identifies one of four possible
touch streams. The starting address of the stream is specified in rA (if rA = 0, the
instruction form is invalid). BlockSize, BlockCount, and BlockStride are specified in rB.
Do not confuse the term ‘ cache block’: the term ‘block’ always indicates a PowerPC cache
block.

The format of the r B register is shown in Figure 5-1.

000 BlockSize BlockCount Signed BlockStride

0 2 3 7 8 15 16 31

Figure 5-1. Format of rB in dst Instruction

Thereis no zero-length block size, block count, or block stride. A BlockSize of O indicates
32 vectors, a BlockCount of O indicates 256 blocks, and a BlockStride of O indicates
+32,768 bytes. Otherwise, these fields correspond to the numerical value of the size, count,
and stride. Do not specify strides smaller than 1 block (16 bytes).

5-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Memory Bandwidth Management

The programmer specifies block size in terms of vectors (16 bytes), regardless of the
cache-block size. Hardware automatically optimizes the number of cache blocksit fetches
to bring ablock into the cache. The number of cache blocks fetched into the cache for each
block is the fewest natural cache blocks needed to fetch the entire block, including the
effects of block misalignment to cache blocks, as shown in the following:

BlockSize + mod(BlockAddr,CacheBlockSize)
CacheBlockSize

CacheBlocksFetched = ceiling (

The address of each block in a stream is a function of the stream’s starting address, the
block stride, and the block being fetched. The starting address may be any 32-bit byte
address. Each block’s address is computed as afull 32-bit byte address from the following:

where n = {0 ... (BlockCount — 1)}

BlockAddr = (rA) + n (rB)1a_
n= (AN IBI631 oy i (1B) gy = 0) then ((B)ygg1 < 32768

The address of the first cache block fetched in each block isthat block’s address aligned to
the next lower natural cache-block boundary by ignoring log,(CacheBlockSize) least
significant bits (Isbs) (for example, for 32-byte cache-blocks, the five Isbs are ignored).
Cache blocks are then fetched sequentially forward until the entire block of vectors is
brought into the cache. An example of asix-block data stream is shown in Figure 5-2

|l Memory >
- Stream >
<_>{ BlockSize = (1B)g 7 BlockCount = (rB)g_15=6
0 1 2 3 4 5
‘4—»{ BlockStride = (rB)16-31 ﬁ
A BlockAddr, (n=3)
Starting Address = (rA)

Figure 5-2. Data Stream Touch

Executing a dst instruction notifies the cache/memory subsystem that the program will
soon need specified data. If bandwidth isavailable, the hardware starts|oading the specified
stream into the cache. To the extent that hardware can acquire the data, when the loads
requiring the data finally execute, the target data will be in the cache. Executing a second
dst to the tag of a stream in progress aborts the existing stream (at hardware's earliest
convenience) and establishes a new stream with the same stream tag ID.

The dst instruction is a hint to hardware and has no architecturally visible effects (in the
PowerPC UISA sense). The hardware is free to ignore it, to start the prefetch when it can,
to abort the stream at any time, or to prioritize other memory operations ahead of it. If a
stream is aborted, the program still functions properly, but subsequent |oads experience the
full latency of a cache miss.

MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Memory Bandwidth Management

The dst instruction does not introduce implementation problems like those of |oad/store
multiple/string instructions. Because dst does not affect the architectural state, it does not
cause interlock problems associated with load/store multiple/string instructions. Also, dst
does take exceptions and requires no complex recovery mechanism.

Touch instructions should be considered strong hints. Using them in highly speculative
situations could waste considerabl e bandwidth. Implementations that do not implement the
stream mechanism treat stream instructions (dst, dstt, dsts, dstst, dss, and dssall) as
no-ops. If the stream mechanism isimplemented, al four streams must be provided.

5.2.1.2 Transient Streams

The memory subsystem considers dst an indication that its stream data is likely to have
some reasonabl e degree of locality and be referenced several timesor over some reasonably
long period. Thisis called persistence. The Data Stream Touch Transient instruction (dstt)
indicates to the memory system that its stream datais transient, that is, it has poor locality
and islikely to be used very few times or only for avery short time. A memory subsystem
can use this knowledge to manage data for the processor’'s cache/memory design. An
implementation may ignore the distinction between transience and persistence; in that case,
dstt acts like dst. However, portable software should always use the correct form of dst or
dstt regardless of whether the intended processor makes that distinction.

5.2.1.3 Storing to Streams (dstst)

A dst instruction brings a cache block into the cache subsystem in a state most efficient for
subsequent reading of datafrom it (load). The companion instruction, Data Stream Touch
for Store (dstst), brings the cache block into the cache subsystem in a state most efficient
for subsequent writing to it (store). For example, in aMESI cache subsystem, adst might
bring a cache block in shared (S) state, whereas a dstst would bring the cache block in
exclusive (E) state to avoid a subsequent demand-driven bus transaction to take ownership
of the cache block so the store can proceed.

The dstst streams are the same physical streams as dst streams, that is, dstst stream tags
are aliases of dst tags. If not implemented, dstst defaultsto dst. If dst is not implemented,
it isano-op. The dststt instruction is atransient version of dstst.

Data stream prefetching of memory locations is not supported when bit 57 of the segment
table entry or bit O of the segment register (SR) is set. If adst or dstst instruction specifies
a data stream containing these memory locations, results are undefined.

5-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Memory Bandwidth Management

5.2.1.4 Stopping Streams

The dst instructions have a counterpart called Data Stream Stop (dss). A program can stop
any given stream prefetch by executing dss with that stream’s tag. This is useful when a
program speculatively starts a stream prefetch but later determines that the instruction
stream went the wrong way. The dss instruction can stop the stream so that no more
bandwidth iswasted. All active streams may be stopped by using dssall. Thisisuseful when
the operating system needs to stop all active streams (process switch), but does not know
how many streams are in progress.

Because dssall does not specify the number of implemented streams, it should always be
used instead of a sequence of dssinstructions to stop al streams.

Neither dss nor dssall is execution synchronizing; the time between when adssis issued
and the stream stops is not specified. Therefore, when software must ensure that the stream
is physically stopped before continuing (for example, before changing virtual memory
mapping), a special sequence of synchronizing instructions is required. The sequence can
differ for different situations, but the following sequence worksin all contexts:

dssal | ; stop all streans

sync ; insert a barrier in menory pipe

[wz Rn,... ; stick one nore operation in nmenory pipe
crpd Rn, Rn ;

bne- *-4 ; make sure | oad data is back

i sync ; wait for all previous instructions to

; conplete to ensure
; menmory pipe is clear and nothing is
; pending in the old context

Data stream prefetching for a given stream is terminated by executing the appropriate dss
instruction. The termination can be synchronized by executing a sync instruction after the
dssinstruction if the memory barrier created by sync orders all address trandlation effects
of the subsequent context-altering instructions. Otherwise, data dependencies are also
required. For example, the following instruction sequence terminates all data stream
prefetching before altering the contents of an segment register (SR):

dssal | ; stop all data stream prefetching
sync ; order dssall before | oad

[wz Ry, sr_y(Rx); | oad new SR val ue

m sr y, Ry calter rY

The mtsr instruction cannot be executed until the Iwz loads the SR value into rY. The
memory access caused by the lwz cannot be performed until the dssall instruction takes
effect (that is, until address tranglation stops for all data streams and all memory accesses
associated with data stream prefetches for which the effective address was transl ated before
the trandlation stops are performed).

MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Memory Bandwidth Management

5.2.1.5 Exception Behavior of Prefetch Streams

In general, exceptions do not cancel streams. Streams are sensitive to whether the processor
IS in user or supervisor mode (determined by MSR[PR]) and whether data address
trandation is used (determined by MSR[DR]). This alows prefetch streams to behave
predictably when an exception occurs.

Streams are suspended in real addressing mode (M SR[DR] = 0) and remain suspended until
tranglation isturned back on (MSR[DR] isset). A dst instruction issued while MSR[DR] =
0 produces boundedly undefined results.

A stream is suspended whenever the MSR[PR] is different from what it was when the dst
that established it was issued. For example, if adst isissued in user mode (MSR[PR] = 1),
the resulting stream is suspended when the processor enters supervisor mode (MSR[PR] =
0) and remains suspended until the processor returns to user mode. Conversaly, if the dst
were issued in supervisor mode, it is suspended if the machine enters user mode.

Because exceptions do not cancel streams automatically, the operating system must stop
streams explicitly when warranted, for example, when switching processes or changing
virtual memory context. Care must be taken if data stream prefetching is used in
supervisor-level state (MSR[PR] = 0).

After an exception istaken, the supervisor-level program that next changes M SR[DR] from
0 to 1 causes data-stream prefetching to resume for any data streams for which the
corresponding dst or dstst instruction was executed in supervisor mode; such streams are
called supervisor-level data streams. This program is unlikely to be the one that executed
the corresponding dst or dstst instruction and isunlikely to use the same addresstrang ation
context as that in which the dst or dstst was executed. Suspension and resumption of data
stream prefetching work more naturally for user level data streams, because the next
application program to be dispatched after an exception occurs is likely to be the most
recently interrupted program. An exception handler that changes the context in which data
addresses are translated may need to terminate data-stream prefetching for supervisor-level
data streams and to synchronize the termination before changing MSR[DR] to 1.

Although terminating al data stream prefetching in this case would satisfy the
requirements of the architecture, doing so would adversely affect the performance of
applications that use data-stream prefetching. Thus, it may be better for the operating
system to record stream IDs associated with any supervisor-level data streams and to
terminate prefetching for those streams only.

Cache effects of supervisor-level data-stream prefetching can also adversely affect
performance of applications that use data stream prefetching, as supervisor-level use of the
associated stream |D can take over an application’s data stream.

Data stream instructions cannot cause exceptions directly. Therefore, any event that would
cause an exception on anormal load or store, such as a page fault or protection violation,
Isinstead aborted and ignored.

5-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Memory Bandwidth Management

Suspension or termination of data stream prefetching for a given data stream need not
cancel prefetch requests for that data stream for which the effective address has been
trandated and need not cause data returned by such requests to be discarded. However, to
improve software’'s ability to pace data stream prefetching with data consumption, it may
be better to limit the number of these pending requests that can exist simultaneously.

5.2.1.6 Synchronization Behavior of Streams

Streams are not affected (stopped or suspended) by execution of any PowerPC
synchronization instructions (sync, isync, or eieio). This permits these instructions to be
used for synchronizing multiple processors without disturbing background prefetch
streams. Prefetch streams have no architecturally observabl e effects and are not affected by
synchronization instructions. Synchronizing the termination of data stream prefetching is
needed only by the operating system

5.2.1.7 Address Translation for Streams

Like dcbt and dcbtst instructions, dst, dstst, dstt, and dststt are treated as loads with
respect to address transl ation, memory protection, and reference and change recording.

Unlikedcbt and dcbtst instructions, stream instructionsthat cause a TLB miss cause apage
table search and the page descriptor to be loaded into the TLB. Conceptually, address
trand ation and protection checking is performed on every cache-block accessin the stream
and proceeds normally across page boundaries and TLB misses, terminating only on page
faults or protection violations that cause a DS| exception.

Stream instructions operate like normal PowerPC cache instructions (such as dcbt) with
respect to guarded memory; they are not subject to normal restrictions against prefetching
in guarded space because they are program-directed. However, speculative dst instructions
can not start a prefetch stream to guarded space.

If the effective address of a cache block within a data stream cannot be trandlated, or if
loading from the block would violate memory protection, the processor will terminate
prefetching of that stream. (Continuing to prefetch subsequent cache blocks within the
stream might cause prefetching to get too far ahead of consumption of prefetched data.) If
the effective address can be translated, a TLB miss can cause such termination, even on
implementations for which TLBs are reloaded in software.

5.2.1.8 Stream Usage Notes

A given data stream exists if adst or dstst instruction has been executed that specifies the
stream and prefetching of the stream has neither completed, terminated, or been supplanted.
Prefetching of the stream has completed, when all the memory locations within the stream
that will ever be prefetched as a result of executing the dst or dstst instruction have been
prefetched (for example, locations for which the effective address cannot be translated will

MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Memory Bandwidth Management

never be prefetched). Prefetching of the stream is terminated by executing the appropriate
dssinstruction; it is supplanted by executing another dst or dstst instruction that specifies
the stream I D associated with the given stream. Because there are four stream 1Ds, as many
asfour data streams may exist simultaneoudly.

The maximum block count of dst is small because of its preferred usage. It is not intended
for asingledst instruction to prefetch an entire data stream. Instead, dst instructions should
be issued periodically, for example on each loop iteration, for the following reasons:

» Short, frequent dst instructions better synchronize the stream with the consumption
of data.

» With prefetch closely synchronized just ahead of consumption, another activity is
less likely to inadvertently evict prefetched data from the cache beforeit is needed.

» The prefetch stream is restarted automatically after an exception (that could have
caused the stream to be terminated by the operating system) with no additional
complex hardware mechanisms needed to restart the prefetch stream.

Issuing new dst instructions to stream tag IDs in progress terminates old streams—dst
Instructions cannot be queued.

For example, when multiple dst instructions are used to prefetch a large stream, it would
be poor strategy to issue a second dst whose stream begins at the specified end of the first
stream before it was certain that the first stream had completed. This could terminate the
first stream prematurely, leaving much of the stream unprefetched.

Paradoxically, it would also be unwiseto wait for thefirst stream to compl ete beforeissuing
the second dst. Detecting completion of the first stream is not possible, so the program
would have to introduce a pessimistic waiting period before restarting the stream and then
incur the full start-up latency of the second stream.

The correct strategy isto issue the second dst well before the anticipated completion of the
first stream and begin it at an address overlapping the first stream by an amount sufficient
to cover any portion of the first stream that could not yet have been prefetched. Issuing the
second dst too early isnot aconcern because blocks prefetched by thefirst stream hit in the
cache and need not be refetched. Thus, even if issued prematurely and overlapped
excessively, the second dst rapidly advances to the point of prefetching new blocks. This
strategy allows a smooth transition from the first stream to the second without significant
breaks in the prefetch stream.

For the greatest performance benefit from data-stream prefetching, use the dst and dstst
(and dss) instructions so that the prefetched datais used soon after it isavailablein the data
cache. Pacing data stream prefetching with consumption increases the likelihood that
prefetched datais not displaced from the cache beforeit isused, and reduces the likelihood
that prefetched data displaces other data needed by the program.

5-8 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Memory Bandwidth Management

Specifying each logical data stream as a sequence of shorter data streams helps achieve the
desired pacing, even in the presence of exceptions, and address trandation failures. The
components of a given logical data stream should have the following attributes:

* Thesame stream I D should be associated with each component.

* The components should partially overlap (that is, the first part of a component
should consist of the same memory locations as the last part of the preceding
component).

* Thememory locationsthat do not overlap with the next component should be large
enough that a substantial portion of the component is prefetched. That is, prefetch
enough memory locations for the current component before it is taken over by the
prefetching being done for the next component.

5.2.1.9 Stream Implementation Assumptions

Some processors can treat dst instructions as no-ops. However, if a processor implements
dst, a minimum level of functionality is provided to create as consistent a programming
model across different machines as possible. A program can assume the following
functionality in adst instruction:
* Implements all four tagged streams
* Implements each tagged stream as a separate, independent stream with arbitration
for memory access performed on around-robin basis.
» Searchesthe table for each stream access that missesin the TLB.
» Does not abort streams on page boundary crossings
» Doesnot abort streams on exceptions (except DSI exceptions caused by the stream).
» Does not abort streams, or delay execution pending completion of streams, on
PowerPC synchronization instructions sync, isync, or eieo.

* Does not abort streams on TLB misses that occur on loads or stores issued
concurrently with running streams. However, a DSI exception from one of those
loads or stores may cause streams to abort.

5.2.2 Prioritizing Cache Block Replacement

Load Vector Indexed LRU (lvxI) and StoreVector Indexed LRU (stvxl) instructions provide
explicit control over cache block replacement by letting the programmer indicate whether
an access is likely to be the last reference made to the cache block containing this load or
store. The cache hardware can then prioritize replacement of this cache block over others
with older but more useful data.

Dataaccessed by anormal load or storeislikely to be needed more than once. Marking this
data as most-recently used (MRU) indicates that it should be a low-priority candidate for

MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-9

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
DSl Exception—Data Address Breakpoint

replacement. However, some data, such as that used in DSP multimedia algorithms, is
rarely reused and should be marked as the highest priority candidate for replacement.

Normal accesses mark data MRU. Data unlikely to be reused can be marked LRU. For
example, on replacing a cache block marked LRU by one of these instructions, a processor
may improve cache performance by evicting the cache block without storing it in
intermediate levels of the cache hierarchy (except to maintain cache consistency).

5.2.3 Partially Executed AltiVec Instructions

The OEA permits certain instructions to be partially executed when an alignment or DS
exception occurs. In the same way that the target register may be altered when
floating-point load instructions cause a DSl exception, if the AltiVec facility is
implemented, the target register (vD) may be altered when lvx or lvxl is executed and the
TLB entry isinvalidated before the access compl etes.

Exceptions cause data stream prefetching to be suspended for all existing data streams.
Prefetching for a given data stream resumes when control is returned to the interrupted
program, if the stream still exists (for example, the operating system did not terminate
prefetching for the stream).

5.3 DSI Exception—Data Address Breakpoint

A data address breakpoint register (DABR) match causes a DSl exception in
implementations that support the data breakpoint feature. When a DABR match occurs on
a non-AltiVec processor that support the PowerPC architecture, the DAR is set to any
effective address between and including the word (for a byte, half word, or word access)
specified by the effective address computed by the instruction and the effective address of
the last byte in the word or double word in which the match occurred. In processors that
support the AltiVec technology, this would include a quad-word access from an Ivx, IvxI,
stvx, or stvxl instruction to a segment or BAT area.

5.4 AltiVec Unavailable Exception (Ox00F20)

The AltiVec facility includes an additional instruction-caused, precise exception to those
defined by the OEA and discussed in Chapter 6, “Exceptions,” in the Programming
Environments Manual for 32-Bit | mplementations of the Power PC Architecture. An AltiVec
unavailable exception occurs when no higher priority exception exists (see Table 5-2), an
attempt is made to execute an AltiVec instruction, and MSR[VEC] = 0.

5-10 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Unavailable Exception (0x00F20)

Register settings for AltiVec unavailable exceptions are described in Table 5-1 and shown
in Figure 5-3.
Table 5-1. AltiVec Unavailable Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that caused the exception
SRR1 32-Bit
OLoaded with equivalent bits from the MSR
1-4Cleared

5-9Loaded with equivalent bits from the MSR
10-15Cleared
16-31 Loaded with equivalent bits from the MSR
Note that depending on the implementation, additional MSR bits may be copied to SRR1.

MSR SF 1 EE 0 SE 0 DR 0
ISF — PR 0 BE 0 RI 0
VEC O FP O FE1 O LE Set to value of ILE
POW 0 ME — IP —
ILE — FEO O IR 0
0 1 4 5 9 10 15
Setting After| MSR[0] 0000 MSR[5-9] 00_0000
Exception
16 31
Setting After MSR[16-31]
Exception

Figure 5-3. SRR1 Bit Settings after an AltiVec Unavailable Exception

When an AltiVec unavailable exception is taken, instruction execution resumes as offset
0x00F20 from the base address determined by MSR[IP].

The dst and dstst instructions are supported if MSR[DR] = 1. If either instruction is
executed when MSR[DR] = 0 (real addressing mode), results are boundedly undefined.

Conditions that cause this exception are prioritized among instruction-caused
(synchronous), precise exceptions as shown in Table5-2, taken from the section
“Exception Priorities,” in Chapter 6, “Exceptions,” in the Programming Environments
Manual for 32-Bit Implementations of the Power PC Architecture.

MOTOROLA Chapter 5. Cache, Exceptions, and Memory Management 5-11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec Unavailable Exception (0x00F20)

Table 5-2. Exception Priorities (Synchronous/Precise Exceptions)

Priority

Exception

31

Instruction dependent—When an instruction causes an exception, the exception mechanism waits for any
instructions prior to the excepting instruction in the instruction stream to complete. Any exceptions caused by
these instructions are handled first. It then generates the appropriate exception if no higher priority exception
exists when the exception is to be generated.
Note that a single instruction can cause multiple exceptions. When this occurs, those exceptions are ordered
in priority as indicated in the following:
A. Integer loads and stores
a. Alignment
b. DSI
c. Trace (if implemented)
B. Floating-point loads and stores
a. Floating-point unavailable
b. Alignment
c. DSl
d. Trace (if implemented)
C. Other floating-point instructions
a. Floating-point unavailable
b. Program—Precise-mode floating-point enabled exception
c. Floating-point assist (if implemented)
d. Trace (if implemented)
D. AltiVec loads and stores (if AltiVec facility implemented)
a. AltiVec unavailable
b. DSI
c. Trace (if implemented)
E. Other AltiVec Instructions (if AltiVec facility implemented)
a. AltiVec unavailable
b. Trace (if implemented)
F. The rfi and mtmsr
a. Program—Supervisor level Instruction
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented), for mtmsr only
If precise-mode IEEE floating-point enabled exceptions are enabled and FPSCR[FEX] is set, a program
exception occurs no later than the next synchronizing event.
G. Other instructions
a. These exceptions are mutually exclusive and have the same priority:
— Program: Trap
— System call (sc)
— Program: Supervisor level instruction
— Program: lllegal Instruction
b. Trace (if implemented)
F. ISI exception
The ISI exception has the lowest priority in this category. It is only recognized when all instructions prior to the
instruction causing this exception appear to have completed and that instruction is to be executed. The priority
of this exception is specified for completeness and to ensure that it is not given more favorable treatment. An
implementation can treat this exception as though it had a lower priority.

1 The exceptions are third in priority after system reset and machine check exceptions

5-12

AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 6
AltiVec Instructions

This chapter lists the AltiVec instruction set in aphabetical order by mnemonic. Note that
each entry includes the instruction format and a graphical representation of the instruction.
All the instructions are 32 bit and a description of the instruction fields and pseudocode
conventions are also provided. For more information on the AltiVec instruction set, refer to
Chapter 4 “Addressing Modes and I nstruction Set Summary.” For more information on the
PowerPC instruction set, refer to Chapter 8, “Instruction Set,” in the Programming
Environments Manual for 32-Bit Implementations of the Power PC Architecture.

6.1 Instruction Formats

AltiVec instructions are four bytes (32 bits) long and are word-aligned. AltiVec instruction
set architecture (ISA) has four operands, three source vectors, and one result vector. Bits
0-5 aways specify the primary opcode for AltiVec instructions. AltiVec ALU-type
instructions specify the primary opcode point 4 (ObOO_01 00). AltiVec load, store, and
stream prefetch instructions use secondary opcode in primary opcode 31 (Ob0O1_11 11).

Within a vector register, a byte, half-word, or word element are referred to as follows:
» Byte elements, each byte = 8 hits; in the pseudocode, n = 8 with atotal of 16

elements

» Half-word elements, each byte = 16 bits; in the pseudocode, n = 16 with atotal of 8
elements

» Word elements, each byte = 32 bits; in the pseudocode, n = 32 with atotal of 4
elements

Refer to Figure 1-3 for an example of how elements are placed in a vector register.

6.1.1 Instruction Fields

Table 6-1 describes the instruction fields used in the various instruction formats.

MOTOROLA Chapter 6. AltiVec Instructions 6-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

Table 6-1. Instruction Syntax Conventions

Field Description

OPCD (0-5) Primary opcode field

rA, A (11-15) Specifies a GPR to be used as a source or destination

rB, B (16-20) Specifies a GPR to be used as a source

Rc (31) Record bit

0 Does not update the condition register (CR).

1 For the optional AltiVec facility, set CR field 6 to control program flow as described in
Section 2.4.1, “PowerPC Condition Register”

VA (11-15) Specifies a vector register to be used as a source
vB (16-20) Specifies a vector register to be used as a source
vC (21-25) Specifies a vector register to be used as a source
vD (6-10) Specifies a vector register to be used as a destination
vS (6-10) Specifies a vector register to be used as a source

SHB (22-25) Specifies a shift amount in bytes.

SIMM (11-15) This immediate field is used to specify a (5-bit) signed integer.

UIMM (11-15) This immediate field is used to specify a 4-, 8-,12-, or 16-bit unsigned integer.

6.1.2 Notation and Conventions

The operation of some instructions is described by a semiformal language (pseudocode).
See Table 6-2 for alist of additional pseudocode notation and conventions used throughout
this section.

Table 6-2. Notation and Conventions

Notation/Convention Meaning
- Assignment
- NOT logical operator
doi=XtoY by Z Do the following starting at X and iterating to'Y by Z
Fint 2's complement integer add
“int 2's complement integer subtract
*ui Unsigned integer add
“ui Unsigned integer subtract
*ui Unsigned integer multiply
*si Signed integer add
“si Signed integer subtract
*si Signed integer multiply
6-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Instruction Formats

Table 6-2. Notation and Conventions (continued)

Notation/Convention Meaning

*sui Signed integer (first operand) multiplied by unsigned integer (second operand)
producing signed result

/ Integer divide

+ip Single-precision floating-point add

“fp Single-precision floating-point subtract

*p Single-precision floating-point multiply

*ip Single-precision floating-point divide

v fp Single-precision floating-point square root

<ui, Sui, >ui, Zui Unsigned integer comparison relations

<si, <si, Zsi, i Signed integer comparison relations

<tp, <fp, >fp, fp Single precision floating point comparison relations

Not equal

Zint Integer equal to

=i Unsigned integer equal to

=i Signed integer equal to

=t Floating-point equal to

X>>4,Y Shift X right by Y bits extending Xs vacated bits with zeros

X>>gY Shift X right by Y bits extending Xs vacated bits with the sign bit of X

X<<,Y Shift X left by Y bits inserting Xs vacated bits with zeros

I Used to describe the concatenation of two values (that is, 010 || 111 is the same
as 010111)

& AND logical operator

| OR logical operator

d,= Exclusive-OR, Equivalence logical operators (for example, (a = b) = (a L1 = b))

Obnnnn A number expressed in binary format.

oxnnnn A number expressed in hexadecimal format.

? Unordered comparison relation

X0 X zeros

X1 X ones

Xy X copies of Y

Xy bit Y of X

Xy:z bits Y through Z, inclusive, of X

LENGTH(x) Length of x, in bits. If x is the word “elemen,” LENGTH(X) is the length, in bits, of
the element implied by the instruction mnemonic.

MOTOROLA Chapter 6. AltiVec Instructions 6-3

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec Technology Programming Environments Manual

Table 6-2. Notation and Conventions (continued)

Notation/Convention

Meaning

ROTL(x,y)

Result of rotating x left by y bits

UltoUImod(X,Y)

Chop unsigned integer X- to Y-bit unsigned integer

UltoUlsat(X,Y)

Result of converting the unsigned-integer x to a y-bit unsigned-integer with
unsigned-integer saturation

SltoUlsat(X,Y)

Result of converting the signed-integer x to a y-bit unsigned-integer with
unsigned-integer saturation

SltoSImod(X,Y)

Chop integer X- to Y-bit integer

SltoSlsat(X,Y)

Result of converting the signed-integer x to a y-bit signed-integer with
signed-integer saturation

RndToNearFP32

The single-precision floating-point number that is nearest in value to the
infinitely-precise floating-point intermediate result x (in case of a tie, the even
single-precision floating-point value is used).

RndToFPInt32Near

The value x if x is a single-precision floating-point integer; otherwise the
single-precision floating-point integer that is nearest in value to x (in case of a tie,
the even single-precision floating-point integer is used).

RndToFPInt32Trunc

The value x if x is a single-precision floating-point integer; otherwise the largest
single-precision floating-point integer that is less than x if x>0, or the smallest
single-precision floating-point integer that is greater than x if x<0

RndToFPInt32Cell

The value x if X is a single-precision floating-point integer; otherwise the smallest
single-precision floating-point integer that is greater than x

RndToFPInt32Floor

The value x if x is a single-precision floating-point integer; otherwise the largest
single-precision floating-point integer that is less than x

CnvtFP32ToUI32Sat(x)

Result of converting the single-precision floating-point value x to a 32-bit
unsigned-integer with unsigned-integer saturation

CnvtFP32ToSI32Sat(x)

Result of converting the single-precision floating-point value x to a 32-bit
signed-integer with signed-integer saturation

CnvtUI32ToFP32(x)

Result of converting the 32-bit unsigned-integer x to floating-point single format

CnvtSI32ToFP32(x)

Result of converting the 32-bit signed-integer x to floating-point single format

MEM(X,Y) Value at memory location X of size Y bytes

SwapDouble Swap the doublewords in a quadword vector

ZeroExtend(X,Y) Zero-extend X on the left with zeros to produce Y-bit value

SignExtend(X,Y) Sign-extend X on the left with sign bits (that is, with copies of bit O of x) to produce

Y-bit value

RotateLeft(X,Y)

Rotate X left by Y bits

mod(X,Y)

Remainder of X/Y

Ulmaximum(X,Y)

Maximum of 2 unsigned integer values, X and Y

Slimaximum(X,Y)

Maximum of 2 unsigned integer values, X and Y

FPmaximum(X,Y)

Maximum of 2 floating-point values, X and Y

Ulminimum(X,Y)

Minimum of 2 unsigned integer values, X and Y

6-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Instruction Formats

Table 6-2. Notation and Conventions (continued)

Notation/Convention

Meaning

SIminimum(X,Y)

Minimum of 2 unsigned integer values, X and Y

FPminimum(X,Y)

Minimum of 2 floating-point values, X and Y

FPReciprocalEstimate12(X)

12-bit-accurate floating-point estimate of 1/X

FPReciprocalSQRTEstimate12(X)

12-bit-accurate floating-point estimate of 1/(sqrt(X))

FPLog,Estimate3(X)

3-bit-accurate floating-point estimate of log2(X)

FPPower2Estimate3(X)

3-bit-accurate floating-point estimate of 2**X

CarryOut(X +Y)

Carry out of the sum of X and Y

ROTL[64](X, ¥)

Result of rotating the 64-bit value x left y positions

ROTL[32](X, y)

Result of rotating the 32-bit value x || x left y positions, where x is 32 bits long

Obnnnn A number expressed in binary format.
oxnnnn A number expressed in hexadecimal format.
(n)x The replication of x, n times (that is, x concatenated to itself n — 1 times).
(n)0 and (n)1 are special cases. A description of the special cases follows:
* (N)0 means a field of n bits with each bit equal to 0. Thus (5)0 is equivalent to
0b00000.
* (n)1 means a field of n bits with each bit equal to 1. Thus (5)1 is equivalent to
Ob11111.
(rAJ0) The contents of rA if the rA field has the value 1-31, or the value 0 if the rA field
is 0.
(rxX) The contents of rX
x[n] n is a bit or field within x, where x is a register
XN x is raised to the nth power
ABS(x) Absolute value of x
CEIL(x) Least integer = x

Characterization

Reference to the setting of status bits in a standard way that is explained in the
text.

CIA

Current instruction address.

The 32-bit address of the instruction being described by a sequence of
pseudocode. Used by relative branches to set the next instruction address (NIA)
and by branch instructions with LK = 1 to set the link register. Does not
correspond to any architected register.

Clear

Clear the leftmost or rightmost n bits of a register to 0. This operation is used for
rotate and shift instructions.

Clear left and shift left

Clear the leftmost b bits of a register, then shift the register left by n bits. This
operation can be used to scale a known non-negative array index by the width of
an element. These operations are used for rotate and shift instructions.

Cleared

Bits = 0.

MOTOROLA

Chapter 6. AltiVec Instructions 6-5

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec Technology Programming Environments Manual

Table 6-2. Notation and Conventions (continued)

Notation/Convention Meaning
Do Do loop.
* Indenting shows range.
« “To” and/or “by” clauses specify incrementing an iteration variable.
« “While” clauses give termination conditions.
DOUBLE(x) Result of converting x from floating-point single-precision format to floating-point
double-precision format
Extract Select a field of n bits starting at bit position b in the source register, right or left
justify this field in the target register, and clear all other bits of the target register
to zero. This operation is used for rotate and shift instructions.
EXTS(X) Result of extending x on the left with sign bits
GPR(x) General-purpose register x

if...then...else...

Conditional execution, indenting shows range, else is optional

Insert Select a field of n bits in the source register, insert this field starting at bit position
b of the target register, and leave other bits of the target register unchanged. (No
simplified mnemonic is provided for insertion of a field when operating on double
words; such an insertion requires more than one instruction.) This operation is
used for rotate and shift instructions. (Note that simplified mnemonics are
referred to as extended mnemonics in the architecture specification.)

Leave Leave innermost do loop, or the do loop described in leave statement.

MASK(X, Y) Mask having ones in positions x through y (wrapping if X > y) and zeros
elsewhere.

MEM(X,) Contents of y bytes of memory starting at address x.

NIA Next instruction address, which is the 32-bit address of the next instruction to be
executed (the branch destination) after a successful branch. In pseudocode, a
successful branch is indicated by assigning a value to NIA. For instructions which
do not branch, the next instruction address is CIA + 4. Does not correspond to
any architected register.

OEA PowerPC operating environment architecture

Rotate Rotate the contents of a register right or left n bits without masking. This

operation is used for rotate and shift instructions.

ROTL[64](x, y)

Result of rotating the 64-bit value x left y positions

ROTL[32](x, y)

Result of rotating the 64-bit value x || x left y positions, where x is 32 bits long

Set Bits are set to 1.

Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical
shift). This operation is used for rotate and shift instructions.

SINGLE(x) Result of converting x from floating-point double-precision format to
floating-point single-precision format.

SPR(x) Special-purpose register x

TRAP Invoke the system trap handler.

Undefined An undefined value. The value may vary from one implementation to another,
and from one execution to another on the same implementation.

6-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instruction Formats

Table 6-2. Notation and Conventions (continued)

Notation/Convention Meaning
UISA PowerPC user instruction set architecture
VEA PowerPC virtual environment architecture

Table 6-3 describes instruction field notation conventions used throughout this chapter.

Table 6-3. Instruction Field Conventions

The PowerPC Architecture Equivalent in AltiVec Technology
Specification PEM as:

RA, RB, RT, RS rA, rB, 1D, rS

Sl SIMM

U IMM

ul UuiMM

VA, VB, VC, VT, VS VA, vB, vC, vD, vS

100 0...0 (shaded)

Precedence rules for pseudocode operators are summarized in Table 6-4.

Table 6-4. Precedence Rules

Operators Associativity
x[n], function evaluation Left to right
(n)x or replication, Right to left
x(n) or exponentiation
unary —, = Right to left
-+ Left to right
+, - Left to right

I Left to right

=, %,<, <, >, 2, <U,>U, ? Left to right

& L, = Left to right

| Left to right

— (range), : (range) None

, «iea None

Operators higher in Table 6-4 are applied before those lower in the table. Operators at the
same level in the table associate from left to right, from right to left, or not at all, as shown
in the Associativity column. For example, ‘-' (unary minus) associates from left to right, so
a-b-c=(a-b)- c. Parentheses are used to override the evaluation order implied by

MOTOROLA Chapter 6. AltiVec Instructions 6-7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

Table 6-4, or to increase clarity; parenthesized expressions are eval uated before serving as
operands.

6.2 AltiVec Instruction Set

The remainder of this chapter lists and describes the instruction set for the AltiVec
architecture. The instructions are listed in aphabetical order by mnemonic. The diagram
below shows the format for each instruction description page.

Instruction name

vaddsbs vaddsbs

Vector Add Signed Byte Saturate

Instruction syntax _—__ylvaddsbs vD,vA,vB FormVX
and form

Instruction encoding ———F—> 04 vD VA vB 768

in decimal 0 56 1011 1516 2021 25262728 31

do i=0 to 127 by 8

Pseudocode description aopg;g — SignExtend((VA);:j.7, 9)

of instruction operation boPg.g - Si gnExtend((vE);.i.7. 9)
tenpg. g~ a0pPg:g *int bOPo: g
VD .j+7 « SltoSlsat(tenpg.g, 8)

end
Text description of
instruction operation ———— 1 » Eacjelement of vaddsbs is a byte.
Each signed-integer element in vA is added to the corresponding signed-integer element
invB.

If the sum is greater than (27-1) it saturates to (27-1) and if it is less than -27 it saturates to
-27. If saturations occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

» Vector status and control register (VSCR):
Affected: SAT

Figure 6-11 shows the usage of the vaddsbs instruction. Each of the sixteen elements in the vectors, VA, vB, and

vD, is 8 bits long..

. _ Lo b D D b T T B b b T By B By Ty [y Jva
Figure showing >
instruction usage ININnnnininnnninnnininng:
YY YV YV VY YV VY YV VY YY YY YV VY YV VV VV VY
+ 0+ + + + + 4+ o+ o+ o+ o+ o+ 4+ o+ O+ o+
Y Y Y Y Y Y Y Y Y Y Y Y Y ¥V Y Y
1 A A R 0
Figure 6-11. vaddsbs— Add Saturating Sixteen Signed Integer Elements (8-Bit)
6-8 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

dss dss
Data Stream Stop
dss STRM (A=0) Form X
dssall STRM (A=1)

31 Al 00 | STRM 0_0000 0000_0 822 0
0 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 20 21 30 31

Dat aSt reanPref etchControl ~ “stop” || STRM
Note that A does not represent r A in thisinstruction.

If A=0 and a data stream associated with the stream ID specified by STRM exists, this
instruction terminates prefetching of that data stream. It has no effect if the specified stream
does not exist.

If A=1, thisinstruction terminates prefetching of al existing data streams (the STRM field
isignored.)

In addition, executing adssinstruction ensuresthat all accesses associated with datastream
prefetching caused by preceding dst and dstst instructions that specified the same stream ID
asthat specified by the dssinstruction (A=0), or by all preceding dst and dstst instructions
(A=1), will bein group G1 with respect to the memory barrier created by a subsequent sync
instruction, refer to Section 5.1, “PowerPC Shared Memory,” for more information.

See Section 5.2.1, “ Software-Directed Prefetch” for more information on using the dss
instruction.

Other registers altered:
* None

Simplified mnemonics:
dss STRM equivalent to dss STRM,O0
dssall equivalent to dss 0,1

For more information on the dss instruction, refer to Chapter 5, “Cache, Exceptions, and
Memory Management.”

MOTOROLA Chapter 6. AltiVec Instructions 6-9

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

dst dst

Data Stream Touch

dst rA,rB,STRM (T=0) Form X
dstt rA,rB,STRM (T=1)

31 T] 0.0 | STRM A B 342 0
0 5 6 7 8 9 10 11 15 16 20 21 30 31

addrg. g3 <« (rA)
Dat aSt reanPref etchControl ~ “start” || STRM|| T || (rB) || addr

This instruction initiates a software directed cache prefetch. The instruction is a hint to
hardware that performance will probably be improved if the cache blocks containing the
specified data stream are fetched into the data cache because the program will probably
soon load from the stream.

The instruction associates the data stream specified by the contents of r A and r B with the
stream ID specified by STRM. The instruction defines a data stream STRM as starting at
an effective address (rA) and having count units of size quad words separated by stride
bytes (as specified inrB). The T bit of the instruction indicates whether the data stream is
likely to be loaded from fairly frequently in the near future (T = 0O) or to be transient and
referenced very few times (T = 1).

- Memory >
< Stream >
<—>{ Block Size

Block Block Block Block Block Block
0 1 2 3 4 5
[« BlockStride A

Ao BlockAddr, (n=3)
StartingAddress

The dst instruction does the following:
» Definesthe characteristics of adata stream STRM by the contents of rA and rB
» Associates the stream with a specified stream ID, STRM (Range for STRM is 0-3)

* Indicates that the datain the specified stream STRM starting at the addressinrA
may soon be loaded

* Indicates whether memory locations within the stream are likely to be needed over
alonger period of time (T=0) or betreated as transient data (T=1)

* Terminates prefetching from any stream that was previously associated with the
specified stream ID, STRM.

