NCX2202

Low voltage comparator; open-drain output

Rev. 1 — 20 July 2011

Product data sheet

1. General description

The NCX2202 is a single low voltage low power comparator with open drain output.

The NCX2202 has a very low supply current of 6 μ A and is guaranteed to operate at a low voltage of 1.3 V and is fully operational up to 5.5 V which makes this device convenient for use in both 3.0 V and 5.0 V systems.

2. Features and benefits

- Wide supply voltage range from 1.3 V to 5.5 V (functional operating range)
- Rail-to-rail input/output performance
- Very low supply current of 6 μA (typical)
- Very low-power consumption
- No phase inversion with overdriven input signals
- Internal hysteresis
- Propagation delay of 0.8 μs (typical)
- ESD protection:
 - ♦ HBM JESD22-A114F Class 3A exceeds 1500 V
 - ◆ CDM JESD22-C101E exceeds 1000 V
- Multiple package options
- Specified from –40 °C to +85 °C

3. Applications

- Cellular telephones
- Alarm and security systems
- Personal Digital assistants

Low voltage comparator; open-drain output

4. Ordering information

Table 1. Ordering information

Type number	Package						
	Temperature range	Name	Description	Version			
NCX2202GW	–40 °C to +85 °C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1			
NCX2202GM	–40 °C to +85 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886			

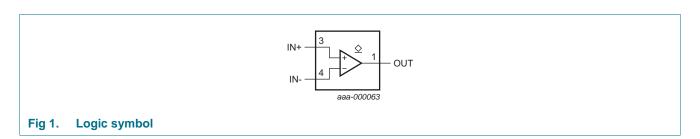
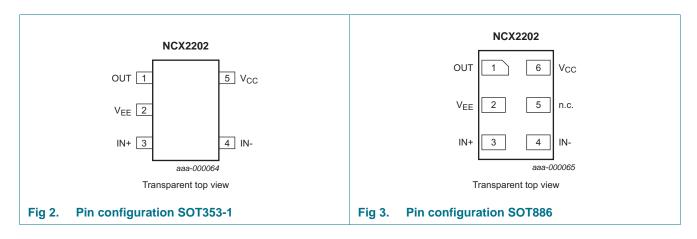

5. Marking

Table 2. Marking codes

Type number	Marking ^[1]
NCX2202GW	qa
NCX2202GM	qa


^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

6. Functional diagram

7. Pinning information

7.1 Pinning

NCX2202

Low voltage comparator; open-drain output

7.2 Pin description

Table 3. Pin description

Symbol	Pin		Description
	SOT353-1	SOT886	
OUT	1	1	comparator output (open-drain)
V_{EE}	2	2	supply voltage
IN+	3	3	comparator input (positive)
IN-	4	4	comparator input (negative)
n.c.	-	5	not connected
V_{CC}	5	6	supply voltage

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to V_{EE}.

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-	7.0	V
V_{I}	input voltage	IN-, IN+ inputs	-0.2	$V_{CC} + 0.2$	V
Vo	output voltage		V _{EE} - 0.5	7.0	V
t _{sc(o)}	output short-circuit time		<u>[1]</u> _	indefinite	S
T _{j(max)}	maximum junction temperature		-	+150	°C
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$	-	250	mW

^[1] The maximum total power dissipation must not be exceeded.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage	V_{CC} to V_{EE}				
		full spec operating range	1.6	-	5.5	V
		functional operating range	1.3	-	5.5	V
VI	input voltage		V_{EE}	-	V_{CC}	V
Vo	output voltage		V_{EE}	-	5.5	V
T _{amb}	ambient temperature		-40	-	+85	°C

Low voltage comparator; open-drain output

10. Static characteristics

Table 6. Static characteristics

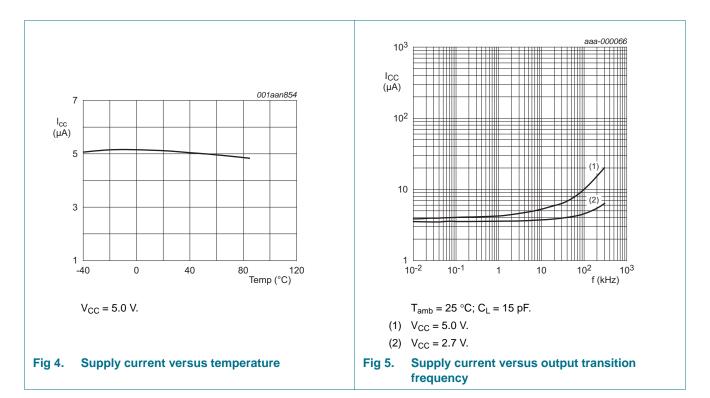
At recommended operating conditions. $V_{CC} = 1.6 \text{ V}$ to 5.5 V, $V_{EE} = 0 \text{ V}$; $V_{CM} = 0.5 V_{CC}$ unless otherwise specified.

