TFT-Display Datenblatt

Modell LM300WQ5-SLA1

Kurzdaten

Hersteller LG Display

Diagonale 30,0" / 76,2cm

Format 16:10

Auflösung 2560x1600

Backlight CCFL / 370cd/m²

Interface LVDS
Touchscreen nein

Temperatur 0...+50°C (Betrieb)

HY-LINE Computer Components Vertriebs GmbH Inselkammerstr. 10, 82008 Unterhaching bei München Tel.: +49 89 614 503 40 || Fax: +49 89 614 503 50 computer@hy-line.de || www.hy-line.de/computer

Inselkammerstr. 10 82008 Unterhaching Tel: +49 89 614 503 40 www.hy-line.de/computer

> LM300WQ5 Liquid Crystal Display

Product Specification

SPECIFICATION FOR APPROVAL

()	Preliminary Specification
(4)	Final Specification

Title	30" WQXGA TFT LCD		

BUYER	DELL
MODEL	

SUPPLIER	LG Display CO., Ltd.
*MODEL	LM300WQ5
SUFFIX	SLA1 ,

*When you obtain standard approval, please use the above model name without suffix

SIGNATURE	DATE
1	
1	
1	
*	

APPROVED BY	SIGNATURE DATE
J. H. Park / G.Manager	200
REVIEWED BY	1 .
J. H. KIM / Manager [C]	38h
K. H. MOON / Manager [M]	
G. T. KIM / Manager [P]	Gr.
PREPARED BY	O
H. J. Park / Engineer	02321

Ver. 1.0 JUL 05, 2010 1/30

CONTENTS

NO.	ITEM	Page
-	COVER	1
-	CONTENTS	2
-	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTERISTICS	6
3-2	INTERFACE CONNECTIONS	8
3-3	LVDS CHARACTERISTICS	11
3-4	SIGNAL TIMING SPECIFICATIONS	13
3-5	SIGNAL TIMING WAVE FORMS	14
3-6	COLOR INPUT DATA REFERANCE	15
3-7	POWER SEQUENCE FOR PANEL	16
3-8	POWER SEQUENCE FOR INVERTER	17
4	OPTICAL SPECIFICATIONS	18
5	MECHANICAL CHARACTERISTICS	23
6	RELIABILITY	26
7	INTERNATIONAL STANDARDS	27
7-1	SAFETY	27
7-2	EMC	27
8	PACKING	28
8-1	DESIGNATION OF LOT MARK	28
8-2	PACKING FORM	28
9	PRECAUTIONS	29

RECORD OF REVISIONS

Revision No	Data	Page	Description
Ver. 0.0	NOV 10, 2009	-	Preliminary specification
Ver.0.1	MAR 10, 2010	4, 6	Updated Electrical Characteristics
		8	51pin CNT pin map change (27 th pin "NC")
		11	Inverter 14pin CNT pin map change (11 th pin "NC")
		25	Updated Mechanical Drawing
Ver.0.1.1	MAR 23, 2010	16	Revised mis-typed option name at power sequence. (LVDS_select, BIT_select → ODC_select, MSTAR_select)
		18	Revised GtoG response time from 6ms to 7ms.
Ver.0.2	JUN 15, 2010	10	Inverter 14pin CNT pin map change (14 th pin "V _{HDCR} ")
Ver. 1.0	JUL 05, 2010	-	Final Specification

1. General Description

The LM300WQ5 LCD is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp(CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally black mode. This TFT-LCD has a 30.0 inch diagonally measured active display area with WQXGA resolution(2560 vertical by 1600 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the luminance of the sub-pixel color is determined with a 10-bit gray scale signal for each dot, thus, presenting a palette of more than 1,073,741,824 colors.

The LM300WQ5 has been designed to apply the 10bit 4port LVDS interface.

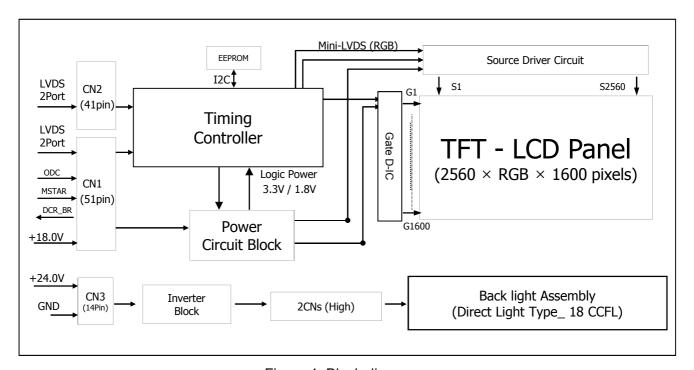


Figure 1. Block diagram

General Features

Active screen size	30.0 inches (756.228mm) diagonal
Outline Dimension	677.30(H) x 436.80(V) x 42.30(D) mm(Typ.)
Pixel Pitch	0.2505 mm x 0.2505 mm
Pixel Format	2560 horizontal By 1600 vertical Pixels. RGB stripe arrangement
Color Depth	10-bit, 1,073,741,824 color
Luminance, White	370 cd/m² (1 point Avg)
Viewing Angle(CR>10)	Viewing Angle Free(R/L 178(Typ.), U/D 178(Typ.))
Power Consumption	Total 121 Watt(Typ.), (13 Watt @V _{LCD} , 108W @370cd)
Weight	5100 g (typ.)
Display Operating Mode	Transmissive mode, Normally Black
Surface Treatments	Hard coating (3H), Anti-glare treatment of the front polarizer

Ver. 1.0 JUL 05, 2010 4 /30

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. Absolute Maximum Ratings

Parameter	Symbol	Values		Units	Notes	
Farameter		Min.	Max.	Offics	Notes	
Power Supply Input Voltage for Panel	V _{LCD}	-0.3	21.0	V_{dc}	At 25 °C ± 2°C	
Operating Temperature	T _{OP}	0	50	${\mathbb C}$	1	
Storage Temperature	T _{ST}	-20	60	${\mathbb C}$		
Operating Ambient Humidity	H _{OP}	10	90	%RH		
Storage Humidity	H _{ST}	10	90	%RH		

Note: 1. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39 °C Max, and no condensation of water.