6-10 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

The specified data stream is encoded for 32-bit follows:
» Effective address. rA, whererA #0
* Block size: rB[3-7] if rB[3-7] # O; otherwise 32
» Block count: rB[8-15] if rB[8-15] # 0; otherwise 256
» Block stride: rB[16-31] if rB[16-31] # O; otherwise 32768

1" Block Size Block Count Block Stride

0 2 3 7 8 1516 31

Other registers atered:
* None

Simplified mnemonics:
dst rA,rB,STRM equivalent to dst rA,rB,STRM,0
dstt rA,rB,STRM equivalent to dst rArB,STRM,1

For more information on the dst instruction, refer to Chapter 5, “Cache, Exceptions, and
Memory Management.”

MOTOROLA Chapter 6. AltiVec Instructions 6-11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

dstst dstst

Data Stream Touch for Store

dstst rA,rB,STRM (T=0) Form X
dststt rA,rB,STRM (T=1)

31 T] 0.0 | STRM A B 374 0
0 5 6 7 8 9 10 11 15 16 20 21 30 31

addrg. g3 <« (rA)
Dat aSt reanPref etchControl ~ “start” || T || static || (rB) || addr

This instruction initiates a software directed cache prefetch. The instruction is a hint to
hardware that performance will probably be improved if the cache blocks containing the
specified data stream are fetched into the data cache because the program will probably
soon write to (store into) the stream.

The instruction associates the data stream specified by the contents of r A and r B with the
stream ID specified by STRM. The instruction defines a data stream STRM as starting at
an effective address (rA) and having count units of size quad words separated by stride
bytes (as specified inrB). The T bit of the instruction indicates whether the data stream is
likely to be stored into fairly frequently in the near future (T = 0) or to be transient and
referenced very few times (T = 1).

- Memory >
< Stream >
<—>{ Block Size

Block Block Block Block Block Block
0 1 2 3 4 5
> Bockstride A
t , BlockAddr, (n=3)
StartingAddress

The dstst instruction does the following:
» Definesthe characteristics of adata stream STRM by the contents of rA and rB
» Associates the stream with a specified stream ID, STRM (Range for STRM is 0-3)

* Indicates that the datain the specified stream STRM starting at the addressinrA
may soon be stored in to memory

* Indicates whether memory locations within the stream are likely to be stored into
fairly frequently in the near future (T=0) or be treated as transient data (T=1)

* Terminates prefetching from any stream that was previously associated with the
specified stream ID, STRM.

6-12 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

The specified data stream is encoded for 32-bit follows:
» Effective address. rA, whererA #0
* Block size: rB[3-7] if rB[3-7] # O; otherwise 32
» Block count: rB[8-15] if rB[8-15] # 0; otherwise 256
» Block stride: rB[16-31] if rB[16-31] # O; otherwise 32768

/i Block Size Block Count Block Stride

0 2 3 7 8 31

P

1
5
Figure 6-1. Format of rB in dst instruction (32-bit)
Other registers atered:
* None
Simplified mnemonics:
dstst rA,rB,STRM equivalent to dstst rA,rB,STRM,0
dststt rA,rB,STRM equivalent to dstst rA,rB,STRM,1

For more information on the dstst instruction, refer to Chapter 5, “ Cache, Exceptions, and
Memory Management.”

MOTOROLA Chapter 6. AltiVec Instructions 6-13

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec Technology Programming Environments Manual

lvebXx lvebXx
Load Vector Element Byte Indexed
lvebx vD,rA,rB Form X
31 vD A B 0
0 5 6 10 11 15 16 20 21 30 31
e For 32-hit:
if rA=0 then b ~ O
el se b « (rA)

EA « b + (rB)

eb — EAg: 31

vD «~ undefined

if the processor is in big-endian node
then vDgpg: (eb*8) +7 < MEM EA, 1)
el se VDi20-(eb*s): 127- (eb*s) = MEMEA 1)

— EA = (rA|0)+(rB); m = EA[28-31] (the offset of the bytein its aligned

guadword).

For big-endian mode, the byte addressed by EA isloaded into bytem of vD. Inlittle-endian
mode, it isloaded into byte (15-m) of vD. Remaining bytesin vD are undefined.

Other registers atered:

6-14

None

AltiVec Technology Programming Environments Manual

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Memory

Freescale Semiconductor, Inc.

AltiVec Instruction Set

0x0000_0000 [x x|[x X|X X|X X[X X[X X[X X[X X|X X|X X|X X|X X|X X[X X[X X[X X
0x0000_0010 X X|X X|X X|X X|X X|X X|X X|X X|X X|X X[X XX X [X X|X X| A |X X
0x0000_0020 |x X X X|X X X X|X X X X|X X X X|X X X X | A X X X X|X|X X X
0x0000_0030 [x x[x X|[X X[X X[X X[|X X[X X[X X|X X|X X|X[X|X X[X X[X X[X[X[X X
0x0000_0040 [x x[x X|[X X[X X[X X|X X[X X[X X|X X|X X|X[X|X X[X X[X X[X[X[X X
0x0000_0050 [x X X X X X X X| A X X X X X[X X X[X X X X X|X XX
0x0000_0060 [x X|X X|X X|X X|X[X|X X|X X|X X[X X|X X|X[X|X X[X XX XX |X[X X
0x0000_0070 | X X[X X|X X[X X|X|X|X X|X X|X X|X X[X X[X|X|X X[X XX X|X|X[X X
0x0000_0080 [x x[x X|[X X[X X[X|X[X X[X X[X X|X X|X X|X[X|X X|X X[X X[X[X[X X
0x0000_0090 [x x|[x X|X X[X X[X|X[X X[X X[X X|X X|X X|[X[X|X X[X X[X X[X[X[X X
0x0000_00A0 | &
0x0000_00B0 xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx
Load or Store:

Byte at x1E |xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘xx‘ ‘xx| vR
Half at x2A |xxxx‘xxxx‘xxxx‘xxxx‘xxxx" ‘xxxx‘xxxx| vR
Word at x54 |xxxxxxxx‘V ‘xxxxxxxx‘xxxxxxxx| vR
Quad at A0 | | vR

Note: In vector registers, x means boundedly undefined after a load and don't care after a store. In memory, x means don't care
after a load, and leave at current value after a store.

MOTOROLA

Figure 6-2. Effects of Example Load/Store Instructions

Chapter 6. AltiVec Instructions

For More Information On This Product,
Go to: www.freescale.com

6-15

Freescale Semiconductor, Inc.

AltiVec Technology Programming Environments Manual

lvehx lvehx
Load Vector Element Half Word Indexed
[vehx vD,rA,rB Form X
31 vD A B 39 0
0 5 6 10 11 15 16 20 21 30 31
e For 32-hit;
ifrA=Othen b < 0
el se b « (rA)

EA < (b + (rB)) & (~1)
eb ~ EAgg 31

vD < undefi ned

if the processor is in big-endian node
then vD(ep+g): (ebrs)+15- MEMEA, 2)
el se VD15 (eb*8): 127-(eb*g) = MEMEA 2)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~1. Let m =
EA[28-30]; misthe half-word offset of the half-word in itsaligned quadword in

memory.

If the processor is in big-endian mode, the half-word addressed by EA is loaded into
half-word m of vD. If the processor isin little-endian mode, the half-word addressed by EA
Isloaded into half-word (7-m) of vD. The remaining half-word sin vD are set to undefined
values. Figure 6-2 shows this instruction.

Other registers altered:

6-16

None

AltiVec Technology Programming Environments Manual

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

AltiVec Instruction Set

lvewx lvewx
Load Vector Element Word Indexed
[vewx vD,rA,rB Form X
31 vD A B 71 0
0 5 6 10 11 15 16 20 21 30 31
e For 32-hit;
if rA=0 then b « O
el se b « (rA

EA -« (b + (rB)) & (~3)

eb « EAyg. 31

vD «~ undefined

if the processor is in big-endian node
then VDeb*B:(eb*8)+31‘— MEM EA, 4)

el se VDog. (eb*8): 127- (eb*s8) — MEMEA, 4)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~3. Let m =
EA[28-29]; misthe word offset of theword initsaligned quadword in memory.

If the processor isin big-endian mode, the word addressed by EA isloaded into word m of
vD. If the processor isin little-endian mode, the word addressed by EA isloaded into word
(3-m) of vD. Theremaining wordsin vD are set to undefined values. Figure 6-2 showsthis

instruction.

Other registers atered:
* None

MOTOROLA Chapter 6. AltiVec Instructions

For More Information On This Product,

Go to: www.freescale.com

6-17

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

lvsl lvsl
Load Vector for Shift Left
lvsl vD,rA,rB Form X
31 vD A B 6 0
0 5 6 10 11 15 16 20 21 30 31
e For 32-hit;

if rA=0thenb « 0

else b « (rA
addr0:31 ~ b + (rB)
sh « addr28_31

if sh = 0x0 then (VD) 107 — 0x000102030405060708090A0BOCODOEOF
if sh = Ox1 then (vD)g 107 — 0x0102030405060708090A0BOCODOEOF10
if sh = 0x2 then (vD)g 107 — 0x02030405060708090A0BOCODOEOF1011
if sh = 0x3 then (vD)g 107 « 0x030405060708090A0BOCODOEOF101112
if sh = Ox4 then (vD)g 107 — 0x0405060708090A0BOCODOEOF10111213
if sh = 0x5 then (vD)g 107 — 0x05060708090A0BOCODOEOF1011121314
if sh = 0x6 then (vD)g 107 — 0x060708090A0BOCODOEOF101112131415
if sh = Ox7 then (vD)g 107 — O0x0708090A0BOCODOEOF10111213141516
if sh = 0x8 then (vD)g 197 — O0x08090A0BOCODOEOF1011121314151617
if sh = 0x9 then (vD)g 197 — OXx090AOBOCODOEOF101112131415161718
if sh = OXA then (vD)g 107 — OXxOAOBOCODOEOF10111213141516171819
if sh = OxB then (vD)g 107 — OXOBOCODOEOF101112131415161718191A
if sh = OXC then (vD)q 107 — OXOCODOEOF101112131415161718191A1B
if sh = OxD then (vD)g 107 — OXODOEOF101112131415161718191A1B1C
if sh = OXE then (vD)q 107 — OXOEOF101112131415161718191A1B1C1D
if sh = OXF then (vD)q 107 — OxOF101112131415161718191A1B1C1D1E

— Let the EA bethe sum (rA|0)+(rB). Let sh = EA[28-31].

Let X bethe 32-byte value 0x00 || Ox01 [| O0x02 || ... || OX1E || OX1F. Bytes sh:sh+15 of X are
placed into vD. Figure 6-3 shows how this instruction works.

Other registers altered:
* None

[00000008]rA
+

[00000004]|rB

Table Lookup «<——0000000C| Temp

[oc[ob oE oF[10 111213141516 [17][18]19 [1A[1B]| WD

Figure 6-3. Load Vector for Shift Left

6-18 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

The above lvd instruction followed by a Vector Permute (vperm) would do a simulated
alignment of a four-element floating-point vector misaligned on quad-word boundary at
address 0x0....C.

[CID[E/F|10[11][12][13]14]15][16][17 18] 19[1A[1B]|VC

[o[1]2]3]4[5]6][7[8[9][A[B][C|[D[E|[F]|vA

[10 [11 |12 |13 |14 [15 |16 |17 [18 [19 [1A [1B 1C 1D [1E [1F | vB

N 0 S i S S S e

Figure 6-4. Instruction vperm Used in Aligning Data

Refer, also, to the description of the Ivsr instruction for suggested uses of the lvsl
instruction.

MOTOROLA Chapter 6. AltiVec Instructions 6-19

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

lvsr lvsr
Load Vector for Shift Right
lvsr vD,rA,rB Form X
31 vD A B 38 0
0 5 6 10 11 15 16 20 21 30 31
» For 32-hit:
if rA=0then b <« O
el se b « (rA

EA b + (rB)
sh « EAgg 31

if sh=0x0 then vD ~ 0x101112131415161718191A1B1C1D1E1F
if sh=0x1 then vD ~ 0x0F101112131415161718191A1B1C1D1E
if sh=0x2 then vD ~ OxOEOF101112131415161718191A1B1C1D
if sh=0x3 then vD - OxODOEOF101112131415161718191A1B1C
if sh=0x4 then vD - OxOCODOEOF101112131415161718191A1B
if sh=0x5 then vD - 0Ox0OBOCODOEOF101112131415161718191A
if sh=0x6 then vD -~ OxOAOBOCODOEOF10111213141516171819
if sh=0x7 then vD - 0x090A0BOCODOEOF101112131415161718
if sh=0x8 then vD - 0x08090A0BOCODOEOF1011121314151617
if sh=0x9 then vD - 0x0708090A0BOCODOEOF10111213141516
if sh=0xA then vD - 0x060708090A0BOCODOEOF101112131415
if sh=0xB then vD ~ 0x05060708090A0BOCODOEOF1011121314
if sh=0xC then vD ~ 0x0405060708090A0BOCODOEOF10111213
if sh=0xD then vD ~ 0x030405060708090A0BOCODOEOF101112
if sh=0xE then vD ~ 0x02030405060708090A0BOCODOEOF1011
if sh=0xF then vD ~ 0x0102030405060708090A0BOCODOEOF10

— Let the EA bethe sum (rA|0)+(rB). Let sh = EA[28-31].

Let X bethe 32-byte value 0x00 || 0xO01 || 0x02 || ... || OX1E || Ox1F. Bytes (16-sh):(31-sh) of
X are placed into vD.

Note that Ivdl and Ivsr can be used to create the permute control vector to be used by a
subsequent vper m instruction. Let X and Y be the contents of vA and vB specified by the
vperm. The control vector created by Ivsl causes the vperm to select the high-order 16
bytes of the result of shifting the 32-byte value X || Y left by sh bytes. The control vector
created by vsr causes the vperm to select the low-order 16 bytes of the result of shifting X
|I'Y right by sh bytes.

These instructions can aso be used to rotate or shift the contents of a vector register by sh
bytes. For rotating, the vector register to be rotated should be specified as both VA and vB
for vperm. For shifting left, the vB register for vperm should contain all zeros and vA
should contain the value to be shifted, and vice versafor shifting right. Figure 6-3 shows a
similar instruction only in that figure the shift is to the left

No other registers atered.

6-20 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

v X v X
Load Vector Indexed
[vx vD,rA,rB (LRU=0) Form X
31 vD A B 103 0
0 5 6 10 11 15 16 20 21 30 31
» For 32-bitt:
if rA=0 then b « O
el se b « (rA)

EA « (b + (rB)) & (~0xF)

if the processor is in big-endian node
then vD - MEM EA, 16)

el se vD - MEM EA+8, 8) || MEM EA, 8)

Let the EA be the result of ANDing the sum (r A|0)+(r B) with ~OxF.

If the processor isin big-endian mode, the quadword in memory addressed by EA isloaded
into vD.

If the processor isin little-endian mode, the doubleword addressed by EA is loaded into
vD[64—-127] and the doubleword addressed by EA+8 is loaded into vD[0-63]. Note that
normal little-endian PowerPC address swizzling is also performed. See Section 3.1, “Data
Organization in Memory,” for more information.

Figure 6-3 shows this instruction.

Other registers altered:
* None

MOTOROLA Chapter 6. AltiVec Instructions 6-21

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vl vl
Load Vector Indexed LRU
[vxI vD,rA,rB (LRU=1) Form X
31 vD A B 359 0
0 5 6 10 11 15 16 20 21 30 31
» For 32-hit:
if rA=0 then b « O
el se b « (rA)

EA « (b + (rB)) & (~0xF)

if the processor is in big-endian node
then vD - MEM EA, 16)

el se vD - MEM EA+8, 8) || MEM EA, 8)

Let the EA be the result of ANDing the sum (r A|0)+(r B) with ~OxF.
If the processor isin big-endian mode, the quadword addressed by EA isloaded into vD.

If the processor isin little-endian mode, the doubleword addressed by EA is loaded into
vD[64-127] and the doubleword addressed by EA+8 is loaded into vD[0-63]. Note that
normal little-endian PowerPC address swizzling is also performed. See Section 3.1, “Data
Organization in Memory,” for more information.

IvxI provides a hint that the program may not need quadword addressed by EA again soon.

Note that on some implementations, the hint provided by the IvxI instruction and the
corresponding hint provided by the Store Vector Indexed LRU (stvxl) instruction (see
Section 5.2.1.2, “Transient Streams’) are applied to the entire cache block containing the
specified quadword. On such implementations, the effect of the hint may be to cause that
cache block to be considered alikely candidate for reuse when spaceis needed in the cache
for anew block. Thus, on such implementations, the hint should be used with caution if the
cache block containing the quadword al so contains data that may be needed by the program
in the near future. Also, the hint may be used before the last reference in a sequence of
references to the quadword if the subsequent references are likely to occur sufficiently soon
that the cache block containing the quadword is not likely to be displaced from the cache
before the last reference. Figure 6-3 shows this instruction.

Other registers atered:
* None
6-22 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec Instruction Set

mfvscr mfvscr

Move from Vector Status and Control Register

mfvscr vD FormVX
04 vD 0_0000 0000_0 1540

0 5 6 10 11 15 16 20 21 31

vD < %0 || (VSCR)
The contents of theVSCR are placed into vD.

Note that the programmer should assume that mtvscr and mfvscr take substantially longer

to execute than other VX instructions

Other registers altered:
* None

MOTOROLA Chapter 6. AltiVec Instructions

For More Information On This Product,

Go to: www.freescale.com

6-23

Freescale Semiconductor, Inc.

AltiVec Technology Programming Environments Manual

mtvscr mtvscr
Move to Vector Status and Control Register

mtvscr vB Form VX

04 00_000 0_0000 vB 1604
0 5 6 10 11 15 16 20 21 31
VSCR « (VB)ge: 127
The contents of vB are placed into the VSCR.
Other registers altered:
* None

6-24 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

stvebx stvebx

Store Vector Element Byte Indexed

stvebx VSrA,rB Form X
31 vS A B 135 0
0 5 6 10 11 15 16 20 21 30 31
e For 32-hit;
if rA=0 then b < O
el se b « (rA)

EA « b + (rB)
eb — EAgg: 3;
if the processor is in big-endian node

then MEM EA 1) « (VS)ep+g: (eb*8)+7
el se MEMEA 1) « (VS)120-(eb*8): 127-eb*8
— Let the EA bethesum (rA|0)+(rB). Let m = EA[28-31]; misthe byte offset of

the byte in its aligned quadword in memory.

If the processor is in big-endian mode, byte m of vS is stored into the byte in memory
addressed by EA. If the processor isin little-endian mode, byte (15-m) of vSis stored into
the byte addressed by EA. Figure 6-2 shows how a store instruction is performed for a

Vector register.

Other registers atered:
* None

MOTOROLA Chapter 6. AltiVec Instructions 6-25

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec Technology Programming Environments Manual

stvehx stvehx
Store Vector Element Half Word Indexed
stvehx VSrA,rB Form X
31 vS A B 167 0
0 5 6 10 11 15 16 20 21 30 31
e For 32-hit;

if rA=0 then b « O

el se

b<—

(rA)

EA -« (b + (rB)) & (~0x1)

eb EAZSZ 31

if the processor is in big-endian node
then MEMEA 2) « (VS)ep+s: (eb*8) +15
el se MEMEA 2) « (VS) 112 eb*g: 127- (eb*8)
— Let the EA be the result of ANDing the sum (r A|0)+(rB) with ~Ox1. Let m =

EA[28-30]; misthe half-word offset of the half-word initsaligned quadwordin
memory.

If the processor is in big-endian mode, haf-word m of vS is stored into the half-word
addressed by EA. If the processor isin little-endian mode, half-word (7-m) of vSis stored
into the half-word addressed by EA. Figure 6-2 shows how astore instruction is performed

for avector register.

Other registers altered:
* None
6-26

AltiVec Technology Programming Environments Manual

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.
AltiVec Instruction Set

stvewx stvewx
Store Vector Element Word Indexed
stvewx VSrA,rB Form X
31 vS A B 199 0
0 5 6 10 11 15 16 20 21 30 31
e For 32-hit;
if rA=0 then b « O
el se b « (rA)

EA « (b + (rB)) & OxFFFF_FFFC

eb — EAgg: 3;

if the processor is in big-endian node
t hen NEN(EA, 4) - (VS) eb*8: (eb*8) +31

el se MEM EA 4) «~ (VS)ge.eb*s: 127- (eb*8)

— Let the EA be the result of ANDing the sum (r A|0)+(r B) with OxFFFF_FFFC.
Let m = EA[28-29]; mistheword offset of the word inits aligned quadword in

memory.

If the processor is in big-endian mode, word m of vSis stored into the word addressed by
EA. If the processor is in little-endian mode, word (3-m) of vS is stored into the word
addressed by EA. Figure 6-2 shows how a store instruction is performed for a vector

register.
Other registers altered:
* None

MOTOROLA Chapter 6. AltiVec Instructions

For More Information On This Product,

Go to: www.freescale.com

6-27

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

StvX StvX
Store Vector Indexed
stvx VSrA,rB (LRU =0) Form X
31 vS A B 231 0
0 5 6 10 11 15 16 20 21 30 31
» For 32-hit:

if rA=0 then b - O

else b « (rA

EA - (b + (rB)) & OxFFFF_FFFO

if the processor is in big-endian node
then MEM EA, 16) ~ (VvS)

el se MEMEA 16) « (VS) g4 127 Il (VS)o:63

— Let the EA be the result of ANDing the sum (r A|0)+(r B) with OxFFFF_FFFO.

If the processor is in big-endian mode, the contents of vS are stored into the quadword
addressed by EA. If the processor isin little-endian mode, the contents of vS[64-127] are
stored into the doubleword addressed by EA, and the contents of v§[0-63] are stored into
the doubleword addressed by EA+8.

stvxl and stvxlIt provide a hint that the quadword addressed by EA will probably not be
needed again by the program in the near future.

Figure 6-2 shows how a store instruction is performed for a vector register.

Other registers atered:
* None
6-28 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

stvxl| stvxl
Store Vector Indexed LRU
stvxl VvSrA,rB (LRU=1) Form X
31 vS A B 487 0
0 5 6 10 11 15 16 20 21 30 31
e For 32-hit;

if rA=0 then b - O

else b « (rA

EA - (b + (rB)) & OxFFFF_FFFO

if the processor is in big-endian node
then MEM EA, 16) ~ (VvS)

el se MEMEA 16) « (VS) g4 127 Il (VS) 063

— Let the EA be the result of ANDing the sum (r A|0)+(r B) with OxFFFF_FFFO.

L et the EA betheresult of ANDing the sum (r A|0)+(r B) with OXFFFF_FFFF_FFFF_FFFO.
If the processor is in big-endian mode, the contents of vS are stored into the quadword
addressed by EA. If the processor isin little-endian mode, the contents of v§[64-127] are
stored into the doubleword addressed by EA, and the contents of vS[0-63] are stored into
the doubleword addressed by EA+8. The stvxl and stvxlIt instructions provide a hint that
the quad word addressed by EA will probably not be needed again by the program in the
near future.

Note that on some implementations, the hint provided by the stvxl instruction (see
Section 5.2.2, “ Prioritizing Cache Block Replacement”) is applied to the entire cache block
containing the specified quadword. On such implementations, the effect of the hint may be
to cause that cache block to be considered alikely candidate for reuse when space is needed
in the cache for a new block. Thus, on such implementations, the hint should be used with
caution if the cache block containing the quadword also contains data that may be needed
by the program in the near future. Also, the hint may be used before the last referencein a
sequence of references to the quadword if the subsequent references are likely to occur
sufficiently soon that the cache block containing the quadword is not likely to be displaced
from the cache before the last reference. Figure 6-2 shows how a store instruction is
performed on the vector registers.

Other registers altered:
* None

MOTOROLA Chapter 6. AltiVec Instructions 6-29

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vaddcuw vaddcuw
Vector Add Carryout Unsigned Word
vaddcuw vD,vA,vB FormVX
04 vD VA vB 384
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

aopg: 32 — Zer oExtend((VA) .31, 33)
bopg. 32~ ZeroExtend((VvB);.j+31, 33)

tenpg. 32— aopg:32 *int bOPg: 32
vD, .j 131 ZeroExtend(tenpg, 32)

end

Each unsigned-integer word element in VA is added to the corresponding unsigned-integer
word element in vB. The carry out of bit O of the 32-bit sum is zero-extended to 32 bits and
placed into the corresponding word element of vD.

Other registers altered:
* None

Figure 6-5 shows the usage of the vaddcuw instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| | | | | vA

HETEENEEEEN
(A Y.y

ASS
~

[\ [\ R \ | 33-bit Intermedediate

N NV 4w

Figure 6-5. vaddcuw—Determine Carries of Four Unsigned Integer Adds (32-Bit)

6-30 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vaddfp vaddfp

Vector Add Floating Point

vaddfp vD,vA,vB FormVX

04 vD VA vB 10

0 5 6 10 11 15 16 20 21 31

doi =0,127,32
(VD)i.i+31 « RndToNear FP32((VA);.j+31 *tp (VB)j:j+31)
end

Thefour 32-bit floating-point valuesin vA are added to the four 32-bit floating-point values
in vB. The four intermediate results are rounded and placed in VD.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a O of the same sign
before the operationis carried out, and each denormalized result element truncatesto a0 of
the same sign.

Other registers atered:
* None

Figure 6-6 shows the usage of the vaddfp instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 hits long.

| | | | | vA

y
+
Y

| | | | | vD

Figure 6-6. vaddfp—Add Four Floating-Point Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-31

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vaddsbs vaddsbs
Vector Add Signed Byte Saturate
vaddsbs vD,vA,vB FormVX
04 vD VA vB 768
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8

aopg: g~ SignExtend((VvA)i.i+7,9)
bopg: g~ SignExtend((VvB);:j+7,9)

tenpg.g— aopg.g *int bOPg: 8
vD .47« SltoSlsat(tenpg. g, 8)

end
Each element of vaddsbsis abyte.

Each signed-integer element in VA is added to the corresponding signed-integer element
invB.

If the sum is greater than (27-1) it saturates to (27-1) and if it isless than -27 it saturates to
-27. If saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers atered:
» Vector status and control register (VSCR):
Affected: SAT

Figure 6-7 shows the usage of the vaddsbsinstruction. Each of the sixteen elementsin the
vectors, VA, vB, and vD, is 8 bitslong.

Lo Ly e e e B b I b by I Iy I Iy v
INInInninnmninininnninmme:
YY VY YV YV YV YY YY VY YV YV VY YY YV VY YV YV
+ + + o+ o+ o+ o+ O+ O+ o+ o+ o+ o+ O+ o+ o+
Y Y Y Y Y Y VY VY Y Y Y Y Y Y Y ¥
NN

Figure 6-7. vaddsbs—Add Saturating Sixteen Signed Integer Elements (8-Bit)

6-32 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vaddshs vaddshs
Vector Add Signed Half Word Saturate
vaddshs vD,vA,vB FormVX
04 vD VA vB 832
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16

aopp: 16 Si gnExtend((VA)j.j+15, 16)
bopg: 16 Si gnExtend((VB);.;+15, 16)

tenpg. 16— @0Pg: 16 *int POPo: 16
vD . 415 SltoSlsat(tenpg. 16, 16)

end

Each e ement of vaddshsis ahalf word.

Each signed-integer element in VA is added to the corresponding signed-integer element
invB.

If the sum is greater than (25-1) it saturatesto (215-1) and if it islessthan -225 it saturates to
-215, |f saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers atered:
» Vector status and control register (VSCR):
Affected: SAT

Figure 6-8 shows the usage of the vaddshs instruction. Each of the eight elements in the
vectors, VA, vB, and vD, is 16 bitslong.

| | | | | | | | | vA
HIEEIE RN \ \ BRE
vy YV vy YV (A (A] YV (A]
+ + + + + + + +
Y Y Y Y Y Y Y Y
| | vD

Figure 6-8. vaddshs— Add Saturating Eight Signed Integer Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-33

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vaddsws vaddsws
Vector Add Signed Word Saturate
vaddsws vD,vA,vB FormVX
04 vD VA vB 896
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

aopg: 32— Si gnExtend((VA) .31, 33)
bopg: 32~ Si gnExtend((VvB) ;.| 31, 33)

tenpg. 32— aopg:32 *int bOPg: 32
vD . +31< SltoSlsat(tenpg. 3, 32)

end
Each element of vaddswsis aword.

Each signed-integer element in VA is added to the corresponding signed-integer element
invB.

If the sum is greater than (222-1) it saturates to (232-1) and if it isless than (-23V it saturates
to (-23). If saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers atered:
» Vector status and control register (VSCR):
Affected: SAT

Figure 6-9 shows the usage of the vaddsws instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bitslong.

| | vA
| \ | \ | \ | \ | vB
YV YV (A] (A]
+ + + +
Y Y Y Y
| | | | | vD

Figure 6-9. vaddsws—Add Saturating Four Signed Integer Elements (32-Bit)

6-34 AltiVec Technology Programming Environments Manual MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vaddubm vaddubm
Vector Add Unsigned Byte Modulo
vaddubm vD,vA,vB FormV X
04 vD VA vB 0
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8
VD vz« (VA i+7 *int (VB)j:i47
end

Each element of vaddubm is a byte.

Each integer element in VA is modulo added to the corresponding integer element in vB.
The integer result is placed into the corresponding element of vD.

Note that the vaddubm instruction can be used for unsigned or signed integers.

Other registers atered:
* None

Figure 6-10 shows the vaddubm instruction usage. Each of the sixteen elements in the
vectors, VA, vB, and vD, is 8 bitslong.

Lo D e e b e O b I b by B Iy Iy Iy v
1NN nnInIninininny.:
YY YV YV YY VY YY YV VY YV YY VY YY YV VV VYV VY
+ 0+ + + + 4+ + o+ 4+ o+ o+ o+ o+ o+ o+ o+
Y Y Y Y Y Y ¥V VY Y Y Y Y Y Y Y ¥
RN

Figure 6-10. vaddubm—Add Sixteen Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-35

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vaddubs vaddubs

Vector Add Unsigned Byte Saturate

vaddubs vD,vA,vB FormVX
04 vD VA vB 512

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8

aopg: g~ ZeroExtend((VvA)i.i+7,9)
bopg: g~ ZeroExtend((VvB);:j+7,9)

tenpg.g— aopg.g *int bOPg: 8
vD .j+7< U toU sat(tenpg. g, 8)

end
Each element of vaddubsis abyte.

Each unsigned-integer element in VA is added to the corresponding unsigned-integer
element in vB.

If the sum is greater than (28-1) it saturates to (28-1) and the SAT bit is set.
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:
» Vector status and control register (VSCR):
Affected: SAT

Figure 6-11 shows the usage of the vaddubs instruction. Each of the sixteen elementsin
the vectors, VA, vB, and vD, is 8 bits long.

Lo D e e b e O b I b by B Iy Iy Iy v
INNInInInIninninninininimng:
YY YV YV YY VY YY YV VY YV YY VY YY YV VV VYV VY
+ 0+ + + + 4+ + o+ 4+ o+ o+ o+ o+ o+ o+ o+
Y Y Y Y Y Y ¥V VY Y Y Y Y Y Y Y ¥
RN

Figure 6-11. vaddubs—Add Saturating Sixteen Unsigned Integer Elements (8-Bit)

6-36 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vadduhm vadduhm
Vector Add Unsigned Half Word Modulo
vadduhm vD,vA,vB FormV X
04 vD VA vB 64
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16
VD, -i+15< (VA -i+15 *int (VB)i:i+15

end
Each element of vadduhm is a half word.

Eachinteger element in VA isadded to the corresponding integer element in vB. Theinteger
result is placed into the corresponding element of vD.

Note that the vadduhm instruction can be used for unsigned or signed integers.

Other registers atered:
* None

Figure 6-12 shows the usage of the vadduhm instruction. Each of the eight elementsin the
vectors, VA, vB, and vD, is 16 hits long.

| | | | | | | | | vA

|vB

|
(A y

y 7y y
+ + + + + + + +
Y Y Y Y Y Y Y Y

| | | | | | | | | vD

Figure 6-12. vadduhm—Add Eight Integer Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-37

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vadduhs vadduhs

Vector Add Unsigned Half Word Saturate

vadduhs vD,vA,vB FormVX
04 vD VA vB 576

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16

aopg: 16 Zer oExtend((VvA)j .15, 17)
bopg. 16 Zer oExtend((vB);.;+15, 17)

tenpg. 16— @0Pg: 16 *int POPo: 16
vD . 415« U toU sat(tenpg. 16, 16)

end

Each element of vadduhsis ahalf word.

Each unsigned-integer element in VA is added to the corresponding unsigned-integer
element in vB.

If the sum is greater than (216-1) it saturates to (216-1) and the SAT bit is set.
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:
» Vector status and control register (VSCR):
Affected: SAT

Figure 6-13 shows the usage of the vadduhs instruction. Each of the eight elementsin the
vectors, VA, vB, and vD, is 16 hitslong.

| | | | | | | | | vA
| L N L L L L RE
YY Yy YY YY YY YY YY YY
+ + + + + + + +
Y Y Y Y Y Y Y Y
| | | | | | | | | v

Figure 6-13. vadduhs—Add Saturating Eight Unsigned Integer Elements (16-Bit)

6-38 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vadduwm vadduwm
Vector Add Unsigned Word Modulo
vadduwm vD,vA,vB Form: VX
04 vD VA vB 128
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
VD -i+31< (VA -i+31 *int (VB)i:i+31
end

Each element of vadduwm is aword.

Each integer element in VA is modulo added to the corresponding integer element in vB.
The integer result is placed into the corresponding element of vD.

Note that the vadduwm instruction can be used for unsigned or signed integers.

Other registers atered:
* None

Form:
e VX

Figure 6-14 shows the usage of the vadduwm instruction. Each of the four elementsin the
vectors, VA, vB, and vD, is 32 bits long.

| | | | | vA

y
+
Y

| | | | | vD

Figure 6-14. vadduwm—Add Four Integer Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-39

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vadduws vadduws
Vector Add Unsigned Word Saturate
vadduws vD,vA,vB Form: VX
04 vD VA vB 640
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 3

aopg: 32 — Zer oExtend((VA) .31, 33)
bopg. 32~ ZeroExtend((VvB);.j+31, 33)

tenpg. 32— aopg:32 *int bOPg: 32
vD . +31< U toU sat(tenpg. 3, 32)

end
Each element of vadduws is aword.

Each unsigned-integer element in VA is added to the corresponding unsigned-integer
element in vB.

If the sum is greater than (232-1) it saturates to (232-1) and the SAT bit is set.
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:
» Vector status and control register (VSCR):
Affected: SAT

Figure 6-15 shows the usage of the vadduws instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 hits long.

| | | | | vA

A
+
Y

|
Figure 6-15. vadduws—Add Saturating Four Unsigned Integer Elements (32-Bit)

6-40 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vand vand

Vector Logical AND

vand vD,vA,vB Form: VX
04 vD VA vB 1028

0 5 6 10 11 15 16 20 21

31
vD « (VA) & (vB)

The contents of VA are bitwise ANDed with the contents of vB and the result is placed into
vD.

Other registers atered:
* None

Figure 6-16 shows usage of the vand instruction.

- Qo

Figure 6-16. vand—Logical Bitwise AND

MOTOROLA Chapter 6. AltiVec Instructions 6-41
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec Technology Programming Environments Manual

vandc vandc

Vector Logical AND with Complement

vandc vD,vA,vB Form: VX
04 vD VA vB 1092

0 5 6 10 11 15 16 20 21 31

vD « (VA) & -(vB)

The contents of vA are ANDed with the one’s complement of the contents of vB and the

result is placed into vD.

Other registers atered:
* None

Figure 6-16 shows usage of the vandc instruction.

| |vB

| ||

| | Intermediate

| |vA

[0

| |vD

Figure 6-17. vand—Logical Bitwise AND with Complement

6-42 AltiVec Technology Programming Environments Manual

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

AltiVec Instruction Set

vavgshb vavgshb
Vector Average Signed Byte
vavgsb vD,vA,vB Form: VX
04 vD VA vB 1282
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8

aopp: g~ Si gnExtend((VA)j.j+7,9)
bopg. g~ SignExtend((vB);:j+7,9)
tenpg. g~ a@oPp:g +int POPg:g +int 1
VD . j+7< tenpg. 7

end

Each element of vavgsb isabyte.

Each signed-integer byte element in VA is added to the corresponding signed-integer byte
element in vB, producing an 9-Bit signed-integer sum. The sum is incremented by 1. The

high-order 8 bits of the result are placed into the corresponding element of vD.

Other registers altered:
* None

Figure 6-18 shows the usage of the vavgsb instruction. Each of the sixteen elementsin the

vectors, VA, vB, and vD, is 8 bitslong.

o b e e e b e b b b L L L [Jva
IHININIRININIRINIR NI IR NN : bits

\N V+ \J \N \N V+ \N \N V+ \N V+ V+ \N \ V+ V+ L

o+ o+ o+ o+ 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ >
I/I/I/I/I/I/I/IHMM\ I\I\I\I\I\I -
| | | | 1 | | | | | | 1 | | | 1 | Tem

R A R A A A
+1 41+ +1 + +1 +1 +1T #1411 4+ 1+ 1+
EEEEE NN EEN NI

\| \| | \| \ \| | \| \| | \| \| \| | \| \| Temp

|
Figure 6-18. vavgsb— Average Sixteen Signed Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions

For More Information On This Product,
Go to: www.freescale.com

6-43

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vavgsh vavgsh

Vector Average Signed Half Word

vavgsh vD,vA,vB Form: VX
04 vD VA vB 1346

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16

aopp: 16 Si gnExtend((VA)j.j+15, 17)
bopg. 16 Si gnExtend((VB);.;+15, 17)
tenpg. 16— @0Pg: 15 *int DOPp:15 *int 1
VD, .j+15- tenpg: 15

end

Each element of vavgsh isahalf word.

Each signed-integer element in VA is added to the corresponding signed-integer element in

vB, producing an 17-bit signed-integer sum. The sum isincremented by 1. The high-order
16 bits of the result are placed into the corresponding element of vD.

Other registers altered:
* None

Figure 6-19 shows the usage of the vavgsh instruction. Each of the eight elements in the
vectors, VA, vB, and vD, is 16 bitslong.

| | | | | | | | | vA
17 bit
HINEIREIEI IR <
v+v A \ A vy vy A v+v Al -
—>]
/ //) \ NN N 1obs
| Temp
v Y v Y v v Y Y
+1 + +1 +1 +1 + +1 +1
| ! / ! | | Temp

R //

Figure 6-19. vavgsh—Average Eight Slgned Integer Elements (16-bits)

6-44 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vavgsw vavgsw
Vector Average Signed Word
vavgsw vD,vVA,vB Form: VX
04 vD VA vB 1410
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

aopg: 32— Si gnExtend((VA) .31, 33)
bopg: 32~ Si gnExtend((VvB) ;.| 31, 33)
tenpg. 32« aoPg:32 *int bOPp:32 *int 1
VD, . j+31- tenpg:.a;

end
Each element of vavgsw isaword.

Each signed-integer element in VA is added to the corresponding signed-integer element in
vB, producing an 33-hit signed-integer sum. The sum isincremented by 1. The high-order

32 bits of the result are placed into the corresponding element of vD.
Other registers altered:

* None

Figure 6-20 shows the usage of the vavgsw instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| | | | | vA
| | | | | | | | vB 33 bits
A vy vy A -
/ / \ \ 32 bits
| ‘ B ‘ B ‘ B ‘ | Temp
Y Y Y Y
+1 +1 +1 +1
| | | | | Temp

|
Figure 6-20. vavgsw— Average Four Signed Integer Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-45

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vavgub vavgub

Vector Average Unsigned Byte

vavgub vD,vA ,vB Form: VX

04 vD VA vB 1026

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8

aopg. g« ZeroExtend((VA)i.ij+7,9)
bopg. n~ ZeroExtend((VB);: .71, 9)
tenmpg. n— a0Pg:g *int bOPo:g *int 1
VD . j+7< tenpg. 7

end
Each element of vavgub isabyte.

