Preliminary User's Manual

V850ES/KG1+

32-Bit Single-Chip Microcontrollers

Hardware

μPD703313 μPD703313Y μPD70F3311 μPD70F3311Y μPD70F3313 μPD70F3313

Document No. U16894EJ1V0UD00 (1st edition) Date Published March 2004 N CP(K)

© NEC Electronics Corporation 2004 DataSheet4 Printed in Japan

www.DataSheet4U.com

[MEMO]

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

DataShe

DataSheet4U.com

NOTES FOR CMOS DEVICES -

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

Purchase of NEC Electronics I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Caution: µPD70F3311, 70F3311Y, 70F3313, and 70F3313Y use SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc. SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production.
- Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
 - NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics products depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M5D 02.11-1

et4U.com

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT] http://www.necel.com/en/support/support.html

et4U.com

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd. Duesseldorf, Germany Santa Clara, California Hong Kong Tel: 408-588-6000 Tel: 0211-65030 Tel: 2886-9318 800-366-9782 • Sucursal en España **NEC Electronics Hong Kong Ltd.** Seoul Branch Madrid, Spain Tel: 091-504 27 87 Seoul, Korea Tel: 02-558-3737 • Succursale Française Vélizy-Villacoublay, France **NEC Electronics Shanghai Ltd.** Tel: 01-30-67 58 00 Shanghai, P.R. China Tel: 021-5888-5400 Filiale Italiana Milano, Italy **NEC Electronics Taiwan Ltd.** Tel: 02-66 75 41 Taipei, Taiwan Tel: 02-2719-2377 Branch The Netherlands Eindhoven, The Netherlands

Tel: 040-2445845

 United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133

• Tyskland Filial Taeby, Sweden Tel: 08-63 80 820 NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 6253-8311

J04.1

PREFACE

	Readers	who wish to understand the functions of the stems using these products.		
	PurposeThis manual is intended to give users an understanding of the hardware functions oV850ES/KG1+ shown in the Organization below.			
	Organization	This manual is divided into two parts: Hardware (this manual) and Architecture (V850ES Architecture User's Manual).		
		Hardware Pin functions CPU function On-chip peripheral functions Flash memory programming Electrical specifications (target) 	Architecture Data types Register set Instruction format and instruction set Interrupts and exceptions Pipeline operation 	
	How to Read This Manual	It is assumed that the readers of this n electrical engineering, logic circuits, and	nanual have general knowledge in the fields of microcontrollers.	
et4U.com		To find the details of a register where the \rightarrow Refer to APPENDIX C REGISTER IN		DataShe
		To understand the details of an instructio \rightarrow Refer to the V850ES Architecture Us		
			is in angle brackets (<>) in the figure of the ned as a reserved word in the device file.	
		To understand the overall functions of the \rightarrow Read this manual according to the CC		
		To know the electrical specifications of th \rightarrow Refer to CHAPTER 32 ELECTRICAL		
			bed as the "xxx.yyy bit" in this manual. Note with s in a program, however, the compiler/assembler	

Conventions	Data significance: Active low representation:	Higher digits on the left and lower digits on the right : xxx (overscore over pin or signal name)		
	Memory map address:	Higher addresses on the top and lower addresses on the bottom		
	Note:	Footnote for item marked with Note in the text		
	Caution:	Information requiring particular attention		
	Remark:	Supplementary information		
	Numeric representation:	Binary xxxx or xxxxB		
		Decimal xxxx		
		Hexadecimal xxxxH		
	Prefix indicating power of	2 (address space, memory capacity):		
		K (kilo): 2 ¹⁰ = 1,024		
		M (mega): 2 ²⁰ = 1,024 ²		
		G (giga): $2^{30} = 1,024^{3}$		

DataShe

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

Related DocumentsThe related documents indicated in this publication may include preliminary versions.However, preliminary versions are not marked as such.