Symbol	Parameter	Conditions			25 °C		-40 °C t	o +85 °C	mV mV mV V V V v nA V mA
				Min	Тур	Max	Min	Max	
V_{H}	hysteresis voltage			6	9	13	-	-	mV
		V _{CC} = 1.3 V		-	20	-	-	-	mV
V _{I(offset)}	offset input voltage		<u>[1]</u>	-30	0.5	+30	-30	+30	mV
		V _{CC} = 1.3 V	[1]	-	3	-	-	-	mV
V _{OL}	LOW-level output voltage	$I_{O} = 0.5 \text{ mA}; V_{CC} = 1.3 \text{ V}$		-	0.05	-	-	-	V
		$I_O = 0.5 \text{ mA}; V_{CC} = 1.6 \text{ V}$	mA; $V_{CC} = 3.0 \text{ V}$ - 0.14	-	-	0.25	V		
		$I_O = 3 \text{ mA}; V_{CC} = 3.0 \text{ V}$		-	0.14	-	-	0.3	V
		$I_{O} = 5 \text{ mA}; V_{CC} = 5.5 \text{ V}$		-	0.20	-	-	0.3	V
l _{OZ}	OFF-state output current	$IN- = V_{EE}; IN+ = V_{CC};$ $V_O = 5.5 V$		-	3	-	-	-	nA
V_{CM}	common-mode voltage	$V_{CC} = 1.3 \text{ V to } 5.5 \text{ V}$		-	V_{EE} to V_{CC}	-	-	-	V
I _{OS}	output short-circuit current	$V_{CC} = 5.5 \text{ V}; V_O = V_{CC}$		-	68	-	-	-	mA
CMRR	common-mode rejection ratio	$\Delta V_{CM} = V_{CC}$		-	70	-	-	-	dB
PSRR	power supply rejection ratio	ΔV_{CC} = 1.95 V		45	80	-	-	-	dB
I _{IB}	input bias current			-	1.0	-	-	-	pΑ
I _{CC}	supply current			-	6.0	-	-	9.0	μΑ
icc	эарріу банені				0.0			3.0	μ

^[1] Differential input switching level is guaranteed at the minimum or maximum offset voltage, minus or plus half the maximum hysteresis voltage.

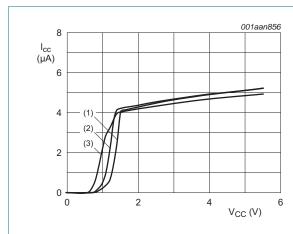
Low voltage comparator; open-drain output

11. Dynamic characteristics

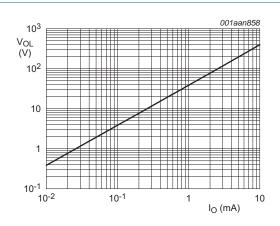

Table 7. Dynamic characteristics

Voltages are referenced to V_{EE} (V_{EE} = 0 V); V_{CC} = 1.6 V to 5.5 V; V_{CM} = 0.5 V_{CC} unless otherwise specified.

Symbol	Parameter	Conditions		25 °C		Unit
			Min	Тур	Max	
t _{pd}	propagation delay	20 mV overdrive; C _L = 15 pF [1]	-	8.0	-	μS
t _t	transition time	HIGH to LOW; $V_{CC} = 5.5 \text{ V}$; $C_L = 50 \text{ pF}$	-	10	-	ns

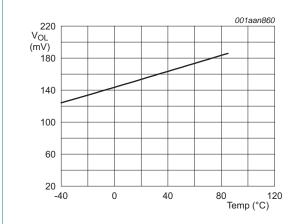

^[1] t_{pd} is the same as t_{PLZ} and t_{PZL} ; t_{PLZ} is the time that the output gets actually disabled.

