

MOS INTEGRATED CIRCUIT $\mu PD30550$

V_R5500[™]

64-/32-BIT MICROPROCESSOR

DESCRIPTION

The μ PD30550 (VR5500) is a member of the VR SeriesTM of RISC (Reduced Instruction Set Computer) microprocessors. It is a high-performance 64-/32-bit microprocessor that employs the RISC architecture developed by MIPSTM.

The VR5500 allows selection of a 64-bit or 32-bit bus width for the system interface, and can operate using protocols compatible with the VR5000 SeriesTM and VR5432TM.

Detailed function descriptions are provided in the • VR5500 User's Manual (U16044E) user's manual. Be sure to read the manual before designing.

FEATURES

- MIPS 64-bit RISC architecture
- High-speed operation processing
 - Two-way superscaler super pipeline
 - 300 MHz product: 603 MIPS 400 MHz product: 804 MIPS
- High-speed translation lookaside buffer (TLB) (48 entries)
- Address space
 - Physical: 36 bits (64-bit bus selected) 32 bits (32-bit bus selected)
 - 32 bits (32-bit bus selected)
 - Virtual: 40 bits (in 64-bit mode) 31 bits (in 32-bit mode)
- On-chip floating-point unit (FPU)
 - Supports sum-of-products instructions
- On-chip primary cache memory (instruction/data: 32 KB each)
 - 2-way set associative
 - Supports line lock feature

- 64-/32-bit address/data multiplexed bus
 - Bus width selectable during reset
 - Bus protocol compatibility with existing products retained
- Maximum operating frequency
 - 300 MHz product: Internal 300 MHz, external 133 MHz

400 MHz product: Internal 400 MHz, external 133 MHz

- External/internal multiplication factor selectable from ×2 to ×5.5 by increments of .5
- Conforms to MIPS I, II, III, IV and MIPS64 instruction sets. Instruction set extensions supported include product-sum operation instruction, rotate instruction, register scan instruction, and instruction for low power mode.
- Hardware debug functions supported are N-Wire and JTAG.
- Supply voltage

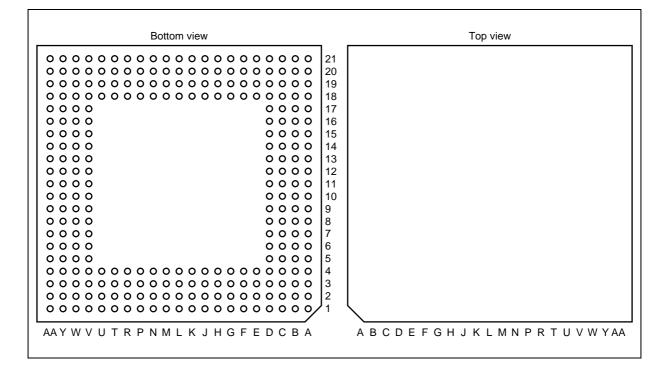
 Core block:
 1.5 V ±5% (300 MHz product)

 1.6 to 1.7 V (400 MHz product)

 I/O block:
 3.3 V ±5%, 2.5 V ±5%

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

APPLICATIONS


- Set-topboxes
- RAID
- High-end embedded devices, etc.

ORDERING INFORMATION

Part Number	Package	Maximum Operating Frequency (MHz)
μPD30550F2-300-NN1	272-pin plastic BGA (C/D advanced type) (29 \times 29)	300
μPD30550F2-400-NN1	272-pin plastic BGA (C/D advanced type) (29×29)	400

PIN CONFIGURATION

 272-pin plastic BGA (C/D advanced type) (29 × 29) μPD30550F2-300-NN1 μPD30550F2-400-NN1

