Hi-Fi 5-ELEMENT GRAPHIC EQUALIZER IC

DESCRIPTION

The M5227 is a 5-element graphic equalizer IC best suited to Hi-Fi audio systems. It has 5-element resonance circuits with OP amp system and an output OP amp.

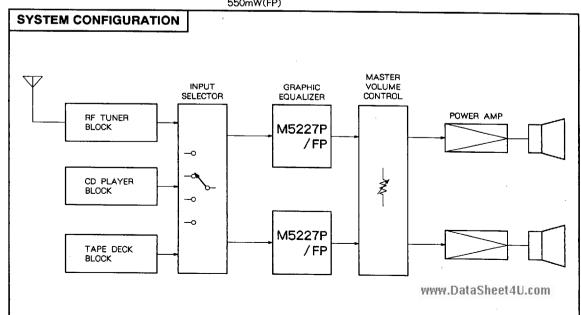
The IC can be used in compact sets of high-density assemblies, modules, and hybrid ICs. Its applications cover Hi-Fi setereo sets, radio cassette tape players, car audio systems, music centers, and electronic musical instruments.

FEATURES

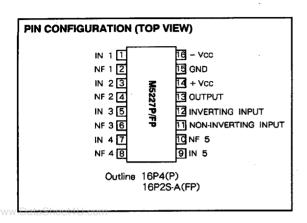
- High withstand voltage and wide supply voltage range
- Low distortionTHD = 0.002 % (typ)
- @f = 1kHz, Flat, Vo = 5Vrms WWW. Low noiseVN0 = 6μVrms (typ)
 - @ Flat input short
 - Variable Gv by external resistance······Gv = ± 12dB (typ)
 - Single power (use GND pin (§) for Vcc/2)
 - Large allowable input voltage ········ VIM = 9.5 Vrms (typ) @f = 1kHz, THD = 1 %, Flat

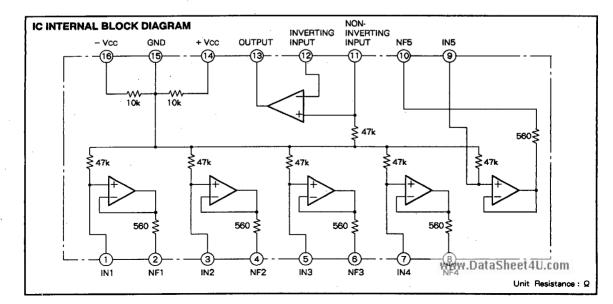
Outline 16P4(P) 2.54mm pitch 300mil DIP (6.3mm × 19.0mm × 3.3mm)

Outline 16P2S-A(FP)


1.27mm pitch 225mil SOP (4.4mm × 10.0mm × 1.5mm)

RECOMMENDED OPERATING CONDITIONS

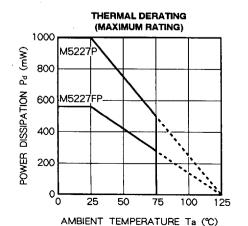

Supply voltage range VCC, $VEE = \pm 2$ to $\pm 18V$ or Vcc = 4 to 36V

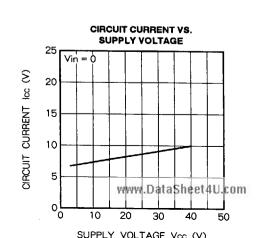

Rated supply voltage \cdots Vcc, VEE = ± 15 V or Vcc = 30V Rated power dissipation1000mW(P)

550mW(FP)