Each unsigned-integer element in VA is added to the corresponding unsigned-integer
element in vB, producing an 9-bit unsigned-integer sum. The sum isincremented by 1. The
high-order 8 bits of the result are placed into the corresponding element of vD.
Other registers altered:

* None

Figure 6-21 shows the usage of the vavgub instruction. Each of the sixteen elementsin the
vectors, VA, vB, and vD, is 8 bitslong.

oL L e e e by I by [y va
INININIRININIRININININ NN N - a—
!ﬁ V+ \J !ﬁ !ﬁ Vﬁ !ﬁ !ﬁ Vﬁ !ﬁ V+ Vﬁ V+ \/ VW VW .
+ 0+ 4+ 4+ o+ o+ o+ o+ o+ 4+ o+ o+ o+ o+ o+ o+ >
I/I/I/I/I/I/I/IHMM\ I\I\I\I\I\I w
| | | | 1 | | | | | | 1 | | | 1 \Tem
N A
+1 41+ +1 + +1 +1 +1T #1411 4+ 1+ 1+
S TR 0 T T 2N 2N T N AN O AR A A
| \ \| | \| \| I \| \| \| | \| \| Temp

| vD

|
Figure 6-21. vavgub—Average Sixteen Unsigned Integer Elements (8-bits)

6-46 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vavguh vavguh

Vector Average Unsigned Half Word

vavguh vD,vA ,vB Form: VX

04 vD VA vB 1090

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16

aopg: 16+ ZeroExtend((VA)i:i+15, 17)
bopg. 16~ ZeroExtend((vB); .15 17)
tenpg. 16— @0Pg: 16 *int POPo:16 *tint 1
VD, .j+15- tenpg: 15

end

Each element of vavguh isahalf word.

Each unsigned-integer element in VA is added to the corresponding unsigned-integer
element in vB, producing a 17-bit unsigned-integer. The sum is incremented by 1. The
high-order 16 bits of the result are placed into the corresponding element of vD.

Other registers altered:
* None

Figure 6-22 shows the usage of the vavgsh instruction. Each of the eight elements in the
vectors, VA, vB, and vD, is 16 bitslong.

| | | | | | | | | vA
17 bit
S e e e e e
‘L + + + + ‘h V+ + >
PR S S T S fobis
| | \| | \| | \| | \| | \| | \l | \| | \| Temp
Y Y Y Y Y Y Y Y
+ + +1 +1 +1 + +1 +1
L / | Temp

'
||\||\||l X ||/||/||/||/|

Figure 6-22. vavgsh— Average Eight Signed Integer Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-47

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vavguw vavguw
Vector Average Unsigned Word
vavguw vD,vA,vB Form: VX
04 vD VA vB 1154
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

aopg: 32 — Zer oExtend((VA) .31, 33)
bopg. 32~ ZeroExtend((VvB);.j+31, 33)
tenpg. 32« aoPg:32 *int bOPp:32 *int 1
VD, . j+31- tenpg:.a;

end
Each element of vavguw is aword.

Each unsigned-integer element in VA is added to the corresponding unsigned-integer
element in vB, producing an 33-bit unsigned-integer sum. The sum is incremented by 1.
The high-order 32 hits of the result are placed into the corresponding element of vD.

Other registers altered:
* None

Figure 6-23 shows the usage of the vavguw instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| | | | | vA
| | | | | | | | | vB 33 bits
A vy vy A -
/ / \ \ 32 bits
| ‘ B ‘ B ‘ B ‘ | Temp
Y Y Y Y
+1 +1 +1 +1
| B B B | Temp

Figure 6-23. vavguw—Average Four Unsigned Integer Elements (32-Bit)

6-48 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vcfsx vcfsx

Vector Convert from Signed Fixed-Point Word

vcfsx vD,vB,UIMM Form: VX
04 vD UIMM vB 842

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
VD :j+31 < CnvtSI32ToFP32((VB)j.j+31) +fp 2V™MM

end

Each signed fixed-point integer word element in vB is converted to the nearest
single-precision floating-point value. The result is divided by 2uvv (UIMM = Unsigned
immediate value) and placed into the corresponding word element of vD.

Other registers altered:
* None

Figure 6-24 shows the usage of the vcfsx instruction. Each of the four elements in the
vectors vB and vD is 32 hitslong.

Scale Factor from Opcode (2U'MM)
A
\l ‘ \J ‘ \l ‘ \J

Figure 6-24. vcfsx—Convert Four Signed Integer Elements to Four Floating-Point
Elements (32-Bit)

|vB

| vD

MOTOROLA Chapter 6. AltiVec Instructions 6-49

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vcfux vcfux

Vector Convert from Unsigned Fixed-Point Word

vcfux vD,vB,UIMM Form: VX
04 vD UIMM vB 778

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
VD . j+31 < Cnvt U 32TOFP32((VB)j.j+31) +fp 2V™MM

end

Each unsigned fixed-point integer word element in vB is converted to the nearest
single-precision floating-point value. The result is divided by 2v™M and placed into the
corresponding word element of vD.

Other registers altered:
* None

Figure 6-25 shows the usage of the vcfux instruction. Each of the four elements in the
vectors vB and vD is 32 hitslong.

Scale Factor from Opcode (2U/MM)
s sS
\l ‘ \J ‘ \l ‘ \J

Figure 6-25. vcfux—Convert Four Unsigned Integer Elements to Four
Floating-Point Elements (32-Bit)

|vB

| vD

6-50 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vcmpbfpx vcempbfpx

Vector Compare Bounds Floating Point

vempbfp vD,vA,vB (Rc=0) Form: VXR
vempbfp. vD,vA,vB (Rc=1)
04 vD VA vB Rc 966
0 5 6 10 11 15 16 20 21 22 31

do i=0 to 127 by 32

le « ((VA)i:j+31 Sfp (VB)j:i+31)
ge < ((VA)i:j+31 2fp -(VB)j:j+31)
VD .i+31 < —le || —ge || *0

end
if Rc=1 then do

ib « (vD = 1%()

CRy4. 57 « 0DbOO || ib || ObO
end

Each single-precision word element in vA iscompared to the corresponding element in vB.
A 2-bit value is formed that indicates whether the element in VA is within the bounds
specified by the element in vB, asfollows.

Bit O of the 2-hit value is zero if the element in VA isless than or equal to the element in
vB, and isone otherwise. Bit 1 of the 2-hit valueis zero if the element in VA is greater than
or equal to the negative of the element in vB, and is one otherwise.

The 2-bit value is placed into the high-order two bits of the corresponding word element
(bits 0-1 for word element 0, bits 32—33 for word element 1, bits 64—65 for word element
2, bits 96-97 for word element 3) of vD and the remaining bits of the element are cleared.

If Rc=1, CR Field 6 is set to indicate whether all four elementsin vA are within the bounds
specified by the corresponding element in vB, as follows.

. CR6 = 0b00 || al_within_bounds|| 0
Note that if any single-precision floating-point word element in vB is negative; the

corresponding element in VA is out of bounds. Notethat if avA or avB element isaNaN,
the two high order bits of the corresponding result will both have the value 1.

If VSCR[NJ] = 1, every denormalized operand element is truncated to O before the
comparison is made.

Other registers atered:
» Condition register (CR6):
Affected: Bit 2 (if Re= 1)
MOTOROLA Chapter 6. AltiVec Instructions 6-51

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

Figure 6-26 shows the usage of the vempbfp instruction. Each of the four elementsin the
vectors, VA, vB, and vD, is 32 hits long.

| | | | | vA
| \ L \ L \ \ | \ |8
Yy Yy Yy Yy YY Yy Yy Yy
< > < > < > < >
L1 1] L1 [1] | vD
0 1 3233 64 65 9697

Figure 6-26. vcmpbfp—Compare Bounds of Four Floating-Point Elements (32-Bit)

6-52 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec Instruction Set

vcempeqfpx vcempeqfpx
Vector Compare Equal-to-Floating Point
vempeqfp vD,vA,vB Form: VXR
vempeqfp. vD,vA,vB

04 vD VA vB Rc 198
0 5 6 10 11 15 16 20 21 22 31

do i=0 to 127 by 32
i (VA i+31 =fp (VB)i:j+a1
then vD . .3 — OXFFFF_FFFF
el se vD, . 43; « 0x0000_0000

end

if Rc=1 then do
t « (vD = 18)
f — (vD = 120)

CRys.27 <« t || ObO || f || ObO
end

Each single-precision floating-point word element in VA is compared to the corresponding
single-precision floating-point word element in vB. The corresponding word element invD
is set to all 1sif the element in VA is equal to the element in vB, and is cleared to al Os
otherwise.

If Rc = 1. CR6 filed is set according to all, some, or none of the elements pairs compare
equal.

» CR6=all_equa || 0bO || none_equal || Ob0
Notethat if avA or vB element isaNaN, the corresponding result will be 0x0000_0000.

Other registers atered:
» Condition register (CR6):
Affected: Bits0-3 (if Rc=1)

Figure 6-27 shows the usage of the vempeqfp instruction. Each of the four elementsin the
vectors, VA, vB, and vD, is 32 hits long.

| | | |
Y v

| vA

| vB

<
<

€ |

-«
I <]

|-

|-

-
-

Il
-

| vD

Figure 6-27. vcmpegfp—Compare Equal of Four Floating-Point Elements (32-Bit)

MOTOROLA

Chapter 6. AltiVec Instructions

For More Information On This Product,
Go to: www.freescale.com

6-53

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vcmpegqubx vcmpegubx
Vector Compare Equal-to Unsigned Byte
vcmpequb vD,vVA,vB Form: VXR
vcmpequb. vD,vA,vB
04 vD VA vB Rc 6
0 5 6 10 11 15 16 20 21 22 31

do i=0 to 127 by 8
if (VA).i+7 Zing (VB)i:j+7

then vh.j47 < °1

else vD.;4,7 < 80
end
if Rc=1 then do

t — (vD = 128))

f — (vD = 1280)

CR[24:27] < t || ObO || f |] ObO
end

Each element of vempequb isabyte.

Each integer element in VA is compared to the corresponding integer element in vB. The
corresponding element in vD is set to al 1sif the element in VA isequal to the element in
vB, and is cleared to all Os otherwise.

The CR6 is set according to whether all, some, or none of the el ements compare equal.
* CR6=all _equa || 0b0 || none_equa || ObO

Note that vempequb[.] can be used for unsigned or signed integers.

Other registers atered:
» Condition register (CR6):
Affected: Bits 0-3 (if Rc=1)

Figure 6-28 shows the usage of the vempequb instruction. Each of the sixteen elementsin
the vectors, VA, vB, and vD, is 8 bitslong.

LoD Dy B Ty b By b B I Iy T T By Ty Ty A
INnInninnninininnnninmme:
7 _v v_v v_v v_v 7 _v v_v] _v 7 _v v_v] _v v_v] _v] _v Y _v] _v] _v
Y Y Y Y Y Y Y Y Y Y Y Y Y ¥ ¥ ¥
1 O O O I O N A

Figure 6-28. vcmpequb—Compare Equal of Sixteen Integer Elements (8-bits)

6-54 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vcmpequhx vcmpequhx
Vector Compare Equal-to Unsigned Half Word
vcmpequh vD,vVA,vB Form: VXR
vcmpequh. vD,vA,vB
04 vD VA vB Rc 70
0 5 6 10 11 15 16 20 21 22 31

do i=0 to 127 by 16

if (VA i+15 Sint (VB)j:i+15
then vD .15 «
el se VD j45 « 100

end

if Rc=1 then do
t ~ (vD = 1287)
f < (vD = 1280)

CR[24:27] ~ t || ObO || f || ObO
end

Each element of vempequh is ahalf word.

Each integer element in VA is compared to the corresponding integer element in vB. The
corresponding element in vD is set to all 1sif the element in VA is equal to the element in
vB, and is cleared to all Os otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal.
« CR6 =4l _equa || 0bO || none_equal || ObO.

Note that vempequh[.] can be used for unsigned or signed integers.

Other registers altered:
» Condition register (CR6):
Affected: Bits 0-3 (if Rc=1)

Figure 6-29 shows the usage of the vempequh instruction. Each of the eight elementsin
the vectors, VA, vB, and vD, is 16 bitslong.

| | | | | | | | | vA

1]
V¢ VV‘ V‘V

-
-

V‘V

I <

v_#
Y

< ||
<
-

| | | | | | | | | vD

Figure 6-29. vcmpequh—Compare Equal of Eight Integer Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-55

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vempequwx vempequwx
Vector Compare Equal-to Unsigned Word
vempequw vD,vVA,vB Form: VXR
vempequw. vD,vA,vB
04 vD VA vB Rc 134
0 5 6 10 11 15 16 20 21 22 31

do i=0 to 127 by 32
if (VA)ii+311 Sint (VB)i:j+31

then VD g « "
el se VD :j431 < "o
end
if Rc=1 then do
t « (vD = 1281)
f < (vD = 1280)
CR[24:27] < t || ObO || f |] ObO
end

Each element of vempequw isaword.

Each integer element in VA is compared to the corresponding integer element in vB. The
corresponding element in vD is set to al 1sif the element in VA is equal to the element in
vB, and is cleared to all Os otherwise.

The CR6 is set according to whether all, some, or none of the el ements compare equal.
» CR6=all_equa || 0bO || none_equal || Ob0
Note that vempequw[.] can be used for unsigned or signed integers.
Other registers atered:
» Condition register (CR6):
Affected: Bits 0-3 (if Rc=1)

Figure 6-30 shows the usage of the vempequw instruction. Each of the four elementsin the
vectors, VA, vB, and vD, is 32 bits long.

| | | | | vA

-
<
-
<
-}

<1
il
aall!
Ll

| | | | | vD

Figure 6-30. vcmpequw—Compare Equal of Four Integer Elements (32-Bit)

6-56 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vcmpgefpx vcecmpgefpx
Vector Compare Greater-Than-or-Equal-to Floating Point
vempgefp vD,vA,vB (Rc=0) Form: VXR
vempgefp. vD,vA,vB (Rc=1)
04 vD VA vB Rc 454
0 5 6 10 11 15 16 20 21 22 31

do i=0 to 127 by 32

it (VA):i+31 2fp (VB)j:j431
then VD ;.3 « OXFFFF_FFFF
el se VD .j4+3; « 0x0000_0000

end
if Rc=1 then do

t < (vD = 1281)
f (vD = 120)

CRy4:27 < t || ObO || f || ObO
end

Each single-precision floating-point word element in VA is compared to the corresponding
single-precision floating-point word element in vB. The corresponding word element in vD
is set to al 1sif the element in VA is greater than or equal to the element in vB, and is
cleared to all Os otherwise.

If Rc = 1, CRG6 is set according to all_greater_or_equal || some_greater_or_equal ||
none_great_or_equal.

CR6 = all_greater_or_equal || ObO || none greater_or_equal || ObO.

Notethat if avA or vB element isaNaN, the corresponding results will be 0x0000_0000.
Other registers altered:
» Condition register (CR6):
Affected: Bits 0-3 (if Rc=1)

Figure 6-31 shows the usage of the vempgefp instruction. Each of the four elementsin the
vectors, VA, vB, and vD, is 32 bits long

| | | | | vA

-
-<—
-

T
> > > >
Y Y Y Y

| | | | | vD

Figure 6-31. vcmpgefp—Compare Greater-Than-or-Equal of Four Floating-Point
Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-57

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vempgtfpx

Vector Compare Greater-Than Floating-Point

vempgtfpx

vempgtfp vD,vA,vB Form: VXR
vempgtfp. vD,vA,vB

04 vD VA vB Rc 710
0 5 6 10 11 15 16 20 21 22 31

do i=0 to 127 by 32
if (VA i+31 >fp (VB)j:j4a1
then vD .j,31 — OXFFFF_FFFF
el se vD.j,3; « 0x0000_0000
end
if Rc=1 then do
t < (VD - 1281)
f < (VD = 1280)
CR[24:27] « t || ObO || f || ObO
end

Each single-precision floating-point word element in VA is compared to the corresponding
single-precision floating-point word element in vB. The corresponding word element invD
isset to al 1sif the element in VA is greater than the element in vB, and is cleared to all Os
otherwise.

If Rc = 1, CR6 is set according to al greater than || some greater than ||
none_greater than.

CR6 = all_greater_than || ObO || none greater_than || ObO.
Notethat if avA or vB element isaNaN, the corresponding results will be 0x0000_0000.
Other registers atered:
» Condition register (CR6):
Affected: Bits 0-3 (if Rc=1)

Figure 6-32 shows the usage of the vempgtfp instruction. Each of the four elementsin the
vectors, VA, vB, and vD, is 32 hits long.

| | | | | vA

| vB

-
-<—

< \/

< \/

-
<

-<—
-

y
>
Y

/

|
Y

>
Y

| vD

Figure 6-32. vempgtfp—Compare Greater-Than of Four Floating-Point Elements
(32-Bit)

6-58 AltiVec Technology Programming Environments Manual MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vcempgtsbx vcempgtsbx
Vector Compare Greater-Than Signed Byte
vcmpgtsb vD,vA,vB Form: VXR
vempgtsb. vD,vA,vB
04 vD VA vB Rc 774
0 5 6 10 11 15 16 20 21 22 31

do i=0 to 127 by 8

it (VA 47 >si (VB)itis7
then vD .;,7 « 81
else vD.j4,7 « 20

end

if Rc=1 then do
t - (vD = 1287)
f — (vD = 1280)

CRos:27 « t || 0O [f || ObO

end
Each element of vempgtsb is abyte.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The corresponding element in vD is set to al 1sif the element in VA is
greater than the element in vB, and is cleared to all Os otherwise.

If Rc=1, CR6isset accordingtoall greater than || some greater than || none great_than.
CRG6 = all_greater_than || ObO || none greater_than || ObO.
Notethat if avA or vB element isaNaN, the corresponding results will be 0x0000_0000.

Other registers altered:
» Condition register (CR6):
Affected: Bits 0-3 (if Rc=1)

Figure 6-33 shows the usage of the vempgtsb instruction. Each of the sixteen elementsin
the vectors, VA, vB, and vD, is 8 bits long.

Lo Ly e e e O b I b by B Iy I 0y v

INInInninnmnninininnninime:

YY YV YV YV VY YY VY YY YY YV YY YV YV YV YV VY

> > > > > > > > > > > > > > > >

|v Y Y Y Y Y Y VYV Y Y Y Y Y Y ¥ vl
vD

Figure 6-33. vcmpgtsb—Compare Greater-Than of Sixteen Signed Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-59

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vcmpgtshx vcempgtshx
Vector Compare Greater-Than Condition Register Signed Half Word
vecmpgtsh vD,vA,vB Form: VXR
vcmpgtsh. vD,vA,vB
04 vD VA vB Rc 838
0 5 6 10 11 15 16 20 21 22 31

do i=0 to 127 by 16
if (VA)i.i+15 >si (VB)j.i+15
then VD :j+15 < 1651
el se VD j45 « 100
end

if Rc=1 then do

t < (vD = 1287)
f < (vD = 128
CRo4.27 < t |[ObO |[f || ObO

end
Each element of vcmpgtsh is a half word.

Each signed-integer element in VA is compared to the corresponding signed-integer
element in vB. The corresponding element in vD is set to al 1sif the element in VA is
greater than the element in vB, and is cleared to all Os otherwise.

If Rc=1, CR6isset accordingtoall_greater than || some greater than || none great_than.
CRG6 = all_greater_than || ObO || none greater_than || ObO.

Notethat if avA or vB element isaNaN, the corresponding results will be 0x0000_0000.

Other registers altered:
» Condition register (CR6):
Affected: Bits0-3 (if Rc=1)

Figure 6-34 shows the usage of the vempgtsh instruction. Each of the eight elementsin the
vectors, VA, vB, and vD, is 16 bitslong.

| | | | | | | | | vA

| | |
(] ¢ v) ¢] ¢ vj YY] ¢ Yy vj

| vB

| | | | | | | | | vD

Figure 6-34. vempgtsh—Compare Greater-Than of Eight Signed Integer Elements (16-Bit)

6-60 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vempgtswx vempgtswx
Vector Compare Greater-Than Signed Word
vempgtsw vD,vVA,vB Form: VXR
vempgtsw. vD,vA,vB
04 vD VA vB Rc 902
0 5 6 10 11 15 16 20 21 22 31

do i=0 to 127 by 32
if (VA i+31 >si (VB)j:i+31
then vD .|,3; « 321
el se VD .j43; « 320

end

if Rc=1 then do

t - (vD = 1287)

f — (vD = 1280)

CRp4:27 < t || 0bO || f || ObO
end

Each element of vempgtsw isaword.

Each signed-integer element in vA is compared to the corresponding signed-integer
element in vB. The corresponding element in vD is set to al 1sif the element in VA is
greater than the element in vB, and is cleared to all Os otherwise.

If Rc=1, CR6isset according to all_greater_than || some_greater_than || none_great_than.
CR6 = all_greater_than || ObO || none greater_than || ObO.
Notethat if avA or vB element isaNaN, the corresponding results will be 0x0000_0000.
Other registers atered:
» Condition register (CR6):
Affected: Bits 0-3 (if Rc=1)

Figure 6-35 shows the usage of the vempgtsw instruction. Each of the four elementsin the
vectors, VA, vB, and vD, is 32 hits long.

| | | | | vA

| | | | | vD

Figure 6-35. vempgtsw—Compare Greater-Than of Four Signed Integer Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-61

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vempgtubx vcempgtubx
Vector Compare Greater-Than Unsigned Byte
vcmpgtub vD,vVA,vB Form: VXR
vcmpgtub. vD,vA,vB
04 vD VA vB Rc 518
0 5 6 10 11 15 16 20 21 22 31

do i=0 to 127 by 8

i (VA 47 2ui (VB)itis7
then vD .;,7 « 81
else vD.j4,7 « 20
end

if Rc=1 then do

t — (vD = 128))
f — (vD = 1280)
CR[24-27] ~ t || ObO || f || ObO

end

Each element of vempgtub is abyte. Each unsigned-integer element in vA is compared to
the corresponding unsigned-integer element in vB. The corresponding element invD is set
to al 1sif the element in VA is greater than the element in vB, and is cleared to all Os
otherwise.

If Rc=1, CR6isset according to all_greater _than || some_greater_than || none_great_than.
CR6 = all_greater_than || ObO || none greater_than || ObO.
Notethat if avA or vB element isaNaN, the corresponding results will be 0x0000_0000.
Other registers atered:
» Condition register (CR6):
Affected: Bits 0-3 (if Rc=1)

Figure 6-36 shows the usage of the vempgtub instruction. Each of the sixteen elementsin
the vectors, VA, vB, and vD, is 8 bits long.

oy O O O Oy O I Iy B By I Iy Iy Ty [y JvA
INinnnnnnninininininininimG
YY YY YY YY YY YY YV YY YV YY YV YY YY YY YV VY
> > > > > > > > > > > > > > > >
Y ¥ ¥ VY Y ¥ VY ¥V ¥ VY VY ¥ ¥V ¥V ¥V V¥
I O O
Figure 6-36. vcmpgtub—Compare Greater-Than of Sixteen Unsigned Integer Elements
(8-Bit)
6-62 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vempgtuhx vempgtuhx
Vector Compare Greater-Than Unsigned Half Word
vcmpgtuh vD,vVA,vB Form: VXR
vcmpgtuh. vD,vA,vB
04 vD VA vB Rc 582
0 5 6 10 11 15 16 20 21 22 31

do i=0 to 127 by 16

if (VA)i.i+151 >ui (VB)j:i+15
then vD .j415 « °1
else vD .45 « 10
end
if Rc=1 then do
t — (vD = 128))
f — (vD = 1280)
CR[24-27] < t || ObO || f |] ObO
end

Each element of vempgtuh is a half word. Each unsigned-integer element in vA is
compared to the corresponding unsigned-integer element in vB. The corresponding
element invD isset to all 1sif the element in VA is greater than the element invB, and is
cleared to all Os otherwise.

If Rc=1, CR6isset accordingtoall_greater than || some _greater than || none_great_than.
CR6 = all_greater_than || ObO || none greater_than || ObO.
Notethat if avA or vB element isaNaN, the corresponding results will be 0x0000_0000.

Other registers atered:
» Condition register (CR6):
Affected: Bits 0-3 (if Rc=1)

Figure 6-37 shows the usage of the vempgtuh instruction. Each of the eight elementsin the
vectors, VA, vB, and vD, is 16 bitslong.

| | | | | | | | | vA

| vB

|
YV Y

| | |
Al Al Al
> > > > > > > >
Y Y Y Y Y Y Y Y
| | | | | | | | | vD
Figure 6-37. vempgtuh—Compare Greater-Than of Eight Unsigned Integer Elements
(16-Bit)
MOTOROLA Chapter 6. AltiVec Instructions 6-63

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vempgtuwx vempgtuwx
Vector Compare Greater-Than Unsigned Word

vempgtuw vD,vVA,vB Form: VXR
vempgtuw. vD,vA,vB

04 vD VA vB Rc 646
0 5 6 10 11 15 16 20 21 22 31
do i=0 to 127 by 32
if (VA i+31 >ui (VB%i:i+31

then vD .j431 « *<1
else vD .j,3; « 320

end
if Rc=1 then do

t ~ (vD = 1287)

f < (vD = 1280)

CR[24-27] ~ t || ObO || f || ObO
end

Each element of vempgtuw is aword. Each unsigned-integer element in vA is compared
to the corresponding unsigned-integer element in vB. The corresponding element in vD is
set to al 1sif the element in VA is greater than the element in vB, and is cleared to all Os
otherwise.

If Rc=1, CR6isset accordingtoall _greater than || some greater than || none great_than.
CR6 = all_greater_than || Ob0 || none_greater _than || ObO.
Notethat if avA or vB element isaNaN, the corresponding results will be 0x0000_0000.

Other registers altered:
» Condition register (CR6):
Affected: Bits 0-3 (if Rc=1)

Figure 6-38 shows the usage of the vempgtuw instruction. Each of the four elementsin the
vectors, VA, vB, and vD, is 32 hits long.

Y
Y
| | | |

Figure 6-38. vempgtuw—Compare Greater-Than of Four Unsigned Integer
Elements (32-Bit)

6-64 AltiVec Technology Programming Environments Manual MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

VCISXS VCISXS

Vector Convert to Signed Fixed-Point Word Saturate

VCtSXS vD,vB,UIMM Form: VX
04 vD UIMM vB 970

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

if (vB)j+1:i+8=255 | (VB)j+1:i+8 * UM < 254 then
vD .j4+31 <« CnvtFP32ToSI 32Sat ((VB); - +31 *tp 2UIMM)
el se
do
if (vB)j=0 then vD.j4+31 < Ox7FFF_FFFF
el se vD .j4+37 « 0x8000_0000
VSCRgat « 1

end
end

Each single-precision word element in vB is multiplied by 2umM, The product is converted
to asigned integer using the rounding mode, Round toward Zero. If the intermediate result
IS greater than (231-1) it saturates to (232-1); if it is less than -23! it saturates to -23L. A
signed-integer result is placed into the corresponding word element of vD.

Fixed-point integers used by the vector convert instructions can be interpreted as consisting
of 32-UIMM integer bits followed by UIMM fraction bits. The vector convert to
fixed-point word instructions support only the rounding mode, Round toward Zero. A
single-precision number can be converted to a fixed-point integer using any of the other
three rounding modes by executing the appropriate vector round to floating-point integer
instruction before the vector convert to fixed-point word instruction.

Other registers atered:
» Vector status and control register (VSCR):
Affected: SAT

Figure 6-39 shows the usage of the vctsxs instruction. Each of the four elements in the
vectors vB and vD is 32 hits long.

Scale Factor from Opcode (2Y/MM)
| | | | | | | |
Figure 6-39. vctsxs—Convert Four Floating-Point Elements to Four Signed Integer
Elements (32-Bit)

| vB

| vD

MOTOROLA Chapter 6. AltiVec Instructions 6-65

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

VCtuxs VCtuxs
Vector Convert to Unsigned Fixed-Point Word Saturate
VCtuxs vD,vB,UIMM Form: VX
04 vD UIMM vB 906
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

if (VB)i+lIi+8:255 | (VB)i+lZi+8 + U MM < 254 t hen
V[)l Si+31 < Cnvt FP32ToUl 32Sat ((VB) ii+31 *f p 2UIM)
el se
do
if (vB);=0 thenvD .37 « OxFFFF_FFFF
el sevD .j+31 < 0x0000_0000

end

end

Each single-precision floating-point word element in vB is multiplied by 2u™, The product
IS converted to an unsigned fixed-point integer using the rounding mode Round toward
Zero.

If the intermediate result is greater than (232-1) it saturates to (232-1) and if it islessthan O
it saturatesto O.

The unsigned-integer result is placed into the corresponding word element of vD.

Other registers atered:
» Vector status and control register (VSCR):
Affected: SAT

Figure 6-40 shows the usage of the vctuxs instruction. Each of the four elements in the
vectors vB and vD is 32 hits long.

Scale Factor from Opcode (2Y/MM)
e
I ‘ I ‘ I ‘ I

Figure 6-40. vctuxs—Convert Four Floating-Point Elements to Four Unsigned
Integer Elements (32-Bit)

| vB

| vD

6-66 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vexptefp

Vector 2 Raised to the Exponent Estimate Floating Point

vexptefp

vexptefp vD,vB Form: VX

04 vD 0_0000 vB 394

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
X « (VB)j:j+31
VD :j4g1 < 2%
end

The single-precision floating-point estimate of 2 raised to the power of each
single-precision floating-point element in vB is placed into the corresponding element of
vD.

The estimate has arelative error in precision no greater than one part in 16, that is,

estimate — 2X

2X

~ 16

where x is the value of the element in vB. The most significant 12 bits of the estimate's
significant are monotonic. Note that the value placed into the element of vD may vary
between implementations, and between different executions on the same implementation.

If an operation hasan integral value and the resulting valueisnot O or +oo, theresult isexact.

Operation with various specia values of the element in vB is summarized in Table 6-5
below.

Table 6-5. Special Values of the Element in vB

Value .of Result
Element in vB
) +0
-0 +1
+0 +1
+00 +o0o
NaN QNaN

If VSCR[NJ] = 1, every denormalized operand element is truncated to a O of the same sign
before the operation is carried out, and each denormalized result el ement truncatesto a 0 of
the same sign.

MOTOROLA Chapter 6. AltiVec Instructions 6-67

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

Other registers atered:
* None

Figure 6-41 shows the usage of the vexptefp instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

| X | X | X | X | vB
5 3 3 5
Y Y Y Y

| | | | | vD

Figure 6-41. vexptefp—2 Raised to the Exponent Estimate Floating-Point for Four
Floating-Point Elements (32-Bit)

6-68 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vliogefp

Vector Log, Estimate Floating Point

vliogefp

vlogefp vD,vB Form: VX

04 vD 0_0000 vB 458

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
X « (VB)j:j+31
VD :i+31 < 1002(X%)

end

The single-precision floating-point estimate of the base 2 logarithm of each
single-precision floating-point element in vB is placed into the corresponding element of
vD.

The estimate has an absolute error in precision (absolute value of the difference between
the estimate and the infinitely precise value) no greater than 25. The estimate has arelative
error in precision no greater than one part in 8, as described below:

X—1] <3

unless
8

, 10

Hestl mate - log,(X)| < 3

where x is the value of the element in vB, except when [x-1| < 1 + 8. The most significant

12 bits of the estimate's significant are monotonic. Note that the value placed into the

element of vD may vary between implementations, and between different executions on the
same implementation.

Operation with various special values of the element in vB is summarized below in
Table 6-6.

Table 6-6. Special Values of the Element in vB

Value Result
-00 QNaN
less than O QNaN
+0 -00
+00 +00
NaN ONaN

If VSCR[NJ] = 1, every denormalized operand element is truncated to a O of the same sign
before the operation is carried out, and each denormalized result el ement truncatesto a 0 of
the same sign.

MOTOROLA Chapter 6. AltiVec Instructions 6-69

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

Other registers atered:
* None

Figure 6-42 shows the usage of the vexptefp instruction. Each of the four elements in the
vectors vB and vD is 32 bits long.

| X | X | X | X | vB
Y Y J
logo(X) logo(X) logo(X) logo(X)
\ \ \ \
Y | v | v | y VD

Figure 6-42. vexptefp—Log, Estimate Floating-Point for Four Floating-Point
Elements (32-Bit)

6-70 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vmaddfp vmaddfp

Vector Multiply Add Floating Point

vmaddfp vD,vA,vC,vB Form: VA

04 vD VA vB vC 46

0 5 6 10 11 15 16 20 21 26 31

do i=0 to 127 by 32
VD .j+31 ~ RndToNear FP32(((VA)j.j+31 *fp (VO i:i+31) *+ip (VB)i:j+31)

end

Each single-precision floating-point word element in VA is multiplied by the corresponding
single-precision floating-point word element in vC. The corresponding single-precision
floating-point word element in vB is added to the product. The result is rounded to the
nearest single-precision floating-point number and placed into the corresponding word
element of vD.

Note that a vector multiply floating-point instruction is not provided. The effect of such an
instruction can be obtained by using vmaddfp with vB containing the value -0.0
(Ox8000_0000) in each of itsfour single-precision floating-point word elements. (The value
must be-0.0, not +0.0, in order to obtain the | EEE-conforming result of -0.0 when the result
of the multiplication is-0.)

Other registers atered:
* None

If VSCR[NJ] = 1, every denormalized operand element is truncated to a O of the same sign
before the operationis carried out, and each denormalized result element truncatesto a0 of
the same sign. Figure 6-43 shows the usage of the vmaddfp instruction. Each of the four
elementsin the vectors, VA, vB, and vD, is 32 bits long.

¥ v X
| | | | | Prod
| 1NN | vB
++v $+v ++v ++v
v v v

I R R B
Figure 6-43. vmaddfp—Multiply-Add Four Floating-Point Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-71

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmaxfp vmaxfp
Vector Maximum Floating Point
vmaxfp vD,vA,vB Form: VX
04 vD VA vB 1034
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

i (VA 431 2fp (VB)ii+a1
then vD .j431 « (VA)j:j+31
else VD .j+31 < (VB)j:j+31

end

Each single-precision floating-point word element in VA is compared to the corresponding
single-precision floating-point word element in vB. The larger of the two single-precision
floating-point valuesis placed into the corresponding word element of vD.

The maximum of +0 and -0 is +0. The maximum of any value and aNaN isa QNaN.

Other registers altered:
* None

Figure 6-44 shows the usage of the vmaxfp instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| | | | | vA
| \ | \ | \ | \ | vB
A YV yv y
Zfp Zip Zip Zfp
v Y Y Y
| | | | | vD

Figure 6-44. vmaxfp—Maximum of Four Floating-Point Elements (32-Bit)

6-72 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vmaxshb vmaxshb
Vector Maximum Signed Byte
vmaxsb vD,vA,vB Form: VX
04 vD VA vB 258
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8
it (VA 47 250 (VB)j:j+7
then vD.j7 <« (VA)j:i+7
else VD .j47 < (VB)j:i+7
end
Each element of vmaxsb isabyte.

Each signed-integer element in VA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer valuesis placed into the corresponding

element of vD.
Other registers altered:
* None

Figure 6-45 shows the usage of the vmaxsb instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| |vA

INInInninnnninininnninmme:
YY VY YV YV YV YY YY VY YV YV YY YY YV YV YV YV
Zsi Zsi Zsi 3si Zsi Zsi Ssi 3si 3si Zsi Ssi Zsi Ssi s Ssi s
Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Figure 6-45. vmaxsb—Maximum of Sixteen Signed Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-73

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmaxsh vmaxsh
Vector Maximum Signed Half Word
vmaxsh vD,vA,vB Form: VX
04 vD VA vB 322
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16
if (VA i+7 25 (VB)j.i415
then vD 415« (VA)i:i+15
else VD .j+15 <« (VB)j:i+15
end
Each element of vmaxsh is a half word.

Each signed-integer element in VA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer valuesis placed into the corresponding
element of vD.

Other registers altered:
* None

Figure 6-46 shows the usage of the vmaxsh instruction. Each of the eight elements in the
vectors, VA, vB, and vD, is 16 bits longlong.

| | vA

HIEEIEE NI
(A \A] (A YV (A] (Al YV (A]
=si si =si =si 2si =si =si =
Y Y Y Y Y Y Y

| | vD

Figure 6-46. vmaxsh—Maximum of Eight Signed Integer Elements (16-Bit)

6-74 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

VMaxsw VmMaxsw
Vector Maximum Signed Word
Vvmaxsw vD,vVA,vB Form: VX
04 vD VA vB 386
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
if (VA)i.i+31 2s5i (VB)i:i+31
then vD.jt31 < (VA)i:i+a1
else VD .j431 « (VB)i:i+a1
end
Each e ement of vmaxsw isaword.

Each signed-integer element in VA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer valuesis placed into the corresponding
element of vD.
Other registers altered:

* None

Figure 6-47 shows the usage of the vmaxsw instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| | | | | vA
| \ | \ | \ | \ | vB
(A] (A] (A (A
2si 2si 2si 2si
Y Y Y Y

| | | | | vD

Figure 6-47. vmaxsw—Maximum of Four Signed Integer Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-75

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmaxub vmaxub
Vector Maximum Signed Byte
vmaxub vD,vA,vB Form: VX
04 vD VA vB 2
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8
it (VA 47 20 (VB)jii+7
then vD.j7 <« (VA)j:i+7
else VD .j47 < (VB)j:i+7
end
Each element of vmaxub isabyte.

Each unsigned-integer element in VA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:
* None

Figure 6-48 shows the usage of the vmaxub instruction. Each of the sixteen elementsin the
vectors, VA, vB, and vD, is 8 bitslong.

Lo Ly e b e O b I b by B Iy Iy Iy v
INInInninnnninininnninmme:
YY VY YV YV YV YY YY VY YV YV YY YY YV YV YV YV
24i 2ui 2ui 2ui 2ui 2 i 2ui 2ui = 2ui 2ui 24i 2ui 2ui 24 2ui
Y Y Y Y Y Y
| | vD

Figure 6-48. vmaxub—Maximum of Sixteen Unsigned Integer Elements (8-Bit)

6-76 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vmaxuh vmaxuh

Vector Maximum Unsigned Half Word

vmaxuh vD,vA,vB Form: VX

04 vD VA vB 66

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16
if (VA)i.i+15 24 (VB)i:i+is
then vD .j415 < (VA):i+15
else VD .j4+15 « (VB)i:i+15
end
Each e ement of vmaxuh is ahalf word.

Each unsigned-integer element in VA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:
* None

Figure 6-49 shows the usage of the vmaxuh instruction. Each of the eight elementsin the
vectors, VA, vB, and vD, is 16 bitslong.

| | vA

L \ \ \ \ \ | vB
(A \A] (A YV (A] (Al YV (A]
2y 2y 2y 2y 2y 2y 2y 2y
Y Y Y Y Y

| | | | | | | | | v

Figure 6-49. vmaxuh—Maximum of Eight Unsigned Integer Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-77

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmaxuw vmaxuw
Vector Maximum Unsigned Word
vmaxuw vD,vVA,vB Form: VX
04 vD VA vB 130
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
if (VA)i.i+31 24 (VB)i:i+31
then vD.jt31 < (VA)i:i+a1
else VD .j431 « (VB)i:i+a1
end
Each e ement of vmaxuw isaword.