Documents related to V850ES/KG1+

Document Name	Document No.
V850ES Architecture User's Manual	U15943E
V850ES/Kx1, V850ES/Kx1+ On-chip Debug User's Manual	U16972E
V850ES/KG1+ Hardware User's Manual	This manual

Documents related to development tools (user's manuals)

Document Name	Document No.	
CA850 Ver. 2.50 C Compiler Package	U16053E	
	C Language	U16054E
	Assembly Language	U16042E
PM plus Ver. 5.10		U16569E
ID850QB Ver. 2.80 Integrated Debugger	Operation	U16973E
SM plus Ver. 1.00 System Simulator	Operation	U16906E
	User Open Interface Specifications	U16907E
RX850 Ver. 3.13 or Later Real-Time OS	Basics	U13430E
	Installation	U13410E
	Technical	U13431E
RX850 Pro Ver. 3.15 Real-Time OS	Basics	U13773E
	Installation	U13774E
	Technical	U13772E
RD850 Ver. 3.01 Task Debugger	U13737E	
RD850 Pro Ver. 3.01 Task Debugger	U13916E	
AZ850 Ver. 3.20 System Performance Analyze	U14410E	
PG-FP4 Flash Memory Programmer		U15260E

DataShe

CONTENTS

	CHAPT	ER 1 INTRODUCTION	19
	1.1	K1 Family Product Lineup	19
		1.1.1 V850ES/Kx1+, V850ES/Kx1 products lineup	19
		1.1.2 78K0/Kx1+, 78K0/Kx1 products lineup	22
	1.2	Features	25
	1.3	Applications	27
	1.4	Ordering Information	27
	1.5	Pin Configuration (Top View)	
	1.6	Function Block Configuration	
	1.7	Overview of Functions	35
	СНАРТ	ER 2 PIN FUNCTIONS	
	2.1	List of Pin Functions	
	2.2	Pin Status	
	2.3	Pin I/O Circuits and Recommended Connection of Unused Pins	45
	2.4	Pin I/O Circuits	
	СНАРТ	ER 3 CPU FUNCTIONS	49
et4U.com	3.1	Features	
	3.2	CPU Register Set	50
		3.2.1 Program register set DataSheet4U.com	51
		3.2.2 System register set	52
	3.3	Operating Modes	58
	3.4	Address Space	59
		3.4.1 CPU address space	59
		3.4.2 Wraparound of CPU address space	60
		3.4.3 Memory map	61
		3.4.4 Areas	
		3.4.5 Recommended use of address space	
		3.4.6 Peripheral I/O registers	
		3.4.7 Special registers	
		3.4.8 Cautions	85
	CHAPT	ER 4 PORT FUNCTIONS	89
	4.1	Features	
	4.2	Basic Port Configuration	
	4.3	Port Configuration	
		4.3.1 Port 0	95
		4.3.2 Port 1	98
		4.3.3 Port 3	100
		4.3.4 Port 4	
		4.3.5 Port 5	109
		4.3.6 Port 7	
DataSheet4U.com	1	4.3.7 Port 9	www.DataSheet4U.com

Preliminary User's Manual U16894EJ1V0UD

		4.3.8 Port CM	121	
		4.3.9 Port CS	123	
		4.3.10 Port CT	125	
		4.3.11 Port DH	127	
		4.3.12 Port DL	129	
	4.4	Block Diagrams		
	4.5	Port Register Setting When Alternate Function Is Used		
	4.6	Cautions		
		4.6.1 Cautions on bit manipulation instruction for port n register (Pn)		
		4.6.2 Hysteresis characteristics		
	CHAPT	ER 5 BUS CONTROL FUNCTION	166	
	5.1	Features		
	5.1	Bus Control Pins		
	5.2			
		5.2.1 Pin status when internal ROM, internal RAM, or on-chip peripheral I/O is accessed		
		5.2.2 Pin status in each operation mode		
	5.3	Memory Block Function		
		5.3.1 Chip select control function		
	5.4	External Bus Interface Mode Control Function		
	5.5	Bus Access	171	
		5.5.1 Number of clocks for access	171	
et4U.com		5.5.2 Bus size setting function	171	
2[40.0011		5.5.3 Access by bus size	172	DataShe
	5.6	Wait FunctionDataSheet40.com	179	
		5.6.1 Programmable wait function		
		5.6.2 External wait function	180	
		5.6.3 Relationship between programmable wait and external wait		
		5.6.4 Programmable address wait function		
	5.7	Idle State Insertion Function		
	5.8	Bus Hold Function		
	0.0	5.8.1 Functional outline	-	
		5.8.2 Bus hold procedure		
		5.8.3 Operation in power save mode		
	5.9	Bus Priority		
	5.9 5.10	Bus Friding		
		•		
	5.11	Cautions		
	CHAPT	ER 6 CLOCK GENERATION FUNCTION	194	
	6.1	Overview	194	
	6.2	Configuration	195	
	6.3	Registers	197	
	6.4	Operation	202	
		6.4.1 Operation of each clock	202	
		6.4.2 Clock output function	202	
		6.4.3 External clock input function	202	
	6.5	PLL Function	203	
		6.5.1 Overview	203	
DataSheet4	U.com		www.DataS	Sheet4U.com