12. Graphs


^[2] Input signal: 1 kHz, squarewave signal with 10 ns edge rate.

Low voltage comparator; open-drain output

- (1) $T_{amb} = -40 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = 85 \, ^{\circ}C$.


Fig 6. Supply current versus supply voltage

$$T_{amb}$$
 = 25 °C.

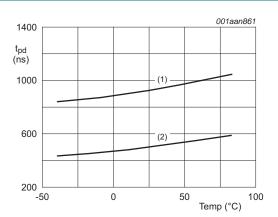
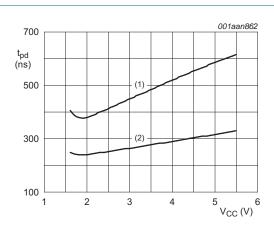

$$V_{CC} = 5.0 \text{ V}.$$

Fig 7. LOW-level output voltage versus output current

 $I_{O} = 4.0 \text{ mA}.$ $V_{CC} = 5.0 \text{ V}.$

Fig 8. LOW-level output voltage versus temperature



 $V_{CC} = 5.0 \text{ V}$; input overdrive = 50 mV.

- (1) t_{PLZ}.
- (2) t_{PZL}.

Fig 9. Propagation delay versus temperature

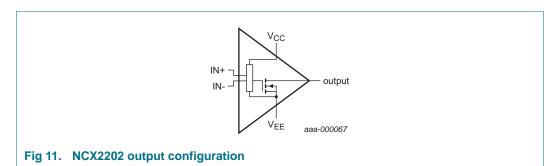
Low voltage comparator; open-drain output

T_{amb} = 25 °C; input overdrive = 100 mV.

- (1) t_{PLZ}.
- (2) t_{PZL}.

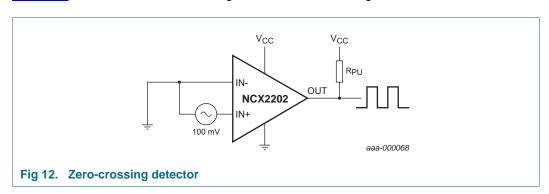
Fig 10. Propagation delay versus supply voltage.

Low voltage comparator; open-drain output


13. Application information

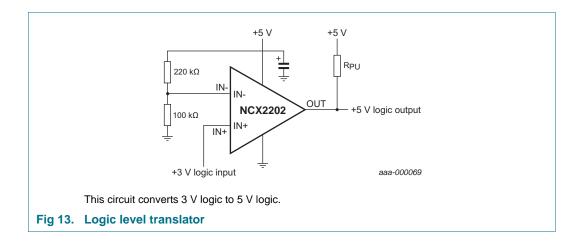
13.1 Operating description

The NCX2202 is a single low voltage low power comparator with open drain output. This device is designed for use with a pull-up resistor to define the output switching levels. This device consumes only 6 μA of supply current while achieving a typical propagation delay of 0.8 μs at a 20 mV input overdrive. Figure 9 and Figure 10 show propagation delay with various input overdrives. This comparator is guaranteed to operate at a low voltage of 1.3 V up to 5.5 V. The common-mode input voltage range extends 0.1 V beyond the upper and lower rail without phase inversion or other adverse effects. This device has a typical internal hysteresis of 9.0 mV. This allows for greater noise immunity and clean output switching.


13.2 Output stage

The NCX2202 has an N-channel output stage that has capability of sinking the output to V_{FF} with a load ranging up to 5.0 mA. See Figure 11

