

SST440 MONOLITHIC DUAL N-CHANNEL JFET

Linear Systems replaces discontinued Siliconix SST440

The SST440 is a tightly matched Monolithic Dual N-Channel JFET

The SST440 are monolithic dual JFETs mounted in a SOIC package. The monolithic dual chip design reduces parasitics and gives better performance at very high frequencies while ensuring extremely tight matching. These devices are an excellent choice for use as wideband differential amplifiers in demanding test and measurement applications. The SST440 is a direct replacement for discontinued Siliconix SST440.

The 8 Pin SOIC provides ease of manufacturing, and the symmetrical pinout prevents improper orientation. (See Packaging Information).

SST440 Applications:

- Wideband Differential Amps
- High-Speed,Temp-Compensated Single-Ended Input Amps
- High-Speed Comparators
- Impedance Converters and vibrations detectors.

FEATURES							
Direct Replacement for SILICONIX SST440							
HIGH CMRR	CMRR ≥ 85dB						
LOW GATE LEAKAGE	I _{GSS} ≤ 1 pA						
ABSOLUTE MAXIMUM RATINGS ¹							
@ 25°C (unless otherwise noted)							
Mariana Tananasatana							
Maximum Temperatures							
Storage Temperature	-65°C to +150°C						
Operating Junction Temperature	-55°C to +135°C						
Maximum Power Dissipation							
Continuous Power Dissipation (Total)	500mW						
Maximum Currents							
Gate Current	50mA						
Maximum Voltages							
Gate to Drain	-25V						
Gate to Source	-25V						
Gate to Gate ±50V							

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
$ V_{GS1}-V_{GS2} $	Differential Gate to Source Cutoff Voltage			_10	mV	$V_{DG} = 10V, I_D = 5mA$
$\Delta V_{GS1} - V_{GS2} /\Delta T$	Differential Gate to Source Cutoff		20		μV/°C	$V_{DG} = 10V, I_{D} = 5mA$
	Voltage Change with Temperature					$T_A = -55^{\circ}C$ to +125°C
I _{DSS1} / I _{DSS2}	Gate to Source Saturation Current Ratio		0.07			$V_{DS} = 10V$, $V_{GS} = 0V$
G _{fs1} / G _{fs2}	Forward Transconductance Ratio ²		0.97			$V_{DS} = 10V$, $V_{DS} = 5$ mA, $f = 1$ kHz
CMRR	Common Mode Rejection Ratio		85		dB	$V_{DG} = 5 \text{ to } 10V, I_{D} = 5 \text{ mA}$

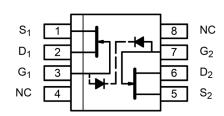
ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
BV_GSS	Gate to Source Breakdown Voltage	-25			V	$I_{G} = -1\mu A$, $V_{DS} = 0V$
$V_{GS(off)}$	Gate to Source Cutoff Voltage	-1	-3.5	-6	V	$V_{DS} = 10V, I_{D} = 1nA$
I _{DSS}	Gate to Source Saturation Current	6	15	30	mA	$V_{DS} = 10V, V_{GS} = 0V$
I _{GSS}	Gate Leakage Current ³		-1	-500	pА	$V_{GS} = -15V, V_{DS} = 0V$
I _G	Gate Operating Current		-1	-500	pA	$V_{DG} = 10V, I_D = 5mA$
g fs	Forward Transconductance	4.5	6	9	mS	$V_{DS} = 10V, I_{D} = 5mA, f = 1kHz$
g _{os}	Output Conductance		70	200	μS	
C _{ISS}	Input Capacitance		3		pF	$V_{DS} = 10V$, $I_D = 5mA$, $f = 1MHz$
C_{RSS}	Reverse Transfer Capacitance		1		pF	
e _n	Equivalent Input Noise Voltage		4		nV/√Hz	$V_{DS} = 10V$, $I_{D} = 5mA$, $f = 10kHz$

Notes:

- 1. Absolute Maximum ratings are limiting values above which serviceability may be impaired
- 2. Pulse Test: PW ≤ 300µs Duty Cycle ≤ 3%
- 3. Assumes smaller value in numerator

Available Packages:


SST440 in SOIC SST440 available as bare die

Please contact Micross for full package and die dimensions:

Email: chipcomponents@micross.com
Web: www.micross.com/distribution.aspx

SOIC (Top View)