	6.5.2 6.5.3	Register	
НАРТ	ER 7	16-BIT TIMER/EVENT COUNTER P (TMP)	
7.1		/iew	
7.2		tions	
7.3		guration	
7.4		5 sters	
7.5	-	ation	
	7.5.1	Interval timer mode (TP0MD2 to TP0MD0 bits = 000)	
	7.5.2	External event count mode (TP0MD2 to TP0MD0 bits = 001)	
	7.5.3	External trigger pulse output mode (TP0MD2 to TP0MD0 bits = 010)	
	7.5.4	One-shot pulse output mode (TP0MD2 to TP0MD0 bits = 011)	
	7.5.5	PWM output mode (TP0MD2 to TP0MD0 bits = 100)	
	7.5.6	Free-running timer mode (TP0MD2 to TP0MD0 bits = 101)	
	7.5.7	Pulse width measurement mode (TP0MD2 to TP0MD0 bits = 110)	
	7.5.8	Timer output operations	
7.6	Elimir	nating Noise on Capture Trigger Input Pin (TIP0a)	
7.7	Cauti	ons	
HAPT 8.1		tions	
8.1 8.2	Funct Confi	tions guration	
8.1 8.2 8.3	Funct Confi Regis	guration stersDataSheet4U.com	
8.1 8.2	Funct Confi Regis	guration stersDataShaat4U.com ation	
8.1 8.2 8.3	Funct Confi Regis Opera 8.4.1	guration stersDataSheet4U.com ation Operation as interval timer	
8.1 8.2 8.3	Funct Confi Regis Opera 8.4.1 8.4.2	gurationDataSheet4U.com ation Operation as interval timer PPG output operation	
8.1 8.2 8.3	Funct Confi Regis Opera 8.4.1 8.4.2 8.4.3	guration	
8.1 8.2 8.3	Funct Confi Regis Opera 8.4.1 8.4.2 8.4.3 8.4.4	guration	
8.1 8.2 8.3	Funct Confi Regis Opera 8.4.1 8.4.2 8.4.3 8.4.3 8.4.4 8.4.5	guration	
8.1 8.2 8.3	Funct Confi Regis Opera 8.4.1 8.4.2 8.4.3 8.4.3 8.4.4 8.4.5 8.4.6	guration	
8.1 8.2 8.3	Funct Confi Regis Opera 8.4.1 8.4.2 8.4.3 8.4.3 8.4.4 8.4.5	guration	
8.1 8.2 8.3 8.4	Funct Confi Regis Opera 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7	guration	
8.1 8.2 8.3 8.4 HAPT 9.1	Funct Confi Regis 0pera 8.4.1 8.4.2 8.4.3 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7 ER 9 Funct	guration teters	
8.1 8.2 8.3 8.4 HAPT 9.1 9.2	Funct Confi Regis Opera 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7 ER 9 Funct Confi	guration	
8.1 8.2 8.3 8.4 9.1 9.2 9.3	Funct Confi Regis Opera 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7 ER 9 Funct Confi Regis	guration	
8.1 8.2 8.3 8.4 HAPT 9.1 9.2	Funct Confi Regis Opera 8.4.1 8.4.2 8.4.3 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7 ER 9 Funct Confi Regis Opera	guration	
8.1 8.2 8.3 8.4 9.1 9.2 9.3	Funct Confi Regis Opera 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7 ER 9 Funct Confi Regis Opera 9.4.1	guration	
8.1 8.2 8.3 8.4 9.1 9.2 9.3	Funct Config Regis Opera 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7 ER 9 Funct Config Regis Opera 9.4.1 9.4.2	guration	
8.1 8.2 8.3 8.4 9.1 9.2 9.3	Funct Confi Regis Opera 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7 Funct Confi Regis Opera 9.4.1 9.4.2 9.4.3	guration	
8.1 8.2 8.3 8.4 9.1 9.2 9.3	Funct Confi Regis Opera 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7 Funct Confi Regis Opera 9.4.1 9.4.2 9.4.3 9.4.4	guration ters	
8.1 8.2 8.3 8.4 9.1 9.2 9.3	Funct Confi Regis Opera 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7 ER 9 Funct Confi Regis Opera 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5	guration	
8.1 8.2 8.3 8.4 9.1 9.2 9.3	Funct Confi Regis Opera 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7 Funct Confi Regis Opera 9.4.1 9.4.2 9.4.3 9.4.4	guration ters	