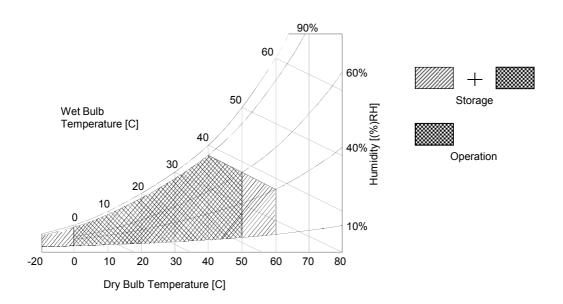


Figure 2. Temperature and relative humidity

3. Electrical Specifications

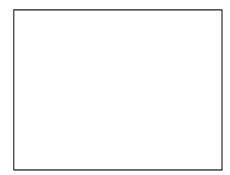
3-1. Electrical Characteristics

It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input power for the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCDs.

Table 2. Electrical Characteristics

Danamatan	O wash al		Values	11-24	Maria		
Parameter	Symbol	Min	Тур	Max	Unit	Notes	
MODULE :							
Power Supply Input Voltage	VLCD	17	18	19	Vdc		
Permissive Power Input Ripple	VdRF			400	mV _{p-p}		
B 0 1 1 10 1		612	720	828	mA	1	
Power Supply Input Current	ILCD	-	960	1248	mA	2	
Power Consumption	PLCD		13	14.95	Watt	1	
Rush current	Irush	-	-	4	А	3	

Note:


- 1. The specified current and power consumption are under the V_{LCD} =18.0V, 25 \pm 2°C, f_V =60Hz condition whereas mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.
- 2. The current is specified at the maximum current pattern.

White: 255Gray

Black: 0Gray

3. The duration of rush current is about 2ms and rising time of power Input is 1ms(min.).

Maximum current pattern

Mosaic Pattern(8 x 6)

White Pattern

[Figure 3] Mosaic pattern : for power consumption measurement

Ver. 1.0 JUL 05, 2010 6 /30

Table 3. INVERTER Electrical Characteristics

Parameter	Symbol	Symbol Condition -		Values		Unit	Notes
Farameter	Syllibol	Condition	Min.	Тур.	Max.	Offic	Notes
Inverter :							
Input Voltage	V_{BL}		22	24	26	V	1
Input Current	I _{BL}	V _{BR} = 3.3V		4.5	5.4	Α	2
Input Power	PBL	V _{BR} = 3.3V		108	130	Watt	2
B/L on/off control	Von/off	Lamp ON = High	2.0	-	5.0	V	
		Lamp OFF =Low	0.0	-	0.8	V	
Brightness Adj	VBR		0	-	3.3	V	
LAMP:							
Life time			40,000			Hrs	3

Notes:

- 1. The input voltage ripple is limited below 400mVp-p.
- 2. The specified current and power consumption are under the typical supply Input voltage, 24V.
- 3. The life is determined as the time at which luminance of the lamp is 50% compared to that of initial value at the typical lamp current on condition of continuous operating at $25 \pm 2^{\circ}$ C.
- 4. Electrical characteristics are determined after the unit has been 'ON' and stable for approximately 30min in a dark environment at 25 °C \pm 2°C.

3-2. Interface Connections

This LCD module employs two kinds of interface connection, 51-pin and 41-pin connectors are used for the module electronics and 14-pin connectors are used for the integral backlight system.

3-2-1. Signal Interface

LCD Connector(CN1): IS050-C51B-C39-A(manufactured by UJU) or FI-RE51S-HF(manufactured by JAE) or compatible. Refer to below and next Page table.

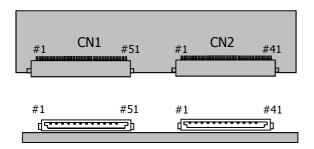
- Mating Connector : FI-RE51HL(JAE) or compatible