Each unsigned-integer element in VA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:
* None

Figure 6-50 shows the usage of the vmaxuw instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| | vA
| \ | \ | \ | \ | vB
(A] (A] (A (A
= = 2y =ui
Y Y
| | vD

Figure 6-50. vmaxuw—Maximum of Four Unsigned Integer Elements (32-Bit)

6-78 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vmhaddshs vmhaddshs
Vector Multiply High and Add Signed Half Word Saturate
vmhaddshs vD,vA,vB,vC Form: VA
04 vD VA vB vC 32
0 5 6 10 11 15 16 20 21 25 26 31

do i=0 to 127 by 16

prodo. 31« (VA)i:i+1s *si (VB)i:i+15
tenpg. 16— Prodo. 16 *int SignExtend((vQ);. 15, 17)
VD .j 415 SltoSlsat(tenpg. 16, 16)

end

Each signed-integer haf word element in vA is multiplied by the corresponding
signed-integer half word element in vB, producing a 32-bit signed-integer product. Bits
0-16 of the intermediate product are added to the corresponding signed-integer half-word
element in vC after they have been sign extended to 17-bits. The 16-bit saturated result from
each of the eight 17-bit sumsis placed in register vD.

If the intermediate result is greater than (2:5-1) it saturates to (25-1) and if it is less than
(-21) it saturates to (-21).
The signed-integer result is placed into the corresponding half-word element of vD.
Other registers altered:
» Vector status and control register (VSCR):
Affected: SAT

Figure 6-51 shows the usage of the vmhaddshs instruction. Each of the eight elementsin
the vectors, VA, vB, vC, and vD, is 16 bitslong.

SR S S S = i R
Al Al Al Al Al A v Al
Y Y Y 16>V < ¥ Y Y
L L D T N s N P
Sat
TEC DI T T 3w
Figure 6-51. vmhaddshs—Multiply-High and Add Eight Signed Integer Elements
(16-Bit)
MOTOROLA Chapter 6. AltiVec Instructions 6-79

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmhraddshs vmhraddshs
Vector Multiply High Round and Add Signed Half Word Saturate
vmhraddshs vD,vA,vB,vC Form: VA
04 vD VA vB vC 33
0 5 6 10 11 15 16 20 21 25 26 31

do i=0 to 127 by 16
prodg.z1 « (VA)i:i+15 *si (VB)j:j+15
prodg.3; « prodg 31 +in 0x0000_4000
tenpg. 16 < Prodp. 16 *+int SignExtend((vQ);. .15, 17)
(vVD)j:i+15 « SltoSlsat(tenpg: 6, 16)
end

Each signed integer halfword element in register vA is multiplied by the corresponding
signed integer halfword element in register vB, producing a 32-bit signed integer product.
Thevalue 0x0000_ 4000 isadded to the product, producing a 32-bit signed integer sum. Bits
0—16 of the sum are added to the corresponding signed integer halfword element in
register vD.

If the intermediate result is greater than (25-1) it saturates to (225-1) and if it is less than
(-2%) it saturates to (-215).

The signed integer result is and placed into the corresponding halfword element of register
vD.

Figure 6-52 shows the usage of the vmhraddshs instruction. Each of the eight elementsin
the vectors, VA, vB, vC, and vD, is 16 bitslong.

L]

|, |Prod

B B []ve

[0.Llo1] fo..llo1] [o.llo1] [o.lio1] [o.llo1] [o.llo1] {o,.llo1] [0..]l01] Const

Yy Yy Y Yy Yy Yy
+ + +

Y Y
| Lo [T L= |Temp

-

Figure 6-52. vmhraddshs—Multiply-High Round and Add Eight Signed Integer
Elements (16-Bit)

6-80 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vminfp vminfp

Vector Minimum Floating Point

vminfp vD,vA,vB Form: VX

04 vD VA vB 1098

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

if (VA 431 <fp (VB)i:j4a1
then vD .j431 « (VA)j:j+31
else VD .j+31 < (VB)j:j+31

end

Each single-precision floating-point word element in register vA is compared to the
corresponding single-precision floating-point word element in register vB. The smaller of
the two single-precision floating-point values is placed into the corresponding word
element of register vD.

The minimum of + 0.0 and - 0.0 is- 0.0. The minimum of any value and aNaN isa QNaN.

If VSCR[NJ] = 1, every denormalized operand element is truncated to O before the
comparison is made.

Figure 6-53 shows the usage of the vminfp instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 hits long.

| | | | | vA
| \ | \ | \ | \ | vB
y y gv gv
fp fp fp fp
Y Y Y Y
| | | | | vD

Figure 6-53. vminfp—Minimum of Four Floating-Point Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-81

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vminsb vminsb

Vector Minimum Signed Byte

vminsb vD,vA,vB Form: VX
04 vD VA vB 770

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8
i (VA 47 <si (VB)i:j47
then vD.j7 <« (VA)j:i+7
else VD .j47 < (VB)j:i+7
end
Each element of vminsb is abyte.

Each signed-integer element in VA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer valuesis placed into the corresponding
element of vD.

Other registers altered:
* None

Figure 6-54 shows the usage of the vminsb instruction. Each of the sixteen elementsin the
vectors, VA, vB, and vD, is 8 bitslong.

Lo Ly e e b B O b I b by B Iy Iy Iy v
INInInninnmninininnninime:
YY YV YV YV VY YY VY YY VY YV VY YV YV YV YV VY
Ssi Ssi Ssi Ssi Ssi Ssi Ssi Ssi Ssi Ssi Ssi S<si S<si Ssi $si Ssi
I**\V**\V*********\ |
vD

Figure 6-54. vminsb—Minimum of Sixteen Signed Integer Elements (8-Bit)

6-82 AltiVec Technology Programming Environments Manual MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vminsh vminsh

Vector Minimum Signed Half Word
vminsh vD,vA,vB Form: VX

04 vD VA vB 834

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16
if (VA)i.i+15<si (VB)i:j+15
then vD.j+5 « (VA)i:i+5
else VD .j4+15 « (VB)i:i+15
end
Each element of vminsh isahaf word.

Each signed-integer element in VA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer valuesis placed into the corresponding
element of vD.

Other registers altered:
* None

Figure 6-55 shows the usage of the vminsh instruction. Each of the eight elements in the
vectors, VA, vB, and vD, is 16 bitslong.

| | vA

| | vB
[A] Yy Yy [A] YV Yy (A Yv
<si <si <si <si <si <si <si <si
Y Y Y Y Y Y Y

| | | | | | | | | vD

Figure 6-55. vminsh—Minimum of Eight Signed Integer Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-83

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vminsw vminsw
Vector Minimum Signed Word
vminsw vD,vA,vB Form: VX
04 vD VA vB 898
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
if (VA i+31 <si (VB)i:i+31
then vD.jt31 < (VA)i:i+a1
else VD .j431 « (VB)i:i+a1
end
Each e ement of vminsw isaword.

Each signed-integer element in VA is compared to the corresponding signed-integer
element in vB. The larger of the two signed-integer valuesis placed into the corresponding
element of vD.

Other registers altered:
* None

Figure 6-56 shows the usage of the vminsw instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| | vA
| \ | \ | \ | \ | vB
(A (Al VY VY
<si <si <si <si
Y Y Y Y
| | vD

Figure 6-56. vminsw—Minimum of Four Signed Integer Elements (32-Bit)

6-84 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vminub vminub
Vector Minimum Unsigned Byte
vminub vD,vA,vB Form: VX
04 vD VA vB 514
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8
(VA 47 <ui (VB)i:i47
then vD.j7 <« (VA)j:i+7
else VD .j47 < (VB)j:i+7
end
Each element of vminub isabyte.

Each unsigned-integer element in VA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the

corresponding element of vD.
Other registers altered:
* None

Figure 6-57 shows the usage of the vminub instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| | vA

INInInninnmninininnninime:

YY YV YV YV VY YY VY YY VY YV VY YV YV YV YV VY

<ui <ui <ui <ui <ui <ui <ui <ui <ui <ui <ui <ui <ui <ui <ui <ui

| *************\V*I
vD

Figure 6-57. vminub—Minimum of Sixteen Unsigned Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-85

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vminuh vminuh
Vector Minimum Unsigned Half Word
vminuh vD,vA,vB Form: VX
04 vD VA vB 578
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16
if (VA i+15 <ui (VB)i:i+15
then vD .j415 < (VA):i+15
else VD .j4+15 « (VB)i:i+15
end
Each e ement of vminuh is ahalf word.

Each unsigned-integer element in VA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the
corresponding element of vD.

Other registers altered:
* None

Figure 6-58 shows the usage of the vminuh instruction. Each of the eight elements in the
vectors, VA, vB, and vD, is 16 bitslong.

| | | | | | | | | vA

HIEEE RN
Yy vy Yy Yy (Al VY (Al VY
<ui <ui <ui <ui <ui <ui <ui <ui
Y Y Y Y Y Y Y

| | vD

Figure 6-58. vminuh—Minimum of Eight Unsigned Integer Elements (16-Bit)

6-86 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vminuw vminuw
Vector Minimum Unsigned Word
vminuw vD,vA,vB Form: VX
04 vD VA vB 642
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
if (VA i+31 <ui (VB)i:i+31
then vD.jt31 < (VA)i:i+a1
else VD .j431 « (VB)i:i+a1
end
Each e ement of vminuw isaword.

Each unsigned-integer element in VA is compared to the corresponding unsigned-integer
element in vB. The larger of the two unsigned-integer values is placed into the

corresponding element of vD.
Other registers altered:
* None

Figure 6-59 shows the usage of the vminuw instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| | | | | vA
| \ | \ | \ | \ | vB
(A (Al VY VY
<ui <ui <ui <ui
Y Y Y Y

| | | | | vD

Figure 6-59. vminuw—Minimum of Four Unsigned Integer Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-87

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmladduhm vmladduhm

Vector Multiply Low and Add Unsigned Half Word Modulo

vmladduhm vD,vA,vB,vC Form: VA

04 vD VA vB vC 34

0 5 6 10 11 15 16 20 21 25 26 31

do i=0 to 127 by 16

prodo.31< (VA)i:i+15 *ui (VB)i:i+15
VD :j+15< prodp.31 *int (VO .45

end

Each integer half-word element in vA is multiplied by the corresponding integer half-word
element in vB, producing a 32-bit integer product. The product is added to the

corresponding integer half-word element in vC. The integer result is placed into the
corresponding half-word element of vD.

Note that vmladduhm can be used for unsigned or signed integers.
Other registers atered:
* None

Figure 6-60 shows the usage of the vmladduhm instruction. Each of the eight elementsin
the vectors, VA, vB, vC, and vD, is 16 bitslong.

[EEE VAN RN NN
e
vy v v v vy
..,y [Prod
L1 1 I,:} N 22 N (22 T (22 S (22 D 2 R
; + + ; + +
| | | | | | Temp

Y
N
OEESTTEEAw

Figure 6-60. vmladduhm—Multiply-Add of Eight Integer Elements (16-Bit)

6-88 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vmrghb vmrghb

Vector Merge High Byte

vmrghb vD,vA,vB Form: VX

04 vD VA vB 12

0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 8
VD 2. (i%2)+15 < (VA i i+7 Il (VB)i:j+7
end

Each element of vmrghb isabyte.

The elements in the high-order half of VA are placed, in the same order, into the
even-numbered elements of vD. The elementsin the high-order half of vB are placed, inthe
same order, into the odd-numbered elements of vD.

Other registers altered:
* None

Figure 6-61 shows the usage of the vmr ghb instruction. Each of the sixteen elementsin the
vectors, VA, vB, and vD, is 8 bitslong.

I RN NS S N D A 1
10 SN G N s S O N

A N N - i i i
Figure 6-61. vmrghb—Merge Eight High-Order Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-89

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmrghh vmrghh

Vector Merge High Half word

vmrghh vD,vA,vB Form: VX

04 vD VA vB 76

0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 16
VD «2: (ix2)+31 < (VA i i+15 |l (VB)i:j+15
end

Each element of vmrghh isahalf word.

The elements in the high-order half of VA are placed, in the same order, into the
even-numbered elements of vD. The elementsin the high-order half of vB are placed, inthe
same order, into the odd-numbered elements of vD.

Other registers altered:
* None

Figure 6-62 shows the usage of the vmrghh instruction. Each of the eight elements in the
vectors, VA, vB, and vD, is 16 bitslong.

| | | | | | | | | vA

[0S S O S S N N

| [R T O I s e i
Figure 6-62. vmrghh—Merge Four High-Order Elements (16-Bit)

6-90 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vmrghw vmrghw
Vector Merge High Word
vmrghw vD,vA,vB Form: VX
04 vD VA vB 140
0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 32
VD «2: (i+2)+63 < (VA) i i+31 Il (VB)i:j+31
end

Each element of vmrghw isaword.

The elements in the high-order half of VA are placed, in the same order, into the
even-numbered elements of vD. The elementsin the high-order half of vB are placed, inthe
same order, into the odd-numbered elements of vD.

Other registers altered:
* None

Figure 6-63 shows the usage of the vmrghw instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| | | | | vA

| | 0N | | vB

| = | * = | vD

Figure 6-63. vmrghw—Merge Four High-Order Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-91

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmrglb vmrglb

Vector Merge Low Byte

vmrglb vD,vA,vB Form: VX
04 vD VA vB 268

0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 8
VD «2: (i*+2)+15 < (VA)j+ea:i+71 Il (VB)j+6a:i+71
end

Each element offer vmrglb isabyte.

The elements in the low-order half of VA are placed, in the same order, into the
even-numbered elements of vD. The elementsin the low-order half of vB are placed, in the
same order, into the odd-numbered € ements of vD.

Other registers altered:
* None

Figure 6-64 shows the usage of the vmrglb instruction. Each of the sixteen elementsin the
vectors, VA, vB, and vD, is 8 bitslong.

N N S = = 2 2 2 72 2 P

L [| 1 4 e e] e

e e 0 e el T 5 R A N A A R S T
Figure 6-64. vmrglb—Merge Eight Low-Order Elements (8-Bit)

6-92 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vmrglh vmrglh

Vector Merge Low Half Word

vmrglh vD,vA,vB Form: VX
04 vD VA vB 332

0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 16
VD «2: (i+2)+31 < (VA)j+e4:i+79 Il (VB)i+6a:i+79
end

Each element of vmrglh isahalf word.

The elements in the low-order half of VA are placed, in the same order, into the
even-numbered elements of vD. The elementsin the low-order half of vB are placed, in the
same order, into the odd-numbered € ements of vD.

Other registers altered:
* None

Figure 6-65 shows the usage of the vmrglh instruction. Each of the eight elements in the
vectors, VA, vB, and vD, is 16 bitslong.

| | | | | | | | | vA

| | | [B | L | vB

| < =] ~fre 7 A 7 | | vD

Figure 6-65. vmrglh—Merge Four Low-Order Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-93

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmrglw vmrglw
Vector Merge Low Word
vmrglw vD,vA,vB Form: VX
04 vD VA vB 396
0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 32
VD «2: (i+2)+63 < (VA)j+e4:i+95 Il (VB)j+6a:i+o5
end

Each element of vmrglw isaword.

The elements in the low-order half of VA are placed, in the same order, into the
even-numbered elements of vD. The elementsin the low-order half of vB are placed, in the
same order, into the odd-numbered € ements of vD.

Other registers altered:
* None

Figure 6-66 shows the usage of the vmrglw instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| | | | | vA

| | | A | vB

| = . F | vD

Figure 6-66. vmrglw—Merge Four Low-Order Elements (32-Bit)

6-94 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vmsummbm vmsummbm
Vector Multiply Sum Mixed-Sign Byte Modulo
vmsummbm vD,vA,vB,vC Form: VA
04 vD VA vB vC 37
0 5 6 10 11 15 16 20 21 25 26 31

do i=0 to 127 by 32

tenpg.31 <« (VO)i:i+31
do j=0 to 31 by 8

prodo. 15 <« (VA i+j:i+j+7 *sui (VB)i+j:i+j+7
tenpg.31 « tempg.31 +in SignExtend(prody. s, 32)
end

VD .j+31 < tenpg.g;
end
For each word element in vC the following operations are performed in the order shown.

» Each of the four signed-integer byte elements contained in the corresponding word
element of vA ismultiplied by the corresponding unsigned-integer byte element in
vB, producing a signed-integer 16-bit product.

* Thesigned-integer modulo sum of these four productsisadded to the signed-integer
word element in vC.

* Thesigned-integer result is placed into the corresponding word element of vD.

Other registers altered:
* None

Figure 6-67 shows the usage of the vmsummbm instruction. Each of the sixteen elements
in the vectors, VA, and vB, are 8 bitslong. Each of the four elementsin the vectors, vC and

vD are 32 bits long.

|vA

1| vB

*

\ Ly

\ [
\wg/ﬁgy/
T T T " w

Figure 6-67. vmsummbm—Multiply-Sum of Integer Elements (8-Bit to 32-Bit)

Prod

MOTOROLA Chapter 6. AltiVec Instructions 6-95

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmsumshm vmsumshm
Vector Multiply Sum Signed Half Word Modulo
vmsumshm vD,vA,vB,vC Form: VA
04 vD VA vB vC 40
0 5 6 10 11 15 16 20 21 25 26 31

do i=0 to 127 by 32

tenpg:z1 <« (VO)i.j+31
do j=0 to 31 by 16

prodo.a1 « (VA) i+ i+j+15 *si (VB)j4j:i++15
tempg.31 < tenpg.3; +int Prodg: s
VD j+31 < tenmpg: 31
end
end

For each word element in vC the following operations are performed in the order shown.

» Each of the two signed-integer half-word elements contained in the corresponding
word element of VA is multiplied by the corresponding signed-integer half-word
element in vB, producing a signed-integer 32-bit product.

» Thesigned-integer modulo sum of these two productsis added to the signed-integer
word element in vC.

* The signed-integer result is placed into the corresponding word element of vD.
Other registers atered:
* None

Figure 6-68 shows the usage of the vmsumshm instruction. Each of the eight elementsin
the vectors, VA, and vB, are 16 bits long. Each of the four elements in the vectors, vC and
vD are 32 bitslong.

Figure 6-68. vmsumshm—Multiply-Sum of Signed Integer Elements
(16-Bit to 32-Bit)

6-96 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vmsumshs vmsumshs
Vector Multiply Sum Signed Half Word Saturate
vmsumshs vD,vA,vB,vC Form: VA
04 vD VA vB vC 41
0 5 6 10 11 15 16 20 21 25 26 31

do i=0 to 127 by 32
tenpg.33 « SignExtend((vQ);. .31, 34)
do j=0 to 31 by 16

prodo. 31 « (VA) i+ i+j+15 *si (VB)j+j:i++15
tenpg.33 « tempg.33 +in Si gnExtend(prody: 31, 34)
vD .j4+31 < SltoSlsat(tenpg. 33, 32)

end
end
For each word element in vC the following operations are performed in the order shown.

» Each of the two signed-integer half-word elements in the corresponding word
element of VA ismultiplied by the corresponding signed-integer half-word element
in vB, producing a signed-integer 32-bit product.

» The signed-integer sum of these two products is added to the signed-integer word
element in vC.

« If thisintermediate result is greater than (231-1) it saturatesto (231-1) andif it isless
than -231 it saturates to -231,

» The signed-integer result is placed into the corresponding word element of vD.

Other registers atered:

o SAT
Figure 6-69 shows the usage of the vmsumshs instruction. Each of the eight elementsin
the vectors, VA, and vB, are 16 bits long. Each of the four elementsin the vectors, vC and
vD are 32 bits long.

Figure 6-69. vmsumshs—Multiply-Sum of Signed Integer Elements
(16-Bit to 32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-97

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmsumubm vmsumubm

Vector Multiply Sum Unsigned Byte Modulo

vmsumubm vD,vA,vB,vC Form: VA
04 vD VA vB vC 36

0 5 6 10 11 15 16 20 21 25 26 31

do i=0 to 127 by 32

tenpg:z1 <« (VO)i.j+31
do j=0 to 31 by 8

prodo. 15 « (VA) i+ i+j+7 “ui (VB)i+j:i+j+7
tenpg.3; « tempg.3x +in ZeroExtend(prody. s, 32)
VD . j431 < tenpg: 3
end
end

For each word element in vC the following operations are performed in the order shown.

» Each of the four unsigned-integer byte elements contained in the corresponding
word element of VA is multiplied by the corresponding unsigned-integer byte
element in vB, producing an unsigned-integer 16-bit product.

» The unsigned-integer modulo sum of these four products is added to the
unsigned-integer word element in vC.

» The unsigned-integer result is placed into the corresponding word element of vD.
Other registers altered:

* None
Figure 6-70 shows the usage of the vmsumubm instruction. Each of the sixteen elements

in the vectors, VA, and vB, are 8 bitslong. Each of the four elementsin the vectors, vC and
vD are 32 bits long.

L va

1| vB

*

\ / \
V3
N % | %&y e
L [TP T fw
Figure 6-70. vmsumubm—Multiply-Sum of Unsigned Integer Elements
(8-Bit to 32-Bit)

Prod

6-98 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vmsumuhm vmsumuhm
Vector Multiply Sum Unsigned Half Word Modulo
vmsumuhm vD,vA,vB,vC Form: VA
04 vD VA vB vC 38
0 5 6 10 11 15 16 20 21 25 26 31

do i=0 to 127 by 32

tenpg:z1 <« (VO)i.j+31
do j=0 to 31 by 16

prodo:a1 « (VA) i+ i+j+15 *ui (VB)j+j:i++15
tempg.3; < tenpg.3; +int Prodg: s
VD .j+31 < tenmpp:.a3
end
end

For each word element in vC the following operations are performed in the order shown.

» Each of thetwo unsigned-integer half-word elements contained in the corresponding
word element of VA ismultiplied by the corresponding unsigned-integer half-word
element in vB, producing a unsigned-integer 32-bit product.

* Theunsigned-integer sum of these two products is added to the unsigned-integer
word element in vC.

» The unsigned-integer result is placed into the corresponding word element of vD.
Other registers altered:

* None
Figure 6-71 shows the usage of the vmsumuhm instruction. Each of the eight elementsin

the vectors, VA, and vB, are 16 bits long. Each of the four elementsin the vectors, vC and
vD are 32 bits long.

Figure 6-71. vmsumuhm—Multiply-Sum of Unsigned Integer Elements
(16-Bit to 32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-99

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmsumuhs vmsumuhs
Vector Multiply Sum Unsigned Half Word Saturate
vmsumuhs vD,vA,vB,vC Form: VA
04 vD VA vB vC 39
0 5 6 10 11 15 16 20 21 25 26 31

do i=0 to 127 by 32

tenpg. 33 <« ZeroExtend((vQ)j-j+31, 34)
do j=0 to 31 by 16

prodo.a1 « (VA) i+ i+j+15 *ui (VB)j+j:i++15
tenmpg. 33 « tenpg.33 +int Zer oExtend(prodg. 31, 34)
vD.j+31 <« U toUl sat(tenpg. 33, 32)

end
end
For each word element in vC the following operations are performed in the order shown.

» Each of thetwo unsigned-integer half-word elements contained in the corresponding
word element of VA is multiplied by the corresponding unsigned-integer half-word
element in vB, producing an unsigned-integer 32-bit product.

* The unsigned-integer sum of these two products is saturate-added to the
unsigned-integer word element in vC.

» Theunsigned-integer result is placed into the corresponding word element of vD.
Other registers altered:
o« SAT

Figure 6-72 shows the usage of the vmsumuhs instruction. Each of the eight elementsin
the vectors, VA, and vB, are 16 bits long. Each of the four elements in the vectors, vC and
vD are 32 bits long.

|vA

Figure 6-72. vmsumuhs—Multiply-Sum of Unsigned Integer Elements
(16-Bit to 32-Bit)

6-100 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vmulesb vmulesb
Vector Multiply Even Signed Byte
vmulesb vD,vA,vB Form: VX
04 vD VA vB 776
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16

prodg. 15« (VA)i:i+7 *si (VB)i:i+7
VD .j+15< prodp: 15

end

Each even-numbered signed-integer byte element in vA is multiplied by the corresponding
signed-integer byte element in vB. The eight 16-bit signed-integer products are placed, in
the same order, into the eight half-words of vD.

Other registers altered:
* None

Figure 6-73 shows the usage of the vmulesb instruction. Each of the sixteen elementsin
the vectors, VA, and vB, is 8 bits long. Each of the eight elements in the vector vD, is 16
bits long.

Llof Tof Jof [ol ol (o] [of [0]vA

Lol /el lel[el e[l |le][,|@]] @]
] VY] Yy

* * * * * * * *

RN RN K\ R\ RN KN K\ RN
| | | | | | | | | vD

Figure 6-73. vmulesb—Even Multiply of Eight Signed Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-101

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmulesh vmulesh

Vector Multiply Even Signed Half Word

vmulesh vD,vA,vB Form: VX
04 vD VA vB 840

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

prodp. 31« (VA)i:i+15 *si (VB)j:j+15
VD :j+31< prodp: a1

end

Each even-numbered signed-integer half-word element in vA is multiplied by the
corresponding signed-integer half-word element in vB. The four 32-bit signed-integer
products are placed, in the same order, into the four words of vD.

Other registers altered:
* None

Figure 6-74 shows the usage of the vmulesh instruction. Each of the eight elementsin the
vectors, VA, and vB, is 16 bits long. Each of the four elementsin the vector vD, is 32 bits
long.

| . o | L o | | o | | 0 |vA
| N N L o] L o |w
YY YY YY Yy
* * * *
[O S
vD

Figure 6-74. vmulesb—Even Multiply of Four Signed Integer Elements (16-Bit)

6-102 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vmuleub vmuleub
Vector Multiply Even Unsigned Byte
vmuleub vD,vA,vB Form: VX
04 vD VA vB 520
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16
prodo.15 <« (VA i:i+7 *ui (VB)j.i+7
(VD)j:j+15 < prodp: s

end

Each even-numbered unsigned-integer byte element in register VA is multiplied by the
corresponding unsigned-integer byte element in register vB. The eight 16-bit
unsigned-integer products are placed, in the same order, into the eight halfwords of register
vD.

Other registers atered:
* None

Figure 6-75 shows the usage of the vmuleub instruction. Each of the sixteen elementsin
the vectors, VA, and vB, is 8 bits long. Each of the eight elements in the vector vD, is 16
bits long.

L ol (o], (o], (6], o], (6] (6], [o]vA

el el el lell/ell,l@[[,/@]]l, @]
v] VY y

Figure 6-75. vmuleub—Even Multiply of Eight Unsigned Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-103

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmuleuh vmuleuh

Vector Multiply Even Unsigned Half Word

vmuleuh vD,vA ,vB Form: VX
04 vD VA vB 584

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

prodog.31 <« (VA)i:i+15 *ui (VB)i:i+15
(VD)j:j+31 « Prodg: sz

end

Each even-numbered unsigned-integer halfword element in register vA ismultiplied by the
corresponding unsigned-integer halfword element in register vB. The four 32-bit
unsigned-integer products are placed, in the same order, into the four words of register vD.

Other registers altered:
* None

Figure 6-76 shows the usage of the vmuleuh instruction. Each of the eight elementsin the
vectors, VA, and vB, is 16 bits long. Each of the four elementsin the vector vD, is 32 bits
long.

| . o | L o | | o | | 0 |vA
| N N L o] L o |w
YY YY YY Yy
* * * *
[O S
vD

Figure 6-76. vmuleuh—Even Multiply of Four Unsigned Integer Elements (16-Bit)

6-104 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vmulosb vmulosb
Vector Multiply Odd Signed Byte
vmulosb vD,vA,vB Form: VX
04 vD VA vB 264
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16

prodo. 15« (VA)i+g:i+15 *si (VB)j+s:i+15
VD .j+15< prodp: 15

end

Each odd-numbered signed-integer byte element in vA is multiplied by the corresponding
signed-integer byte element in vB. The eight 16-bit signed-integer products are placed, in
the same order, into the eight half-words of vD.

Other registers altered:
* None

Figure 6-77 shows the usage of the vmulosb instruction. Each of the sixteen elementsin
the vectors, VA, and vB, is 8 bits long. Each of the eight elements in the vector vD, is 16
bits long.

ol (61, (o], o], (@], (6], (@] (@] |vA

FRINAAINAAINEERCInCaInAaIinraing:
] YY YY YY

| | | | | | | | | vD

Figure 6-77. vmulosb—Odd Multiply of Eight Signed Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-105

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmulosh vmulosh
Vector Multiply Odd Signed Half Word
vmulosh vD,vA,vB Form: VX
04 vD VA vB 328
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

prodg.31< (VA)it16:i+31 *si (VB)i+16:i+31
VD :j+31< prodp: a1

end

Each odd-numbered signed-integer half-word element in vA is multiplied by the
corresponding signed-integer half-word element in vB. The four 32-bit signed-integer
products are placed, in the same order, into the four words of vD.

Other registers altered:
* None

Figure 6-78 shows the usage of the vmuleuh instruction. Each of the eight elementsin the
vectors, VA, and vB, is 16 bits long. Each of the four elementsin the vector vD, is 32 bits
long.

L 0 | | o | o | | o | | vA
L o | L o | L o | L o | RE
YY YY Yy YY
* * * *
[S S
vD

Figure 6-78. vmuleuh—Odd Multiply of Four Unsigned Integer Elements (16-Bit)

6-106 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vmuloub vmuloub
Vector Multiply Odd Unsigned Byte
vmuloub vD,vA,vB Form: VX
04 vD VA vB 8
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8

prodo. 15« (VA)i+g:i+15 *ui (VB)j+n:i+is
VD .j+15< prodp: 15

end

Each odd-numbered unsigned-integer byte element in vA is multiplied by the
corresponding unsigned-integer byte element in vB. The eight 16-bit unsigned-integer
products are placed, in the same order, into the eight half-word s of vD.

Other registers altered:
* None

Figure 6-79 shows the usage of the vmuloub instruction. Each of the sixteen elementsin
the vectors, VA, and vB, is 8 bits long. Each of the eight elements in the vector vD, is 16
bits long.

ol (61, (o], o], (@], (6], (@] (@] |vA

FRINAAINAAINEERCInCaInAaIinraing:
] YY YY YY

| | | | | | | | | vD

Figure 6-79. vmuloub—Odd Multiply of Eight Unsigned Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-107

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vmulouh vmulouh

Vector Multiply Odd Unsigned Half Word

vmulouh vD,vA,vB Form: VX
04 vD VA vB 72

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16

prodo.31« (VA)i+16:i+31 *ui (VB)j+n:i+311
VD :j+31< prodp: a1

end

Each odd-numbered unsigned-integer half-word element in vA is multiplied by the
corresponding unsigned-integer half-word element in vB. The four 32-bit unsigned-integer
products are placed, in the same order, into the four words of vD.

Other registers altered:
* None

Figure 6-80 shows the usage of the vmulouh instruction. Each of the eight elementsin the
vectors, VA, and vB, is 16 bits long. Each of the four elementsin the vector vD, is 32 bits
long.

L 0 | | o | o | | o | | vA
L o | L o | L o | L o | RE
YY YY Yy YY
* * * *
[S S
vD

Figure 6-80. vmulouh—Odd Multiply of Four Unsigned Integer Elements (16-Bit)

6-108 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vamsubfp vimsubfp
Vector Negative Multiply-Subtract Floating Point
vnmsubfp vD,vA,vC,vB Form: VA
04 vD VA vB vC 47
0 5 6 10 11 15 16 20 21 25 26 31

do i=0 to 127 by 32
VD :j+31 < -RndToNear FP32(((VA)i.i+31 *tp (VOi:i+31) -fp (VB)j:i+31)
end
Each single-precision floating-point word element in vA ismultiplied by the corresponding
single-precision floating-point word element in vC. The corresponding single-precision
floating-point word element in vB is subtracted from the product. The sign of the difference

Isinverted. The result isrounded to the nearest single-precision floating-point number and
placed into the corresponding word element of vD.

Note that only one rounding occurs in this operation. Also note that a QNaN result is not
negated.

Other registers atered:
* None

Figure 6-81 shows the usage of the vnmsubfp instruction. Each of the four elementsin the
vectors, VA, vB, and vD, is 32 hits long.

| | | | | vA
Ll P Pl Ty]ve
v*v v*v v*v v*v
¥ y \|
| | | | | Prod
L N N | | vB
vy A vy A

Figure 6-81. vnmsubfp—Negative Multiply-Subtract of
Four Floating-Point Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-109

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

VNOr vnor
Vector Logical NOR
vnor vD,vA,vB Form: VX
04 vD VA vB 1284
0 5 6 10 11 15 16 20 21 31

vD « =((vA) | (vB))

The contents of VA are bitwise ORed with the contents of vB and the complemented result
is placed into vD.

Other registers atered:
* None

Simplified mnemonics:
vnot vD, VvS equivalent to vnor VD, VS, vS

Figure 6-82 shows the usage of the vnor instruction.

| |vA

| | vB
¥

Intermediate

l— | <

| |vD

Figure 6-82. vnor—Bitwise NOR of 128-bit Vector

6-110 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

VOr VOr
Vector Logical OR
vor vD,vA,vB Form: VX
04 vD VA vB 1156
0 5 6 10 11 15 16 20 21 31

vD « (vA) | (vB)

The contents of VA are ORed with the contents of vB and the result is placed into vD.

Other registers altered:
* None

Simplified mnemonics:
vmr vD, vS equivalent to vor vD, vS, vS

Figure 6-83 shows the usage of the vor instruction.

| |VA

| | vB
‘W

| |vD

Figure 6-83. vor—Bitwise OR of 128-bit Vector

MOTOROLA Chapter 6. AltiVec Instructions 6-111

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vperm vperm
Vector Permute
vperm vD,vA,vB,vC Form: VA
04 vD VA vB vC 43
0 5 6 10 11 15 16 20 21 25 26 31

tenpg: 255 « (VA) || (vB)
do i=0 to 127 by 8

b« (vQi.z:i+7 |l 0b00O
VD j47 < tenpy: pey

end

L et the source vector be the concatenation of the contents of VA followed by the contents
of vB. For each integer i in the range 0-15, the contents of the byte element in the source
vector specified in bits 3—7 of byte element i in vC are placed into byte element i of vD.

Other registers altered:
* None

Programming note: See the programming notes with the Load Vector for Shift Left and
Load Vector for Shift Right instructions for examples of usage on the vper m instruction.

Figure 6-84 shows the usage of the vperm instruction. Each of the sixteen elementsin the
vectors, VA, vB, vC, and vD, is 8 hits long.

| 1]14]18]10]16]15]19[1a]1c[1c[1c[13] 8 [1D[1B]OE|VC

[o]1]2][3[4[5][6][7][8]9][A[B|[C|/D[E]|F]vA
[10 /11 [12[18 14 [15[16 17 [18 [19 (1A [1B[I1C[1D 1E 1F | vB
CTA SR P A A A AR T L

Figure 6-84. vperm—Concatenate Sixteen Integer Elements (8-Bit)

6-112 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

vpkpx

Vector Pack Pixel32

vpkpx

vD,vA,vB

AltiVec Instruction Set

vpkpx

Form: VX

04

vD VA

vB

782

5 6 10 11 15 16

do i=0 to 63 by 16

end

VD« (VA) <247

VD s1:i+5< (VA) (i#2)+8: (i *2) +12

VD s6:i+10— (VA (i*2)+16: (i*2)+20

VD +11: i +15< (VA) ((i*2)+24: (i *2) +28
VD sea— (VB)(i*2)+7

VD +65: i +69 < (VB) (i*2)+8: (i*2)+12

VD 470:i +74< (VB) (i+2)+16: (i *2) +20
VD 475:i +79< (VB) (i%2)+24: (i *2) +28

20 21

31

The source vector is the concatenation of the contents of vA followed by the contents of
vB. Each 32-bit word element in the source vector is packed to produce a 16-bit half-word
value as described below and placed into the corresponding half-word element of vD. A
word is packed to 16 bits by concatenating, in order, the following bits.

» bit 7 of thefirst byte (bit 7 of the word)
* bits 04 of the second byte (bits 8-12 of the word)

* bits 04 of the third byte (bits 16—20 of the word)

* bits 04 of the fourth byte (bits 24—28 of the word)

Figure 6-85 shows which bits of the source word are packed to form the half word in the
destination register.

Source Word

415|617]|8|9]|]10)]11|12|13|14|15]|16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

MOTOROLA

vD Packed Half Word

oOf1]2)|3|4]|5]|6|7]8

9

10

11

12

13

14

15

7189|1011 |12]|12|17 |18

19

20

24

25

26

27

28

Figure 6-85. How a Word is Packed to a Half Word

Chapter 6. AltiVec Instructions

For More Information On This Product,

Go to: www.freescale.com

6-113

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

Other registers atered:
* None

Programming note: Each source word can be considered to be a 32-bit pixel consisting of
four 8-bit channels. Each target half-word can be considered to be a 16-bit pixel consisting
of one 1-bit channel and three 5-bit channels. A channel can be used to specify theintensity

of aparticular color, such asred, green, or blue, or to provide other information needed by
the application.

Figure 6-86 shows the usage of the vpkpx instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 hits long.

VA

1‘\‘\ ‘

Figure 6-86. vpkpx—Pack Eight Elements (32-Bit) to Eight Elements (16-Bit)

6-114 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vpkshss vpkshss
Vector Pack Signed Half Word Signed Saturate
vpkshss vD,vA,vB Form: VX
04 vD VA vB 398
0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 8

VD .47 SltoSIsat ((VA)j«: (j*2)+15 8)
VD 464:i+71~ SltoSlsat ((VB)jx2: (j*2)+15: 8)

end

L et the source vector be the concatenation of the contents of VA followed by the contents
of vB.

Each signed integer half-word element in the source vector is converted to an 8-bit signed
integer. If the value of the element is greater than (2 7- 1) the result saturatesto (27- 1) and
if the value is less than -27 the result saturates to -27. The result is placed into the
corresponding byte element of vD.

Other registers altered:
o SAT

Figure 6-87 shows the usage of the vpkshssinstruction. Each of the eight elements in the
vectors, VA, and vB, is 16 bitslong. Each of the sixteen elementsin the vector vD, is 8 bits
long.

vB
AL m|| HEaararar

\m\r\ kil /Mf‘ﬁw/

Figure 6-87. vpkshss—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen
Signed Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-115

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vpkshus vpkshus

Vector Pack Signed Half Word Unsigned Saturate

vpkshus vD,vA,vB Form: VX
04 vD VA vB 270

0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 8

VD :j+7 SltoU sat ((VA)j«2: (j*2)+7: 8)
VD 464:i+71 SltoU sat ((VB)j»2: (j*2)+7, 8)

end

L et the source vector be the concatenation of the contents of VA followed by the contents
of vB.

Each signed integer half-word element in the source vector is converted to an 8-bit unsigned
integer. If the value of the element is greater than (28- 1) the result saturates to (28 - 1) and
if thevalueislessthan O theresult saturatesto 0. Theresult is placed into the corresponding
byte element of vD.

Other registers altered:
o« SAT
Figure 6-88 shows the usage of the vpkshus instruction. Each of the eight elementsin the

vectors, VA, and vB, is 16 bitslong. Each of the sixteen elementsin the vector vD, is 8 bits
long.

vB
AL m|| HEaararar

\m\r\ kil /Mf‘ﬁw/

Figure 6-88. vpkshus—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen
Unsigned Integer Elements (8-Bit)

6-116 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

VPKsSwss VpKkswss

Vector Pack Signed Word Signed Saturate

vpkswss vD,vA,vB Form: VX
04 vD VA vB 462

0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 16

VD :j+15+ SltoSlsat ((VA)«: (j*2)+31, 16)
VD 464:i +79~ SltoSlsat ((VB)j»2: (j*2)+31, 16)

end

L et the source vector be the concatenation of the contents of VA followed by the contents
of vB.

Each signed integer word element in the source vector is converted to a 16-bit signed
integer half word. If the value of the element is greater than (215 - 1) the result saturates to
(215- 1) and if the value isless than -215 the result saturates to -215. The result is placed into
the corresponding half-word element of vD.