DataSheet4U.com

et4U.com

СНАРТ	CHAPTER 10 8-BIT TIMER H		
10.1	Functions	361	
10.2	Configuration	361	
10.3	Registers	364	
10.4	Operation	368	
	10.4.1 Operation as interval timer/square wave output	368	
	10.4.2 PWM output mode operation	371	
	10.4.3 Carrier generator mode operation	377	
СНАРТ	ER 11 INTERVAL TIMER, WATCH TIMER	384	
11.1	Interval Timer BRG	384	
	11.1.1 Functions	384	
	11.1.2 Configuration	384	
	11.1.3 Registers	386	
	11.1.4 Operation		
11.2	Watch Timer	389	
	11.2.1 Functions	389	
	11.2.2 Configuration	389	
	11.2.3 Register	390	
	11.2.4 Operation		
	Cautions	393	
CHAPT	ER 12 WATCHDOG TIMER FUNCTIONS	395	DataShe
12.1	DataSheet4U.com	395	
	12.1.1 Functions	395	
	12.1.2 Configuration	397	
	12.1.3 Registers	397	
	12.1.4 Operation	399	
12.2	Watchdog Timer 2	401	
	12.2.1 Functions	401	
	12.2.2 Configuration	402	
	12.2.3 Registers	402	
	12.2.4 Operation	404	
СНАРТ	ER 13 REAL-TIME OUTPUT FUNCTION (RTO)	405	
13.1	Function	405	
13.2	Configuration	406	
13.3	Registers	407	
13.4	Operation	409	
13.5	Usage	410	
13.6	Cautions	410	
13.7	Security Function	411	
СНАРТ	ER 14 A/D CONVERTER	413	
14.1	Overview	413	
14.2	Functions		
eet4U.com		www.Datas	Sheet4U.com