Table 4-1. MODULE CONNECTOR(CN1) PIN CONFIGURATION

No	Symbol	Description	No	Symbol	Description
1	GND	Ground	27	NC	No Connection
2	NC	No Connection	28	R2AN	SECOND LVDS Receiver Signal (A-)
3	NC	No Connection	29	R2AP	SECOND LVDS Receiver Signal (A+)
4	NC	No Connection	30	R2BN	SECOND LVDS Receiver Signal (B-)
5	NC	No Connection	31	R2BP	SECOND LVDS Receiver Signal (B+)
6	ODC Select	'H' or NC = Enable , 'L' = Disable	32	R2CN	SECOND LVDS Receiver Signal (C-)
7	MSTAR Select	'H'= MSTAR Concept , 'L'=normal	33	R2CP	SECOND LVDS Receiver Signal (C+)
8	DCR_BR	Brightness voltage output for DCR function	34	GND	Ground
9	NC	No Connection	35	R2CLKN	SECOND LVDS Receiver Clock Signal(-)
10	NC	No Connection	36	R2CLKP	SECOND LVDS Receiver Clock Signal(+)
11	GND	Ground	37	GND	Ground
12	R1AN	FIRST LVDS Receiver Signal (A-)	38	R2DN	SECOND LVDS Receiver Signal (D-)
13	R1AP	FIRST LVDS Receiver Signal (A+)	39	R2DP	SECOND LVDS Receiver Signal (D+)
14	R1BN	FIRST LVDS Receiver Signal (B-)	40	R2EN	SECOND LVDS Receiver Signal (E-)
15	R1BP	FIRST LVDS Receiver Signal (B+)	41	R2EP	SECOND LVDS Receiver Signal (E+)
16	R1CN	FIRST LVDS Receiver Signal (C-)	42	Reserved	No connection or GND
17	R1CP	FIRST LVDS Receiver Signal (C+)	43	Reserved	No connection or GND
18	GND	Ground	44	GND	Ground
19	R1CLKN	FIRST LVDS Receiver Clock Signal(-)	45	GND	Ground
20	R1CLKP	FIRST LVDS Receiver Clock Signal(+)	46	GND	Ground
21	GND	Ground	47	NC	No connection
22	R1DN	FIRST LVDS Receiver Signal (D-)	48	VLCD	Power Supply +18.0V
23	R1DP	FIRST LVDS Receiver Signal (D+)	49	VLCD	Power Supply +18.0V
24	R1EN	FIRST LVDS Receiver Signal (E-)	50	VLCD	Power Supply +18.0V
25	R1EP	FIRST LVDS Receiver Signal (E+)	51	VLCD	Power Supply +18.0V
26	Reserved	No connection or GND	<u> </u>	-	-

Notes: 1. All GND(ground) pins should be connected together to the LCD module's metal frame.

- 2. All VLCD (power input) pins should be connected together.
- 3. All Input levels of LVDS signals are based on the EIA 644 Standard.
- 4. Specific pins(pin No. #2~#5) are used for internal data process of the LCD module. If not used, these pins are no connection.
- 5. Specific pin No. #44 is used for "No signal detection" of system signal interface. It should be GND for NSB(No Signal Black) during the system interface signal is not. If this pin is "H", LCD Module displays AGP(Auto Generation Pattern).


Ver. 1.0 JUL 05, 2010 8 /30

- LCD Connector(CN2): IS050-C41B-C39-A(manufactured by UJU) or FI-RE41S-HF(manufactured by JAE) or compatible. Refer to below table.
- Mating Connector: FI-RE41HL or compatible.

Table 4-2. MODULE CONNECTOR(CN2) PIN CONFIGURATION

No	Symbol	Description		No	Symbol	Description
1	NC	No connection(Reserved)		22	R3EN	THIRD LVDS Receiver Signal (E-)
2	NC	No connection		23	R3EP	THIRD LVDS Receiver Signal (E+)
3	NC	No connection		24	GND	Ground
4	NC	No connection		25	GND	Ground
5	NC	No connection		26	R4AN	FORTH LVDS Receiver Signal (A-)
6	NC	No connection		27	R4AP	FORTH LVDS Receiver Signal (A+)
7	NC	No connection		28	R4BN	FORTH LVDS Receiver Signal (B-)
8	NC	No connection		29	R4BP	FORTH LVDS Receiver Signal (B+)
9	GND	Ground		30	R4CN	FORTH LVDS Receiver Signal (C-)
10	R3AN	THIRD LVDS Receiver Signal (A-)		31	R4CP	FORTH LVDS Receiver Signal (C+)
11	R3AP	THIRD LVDS Receiver Signal (A+)		32	GND	Ground
12	R3BN	THIRD LVDS Receiver Signal (B-)		33	R4CLKN	FORTH LVDS Receiver Clock Signal(-)
13	R3BP	THIRD LVDS Receiver Signal (B+)		34	R4CLKP	FORTH LVDS Receiver Clock Signal(+)
14	R3CN	THIRD LVDS Receiver Signal (C-)		35	GND	Ground
15	R3CP	THIRD LVDS Receiver Signal (C+)		36	R4DN	FORTH LVDS Receiver Signal (D-)
16	GND	Ground		37	R4DP	FORTH LVDS Receiver Signal (D+)
17	R3CLKN	THIRD LVDS Receiver Clock Signal(-)	Ì	38	R4EN	FORTH LVDS Receiver Signal (E-)
18	R3CLKP	THIRD LVDS Receiver Clock Signal(+)		39	R4EP	FORTH LVDS Receiver Signal (E+)
19	GND	Ground		40	GND	Ground
20	R3DN	THIRD LVDS Receiver Signal (D-)	Ĥ	41	GND	Ground
21	R3DP	THIRD LVDS Receiver Signal (D+)		-		

Notes: 1. All GND(ground) pins should be connected together to the LCD module's metal frame.

Rear view of LCM

[CN1]

- Part/No. : IS050-C51B-C39-A(UJU)
- Mating connector : FI-RE51HL (Manufactured by JAE)

[CN2]

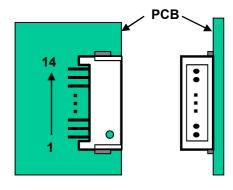
- Part/No. : IS050-C41B-C39-A(UJU)
- Mating connector : FI-RE41HL (Manufactured by JAE)

Ver. 1.0 JUL 05, 2010 9/30

3-2-2. Inverter Connector for Backlight

The inverter connector is S14B-PH-SM3(manufactured by JST) or equivalent The pin configuration for the 14 pin connector is shown in the table below.