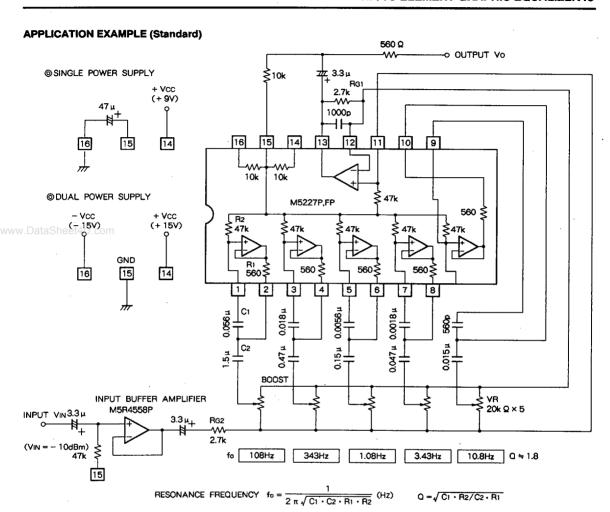
HI-FI 5-ELEMENT GRAPHIC EQUALIZER IC

HI-FI 5-ELEMENT GRAPHIC EQUALIZER IC

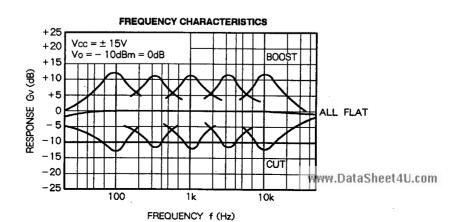

ABSOLUTE MAXIMUM RATINGS (Ta = 25 ℃, unless otherwise noted)

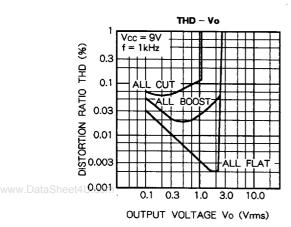

Symbol	Parameter	Ratings	Unit	
Vcc	Supply voltage	36(± 18)	V	
ILP	Load current	50	mA	
Pa	Power dissipation	1000(DIP)/550(FP)	mW	
Topr	Operating temperature	- 20 to + 75	₹	
Tstg	Storage temperature	- 55 to + 125	°C	

ELECTRICAL CHARACTERISTICS (Ta = 25 °C, Vcc = ± 15V)


Symbol	Parameter		Test Conditions		Limits		
		f (Hz)	Test Conditions	Min	Тур	Max	Unit
lcc	Circuit current	_	Vin = 0	6	9	12	mA
GV(FLAT)	Voltage gain flat	1k	Vin = - 10dBm	- 2.3	- 0.3	+1.7	dB
Gv(Boost)	Voltage gain boost (Response)	108	Vin = - 10dBm Vo(FLAT) = 0dB	9.5	12.0	13.5	dB
		343		9.5	12.0	13.5	
		1.08k		9.5	12.0	13.5	
		3.43k		9.5	12.0	13.5	
		10.8k		9.5	12.0	13.5	
Gv(сит)	Voltage gain cut (Response)	108	Vin = - 10dBm Vo(FLAT) = 0dB	-13.5	-12.0	- 9.5	dB
		343		-13.5	-12.0	- 9.5	
		1.08k		- 13.5	- 12.0	- 9.5	
		3.43k		-13.5	-12.0	- 9.5	
		10.8k		-13.5	-12.0	- 9.5	
THD	Distortion ratio	1k	Vin = 5Vrms Flat	T -	0.002	0.1	%
VNO	Output noise voltage	Input sh	ort BW: 10Hz to 30kHz Flat	T -	6	25	μVrm
Vом	Maximum output voltage	1k	THD = 1 %, Flat	7	9.5	_	Vrms

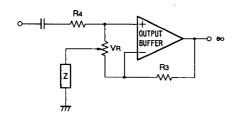
TYPICAL CHARACTERISTICS



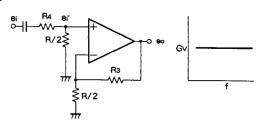

HI-FI 5-ELEMENT GRAPHIC EQUALIZER IC

Units Resistance : Ω Capacitance : F

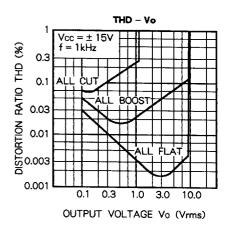
HI-FI 5-ELEMENT GRAPHIC EQUALIZER IC



The M5227P consists of 5 resonance circuits and an output amplifier, and can also from a graphic equalizer, which has optional resonance frequency fo, by the externally connecting condensor C₁, C₂ of variable resistance and a resonance circuit. The impedance is minimized by resonating and the semiconductor, which is adopted in the resonance circuit, can therefore vary the frequency gain.