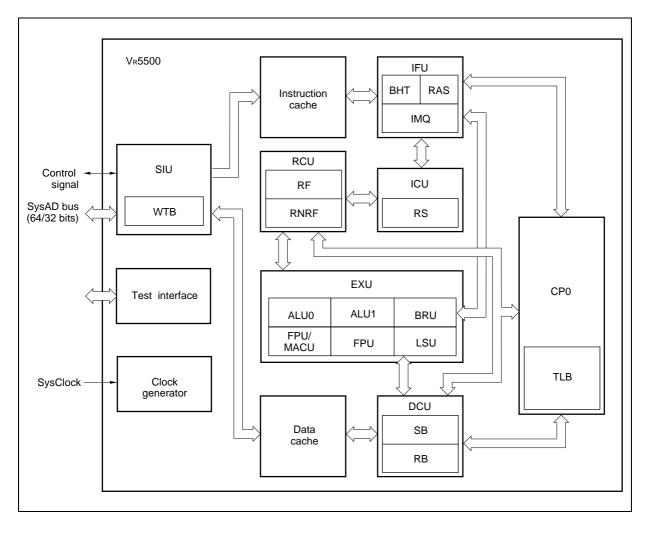
No.	Pin Name	No.	Pin Name	No.	Pin Name	No.	Pin Name
A1	Vss	B17	SysAD27	D12	Vss	H4	Vdd
A2	Vss	B18	VddIO	D13	SysAD31	H18	Vss
A3	VddIO	B19	VddIO	D14	Vdd	H19	Vss
A4	VddIO	B20	Vss	D15	SysAD60	H20	Vss
A5	Reset#	B21	Vss	D16	Vss	H21	SysAD21
A6	PReq#	C1	VddIO	D17	SysAD26	J1	SysCmd7
A7	ValidIn#	C2	VddIO	D18	Vss	J2	SysCmd8
A8	ValidOut#	C3	Vss	D19	Vss	J3	TIntSel
A9	Vss	C4	Vss	D20	VddIO	J4	Int0#
A10	SysADC7	C5	Vss	D21	VddIO	J18	SysAD52
A11	SysADC3	C6	Vdd	E1	SysCmd0	J19	SysAD20
A12	SysADC1	C7	WrRdy#	E2	DisDValidO#	J20	SysAD51
A13	SysADC4	C8	Vss	E3	DWBTrans#	J21	SysAD19
A14	SysAD62	C9	SysID1	E4	O3Return#	K1	Int1#
A15	SysAD30	C10	Vdd	E18	SysAD57	K2	Vss
A16	SysAD28	C11	SysADC2	E19	SysAD25	K3	Vss
A17	SysAD59	C12	Vss	E20	SysAD56	K4	Vss
A18	VddIO	C13	SysAD63	E21	SysAD24	K18	Vdd
A19	VddIO	C14	Vdd	F1	SysCmd1	K19	Vdd
A20	Vss	C15	SysAD29	F2	Vss	K20	Vdd
A21	Vss	C16	Vss	F3	Vss	K21	Vdd
B1	Vss	C17	SysAD58	F4	Vss	L1	Int2#
B2	Vss	C18	VddIO	F18	Vdd	L2	Int3#
B3	VddIO	C19	Vss	F19	Vdd	L3	Int4#
B4	VddIO	C20	VddIO	F20	Vdd	L4	Int5#
B5	ColdReset#	C21	VddIO	F21	SysAD55	L18	SysAD17
B6	Release#	D1	VddIO	G1	SysCmd2	L19	SysAD49
B7	ExtRqst#	D2	VddIO	G2	SysCmd3	L20	SysAD18
B8	BusMode	D3	Vss	G3	SysCmd4	L21	SysAD50
B9	SysID2	D4	Vss	G4	SysCmd5	M1	RMode#/BKTGIO#
B10	Vdd	D5	IC	G18	SysAD23	M2	Vdd
B11	SysADC6	D6	Vdd	G19	SysAD54	M3	Vdd
B12	Vss	D7	RdRdy#	G20	SysAD22	M4	Vdd
B13	SysADC0	D8	Vss	G21	SysAD53	M18	Vss
B14	Vdd	D9	SysID0	H1	SysCmd6	M19	Vss
B15	SysAD61	D10	Vdd	H2	Vdd	M20	Vss
B16	Vss	D11	SysADC5	H3	Vdd	M21	Vss

Caution Leave the IC pin open.

Remark # indicates active low.

No.	Pin Name	No.	Pin Name	No.	Pin Name	No.	Pin Name
N1	VddIO	T21	SysAD12	W2	VddIO	Y12	Vdd
N2	NMI#	U1	NTrcClk	W3	Vss	Y13	SysAD3
N3	VddIO	U2	NTrcData0	W4	Vss	Y14	Vss
N4	BigEndian	U3	NTrcData1	W5	VDDPA2	Y15	SysAD37
N18	SysAD15	U4	NTrcData3	W6	Vss	Y16	SysAD39
N19	SysAD47	U18	SysAD10	W7	VddIO	Y17	SysAD40
N20	SysAD16	U19	SysAD42	W8	Vdd	Y18	VddIO
N21	SysAD48	U20	SysAD11	W9	JTDI	Y19	VddIO
P1	Vss	U21	SysAD43	W10	Vss	Y20	Vss
P2	Vss	V1	NTrcData2	W11	SysAD1	Y21	Vss
P3	Vss	V2	NTrcEnd	W12	Vdd	AA1	Vss
P4	Vss	V3	Vss	W13	SysAD35	AA2	Vss
P18	Vdd	V4	Vss	W14	Vss	AA3	VddIO
P19	Vdd	V5	VssPA2	W15	SysAD38	AA4	VddIO
P20	Vdd	V6	Vss	W16	Vdd	AA5	VddPA1
P21	SysAD46	V7	VddIO	W17	SysAD9	AA6	VddIO
R1	DivMode0	V8	Vdd	W18	Vss	AA7	IC
R2	DivMode1	V9	JTMS	W19	Vss	AA8	JTDO
R3	DivMode2	V10	Vss	W20	VddIO	AA9	DrvCon
R4	VddIO	V11	SysAD33	W21	VddIO	AA10	Vss
R18	SysAD44	V12	Vdd	Y1	Vss	AA11	SysAD0
R19	SysAD13	V13	SysAD4	Y2	Vss	AA12	SysAD2
R20	SysAD45	V14	Vss	Y3	VddIO	AA13	SysAD34
R21	SysAD14	V15	SysAD7	Y4	VddIO	AA14	SysAD36
T1	Vdd	V16	Vdd	Y5	VssPA1	AA15	SysAD5
T2	Vdd	V17	SysAD41	Y6	SysClock	AA16	SysAD6
Т3	Vdd	V18	Vss	Y7	JTRST#	AA17	SysAD8
T4	Vdd	V19	Vss	Y8	Vdd	AA18	VddIO
T18	Vss	V20	VddIO	Y9	JTCK	AA19	VddIO
T19	Vss	V21	VddIO	Y10	Vss	AA20	Vss
T20	Vss	W1	VDDIO	Y11	SysAD32	AA21	Vss

