

500mA Dual Linear Regulator with Internal Power Switch

www.DataShertaiTURES

- Continuous 3.3V Output from Three Inputs.
- Complete Power Management Solution.
- V_{CC}, V_{SBY} Regulator Supplies 500mA Output.
- Built-in Hysteresis When Selecting Input Supplies.
- Integrated Switch has Very Low R_{DS(ON)} 120mΩ (typ.).
- Integrated Switch Supplies 500mA From V_{AUX}.
- Output can be Forced Higher than Input (Off-State).

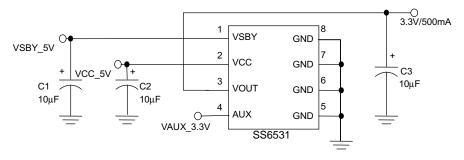
APPLICATIONS

- Desktop Computers.
- PCI Adapter Cards with Wake-On-LAN.
- Network Interface Cards (NICs).
- Multi Power System.
- System with Standby Capabilities.

DESCRIPTION

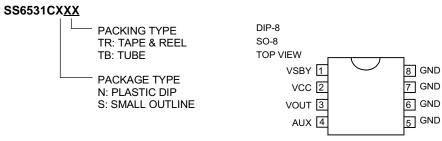
The SS6531 is a dual input regulator with V_{AUX} switch capable of delivering 3.3V/500mA continuously. The output power is provided from three independent input voltage sources on a prioritized basis. Power is always taken in priority using the following order V_{CC} , V_{SBY} , and V_{AUX} .

The **SS6531** meets Intel's "Instantly Available" power requirements which follows the "Advanced Configuration and Power Interface" (ACPI) standards. When either V_{CC} or V_{SBY} is present, the device automatically enables the regulator and produces a stable 3.3V output V_{OUT} . When only V_{AUX} (3.3V) is present, the device provides a low impedance direct connection (120m Ω typ.) from V_{AUX} to V_{OUT} .


The SS6531 also prevents excessive current from flowing V_{OUT} to either input voltage or ground when the output voltage is higher than the input voltage.

All the necessary control circuitry needed to provide a smooth and automatic transition between all the three supplies has been incorporated. This allows both V_{CC} and V_{SBY} to be dynamically switched without loss of output voltage.