Table 5. 14Pin Connector Pin Configuration (Inverter Connector)

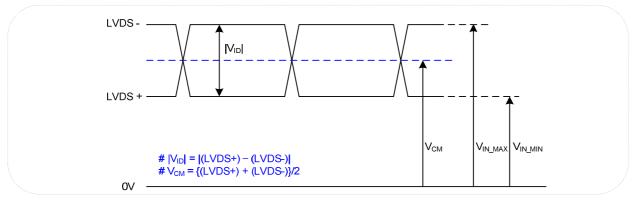

Pin	Symbol	Description	Notes
1	V_{BL}	Power Supply, +24V	
2	V_{BL}	Power Supply, +24V	
3	V_{BL}	Power Supply, +24V	
4	V_{BL}	Power Supply, +24V	
5	V_{BL}	Power Supply, +24V	
6	GND	Power Ground	
7	GND	Power Ground	
8	GND	Power Ground	
9	GND	Power Ground	
10	GND	Power Ground	
11	NC	NC	
12	V _{ON}	BL on/off control signal	- ON : 2.0V~5.0V - OFF : 0.0~0.8V
13	V_{BR}	Analog dimming control signal	- DC Value - Max3.3V/Min0.0V
14	V_{HDCR}	HDCR control signal	- HDCR ON : 3.3V - HDCR OFF : 0.0V

Note: HDCR function is out of guarantee range.

1. Connector

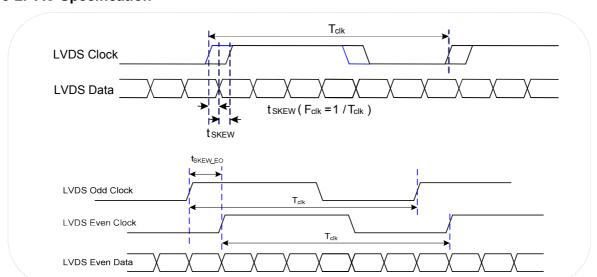
1) Connector(Receptacle): S14B-PHA-SM3 (JST) or equivalent

2) Mating Connector(Plug) : PHR14 or its equivalent



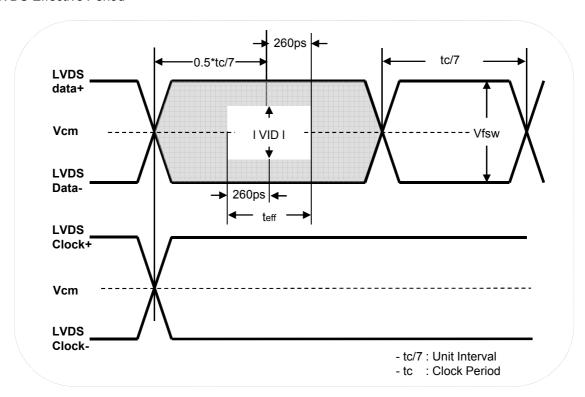
Rear view of LCM

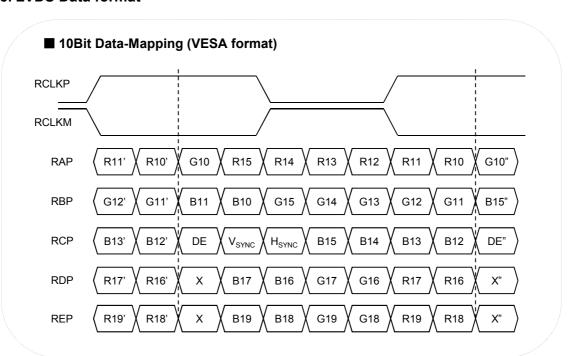
Ver. 1.0 JUL 05, 2010 10 /30


3-3. LVDS characteristics

3-3-1. DC Specification

Description	Symbol	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	200	600	mV	-
LVDS Common mode Voltage	V _{CM}	1.0	1.5	V	-
LVDS Input Voltage Range	V _{IN}	0.7	1.8	V	-
Change in common mode Voltage	ΔVсм	-	250	mV	-


3-3-2. AC Specification


Description	Symbol	Min	Max	Unit	Notes
LVDS Clock to Data Skew Margin	t _{SKEW}	- (0.25*tclк)/7	+ (0.25*tclk)/7	ps	
LVDS Clock to Clock Skew Margin	t _{SKEW_EO}	- 1/7	+ 1/7	T _{clk}	-
Effective time of LVDS	t _{eff}	520		ps	-