1. Flat boost cut

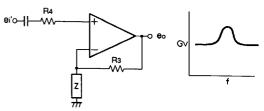
The resonance frequency gain can be altered by varying the external variable register.



Z is an impedance in the resonance circuit

(1) Flat

R/2 is resistance at the center of VR


When the variable register is in center position, the equivalent circuit as in the above diagram can be obtained. At this stage if R₃, R₄ are set at the same level of resistance, then

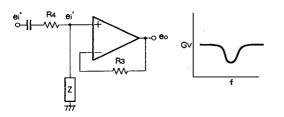
$$e_i' = \frac{R/2}{R_4 + R/2} \cdot e_i$$
, $A_V = \frac{R_3 + R/2}{R/2}$

$$e_0 = A_{V} \cdot e_i' = e_i$$

and, the frequency characteristics will be level regardless of the resonance circuit.

(2) Boost

When the variable register is in boost position, the resonance circuit is connected to the NF loop of the output buffer amplifier. At this stage, R is much smaller than R₃, R₄, so it can be disregarded.


The gain Av is
$$A_V = \frac{R_3 + 4}{7}$$
 and,

the output voltage
$$e_o$$
 is $e_o = A_V \cdot e_i = \frac{R_3 + Z}{4U.com} \cdot e_i$

When Z is smallest, the gain in resonance is the greatest, and the optional frequency is then boosted.

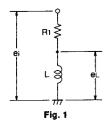
HI-FI 5-ELEMENT GRAPHIC EQUALIZER IC

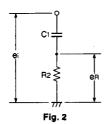
(3) Cut

When the variable register is in cut position, the resonance circuit is connected to the input side of the output buffer amplifier. When R is disregarded as the boost.

Data Shee
$$ZU$$
 com
 $e_i = \frac{R_4 + Z}{R_4 + Z} \cdot e_i$, $Av = 1$ and

the output voltage eo is $e_0 = Av \cdot e_1' = \frac{Z}{R_4 + Z} \cdot e_1$


When Z is smallest, the gain in resonance is the greatest, and the optional frequency is then cut.


2. Resonance circuit

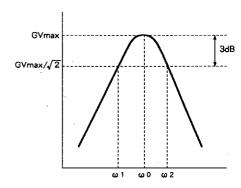
The semiconductor inductor converts L in the R, L, C serial resonance circuit into a CR pin by the buffer functions of active pins such as registers, operational amplifiers, and works in almost the same way as the R, L, C serial resonance circuit.

The R, L, C resonance frequency

fo is fo =
$$1/2 \pi \sqrt{LC}$$
.....Equation No. 1

When the voltage e_i is supplied to the resonance circuit as shown in Fig. 1, $e_L = j\omega_L \cdot e_i/(R_1 + j\omega_L)$

If e_i is then supplied to the pins C_1 , R_2 as shown in Fig. 2, When $e_L = e_R$, $L = C_1 \cdot R_1 \cdot R_2 \cdot \dots \cdot E_q$ action No. 2


But, if en is replaced by L of the R and L serial circuit, R₁ and C₁ are automatically connected in a parallel mannder, and the value of en will be changed. So, in order to keep the value of en stable, a buffer amplifier should be used. The buffer amplifier is equivalent to an impedance.

By equations 1 and 2, the resonance frequency, fo is $f_0 = 1/2 \pi \sqrt{C_1 \cdot C_2 \cdot R_1 \cdot R_2}$

The buffer amplifier in the resonance circuit of the M5227 is composed of operational amplifiers.

3. Angle of maximum resonance

The angle of maximum resonance, Q, is defined by the ratio of $\omega \circ (\omega \circ = 2 \pi \text{ fo})$ and the frequency band width, $\omega \circ - \omega \circ (\text{Gmax}/\sqrt{2})$.

The value of Q is found by the following equation: $Q = \sqrt{C_1 \cdot R_2/C_2 \cdot R_1}$

The greater the value of Q, the narrower the frequency band width, and vice versa.

The M5227 is composed of R_1 , R_2 , so Q is defined by selecting the external condensor.