Other registers altered:
o« SAT
Figure 6-89 shows the usage of the vpkswss instruction. Each of the four elements in the

vectors, VA, and vB, is 32 bitslong. Each of the eight elementsin the vector vD, is 16 bits
long.

VA vB
I | | L o o]

r**"'*ﬂ*K

Figure 6-89. vpkswss—Pack Eight Signed Integer Elements (32-Bit) to Eight Signed
Integer Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-117

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vpkswus vpkswus
Vector Pack Signed Word Unsigned Saturate
vpkswus vD,vA,vB Form: VX
04 vD VA vB 334
0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 16

VD :j+15+ SltoUlsat ((VA)«p: (j*2)+31, 16)
VD 464:i +79~ SltoU sat ((VB)jx2: (j*2)+31, 16)

end

L et the source vector be the concatenation of the contents of VA followed by the contents
of vB.

Each signed integer word element in the source vector is converted to a 16-bit unsigned
integer. If the value of the element is greater than (26 - 1) the result saturatesto (216 - 1) and
if thevalueislessthan O theresult saturatesto 0. Theresult is placed into the corresponding
half-word element of vD.

Other registers altered:
o SAT
Figure 6-90 shows the usage of the vpkswus instruction. Each of the four elementsin the

vectors, VA, and vB, is 32 bitslong. Each of the eight elementsin the vector vD, is 16 bits
long.

VA vB
I | | | o o

P“""T‘K

Figure 6-90. vpkswus—Pack Eight Signed Integer Elements (32-Bit) to Eight
Unsigned Integer Elements (16-Bit)

6-118 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vpkuhum vpkuhum
Vector Pack Unsigned Half Word Unsigned Modulo
vpkuhum vD,vA,vB Form: VX
04 vD VA vB 14
0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 8

VD 47— (VA) (i+2)+8: (i *2)+15
VD +64:i+71< (VB) (i+2)+8: (i*2)+15

end

L et the source vector be the concatenation of the contents of VA followed by the contents
of vB.

The low-order byte of each half-word element in the source vector is placed into the
corresponding byte element of vD.

Other registers altered:
* None

Figure 6-91 shows the usage of the vpkuhum instruction. Each of the eight elementsin the
vectors, VA, and vB, is 16 bitslong. Each of the sixteen elementsin the vector vD, is 8 bits
long.

‘ m|| \/\/I/\/\/\/I

\m\r\ kil /Mf‘ﬁw/

Figure 6-91. vpkuhum—Pack Sixteen Unsigned Integer Elements (16-Bit)
to Sixteen Unsigned Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-119

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vpkuhus vpkuhus

Vector Pack Unsigned Half Word Unsigned Saturate

vpkuhus vD,vA,vB Form: VX

04 vD VA vB 142

0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 8

VD . j47 UtoUl sat ((VA)j«: (j*2)+15 8)
VD 464:i+71 < UltoU sat ((VB)jxp: (j+2)+15: 8)

end

L et the source vector be the concatenation of the contents of VA followed by the contents
of vB.

Each unsigned integer half-word element in the source vector is converted to an 8-bit
unsigned integer. If the value of the element is greater than (28 - 1) theresult saturatesto (28
- 1). Theresult is placed into the corresponding byte element of vD.
Other registers atered:

o SAT
Figure 6-92 shows the usage of the vpkuhus instruction. Each of the eight elementsin the

vectors, VA, and vB, is 16 bitslong. Each of the sixteen elementsin the vector vD, is 8 bits
long.

vB

AL m|| Aayayayara

\rw*\ ML /Mfﬂvn/

Figure 6-92. vpkuhus—Pack Sixteen Unsigned Integer Elements (16-Bit)
to Sixteen Unsigned Integer Elements (8-Bit)

6-120 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vpkuwum vpkuwum
Vector Pack Unsigned Word Unsigned Modulo
vpkuwum vD,vVA,vB Form: VX
04 vD VA vB 78
0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 16

VD 415 (VA) (i%2)+16: (i *2) +31
VD +64: i +79 (VB) (i*2)+16: (i*2)+31

end

L et the source vector be the concatenation of the contents of VA followed by the contents
of vB.

The low-order half-word of each word element in the source vector is placed into the
corresponding half-word element of vD.

Other registers altered:
* None

Figure 6-93 shows the usage of the vpkuwum instruction. Each of the four elementsin the
vectors, VA, and vB, is 32 bitslong. Each of the eight elementsin the vector vD, is 16 bits
long.

VA vB
I | | | o o

P“""T‘K

Figure 6-93. vpkuwum—~Pack Eight Unsigned Integer Elements (32-Bit)
to Eight Unsigned Integer Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-121

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vpkuwus vpkuwus
Vector Pack Unsigned Word Unsigned Saturate
vpkuwus vD,vVA,vB Form: VX
04 vD VA vB 206
0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 16

VD . j 415 U toUl sat ((VA)«p: (j*2)+31, 16)
VD 464:i +79~ Ul toU sat ((VB)j+2: (j*2)+31, 16)

end

L et the source vector be the concatenation of the contents of VA followed by the contents
of vB.

Each unsigned integer word element in the source vector is converted to a 16-bit unsigned
integer. If the value of the element is greater than (216 - 1) the result saturates to (21 - 1).
The result is placed into the corresponding half-word element of vD.

Other registers atered:
o SAT
Figure 6-94 shows the usage of the vpkuwus instruction. Each of the four elementsin the

vectors, VA, and VB, is 32 bitslong. Each of the eight elementsin the vector vD, is 16 bits
long.

VA vB

TN N BN B | A S D

r**"'*ﬂ‘K

Figure 6-94. vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit)
to Eight Unsigned Integer Elements (16-Bit)

6-122 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vrefp vrefp

Vector Reciprocal Estimate Floating Point

vrefp vD,vB Form: VX
04 vD 0_0000 vB 266

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

X < (VB)j.j+31

VD i1 < 1/X

end

The single-precision floating-point estimate of the reciprocal of each single-precision
floating-point element in vB is placed into the corresponding element of vD.

For results that are not a +0, -0, +, -00, or QNaN, the estimate has a relative error in
precision no greater than one part in 4096, that is:

estimate —1/x | . _1
1/x ~ 4096

where x isthe value of the element in vB. Note that the value placed into the element of vD
may vary between implementations, and between different executions on the same
implementation.

Operation with various special values of the element in vB is summarized below in
Table 6-7.

Table 6-7. Special Values of the Element in vB

Value Result
-00 -0
-0 -00
+0 + o0
+ 00 +0
NaN QNaN

If VSCR[NJ] = 1, every denormalized operand element is truncated to a O of the same sign
before the operation is carried out, and each denormalized result el ement truncatesto a 0 of

the same sign.

Other registers atered:

e None

MOTOROLA Chapter 6. AltiVec Instructions 6-123
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

Figure 6-95 shows the usage of the vrefp instruction. Each of the four elements in the
vectors vB and vD is 32 hits long.

vB

Figure 6-95. vrefp—Reciprocal Estimate of Four Floating-Point Elements (32-Bit)

6-124 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vrfim vrfim

Vector Round to Floating-Point Integer toward Minus Infinity

vrfim vD,vB Form: VX
04 vD 0_0000 vB 714

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
vD, .j+31 < RndToFPI nt 32Fl oor ((vB); - +31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision
floating-point integer, using the rounding mode Round toward -Infinity, and placed into the
corresponding word element of vD.

Other registers altered:
* None

Figure 6-96 shows the usage of the vrfim instruction. Each of the four elements in the
vectors vB and vD is 32 hitslong.

| \ | \ | \ | \ | vB

RndToFP! nt 32Fl oor RndToFP! nt 32F oor RndToFPI nt 32Fl oor RndToFPI nt 32Fl oor

Y Y Y Y
| | | | | vD

Figure 6-96. vrfim— Round to Minus Infinity of Four Floating-Point
Integer Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-125

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vrfin vrfin

Vector Round to Floating-Point Integer Nearest

vrfin vD,vB Form: VX
04 vD 0_0000 vB 522

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
vD, .i+31 < RndToFPI nt32Near ((vB); - +31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision
floating-point integer, using the rounding mode Round to Nearest, and placed into the
corresponding word element of vD.

Note the result is independent of VSCR[NJ].

Other registers altered:
* None

Figure 6-97 shows the usage of the vrfin instruction. Each of the four elements in the
vectors vB and vD is 32 hits long.

| \ | \ | \ | \ | vB

Y y v Y
R1dToFPI nt 32Near RndToFPI nt 32Nea RndToFPI nt 32Near RndToFPI nt 32Near

Y Y Y Y
| | | | | vD

Figure 6-97. vrfin—Nearest Round to Nearest of Four
Floating-Point Integer Elements (32-Bit)

6-126 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vrfip vrfip

Vector Round to Floating-Point Integer toward Plus Infinity

vrfip vD,vB Form: VX

04 vD 0_0000 vB 650

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
V[)l Si+31 < RndToFPI nt 32Cei | ((VB) i +31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision
floating-point integer, using the rounding mode Round toward +Infinity, and placed into the
corresponding word element of vD.

If VSCR[NJ] = 1, every denormalized operand element is truncated to O before the
comparison is made.

Other registers atered:
* None

Figure 6-98 shows the usage of the vrfip instruction. Each of the four elements in the
vectors vB and vD is 32 hits long.

| \ | \ | \ | \ | vB

RndToFPI nt 32Cei | RndToFPI nt 32Cei | RndToFPI nt 32Cei | RndToFPI nt 32Cei |

Y v Y Y
| | | | | vD

Figure 6-98. vrfip—Round to Plus Infinity of Four Floating-Point
Integer Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-127

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vrfiz vrfiz

Vector Round to Floating-Point Integer toward Zero

vrfiz vD,vB Form: VX
04 vD 0_0000 vB 586

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
vD, .j+31 < RndToFPInt32Trunc((vB); - +31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision
floating-point integer, using the rounding mode Round toward Zero, and placed into the
corresponding word element of vD.

Note, the result isindependent of VSCR[NJ].

Other registers altered:
* None

Figure 6-99 shows the usage of the vrfiz instruction. Each of the four elements in the
vectors vB and vD is 32 hits long.

| \ | \ | \ | \ | vB

RndToFPI nt 32Trunc RndToFPI nt 32Trunc RdToFPI nt 32Trunc RndToFPI nt 32Tr unc

Y Y Y Y
| | | | | vD

Figure 6-99. vrfiz—Round-to-Zero of Four Floating-Point Integer Elements (32-Bit)

6-128 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vrib vrlb

Vector Rotate Left Integer Byte

vrib vD,vA,vB Form: VX
04 vD VA vB 4

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8

sh « (VB)j+5:+7
VD :j+7 < ROTL((VA)j.j+7, sh)

end

Each element is a byte. Each element in VA is rotated left by the number of bits specified
in the low-order 3 bits of the corresponding element in vB. The result is placed into the
corresponding element of vD.

Other registers altered:
* None

Figure 6-100 shows the usage of the vrlb instruction. Each of the sixteen elements in the
vectors, VA, vB, and vD, is 8 bitslong.

|vA
v

B

Ll [rrr ol
OIOVIOIVIVIVIVIIVICINIVIVICIOIY
| [[] [[] [[]

Figure 6-100. vrlb—Left Rotate of Sixteen Integer Elements (8-Bit)

| vD

MOTOROLA Chapter 6. AltiVec Instructions 6-129

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vrih vrih

Vector Rotate Left Integer Half Word

vrih vD,vA,vB Form: VX
04 vD VA vB 68

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16

sh « (VB)j+12:i+15
VD, .j+15 « ROTL((VA);.j 415, Sh)

end

Each element is a half word

Each element in VA isrotated | eft by the number of bits specified in the low-order 4 bits of
the corresponding element in vB. Theresult isplaced into the corresponding element of vD.

Other registers atered:
* None

Figure 6-101 shows the usage of the vrlh instruction. Each of the eight elements in the
vectors, VA, vB, and vD, is 16 bitslong.

|vA
v

B

[T 1T T T T T]
OO DH DD DD D
[T 1 T T T T T qw

Figure 6-101. vriIh—Left Rotate of Eight Integer Elements (16-Bit)

6-130 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vriw vriw
Vector Rotate Left Integer Word
vriw vD,vA,vB Form: VX
04 vD VA vB 132
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

sh « (VB)j+27:i+31
VD, .j4+31 « ROTL((VA);.j+31,Sh)

end

Each element isaword. Each element in VA is rotated |eft by the number of bits specified
in the low-order 5 bits of the corresponding element in vB. The result is placed into the
corresponding element of vD.

Other registers altered:
* None

Figure 6-102 shows the usage of the vrlw instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| | | | va
S-SR S S < B S -

| | | | | vD

Figure 6-102. vriw—Left Rotate of Four Integer Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-131

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vrsqrtefp

Vector Reciprocal Square Root Estimate Floating Point

vrsgrtefp

vrsgrtefp vD,vB Form: VX

04 vD

0_0000 vB 330

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
X « (VB)j:j+31

VD ia31 < L (Vip(x)
end

The single-precision estimate of the reciprocal of the square root of each single-precision
element in vB is placed into the corresponding word element of vD. The estimate has a
relative error in precision no greater than one part in 4096, as explained below:

estimate — 1/ ﬁ

1/ Jx

where x isthe value of the element in vB. Note that the value placed into the element of vD
may vary between implementations and between different executions on the same
implementation. Operation with various special values of the element in vB is summarized
below in Table 6-8.

Table 6-8. Special Values of the Element in vB

S 1
4096

Value Result Value Result
-00 QNaN +0 +00
less than 0 QNaN +00 +0
-0 -0 NaN QNaN
Other registers altered:

e None

Figure 6-103 shows the usage of the vr sgrtefp instruction. Each of the four elementsin the
vectors, VA, vB, and vD, is 32 bits long.

| \ | \ | \ | \ | vB

1/v\/x 1/v\/x 1/v\/X 1/v\/x
Y Y Y Y

Figure 6-103. vrsqrtefp—Reciprocal Square Root Estimate of Four Floating-Point
Elements (32-Bit)

6-132 AltiVec Technology Programming Environments Manual MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vsel vsel

Vector Conditional Select

vsel vD,vA,vB,vC Form: VA
04 vD VA vB vC 42

0 5 6 10 11 15 16 20 21 25 26 31

do i=0 to 127

if (vO;i=0 then v « (VA);
else vD « (VvB);

end

For each bit in vC that contains the value 0, the corresponding bit in VA is placed into the
corresponding bit of vD. For each bit in vC that contains the value 1, the corresponding bit
invB is placed into the corresponding bit of vD.

Other registers altered:
* None

Figure 6-104 shows the usage of the vsal instruction. Each of the vectors, vA, vB, vC, and
vD, is 128 bits long.

o]

“““ooooooooooo |VA

“““ooo.otooooo |VB

1

C‘O“‘ﬂo‘o‘oooooaco... |VC

Figure 6-104. vsel—Bitwise Conditional Select of Vector Contents(128-bit)

“““oooolccoooo |VD

MOTOROLA Chapter 6. AltiVec Instructions 6-133

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

VSl VSl

Vector Shift Left

vsl vD,vA,vB Form: VX
04 vD VA vB 452

0 5 6 10 11 15 16 20 21 31

sh « (vB) 125 127
t «— l

do i 0 to 127 by 8

t « t & ((vB)i+5:i+7 = sh)
if t =1then vD « (VA) <<y sh
el se vD ~ undefi ned

end

The contents of VA are shifted left by the number of bits specified in vB[125-127]. Bits
shifted out of bit O arelost. Zeros are supplied to the vacated bits on theright. Theresult is
placed into vD.

The contents of the low-order three bits of all byte elements in vB must be identical to
vB[125-127]; otherwise the value placed into vD is undefined.

Other registers atered:
* None

Figure 6-105 shows the usage of the vdl instruction.

126 — —127
Yy

| 6| vB
*6 = sh = Shift Count
L | vA

/ %Shift

| 1 0.00000 | vD

—>{ sh zeros fe&—
Figure 6-105. vsl—Shift Bits Left in Vector (128-Bit)

6-134 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vsilb vsilb
Vector Shift Left Integer Byte
vslb vD,vA ,vB Form: VX
04 vD VA vB 260
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8

sh « (VB)jis5):i+7
VD . j47 <« (VA i+7 <<y sh

end

Each element is a byte. Each element in VA is shifted left by the number of bits specified
in the low-order 3 bits of the corresponding element in vB. Bits shifted out of bit O of the
element arelost. Zeros are supplied to the vacated bits on the right. Theresult is placed into
the corresponding element of vD.
Other registers atered:
* None
Figure 6-106 shows the usage of the vdlb instruction. Each of the sixteen elements in the
vectors, VA, vB, and vD, is 8 bits long.
125 — 127
\

| 6| 6| 6 6 6 6] 6] 6] 6] 6] 6] 6| 6] 6] 6] 6| vB

L e

[lo.0] Jo.of lo.o] Jo.of Jo.o] Jo.0] Jo.of Jo.o] lo.o| Jo.of lo.o] lo.of fo.o| Jo.of fo.of fo..of vD

s

Zeros

Figure 6-106. vslb—Shift Bits Left in Sixteen Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-135

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vsldoi vsldol

Vector Shift Left Double by Octet Immediate

vsldoi vD, VA, vB, SHB Form: VA
04 vD VA vB 0 SH 44

0 5 6 10 11 15 16 20 21 22 25 26 31

vD « ((vA) || (vB)) <<, (SHB || 0b000)

L et the source vector be the concatenation of the contents of VA followed by the contents
of vB. Bytes SHB:SHB+15 of the source vector are placed into vD.

Other registers atered:
* None

Figure 6-107 shows the usage of the vsldoi instruction. Each of the sixteen elementsin the
vectors, VA, vB, and vD, is 8 bitslong.

N 72 N N 7

|+ 4 [[[[[[[[[[|w
-«— SHB
(A [[[[[I [[= =]w

Figure 6-107. vsldoi—Shift Left by Bytes Specified

6-136 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vslh vslh

Vector Shift Left Integer Half Word

vsh vD,vA ,vB Form: VX
04 vD VA vB 324

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16

sh « (VB)j+12:i+15
VD :i+15 <« (VA).i+15 <<y sh

end

Each element is a half word. Each element in VA is shifted left by the number of bits
specified in the low-order 4 bits of the corresponding element in vB. Bits shifted out of bit
0 of the element are lost. Zeros are supplied to the vacated bits on the right. The result is
placed into the corresponding element of vD.

Other registers atered:
* None

Figure 6-108 shows the usage of the vslh instruction. Each of the eight elements in the
vectors, VA, vB, and vD, is 16 hitslong.

124 ‘7127
o] s T Te] \6I \e\ \e| 5] e
N R N R
///////%wmw
NI N B)) W Sk e

Figure 6-108. vslh—Shift Bits Left in Eight Integer Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-137

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec Technology Programming Environments Manual

vslo vslo
Vector Shift Left by Octet
vslo vD,vA,vB Form: VX
04 vD VA vB 1036
0 5 6 10 11 15 16 20 21 31

shb « (VB)121:124
vD « (VA) <<, (shb || 0b00O)

The contents of VA are shifted | eft by the number of bytes specified in vB[121-124]. Bytes
shifted out of byte O arelost. Zeros are supplied to the vacated bytes on the right. The result

Is placed into vD.

Other registers altered:
* None

Figure 6-109 shows the usage of the vslo instruction.

121 —

—124
Y

| Don't Care 4 | vB
L[[| e] va

e o o e o o e o o o <—*4=Shb=ShiﬂC0um
LA P PP PP P T | #oofoojoofoofw

Figure 6-109. vslo—Left Byte Shift of Vector (128-Bit)

6-138 AltiVec Technology Programming Environments Manual

For More Information On This Product,

Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vSsiw vVSiw
Vector Shift Left Integer Word
vslw vD,vA,vB Form: VX
04 vD VA vB 388
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

sh « (VB)j+27:i+31
VD :i+31 < (VA)j:i+31 <<yi sh

end

Each element is aword. Each element in vA is shifted left by the number of bits specified
in the low-order 5 bits of the corresponding element in vB. Bits shifted out of bit O of the
element arelost. Zeros are supplied to the vacated bits on the right. The result is placed into
the corresponding element of vD.

Other registers atered:
* None

Figure 6-110 shows the usage of the vslw instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 hitslong.

1231 \77127
| 6 | 6 | 6 | 6 | vB
/ / / / <—*6 = sh = Shift Count
| 000000 | | 000000 | | 000000 | \oooooo | D
h e

zeros

Figure 6-110. vslw—Shift Bits Left in Four Integer Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-139

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vspltb vspltb

Vector Splat Byte
vspltb vD,vB,UIMM Form: VX

04 vD UIMM vB 524

0 5 6 10 11 15 16 20 21 31
b « U M*8
do i=0 to 127 by 8
VD :i+7 < (VB)p:p+7
end
Each element of vspltb isabyte.
The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:
* None
Programming note: The vector splat instructions can be used in preparation for performing

arithmetic for which one source vector isto consist of elementsthat all have the same value
(for example, multiplying all elements of avector register by a constant).

Figure 6-111 shows the usage of the vspltb instruction. Each of the sixteen elementsin the
vectors vB and vD is 8 bitslong.

| vB

e e e el R A R AN A S S e I R
Figure 6-111. vspltb—Copy Contents to Sixteen Elements (8-Bit)

6-140 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vsplth vsplth

Vector Splat Half Word

vsplth vD,vB,UIMM Form: VX

04 vD UIMM vB 588

0 5 6 10 11 15 16 20 21 31

b « U MW16
do i=0 to 127 by 16
VD i+15 <« (VB)p:p+15
end
Each element of vsplth isahalf word.
The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:
* None
Programming note: The vector splat instructions can be used in preparation for performing

arithmetic for which one source vector isto consist of elementsthat all have the same value
(for example, multiplying all elements of avector register by a constant).

Figure 6-112 shows the usage of the vsplth instruction. Each of the eight elements in the
vectors vB and vD is 16 hits long.

| [~ | | | | | | vB

L~ | | & [[~ = | | v
Figure 6-112. vsplth—Copy Contents to Eight Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-141

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vspltisb vspltisb

Vector Splat Immediate Signed Byte

vspltisb vD,SIMM Form: VX

04 vD SIMM 0000_0 780

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8
vD,.j+7 < SignExtend(SlI MM 8)
end

Each element of vspltisb isabyte.

The value of the SIMM field, sign-extended to the length of the element, is replicated into
each element of vD.

Other registers atered:

* None

Figure 6-113 shows the usage of the vspltisb instruction. Each of the sixteen elementsin
the vector, vD, is 8 hits long.

| | siMMm

e e R N B i i o
Figure 6-113. vspltisb—Copy Value into Sixteen Signed Integer Elements (8-Bit)

6-142 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vspltish vspltish

Vector Splat Immediate Signed Half Word

vspltish vD,SIMM Form: VX

04 vD SIMM 0000_0 844

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16
vD,.i+15 < SignExtend(SI MM 16)

end
Each element of vspltish isahalf word.

The value of the SIMM field, sign-extended to the length of the element, is replicated into
each element of vD.

Other registers atered:
* None

Figure 6-114 shows the usage of the vspltish instruction. Each of the eight elementsin the
vectors, VA, vB, and vD, is 16 bitslong.

| o | SIMM

05 0 <, o s

Figure 6-114. vspltish—Copy Value to Eight Signed Integer Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-143

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vspltisw vspltisw
Vector Splat Immediate Signed Word
vspltisw vD,SIMM Form: VX
04 vD SIMM 0000_0 908
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
vD,.ij+31 < SignExtend(SI MM 32)
end

Each element of vspltisw isaword.

The value of the SIMM field, sign-extended to the length of the element, is replicated into
each element of vD.

Other registers atered:
* None

Figure 6-115 shows the usage of the vspltisw instruction. Each of the four elementsin the
vector, and vD, is 32 bits long.

| | | | sivm

| | r | b | ™= | vD

Figure 6-115. vspltisw—Copy Value to Four Signed Elements (32-Bit)

6-144 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vspltw vspltw
Vector Splat Word
vspltw vD,vB,UIMM Form: VX
04 vD UiMM vB 652
0 5 6 10 11 15 16 20 21 31
b « U Mw32

do i=0 to 127 by 32
VD :i+31 < (VB)pip+a1
end
Each element of vspltw isaword.
The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:
* None
Programming note: The Vector Splat instructions can be used in preparation for performing

arithmetic for which one source vector isto consist of elementsthat all have the same value
(for example, multiplying all elements of aVector Register by a constant).

Figure 6-116 shows the usage of the vspltw instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| | | uivm

| “ | F 3 [™ | vD

Figure 6-116. vspltw—Copy contents to Four Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-145

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

VSTI VSTI
Vector Shift Right
Vvsr vD,vA,vB Form: VX
04 vD VA vB 708
0 5 6 10 11 15 16 20 21 31

sh « (VB)125:127
t «— l
doi =0 to 127 by 8

t «t & ((VB)j45i4+7 = sh)
if t =1then vD « (VvA) >>, sh
el sevD « undefi ned

end

Let sh=vB[125-127]; shisthe shift count in bits (O<sh<7). The contents of VA are shifted
right by sh bits. Bits shifted out of bit 127 are lost. Zeros are supplied to the vacated bits on
the left. The result is placed into vD.

The contents of the low-order three bits of al byte elementsin register vB must be identical
to vB[125-127]; otherwise the value placed into register vD is undefined.

Other registers atered:
* None

Programming notes:

A pair of vdo and vsl or vsro and vsr instructions, specifying the same shift count register,
can be used to shift the contents of a vector register left or right by the number of bits
(0-127) specified in the shift count register. The following example shifts the contents of
vX left by the number of bits specified in vY and places the result into vZ.

vsl o VZ, VX, VY
vsl VZ,VZ, VY

A double-register shift by adynamically specified number of bits (0—127) can be performed
in six instructions. The following example shifts (VW) || (vX) left by the number of bits
specified in vY and places the high-order 128 bits of the result into vZ.

vsl o tl, VWVY #shift high-order reg | eft
vsl t1,t1, VY
vsububm t3,V0,VY #adjust shift count ((V0)=0)
VSro t2,VX,t3 #shift |oworder reg right
VSr t2,t2,t3
vor VZ,t1,t2 #nmerge to get final result
6-146 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

Figure 6-117 shows the usage of the vsr instruction. Each of the sixteen elements in the
vectors, VA, vB, and vD, is 8 bitslong.

125 — —127
vy

| 6*| vB

| A

e o o o o o o o o o *6 = sh = Shift Count

[0...0] | vD
| sh =

Zeros

Figure 6-117. vsr—Shift Bits Right for Vectors (128-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-147

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec Technology Programming Environments Manual

vsrab vsrab
Vector Shift Right Algebraic Byte
vsrab vD,vA,vB Form: VX
04 vD VA vB 772
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8

sh « (VB)j+2:i+7
VD :i+7 < (VA)j.j+7 >>5i sh

end

Each element isabyte. Each element in VA is shifted right by the number of bits specified
in the low-order 3 bits of the corresponding element in vB. Bits shifted out of bit n-1 of the
element are lost. Bit O of the element is replicated to fill the vacated bits on the left. The

result is placed into the corresponding element of vD.

Other registers atered:
* None

Figure 6-118 shows the usage of the vsrab instruction. Each of the sixteen elementsin the

vectors, VA, and vD, is 8 bitslong.

125

— 127
Y

| 6I 6I 6I 6I 6I 6I 6I 6I 6I 6I 6I 6I 6I 6I 6I 6

vB

IR

XX‘ |XX‘ |XX‘ |XX‘ |XX‘ |XX‘ |XX‘ |XX‘ |XX‘ |XX‘ |XX‘ |XX‘ |XX‘ |XX |XX‘ X,

*bit x

Figure 6-118. vsrab—Shift Bits Right in Sixteen Inte

6-148 AltiVec Technology Programming Environments Manual

sh’«

*bit x = bit 0 of each element

ger Elements (8-Bit)

For More Information On This Product,

Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vsrah vsrah
Vector Shift Right Algebraic Half Word
vsrah vD,vA,vB Form: VX
04 vD VA vB 836
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16

sh « (VB)j+12:i+15
VD :i+15 <« (VA).i+15 >>si sh

end

Each element is a half word. Each element in VA is shifted right by the number of bits
specified in the low-order 4 bits of the corresponding element in vB. Bits shifted out of bit
15 of the element are lost. Bit O of the element is replicated to fill the vacated bits on the
left. The result is placed into the corresponding element of vD.

Other registers atered:
* None

Figure 6-119 shows the usage of the vsrah instruction. Each of the eight elements in the
vectors, VA, and vD, is 16 bitslong.

124 ‘7127
L fel el Tef Tef o] Jo] o] [*6]vs
| | | | | | | | | va
L0 N N N N N N
L= = === == w
+§h\<l

X *x = bit 0 of each element

Figure 6-119. vsrah—Shift Bits Right for Eight Integer Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-149
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vVSraw VSraw
Vector Shift Right Algebraic Word
VSraw vD,vA,vB Form: VX
04 vD VA vB 900
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

sh « (VB)j+27:i+31
VD :i+31 < (VA)j.i+31 >>si sSh

end

Each element isaword. Each element in VA is shifted right by the number of bits specified
in the low-order 5 bits of the corresponding element in vB. Bits shifted out of bit 31 of the
element are lost. Bit O of the element is replicated to fill the vacated bits on the left. The
result is placed into the corresponding element of vD.

Other registers atered:
* None

Figure 6-120 shows the usage of the vsraw instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 hitslong.

2 127
| 6 | 6 | 6 | | 6 |
I I I I | va
\ \ \ \»*&sh:smnooum
o [0 o [e] [] |
> sh

*x = bit 0 of each element

Figure 6-120. vsraw—Shift Bits Right in Four Integer Elements (32-Bit)

6-150 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

VSsrb VSrb
Vector Shift Right Byte
vsrb vD,vA,vB Form: VX
04 vD VA vB 516
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8

sh « (VB)j+5:+7
VD :i+7 < (VA)j.j+7 >>y sh

end

Each element isabyte. Each element in VA is shifted right by the number of bits specified
in the low-order 3 bits of the corresponding element in vB. Bits shifted out of bit 7 of the
element are lost. Zeros are supplied to the vacated bits on the left. The result is placed into

the corresponding element of vD.
Other registers atered:
* None

Figure 6-121 shows the usage of the vsrb instruction. Each of the sixteen elementsin the
vectors, VA, and vD, is 8 bitslong.

125 — 127
\J

| 6| 6| 6| 6| 6| 6| 6| 6| 6| 6| 6| 6| 6| 6| 6| *6| vB

\\\\\\\\\\\\\\\\y“mmm

|0 0| |o. o‘ lo-o [o.o Jo.o| Jo-o Jo. 0‘ lo.o] Jo. 0‘ Jo.0| Jo.o] o.q] . o‘ lo. 0‘ |oo
sh’«

Z€eros

Figure 6-121. vsrb—Shift Bits Right in Sixteen Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-151

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vsrh VSrh
Vector Shift Right Half Word
vsrh vD,vA,vB Form: VX
04 vD VA vB 580
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16

sh « (VB)j+12:i+15
VD :i+15 <« (VA).i+15 >>yi sh

end

Each element is a half word. Each element in VA is shifted right by the number of bits
specified in the low-order 4 bits of the corresponding element in vB. Bits shifted out of bit
15 of the element are lost. Zeros are supplied to the vacated bits on the left. The result is
placed into the corresponding element of vD.

Other registers atered:
* None

Figure 6-122 shows the usage of the vsrh instruction. Each of the eight elements in the
vectors, VA, and vD, is 16 bitslong.

124 ‘7127
L le] Jef Je] \6| \Gl \Gl \6| 6] v
| | | |
\\\\\\\\Mmm
[oo] Joo| Jool Joof [oo] Joof [oo]l |oo] vD

sh\<'

zeros

Figure 6-122. vsrh—Shift Bits Right for Eight Integer Elements (16-Bit)

6-152 AltiVec Technology Programming Environments Manual MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

VSIo VSIoO
Vector Shift Right Octet
VSro vD,vA,vB Form: VX
04 vD VA vB 1100
0 5 6 10 11 15 16 20 21 31

shb « (VB)121:124

vD < (VvA) >>, (shb || 0b000)
The contentsof VA are shifted right by the number of bytes specifiedin vB[121-124]. Bytes
shifted out of VA are lost. Zeros are supplied to the vacated bytes on the left. The result is
placed into vD.

Other registers altered:
* None
21— 124
| Don't Care 5| | vB
B s [[[[A
S R —»*5 = Shift Count
loofoofoofoofoo™ | T P T P] ™ (w

Figure 6-123. vsro—Vector Shift Right Octet

MOTOROLA Chapter 6. AltiVec Instructions 6-153

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

VSIw VSIw
Vector Shift Right Word
VSIw vD,vA,vB Form: VX
04 vD VA vB 644
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

sh « (VB)j+(27):i+31
VD .i431 < (VA)j:j431 >>y sh

end

Each element isaword. Each element in VA is shifted right by the number of bits specified
in the low-order 5 bits of the corresponding element in vB. Bits shifted out of bit 31 of the
element are lost. Zeros are supplied to the vacated bits on the left. The result is placed into
the corresponding element of vD.

Other registers atered:
* None

Figure 6-124 shows the usage of the vsrw instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 hitslong.

123 127
v v
| 6 | 6 | | 6 | 6 |VB
| |
\ \ \ \%*6 sh = Shift Count
Tow | o0 [o0 | |00
—»| sh

ze I’OS

Figure 6-124. vsrw—Shift Bits Right in Four Integer Elements (32-Bit)

6-154 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vsubcuw vsubcuw
Vector Subtract Carryout Unsigned Word
vsubcuw vD,vA,vB Form: VX
04 vD VA vB 1408
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

aopg: 32 — Zer oExtend((VA) .31, 33)
bopg. 32~ ZeroExtend((VvB);.j+31, 33)

tenpg. 32— aoPg:32 *int ~bOPp:32 *tint 1
vD, .j 131 ZeroExtend(tenpg, 32)

end

Each unsigned-integer word element in vB is subtracted from the corresponding
unsigned-integer word element in vA. The complement of the borrow out of bit O of the
32-bit difference is zero-extended to 32 bits and placed into the corresponding word
element of vD.

Other registers atered:
* None

Figure 6-125 shows the usage of the vsubcuw instruction. Each of the four elementsin the
vectors, VA, vB, and vD, is 32 hits long.

| | vB
| \ | \ | \ | \ | VA
Y V¥ v] Yy ¥]
s y A N
| | Zero-Ext
Y Y Y Y
| | | | | w

Figure 6-125. vsubcuw—Subtract Carryout of Four Unsigned Integer Elements
(32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-155

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vsubfp vsubfp

Vector Subtract Floating Point

vsubfp vD,vA,vB Form: VX

04 vD VA vB 74

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
VD, .j+31 < RndToNear FP32((VA)i.i+31 -fp (VB):i+31)
end
Each single-precision floating-point word element in vB is subtracted from the
corresponding single-precision floating-point word element in vA. The result isrounded to

the nearest single-precision floating-point number and placed into the corresponding word
element of vD.

If VSCR[NJ] = 1, every denormalized operand element is truncated to a 0 of the same sign
before the operationis carried out, and each denormalized result element truncatesto a0 of
the same sign.

Other registers atered:
* None

Figure 6-126 shows the usage of the vsubfp instruction. Each of the four elements in the
vectors, VA, vB, and vD, is 32 bits long.

| | | | | vA

| |
H H vy v‘v
“fp “fp “fp “fp
Y Y Y Y
| | | | | v

| vB

Figure 6-126. vsubfp—Subtract Four Floating Point Elements (32-Bit)

6-156 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vsubsbs vsubsbs

Vector Subtract Signed Byte Saturate

vsubsbs vD,vA ,vB Form: VX
04 vD VA vB 1792

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8

aopp: g~ Si gnExtend((VA)j.j+7,9)
bopg. g~ Si gnExtend((vB);.j+7,9)
tempg. g~ aoPg:g *int ~HoPg.g *int 1
vD,.j 47« SltoSlsat(temg.g, 8)

end

Each element is a byte. Each signed-integer element in vB is subtracted from the
corresponding signed-integer element in VA.

If the intermediate result is greater than (27-1) it saturates to (27-1) and if it is less than -27
It saturates to -27, where 8 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:
« SAT

Figure 6-127 shows the usage of the vsubsbs instruction. Each of the sixteen elementsin
the vectors, VA, vB, and vD, is 8 hits long.

oL T T T T B B By T T e Iy Iy Iy Ty A
INInInIninnnninininmnnmme:
YY YY YY YY YY VY YY YV YY YY YV YY YV VYV VYV VY
Y Y Y Y Y VY VY ¥V Y Y Y YV VY V¥V V¥V ¥
L v

Figure 6-127. vsubsbs—Subtract Sixteen Signed Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-157

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vsubshs vsubshs

Vector Subtract Signed Half Word Saturate

vsubshs vD,vA ,vB Form: VX
04 vD VA vB 1856

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16

aopp: 16 Si gnExtend((VA)j.j+15, 17)
bopg. 16 Si gnExtend((VB);.;+15, 17)

tenpg. 16— @0Po: 16 *int -POPo:16 *int 1
vD . 415 SltoSlsat(tenpg. 16, 16)

end

Each element is a half word. Each signed-integer element in vB is subtracted from the
corresponding signed-integer element in VA.

If the intermediate result is greater than (215-1) it saturatesto (215-1) and if it islessthan -215
it saturates to -215, where 16 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:
« SAT

Figure 6-128 shows the usage of the vsubshs instruction. Each of the eight elementsin the
vectors, VA, vB, and vD, is 16 bitslong.

| | | | | | | | | vA
HIEEIE RN
v_v v_v v_v v_v v_v v_v v_v v_v
Y Y Y Y Y Y Y Y
| | vD

Figure 6-128. vsubshs—Subtract Eight Signed Integer Elements (16-Bit)

6-158 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vsubsws vsubsws
Vector Subtract Signed Word Saturate
vsubsws vD,vA ,vB Form: VX
04 vD VA vB 1920
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

aopg: 32— Si gnExtend((VA) .31, 33)
bopg: 32~ Si gnExtend((VvB);.j+31, 33)
tenpg. 32— aoPg:32 *int ~bOPp:32 *tint 1
vD . +31< SltoSlsat(tenpg. 3, 32)

end

Each element is a word. Each signed-integer element in vB is subtracted from the
corresponding signed-integer element in VA.

If the intermediate result is greater than (231-1) it saturatesto (231-1) and if it islessthan -23t
it saturates to -231, where 32 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:
« SAT

Figure 6-129 shows the usage of the vsubsws instruction. Each of the four el ementsin the
vectors, VA, vB, and vD, is 32 bits long.

| | vA
| \ | \ | \ | \ | vB
(A] v_v vy vy
Y Y Y Y
| vD

|
Figure 6-129. vsubsws—Subtract Four Signed Integer Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-159

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vsububm vsububm
Vector Subtract Unsigned Byte Modulo
vsububm vD,vA ,vB Form: VX
04 vD VA vB 1024
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8
VD vz« (VA 47 *ine —(VB) .47
end

Each element of vsububm is abyte.

Each integer element in vB is subtracted from the corresponding integer element invA. The
integer result is placed into the corresponding element of vD.

Other registers atered:
* None

Note the vsububm instruction can be used for unsigned or signed integers.

Figure 6-130 shows the usage of the vsububm instruction. Each of the sixteen elementsin
the vectors, VA, vB, and vD, is 8 bits long.