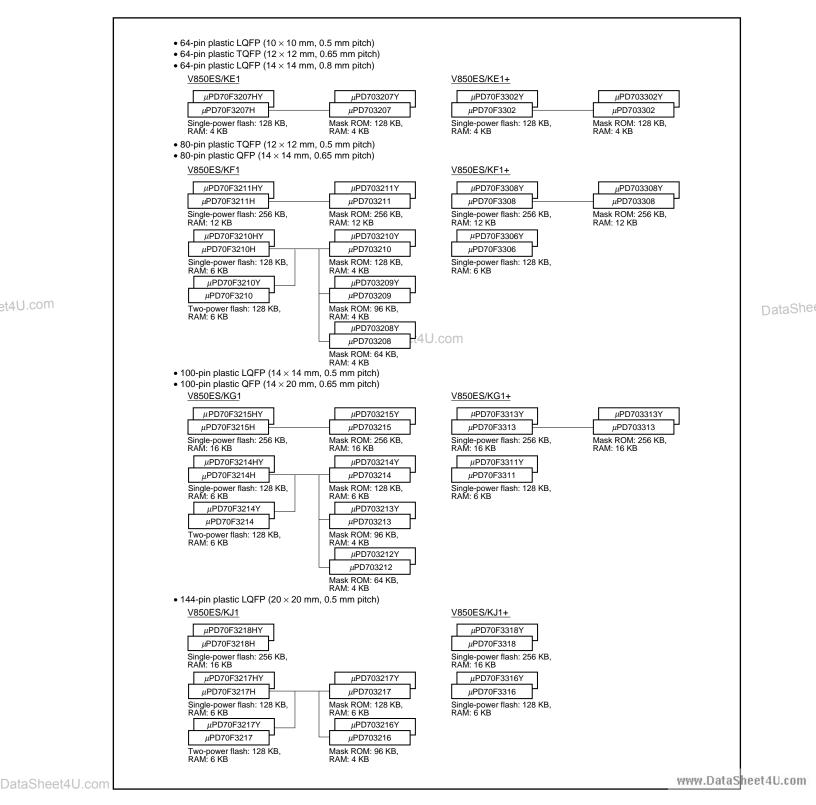
	14.3	Configuration		
	14.4	Registers	416	
	14.5	Operation	424	
		14.5.1 Basic operation	424	
		14.5.2 Trigger modes	425	
		14.5.3 Operation modes	426	
		14.5.4 Power fail detection function	429	
		14.5.5 Setting method	430	
	14.6	Cautions	431	
	14.7	How to Read A/D Converter Characteristics Table	437	
	CHAPT	ER 15 D/A CONVERTER		
	15.1	Functions	441	
	15.2	Configuration		
	15.3	Registers		
	15.4	Operation		
		15.4.1 Operation in normal mode		
		15.4.2 Operation in real-time output mode		
		15.4.3 Cautions	445	
	CHAPT	ER 16 ASYNCHRONOUS SERIAL INTERFACE (UART)		
	16.1	Selecting UART2 or CSI00 Mode	116	
et4U.com	16.2	Features		DataShe
	16.3	ConfigurationDataSheet4U.com		
	16.4	Registers		
	16.5	Interrupt Request Signals		
	16.6	Operation		
	10.0	16.6.1 Data format		
		16.6.2 Transmit operation		
		16.6.3 Continuous transmission operation		
		16.6.4 Receive operation		
		16.6.5 Reception error		
		16.6.6 Parity types and corresponding operation		
		16.6.7 Receive data noise filter		
		16.6.8 SBF transmission/reception (UART0 only)		
	16.7	Dedicated Baud Rate Generator n (BRGn)		
	10.7	16.7.1 Baud rate generator n (BRGn) configuration		
		16.7.2 Serial clock generation		
		16.7.3 Baud rate setting example		
		16.7.4 Allowable baud rate range during reception		
	16.8	16.7.5 Transfer rate during continuous transmission		
		ER 17 CLOCKED SERIAL INTERFACE 0 (CSI0)		
	17.1	Features		
	17.2	Configuration		
DataSheet4U.com	17.3	Registers	www.DataSheet	4U.com

	17 /	Operation	195	
	17.4	17.4.1 Transmission/reception completion interrupt request signal (INTCSI0n)		
		17.4.2 Single transfer mode		
		17.4.3 Continuous transfer mode		
	17.5	Output Pins		
	17.5			
	CHAPTE	ER 18 CLOCKED SERIAL INTERFACE A (CSIA) WITH AUTOMATIC		
		TRANSMIT/RECEIVE FUNCTION		
	18.1	Functions	509	
	18.2	Configuration	510	
	18.3	Registers	512	
	18.4	Operation		
		18.4.1 3-wire serial I/O mode		
		18.4.2 3-wire serial I/O mode with automatic transmit/receive function	525	
	СНАРТЕ	ER 19 I ² C BUS	541	
	19.1	Features	541	
	19.1			
		Configuration		
	19.3	Registers		
	19.4	Functions		
	40 E	19.4.1 Pin configuration		
et4U.com	19.5	I ² C Bus Definitions and Control Methods		DataShe
		19.5.1 Start condition		
		19.5.2 Addresses		
		19.5.3 Transfer direction specification		
		19.5.4 Acknowledge signal (ACK)		
		19.5.5 Stop condition		
	40.0	19.5.6 Wait signal (WAIT)		
	19.6	I ² C Interrupt Request Signals (INTIIC0)		
		19.6.1 Master device operation		
		19.6.2 Slave device operation (when receiving slave address data (match with address))		
		19.6.3 Slave device operation (when receiving extension code)		
		19.6.4 Operation without communication		
		19.6.5 Arbitration loss operation (operation as slave after arbitration loss)		
		19.6.6 Operation when arbitration loss occurs (no communication after arbitration loss)		
	19.7	Interrupt Request Signal (INTIIC0) Generation Timing and Wait Control		
	19.8	Address Match Detection Method		
	19.9	Error Detection		
		Extension Code		
		Arbitration		
		Wakeup Function		
	19.13	Communication Reservation		
		19.13.1 When communication reservation function is enabled (IICF0.IICRSV0 bit = 0)		
		19.13.2 When communication reservation function is disabled (IICF0.IICRSV0 bit = 1)		
		Cautions		
	19.15	Communication Operations		
		19.15.1 Master operation 1		hoot II som
DataSheet	4U.com		www.Data5	heet4U.com

