BFY50

MECHANICAL DATA Dimensions in mm (inches)

MEDIUM POWER AMPLIFIERS NPN SILICON PLANAR TRANSISTOR

Description

The BFY50 is a Silicon Planar Epitaxial NPN Transistor in Jedec TO39 metal case. they are intended for general purpose linear and switching applications

TO39 PACKAGE (TO-205AD)

Underside View

Pin 1 = Emitter Pin 2 = Base Pin 3 = Collector

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

	0000	
V _{CBO}	Collector – Base Voltage	80V
V _{CEO}	Collector – Emitter Voltage	35V
V _{EBO}	Emitter – Base Voltage	6V
I _C	Collector Current	1A
I _{CM}	Collector Peak Current	1.5A
P _{TOT}	Total Power Dissipation @ $T_{amb} \le 25^{\circ}C$	0.8W
	@ $T_{case} \le 25^{\circ}C$	5W
T _{stg,} T _i	Storage and Operatuing Junction Temperature	–65 to 200°C
R _{j-case}	Thermal Resistance Junction to Case	35°C / W
R _{j-amb}	Thermal Resistance Junction to Ambient	218°C / W

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{(BR)CBO*}	Collector – Base Breakdown Voltage	I _C = 100μA	$I_{E} = 0$	80			
V _{(BR)CEO*}	Collector – Emitter Breakdown Voltage	I _C = 30mA	$I_{B} = 0$	35			V
V _{(BR)EBO*}	Emitter – Base Breakdown Voltage	I _C = 0	I _E = 100μA	6			
I _{CBO}	Collector Cut-off Current	$V_{CB} = 60V$	$I_E = 0$			50	nA
			$T_{\rm C} = 100^{\circ}{\rm C}$			2.5	μA
I _{EBO}	Emitter Cut-off Current	$V_{EB} = 5V$	$I_{\rm C} = 0$			50	nA
			$T_{\rm C} = 100^{\circ}{\rm C}$			2.5	μA
V _{CE(sat)}	Collector – Emitter Saturation Voltage	I _C = 150mA	I _E = 15mA		0.14	0.2	V
		I _C = 1A	I _B = 0.1A		0.7	1	
V _{BE(sat)}	Base – Emitter Saturation Voltage	I _C = 150mA	I _B = 15mA		0.95	1.3	V
		I _C = 1A	I _B = 0.1A		1.5	2	
h _{FE*}	DC Current Gain	I _C = 10mA	$V_{CE} = 10V$	20	40		
		I _C = 150mA	$V_{CE} = 10V$	30	55		-
		I _C = 1mA	$V_{CE} = 10V$	15	30		

DYNAMIC CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

Parameter		Test Conditions			Min.	Тур.	Max.	Unit
h _{fe}	Small Signal Current Gain	$V_{CE} = 6V$	$I_{C} = 1mA$	f = 1kHz		25		
		$V_{CE} = 6V$	$I_{\rm C} = 10 {\rm mA}$	f = 1KHz		45		
h _{ie}	Imput Impedance	$V_{CE} = 5V$	$I_{\rm C} = 10 {\rm mA}$	f = 1.KHz		180		Ω
h _{rE}	Reverse Voltage Ratio	$V_{CE} = 5V$	$I_{\rm C} = 10 {\rm mA}$	f = 1.KHz			55 x10 ⁶	_
hoe	Output Admittance	$V_{CE} = 5V$	$I_{\rm C} = 10 {\rm mA}$	f = 1.KHz		30		μS
C _{cbo}	Collector -Base Capacitance	V _{CB} = 10V	$I_E = 0$	f = 1.MHz		10		pF
f _T	Transistion Frequency	$V_{CE} = 10V$	$I_{C} = 50 \text{mA}$		60	100		MHz
t _d	Delay Time	I _C = 150mA	$V_{CC} = 10V$			15		
t _r	Rise Time	I _{B1} = 15mA	$V_{BE} = -2V$			40		nc
t _s	Storage Time	I _C = 150mA	$V_{CC} = 10V$			300		115
t _f	Fall Time	I _{B1} = -I _{B2} = 1	5mA			60		

Pulse Duration = $300\mu s$, Duty Cycle = 1%

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.