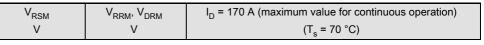
SK170DHL126

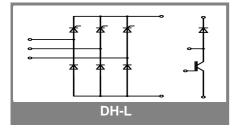
SEMITOP®4

Half controlled bridge rectifier + IGBT braking chopper SK170DHL126

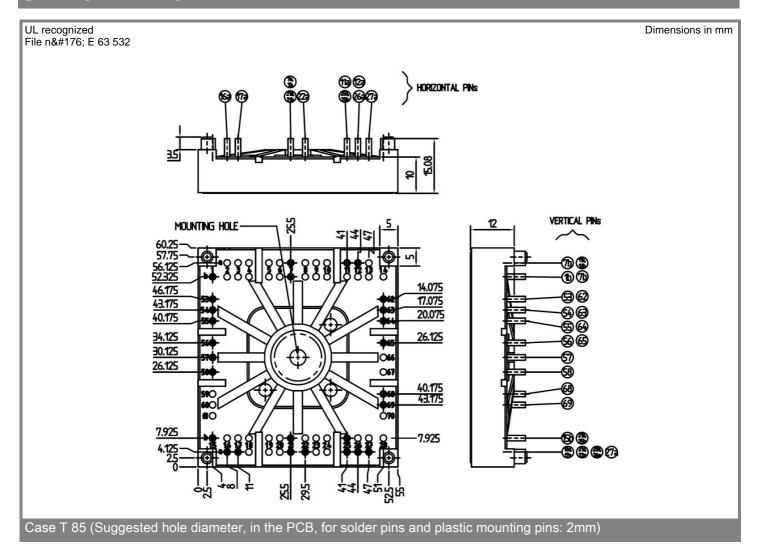

Target Data

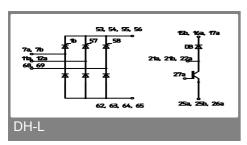
Features

- One screw mounting hole
- · Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT brake chopper technology
- · CAL technology free-wheeling diode chopper


Typical Applications*

- $\begin{array}{l} \bullet \ \ V_{CE,sat} \,, \, V_F = chip \ level \ value \\ \bullet \ \ I_{CM} = 2xI_{Cnom} \,, \, I_p \leq 1ms \\ \bullet \ \ I_{FM} = 2xI_{Fnom} \,, \, tp \leq 1ms \\ \bullet \ \ \ I_C = I_{C,nom} \,, \, I_F = I_{F,nom} \\ \end{array}$




Absolute	Maximum Ratings	T _s =25°C, unless othwerwise specified						
Symbol	Conditions	Values	Units					
Bridge - Rectifier								
I _D	T _s = 70 °C; inductive load	170	Α					
I_{FSM}/I_{TSM}	$t_p = 10 \text{ ms}$; half sine wave, ; T_{jmax}	1000	Α					
i²t	$t_p = 10 \text{ ms}$; half sine wave, ; T_{jmax}	5000	A²s					
IGBT - Chopper								
V_{CES}/V_{GES}		1200 / 20	V					
I _C	T _s = 25 (70) °C	90 (70)	Α					
I _{CM}	$t_p = 1 \text{ ms}; T_s = {^{\circ}C}$	70	Α					
Freewheeling - CAL Diode								
V_{RRM}		1200	V					
I _F	T _s = 25 (70) °C	95 (70)	Α					
I _{FM}	$t_p = 1 \text{ ms}; T_s = {^{\circ}C}$	170	Α					
T _{vi}	Diode & IGBT (Thyristor)	-40 +150 (-40 +130)	°C					
T _{stg}		-40 +125 (-40 +130)	°C					
T _{solder}	terminals, 10 s	260	°C					
V_{isol}	a.c. 50 Hz, RMS 1 min. / 1 s	2500 / 3000	V					

Characteristics							
Symbol	Conditions	min.	typ.	max.	Units		
Diode - R	ectifier				•		
V_{TO} / r_{t}	T _j = 125 °C		0,8 / 7		V / $m\Omega$		
$R_{th(j-s)}$	per diode		0,7		K/W		
	- Rectifier						
V _{F(TO)} / r _t	T _i = 130 °C		1,1 / 5,7		V / $m\Omega$		
R _{th(j-s)}	per Thyristor		0,51		K/W		
I_{GD}	$T_j = 115 ^{\circ}\text{C}; \text{d.c.}$	6			mA		
$V_{\rm GT}$ / $I_{\rm GT}$	$T_j = 25 ^{\circ}C$			1,98 / 100	V / mA		
I _H /I _L	T _j = 25 °C			220 / 440	mA		
(dv/dt) _{cr}	T _j = 130 °C			1000	V/µs		
(di/dt) _{cr}	T _j = 130 °C			50	A/µs		
IGBT - Ch	nopper						
V _{CE(sat)}	I _C = 70 A, T _j = 125 °C; V _{GE} = 15 V		1,7	2,05	V		
$R_{th(j-s)}$	per IGBT		0,5		K/W		
t _{d(on)} / t _r	valid for all values:				ns		
t _{d(off)} / t _f	V_{CC} = 600 V; V_{GE} = 15 V; I_{C} = 75 A; T_{j} = 125 °C;				ns		
$E_{on}+E_{off}$	$T_{i} = 125 ^{\circ}\text{C}; R_{G} = 9 \Omega;$		16,7		mJ		
	inductive load						
CAL - Dio	ode - Freewheeling						
$V_{T(TO)} / r_t$	T _j = 150 °C		0,95 / 10		V / $m\Omega$		
R _{th(j-s)}	per diode		0,7		K/W		
I _{RRM}	valid for all values:				Α		
Q _{rr}	$I_F = 75 \text{ A}; V_R = -600 \text{ V};$ $dI_F/dt = -A/\mu \text{s}$				μC		
E _{off}	V _{GE} = V; T _j = 125 °C				mJ		
Temperat	ture Sensor	•			•		
R _{TS}	T = °C;				Ω		
Mechanic	al data	•			•		
M_S	mounting Torque	2,5		2,75	Nm		

SK170DHL126

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

2 12-05-2008 DIL © by SEMIKRON