Caution Leave the IC pin open.


Remarks 1. # indicates active low.

PIN NAMES

BigEndian:	Big endian	PReg#:	Processor request
BKTGIO#:	Break/trigger input/output	RdRdy#:	Read ready
BusMode:	Bus mode	Release#:	Release
ColdReset#:	Cold reset	Reset#:	Reset
DisDValidO#:	Disable delay ValidOut#	SysAD(63:0):	System address/data bus
DivMode(2:0):	Divide mode	SysADC(7:0):	System address/data check
DrvCon:	Driver control		bus
DWBTrans#:	Doubleword block transfer	SysClock:	System clock
ExtRqst#:	External request	SysCmd(8:0):	System command/data
IC	Internally connected		identifier bus
Int(5:0)#:	Interrupt	SysID(2:0):	System bus identifier
JTCK:	JTAG clock	TIntSel:	Timer interrupt selection
JTDI:	JTAG data input	ValidIn#:	Valid input
JTDO:	JTAG data output	ValidOut#:	Valid output
JTMS:	JTAG mode select	Vdd:	Power supply for CPU core
JTRST#:	JTAG reset	VDDIO:	Power supply for I/O
NMI#:	Non-maskable interrupt	VDDPA1, VDDPA2:	Noise Sensitive Vod for PLL
NTrcClk:	N-Trace clock	Vss:	Ground
NTrcData(3:0):	N-Trace data output	VssPA1, VssPA2:	Noise Sensitive Vss for PLL
NTrcEnd:	N-Trace end	WrRdy#:	Write ready
O3Return#:	Out-of-Order Return mode		

Remark # indicates active low.

INTERNAL BLOCK DIAGRAM

CONTENTS

1.	PIN FUNCTIONS	8
	1.1List of Pin Functions	8
	1.2Recommended Connection of Unused Pins	12
2.	ELECTRICAL SPECIFICATIONS	14
3.	PACKAGE DRAWING	24
4.	RECOMMENDED SOLDERING CONDITIONS	25

1. PIN FUNCTIONS

Remark # indicates active low.

1.1 List of Pin Functions

(1) System interface signals

Pin Name	I/O	Function
SysAD(63:0)	I/O	System address/data bus A 64-bit bus for communication between the processor and external agent. The lower 32 bits (SysAD(31:0)) are used in 32-bit bus mode.
SysADC(7:0)	I/O	System address/data check bus A bus for SysAD bus parity. Valid only during a data cycle. The lower 32 bits (SysADC(3:0)) are used in 32-bit bus mode.
SysCmd(8:0)	1/0	System command/data ID bus A 9-bit bus that transfers command and data identifiers between the processor and external agent
SysID(2:0)	I/O	System bus protocol ID These signals transfer request identifiers in the out-of-order return mode. The processor drives a valid identifier in synchronization with the activation of the ValidOut# signal. The external agent must drive valid identifiers in synchronization with the activation of the ValidIn# signal.
ValidIn#	Input	Valid In This signal indicates the external agent is driving a valid address or data onto the SysAD bus, a valid command or data identifier onto the SysCmd bus, or a valid request identifier onto the SysID bus in the out-of-order return mode.
ValidOut#	Output	Valid out This signal indicates the processor is driving a valid address or data onto the SysAD bus, a valid command or data identifier onto the SysCmd bus, or a valid request identifier onto the SysID bus in the out-of-order return mode.
RdRdy#	Input	Read ready This signal indicates the external agent is ready to accept a processor read request
WrRdy#	Input	Write ready This signal indicates the external agent is ready to accept a processor write request
ExtRqst#	Input	External request This signal indicates the external agent is requesting the right to use the system interface
Release#	Output	Releases interface This signal indicates the processor is releasing the system interface to external agent control
PReq#	Output	Processor request This signal indicates the processor has a request that is pending

(2) Initialization interface signals

(1/2)