Lo b D T b b B I Iy T I e Iy By Iy Ty A
INNInInInIninnininininnimny:
YY YV YV VY VY VY YV VYV YY YY YV YY YV VV VYV VY
Y Y Y Y Y Y Y Y Y Y Y Y Y V¥V ¥V ¥
NN

Figure 6-130. vsububm—Subtract Sixteen Integer Elements (8-Bit)

6-160 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vsububs vsububs

Vector Subtract Unsigned Byte Saturate

vsububs vD,vA,vB Form: VX
04 vD VA vB 1536

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 8

aopg. g« ZeroExtend((VA)i.ij+7,9)
bopg. g~ ZeroExtend((vB)j:j+7,9)
tenpg.g— a0pg.g *int ~bPOPp:g *int 1
vD,.j+7< SltoU sat (tenpg.g, 8)

end

Each element is a byte. Each unsigned-integer element in vB is subtracted from the
corresponding unsigned-integer element in VA.

If the intermediate result islessthan O it saturatesto 0, where 8 isthe length of the element.
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:
o SAT

Figure 6-131 shows the usage of the vsububs instruction. Each of the sixteen elementsin
the vectors, VA, vB, and vD, is 8 bits long.

Lo b T T T T B B By T T e Iy By Iy Ty A
INInInIninnnninininmnnmme:
YY YY YY YY YY VY YY YV YY YY YV YY YV VYV VYV VY
Y Y Y Y Y Y Y Y Y Y Y Y Y V¥V ¥V ¥
NN

Figure 6-131. vsububs—Subtract Sixteen Unsigned Integer Elements (8-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-161

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vsubuhm vsubuhm
Vector Subtract Signed Half Word Modulo
vsubuhm vD,vA,vB Form: VX
04 vD VA vB 1088
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16
VD . i415< (VA)i:i+15 *int —(VB)i:i+15
end

Each element is a haf word. Each integer element in vB is subtracted from the
corresponding integer element in VA. The integer result is placed into the corresponding
element of vD.

Other registers altered:
* None

Note the vsubuhm instruction can be used for unsigned or signed integers.

Figure 6-132 shows the usage of the vsubuhm instruction. Each of the eight elementsin
the vectors, VA, vB, and vD, is 16 bitslong.

Figure 6-132. vsubuhm—Subtract Eight Integer Elements (16-Bit)

6-162 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vsubuhs vsubuhs
Vector Subtract Signed Half Word Saturate
vsubuhs vD,vA ,vB Form: VX
04 vD VA vB 1600
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 16

aopg: 16 Zer oExtend((VvA)j .15, 17)
bopg. 16 Zer oExtend((VB)j.j+n: 1, 17)
tenpg. 16— a0Pg:n +int ~POPg:16 *int 1
vD . 415 SltoUl sat(tenpg. 16, 16)

end

Each element is a half word. Each unsigned-integer element in vB is subtracted from the
corresponding unsigned-integer element in VA.

If theintermediateresult islessthan O it saturatesto 0, where 16 isthelength of the element.
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:
o SAT

Figure 6-133 shows the usage of the vsubuhsinstruction. Each of the eight elementsin the
vectors, VA, vB, and vD, is 16 bitslong.

Figure 6-133. vsubuhs—Subtract Eight Signed Integer Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-163

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vsubuwm vsubuwm
Vector Subtract Unsigned Word Modulo
vsubuwm vD,vA,vB Form: VX
04 vD VA vB 1152
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32
VD 431« (VA)i:i+31 *ine ~(VB)i:i+31

end
Each element of vsubuwm isaword.

Each integer element in vB is subtracted from the corresponding integer element invA. The
integer result is placed into the corresponding element of vD.

Other registers atered:
* None

Note the vsubuwm instruction can be used for unsigned or signed integers.

Figure 6-134 shows the usage of the vsubuwm instruction. Each of the four elementsin the
vectors, VA, vB, and vD, is 32 hits long.

| \ | \ | \ | \ | vB

| | | | | vD

Figure 6-134. vsubuwm—Subtract Four Integer Elements (32-Bit)

6-164 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

VSUbUWwsS VSUbUWws

Vector Subtract Unsigned Word Saturate

vsubuws vD,vA,vB Form: VX

04 vD VA vB 1664

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

aopg: 32 — Zer oExtend((VA) .31, 33)
bopg. 32~ ZeroExtend((VvB);.j+31, 33)
tenpg. 32— aoPg:32 *int ~bOPp:32 *tint 1
vD . +31< SltoUl sat(tenpg. 35, 32)

end

Each element is a word. Each unsigned-integer element in vB is subtracted from the
corresponding unsigned-integer element in VA.

If theintermediateresult islessthan O it saturatesto 0, where 32 isthelength of the element.
The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:
o SAT

Figure 6-135 shows the usage of the vsubuws instruction. Each of the four elementsin the
vectors, VA, vB, and vD, is 32 bits long.

| \ | \ | \ | \ | vB

| | | | | vD

Figure 6-135. vsubuws—Subtract Four Signed Integer Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-165

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

VSUMSWS VSUMSWS
Vector Sum Across Signed Word Saturate
VSUmsws vD,VA,vB Form: VX
04 vD VA vB 1928
0 5 6 10 11 15 16 20 21 31

t €NMPp: 34 « Si gnEXt end((VB) 96: 1271 35)
do i=0 to 127 by 32

tenpg.z4 < tenpg.za +ine SignExtend((VA);.+31, 35)
vD < 900 || SItoSlsat (tenpg. 34, 32)

end

The signed-integer sum of the four signed-integer word elements in VA is added to the
signed-integer word element in bits of vB[96-127]. If the intermediate result is greater than
(2%2-1) it saturates to (231-1) and if it isless than -23t it saturates to -231. The signed-integer
result is placed into bits vD[96-127]. Bits vD[0-95] are cleared.

Other registers atered:
o« SAT

Figure 6-136 shows the usage of the vsumsws instruction. Each of the four elementsin the
vectors, VA, vB, and vD, is 32 hits long.

| | | | | vA

| | | vB

| | = | vD

Figure 6-136. vsumsws—Sum Four Signed Integer Elements (32-Bit)

6-166 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

VSUM2SWS VSUM2SWS
Vector Sum Across Patrtial (1/2) Signed Word Saturate
VSUM2sws vD,VA,vB Form: VX
04 vD VA vB 1672
0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 64

tempg. 33 «~ SignExtend((VB)j.32:i+63 34)
do j=0 to 63 by 32

tenpg.33 « tempg.33 +int SignExtend((VA)j4j.i+j+31, 34)
end

VD .i+63 < 220 || SltoSlsat (tenmpg. 33, 32)

end

The signed-integer sum of thefirst two signed-integer word elementsin register VA isadded
to the signed-integer word element in vB[32-63]. If the intermediate result is greater than
(2%-1) it saturates to (231-1) and if it isless than -23t it saturates to -231. The signed-integer
result is placed into vD[32-63]. The signed-integer sum of the last two signed-integer word
elements in register VA is added to the signed-integer word element in vB[96-127]. If the
intermediate result is greater than (231-1) it saturates to (232-1) and if it is less than -23 it
saturates to -23.. The signed-integer result is placed into vD[96-127]. The register
vD[0-31,64-95] are cleared to 0.

Other registers atered:
o SAT

Figure 6-137 shows the usage of the vsum2sws instruction. Each of the four elementsin
the vectors, VA, vB, and vD, is 32 bitslong.

| | | | | vA

| | | | | vB
R R

[00000000] A 00000000] A | vD

Figure 6-137. vsum2sws—Two Sums in the Four Signed Integer Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-167

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vsumd4sbs vsum4sbs

Vector Sum Across Partial (1/4) Signed Byte Saturate

vsum4sbs vD,vA ,vB Form: VX
04 vD VA vB 1800

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

tenpg. 32 ~ SignExtend((vB);.j.31,33)
do j=0 to 31 by 8

tenpg.32 « tempg.gp +int SignExtend((VA)j4j.j+j+7, 33)
end

vD .j4+31 < SltoSlsat(tenpg. 32, 32)

end

For each word element in vB the following operations are performed in the order shown.

* The signed-integer sum of the four signed-integer byte elements contained in the
corresponding word element of register VA is added to the signed-integer word
element in register vB.

* |If theintermediate result is greater than (231-1) it saturatesto (23-1) and if itisless
than -23tit saturates to -23.

* Thesigned-integer result is placed into the corresponding word element of vD.

Other registers altered:
o SAT
Figure 6-138 shows the usage of the vsum4sbsinstruction. Each of the sixteen elementsin

the vector VA, is 8 bitslong. Each of the four elements in the vectors vB and vD is 32 bits
long.

INEIFIVAINEFE VAN PEENEREEVENG
]]] \

| \E?}// | %g// | | | %g// | vB

| ! | | vD

Figure 6-138. vsum4sbs—Four Sums in the Integer Elements (32-Bit)

6-168 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vsum4shs vsum4shs

Vector Sum Across Partial (1/4) Signed Half Word Saturate

vsum4shs vD,vA ,vB Form: VX
04 vD VA vB 1608

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

tenpg.32 « SignExtend((vB);:j.+31,33)
do j=0 to 31 by 16

tenpg.32 « tempg.gp +in SignExtend((VA)j4j:i+j+15 33)
end

vD .j 431 <« SltoSlsat(tenpg. 32, 32)
end

For each word element in register vB the following operations are performed, in the order
shown.

» The signed-integer sum of the two signed-integer halfword elements contained in
the corresponding word element of register VA is added to the signed-integer word
element in vB.

» |f theintermediate result is greater than (231-1) it saturatesto (231-1) and if itisless
than -23L it saturates to -23.

» The signed-integer result is placed into the corresponding word element of vD.
Other registers altered:

o SAT
Figure 6-139 shows the usage of the vsum4shs instruction. Each of the eight elementsin

the vector VA, is 16 bitslong. Each of the four elementsin the vectors vB and vD is 32 bits
long.

BN

Figure 6-139. vsum4shs—Four Sums in the Integer Elements (32-Bit)

|vB

| vD

MOTOROLA Chapter 6. AltiVec Instructions 6-169

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vsumd4ubs vsumd4ubs

Vector Sum Across Patrtial (1/4) Unsigned Byte Saturate

vsum4ubs vD,vA ,vB Form: VX
04 vD VA vB 1544

0 5 6 10 11 15 16 20 21 31

do i=0 to 127 by 32

tenpg. 32 « ZeroExtend((vB);:j.+31,33)
do j=0 to 31 by 8

tempg. 32 « tempg.32 +in Zerobxtend((VA)j 4.+ +7, 33)
end

vD .j431 « U toU sat(tenpg. 32, 32)

end

For each word element in vB the following operations are performed in the order shown.

» Theunsigned-integer sum of the four unsigned-integer byte elements contained in
the corresponding word element of register VA is added to the unsigned-integer
word element in register vB.

* If theintermediate result is greater than (232-1) it saturates to (232-1).
» Theunsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:
o SAT

Figure 6-140 shows the usage of the vsum4ubs instruction. Each of the four elementsin
the vector VA, is 8 bits long. Each of the four elements in the vectors vB and vD is 32 bits
long.

NI VA EN BN VAN RV VA RN R

|] |] |] \
\

Figure 6-140. vsum4ubs—Four Sums in the Integer Elements (32-Bit)

6-170 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vupkhpx vupkhpx

Vector Unpack High Pixel16

vupkhpx vD,vB Form: VX

04 vD 0_0000 vB 846

0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 16

VD «2: (j*x2)+7< SignExtend((vB);, 8)

VD(j*2)+8: (i*2)+15 ZeroExtend((VB).1:j+s, 8)
VD *2) +16: (i *2) +23 < Zer OExt end((VvB)j +6:i+10s 8)
VD(j*2)+24: (i*2)+31— Zer oExtend((VB)j.11:j+15, 8)

end

Each halfword element in the high-order half of register vB is unpacked to produce a 32-bit
value as described below and placed, in the same order, into the four words of vD.

A halfword is unpacked to 32 hits by concatenating, in order, the results of the following
operations.

» sign-extend bit O of the halfword to 8 bits

e zero-extend bits 1-5 of the halfword to 8 bits

e zero-extend bits 6-10 of the halfword to 8 bits

» zero-extend bits 11-15 of the halfword to 8 bits

Other registers altered:
* None

The source and target elements can be considered to be 16-bit and 32-bit "pixels’
respectively, having the formats described in the programming note for the Vector Pack
Pixel instruction.

Figure 6-141 shows the usage of the vupkhpx instruction. Each of the eight elementsin the
vectors, VB, is 16 bits long. Each of the four elementsin the vectors, vD, is 32 bits long.

| l(%\\k\lﬁd\?#iliﬁsiﬁi$\\

LO‘ 0‘&0\ o $\?\0‘\0‘ | vD

Figure 6-141. vupkhpx—Unpack High-Order Elements (16 bit) to Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-171

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vupkhsb vupkhshb

Vector Unpack High Signed Byte

vupkhsb vD,vB Form: VX

04 vD 0_0000 vB 526

0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 8
VD +2: (i*2)+15 < SignExtend((vB)j.j+7, 16)

end

Each signed integer byte element in the high-order half of register vB is sign-extended to
produce a 16-bit signed integer and placed, in the same order, into the eight halfwords of
register vD.

Other registers altered:
* None

Figure 6-142 shows the usage of the vupkhsb instruction. Each of the sixteen elementsin
the vectors, vB, is 8 bitslong. Each of the eight elementsin the vectors, vD, is 16 bitslong.

N O S S O A

8S V[ss N [sg X [sg ™ [gs ™ [gs ™™ [gg ™ [s§~ |D
| | | | | | | |

Figure 6-142. vupkhsb—Unpack High-Order Signed Integer Elements (8-Bit) to
Signed Integer Elements (16-Bit)

6-172 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Instruction Set

vupkhsh vupkhsh

Vector Unpack High Signed Half Word

vupkhsh vD,vB Form: VX

04 vD 0_0000 vB 590

0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 16
VD «2: (i*2)+31 « SignExtend((VvB);.j.15, 32)

end

Each signed integer halfword element in the high-order half of register vB is sign-extended
to produce a 32-bit signed integer and placed, in the same order, into the four words of
register vD.

Other registers altered:
* None

Figure 6-143 shows the usage of the vupkhsh instruction. Each of the eight elementsin the
vectors vB and vD is 16 bitslong.

| | | | = | | | | vB

[Ssss . N [ssss ™ [ssss ™~ [ssss >~ |w

Figure 6-143. vupkhsh—Unpack Signed Integer Elements (16-Bit) to Signed Integer
Elements (32-Bit)

MOTOROLA Chapter 6. AltiVec Instructions 6-173

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vupklpx vupklpx

Vector Unpack Low Pixell16

vupklpx vD,vB Form: VX

04 vD 0_0000 vB 974

0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 16

VD «2: (ix2)+7— SignExtend((VB);.e4, 8)

VD(j«2)+8: (i *2) +15— ZeroExtend((VB); .es: +69, 8)
VD(i *2) +16: (i *2) +23— Zer oExtend((vB); .70: i +74. 8)
VD(j*2)+24: (i*2)+31— Zer oExtend((VB)j .75 +79, 8)

end

Each halfword element in the low-order half of register vB is unpacked to produce a 32-bit
value as described below and placed, in the same order, into the four words of register vD.

A halfword is unpacked to 32 hits by concatenating, in order, the results of the following
operations.

» sign-extend bit O of the halfword to 8 bits

e zero-extend bits 1-5 of the halfword to 8 bits

e zero-extend bits 6-10 of the halfword to 8 bits

» zero-extend bits 11-15 of the halfword to 8 bits

Other registers altered:
* None

Programming note: Notice that the unpacking done by the Vector Unpack Pixel instructions
does not reverse the packing done by the Vector Pack Pixel instruction. Specifically, if a
16-bit pixel isunpacked to a32-bit pixel whichisthen packed to a16-bit pixel, theresulting
16-bit pixel will not, in general, be equal to the original 16-bit pixel (because, for each
channel except thefirst, Vector Unpack Pixel inserts high-order bits whileVector Pack Pixel
discards low-order bits).

Figure 6-144 shows the usage of the vupklpx instruction. Each of the eight elementsin the
vectors, vB, is 16 bits long. Each of the four elementsin the vectors, vD, is 32 bitslong.

| | I DTS S s VAT

-ﬁ\/“fﬁ 1 ‘\6\ A\6\ I ’\0\ ’\0\ 0\ '\0\ '\0\ ‘r| vD

Figure 6-144. vupklpx—Unpack Low-order Elements (16-Bit) to Elements (32-Bit)

6-174 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

vupklshb

Vector Unpack Low Signed Byte
vupklsb vD,vB

AltiVec Instruction Set

vupklshb

Form: VX

04 vD 0_0000 vB

654

0 5 6 10 11 15 16 20 21

do i=0 to 63 by 8
VD «2: (i*2)+15 « SignExtend((VB);.e4:i+71, 16)

end

31

Each signed integer byte element in the low-order half of register vB is sign-extended to
produce a 16-bit signed integer and placed, in the same order, into the eight halfwords of

register vD.

Other registers altered:
* None

Figure 6-145 shows the usage of the vaddubs instruction. Each of the sixteen elementsin

the vectors vB and vD is 8 bits long.

N N N N =3 = i e

|vB

[ss, 4lss, “ss, “4ss, “#[ss “#]ss, *|ss, "|ss

| vD

Figure 6-145. vupklsb—Unpack Low-Order Elements (8-Bit) to Elements (16-Bit)

MOTOROLA Chapter 6. AltiVec Instructions

For More Information On This Product,

Go to: www.freescale.com

6-175

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

vupklsh vupklsh

Vector Unpack Low Signed Half Word

vupklsh vD,vB Form: VX

04 vD 0_0000 vB 718

0 5 6 10 11 15 16 20 21 31

do i=0 to 63 by 16
VD «2: (i*2)+31 — SignExtend((VB);.e4:i+79, 32)

end

Each signed integer half word element in the low-order half of register vB is sign-extended
to produce a 32-bit signed integer and placed, in the same order, into the four words of
register vD.

Other registers altered:
* None

Figure 6-146 shows the usage of the vupklpx instruction. Each of the eight elementsin the
vectors, VA, vB, and vD, is 16 bits long.

| | | | | | | | | vB

[Ssss .~ [ssss | # [ssss | # | sssS | | vD

Figure 6-146. vupklsh—Unpack Low-Order Signed Integer Elements (16-Bit) to
Signed Integer Elements (32-Bit)

6-176 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AltiVec Instruction Set

VXOr VXOr
Vector Logical XOR
vXxor vD,vA,vB Form: VX
04 vD VA vB 1220
0 5 6 10 11 15 16 20 21 31

vD « (vA) O (vB)

The contents of VA are XORed with the contents of register vB and the result is placed into

register vD.

Other registers atered:

* None

Figure 6-147 shows the usage of the vxor instruction.

MOTOROLA

Figure 6-147. vxor—Bitwise XOR (128-Bit)

Chapter 6. AltiVec Instructions

For More Information On This Product,

Go to: www.freescale.com

6-177

Freescale Semiconductor, Inc.
AltiVec Technology Programming Environments Manual

6-178 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Appendix A
AltiVec Instruction Set Listings

This appendix lists the instruction set for AltiVec™ technology. Instructions are sorted by
mnemonic, opcode, and form. Also included in this appendix is aquick reference table that
contains general information, such as the architecture level, privilege level, and form, and
indicates if the instruction is optional.

Note that split fields, which represent the concatenation of sequences from left to right, are
shown in lower case.

A.1 Instructions Sorted by Mnemonic in Decimal
Format

Table A-1 lists the instructions implemented in the AltiVec architecture in alphabetical
order by mnemonic.The primary and extended opcodes are decimal numbers.

Key:
I:I Reserved bits

Table A-1. Instruction Sorted by Mnemonic in Decimal Format

Name 0 51(6|7(8|9(10(11|12|13|14(15|16(17|18(19|20(21(22|23(24|25(26|27(28|29|30|31
dss 31 0| 0.0 |STRM 0_0000 0000_0 822 0
dssall 31 1(0.0 |[STRM 0_0000 0000_0 822 0
dst 31 0| 0.0 |STRM A B 342 0

dstst 31 0| 0.0 |STRM B 374 0
dststt 31 1(0.0 |[STRM A B 374 0
dstt 31 1(0.0 |[STRM A B 342 0
lvebx 31 vD A B 7 0
lvehx 31 vD A B 39 0
Ivewx 31 vD A B 71 0
Ivsl 31 vD A B 6 0

Ivsr 31 vD A B 38 0

Ivx 31 vD A B 103 0
MOTOROLA Appendix A. AltiVec Instruction Set Listings A-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Mnemonic in Decimal Format

Table A-1. Instruction Sorted by Mnemonic in Decimal Format (continued)

Name 0 5 (6]|7(8|9(10|11|12(13|14|15|16(17|18|19(20|21{22|23|24(25|26(27|28|29|30|31
Ivxl 31 vD A B 359 0
mfvscr 04 vD 0_0000 0000_0 1540
mtvscr 04 00_000 0_0000 vB 1604
stvebx 31 vS A B 135 0
stvehx 31 vS B 167 0
stvewx 31 vS A B 199 0
stvx 31 vS A B 231 0
stvx| 31 vS A B 487 0
vaddcuw 04 vD VA vB 384
vaddfp 04 vD VA vB 10
vaddsbs 04 vD VA vB 768
vaddshs 04 vD VA vB 832
vaddsws 04 vD VA vB 896
vaddubm 04 vD VA vB 0
vaddubs 04 vD VA vB 512
vadduhm 04 vD VA vB 64
vadduhs 04 vD VA vB 576
vadduwm 04 vD VA vB 128
vadduws 04 vD VA vB 640
vand 04 vD VA vB 1028
vandc 04 vD VA vB 1092
vavgshb 04 vD VA vB 1282
vavgsh 04 vD VA vB 1346
vavgsw 04 vD VA vB 1410
vavgub 04 vD VA vB 1026
vavguh 04 vD VA vB 1090
vavguw 04 vD VA vB 1154
vcfsx 04 vD UIMM vB 842
vcfux 04 vD UIMM vB 778
vempbfpx 04 vD VA vB Rc 966
vcempeqfpx 04 vD VA vB Rc 198
vcempequbx 04 vD VA vB Rc 6
vempequhx 04 vD VA vB Rc 70
A-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Mnemonic in Decimal Format

Table A-1. Instruction Sorted by Mnemonic in Decimal Format (continued)

Name 0 5 (6]|7(8|9(10|11|12(13|14|15|16(17|18|19(20|21{22|23|24(25|26(27|28|29|30|31
vcmpequwx 04 vD VA vB Rc 134
vempgefpx 04 vD VA vB Rc 454
vempgtfpx 04 vD VA vB Rc 710
vempgtsbx 04 vD VA vB Rc 774
vempgtshx 04 vD VA vB Rc 838
vempgtswx 04 vD VA vB Rc 902
vempgtubx 04 vD VA vB Rc 518
vcempgtuhx 04 vD VA vB Rc 582
vempgtuwx 04 vD VA vB Rc 646
vCctsxs 04 vD UIMM vB 970
vctuxs 04 vD UIMM vB 906
vexptefp 04 vD 0_0000 vB 394
vlogefp 04 vD 0_0000 vB 458
vmaddfp 04 vD VA vB vC 46
vmaxfp 04 vD VA vB 1034
vmaxsb 04 vD VA vB 258
vmaxsh 04 vD VA vB 322
vmaxsw 04 vD VA vB 386
vmaxub 04 vD VA vB 2
vmaxuh 04 vD VA vB 66
vmaxuw 04 vD VA vB 130
vmhaddshs 04 vD VA vB vC 32
vmhraddshs 04 vD VA vB vC 33
vminfp 04 vD VA vB 1098
vminsb 04 vD VA vB 770
vminsh 04 vD VA vB 834
vminsw 04 vD VA vB 898
vminub 04 vD VA vB 514
vminuh 04 vD VA vB 578
vminuw 04 vD VA vB 642
vmladduhm 04 vD VA vB vC 34
vmrghb 04 vD VA vB 12
vmrghh 04 vD VA vB 76
MOTOROLA Appendix A. AltiVec Instruction Set Listings A-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Mnemonic in Decimal Format

Table A-1. Instruction Sorted by Mnemonic in Decimal Format (continued)

Name 0 5 (6]|7(8|9(10|11|12(13|14|15|16(17|18|19(20|21{22|23|24(25|26(27|28|29|30|31
vmrghw 04 vD VA vB 140
vmrglb 04 vD VA vB 268
vmrglh 04 vD VA vB 332
vmrglw 04 vD VA vB 396
vmsummbm 04 vD VA vB vC 37
vmsumshm 04 vD VA vB vC 40
vmsumshs 04 vD VA vB vC 41
vmsumubm 04 vD VA vB vC 36
vmsumuhm 04 vD VA vB vC 38
vmsumuhs 04 vD VA vB vC 39
vmulesb 04 vD VA vB 776
vmulesh 04 vD VA vB 840
vmuleub 04 vD VA vB 520
vmuleuh 04 vD VA vB 584
vmulosb 04 vD VA vB 264
vmulosh 04 vD VA vB 328
vmuloub 04 vD VA vB 8
vmulouh 04 vD VA vB 72
vnmsubfp 04 vD VA vB vC a7
vnor 04 vD VA vB 1284
vor 04 vD VA vB 1156
vperm 04 vD VA vB vC 43
vpkpx 04 vD VA vB 782
vpkshss 04 vD VA vB 398
vpkshus 04 vD VA vB 270
vpkswss 04 vD VA vB 462
vpkswus 04 vD VA vB 334
vpkuhum 04 vD VA vB 14
vpkuhus 04 vD VA vB 142
vpkuwum 04 vD VA vB 78
vpkuwus 04 vD VA vB 206
vrefp 04 vD 0_0000 vB 266
vrfim 04 vD 0_0000 vB 714
A-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Mnemonic in Decimal Format

Table A-1. Instruction Sorted by Mnemonic in Decimal Format (continued)

Name 0 5 (6]|7(8|9(10|11|12(13|14|15|16(17|18|19(20|21{22|23|24(25|26(27|28|29|30|31
vrfin 04 vD 0_0000 vB 522
vrfip 04 vD 0_0000 vB 650
vrfiz 04 vD 0_0000 vB 586
vrlb 04 vD VA vB 4
vrlh 04 vD VA vB 68
vriw 04 vD VA vB 132
vrsgrtefp 04 vD 0_0000 vB 330
vsel 04 vD VA vB vC 42
vsl 04 vD VA vB 452
vslb 04 vD VA vB 260
vsldoi 04 vD VA vB 0 SH 44
vslh 04 vD VA vB 324
vslo 04 vD VA vB 1036
vslw 04 vD VA vB 388
vspltb 04 vD UMM vB 524
vsplth 04 vD UMM vB 588
vspltisb 04 vD SIMM 0000_0 780
vspltish 04 vD SIMM 0000_0 844
vspltisw 04 vD SIMM 0000_0 908
vspltw 04 vD UMM vB 652
vVSsr 04 vD VA vB 708
vsrab 04 vD VA vB 772
vsrah 04 vD VA vB 836
vsraw 04 vD VA vB 900
vsrb 04 vD VA vB 516
vsrh 04 vD VA vB 580
VSro 04 vD VA vB 1100
vSsSrw 04 vD VA vB 644
vsubcuw 04 vD VA vB 1408
vsubfp 04 vD VA vB 74
vsubsbs 04 vD VA vB 1792
vsubshs 04 vD VA vB 1856
vsubsws 04 vD VA vB 1920
MOTOROLA Appendix A. AltiVec Instruction Set Listings A-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Mnemonic in Decimal Format

Table A-1. Instruction Sorted by Mnemonic in Decimal Format (continued)

Name 0 5 (6]|7(8|9(10|11|12(13|14|15|16(17|18|19(20|21{22|23|24(25|26(27|28|29|30|31
vsububm 04 vD VA vB 1024
vsububs 04 vD VA vB 1536
vsubuhm 04 vD VA vB 1088
vsubuhs 04 vD VA vB 1600
vsubuwm 04 vD VA vB 1152
vsubuws 04 vD VA vB 1664
VsSumsws 04 vD VA vB 1928
vsum2sws 04 vD VA vB 1672
vsum4sbs 04 vD VA vB 1800
vsum4shs 04 vD VA vB 1608
vsum4ubs 04 vD VA vB 1544
vupkhpx 04 vD 0_0000 vB 846
vupkhsb 04 vD 0_0000 vB 526
vupkhsh 04 vD 0_0000 vB 590
vupklpx 04 vD 0_0000 vB 974
vupklsb 04 vD 0_0000 vB 654
vupklsh 04 vD 0_0000 vB 718
vxor 04 vD VA vB 1220

A-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Appendix B
Instructions Sorted by Mnemonic
In Binary Format

B.1 Instructions Sorted by Mnemonic in Binary
Format

Table B-1 lists the instructions implemented in the AltiVec architecture in aphabetical
order by mnemonic.The primary and extended opcodes are decimal numbers.

Key:
I:I Reserved bits

Table B-1. Instructions Sorted by Mnemonic in Binary Format

Name 0 5 |6|7|8|9|10(11(12|13|14|15[16|17|18|19|20|21|22|23|24|25|26|27|28|29 (30|31
dss 0111 11 0 0.0 [STRM 0_0000 0000_0 110_0110_110 0
dssall 0111 11 1| 0.0 [STRM 0_0000 0000_0 110_0110_110 0
dst 0111 11 0 0.0 [STRM A B 010_1010_110 0
dstst 0111 11 0 0.0 [STRM B 010_1110_110 0
dststt 0111 11 1| 0.0 [STRM A B 001__1110_110 0
dstt 0111 11 1| 0.0 [STRM A B 010_1010_110 0
Ivebx 0111 11 vD A B 000_0000_111 0
lvehx 0111 11 vD A B 000_0100_111 0
Ivewx 0111_11 vD A B 000_1000_111 0
Ivsl 0111 11 vD A B 000_0000_110 0
lvsr| 0111 11 vD A B 000_0100_110 0
Ivx 0111 11 vD A B 000_1100_111 0
Ivxl 0111_11 vD A B 010_1100_111 0
mfvscr 0001_00 vD 0_0000 0000_0 110_0000_0100
mtvscr 0001_00 00_000 0_0000 vB 110_0100_0100
stvebx 0111 11 vS A B 001_0000_111 0
stvehx 0111 11 vS A B 001_0100_111 0
MOTOROLA Appendix B. Instructions Sorted by Mnemonic in Binary Format B-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Instructions Sorted by Mnemonic in Binary Format

Table B-1. Instructions Sorted by Mnemonic in Binary Format

Name 0 5 (6]|7(8|9(10|11|12(13|14|15|16(17|18|19(20|21{22|23|24(25|26(27|28|29|30|31
stvewx 0111_11 vS B 001_1000_111 0
stvx 0111_11 vS B 001_1100_111 0
stvxl 0111_11 vS A B 011_1100_111 0
vaddcuw 0001_00 vD VA vB 001_1000_0000
vaddfp| 0001_00 vD VA vB 000_0000_1010
vaddsbs 0001_00 vD VA vB 011_0000_0000
vaddshs 0001_00 vD VA vB 011_0100_0000
vaddsws 0001_00 vD VA vB 011_1000_0000
vaddubm 0001_00 vD VA vB 000_0000_0000
vaddubs 0001_00 vD VA vB 010_0000_0000
vadduhm 0001_00 vD VA vB 000_0100_0000
vadduhs 0001_00 vD VA vB 010_0100_0000
vadduwm 0001_00 vD VA vB 000_1000_0000
vadduws 0001_00 vD VA vB 010_1000_0000
vand 0001_00 vD VA vB 100_0000_0100
vandc 0001_00 vD VA vB 100_0100_0100
vavgshb 0001_00 vD VA vB 101_0000_0010
vavgsh 0001_00 vD VA vB 101_0100_0010
vavgsw 0001_00 vD VA vB 101_1000_0010
vavgub 0001_00 vD VA vB 100_0000_0010
vavguh 0001_00 vD VA vB 100_0100_0010
vavguw 0001_00 vD VA vB 100_1000_0010
vcfsx 0001_00 vD UIMM vB 011_0100_1010
vcfux 0001_00 vD UIMM vB 011_0000_1010
vempbfpx 0001_00 vD VA vB Rc 11 _1100_0110
vcempeqfpx 0001_00 vD VA vB Rc 00_1100_0110
vcempequbx 0001_00 vD VA vB Rc 00_0000_0110
vempequhx 0001_00 vD VA vB Rc 00_0100_0110
vcmpequwx 0001_00 vD VA vB Rc 00_1000_0110
vempgefpx 0001_00 vD VA vB Rc 01_1100_0110
vempgtfpx 0001_00 vD VA vB Rc 10_1100_0110
vempgtsbx 0001_00 vD VA vB Rc 11_0000_0110
vempgtshx 0001_00 vD VA vB Rc 11_0100_0110
B-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Mnemonic in Binary Format

Table B-1. Instructions Sorted by Mnemonic in Binary Format

Name 0 5 (6]|7(8|9(10|11|12(13|14|15|16(17|18|19(20|21{22|23|24(25|26(27|28|29|30|31
vempgtswx 0001_00 vD VA vB Rc 11_1000_0110
vempgtubx 0001_00 vD VA vB Rc 10_0000_0110
vempgtuhx 0001_00 vD VA vB Rc 10_0100_0110
vempgtuwx 0001_00 vD VA vB Rc 10_1000_0110

VCiSXs 0001_00 vD UIMM vB 011_1100_1010
vctuxs 0001_00 vD UIMM vB 011_1000_1010
vexptefp| 0001_00 vD 0_0000 vB 001_1000_1010
viogefp| 0001_00 vD 0_0000 vB 001_1100_1010

vmaddfp 0001_00 vD VA vB vC 10_1110

vmaxfp| 0001_00 vD VA vB 100_0000_1010
vmaxshb 0001_00 vD VA vB 001_0000_0010
vmaxsh 0001_00 vD VA vB 001_0100_0010
vmaxsw 0001_00 vD VA vB 001_1000_0010
vmaxub 0001_00 vD VA vB 0000_0000_0010
vmaxuh 0001_00 vD VA vB 0100_0010
vmaxuw 0001_00 vD VA vB 1000_0010
vmhaddshs 0001_00 vD VA vB vC 10_0000
vmhraddshs 0001_00 vD VA vB vC 10_0001
vminfp| 0001_00 vD VA vB 100_0100_1010
vminsb 0001_00 vD VA vB 011_0000_0010
vminsh 0001_00 vD VA vB 011_0100_0010
vminsw 0001_00 vD VA vB 011_1000_0010
vminub 0001_00 vD VA vB 010_0000_0010
vminuh 0001_00 vD VA vB 010_0100_0010
vminuw 0001_00 vD VA vB 010_1000_0010
vmladduhm 0001_00 vD VA vB vC 10_0010
vmrghb | 0001_00 vD VA vB 000_0000_1100
vmrghh | 0001_00 vD VA vB 000_0100_1100
vmrghw 0001_00 vD VA vB 000_1000_1100
vmrglb | 0001_00 vD VA vB 001_0000_1100
vmrglh | 0001_00 vD VA vB 001_0100_1100
vmrglw 0001_00 vD VA vB 001_1000_1100
vmsummbm 0001_00 vD VA vB vC 10_0101
MOTOROLA Appendix B. Instructions Sorted by Mnemonic in Binary Format B-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Mnemonic in Binary Format

Table B-1. Instructions Sorted by Mnemonic in Binary Format

Name 0 5 (6]|7(8|9(10|11|12(13|14|15|16(17|18|19(20|21{22|23|24(25|26(27|28|29|30|31
vmsumshm 0001_00 vD VA vB vC 10_1000
vmsumshs 0001_00 vD VA vB vC 10_1001
vmsumubm 0001_00 vD VA vB vC 10_0100
vmsumuhm 0001_00 vD VA vB vC 10_0110
vmsumuhs 0001_00 vD VA vB vC 10_0111
vmulesb 0001_00 vD VA vB 011_0000_1000
vmulesh 0001_00 vD VA vB 011_0100_1000
vmuleub 0001_00 vD VA vB 010_0000_1000
vmuleuh 0001_00 vD VA vB 010_0100_1000
vmulosb 0001_00 vD VA vB 001_0000_1000
vmulosh 0001_00 vD VA vB 001_0100_1000
vmuloub 0001_00 vD VA vB 000_0000_1000
vmulouh 0001_00 vD VA vB 000_0100_1000
vnmsubfp 0001_00 vD VA vB vC 10_1111
vnor 0001_00 vD VA vB 101_0000_0100
vor 0001_00 vD VA vB 100_1000_0100
vperm 0001_00 vD VA vB vC 10_1011
vpkpx| 0001_00 vD VA vB 011_0000_1110
vpkshss 0001_00 vD VA vB 001_1000_1110
vpkshus 0001_00 vD VA vB 001_0000_1110
vpkswss 0001_00 vD VA vB 001_1100_1110
vpkswus | 0001_00 vD VA vB 001_0100_1110
vpkuhum 0001_00 vD VA vB 000_0000_1110
vpkuhus 0001_00 vD VA vB 000_1000_1110
vpkuwum 0001_00 vD VA vB 000_100_1110
vpkuwus 0001_00 vD VA vB 000_1100_1110
vrefp| 0001_00 vD 0_0000 vB 001_0000_1010
vrfim| 0001_00 vD 0_0000 vB 010_1100_1010
vrfin| 0001_00 vD 0_0000 vB 010_0000_1010
vrfip| 0001_00 vD 0_0000 vB 010_1000_1010
vrfiz| 0001_00 vD 0_0000 vB 010_0100_1010
vrlb 0001_00 vD VA vB 000_0000_0100
vrlh 0001_00 vD VA vB 000_0100_0100
B-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Mnemonic in Binary Format

Table B-1. Instructions Sorted by Mnemonic in Binary Format

Name 0 5 (6]|7(8|9(10|11|12(13|14|15|16(17|18|19(20|21{22|23|24(25|26(27|28|29|30|31
vriw 0001_00 vD VA vB 000_1000_0100
vrsqrtefp | 0001_00 vD 0_0000 vB 001_0100_1010
vsel 0001_00 vD VA vB vC 10_1010
vsl| 0001_00 vD VA vB 1_1100_0100
vsib| 0001_00 vD VA vB 1_0000_0100
vsldoi 0001_00 vD VA vB 0 SH 10_1100
vslh 0001_00 vD VA vB 01_0100_0100
vslo 0001_00 vD VA vB 100_0000_1100
vslw 0001_00 vD VA vB 001_1000_0100
vspltb| 0001_00 vD UIMM vB 010_0000_1100
vsplth| 0001_00 vD UIMM vB 010_0100_1100
vspltisb| 0001_00 vD SIMM 0000_0 011_0000_1100
vspltish| 0001_00 vD SIMM 0000_0 011_0100_1100
vspltisw | 0001_00 vD SIMM 0000_0 011_1000_1100
vspltw| 0001_00 vD UIMM vB 010_1000_1100
vVsr 0001_00 vD VA vB 010_1100_0100
vsrab 0001_00 vD VA vB 011_0000_0100
vsrah 0001_00 vD VA vB 011_0100_0100
vsraw 0001_00 vD VA vB 011_1000_0100
vsrb 0001_00 vD VA vB 010_0000_0100
vsrh 0001_00 vD VA vB 010_0100_0100
VSro 0001_00 vD VA vB 100_0100_1100
VSIrw 0001_00 vD VA vB 010_1000_0100
vsubcuw 0001_00 vD VA vB 101_1000_0000
vsubfp| 0001_00 vD VA vB 000_0100_1010
vsubsbs 0001_00 vD VA vB 111 _0000_0000
vsubshs 0001_00 vD VA vB 111 _0100_0000
vsubsws 0001_00 vD VA vB 111_1000_0000
vsububm 0001_00 vD VA vB 100_0000_0000
vsububs 0001_00 vD VA vB 110_0000_0000
vsubuhm 0001_00 vD VA vB 100_0100_0000
vsubuhs 0001_00 vD VA vB 110_0100_0000
vsubuwm 0001_00 vD VA vB 100_1000_0000
MOTOROLA Appendix B. Instructions Sorted by Mnemonic in Binary Format B-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Mnemonic in Binary Format

Table B-1. Instructions Sorted by Mnemonic in Binary Format

Name 0 5 (6]|7(8|9(10|11|12(13|14|15|16(17|18|19(20|21{22|23|24(25|26(27|28|29|30|31
vsubuws 0001_00 vD VA vB 110_1000_0000
VSUMSWs 0001_00 vD VA vB 111_1000_1000
VSum2sws 0001_00 vD VA vB 110_1000_1000
vsum4sbs 0001_00 vD VA vB 111_0000_1000
vsum4shs 0001_00 vD VA vB 110_0100_1000
vsum4ubs 0001_00 vD VA vB 110_0000_1000
vupkhpx | 0001_00 vD 0_0000 vB 011_0100_1110
vupkhsb | 0001_00 vD 0_0000 vB 010_0000_1110
vupkhsh| 0001_00 vD 0_0000 vB 010_0100_1110
vupklpx| 0001_00 vD 0_0000 vB 011_1100_1110
vupkisb| 0001_00 vD 0_0000 vB 010_1000_1110
vupkish| 0001_00 vD 0_0000 vB 010_1100_1110
vxor 0001_00 vD VA vB 100_1100_0100

B-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Appendix C
Instructions Sorted by Opcode

C.1 Instructions Sorted by Opcode in
Decimal Format

Table C-1 listsAltiVec instructions grouped by opcode in decimal format.