		19.15.2 Master operation 2	
		19.15.3 Slave operation	
	19.16	Timing of Data Communication	
	СНАРТЕ	ER 20 DMA FUNCTION (DMA CONTROLLER)	606
		Ϋ́Υ, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Υ``, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Υ`, Ϋ́Υ`, Ϋ́Υ`, Υ`, Ϋ́Υ`, Υ``, Ϋ́Υ`, Υ`, Ϋ́Υ`, Υ``, Υ`, Υ`, Υ``, Υ``, Υ`, Υ`, Υ``, Υ``, Υ`, ```, Υ`, ```, Υ``, ``,	
	20.1	Features	
	20.2	Configuration	
	20.3	Registers	
	20.4	Transfer Targets	
	20.5	Transfer Modes	
	20.6	Transfer Types	
	20.7	DMA Channel Priorities	
	20.8 20.9	Time Related to DMA Transfer	
		DMA Transfer Start Factors	
		DMA Abort Factors	
		End of DMA Transfer	
		Operation Timing	
	20.13	Cautions	
	СНАРТЕ	ER 21 INTERRUPT/EXCEPTION PROCESSING FUNCTION	629
	21.1	Overview	629
et4U.com		21.1.1 Features	
	21.2	Non-Maskable Interrupts	633 Data Site
		21.2.1 OperationDataSheet4U.com	636
		21.2.2 Restore	637
		21.2.3 NP flag	638
	21.3	Maskable Interrupts	639
		21.3.1 Operation	639
		21.3.2 Restore	641
		21.3.3 Priorities of maskable interrupts	642
		21.3.4 Interrupt control register (xxlCn)	646
		21.3.5 Interrupt mask registers 0 to 3 (IMR0 to IMR3)	648
		21.3.6 In-service priority register (ISPR)	650
		21.3.7 ID flag	651
		21.3.8 Watchdog timer mode register 1 (WDTM1)	652
	21.4	External Interrupt Request Input Pins (NMI, INTP0 to INTP7)	653
		21.4.1 Noise elimination	653
		21.4.2 Edge detection	655
	21.5	Software Exceptions	659
		21.5.1 Operation	659
		21.5.2 Restore	
		21.5.3 EP flag	
	21.6		
		21.6.1 Illegal op code	
		21.6.2 Debug trap	
	21.7	Multiple Interrupt Servicing Control	
	21.8	Interrupt Response Time	
DataSheet4U.com	-		www.DataSheet4U.com

```
taShe
```