Pin Name	I/O	Function
DivMode(2:0)		Division mode These signals set the division ratio of PClock and SysClock as follows: 111: 5.5 110: 5 101: 4.5 100: 4 011: 3.5 010: 3 001: 2.5 000: 2 Set the input levels of these signals before a power-on reset. Make sure that the levels of these signals do not change while the VR5500 is operating.
BigEndian	Input	 Endian mode This signal sets the byte ordering for addressing. 1: Big endian 0: Little endian Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change during VR5500 operation.
BusMode	Input	Bus mode This signal sets the bus width of the system interface. 1: 64 bits 0: 32 bits Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change during VR5500 operation.
TIntSel	Input	Interrupt source select This signal sets the interrupt source to be assigned to the IP7 bit of the Cause register. 1: Timer interrupt 0: Int5# input and external write request (SysAD5) Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change during VR5500 operation.
DisDValidO#	Input	 ValidOut# delay enable 1: ValidOut# is active even while the address cycle is stalled 0: ValidOut# is active during the address issuance cycle only Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change during VR5500 operation.
DWBTrans#	Input	 Doubleword block transfer enable (valid in 32-bit bus mode only) 1: Disabled 0: Enabled Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change during VR5500 operation.

Remark 1: High level, 0: Low level

		(2/2	
Pin Name	I/O	Function	
O3Return#	Input	Out-of-Order Return mode This signal sets the protocol of the system interface. 1: Normal mode 0: Out-of-order return mode Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change during VR5500 operation.	
ColdReset#	Input	Cold reset This signal completely initializes the internal status of the processor. Deassert it in synchronization with SysClock.	
Reset#	Input	Reset This signal logically initializes the internal status of the processor. Deassert it in synchronization with SysClock.	
DrvCon	Input	Drive control This signal sets the impedance of the external output driver. 1: Low 0: Normal (recommended) Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change during VR5500 operation.	
		Remark Applies to revision 2.0 or later products. Fixed to 0 in revision 1.x products.	

Remark 1: High level, 0: Low level

The O3Return#, DWBTrans#, DisDValidO#, and BusMode signals are used for determining the protocol of the system interface. The protocol is selected as follows in accordance with the setting of these signals.

Protocol	O3Return#	DWBTrans#	DisDValidO#	BusMode
V _R 5000 [™] compatible	1	1	1	1
RM523x compatible	1	1	1	0
VR5432 native mode compatible	1	0	0	0
Out-of-order return mode	0	Arbitrary	Arbitrary	Arbitrary

Remark 1: High level, 0:Low level

RM523x is a product of PMC-Sierra, Inc.

(3) Interrupt interface signals

Pin Name	I/O	Function
Int(5:0)#	Input	Interrupt
		These are general-purpose processor interrupt requests. The input states can be checked by the Cause register.
		Whether Int5# is acknowledged or not depends on the status of the TIntSel signal during reset.
NMI#	Input	Non-maskable interrupt
		This is the non-maskable interrupt request.

(4) Clock interface signals

Pin Name	I/O	Function
SysClock	Input	System clock
		Clock input to the processor
VddPA1	-	VDD for PLL
VddPA2		Power supply for the internal PLL
VssPA1	-	Vss for PLL
VssPA2		Ground for the internal PLL

(5) Power supply

Pin Name	I/O	Function
Vdd	_	Power supply pin for core
VddIO	_	Power supply pin for I/O
Vss	_	Ground potential pin

Caution The V_R5500 uses two separate power supply pins. The power supply pins can be applied in any sequence. Power application to the pins must occur within 100ms of each other.

(6) Test interface signals

Pin Name	I/O	Function
NTrcData(3:0)	Output	Trace data
		Trace data output
NTrcEnd	Output	Trace end
		This signal indicates the end of a trace data packet.
NTrcClk	Output	Trace clock
		Clock for the test interface. The same clock as SysClock is output.
RMode#/	I/O	Reset mode/break trigger I/O
BKTGIO#		When the JTRST# signal is active, this is a debug reset mode input signal .
		During normal operation this serves as a break or trigger I/O signal.
JTDI	Input	JTAG data input
		Serial data input for JTAG
JTDO	Output	JTAG data output
		Serial data output for JTAG. Output is performed in synchronization with the rise of JTCK.
JTMS	Input	JTAG mode select
		This signal selects the JTAG test mode.
JTCK	Input	JTAG clock input
		Serial clock input for JTAG. The maximum frequency is 33 MHz. There is no need for it to be
		synchronized with SysClock.
JTRST#	Input	JTAG reset input
		A signal for initializing the JTAG test module.

1.2 Recommended Connection of Unused Pins

(1) System interface pins

(a) 32-bit bus mode

The VR5500 allows selection of a SysAD bus width from 64 bits or 32 bits. When the 32-bit bus mode is selected, the VR5500 operates using only the required system interface pins. Therefore, set the unused pins as follows when operating the VR5500 in the 32-bit bus mode.

Pin Name	Recommended Connection of Unused Pins		
SysAD(63:32)	Leave open		
SysADC(7:4)	Leave open		

(b) Normal mode

The V $_{R5500}$ can process read/write transactions regardless of the order in which requests are issued in the out-of-order return mode. The SysID(2:0) signals are used to identify each request during this processing. Set these signals, which are not used in the normal mode, as follows.

