

Micro Commercial Components

Micro Commercial Components 20736 Marilla Street Chatsworth CA 91311

Phone: (818) 701-4933 Fax: (818) 701-4939

2N4400

Features

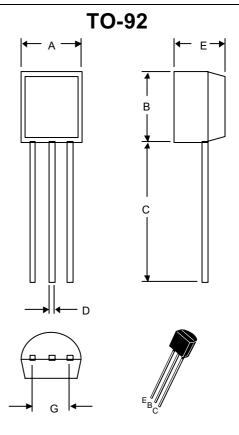
- Lead Free Finish/RoHS Compliant ("P" Suffix designates RoHS Compliant. See ordering information)
- This device is designed for use as general purpose amplifiers and switches requiring collector currents to 500mA
- Epoxy meets UL 94 V-0 flammability rating
- Moisure Sensitivity Level 1
- Marking:Type number

Maximum Ratings*

Symbol	Rating	Rating	Unit
V_{CEO}	Collector-Emitter Voltage	40	V
V_{CBO}	Collector-Base Voltage	60	V
V_{EBO}	Emitter-Base Voltage	6.0	V
Ι _C	Collector Current, Continuous	600	mA
TJ	Operating Junction Temperature	-55 to +150	°C
T _{STG}	Storage Temperature	-55 to +150	°C

Thermal Characteristics

Symbol	Rating	Max	Unit
P_{D}	Total Device Dissipation	625	mW
	Derate above 25 ^o C	5.0	mW/°C
R_{JC}	Thermal Resistance, Junction to Case	83.3	°C/W
R_{JA}	Thermal Resistance, Junction to Ambient	200	°C/W


Electrical Characteristics @ 25°C Unless Otherwise Specified

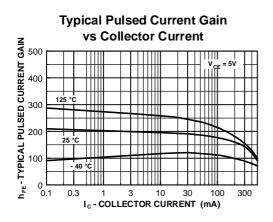
Symbol	Parameter	Min	Max	Units
OFF CHARACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage* (\(\mathcal{L} = 1.0 \text{mAdc}, \ \mathcal{L} = 0 \)	40		Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage (L=100ì Adc, L=0)	60		Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (½=100ì Adc, l _C =0)	6.0		Vdc
бех	Collector Cutoff Current (V _{CE} =35Vdc, V _{EB} =0.4Vdc)		0.1	uAdc
l _{BL}	Base Cutoff Current (V _{CE} =35Vdc, V _{EB} =0.4Vdc)		0.1	uAdc

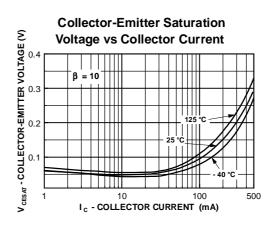
^{*} These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

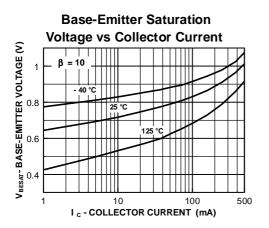
2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

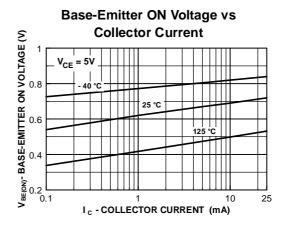
NPN General Purpose Amplifier

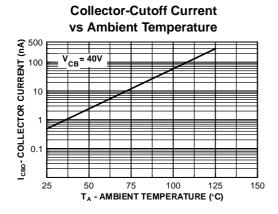
DIMENSIONS				
NOTE				

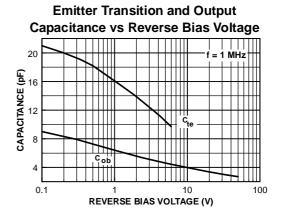

Notes: 1. These ratings are based on a maximum junction temperature of 150 degrees C.