Ver. 1.0 JUL 05, 2010 11 /30

- LVDS Effective Period

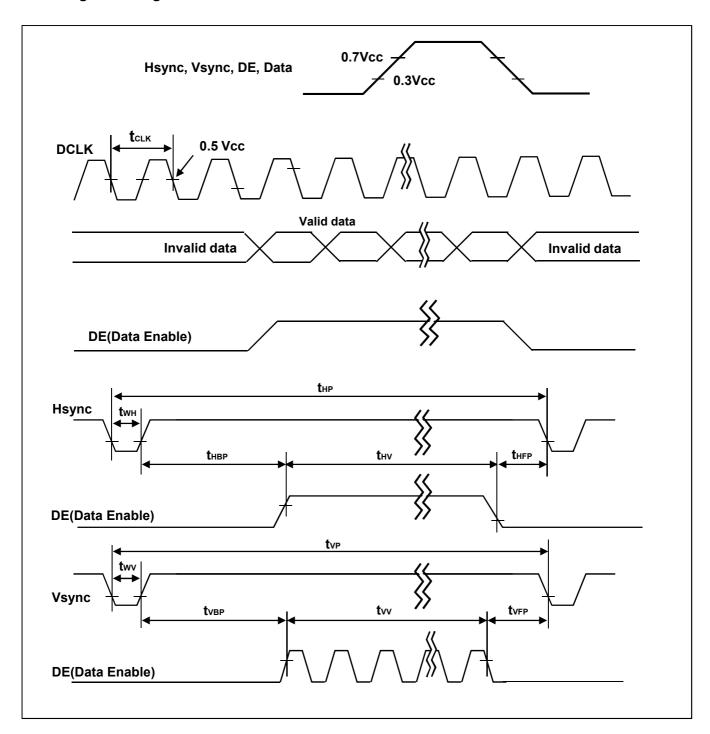
3-3-3. LVDS Data format

Ver. 1.0 JUL 05, 2010 12 /30

3-4. Signal Timing Specifications

This is the signal timing required at the input of the TMDS Transmitter. All of the interface signal timing should be satisfied with the following specifications for it's proper operation.

Table 6. TIMING TABLE (Resolution: 2560x1600)


	ITEM	SYMBOL	Min	Тур	Max	Unit	Note
DOLL	Period	t _{CLK}	14.8	14.8	14.8	ns	Pixel
DCLK	Frequency	f _{CLK}	67.125	67.125	67.125	MHz	Frequency : Typ 268.5™
	Width-Total	t _{HT}	680	680	680	t _{CLK}	
Нолио	Period	t _{HP}	10.13	10.13	10.13	us	
Hsync	Frequency	f _H	98.71	98.71	98.71	KHz	
	Width	t _{WH}	8	8	8	t _{CLK}	
	Width-Total	t _{VT}	1646	1646	1646	t _{HP}	
Vsync	Period	t _{VP}	16.68	16.68	16.68		
VSylic	Frequency	f _V	59.97	59.97	59.97	Hz	
	Width	t _{WV}	6	6	6	t _{HP}	
	Horizontal Valid	t _{HV}	2560	2560	2560		
	Horizontal Back Porch	t _{HBP}	80	80	80	$t_{\sf CLK}$	
	Horizontal Front Porch	t _{HFP}	48	48	48		
Data	Horizontal Blank	-	160	160	160		t _{WH} + t _{HBP} + t _{HFP}
Enable	Vertical Valid	t _{V V}	1600	1600	1600		
	Vertical Back Porch	t_{VBP}	38	38	38	t _{HP}	
	Vertical Front Porch	t_{VFP}	2	2	2	LHP.	
	Vertical Blank	-	46	46	46		t_{WV} + tV_{BP} + t_{VFP}

Note: Hsync period and Hsync width-active should be even number times of tclk. If the value is odd number times of tclk, display control signal can be asynchronous. In order to operate this LCM a Hsync, Vsyn, and DE(data enable) signals should be used.

- 1. : The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates.
- 2. Vsync and Hsync should be keep the above specification.
- 3. Hsync Period, Hsync Width, and Horizontal Back Porch should be any times of character number(8).
- 4. The polarity of Hsync, Vsync is not restricted.

Ver. 1.0 JUL 05, 2010 13 /30

3-5. Signal Timing Waveforms

3-6. Color Input Data Reference

The brightness of each primary color (red,green and blue) is based on the 10-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 7. COLOR DATA REFERENCE

				Input	Color Data		
C	Color		RED		GREEN	BLUE	
	,0101	MSB	LSB	MSB	LSB	MSB	LSB
		R9 R8 R7 R6	R5 R4 R3 R2 R1 R0	G9 G8 G7 G6	6 G5 G4 G3 G2 G1 G0	B9 B8 B7 B6 B5 B4 B3 E	2 B1 B0
	Black	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0
	Red (1023)	1 1 1 1	1 1 1 1 1 1	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0
	Green (1023)	0 0 0 0	0 0 0 0 0 0	1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0 0	0 0
Basic	Blue (1023)	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	1 1 1 1 1 1 1	1 1 1
Color	Cyan	0 0 0 0	0 0 0 0 0 0	1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1
	Magenta	1 1 1 1	1 1 1 1 1 1	0 0 0 0	0 0 0 0 0 0	1 1 1 1 1 1 1	1 1 1
	Yellow	1 1 1 1	1 1 1 1 1 1	1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0 0	0 0
	White	1 1 1 1	1 1 1 1 1 1	1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1
	RED (000)	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0
	RED (001)	0 0 0 0	0 0 0 0 0 1	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0
RED			•••				
	RED (1022)	1 1 1 1	1 1 1 1 1 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0
	RED (1023)	1 1 1 1	111111	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0
	GREEN (000)	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0
	GREEN (001)	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 1	0 0 0 0 0 0 0	0 0 0
GREEN							
	GREEN (1022)	0 0 0 0	0 0 0 0 0 0	1 1 1 1	1 1 1 1 1 0	0 0 0 0 0 0 0	0 0 0
	GREEN (1023)	0 0 0 0	0 0 0 0 0 0	1 1 1 1	111111	0 0 0 0 0 0 0	0 0 0
	BLUE (000)	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0
	BLUE (001)	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 1
BLUE						•••	
	BLUE (1022)	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	1111111	1 0
	BLUE (1023)	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	1111111	1 1