Pin Name	Recommended Connection
	of Unused Pins
SysID(2:0)	Leave open

(c) Parity bus

The VR5500 allows selection of whether the data is protected using parity. When parity is used, the parity data is output from the processor or external agent to the SysADC bus.

However, whether the parity is used or not is selected by software, so unless the program is started, the V_R5500 cannot determine the operation of the SysADC bus. Therefore, care must be taken to prevent the SysADC bus from being left open or in a high-impedance state.

Each pin of the SysADC bus should be connected to VDDIO via a high resistance value resistor when parity is not used.

(2) Test interface pins

NEC

The V_R5500 can be used to perform testing and debugging via N-Wire and JTAG with the device mounted on the board. The test interface pins are used for connection with the external debug tool during this debugging. When this test interface is not going to be used and when it is in normal operation mode, set the test interface pins as follows.

Pin Name	Recommended Connection of Unused Pins
JTCK	Pull up
JTDI	Pull up
JTMS	Pull up
JTRST#	Pull up
JTDO	Leave open
NTrcClk	Leave open
NTrcData(3:0)	Leave open
NTrcEnd	Leave open
RMode#/BKTGIO#	Pull up

2. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VddIO		-0.5 to +4.0	V
	Vdd		-0.5 to +2.0	V
	VddP		-0.5 to +2.0	V
Input voltage ^{Note}	Vi		-0.5 to VppIO + 0.3	V
		Pulse of less than 7 ns	-1.5 to VppIO + 0.3	V
Operating case temperature	Tc		-10 to +85	°C
Storage temperature	Tstg		-40 to +125	°C

Note The upper limit of the input voltage (VccIO + 0.3) is +4.0 V.

Cautions 1. Do not short-circuit two or more outputs at the same time.

2. The maximum ratings shown in the table above indicate the point at which the product is on the verge of being physically damaged. Exceeding the maximum ratings even momentarily on any parameter may cause such damage. Therefore do not use the product under conditions which will violate these ratings.

The specifications and conditions shown in the following DC Characteristics and AC Characteristics sections are the ranges within which the product can normally operate and the quality can be guaranteed.

Operating conditions

(1) 300 MHz product

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Supply voltage	VDDIO		2.375	2.625	V
			3.135	3.465	V
	Vdd		1.425	1.575	V
	VDDP		1.425	1.575	V

Caution V_{DD} can also be used with the voltage range of the 400 MHz product (1.6 to 1.7 V). Internal operation at 300 MHz is still guaranteed. The core block supply current in this case (MAX. 1.8 A) is the same value as the 400 MHz product.

(2) 400 MHz product

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Supply voltage	VDDIO		2.375	2.625	V
			3.135	3.465	V
	Vdd		1.6	1.7	V
	VDDP		1.6	1.7	V

Caution VDD can also be used with the voltage range of the 300 MHz product (1.425 to 1.575 V). In this case, internal operation at 300 MHz is guaranteed only. The core block supply current in this case (MAX. 1.4 A) is the same value as the 300 MHz product.

Supply Current

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Supply current of core block	Idd	300 MHz product, during normal		1.4	А
		operation,			
		$V_{DD} = V_{DD}P = 1.575 V$			
		400 MHz product, during normal		1.8	А
		operation,			
		$V_{DD} = V_{DD}P = 1.7 V$			
	ldd_sb	300 MHz product, in standby mode,		0.35	А
		$V_{DD} = V_{DD}P = 1.575 V$			
		400 MHz product, in standby mode,		0.45	А
		$V_{DD} = V_{DD}P = 1.7 V$			

Remark The supply current in the I/O block varies depending on the application used. It is normally 20% IDD or lower.

DC Characteristics

(1) When $V_{DD}IO = 2.5 V \pm 5\%$

(300 MHz product: $T_c = -10$ to +85°C, $V_{DD}IO = 2.5 V \pm 5\%$, $V_{DD} = V_{DD}P = 1.5 V \pm 5\%$) (400 MHz product: $T_c = -10$ to +85°C, $V_{DD}IO = 2.5 V \pm 5\%$, $V_{DD} = V_{DD}P = 1.6$ to 1.7 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output voltage, high	Vон	VddIO = MIN., Iон = 4 mA	$0.8\times V_{\text{DD}}IO$		V
Output voltage, low	Vol	VDDIO = MIN., IOL = 4 mA		0.4	V
Input voltage, high ^{Note 1}	VIH		2.0	VDDIO + 0.3	V
Input voltage, low ^{Note 1}	VIL		-0.5	$0.2\times V_{\text{DD}}IO$	V
		Pulse of less than 7 ns	-1.5	$0.2\times V_{\text{DD}}IO$	V
Input voltage, high ^{Note 2}	VIHC		$0.8\times V_{\text{DD}}IO$	VDDIO + 0.3	V
Input voltage, low ^{Note 2}	VILC		-0.5	$0.2\times V_{\text{DD}}IO$	V
		Pulse of less than 7 ns	-1.5	$0.2\times V_{\text{DD}}IO$	V
Input current leakage, high	Іцн	$V_I = V_{DD}IO$		5.0	μA
Input current leakage, low	Ilil	$V_i = 0 V$		-5.0	μA
Output current leakage, high	Ігон	Vo = VddIO		5.0	μA
Output current leakage, low	Ilol	Vo = 0 V		-5.0	μA

Notes 1. Does not apply to the SysClock pin.