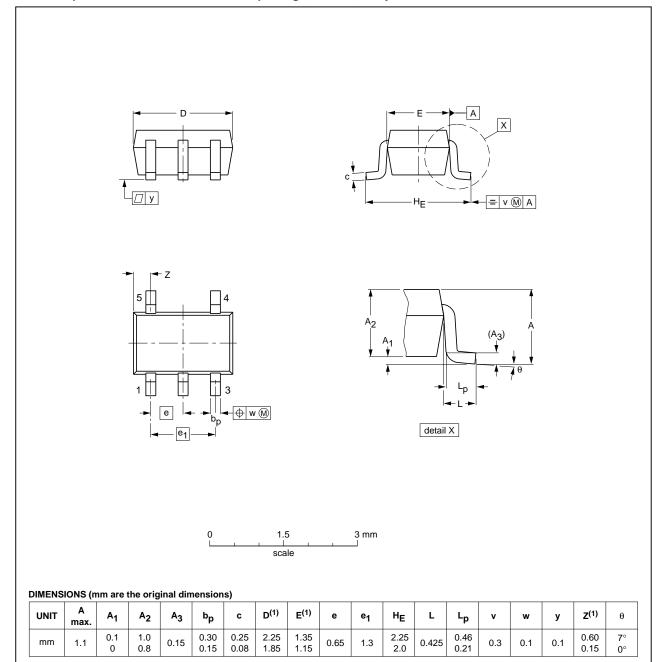
13.3 Zero-crossing detector


Figure 12 shows the NCX2202 configured as a zero-crossing detector.

13.4 Logic level translator

Figure 13 shows the NCX2202 configured as a logic level translator.

Low voltage comparator; open-drain output



Low voltage comparator; open-drain output

14. Package outline

TSSOP5: plastic thin shrink small outline package; 5 leads; body width 1.25 mm

SOT353-1

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT353-1		MO-203	SC-88A		-00-09-01- 03-02-19	

Fig 14. Package outline SOT353-1 (TSSOP5)

NCX220

Low voltage comparator; open-drain output

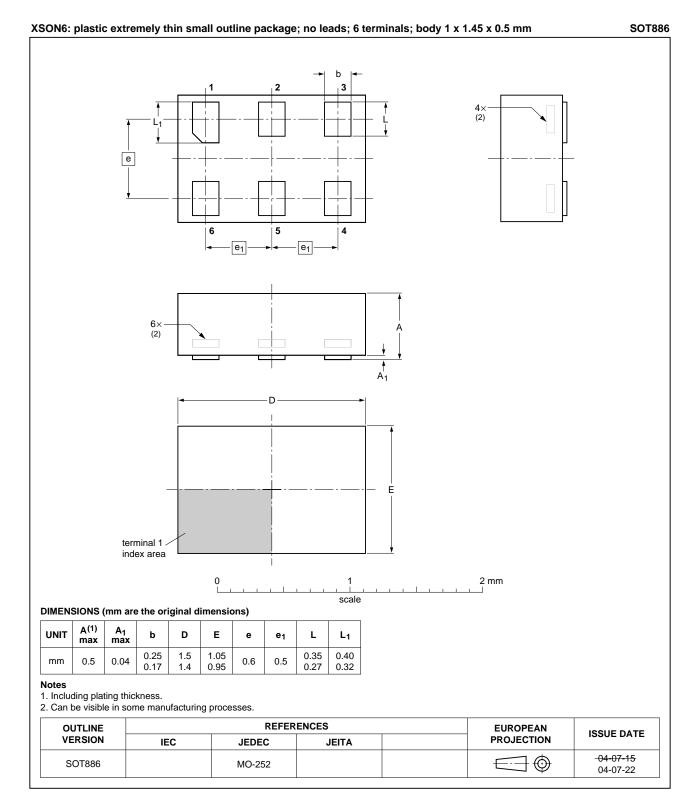


Fig 15. Package outline SOT886 (XSON6)

NCX2202 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

Low voltage comparator; open-drain output

15. Abbreviations

Table 8. Abbreviations

Acronym	Description
CDM	Charged Device Model
ESD	ElectroStatic Discharge
HBM	Human Body Model

16. Revision history

Table 9. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
NCX2202 v.1	20110720	Product data sheet	-	-

Low voltage comparator; open-drain output

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be

suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

NCX2202

Low voltage comparator; open-drain output

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NCX2202 NXP Semiconductors

Low voltage comparator; open-drain output

19. Contents

1	General description
2	Features and benefits
3	Applications
4	Ordering information
5	Marking 2
6	Functional diagram 2
7	Pinning information 2
7.1	Pinning
7.2	Pin description
8	Limiting values 3
9	Recommended operating conditions 3
10	Static characteristics 4
11	Dynamic characteristics 5
12	Graphs 5
13	Application information 8
13.1	Operating description 8
13.2	Output stage
13.3	Zero-crossing detector 8
13.4	Logic level translator 8
14	Package outline
15	Abbreviations 12
16	Revision history 12
17	Legal information
17.1	Data sheet status
17.2	Definitions
17.3	Disclaimers
17.4	Trademarks14
18	Contact information 14
19	Contents 15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.