3-7. Power Sequence for Panel

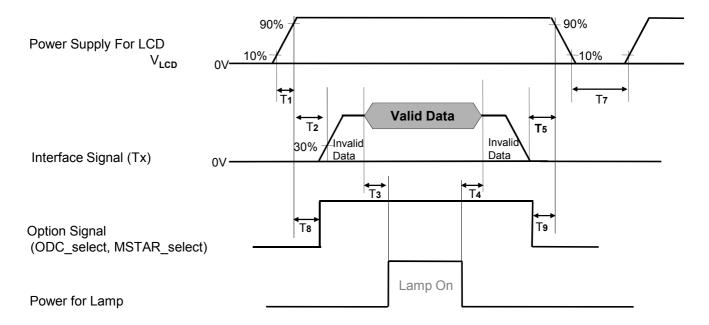


Table 6. Power sequence

Davamatav		Units		
Parameter	Min	Тур	Max	Units
T1	0.5	-	10	ms
T2	0.5	-	50	ms
ТЗ	500	-	-	ms
T4	200	-	-	ms
T5	0.01	-	50	ms
T7	1		-	S
T8	0.5	-	T2	ms
Т9	0	-	-	ms

Notes:

- 1. Please V_{LCD} power on only after connecting interface cable to LCD.
- 2. Please avoid floating state of interface signal at invalid period.
- 3. When the interface signal is invalid, be sure to pull down the power supply for LCD V_{LCD} to 0V.
- 4. Lamp power must be turn on after power supply for LCD an interface signal are valid.
- 5. If the on time of signals (Interface signal and Option signals) precedes the on time of Power(VLCD), it will be happened abnormal display.

Ver. 1.0 JUL 05, 2010 16 /30

3-8. Power Sequence for Inverter

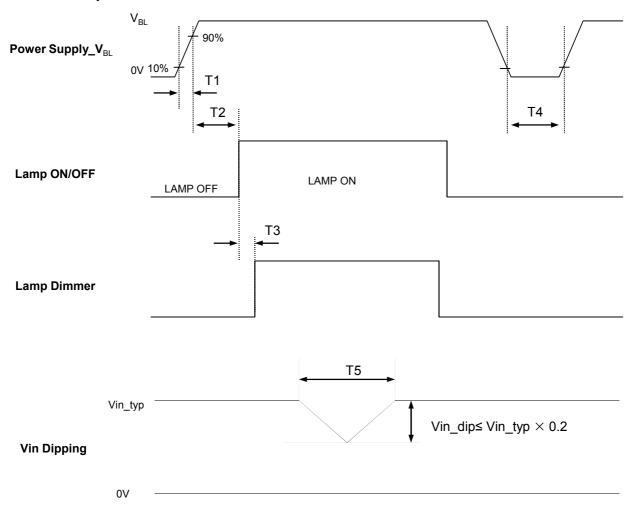
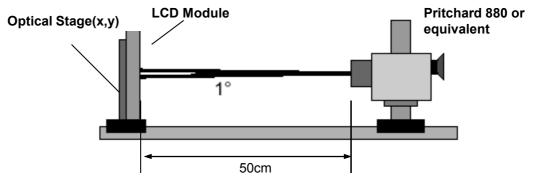


Table 9. Power Sequence


Parameter		Values	Units	Notos	
Parameter	Min.	Тур.	Max.	Units	Notes
T1	10	-	-	ms	
T2	200	-	-	ms	
T3	-	-	50	ms	
T4	500	-	-	ms	
T5	-	-	10	ms	

Ver. 1.0 JUL 05, 2010 17 /30

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25 °C. The values specified are measured at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 °.

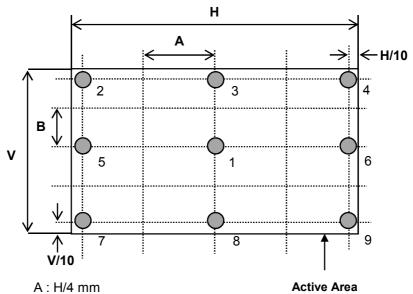
Figure. 5 presents additional information concerning the measurement equipment and method.

[Figure 5] Optical characteristic measurement equipment and method

D	1	0		Values		11.20	NI. (
Parame	eter	Symbol	Min	Тур	Max	Units	Notes	
Contrast Ratio		CR	(700)	1000			1	
Surface Luminanc	e, white	L_WH	(300)	370		cd/m ²	2	
Luminance Variation	n	δ_{WHITE}	75	-	-	%	3	
Luminance Uniformi	ty		_	_	1.7	TCO '99		
(angular dependant)			_	-	1.7	100 99		
	Rise Time	Tr_R	-	6	12	ms	4	
Response Time	Decay Time	Tr_D	-	6	12	ms	4	
response fille	Gray To Gray	T_{GTG_AVR}	-	7	-	ms	5	
	Glay 10 Glay	T_{GTG_MAX}	-	17	-	ms	5	
	RED	Rx	ļ	0.678	Тур +0.03			
		Ry		0.309				
	GREEN	Gx	Ī	0.210				
Color Coordinates		Gy	Тур	0.692				
[CIE1931]	BLUE	Bx	-0.03	0.146				
		Ву	Ī	0.055				
	WHITE	Wx		0.313				
		Wy		0.329				
Color shift	Horizontal	θ_{CST_H}	-	176	-	degree	6	
Color Still	Vertical	θ_{CST_V}	-	176	-			
Viewing Angle (CR>	10)							
1	Horizontal	θ_{H}	170	178	-		-	
general	Vertical	θ_{V}	170	178	-	degree	7	
Effoctivo	Horizontal	θ_{GMA_H}	-	176	-	dograa	0	
Effective	Vertical	$\theta_{GMA_{V}}$	-	176	-	degree	8	
Gray Scale			2.0	2.2	2.4		9	