Key:

I:I Reserved bits

Table C-1. Instructions Sorted by Opcode in Decimal Format

Name 0 56|7|8|9|10(11{12|13|14(15(16|17|18(19|20| 21 |22|23(24|25|26(27(28|29|30
vmhaddshs 04 vD VA vB vC 32
vmhraddshs 04 vD VA vB vC 33
vmladduhm 04 vD VA vB vC 34
vmsumubm 04 vD VA vB vC 36
vmsummbm 04 vD VA vB vC 37
vmsumuhm 04 vD VA vB vC 38
vmsumuhs 04 vD VA vB vC 39
vmsumshm 04 vD VA vB vC 40

vmsumshs 04 vD VA vB vC 41
vsel 04 vD VA vB vC 42
vperm 04 vD VA vB vC 43
vsldoi 04 vD VA vB 0 SH 44

vmaddfp 04 vD VA vB 46

vnmsubfp 04 vD VA vB vC a7

vaddubm 04 vD VA vB 0

vadduhm 04 vD VA vB 64

vadduwm 04 vD VA vB 128

vaddcuw 04 vD VA vB 384

vaddubs 04 vD VA vB 512

MOTOROLA Appendix C. Instructions Sorted by Opcode C-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Instructions Sorted by Opcode in Decimal Format

Table C-1. Instructions Sorted by Opcode in Decimal Format (continued)

Name 0 56|7|8| 9 |10(11{12|13|14({15(16|17|18(19|20| 21 |22|23(24|25|26(27(28|29|30(31
vadduhs 04 vD VA vB 576
vadduws 04 vD VA vB 640
vaddsbs 04 vD VA vB 768
vaddshs 04 vD VA vB 832
vaddsws 04 vD VA vB 896
vsububm 04 vD VA vB 1024
vsubuhm 04 vD VA vB 1088
vsubuwm 04 vD VA vB 1152
vsubcuw 04 vD VA vB 1408
vsububs 04 vD VA vB 1536
vsubuhs 04 vD VA vB 1600
vsubuws 04 vD VA vB 1664
vsubsbs 04 vD VA vB 1792
vsubshs 04 vD VA vB 1856
vsubsws 04 vD VA vB 1920
vmaxub 04 vD VA vB 2
vmaxuh 04 vD VA vB 66
vmaxuw 04 vD VA vB 130
vmaxsh 04 vD VA vB 258
vmaxsh 04 vD VA vB 322
vmaxsw 04 vD VA vB 386
vminub 04 vD VA vB 514
vminuh 04 vD VA vB 578
vminuw 04 vD VA vB 642
vminsb 04 vD VA vB 770
vminsh 04 vD VA vB 834
vminsw 04 vD VA vB 898
vavgub 04 vD VA vB 1026
vavguh 04 vD VA vB 1090
vavguw 04 vD VA vB 1154
vavgsb 04 vD VA vB 1282
vavgsh 04 vD VA vB 1346
vavgsw 04 vD VA vB 1410
C-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Opcode in Decimal Format

Table C-1. Instructions Sorted by Opcode in Decimal Format (continued)

Name 0 56|7|8| 9|10 |11{12|13|14(15(16|17|18(19|20| 21 |22|23|24|25|26(27|28|29|30
vrib 04 vD VA vB 4
vrlh 04 vD VA vB 68
vriw 04 vD VA vB 132
vslb 04 vD VA vB 260
vslh 04 vD VA vB 324
vsiw 04 vD VA vB 388
vsl 04 vD VA vB 452
vsrb 04 vD VA vB 516
vsrh 04 vD VA vB 580
vVSrw 04 vD VA vB 644
vsr 04 vD VA vB 708
vsrab 04 vD VA vB 772
vsrah 04 vD VA vB 836
vsraw 04 vD VA vB 900
vand 04 vD VA vB 1028
vandc 04 vD VA vB 1092
vor 04 vD VA vB 1156
vxor 04 vD VA vB 1220
vnor 04 vD VA vB 1284
mfvscr 04 vD 0_0000 0000_0 1540
mtvscr 04 00_000 0_0000 vB 1604
vcmpequbx 04 vD VA vB Rc 6
vcmpequhx 04 vD VA vB Rc 70
vcmpequwx 04 vD VA vB Rc 134
vempeqfpx 04 vD VA vB Rc 198
vempgefpx 04 vD VA vB Rc 454
vempgtubx 04 vD VA vB Rc 518
vempgtuhx 04 vD VA vB Rc 582
vempgtuwx 04 vD VA vB Rc 646
vempgtfpx 04 vD VA vB Rc 710
vempgtsbx 04 vD VA vB Rc 774
vempgtshx 04 vD VA vB Rc 838
vempgtswx 04 vD VA vB Rc 902
MOTOROLA Appendix C. Instructions Sorted by Opcode C-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Instructions Sorted by Opcode in Decimal Format

Table C-1. Instructions Sorted by Opcode in Decimal Format (continued)

Name 0 56|7|8| 9 |10(11{12|13|14({15(16|17|18(19|20| 21 |22|23(24|25|26(27(28|29|30(31
vempbfpx 04 vD VA vB Rc 966
vmuloub 04 vD VA vB 8
vmulouh 04 vD VA vB 72
vmulosb 04 vD VA vB 264
vmulosh 04 vD VA vB 328
vmuleub 04 vD VA vB 520
vmuleuh 04 vD VA vB 584
vmulesb 04 vD VA vB 776
vmulesh 04 vD VA vB 840
vsum4ubs 04 vD VA vB 1544
vsumd4sbs 04 vD VA vB 1800
vsumd4shs 04 vD VA vB 1608
VsSum2sws 04 vD VA vB 1672
VsSumsws 04 vD VA vB 1928
vaddfp 04 vD VA vB 10
vsubfp 04 vD VA vB 74
vrefp 04 vD 0_0000 vB 266
vrsqrtefp 04 vD 0_0000 vB 330
vexptefp 04 vD 0_0000 vB 394
viogefp 04 vD 0_0000 vB 458
vrfin 04 vD 0_0000 vB 522
vrfiz 04 vD 0_0000 vB 586
vrfip 04 vD 0_0000 vB 650
vrfim 04 vD 0_0000 vB 714
vcfux 04 vD UIMM vB 778
vcfsx 04 vD UIMM vB 842
vctuxs 04 vD UMM vB 906
VCtsSxs 04 vD UMM vB 970
vmaxfp 04 vD VA vB 1034
vminfp 04 vD VA vB 1098
vmrghb 04 vD VA vB 12
vmrghh 04 vD VA vB 76
vmrghw 04 vD VA vB 140
C-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Opcode in Decimal Format

Table C-1. Instructions Sorted by Opcode in Decimal Format (continued)

Name 0 56|7|8| 9 |10(11{12|13|14({15(16|17|18(19|20| 21 |22|23(24|25|26(27(28|29|30(31
vmrglb 04 vD VA vB 268
vmrglh 04 vD VA vB 332
vmrglw 04 vD VA vB 396
vspltb 04 vD UMM vB 524
vsplth 04 vD UMM vB 588
vspltw 04 vD UMM vB 652
vspltisb 04 vD SIMM 0000_0 780
vspltish 04 vD SIMM 0000_0 844
vspltisw 04 vD SIMM 0000_0 908
vslo 04 vD VA vB 1036
VSro 04 vD VA vB 1100
vpkuhum 04 vD VA vB 14
vpkuwum 04 vD VA vB 78
vpkuhus 04 vD VA vB 142
vpkuwus 04 vD VA vB 206
vpkshus 04 vD VA vB 270
vpkswus 04 vD VA vB 334
vpkshss 04 vD VA vB 398
vpkswss 04 vD VA vB 462
vupkhsb 04 vD 0_0000 vB 526
vupkhsh 04 vD 0_0000 vB 590
vupklsb 04 vD 0_0000 vB 654
vupklsh 04 vD 0_0000 vB 718
vpkpx 04 vD VA vB 782
vupkhpx 04 vD 0_0000 vB 846
vupklpx 04 vD 0_0000 vB 974

Ivsl 31 vD A B 6 0

Ivsr 31 vD B 38 0

dst 31 0| 00 | STRM A B 342 0

dstt 31 1|1 00 | STRM A B 342 0

dstst 31 0| 00 | STRM A B 374 0

dststt 31 1|1 00 | STRM A B 374 0

dss 31 0| 00 | STRM 0_0000 0000_0 822 0

MOTOROLA Appendix C. Instructions Sorted by Opcode C-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Instructions Sorted by Opcode in Decimal Format

Table C-1. Instructions Sorted by Opcode in Decimal Format (continued)

Name 0 56|7|8| 9|10 (11|12(13(14|15|16|17|18|19|20| 21 [22|23|24|25|26|27|28|29(30|31
dssall 31 1{ 00 | STRM 0_0000 0000_0 822 0
Ivebx 31 vD A B 71 0
Ivehx 31 vD B 39 0
Ivewx 31 vD A B 0 0

lvx 31 vD A B 103 0

Ivxl 31 vD A B 359 0
stvebx 31 vS A B 135 0
stvehx 31 vS A B 167 0
stvewx 31 vS A B 199 0
stvx 31 vS A B 231 0

stvxl 31 vS A B 487 0

C-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Appendix D
Instructions Sorted by Opcode

D.1 Instructions Sorted by Opcode in Binary Format
Table D-1 lists Altivec instructions grouped by opcode in binary format.

Key:

I:I Reserved bits

Table D-1. Instructions Sorted by Opcode in Binary Format

Name 0 5(6|7|8| 9 |10 |11|12|13|14|15|16|17|18|19|20| 21 22|23 |24|25|26|27|28|29|30
vmhaddshs | 0001_00 vD VA vB vC 10_0000
vmhraddshs | 0001_00 vD VA vB vC 10_0001
vmladduhm | 0001_00 vD VA vB vC 10_0010
vmsumubm | 0001_00 vD VA vB vC 10_0100
vmsummbm | 0001_00 vD VA vB vC 10_0101
vmsumuhm | 0001_00 vD VA vB vC 10_0110
vmsumuhs | 0001_00 vD VA vB vC 10_0111
vmsumshm | 0001_00 vD VA vB vC 10_1000
vmsumshs | 0001_00 vD VA vB vC 10_1001
vsel | 0001_00 vD VA vB vC 10_1010
vperm | 0001_00 vD VA vB vC 10_1011
vsldoi| 0001_00 vD VA vB 0 SH 10_1100
vmaddfp | 0001_00 vD VA vB 000_0010_1110
vnmsubfp | 0001_00 vD VA vB vC 10_1111
vaddubm | 0001_00 vD VA vB 000_0000_0000
vadduhm | 0001_00 vD VA vB 000_0100_0000
vadduwm | 0001_00 vD VA vB 000_1000_0000
vaddcuw | 0001_00 vD VA vB 001_1000_0000
vaddubs | 0001_00 vD VA vB 010_0000_0000
vadduhs | 0001_00 vD VA vB 010_0100_0000
MOTOROLA Appendix D. Instructions Sorted by Opcode D-1

For More Information On This Product,
Go to: www.freescale.com

Table D-1. Instructions Sorted by Opcode in Binary Format (continued)

Freescale Semiconductor, Inc.
Instructions Sorted by Opcode in Binary Format

Name 0 5({6|7 (8|9 |10 (11({12{13(14(15|16|17(18|19|20| 21 |22|23{24|25|26(27(28|29|30(31
vadduws | 0001_00 vD VA vB 010_1000_0000
vaddsbs| 0001_00 vD VA vB 011_0000_0000
vaddshs| 0001_00 vD VA vB 011_0100_0000
vaddsws | 0001_00 vD VA vB 011_1000_0000
vsububm | 0001_00 vD VA vB 100_0000_0000
vsubuhm| 0001_00 vD VA vB 100_0100_0000
vsubuwm | 0001_00 vD VA vB 100_1000_0000
vsubcuw | 0001_00 vD VA vB 101_1000_0000
vsububs | 0001_00 vD VA vB 110_0000_0000
vsubuhs | 0001_00 vD VA vB 110_0100_0000
vsubuws | 0001_00 vD VA vB 110_1000_0000
vsubsbs| 0001_00 vD VA vB 111 _0000_0000
vsubshs| 0001_00 vD VA vB 111 0100_0000
vsubsws | 0001_00 vD VA vB 111_1000_0000
vmaxub | 0001_00 vD VA vB 000_0000_0010
vmaxuh | 0001_00 vD VA vB 000_0100_0010
vmaxuw | 0001_00 vD VA vB 000_1000_0010
vmaxsb | 0001_00 vD VA vB 001_0000_0010
vmaxsh | 0001_00 vD VA vB 001_0100_0010
vmaxsw | 0001_00 vD VA vB 001_1000_0010
vminub | 0001_00 vD VA vB 010_0000_0010
vminuh | 0001_00 vD VA vB 010_0100_0010
vminuw | 0001_00 vD VA vB 010_1000_0010
vminsb | 0001_00 vD VA vB 011_0000_0010
vminsh | 0001_00 vD VA vB 011 _0100_0010
vminsw | 0001_00 vD VA vB 011 _1000_0010
vavgub | 0001_00 vD VA vB 100_0000_0010
vavguh | 0001_00 vD VA vB 100_0100_0010
vavguw | 0001_00 vD VA vB 100_1000_0010
vavgsb | 0001_00 vD VA vB 101_0000_0010
vavgsh | 0001_00 vD VA vB 101_0100_0010
vavgsw | 0001_00 vD VA vB 101_1000_0010
vrlb| 0001_00 vD VA vB 000_0000_0100

D-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Opcode in Binary Format

Table D-1. Instructions Sorted by Opcode in Binary Format (continued)

Name 0 5({6|7 (8|9 |10 (11({12{13(14(15|16|17(18|19|20| 21 |22|23{24|25|26(27(28|29|30(31

vrih| 0001_00 vD VA vB 000_0100_0100

vrlw | 0001_00 vD VA vB 000_1000_0100

vslb | 0001_00 vD VA vB 001_0000_0100

vsih | 0001_00 vD VA vB 001_0100_0100

vslw | 0001_00 vD VA vB 001_1000_0100

vsl| 0001_00 vD VA vB 001_1100_0100

vsrb | 0001_00 vD VA vB 010_0000_0100

vsrh | 0001_00 vD VA vB 010_0100_0100

vsrw | 0001_00 vD VA vB 010_1000_0100

vsr| 0001_00 vD VA vB 010_1100_0100

vsrab | 0001_00 vD VA vB 011_0000_0100

vsrah | 0001_00 vD VA vB 011 _0100_0100

vsraw | 0001_00 vD VA vB 011_1000_0100

vand | 0001_00 vD VA vB 100_0000_0100

vandc | 0001_00 vD VA vB 100_0100_0100

vor| 0001_00 vD VA vB 100_1000_0100

vxor | 0001_00 vD VA vB 100_1100_0100

vnor| 0001_00 vD VA vB 101_0000_0100

mfvscr | 0001_00 vD 0_0000 0000_0 110_0000_0100

mtvscr | 0001_00 00_000 0_0000 vB 110_0100_0100
vempequbx | 0001_00 vD VA vB Rc 00_0000_0110
vcmpequhx | 0001_00 vD VA vB Rc 00_0100_0110
vcmpequwx | 0001_00 vD VA vB Rc 00_1000_0110
vcmpeqfpx | 0001_00 vD VA vB Rc 00_1100_0110
vempgefpx | 0001_00 vD VA vB Rc 01_1100_0110
vempgtubx | 0001_00 vD VA vB Rc 10_0000_0110
vempgtuhx | 0001_00 vD VA vB Rc 10_0100_0110
vcmpgtuwx | 0001_00 vD VA vB Rc 10_1000_0110
vempgtfpx | 0001_00 vD VA vB Rc 10_1100_0110
vcempgtsbx | 0001_00 vD VA vB Rc 11_0000_0110
vcempgtshx | 0001_00 vD VA vB Rc 11_0100_0110
vcempgtswx | 0001_00 vD VA vB Rc 11_1000_0110
vempbfpx | 0001_00 vD VA vB Rc 11 1100_0110

MOTOROLA Appendix D. Instructions Sorted by Opcode D-3

For More Information On This Product,

Go to: www.freescale.com

Table D-1. Instructions Sorted by Opcode in Binary Format (continued)

Freescale Semiconductor, Inc.
Instructions Sorted by Opcode in Binary Format

Name 0 5({6|7 (8|9 |10 (11({12{13(14(15|16|17(18|19|20| 21 |22|23{24|25|26(27(28|29|30(31
vmuloub | 0001_00 vD VA vB 000_0000_1000
vmulouh | 0001_00 vD VA vB 000_0100_1000
vmulosb | 0001_00 vD VA vB 001_0000_1000
vmulosh | 0001_00 vD VA vB 001_0100_1000
vmuleub | 0001_00 vD VA vB 010_0000_1000
vmuleuh | 0001_00 vD VA vB 010_0100_1000
vmulesb | 0001_00 vD VA vB 011_0000_1000
vmulesh | 0001_00 vD VA vB 011_0100_1000
vsum4ubs | 0001_00 vD VA vB 110_0000_1000
vsum4sbs | 0001_00 vD VA vB 111_0000_1000
vsum4shs | 0001_00 vD VA vB 110_0100_1000
vsum2sws | 0001_00 vD VA vB 110_1000_1000
vsumsws | 0001_00 vD VA vB 111_1000_1000
vaddfp | 0001_00 vD VA vB 000_0000_1010
vsubfp | 0001_00 vD VA vB 000_0100_1010
vrefp | 0001_00 vD 0_0000 vB 001_0000_1010
vrsqrtefp | 0001_00 vD 0_0000 vB 001_0100_1010
vexptefp | 0001_00 vD 0_0000 vB 001_1000_1010
viogefp | 0001_00 vD 0_0000 vB 001_1100_1010
vrfin | 0001_00 vD 0_0000 vB 010_0000_1010
vrfiz| 0001_00 vD 0_0000 vB 010_0100_1010
vrfip| 0001_00 vD 0_0000 vB 010_1000_1010
vrfim | 0001_00 vD 0_0000 vB 010_1100_1010
vcfux | 0001_00 vD UMM vB 011_0000_1010
vcfsx | 0001_00 vD UMM vB 011 _0100_1010
vctuxs | 0001_00 vD UMM vB 011_1000_1010
vctsxs | 0001_00 vD UMM vB 011 1100_1010
vmaxfp | 0001_00 vD VA vB 100_0000_1010
vminfp | 0001_00 vD VA vB 100_0100_1010
vmrghb | 0001_00 vD VA vB 000_0000_1100
vmrghh | 0001_00 vD VA vB 000_0100_1100
vmrghw | 0001_00 vD VA vB 000_1000_1100
vmrglb | 0001_00 vD VA vB 001_0000_1100

D-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Opcode in Binary Format

Table D-1. Instructions Sorted by Opcode in Binary Format (continued)

Name 0 5({6|7 (8|9 |10 (11({12{13(14(15|16|17(18|19|20| 21 |22|23{24|25|26(27(28|29|30(31
vmrglh | 0001_00 vD VA vB 001_0100_1100
vmrglw | 0001_00 vD VA vB 001_1000_1100
vspltb | 0001_00 vD UIMM vB 010_0000_1100
vsplth | 0001_00 vD UIMM vB 010_0100_1100
vspltw | 0001_00 vD UIMM vB 010_1000_1100
vspltisb | 0001_00 vD SIMM 0000_0 011_0000_1100
vspltish | 0001_00 vD SIMM 0000_0 011_0100_1100
vspltisw | 0001_00 vD SIMM 0000_0 011_1000_1100
vslo| 0001_00 vD VA vB 100_0000_1100
vsro | 0001_00 vD VA vB 100_0100_1100
vpkuhum | 0001_00 vD VA vB 000_0000_1110
vpkuwum | 0001_00 vD VA vB 000_0100_1110
vpkuhus | 0001_00 vD VA vB 000_1000_1110
vpkuwus | 0001_00 vD VA vB 000_1100_1110
vpkshus | 0001_00 vD VA vB 001_0000_1110
vpkswus | 0001_00 vD VA vB 001_0100_1110
vpkshss | 0001_00 vD VA vB 001_1000_1110
vpkswss | 0001_00 vD VA vB 001_1100_1110
vupkhsb | 0001_00 vD 0_0000 vB 010_0000_1110
vupkhsh | 0001_00 vD 0_0000 vB 010_0100_1110
vupkisb | 0001_00 vD 0_0000 vB 010_1000_1110
vupkish | 0001_00 vD 0_0000 vB 010_1100_1110
vpkpx | 0001_00 vD VA vB 0110000_1110
vupkhpx | 0001_00 vD 0_0000 vB 011_0100_1110
vupklpx | 0001_00 vD 0_0000 vB 011_1100_1110

lvsl| 0111 11 vD B 000_0000_110 0

lvsr| 0111_11 vD A B 000_0100_110 0

dst| 0111_11 |0| 0_0 | STRM A B 010_1010_110 0

dstt| 01111 [1] 0.0 | STRM A B 010_1010_110 0

dstst| 0111 11 (0| 0 O | STRM A B 010_1110_110 0

dststt| 0111 _11 |1| 0 _0 | STRM A B 010_1110_110 0

dss| 0111 11 |0| 0 0 | STRM 0_0000 0000_0 110_0110_110 0

dssall| 0111_11 |1| 0 _0 | STRM 0_0000 0000_0 110_0110_110 0

MOTOROLA Appendix D. Instructions Sorted by Opcode D-5

For More Information On This Product,
Go to: www.freescale.com

Table D-1. Instructions Sorted by Opcode in Binary Format (continued)

Freescale Semiconductor, Inc.
Instructions Sorted by Opcode in Binary Format

Name 0 5(6(7|8| 9|10 |11|12|13|14|15|16|17|18|19(20| 21 |22|23|24|25|26|27|28|29|30 |31
Ivebx | 0111_11 vD A B 000_0000_111 0
Ivehx | 0111_11 vD A B 000_0100_111 0
Ivewx | 0111 11 vD A B 000_1000_111 0

Ivx | 0111 11 vD A B 000_1100_111 0

lvxl| 0111 11 vD A B 010_1100_111 0

stvebx | 0111 11 vS A B 001_0000_111 0
stvehx | 0111 11 vS A B 001_0100_111 0
stvewx | 0111_11 vS A B 001_1000_111 0
stvx| 0111 11 vS A B 001_1100_111 0

stvxl| 0111 11 vS A B 011_1100_111 0

D-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Appendix E
Instructions Sorted by Form

E.1 Instructions Sorted by Form
Table E-1 through Table E-4 list the AltiVec instructions grouped by form.

Key:
I:I Reserved bits

Table E-1. VA-Form

OPCD vD VA vB vC XO

OPCD vD VA vB 0 SH X0

Specific Instructions

Name 0 56(|7|8|9(10(11{12(13|14|15(16(17|18|19|20|21|22{23(24|25|26|27(28(29|30
vmhaddshs 04 vD VA vB vC 32
vmhraddshs 04 vD VA vB vC 33
vmladduhm 04 vD VA vB vC 34
vmsumubm 04 vD VA vB vC 36
vmsummbm 04 vD VA vB vC 37
vmsumuhm 04 vD VA vB vC 38
vmsumuhs 04 vD VA vB vC 39
vmsumshm 04 vD VA vB vC 40

vmsumshs 04 vD VA vB vC 41
vsel 04 vD VA vB vC 42
vperm 04 vD VA vB vC 43
vsldoi 04 vD VA vB 0 SH 44
vmaddfp 04 vD VA vB vC 46
vnmsubfp 04 vD VA vB vC 47
MOTOROLA Appendix E. Instructions Sorted by Form E-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Form

Table E-2. VX-Form

OPCD vD VA vB XO
OPCD vD 0_0000 0000_0 XO 0
OPCD 00_000 0_0000 vB XO 0
OPCD vD 0_0000 vB XO
OPCD vD UuiMM vB XO
OPCD vD SIMM 0000_0 XO
Specific Instructions
Name 0 56|7|8|9|10/11|12(13[14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29(30|31
vaddubm 04 vD VA vB 0
vadduhm 04 vD VA vB 64
vadduwm 04 vD VA vB 128
vaddcuw 04 vD VA vB 384
vaddubs 04 vD VA vB 512
vadduhs 04 vD VA vB 576
vadduws 04 vD VA vB 640
vaddsbs 04 vD VA vB 768
vaddshs 04 vD VA vB 832
vaddsws 04 vD VA vB 896
vsububm 04 vD VA vB 1024
vsubuhm 04 vD VA vB 1088
vsubuwm 04 vD VA vB 1152
vsubcuw 04 vD VA vB 1408
vsububs 04 vD VA vB 1536
vsubuhs 04 vD VA vB 1600
vsubuws 04 vD VA vB 1664
vsubsbs 04 vD VA vB 1792
vsubshs 04 vD VA vB 1856
vsubsws 04 vD VA vB 1920
vmaxub 04 vD VA vB 2
vmaxuh 04 vD VA vB 66
vmaxuw 04 vD VA vB 130
vmaxsb 04 vD VA vB 258
vmaxsh 04 vD VA vB 322
E-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Form

Specific Instructions

Name 0 6|7|8(9(10(11|12({13|14|15(16(17|18|19(20(21(22(23|24|25|26(27|28|29(30|31
vmaxsw 04 vD VA vB 386
vminub 04 vD VA vB 514
vminuh 04 vD VA vB 578
vminuw 04 vD VA vB 642
vminsb 04 vD VA vB 770
vminsh 04 vD VA vB 834
vminsw 04 vD VA vB 898
vavgub 04 vD VA vB 1026
vavguh 04 vD VA vB 1090
vavguw 04 vD VA vB 1154
vavgsb 04 vD VA vB 1282
vavgsh 04 vD VA vB 1346
vavgsw 04 vD VA vB 1410

vrlb 04 vD VA vB 4
vrlh 04 vD VA vB 68
vriw 04 vD VA vB 132
vslb 04 vD VA vB 260
vslh 04 vD VA vB 324
vslw 04 vD VA vB 388
vsl 04 vD VA vB 452
vsrb 04 vD VA vB 516
vsrh 04 vD VA vB 580
vVSsSrw 04 vD VA vB 644
vVSsr 04 vD VA vB 708
vsrab 04 vD VA vB 772
vsrah 04 vD VA vB 836
vsraw 04 vD VA vB 900
vand 04 vD VA vB 1028
vandc 04 vD VA vB 1092
vor 04 vD VA vB 1156
vnor 04 vD VA vB 1284
mfvscr 04 vD 0_0000 0000_0 1540
mtvscr 04 00_000 0_0000 vB 1604
MOTOROLA Appendix E. Instructions Sorted by Form E-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Form

Specific Instructions

Name 0 56|7(8|9|10|11{12|13|14(15|16|17(18(19|20|21(22|23|24|25(26|27|28({29|30|31
vmuloub 04 vD VA vB 8
vmulouh 04 vD VA vB 72
vmulosb 04 vD VA vB 264
vmulosh 04 vD VA vB 328
vmuleub 04 vD VA vB 520
vmuleuh 04 vD VA vB 584
vmulesb 04 vD VA vB 776
vmulesh 04 vD VA vB 840
vsum4ubs 04 vD VA vB 1544
vsum4sbs 04 vD VA vB 1800
vsum4shs 04 vD VA vB 1608
vsum2sws 04 vD VA vB 1672
vVsSumsws 04 vD VA vB 1928
vaddfp 04 vD VA vB 10
vsubfp 04 vD VA vB 74
vrefp 04 vD 0_0000 vB 266
vrsgrtefp 04 vD 0_0000 vB 330
vexptefp 04 vD 0_0000 vB 394
vlogefp 04 vD 0_0000 vB 458
vrfin 04 vD 0_0000 vB 522
vrfiz 04 vD 0_0000 vB 586
vrfip 04 vD 0_0000 vB 650
vrfim 04 vD 0_0000 vB 714
vecfux 04 vD UIMM vB 778
vefsx 04 vD UIMM vB 842
vctuxs 04 vD UIMM vB 906
vCctsxs 04 vD UIMM vB 970
vmaxfp 04 vD VA vB 1034
vminfp 04 vD VA vB 1098
vmrghb 04 vD VA vB 12
vmrghh 04 vD VA vB 76
vmrghw 04 vD VA vB 140
vmrglb 04 vD VA vB 268
E-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Form

Specific Instructions

Name 0 56|7(8|9|10|11{12|13|14(15|16|17(18(19|20|21(22|23|24|25(26|27|28({29|30|31
vmrglh 04 vD VA vB 332
vmrglw 04 vD VA vB 396
vspltb 04 vD UIMM vB 524
vsplth 04 vD UIMM vB 588
vspltw 04 vD UMM vB 652
vspltisb 04 vD SIMM 0000_0 780
vspltish 04 vD SIMM 0000_0 844

vspltisw 04 vD SIMM 0000_0 908

vslo 04 vD VA vB 1036
VSro 04 vD VA vB 1100

vpkuhum 04 vD VA vB 14

vpkuwum 04 vD VA vB 78

vpkuhus 04 vD VA vB 142

vpkuwus 04 vD VA vB 206

vpkshus 04 vD VA vB 270

vpkswus 04 vD VA vB 334

vpkshss 04 vD VA vB 398

vpkswss 04 vD VA vB 462

vupkhsb 04 vD 0_0000 vB 526

vupkhsh 04 vD 0_0000 vB 590
vupklsb 04 vD 0_0000 vB 654
vupklsh 04 vD 0_0000 vB 718

vpkpx 04 vD VA vB 782

vupkhpx 04 vD 0_0000 vB 846

vupklpx 04 vD 0_0000 vB 974
vxor 04 vD VA vB 1220

Table E-3. X-Form

OPCD vD VA vB XO 0

OPCD VS VA vB XO 0

OPCD T| 00| STRM A B X0 0
MOTOROLA Appendix E. Instructions Sorted by Form E-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Instructions Sorted by Form

Specific Instructions

Name 0 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
dst 31 Tl oo | sTrRm A B 342 0
dstt 31 1]/ 00| STRM A B 342 0

dstst 31 T|oo| sTrRm A B 374 0
dststt 31 1100 STRM A B 374 0
dss 31 Al 00| STRM 0_0000 0000_0 822 0
dssall 31 1100 | STRM 0_0000 0000_0 822 0
lvebx 31 vD A B 7 0
lvehx 31 vD A B 39 0
Ivewx 31 vD A B 71 0
Ivsl 31 vD A B 6 0
lvsr 31 vD A B 38 0
Ivx 31 vD A B 103 0
Ivxl 31 vD A B 359 0
stvebx 31 vS A B 135 0
stvehx 31 vS A B 167 0
stvewx 31 vS A B 199 0
stvx 31 vS A B 231 0
stvxl 31 vS A B 487 0

Table E-4. VXR-Form

OPCD vD VA vB Rc X0

Specific Instructions

Name 0 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vempbfpx 04 vD VA vB Rc 966
vempeqfpx 04 vD VA vB Rc 198
vempequbx 04 vD VA vB Rc 6
vempequhx 04 vD VA vB Rc 70
vempequwx 04 vD VA vB Rc 134
vempgefpx 04 vD VA vB Rc 454
vempgtfpx 04 vD VA vB Rc 710
vempgtsbx 04 vD VA vB Rc 774
E-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

vempgtshx
vempgtswx
vcmpgtubx
vempgtuhx

vempgtuwx

MOTOROLA

Freescale Semiconductor, Inc.
Instructions Sorted by Form

Specific Instructions

04 vD VA vB Rc 838
04 vD VA vB Rc 902
04 vD VA vB Rc 518
04 vD VA vB Rc 582
04 vD VA vB Rc 646

Appendix E. Instructions Sorted by Form

For More Information On This Product,
Go to: www.freescale.com

E-7

Freescale Semiconductor, Inc.
Instructions Sorted by Form

E-8 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Appendix F
Instruction Set Legend

F.1 Instruction Set Legend

Table F-1 provides general information on the AltiVec instruction set such as the
architectural level, privilege level, and form.

Table F-1. AltiVec Instruction Set Legend

UISA VEA OEA Supervisor Optional Form
Level
dss v VX
dssall v VX
dst v VX
dstst v VX
dststt v VX
dstt v VX
lvebx v X
Ivehx v X
Ivewx v X
lvsl v X
lvsr v X
Ivx v X
IvxI v X
mfvscr v VX
mtvscr Vv VX
stvebx v X
stvehx v X
stvewx v X
stvx v X
stvx| v X
MOTOROLA Appendix F. Instruction Set Legend F-1

For More Information On This Product,
Go to: www.freescale.com

Instruction Set Legend

Table F-1. AltiVec Instruction Set Legend (continued)

Freescale Semiconductor, Inc.

UISA VEA OEA Supervisor Optional Form
Level
vaddcuw v VX
vaddfp v VX
vaddsbs v VX
vaddshs v VX
vaddsws v VX
vaddubm v VX
vaddubs v VX
vadduhm v VX
vadduhs v VX
vadduwm v VX
vadduws v VX
vand v VX
vandc v VX
vavgsb v VX
vavgsh v VX
vavgsw v VX
vavgub v VX
vavguh v VX
vavguw v VX
vcfux v VX
vcfsx v VX
vempbfpx v VXR
vempeqfpx v VXR
vcmpequbx v VXR
vcmpequhx v VXR
vempequwx v VXR
vempgefpx v VXR
vempgtfpx v VXR
vempgtsbx v VXR
vempgtshx v VXR
vempgtswx v VXR
vcmpgtubx v VXR
vcmpgtuhx v VXR
F-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Table F-1. AltiVec Instruction Set Legend (continued)

Freescale Semiconductor, Inc.

Instruction Set Legend

For More Information On This Product,

Go to: www.freescale.com

UISA VEA OEA Supervisor Optional Form
Level
vempgtuwx v VXR
VCtSXs v VX
vCtuxs v VX
vexptefp v VX
vliogefp v VX
vmaddfp v VA
vmaxfp v VX
vmaxsb v VX
vmaxsh v VX
vmaxsw v VX
vmaxub v VX
vmaxuh v VX
vmaxuw v VX
vmhaddshs v VA
vmhraddshs v VA
vminfp v VX
vminsb v VX
vminsh v VX
vminsw v VX
vminub v VX
vminuh v VX
vminuw v VX
vmladduhm v VA
vmrghb v VX
vmrghh v VX
vmrghw v VX
vmrglb v VX
vmrglh v VX
vmrglw v VX
vmsummbm v VA
vmsumshm v VA
vmsumshs v VA
vmsumubm v VA
MOTOROLA Appendix F. Instruction Set Legend F-3

Freescale Semiconductor, Inc.
Instruction Set Legend

Table F-1. AltiVec Instruction Set Legend (continued)

UISA VEA OEA Supervisor Optional Form
Level
vmsumuhm v VA
vmsumuhs v VA
vmulesb v VX
vmulesh v VX
vmuleub v VX
vmuleuh v VX
vmulosb v VX
vmulosh v VX
vmuloub v VX
vmulouh v VX
vnmsubfp v VA
vnor v VX
vor v VX
vperm v VA
vpkpx v VX
vpkshss v VX
vpkshus v VX
vpkswss v VX
vpkuhum v VX
vpkuhus v VX
vpkswus v VX
vpkuwum v VX
vpkuwus v VX
vrefp v VX
vrfim v VX
vrfin v VX
vrfip v VX
vrfiz v VX
vrlb v VX
vrlh v VX
vriw v VX
vrsqrtefp v VX
vsel v VA
F-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Instruction Set Legend

Table F-1. AltiVec Instruction Set Legend (continued)

UISA VEA OEA Supervisor Optional Form

Level
vsl v VX
vslb v VX
vsldoi v VA
vslh v VX
vslo v VX
vslw v VX
vspltb v VX
vsplth v VX
vspltisb v VX
vspltish v VX
vspltisw v VX
vspltw v VX
vsr v VX
vsrab v VX
vsrah v VX
vsraw v VX
vsrb v VX
vsrh v VX
VSro v VX
VSIw v VX
vsubcuw v VX
vsubfp v VX
vsubsbs v VX
vsubshs v VX
vsubsws v VX
vsububm v VX
vsubuhm v VX
vsububs v VX
vsubuhs v VX
vsubuwm v VX
vsubuws v VX
VSuUmsws v VX
VSUM2sws v VX

MOTOROLA

Appendix F. Instruction Set Legend

For More Information On This Product,

Go to: www.freescale.com

F-5

Instruction Set Legend

Table F-1. AltiVec Instruction Set Legend (continued)

Freescale Semiconductor, Inc.

UISA VEA OEA Supervisor Optional Form
Level
vsumd4sbs v VX
vsum4shs v VX
vsum4ubs v VX
vupkhpx v VX
vupkhsb v VX
vupkhsh v VX
vupkhpx v VX
vupklsh v VX
vupklpx v VX
vupklsb v VX
vupklsh v VX
vxor v VX
F-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Appendix G
User’s Manual Revision History

This appendix provides alist of the mgor differences between the AltiViec Programming
Environments Manual, Revision 0 and Revision 1. Note that the list only covers the major
changes to the user’'s manual.

Only minor formatting upgrades comprised the changesin Revision 2.
No major changes were made top Revision 1.

The major changes to the AltiVec Programming Environments Manual, Revision O, are as
follows:
Section, Page Change

2.1.2, Page 2-4 Replace Figure 2-4, “ Saving/Restoring the AltiVec Context Register
(VRSAVE)” with the following:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Field| VRO | VR1 | VR2 | VR3 | VR4 | VR5 | VR6 | VR7 | VR8 | VR9 |VR10|VR11|VR12|VR13|VR14 |VR15

Reset 0000_0000_0000_0000

R/W R/W using mfspr or mtspr instructions

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Field| VR16|VR17|VR18|VR19|VR20|VR21|VR22 |VR23|VR24|VR25|VR26 |VR27|VR28|VR29|VR30|VR31

Reset 0000_0000_0000_0000
R/W R/W using mfspr or mtspr instructions
SPR SPR256
2.2, Page 2-9 Figure 2-10—The vector registers are 128 bits wide not 64 bits wide
as shown.
MOTOROLA Appendix G. User’s Manual Revision History G-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Section, Page No. Changes

4.2.2.4, Page 4-20 Change Table 4-9 asfollows:

» the mnemonic for Vector Round to Floating-Point Integer Nearest
should be vrfin not fvrfin.

 the mnemonic for Vector Round to Floating-Point Integer toward
Zero should be vrfiz,not fvrfiz.

» the mnemonic for Vector Round to Floating-Point Integer toward
Positive Infinity should be vrfip, not fvrfip.

 the mnemonic for Vector Round to Floating-Point Integer toward
Minus Infinity should be vrfim, not fvrfim.

