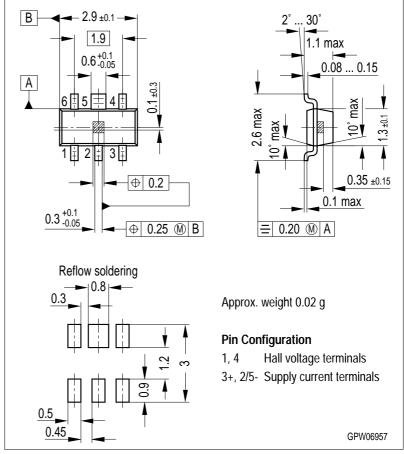


Hall Sensor KSY 16


Version 2.0

Features

- Hall sensor on Cu-leadframe for SMT-technology, MW-6 package
- High sensitivity
- High temperature range
- · Small linearity error
- Low offset voltage
- Low TC of sensitivity resistances
- This Hall sensor combines the avantages of nonmagnetic leadframe and SMT capability

Typical Applications

- Rotation and position sensing
- Current and power measurement
- Magnetic field measurement
- Control of brushless DC motors

Dimensions in mm

Type	Marking	Ordering Code
KSY 16	s16	Q62705-K338

The KSY 16 is an ion-implanted Hall sensor in a monocrystalline GaAs-material, built into an SMT package (MW-6). It is outstanding for a high magnetic sensitivity and low temperature coefficients. The 0.35×0.35 mm² chip is mounted onto a non-magnetic leadframe. The active area is placed approx. 0.45 mm below the surface of the package.

Absolute Maximum Ratings

Parameter	Symbol	Limit Values	Unit
Operating temperature	T_{A}	- 40 + 150	°C
Storage temperature	T_{stg}	- 50 + 160	°C
Supply current	I_1	7	mA
Thermal conductivity ¹⁾	G_{thC}	≥ 2.2	mW/K

Electrical Characteristics ($T_A = 25$ °C)

Nominal supply current	I_{1N}	5	mA
Open-circuit sensitivity	K_{B0}	190260	V/AT
Open-circuit Hall voltage $I = I_{1N}, B = 0.1 \text{ T}$	V_{20}	95130	mV
Ohmic offset voltage $I = I_{1N}, B = 0 T$	V_{R20}	≤±20	mV
Linearity of Hall voltage $B = 00.5 \text{ T}$ $B = 01 \text{ T}$	$egin{array}{c} F_{L} \ F_{L} \end{array}$	≤± 0.2 ≤± 0.7	% %
Input resistance $B = 0$ T	R_{10}	9001200	Ω
Output resistance $B = 0$ T	R_{20}	9001200	Ω
Temperature coefficient of the open-circuit Hall voltage $I_1 = I_{1N}, B = 0.1 \text{ T}$	TC_{V20}	~ - 0.03 0.07	%/K
Temperature coefficient of the internal resistance $B = 0$ T	<i>TC</i> _{R10, R20}	~ 0.10.18	%/K
Change of offset voltage within the temperature range ²⁾	$ \Delta V_{R0} $	≤ 2	mV

Connection of a Hall Sensor with a Power Source

Since the voltage on the component must not exceed 10 V, the connection to the constant current supply should only be done via a short circuit by-pass. The by-pass circuit-breaker shall not be opened before turning on the power source. This is to avoid damage to the Hall sensor due to power peaks.

Thermal conductivity chip-ambient when mounted on alumina ceramic 15 mm \times 17 mm \times 0.7 mm

²⁾ AQL: 0.65