TYPICAL APPLICATION CIRCUIT


www.DataSheet.in

Dual input regulator with auxiliary power switch

ORDERING INFORMATION

PIN CONFIGURATION

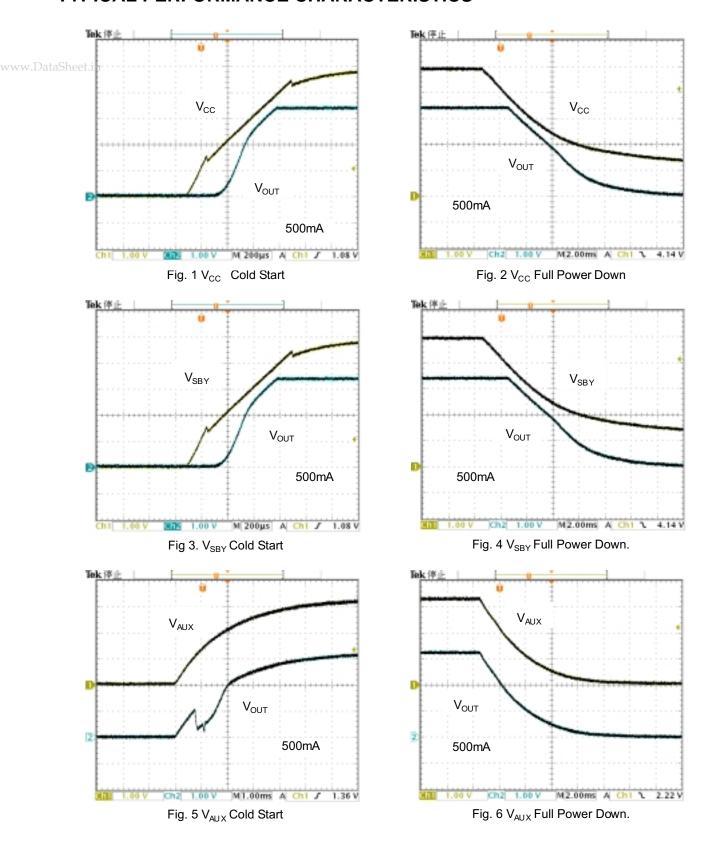
Example: SS6531CSTR

→ in SO-8 package, shipped on tape and reel PDIP is only available in tubes

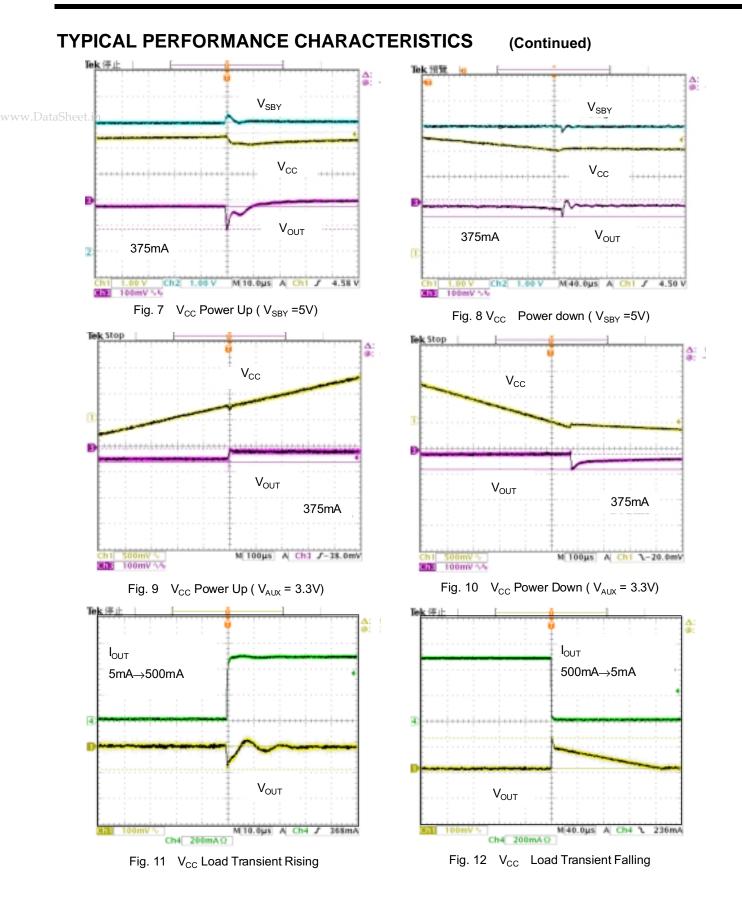
ABSOLUTE MAXIMUM RATINGS

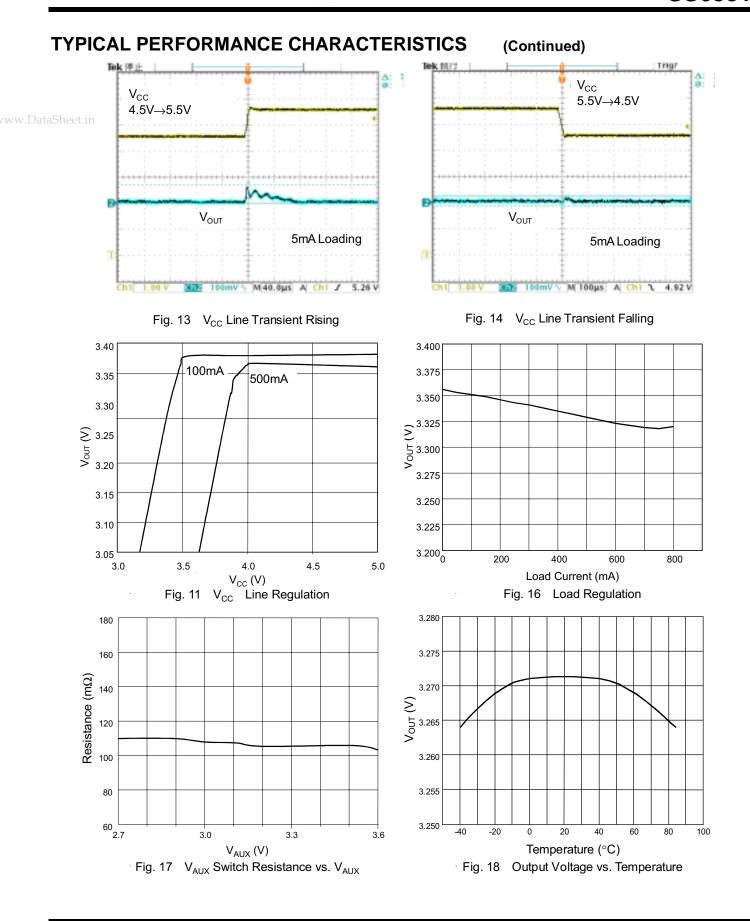
V _{CC} , V _{SBY} Input Voltage	7.0V
V _{AUX} Input Voltage	4.0V
V _{OUT} Output Voltage	5.0V
Operating Temperature Range	40°C~85°C
Storage Temperature Range	65°C ~ 150°C