	Periods in Which Interrupts Are Not Acknowledged by CPU		
СНАРТ	ER 22 KEY INTERRUPT FUNCTION	670	
22.1	Function	670	
22.2	Register	671	
СНАРТ	ER 23 STANDBY FUNCTION	672	
23.1	Overview	672	
23.2	Registers	675	
23.3	HALT Mode	678	
	23.3.1 Setting and operation status	678	
	23.3.2 Releasing HALT mode	678	
23.4	IDLE Mode	680	
	23.4.1 Setting and operation status	680	
	23.4.2 Releasing IDLE mode	680	
23.5	STOP Mode	683	
	23.5.1 Setting and operation status	683	
	23.5.2 Releasing STOP mode	683	
	23.5.3 Securing oscillation stabilization time when STOP mode is released	686	
23.6	Subclock Operation Mode	687	
	23.6.1 Setting and operation status	687	DataShe
	23.6.2 Releasing subclock operation mode		Dataon
23.7	Sub-IDLE ModeDataSheet4U.com	690	
	23.7.1 Setting and operation status	690	
	23.7.2 Releasing sub-IDLE mode	690	
CHAPT	ER 24 RESET FUNCTION	693	
24.1	Overview	693	
24.2	Configuration	693	
24.3	Register to Check Reset Source	694	
24.4	Reset Sources	695	
	24.4.1 Reset operation via RESET pin	695	
	24.4.2 Reset operation by WDTRES1 signal	699	
	24.4.3 Reset operation by WDTRES2 signal		
	24.4.4 Power-on-clear reset operation		
	24.4.5 Reset operation by low-voltage detector		
	24.4.6 Reset operation by clock monitor		
24.5	Reset Output Function	706	
СНАРТ	ER 25 CLOCK MONITOR		
25.1	Function		
25.2	Registers	707	
25.3	Operation	709	
25.4	Ring Clock Operation Mode	712	
	25.4.1 Setting and operation status		
	25.4.2 Releasing ring clock operation mode		


	25.5	Ring HALT Mode	
		25.5.1 Setting and operation status	714
		25.5.2 Releasing ring HALT mode	714
	CHAPT	ER 26 LOW-VOLTAGE DETECTOR	716
	26.1	Function	
	26.2	Configuration	
	26.3	Registers	
	26.4	Operation	
	CHAPT	ER 27 POWER-ON-CLEAR CIRCUIT	721
	27.1	Function	721
	27.2	Configuration	
	27.3	Operation	
	СНАРТ	ER 28 REGULATOR	
	28.1		
		Overview	
	28.2	Operation	
	CHAPT	ER 29 ROM CORRECTION FUNCTION	725
(()) = 0.00	29.1	Overview	
et4U.com	29.2	Control Registers	
		29.2.1 Correction address registers 0 to 3 (CORAD0 to CORAD3)	726
		29.2.2 Correction control register (CORCN)	727
	29.3	ROM Correction Operation and Program Flow	
	CHAPT	ER 30 MASK OPTION/OPTION BYTE	729
	30.1	Mask Option (Mask ROM Versions)	
	30.2	Option Byte (Flash Memory Versions)	
	CHAPT	ER 31 FLASH MEMORY	731
	31.1	Features	
	31.2	Memory Configuration	
	31.3	Functional Outline	
	31.4		
		31.4.1 Programming environment	
		31.4.2 Communication mode	
		31.4.3 Flash memory control	
		31.4.4 Selection of communication mode	
		31.4.5 Communication commands	
		31.4.6 Pin connection	
	31.5		
	0.10	31.5.1 Overview	
		31.5.2 Features	
		31.5.3 Standard self programming flow	
DataSheet4U.com	1	31.5.4 Flash functions	www.DataSheet4U.com

		31.5.5 Pin processing	
	CHAPT	ER 32 ELECTRICAL SPECIFICATIONS (TARGET)7	′54
	CHAPT	ER 33 PACKAGE DRAWINGS8	905
	APPEN	DIX A DEVELOPMENT TOOLS	807
	A.1	Software Package	09
	A.2	Language Processing Software8	09
	A.3	Control Software 8	09
	A.4	Debugging Tools (Hardware)	510
		A.4.1 When using in-circuit emulator QB-V850ESKX1H	310
	A.5	Debugging Tools (Software)	510
	A.6	Embedded Software8	511
	A.7	Flash Memory Writing Tools8	11
	APPEN	DIX B INSTRUCTION SET LIST	12
	B.1	Conventions	12
	B.2	Instruction Set (in Alphabetical Order)8	
et4U.com	APPEN	DIX C REGISTER INDEX	322