6.2, Page 6-24 Change the mfvscr encoding as shown below (note: bit 31 is not 0):

04

vD

00000

00000

1540

0

6.2, Page 6-25

10 11

15 16

20 21

31

Change the mtvscr encoding as shown below (note: bit 31 is not 0):

04

00000

00000

vB

1604

0

10 11

15 16

20 21

31

A.l, PageA-2 Change the mfvscr encoding as shown below (note: bit 31 isnot 0):
mfvscr 04 vD 00000 00000 1540

A.l, PageA-2 Change the mtvscr encoding as shown below (note: bit 31isnot 0 and

vD should be vB):

mtvscr 04 00000 00000 vB 1604

A.2, PageA-9 Change the mfvscr encoding as shown below (note: bit 31 isnot 0):
mfvscr| 000100 | vD | 00000 | 00000 | 110 0000 0100

A.2, Page A-9 Change the mtvscr encoding as shown below (note: bit 31 isnot 0):

mtvscr| 000100 | 00000 | 00000 | vB | 110 0100 0100

A.3, PageA-14 Change the mfvscr encoding as shown below (note: bit 31 isnot 0):

mfvscr 04 vD 00000 00000 1540

A.3, PageA-14 Change the mtvscr encoding as shown below (note: bit 31 isnot 0):

mtvscr 04 00000 00000 vB 1604

G-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Glossary of Terms and Abbreviations

The glossary contains an aphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprinted from |[EEE
Std 754-1985, |EEE Sandard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the |EEE.

A

MOTOROLA

Architecture. A detailed specification of requirements for a processor or
computer system. It does not specify details of how the processor or
computer system must be implemented; instead it provides a
template for afamily of compatible implementations.

Asynchronous exception. Exceptions that are caused by events external to
the processor’s execution. In this document, the term *asynchronous
exception’ is used interchangeably with the word interrupt.

Atomic access. A bus access that attempts to be part of a read-write
operation to the same address uninterrupted by any other access to
that address (the term refers to the fact that the transactions are
indivisible). The PowerPC architecture implements atomic accesses
through the lwar x/stwcex. instruction pair.

BAT (block addresstranslation) mechanism. A software-controlled array
that stores the available block address trandlations on-chip.

Beat. A single state on the 603e bus interface that may extend across
multiple bus cycles. A 603e transaction can be composed of multiple
address or data beats.

Biased exponent. An exponent whose range of values is shifted by a
constant (bias). Typically a bias is provided to allow a range of
positive values to express a range that includes both positive and
negative values.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most-significant byte. See Little-endian.

Glossary of Terms and Abbreviations Glossary-1

For More Information On This Product,
Go to: www.freescale.com

Glossary-2

Freescale Semiconductor, Inc.

Block. An areaof memory that ranges from 128 Kbyte to 256 Mbyte whose
Size, translation, and protection attributes are controlled by the BAT
mechanism.

Boundedly undefined. A characteristic of certain operation results that are
not rigidly prescribed by the PowerPC architecture. Boundedly-
undefined results for a given operation may vary among
implementations and between execution attempts in the same
implementation.

Although the architecture does not prescribe the exact behavior for
when results are allowed to be boundedly undefined, the results of
executing instructions in contexts where results are allowed to be
boundedly undefined are constrained to ones that could have been
achieved by executing an arbitrary sequence of defined instructions,
in valid form, starting in the state the machine was in before
attempting to execute the given instruction.

Branch folding. The replacement with target instructions of a branch
instruction and any instructions along the not-taken path when a
branch is either taken or predicted as taken.

Branch prediction. The process of guessing whether abranch will be taken.
Such predictions can be correct or incorrect; the term ‘predicted’ as
it is used here does not imply that the prediction is correct
(successful). The PowerPC architecture defines a means for static
branch prediction as part of the instruction encoding.

Branch resolution. The determination of whether a branch is taken or not
taken. A branch is said to be resolved when the processor can
determine which instruction path to take. If the branch is resolved as
predicted, the instructions following the predicted branch that may
have been speculatively executed can complete. If the branch is not
resolved as predicted, instructions on the mispredicted path, and any
results of speculative execution, are purged from the pipeline and
fetching continues from the nonpredicted path.

Burst. A multiple-beat data transfer whose total sizeistypically equal to a
cache block.

Busclock. Clock that causes the bus state transitions.

Busmaster. The owner of the address or data bus; the device that initiates or
requests the transaction.

AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

Cache. High-speed memory containing recently accessed data or
instructions (subset of main memory).

Cache block. A small region of contiguous memory that is copied from
memory into a cache. The size of a cache block may vary among
processors; the maximum block size is one page. In PowerPC
processors, cache coherency is maintained on a cache-block basis.
Note that the term ‘cache block’ is often used interchangeably with
‘cacheline’.

Cache coherency. An attribute wherein an accurate and common view of
memory is provided to al devices that share the same memory
system. Caches are coherent if a processor performing a read from
its cacheis supplied with data corresponding to the most recent value
written to memory or to another processor’s cache.

Cache flush. An operation that removes from a cache any data from a
specified address range. This operation ensures that any modified
data within the specified address range is written back to main
memory. This operation is generated typically by a Data Cache
Block Flush (dcbf) instruction.

Caching-inhibited. A memory update policy inwhich the cacheisbypassed
and the load or store is performed to or from main memory.

Cast out. A cache block that must be written to memory when a cache miss
causes a cache block to be replaced.

Changed bit. One of two page history bits found in each page table entry
(PTE). The processor sets the changed bit if any store is performed
into the page. See also Page access history bits and Referenced bit.

Clean. An operation that causes a cache block to be written to memory, if
modified, and then left in avalid, unmodified state in the cache.

Clear. To cause abit or bit field to register avalue of zero. See also Set.

Context synchronization. An operation that ensures that all instructionsin
execution complete past the point where they can produce an
exception, that all instructions in execution complete in the context
in which they began execution, and that all subsequent instructions
arefetched and executed in the new context. Context synchronization
may result from executing specific instructions (such asisync or rfi)
or when certain events occur (such as an exception).

Glossary of Terms and Abbreviations Glossary-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Copy-back operation. A cache operation in which a cache line is copied
back to memory to enforce cache coherency. Copy-back operations
consist of snoop push-out operations and cache cast-out operations.

D Denormalized number. A nonzero floating-point number whose exponent
has a reserved value, usually the format's minimum, and whose
explicit or implicit leading significand bit is zero.

Direct-mapped cache. A cache in which each main memory address can
appear in only one location within the cache, operates more quickly
when the memory request is a cache hit.

Direct-store segment access. An access to an 1/0 address space. The 603
defines separate memory-mapped and /O address spaces, or
segments, distinguished by the corresponding segment register T bit
in the address trandlation logic of the 603. If the T bit is cleared, the
memory reference is a normal memory-mapped access and can use
the virtual memory management hardware of the 603. If the T bit is
set, the memory reference is a direct-store access.

Double-word swap. AltiVec processors implement a double-word swap
when moving quad words between vector registers and memory. The
double word swap performs an additional swap to keep vector
registers and memory consistent in little-endian mode. Double-word
swap is referred to as ‘swizzling' in the AltiVec technology
architecture specification. This feature is not supported by the
PowerPC architecture.

E Effective address (EA). The 32-bit address specified for aload, store, or an
instruction fetch. This address is then submitted to the MMU for
trandation to either a physical memory address.

Exception. A condition encountered by the processor that requires special,
supervisor-level processing.

Exception handler. A software routine that executes when an exception is
taken. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task (that
may include aborting the program that caused the exception). The
address for each exception handler is identified by an exception
vector offset defined by the architecture and a prefix selected viathe
MSR.

Glossary-4 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

Extended opcode. A secondary opcode field generally located in instruction
bits 21-30, that further defines the instruction type. All PowerPC
instructions are oneword in length. The most significant 6 bits of the
instruction are the primary opcode, identifying the type of
instruction. See also Primary opcode.

Exclusive state. MEI state (E) in which only one caching device contains
datathat is aso in system memory.

Execution synchronization. A mechanism by which all instructions in
execution are architecturally complete before beginning execution
(appearing to begin execution) of the next instruction. Similar to
context synchronization but doesn't force the contents of the
instruction buffers to be deleted and refetched.

Exponent. In the binary representation of a floating-point number, the
exponent is the component that normally signifies the integer power
to which the value two is raised in determining the value of the
represented number. See also Biased exponent.

Feed-forwarding. A 603e feature that reduces the number of clock cycles
that an execution unit must wait to use a register. When the source
register of the current instruction is the same as the destination
register of the previous instruction, the result of the previous
instruction is routed to the current instruction at the same time that it
is written to the register file. With feed-forwarding, the destination
busis gated to the waiting execution unit over the appropriate source
bus, saving the cycles which would be used for the write and read.

Fetch. Retrieving instructions from either the cache or main memory and
placing them into the instruction queue.

Floating-point register (FPR). Any of the 32 registersin the floating-point
register file. These registers provide the source operands and
destination results for floating-point instructions. Load instructions
move data from memory to FPRs and store instructions move data
from FPRs to memory. The FPRs are 64 bits wide and store
floating-point values in double-precision format

Floating-point unit. The functional unit in the 603e processor responsible
for executing all floating-point instructions.

Flush. An operation that causes a cache block to be invalidated and the data,
if modified, to be written to memory.

Glossary of Terms and Abbreviations Glossary-5

For More Information On This Product,
Go to: www.freescale.com

Glossary-6

Freescale Semiconductor, Inc.

Fraction. In the binary representation of a floating-point number, the field
of the significand that lies to the right of itsimplied binary point.

Fully associative. Addressing scheme where every cache location (every
byte) can have any possible address.

General-purpose register (GPR). Any of the 32 registers in the
general-purpose register file. These registers provide the source
operands and destination results for all integer data manipulation
instructions. Integer load instructions move data from memory to
GPRs and store instructions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. When a
page is designated as guarded, instructions and data cannot be
accessed out-of-order.

Harvard architecture. An architectural model featuring separate caches
and other memory management resources for instructions and data.

Hashing. An algorithm used in the page table search process.

|EEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that defines operations and representations of binary
floating-point numbers.

Illegal instructions. A class of instructions that are not implemented for a
particular PowerPC processor. Theseincludeinstructions not defined
by the PowerPC architecture. In addition, for 32-bit
implementations, instructions that are defined only for 64-bit
Implementations are considered to be illegal instructions. For 64-bit
implementations instructions that are defined only for 32-bit
implementations are considered to be illegal instructions.

Implementation. A particular processor that conforms to the PowerPC
architecture, but may differ from other architecture-compliant
implementations for example in design, feature set, and
implementation of optional features. The PowerPC architecture has
many different implementations.

I mplementation-dependent. An aspect of a feature in a processor’s design
that is defined by a processor’s design specifications rather than by
the PowerPC architecture.

AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

I mplementation-specific. An aspect of afeature in a processor’s design that
Is not required by the PowerPC architecture, but for which the
PowerPC architecture may provide concessions to ensure that
processors that implement the feature do so consistently.

I mpreciseexception. A typeof synchronous exception that isallowed not to
adhere to the precise exception model (see Precise exception). The
PowerPC architecture allows only floating-point exceptions to be
handled imprecisely.

I nexact. Loss of accuracy in an arithmetic operation when the rounded result
differs from the infinitely precise value with unbounded range.

Instruction queue. A holding placefor instructionsfetched from the current
instruction stream.

Integer unit. The functional unit in the 603e responsible for executing all
integer instructions.

In-order. An aspect of an operation that adheres to a sequential model. An
operation is said to be performed in-order if, at the time that it is
performed, it is known to be required by the sequential execution
model. See Out-of-order.

Instruction latency. The total number of clock cycles necessary to execute
an instruction and make ready the results of that instruction.

Instruction parallelism. A feature of PowerPC processors that allows
instructions to be processed in parallel.

Interrupt. An external signal that causes the 603e to suspend current
execution and take a predefined exception.

Key bits. A set of key bitsreferred to as Ksand Kp in each segment register
and each BAT register. The key bits determine whether supervisor or
user programs can access a page within that segment or block.

Kill. An operation that causes a cache block to be invalidated without
writing any modified data to memory.

Latency. Thenumber of clock cycles necessary to execute an instruction and
make ready the results of that execution for a subsequent instruction.

L 2 cache. See Secondary cache.

Glossary of Terms and Abbreviations Glossary-7

For More Information On This Product,
Go to: www.freescale.com

Glossary-8

Freescale Semiconductor, Inc.

L east-significant bit (Isb). The bit of least value in an address, register,
field, data element, or instruction encoding.

L east-significant byte (L SB). Thebyte of least valuein an address, register,
data element, or instruction encoding.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least-significant byte. In an addressed
memory word, the bytes are ordered (Ieft to right) 3, 2, 1, O, with 3
being the most-significant byte. See Big-endian.

Loop unrolling. Loop unrolling provides a way of increasing performance
by alowing more instructions to be issued in a clock cycle. The
compiler replicates the loop body to increase the number of
Instructions executed between aloop branch.

Mantissa. The decimal part of logarithm.

MEI (modified/exclusive/invalid). Cache coherency protocol used to
manage caches on different devices that share a memory system.
Note that the PowerPC architecture does not specify the
implementation of a MEI protocol to ensure cache coherency.

MESI (modified/exclusive/shared/invalid). Cache coherency protocol used
to manage caches on different devices that share a memory system.
Note that the PowerPC architecture does not specify the
implementation of a MESI protocol to ensure cache coherency.

Memory access ordering. The specific order in which the processor
performs load and store memory accesses and the order in which
those accesses compl ete.

Memory-mapped accesses. Accesses whose addresses use the page or
block address translation mechanisms provided by the MMU and
that occur externally with the bus protocol defined for memory.

Memory coherency. An aspect of caching in which it is ensured that an
accurate view of memory is provided to all devicesthat share system
memory.

Memory consistency. Refersto agreement of levels of memory with respect
to a single processor and system memory (for example, on-chip
cache, secondary cache, and system memory).

AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

Memory management unit (MMU). The functional unit that is capable of
trandating an effective (logical) address to a physical address,
providing protection mechanisms, and defining caching methods.

Microar chitecture. The hardware details of amicroprocessor’sdesign. Such
details are not defined by the PowerPC architecture.

Mnemonic. The abbreviated name of an instruction used for coding.

Modified state. MEI state (M) in which one, and only one, caching device
hasthevalid datafor that address. The dataat thisaddressin external
memory is not valid.

Most-significant bit (msb). The highest-order bit in an address, registers,
data element, or instruction encoding.

Most-significant byte (MSB). The highest-order byte in an address,
registers, data element, or instruction encoding.

Munging. A modification performed on an effective address that allows it to
appear to the processor that individual aligned scalars are stored as
little-endian values, when in fact it is stored in big-endian order, but
at different byte addresses within double words. Note that munging
affects only the effective address and not the byte order. Note also
that thisterm is not used by the PowerPC architecture.

Multiprocessing. The capability of software, especially operating systems,
to support execution on more than one processor at the same time.

NaN. An abbreviation for not a number; a symbolic entity encoded in
floating-point format. There aretwo types of NaNs—signaling NaNs
and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect registers
or generate bus activity.

Normalization. A process by which a floating-point value is manipulated
such that it can be represented in the format for the appropriate
precision (single- or double-precision). For a floating-point value to
be representable in the single- or double-precision format, the
leading implied bit must bea 1.

OEA (operating environment architecture). The level of the architecture
that describes PowerPC memory management model,
supervisor-level registers, synchronization requirements, and the

Glossary of Terms and Abbreviations Glossary-9

For More Information On This Product,
Go to: www.freescale.com

Glossary-10

Freescale Semiconductor, Inc.

exception model. It aso defines the time-base feature from a
supervisor-level perspective. Implementations that conform to the
PowerPC OEA also conform to the PowerPC UISA and VEA.

Optional. A feature, such as an instruction, aregister, or an exception, that
is defined by the PowerPC architecture but not required to be
implemented.

Out-of-order. Anaspect of an operation that allowsit to be performed ahead
of one that may have preceded it in the sequentia model, for
example, speculative operations. An operation is said to be
performed out-of-order if, at the time that it is performed, it is not
known to be required by the sequential execution model. See
In-order.

Out-of-order execution. A technique that allows instructions to be issued
and completed in an order that differs from their sequence in the
instruction stream.

Overflow. An condition that occurs during arithmetic operations when the
result cannot be stored accurately in the destination register(s). For
example, if two 32-bit numbers are multiplied, the result may not be
representable in 32 bits. Since the 32-hit registers of the 603e cannot
represent this sum, an overflow condition occurs.

Page. A region in memory. The OEA defines a page as a 4-Kbyte area of
memory, aligned on a 4-Kbyte boundary.

Page access history bits. The changed and referenced bits in the PTE keep
track of the access history within the page. The referenced bit is set
by the MMU whenever the page is accessed for a read or write
operation. The changed bit is set when the page is stored into. See
Changed bit and Referenced bit.

Page fault. A page fault is a condition that occurs when the processor
attempts to access a memory location that does not reside within a
page not currently resident in physical memory. On PowerPC
processors, a page fault exception condition occurs when a
matching, valid page table entry (PTE[V] = 1) cannot be located.

Pagetable. A tablein memory iscomprised of page table entries, or PTES.
It is further organized into eight PTEs per PTEG (page table entry
group). The number of PTEGs in the page table depends on the size
of the page table (as specified in the SDR1 register).

AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

Page table entry (PTE). Data structures containing information used to
trandate effective address to physical address on a 4-Kbyte page
basis. A PTE consists of 8 bytes of information in a 32-bit processor
and 16 bytes of information in a 64-bit processor.

Park. The act of allowing a bus master to maintain bus mastership without
having to arbitrate.

Persistent data stream. A data stream is considered to be persistent when it
IS expected to be loaded from frequently.

Physical memory. The actual memory that can be accessed through the
system’s memory bus.

Pipelining. A technique that breaks operations, such as instruction
processing or bus transactions, into smaller distinct stages or tenures
(respectively) so that a subsequent operation can begin before the
previous one has compl eted.

Precise exceptions. A category of exception for which the pipeline can be
stopped so instructions that preceded the faulting instruction can
complete and subsequent instructions can be flushed and
redispatched after exception handling has completed. See Imprecise
exceptions.

Primary opcode. The most-significant 6 bits (bits 0-5) of the instruction
encoding that identifies the type of instruction.

Program order. The order of instructions in an executing program. More
specificaly, this term is used to refer to the original order in which
program instructions are fetched into the instruction queue from the
cache

Protection boundary. A boundary between protection domains.

Protection domain. A protection domainisasegment, avirtual page, aBAT
area, or arange of unmapped effective addresses. It is defined only
when the appropriate relocate bit in the MSR (IR or DR) is 1.

Quad word. A group of 16 contiguous locations starting at an address
divisible by 16.

Quiesce. Tocometorest. The processor issaid to quiesce when an exception
Is taken or a sync instruction is executed. The instruction stream is
stopped at the decode stage and executing instructions are allowed to
complete to create a controlled context for instructions that may be

Glossary of Terms and Abbreviations Glossary-11

For More Information On This Product,
Go to: www.freescale.com

Glossary-12

Freescale Semiconductor, Inc.

affected by out-of-order, parallel execution. See Context
synchronization.

Quiet NaN. A type of NaN that can propagate through most arithmetic
operations without signaling exceptions. A quiet NaN is used to
represent the results of certain invalid operations, such as invalid
arithmetic operations on infinities or on NaNs, when invalid. See
Sgnaling NaN.

rA. TherA instruction field is used to specify a GPR to be used as a source
or destination.

rB. TherB instruction field is used to specify a GPR to be used as a source.

rD. The rD instruction field is used to specify a GPR to be used as a
destination.

rS. TherSinstruction field is used to specify a GPR to be used as a source.

Real address mode. An MMU mode when no address trandlation is
performed and the effective address specified is the same as the
physical address. The processor’'s MMU is operating in real address
mode if its ability to perform address translation has been disabled
through the M SR registers IR and/or DR hits.

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set,
updates the condition register (CR) to reflect the result of the
operation.

Referenced bit. One of two page history bitsfound in each page table entry
(PTE). The processor sets the referenced bit whenever the page is
accessed for aread or write. See also Page access history bhits.

Register indirect addressing. A form of addressing that specifies one GPR
that contains the address for the load or store.

Register indirect with immediateindex addressing. A form of addressing
that specifies an immediate value to be added to the contents of a
specified GPR to form the target address for the load or store.

Register indirect with index addressing. A form of addressing that
specifiesthat the contents of two GPRs be added together to yield the
target address for the load or store.

Renameregister. Temporary buffers used by instructions that have finished
execution but have not completed.

AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

Reservation. The processor establishes a reservation on a cache block of
memory space when it executes an Iwarx instruction to read a
memory semaphore into a GPR.

Reservation station. A buffer between the dispatch and execute stages that
allows instructions to be dispatched even though the results of
instructions on which the dispatched instruction may depend are not
available.

RISC (reduced instruction set computing). An architecture characterized
by fixed-length instructions with nonoverlapping functionality and
by a separate set of load and store instructions that perform memory
accesses.

Scan interface. The 603e test interface.

Secondary cache. A cache memory that istypically larger and has alonger
access time than the primary cache. A secondary cache may be
shared by multiple devices. Also referred to asL 2, or level-2, cache.

Set (v). To write anonzero value to a bit or bit field; the opposite of clear.
Theterm ‘set’ may aso be used to generally describe the updating of
abit or bit field.

Set (n). A subdivision of a cache. Cacheable data can be stored in a given
location in one of the sets, typically corresponding to its lower-order
address bits. Because several memory locations can map to the same
location, cached dataistypically placed in the set whose cache block
corresponding to that address was used least recently. See
Set-associative.

Set-associative. Aspect of cache organization in which the cache space is
divided into sections, called sets. The cache controller associates a
particular main memory address with the contents of a particular set,
or region, within the cache.

Shadowing. Shadowing allows aregister to be updated by instructions that
are executed out of order without destroying machine state
information.

Signaling NaN. A type of NaN that generates an invalid operation program
exception when it is specified as arithmetic operands. See Quiet
NaN.

Glossary of Terms and Abbreviations Glossary-13

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary
point and afraction field to the right.

SIMD. Singleinstruction stream, multiple data streams. A vector instruction
can operate on several data elements within asingle instruction in a
single functional unit. SIMD is a way to work with all the data at
once (in parallel), which can make execution faster.

Simplified mnemonics. Assembler mnemonics that represent a more
complex form of acommon operation.

Slave. Thedevice addressed by amaster device. Thedaveisidentified inthe
address tenure and is responsible for supplying or latching the
requested data for the master during the data tenure.

Snooping. Monitoring addresses driven by a bus master to detect the need
for coherency actions.

Snoop push. Response to a snooped transaction that hits a modified cache
block. The cache block is written to memory and made available to
the snooping device.

Splat. A splat instruction will take one element and replicates (splats) that
value into a vector register. The purpose being to have all elements
have the same value so they can be used as a constant to multiply
other vector registers.

Split-transaction. A transaction with independent request and response
tenures.

Split-transaction bus. A busthat allows address and data transactions from
different processors to occur independently.

Stage. The term ‘stage’ is used in two different senses, depending on
whether the pipeline is being discussed as a physical entity or a
sequence of events. In the latter case, a stage is an element in the
pipeline during which certain actions are performed, such as
decoding the instruction, performing an arithmetic operation, or
writing back the results. Typically, the latency of a stage is one
processor clock cycle. Some events, such as dispatch, write-back,
and completion, happen instantaneously and may be thought to
occur at the end of a stage. An instruction can spend multiple cycles
in one stage. An integer multiply, for example, takes multiple cycles
In the execute stage. When this occurs, subsequent instructions may
stall. An instruction may also occupy more than one stage

Glossary-14 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

simultaneously, especially in the sense that a stage can be seen as a
physical resource—for example, when instructions are dispatched
they are assigned a place in the CQ at the same time they are passed
to the execute stage. They can be said to occupy both the complete
and execute stages in the same clock cycle.

Stall. An occurrence when an instruction cannot proceed to the next stage.

Static branch prediction. Mechanism by which software (for example,
compilers) can hint to the machine hardware about the direction a
branch is likely to take.

Sticky bit. A bit that when set must be cleared explicitly.

Superscalar machine. A machine that can issue multiple instructions
concurrently from a conventional linear instruction stream.

Supervisor mode. The privileged operation state of a processor. In
supervisor mode, software, typically the operating system, can
access all control registers and can access the supervisor memory
space, among other privileged operations.

Synchronization. A processto ensure that operations occur strictly in order.
See Context synchronization and Execution synchronization.

Synchronous exception. An exception that is generated by the execution of
a particular instruction or instruction sequence. There are two types
of synchronous exceptions, precise and imprecise.

System memory. The physical memory available to a processor.

Tenure. The period of bus mastership. For the 603e, there can be separate
address bus tenures and data bus tenures. A tenure consists of three
phases. arbitration, transfer, and termination.

TLB (trandation lookaside buffer). A cachethat holds recently-used page
table entries.

Throughput. The measure of the number of instructions that are processed
per clock cycle.

Tiny. A floating-point value that istoo small to be represented for a particul ar
precision format, including denormalized numbers; they do not
include 0.

Glossary of Terms and Abbreviations Glossary-15

For More Information On This Product,
Go to: www.freescale.com

Glossary-16

Freescale Semiconductor, Inc.

Transaction. A complete exchange between two bus devices. A transaction
Is typically comprised of an address tenure and one or more data
tenures, which may overlap or occur separately from the address
tenure. A transaction may be minimally comprised of an address
tenure only.

Transfer termination. Signal that refers to both signals that acknowledge
the transfer of individual beats (of both single-beat transfer and
individual beats of aburst transfer) and to signals that mark the end
of the tenure.

Transient stream. A datastreamisconsidered to betransient whenitislikely
to be referenced from infrequently.

UISA (user instruction set architecture). The level of the architecture to
which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types,
floating-point memory conventions and exception model as seen by
user programs, and the memory and programming models.

Underflow. A condition that occurs during arithmetic operations when the
result cannot be represented accurately in the destination register.
For example, underflow can happen if two floating-point fractions
are multiplied and the result requires a smaller exponent and/or
mantissa than the single-precision format can provide. In other
words, the result is too small to be represented accurately.

User mode. The operating state of a processor used typically by application
software. In user mode, software can access only certain control
registers and can access only user memory space. No privileged
operations can be performed. Also referred to as problem state.

VA. The VA instruction field is used to specify a vector register to be used as
asource or destination.

vB. The vB instruction field is used to specify a vector register to be used as
asource.

vC. ThevC instruction field is used to specify avector register to be used as
asource.

vD. The vD instruction field is used to specify a vector register to be used as
a destination.

AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

vS. ThevSinstruction field is used to specify avector register to be used asa
source.

VEA (virtual environment architecture). Thelevel of the architecture that
describes the memory model for an environment in which multiple
devices can access memory, defines aspects of the cache model,
defines cache control instructions, and defines the time-base facility
from a user-level perspective. Implementations that conform to the
PowerPC VEA aso adhere to the UISA, but may not necessarily
adhere to the OEA.

Vector. The spatial parallel processing of short, fixed-length one-dimensional
matrices performed by an execution unit.

Vector Register (VR). Any of the 32 registersin the vector register file. Each
vector register is 128 bits wide. These registers can provide the
source operands and destination results for AltiVec instructions.

Virtual address. An intermediate address used in the trandation of an
effective address to a physical address.

Virtual memory. The address space created using the memory management
facilities of the processor. Program access to virtual memory is
possible only when it coincides with physical memory.

Way. A locationinthe cachethat holdsacache block, itstags and statusbits.

Weak ordering. A memory access model that allows bus operations to be
reordered dynamically, which improves overall performance and in
particular reduces the effect of memory latency on instruction
throughput.

Word. A 32-bit data element.

Write-back. A cache memory update policy inwhich processor write cycles
are directly written only to the cache. External memory is updated
only indirectly, for example, when amodified cache block is cast out
to make room for newer data.

Write-through. A cache memory update policy in which all processor write
cycles are written to both the cache and memory.

Glossary of Terms and Abbreviations Glossary-17

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Glossary-18 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

A

Acronyms and abbreviated terms, list, xxiv
Address bus
address calculation, 4-26
address modes, 1-9
address translation for streams, 5-7
Alignment
aligned scalars, LE mode, 3-4
effective address, 4-26
load and store, 4-26
load instruction support, 4-29
memory access and vector register, 3-6
misaligned accesses, 3-1
misaligned vectors, 3-7
partially executed instructions, 5-10
quad-word data alignment, 3-7
rules, 3-4
AltiVec technology
address modes, 1-9
cache overview, 1-12
exception handling, 1-12
featureslist, 1-4
features not defined, 1-6
instruction set, 1-11, 6-9, A-1-F-6
instruction set architecture support, 1-5
interelement operations, 1-9
intraelement operations, 1-9
levels of the PowerPC architecture, 1-5
operations supported, 1-9
overview, 1-3
PowerPC architecture extension, 1-2
programming model, 1-6
register file structure, 2-4
register set, 1-6, 2-4, 2-8
SIMD-style extension, 1-3, 1-7
structural overview, 1-4
Arithmetic instructions
floating-point, 4-19
integer, 4-1

B

Big-endian mode
accessing amisaligned quad word, 3-8

MOTOROLA

Index

byte ordering, 1-7, 3-3
concept, 3-3
mapping, quad word, 3-3
misaligned vector, 3-7
mixed-endian systems, 3-12

Block count, 5-2

Block size, 5-2

Block stride, 5-2

Byte ordering
aligned scalars, LE mode, 3-4
big-endian mode, default, 3-3
concept, 3-2
default, 1-7
LE bitin MSR, 3-3
least-significant byte (LSB), 3-3
little-endian mode description, 3-3
most-significant byte (MSB), 3-3
quad-word example, 3-3

C

Cache
cache management instructions, 4-42
data stream touch, 5-2
dssinstruction, 5-5
dst instruction, 5-2
dstst instruction, 5-4
dstt instruction, 5-4
overview, 1-12, 5-1
prefetch, software-directed, 5-2
prioritizing cache block replacement, 5-9
stopping streams, 5-5
storing to streams, 5-4
transient streams, 5-4
Cache management instructions, 4-42
Classes of instructions, 4-2
Compare instructions
floating-point, 4-22
integer, 4-13, 4-14
Computation modes
PowerPC architecture support, 4-2
Conventions, xxiii
classes of instructions, 4-2
computation modes, 4-2

Index Index-1

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

execution model, 4-2
memory addressing, 4-3
operand conventions, 3-1
terminology, Xxvii
CR (condition register)
bit fields, 2-8
CR6 field, compare instructions, 2-8
move to/from CR instructions, 4-40

D

Data organization, memory, 3-1
Data stream, 5-2
Double-word swap, 3-6

E

Echo cancellation, 1-2
Effective address calculation
EA modifications, 3-5
loads and stores, 4-26
overview, 4-3
Estimate instructions, 4-24
Exceptions
data address breakpoint, 5-10
DSl exception, 5-10
exception behavior of prefetch streams, 5-6
exception handling, 1-12
floating-point exceptions, 3-14
invalid operation exception, 3-16
log of zero exception, 3-16
NaN operand exception, 3-15
overflow exception, 3-17
overview, 5-1
precise exceptions, 5-12
priorities, 5-12
synchronous exceptions, 5-12
unavailable exception, 5-10
underflow exception, 3-17
zero divide exception, 3-16
Exclusive OR (XOR), 3-4
Execution model
conventions, 4-2
floating-point, 3-12
Extended mnemonics, see Simplified mnemonics

F

Featureslist
AltiVec technology features, 1-4
features not defined, 1-6
Floating-point model
arithmetic instructions, 4-19
compare instructions, 4-22
division function, 4-18

estimate instructions, 4-24

exceptions, 3-14

execution model, 3-12

infinities, 3-14

instructions, overview, 4-17

Javamode, 3-13

modes, 3-13

multiply-add instructions, 4-20

NaNs, 3-17

non-Java mode, 3-14

rounding mode, 3-14

rounding/conversion instructions, 4-21

square root functions, 4-19
Formatting instructions, 4-31

H
High-order byte numbering, 1-8

Instructions
cache management instructions, 4-42
classes of instructions, 4-2
computation modes, 4-2
control flow, 4-31
conventions, xxvii, 6-2
detailed descriptions, 6-9-6-177
floating-point
arithmetic, 4-19
compare, 4-22
computational instructions, 3-12
division function, 4-18
estimate instructions, 4-24
multiply-add, 4-20
noncomputational instructions, 3-12
overview, 4-17
rounding/conversion, 4-21
square root functions, 4-19
format, lists, E-1
formats, 6-1
formatting instructions, 4-31
general information, F-1, G-1
integer
arithmetic, 4-1, 4-4
compare, 4-13, 4-14
load, 4-27
logical, 4-1, 4-15
rotate/shift, 4-16
store, 4-30
listed by format, E-1
listed by mnemonic, 6-9-6-177, A-1
listed by opcode, C-1, D-1
load and store
address generation, integer, 4-26

Index-2 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

integer load, 4-27
integer store, 4-30
memory addressing, 4-3
memory control instructions, 4-41
merge instructions, 4-34
mnemonics, lists, A-1
notations, 6-2
opcodes, lists, C-1, D-1
overview, 1-11
pack instructions, 4-31
partially executed instructions, 5-10
permutation instructions, 4-31
permute instructions, 4-36
PowerPC ingtructions, list, A-1, B-1
processor control instructions, 4-39
quick reference, F-1, G-1
select instruction, 4-36
shift instructions, 4-37
splat instructions, 4-35
syntax conventions, xxvii, 6-2
unpack instructions, 4-33
vector integer, see integer
Integer instructions
arithmetic instructions, 4-1, 4-4
compareinstructions, 4-13, 4-14
logical instructions, 4-1, 4-15
rotate/shift instructions, 4-16
storeinstructions, 4-30
Integer load instructions, 4-27
Interelement operations, 1-9
Intrael ement operations, 1-9
Invalid operation exception, 3-16

J
Java mode, 3-13

L

Little-endian mode
accessing amisaligned quad word, 3-10
byte ordering, 3-3
description, 3-3
mapping, quad word, 3-4
misaligned vector, 3-7
mixed-endian systems, 3-12
swapping, 3-6

Load/store
address generation, integer, 4-26
integer load instructions, 4-27
integer store instructions, 4-30

Log of zero exception, 3-16

Logical instructions, integer, 4-1, 4-15

Low-order byte numbering, 1-8

MOTOROLA

Index

M

Mathematical predicates, 4-23
Memory addressing, 4-3
Memory control instructions, 4-41
Memory management unit (MMU)
memory bandwidth, 5-1
overview, 1-12, 5-1
prefetch
data stream touch, 5-2
dssinstruction, 5-5
dst instruction, 5-2
dstst instruction, 5-4
dstt instruction, 5-4
exception behavior, 5-6
software-directed, 5-2
stopping streams, 5-5
storing to streams, 5-4
transient streams, 5-4
Memory operands, 4-3
Memory sharing, 5-1
Memory, data organization, 3-1
Merge instructions, 4-34
Misalignment
accessing a quad word
big-endian mode, 3-8
little-endian mode, 3-10
misaligned accesses, 3-1
misaligned vectors, 3-7
Mixed-endian systems, 3-12
Modulo mode, 4-4
Move to/from CR instructions, 4-40
MSR (machine state register)
bit settings, 2-9
LE hit, 3-3
Multiply-add instructions, 4-20
Munging, description, 3-4

N

NaN (not a number)
conversion to integer, 3-18
floating-point NaNs, 3-17
operand exception, 3-15
precedence, 3-18
production, 3-18

Non-Java mode, 3-14

O

OEA (operating environment architecture)
definition, xx
programming model, 2-2

Operands
conventions, description, 1-7, 3-1

Index-3

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

floating-point conventions, 1-8

memory operands, 4-3
Operating environment architecture, see OEA
Operations

interelement operations, 1-9

intraelement operations, 1-9
Overflow exception, 3-17

P

Pack instructions, 4-31
Permutation instructions, 4-31
Permute instructions, 4-36
PowerPC architecture support
computation modes, 4-2
execution model, 4-2
features summary
defined features, 1-4
features not defined, 1-6
instruction list, A-1, B-1
levels of the PowerPC architecture, 1-5
operating environment architecture, xx
programming model, 1-6
registers affected by AltiVec technology, 2-8
user instruction set architecture, xix, 1-5
virtual environment architecture, xix, 1-5
Prefetch, software-directed, 5-2
Processor control instructions, 4-39

Q

QNaN arithmetic, 3-18

R

Record hit (Rc), 6-2
Registers
CR, 2-8
overview, 1-6, 2-1
PowerPC register set, 2-1, 2-8
register file, 2-4
SRRO/SRR1, 2-10
VRs, 2-4
VRSAVE, 2-6
VSCR, 2-4
Rotate instructions, 4-16
Rounding/conversion instructions, FP, 4-21

S

Saturation detection, 4-4
Scalars
aligned, LE mode, 3-4
loads and stores, 3-11
misaligned loads and stores, 3-11

Index-4 AltiVec Technology Programming Environments Manual

Segment registers
T bit, Glossary-4
Select instruction, 4-36
Shift instructions, 4-16, 4-37
SIMD-style extension, 1-3, 1-7
Simplified mnemonics, 4-40
SNaN arithmetic, 3-18
Splat instructions, 4-35
SRRO/SRR1 (status save/restore registers), 2-10
Streams
address tranglation, 5-7
definition, 5-3
implementation assumptions, 5-9
synchronization, 5-7
usage notes, 5-7
Stride, 5-2
Swizzle, see Double-word swap
Synchronization streams, 5-7

T

Terminology conventions, Xxvii
Transient streams, 5-4

U

UISA (user instruction set architecture), xix, 1-5
programming model, 2-2

Underflow exception, 3-17

Unpack instructions, 4-33

User instruction set architecture, see UISA

\Y,

VEA (virtual environment architecture)
definition, xix, 1-5
programming model, 2-2
user-level cache control instructions, 4-41
Vector formatting instructions, 4-31
Vector integer compare instructions, see Integer
compare instructions
Vector merge instructions, 4-34
Vector pack instructions, 4-31
Vector permutation instructions, 4-31
Vector permute instructions, 4-36
Vector select instruction, 4-36
Vector shift instructions, 4-37
Vector splat instructions, 4-35
Vector unpack instructions, 4-33
Virtual environment architecture, see VEA
VRs (vector registers)
memory access alignment and VR, 3-6
register file, 2-4
VRSAVE register, 2-6
V SCR (vector status and control register), 2-4

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

X
XOR (exclusive OR), 3-4

Z
Zero divide exception, 3-16

MOTOROLA Index Index-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Index-6 AltiVec Technology Programming Environments Manual MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Overview

AltiVec Register Set

Operand Conventions

Addressing Modes and Instruction Set Summary

Cache, Exceptions, and Memory Management

AltiVec Instructions

Appendix A: Instruction Set Mnemonics - Decimal

Appendix B: Instruction Set Mnemonics - Binary

Appendix C: Opcodes - Decimal

Appendix D: Opcodes - Binary

Appendix E: Forms

Appendix F: Legends

Appendix G: Revision History

Glossary of Terms and Abbreviations

Index

For More Information On This Product,
Go to: www.freescale.com

@

O

L

IND

@

LN am

O

L

IND

Freescale Semiconductor, Inc.

Overview

AltiVec Register Set

Operand Conventions

Addressing Modes and Instruction Set Summary

Cache, Exceptions, and Memory Management

AltiVec Instructions

Appendix A: Instruction Set Mnemonics - Decimal

Appendix B: Instruction Set Mnemonics - Binary

Appendix C: Opcodes - Decimal

Appendix D: Opcodes - Binary

Appendix E: Forms

Appendix F: Legends

Appendix G: Revision History

Glossary of Terms and Abbreviations

Index

For More Information On This Product,
Go to: www.freescale.com