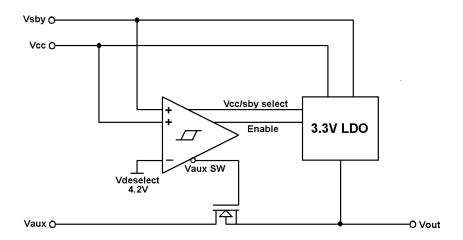
ELECTRICAL CHARACTERISTICS (V_{IN}= 5V, T_A=25°C, unless otherwise


specified.)

www.DataShee


PARAMETERS	CONDITIONS	MIN.	TYP.	MAX.	UNIT
iRegulated Output Voltage	0mA < I _{LOAD} < 500mA	3.135	3.300	3.465	V
Regulated Output Current		500			mA
Output Voltage Load Regulation	V_{CC} selected I_{LOAD} =50mA ~ 500 mA V_{SBY} selected I_{LOAD} =50mA ~ 500mA		20		mV
Output Voltage Line Regulation	V _{CC} =4.5V~5.5V, I _{LOAD} =5mA V _{SBY} =4.5V~5.5V, I _{LOAD} =5mA		2		mV
VCC Select Voltage VCC Deselect Voltage	V _{SBY} > V _{SBYDES} or V _{AUX} present V _{CC} < V _{CCDES}	3.90	4.50 4.20	4.60	V
V _{SBY} Select Voltage V _{SBY} Deselect Voltage	V _{AUX} present V _{SBY} < V _{SBYDES}	3.90	4.50 4.20	4.60	V
Hysteresis Voltage			0.30		V
Auxiliary Switch Resistance	V _{CC} , V _{SBY} are deselected		120	200	mΩ
Short Circuit Current	V _{CC/SBY} =5V, V _{OUT} =0V		1000		mA
V _{CC} Pin Reverse Leakage V _{SBY} Pin Reverse Leakage AUX Pin Reverse Leakage	One supply input taken to ground while the others remain at nominal voltage		5	50	μΑ
V _{CC} Supply Current (when V _{SBY} is not present)	V _{CC} > V _{CCSEL} , I _{LOAD} =0mA V _{CCDES} > V _{CC} > V _{OUT} V _{OUT} > V _{CC}		70 50 10	300 200 20	μΑ
V _{SBY} Supply Current (when V _{CC} is not present)	V _{SBY} > V _{CCSEL} , I _{LOAD} =0mA V _{SBYDES} > V _{SBY} > V _{OUT} V _{OUT} > V _{SBY}		70 50 10	300 200 20	μΑ
V _{AUX} Supply Current	V_{CC} or $V_{SBY} > V_{OUT}$ V_{CC} and $V_{SBY} < V_{OUT}$		10 50	100 400	μΑ
Ground Current	Both V_{CC} and V_{SBY} are deselected $V_{CC/SBY}$ =5V , I_{LOAD} = 0mA $V_{CC/SBY}$ =5V , I_{LOAD} = 500mA		60 100 100	300 500 500	μА


TYPICAL PERFORMANCE CHARACTERISTICS



BLOCK DIAGRAM

ww.DataSheet.in

PIN DESCRIPTION

PIN 1: VSBY - Standby supply voltage (5V)

input for 3.3V regulator when VCC falls below V_{CCDES}. Some NICs that operate in "Wake-On-LAN" mode get a 5V standby through a cable that connects directly to a specific header on the Motherboard.

PIN 2: VCC - Primary supply voltage (5V) input

for 3.3V regulator.

PIN 3: VOUT - 3.3V regulated output voltage

when either V_{CC} or V_{SBY} is

present. When only V_{AUX} (3.3V) is present, V_{OUT} voltage comes from V_{AUX} through an internal low impedance switch.

PIN 4: AUX - Auxiliary supply voltage (3.3V)

input for low impedance switch.

PIN 5-8: GND - Negative reference for all voltages.

APPLICATIONS INFORMATION

The Requirement for External Capacitors

The selection of the output capacitor is based on two requirements: LDO compensation and the transition between power sources. During the takeover between sources, the output capacitor provides the loading. Therefore a larger output capacitor can improve the transition. And since the output capacitor plays the important role in the compensation of LDO, a $10\mu F$ Tantalum capacitor or larger is recommended.

The input capacitor is required to be as close to the

IC as possible. The input capacitor can reduce the parasitic effect formed by the power supply output impedance or the trace. A $10\mu F$ Tantalum capacitor is a good choice. Additional ceramic capacitor can be placed close to input and output to reduce the high frequency noise. A $0.1\mu F$ is recommended.