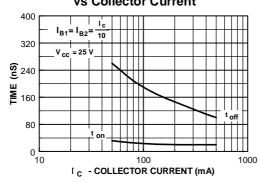


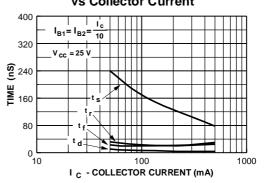

Symbol	Parameter		Min	Max	Units
ON CHAR	ACTERISTICS		•		
h _{FE}	DC Current Gain				
	(V _{CE} =1.0Vdc, I _C =1.0mA	dc)	40		
	(V _{CE} =1.0Vdc, I _C =10mA	dc)	40		
	(V _{CE} =1.0Vdc, I _C =150m/	Adc)	50	150	
	(V _{CE} =2.0Vdc, I _C =500m/	Adc)	20		
$V_{CE(sat)}$	Collector-Emitter Saturation				
	(I _C =150mAdc, I _B =15mA	dc)		0.40	Vdc
	$(I_C=500 \text{mAdc}, I_B=50 \text{mA})$	dc)		0.75	Vdc
$V_{BE(sat)}$	Base-Emitter Saturation V				
	(I _C =150mAdc, I _B =15mA	dc)	0.75	0.95	Vdc
	(I _C =500mAdc, I _B =50mA	dc)		1.20	Vdc
SMALL-S	IGNAL CHARACTERISTICS				
C _{OB}	Output Capacitance				
	(V _{CB} =5.0Vdc, f=140KH;	<u>z)</u>		6.5	pF
G_B	Input Capacitance				
	(V _{EB} =0.5Vdc, f=140KH	z)		30	pF
h_{fe}	Small-Signal Current Gain				
	(I _C =20mAdc, V _{CE} =10Vdc, f=100MHz)		2.0		
h _{fe}	Small-Signal Current Gain				
	(I _C =1.0mAdc, V _{CE} =10V	dc, f=1.0KHz)	150	200	
h _{ie}	Small-Signal Current Gain				
	(I _C =1.0mAdc, V _{CE} =10Vdc, f=1.0KHz)		0.5	7.5	KOHM
h_{re}	Small-Signal Current Gain				1
	(I _C =1.0mAdc, V _{CE} =10V	dc, f=1.0KHz)	0.10	8.0	X 10 ⁴
h_{oe}	Small-Signal Current Gain				
	(I _C =1.0mAdc, V _{CE} =10V	dc, f=1.0KHz)	1.0	30	umhos
	NG CHARACTERISTICS				
T _d	Delay Time	V_{CC} =30Vdc, I_C =150mAdc,		15	ns
ţ	Rise Time	I _{B1} =15mAdc, V _{BE(off)} =2.0Vdc		20	ns
t _s	Storage Time	V _{CC} =30Vdc, I _C =150mAdc,		225	ns
t	Fall Time	$I_{B1}=I_{B2}=15$ mAdc		30	ns

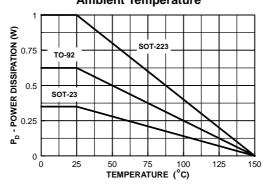

^{*} Pulse Test: Pulse Width<300us, Duty Cycle<2.0%

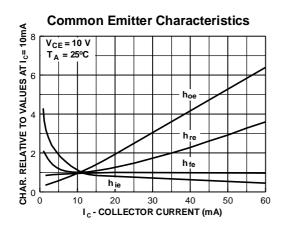


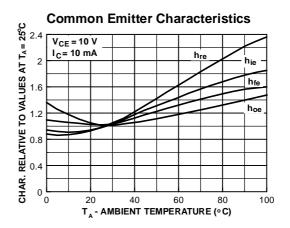


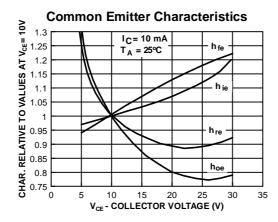





Turn On and Turn Off Times vs Collector Current


Switching Times vs Collector Current




Power Dissipation vs Ambient Temperature

Micro Commercial Components

Ordering Information:

Device	Packing
Part Number-AP	Ammo Packing: 2Kpcs/Ammo Box
Part Number-BP	Bulk: 100Kpcs/Carton

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.