2. Only applies to the SysClock pin.

(2) When $V_{DD}IO = 3.3 V \pm 5\%$

(300 MHz product: $T_c = -10$ to $+85^{\circ}C$, $V_{DDIO} = 3.3 V \pm 5\%$, $V_{DD} = V_{DD}P = 1.5 V \pm 5\%$) (400 MHz product: $T_c = -10$ to $+85^{\circ}C$, $V_{DDIO} = 3.3 V \pm 5\%$, $V_{DD} = V_{DD}P = 1.6$ to 1.7 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output voltage, high	Vон	VddIO = MIN., Iон = 4 mA	2.4		V
Output voltage, low	Vol	VddIO = MIN., Iol = 4 mA		0.4	V
Input voltage, high ^{Note 1}	Vih		2.0	$V_{DD}IO + 0.3$	V
Input voltage, low ^{Note 1}	VIL		-0.5	0.8	V
		Pulse of less than 7 ns	-1.5	0.8	V
Input voltage, high ^{Note 2}	VIHC		$0.8 \times V_{\text{DD}} IO$	$V_{DD}IO + 0.3$	V
Input voltage, low ^{Note 2}	VILC		-0.5	$0.2\times V_{\text{DD}}IO$	V
		Pulse of less than 7 ns	-1.5	$0.2\times V_{\text{DD}}IO$	V
Input current leakage, high	Іцн	VI = VDDIO		5.0	μA
Input current leakage, low	Luc	Vi = 0 V		-5.0	μA
Output current leakage, high	Ігон	Vo = VddIO		5.0	μA
Output current leakage, low	Ilol	Vo = 0 V		-5.0	μA

Notes 1. Does not apply to the SysClock pin.

2. Only applies to the SysClock pin.

Power-on Sequence

The VR5500 uses two power supply pins. These power supply pins can be applied in any sequence. However, power may not be applied to one pin more than 100 ms before it is applied to the other.

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Power-on delay	t DF		0	100	ms

Capacitance ($T_A = 25^{\circ}C$, $V_{DDIO} = V_{DD} = V_{DD}P = 0 V$)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Input capacitance	CIN	fc = 1 MHz		5.0	pF
Output capacitance	Соит	Unmeasured pins returned to 0 V		7.0	pF

AC Characteristics

 $(300 \text{ MHz products: } TC = -10 \text{ to } +85, \text{ VbbIO} = 2.5 \text{ V} \pm 5\%, 3.3 \text{ V} \pm 5\%, \text{ Vbb} = \text{VbbP} = 1.5 \text{ V} \pm 5\%)$ $(400 \text{ MHz product: } TC = -10 \text{ to } +85, \text{ VbbIO} = 2.5 \text{ V} \pm 5\%, 3.3 \text{ V} \pm 5\%, \text{ Vbb} = \text{VbbP} = 1.6 \text{ to } 1.7 \text{ V})$

Clock parameters (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
System clock high-level width	tсн			1.8		ns
System clock low-level width	tc∟			1.8		ns
Pipeline clock frequency		300 MHz product 400 MHz product		200	300	MHz
				200	400	MHz
System clock frequency ^{Note}		300 MHz	DivMode = 2:1	100	133	MHz
		product	DivMode = 2.5:1	80	120	MHz
			DivMode = 3:1	66.7	100	MHz
			DivMode = 3.5:1	57.2	85.7	MHz
			DivMode = 4:1	50	75	MHz
			DivMode = 4.5:1	44.5	66.6	MHz
			DivMode = 5:1	40	60	MHz
			DivMode = 5.5:1	36.4	54.5	MHz
		400 MHz	DivMode = 2:1	100	133	MHz
		product	DivMode = 2.5:1	80	133	MHz
			DivMode = 3:1	66.7	133	MHz
			DivMode = 3.5:1	57.2	114	MHz
			DivMode = 4:1	50	100	MHz
			DivMode = 4.5:1	44.5	88.8	MHz
			DivMode = 5:1	40	80	MHz
			DivMode = 5.5:1	36.4	72.7	MHz

Note This is the frequency at which the operation of the internal PLL is guaranteed.