The layout and Thermal Considerations

The SS6531 is housed in a thermally enhanced package where the GND pins (Pin5 to Pin8) are integrated to the leadframe. Generally,

heat sinks are not available for most surface-mounted devices. Instead, they rely on the printed-circuit board to provide the thermal path. When the SS6531 operates normally, the maximum power dissipation is

$$P_D = (V_{IN} - V_{OUT}) \times I_{OUT} = (5 - 3.3) \times 0.5 = 0.85W$$

At the maximum operation temperature, the thermal resistance seen by the device, or the combination of all the thermal paths, should be $R_{JA} < \frac{165-85}{0.85} = 94^{\circ}\text{C/W} \; .$

When the device is mounted on a double-sided printed circuit board, the ground plane is the most

used thermal path. To make sure the thermal resistance small enough and the shutdown function work normally, the thermal resistance between GND pins to GND plane should be as small as possible by means of adding more vias. And the GND plane should be at least 1 square centimeters of copper.

The layout of SS6531 is shown in Fig.1. In Fig. 2, the thermal resistance R_{JA} is 70.36°C/W where the SS6531 is mounted on the double-sided PCB and measured under the forced-air thermal chamber.

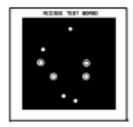


Fig.19 The layout of SS6531

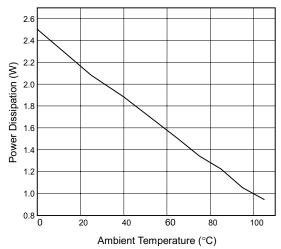


Fig.20 The power thermal shutdown dissipation vs. ambient temperature where R_{JA} is 70.36°C/W in the forced-air thermal chamber

The Application circuits

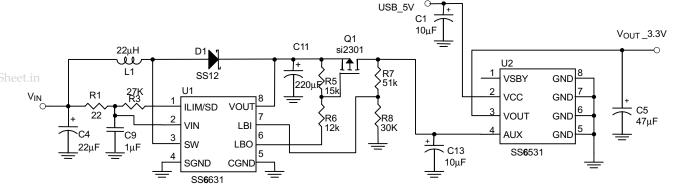


Fig.21 The Step Up/Down converter with OR function for dual power system

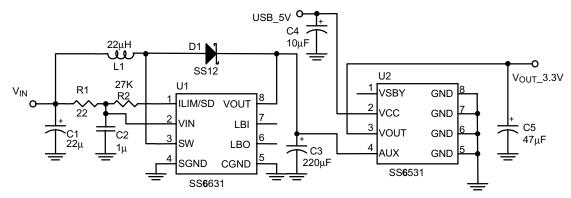
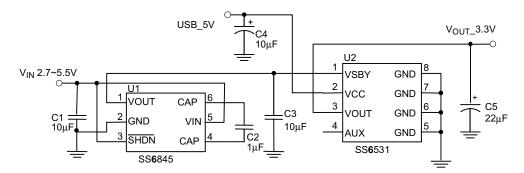
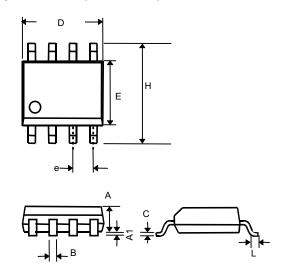
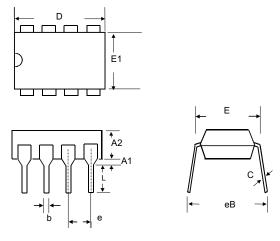


Fig.22 The Step Up converter with OR function for dual power system




Fig. 23 The Step Up/Down converter with OR function for dual power system

PHYSICAL DIMENSIONS


8 lead plastic SO (units: mm)

ww DataSheet in

SYMBOL	MINI	MAY		
STIVIBUL	MIN	MAX		
Α	1.35	1.75		
A1	0.10	0.25		
В	0.33	0.51		
С	0.19	0.25		
D	4.80	5.00		
Е	3.80	4.00		
е	1.27(TYP)			
Н	5.80	6.20		
L	0.40	1.27		

8 lead plastic DIP

SYMBOL	MIN	MAX		
A1	0.381	_		
A2	2.92	4.96		
b	0.35	0.56		
С	0.20	0.36		
D	9.01	10.16		
Е	7.62	8.26		
E1	6.09	7.12		
е	2.54 (TYP)			
eB	— 10.92			
L	2.92	3.81		

Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no guarantee or warranty, express or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of Silicon Standard Corporation or any third parties.