Ver. 1.0 JUL 05, 2010 18 /30

Notes 1. Contrast Ratio(CR) is defined mathematically as :

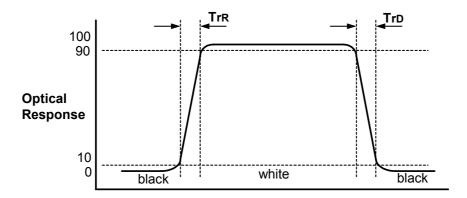

2. Surface luminance is luminance value at 5 points average across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 6.

$$L_{WH} = L_{on1}$$

3. The variation in surface luminance , δ WHITE is defined as :

$$\delta_{WHITE} = \frac{\text{Minimum}(L_{on1}, L_{on2}, L_{on9})}{\text{Maximum}(L_{on1}, L_{on2}, L_{on9})} \times 100(\%)$$

Measuring point for surface luminance & measuring point for luminance variation


A : H/4 mm B : V/4 mm

@ H,V: Active Area

[Figure 6] Measure Point for Luminance

4. **The response time** is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

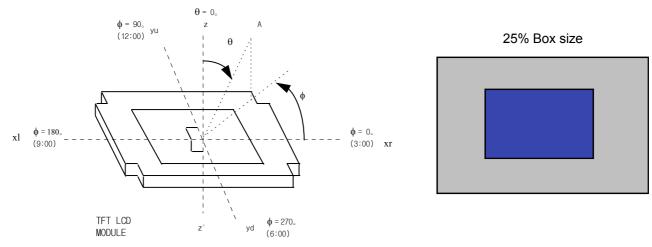
Response time is the time required for the display to transition from black to white (Rise Time, TrR) and from white to black (Decay Time, TrD).

[Figure 7] Response Time

- 5. **The Gray to Gray response time** is defined as the following figure and shall be measured by switching the input signal for "Gray To Gray".
 - Gray step: 5 Step
 - $T_{\text{GTG AVR}}$ is the total average time at rising time and falling time for "Gray To Gray ".
 - $T_{\text{GTG MAX}}$ is the max time at rising time or falling time for "Gray To Gray ".

Crow to Cro	Gray to Gray		Rising Time						
Gray to Gra			G767	G511	G255	G0			
	G1023								
	G767								
Falling Time	G511								
	G255								
	G0								

- 6. Color shift is the angle at which the color difference is lower than 0.04.
 - Color difference(Δu'v')

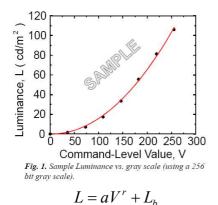

$$u' = \frac{4x}{-2x + 12y + 3}$$

$$v' = \frac{9y}{-2x + 12y + 3}$$

$$u'1, v'1 : u'v' \text{ value at viewing angle direction}$$

$$u'2, v'2 : u'v' \text{ value at front}(\theta=0)$$

- Pattern size : 25% Box size
- Viewing angle direction of color shift: Horizontal, Vertical


Viewing angle direction

Average RGB values in Bruce RGB for Macbeth Chart

	Dark skin	Light skin	Blue sky	Foliage	Blue flower	Bluish green
R	395	827	343	311	519	459
G	227	571	451	411	475	799
В	183	495	647	187	743	715
	Orange	Purplish blue	Moderate red	Purple	Yellow green	Orange yellow
R	879	227	847	307	643	923
G	419	279	271	159	775	651
В	99	699	351	347	235	119
	Blue	Green	Red	Yellow	Magenta	cyan
R	107	291	791	967	831	143
G	131	595	111	851	251	507
В	583	263	151	147	607	691
	White	Neutral 8	Neutral 6.5	Neutral 5	Neutral 3.5	black
R	963	827	623	443	255	91
G	963	827	623	443	255	91
В	963	827	623	443	255	91

Ver. 1.0 JUL 05, 2010 21/30

- 7. **General viewing angle** is the angle at which the contrast ratio is greater than 10.
- 8. **Effective viewing angle** is the angle at which the gamma shift of gray scale is lower than 0.3.

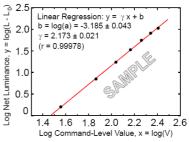


Fig. 2. Sample Log-log plot of luminance vs. gray scale

$$\log(L - L_b) = r \log(V) + \log(a)$$

Here the Parameter α and γ relate the signal level V to the luminance L.

The GAMMA we calculate from the log-log representation

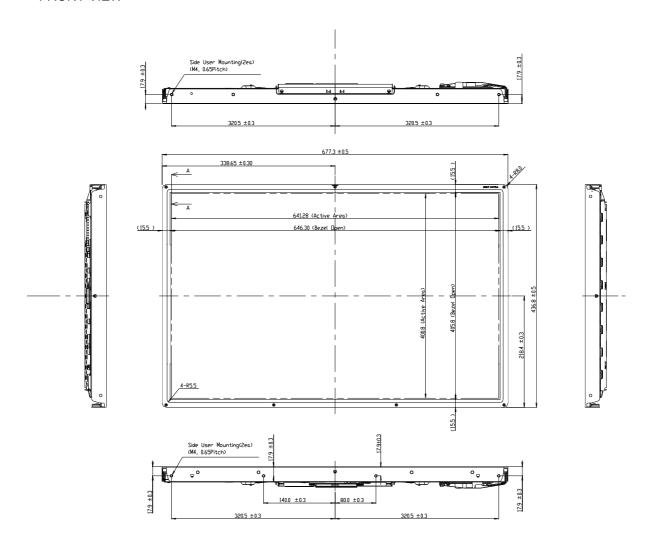
9. Gray scale specification

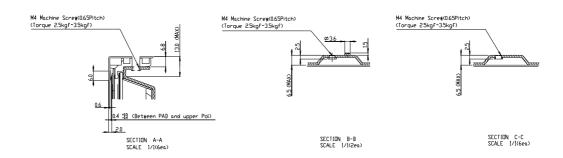
Gamma Value is approximately 2.2. For more information see Table 11.