Clock parameters (2/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
System clock cycle	tcp	300 MHz	DivMode = 2:1	7.5	10	ns
		product	DivMode = 2.5:1	8.3	12.5	ns
			DivMode = 3:1	10	15	ns
			DivMode = 3.5:1	11.7	17.5	ns
			DivMode = 4:1	13.3	20	ns
			DivMode = 4.5:1	15	22.5	ns
			DivMode = 5:1	16.7	25	ns
			DivMode = 5.5:1	18.3	27.5	ns
		400 MHz	DivMode = 2:1	7.5	10	ns
		product	DivMode = 2.5:1	7.5	12.5	ns
			DivMode = 3:1	7.5	15	ns
			DivMode = 3.5:1	8.8	17.5	ns
			DivMode = 4:1	10	20	ns
			DivMode = 4.5:1	11.3	22.5	ns
			DivMode = 5:1	12.5	25	ns
			DivMode = 5.5:1	13.8	27.5	ns
System clock jitter	tJ				5	%
System clock rise time	tcr				1.2	ns
System clock fall time	tcF				1.2	ns
JTAG clock frequency					33	MHz

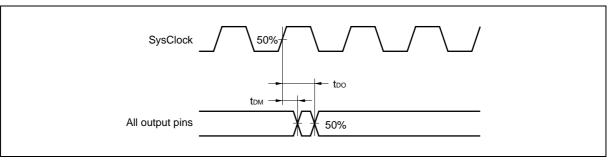
Remarks 1. The system clock jitter is a cycle-to-cycle jitter.

2. The JTAG clock runs asynchronously to the system clock.

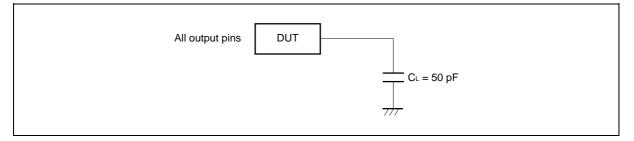
System interface parameters

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Data output hold time ^{Note 1}	tом		1.0		ns
Data output delay time ^{Note 1}	too			5.0	ns
Data input setup time ^{Note 2}	tos		1.5		ns
Data input hold time ^{Note 2}	tон	300 MHz product	1.0		ns
		400 MHz product	0.5		ns

Notes 1. Applies to the Release#, ValidOut#, SysAD(63:0), SysADC(7:0), SysCmd(8:0), and SysID(2:0) pins.

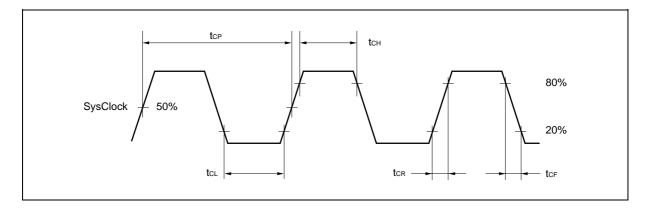

2. Applies to the ColdReset#, Reset#, Int(5:0), NMI#, ExtRqst#, RdRdy#, ValidIn#, SysAD(63:0), SysADC(7:0), SysCmd(8:0), and SysID(2:0) pins.

Load coefficient

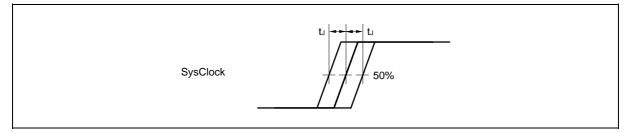

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Load coefficient	CLD			1.0	ns/25 pF

Measurement Conditions

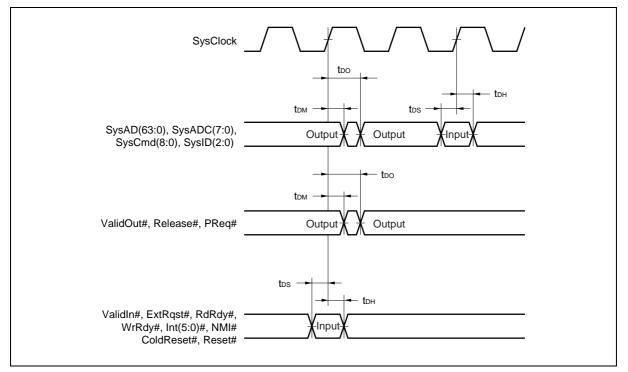
Measurement points

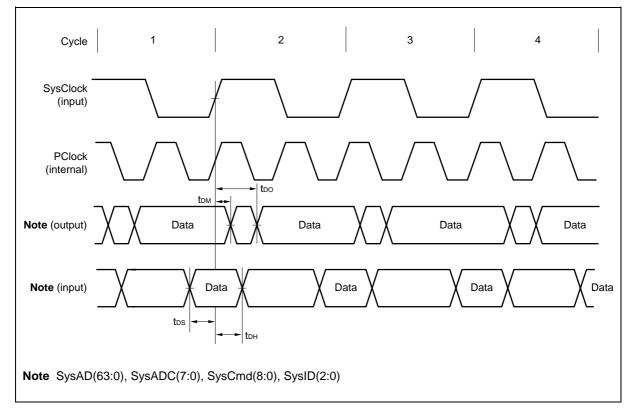


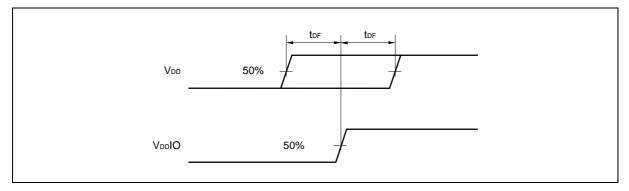
Load conditions

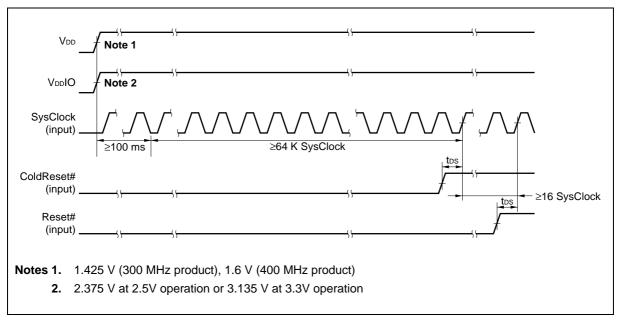


Timing Charts

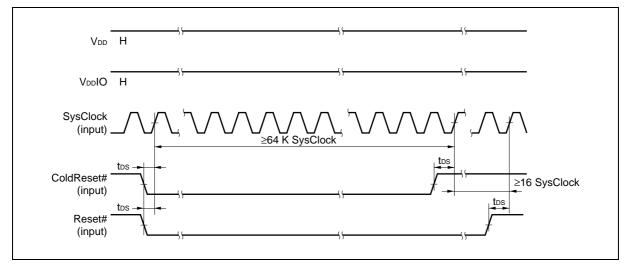

Clock timing


Clock jitter

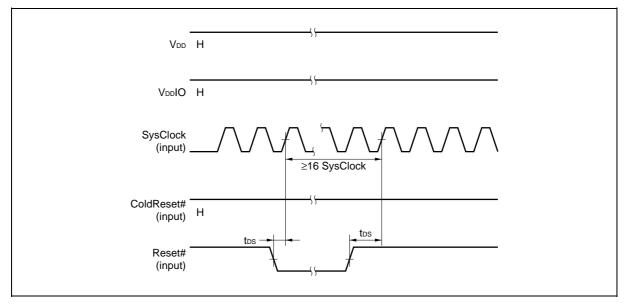

System interface edge timing



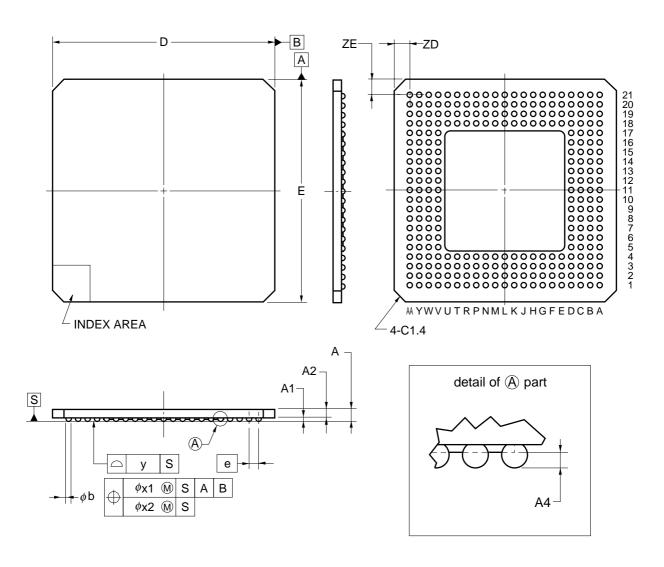
Power-on sequence



Reset Timing


Power-on reset timing

Cold reset timing



Warm reset timing

3. PACKAGE DRAWING

272-PIN PLASTIC BGA (CAVITY DOWN ADVANCED TYPE) (29x29)

ITEM	MILLIMETERS
D	29.00±0.20
Е	29.00±0.20
е	1.27
А	1.75±0.30
A1	0.60±0.10
A2	1.15
A4	0.25MIN.
b	φ0.75±0.15
x1	0.30
x2	0.15
У	0.20
ZD	1.80
ZE	1.80
	P272F2-127-BA1

4. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions.

For details on the recommended soldering conditions, refer to the **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 4-1. Surface mounting Type Soldering Conditions

μ PD30550F2-300-NN1: 272-pin plastic BGA (C/D advanced type) (29 × 29) μ PD30550F2-400-NN1: 272-pin plastic BGA (C/D advanced type) (29 × 29)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-103-3

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

- NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference document Electrical Characteristics for Microcomputer (U15170J)^{Note} **Note** This document number is that of Japanese version.

The related documents indicated in the publication may include preliminary versions. However, preliminary versions are not marked as such.

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

· Device availability

NEC

- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

- Sucursal en España Madrid, Spain Tel: 091-504 27 87 Fax: 091-504 28 60
- Succursale Française Vélizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

• Filiale Italiana Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

• Branch The Netherlands Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80

• Branch Sweden Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

• United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.

Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore Tel: 253-8311 Fax: 250-3583