Table 11. Gray Scale Specification

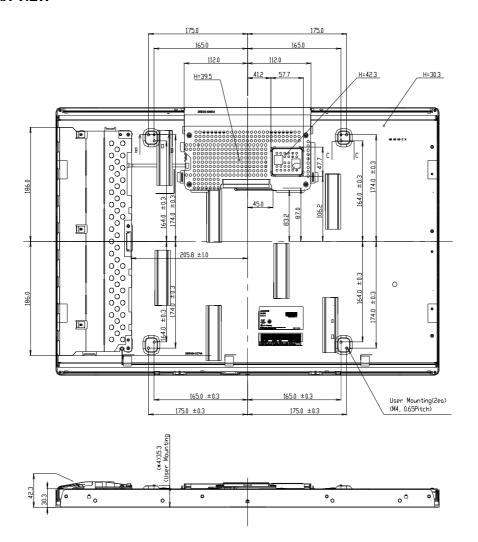
Gray Level	Relative Luminance [%] (Typ.)
0	0.3
127	1.2
255	4.68
383	11.7
511	21.2
000	35.2
	53.0
895	75.4
1023	100

5. Mechanical Characteristics


The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD.

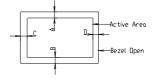

Table 12. Mechanical characteristics

	Horizontal	677.30 mm			
Outline Dimension	Vertical	436.80 mm			
	Depth	42.30 mm			
Bezel Area	Horizontal	646.30 mm			
Dezel Alea	Vertical	405.80 mm			
Active Diapley Area	Horizontal	641.28 mm			
Active Display Area	Vertical	400.8 mm			
Weight	5100g (Typ.), 5400g (Max.)				
Surface Treatment	Hard coating(3H) Anti-glare(13%) treatment of the front polarizer				


Notes: Please refer to a mechanic drawing in terms of tolerance at the next page.

<FRONT VIEW>

<REAR VIEW>


- Notes

 1. Unspecified tolerances are to be ±0.5mm.

 2. Both backlight wires and contraction tubes are excluded from outline dimensions.

 3. Tilt and partial disposition tolerance of display area are as following.

 (1) Y-direction: LA-BL ≤ 1.4mm.

- 4. User Connector(#1) Specification: ISO50-C51B-C39-A(UJU)
 User Connector(#2) Specification: ISO50-C41B-C39-A(UJU)
 5. Payer Connector Specification: SI4B-PHA-SM3(JST)
 6. The COF area is weak & sensitive so please don't press the COF area

6. Reliability

Environment test condition

No	Test Item	Condition
1	High temperature storage test	Ta= 60°C 240h
2	Low temperature storage test	Ta= -20°C 240h
3	High temperature operation test	Ta= 50°C 50%RH 240h
4	Low temperature operation test	Ta= 0°C 240h
5	Vibration test (non-operating)	Wave form : random Vibration level : 1.0G RMS Bandwidth : 10-300Hz Duration : X,Y,Z, 10 min One time each direction
6	Shock test (non-operating)	Shock level : 100G Waveform : half sine wave, 2ms Direction : \pm X, \pm Y, \pm Z One time each direction
7	Altitude operating storage / shipment	0 - 10,000 feet(3048m) 0 - 40,000 feet(12,192m)

7. International Standards

7-1. Safety

a) UL 60950-1:2003, First Edition, Underwriters Laboratories, Inc.,

Standard for Safety of Information Technology Equipment.

b) CAN/CSA C22.2, No. 60950-1-03 1st Ed. April 1, 2003, Canadian Standards Association,

Standard for Safety of Information Technology Equipment.

c) EN 60950-1:2001, First Edition,

European Committee for Electrotechnical Standardization(CENELEC)

European Standard for Safety of Information Technology Equipment.

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) C.I.S.P.R. "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000)

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

Α	В	С	D	Е	F	G	Н	I	J	K	L	М	
---	---	---	---	---	---	---	---	---	---	---	---	---	--

D : YEAR

A,B,C : SIZE(INCH)

E: MONTH $F \sim M$: SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box : 5 pcs

b) Box size: 756mm X 343mm X 515mm

9. Precautions

Please pay attention to the following when you use this TFT LCD module.

9-1. Mounting Precautions

- (1) You must mount a module using holes (refer 23~24 page)
- (2) You should consider the mounting structure so that uneven force(ex. twisted stress) is not applied to the module.
 - And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach a transparent protective plate to the surface in order to protect the polarizer.

 Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not describe because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are determined to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. Operating Precautions

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm200mV(Over\ and\ under\ shoot\ voltage)$
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)

 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can not be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw (if not, it causes metal foreign material and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.
- (10) When LCMs are used for public display defects such as Yogure, image sticking can not be guarantee.

9-3. Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. Precautions for Strong Light Exposure

Strong light exposure causes degradation of polarizer and color filter.

9-5. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.

 It is recommended that they be stored in the container in which they were shipped.

9-6. Handling Precautions for Protection Film

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the Bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the Bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.