DataSheet4U.com

1.1 K1 Family Product Lineup

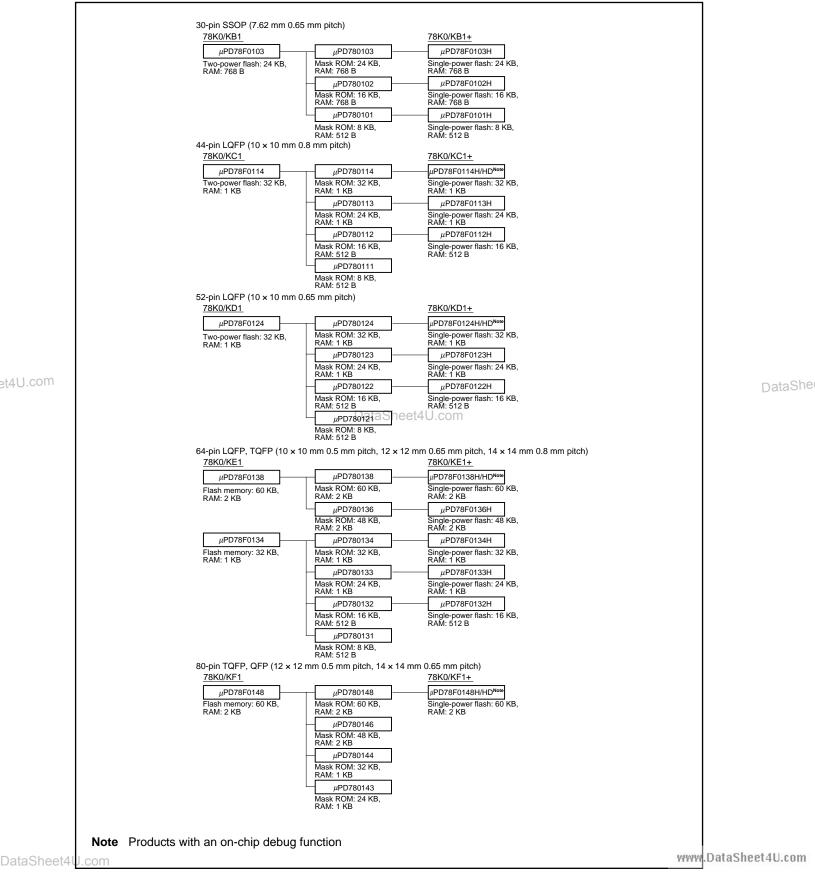
1.1.1 V850ES/Kx1+, V850ES/Kx1 products lineup

	Product Name	V850E	V8	350ES/KF	⁻ 1+	V8	350ES/KG	61+	V850E	S/KJ1+	
Number o	f pins	64	pins		80 pins			100 pins		144	pins
Internal	Mask ROM	128	-	-	256	-	-	256	-	-	-
memory	Flash memory	-	128	128	-	256	128	-	256	128	256
(KB)	RAM		4	6	1	12	6	1	6	6	16
Supply vo	Itage	2.7 to 5.5 V									
Minimum i	instruction execution time	50 ns @20 M	ИHz								
Clock	X1 input	2 to 10 MHz									
	Subclock	32.768 kHz									
	Ring-OSC	240 kHz (TY	′P.)								
Port	CMOS input	8		8			8			16	
	CMOS I/O	43	59			76			112		
	N-ch open-drain I/O	2	2			4			6		
Timer	16-bit (TMP)	1 ch		1 ch			1 ch			1 ch	
	16-bit (TM0)	1 ch	2 ch			4 ch			6 ch		
	8-bit (TM5)	2 ch	2 ch			2 ch			2 ch		
	8-bit (TMH)	2 ch	2 ch			2 ch			2 ch		
	Interval timer	1 ch	1 ch			1 ch			1 ch		
	Watch	1 ch	1 ch			1 ch		1 ch			
	WDT1	1 ch	1 ch			1 ch			1 ch		
	WDT2	1 ch		1 ch			1 ch			1 ch	
RTO	•	6 bits × 1 ch		6 bits ×	1 ch		6 bits ×	1 ch		6 bits × 2 ch	
Serial	CSI	2 ch		2 ch			2 ch			3 ch	
interface	Automatic transmit/receive 3-wire CSI		_	DataSh	neet4U	.com	2 ch			2 ch	
	UART	1 ch	1 ch	1 ch					2 ch		
	UART supporting LIN-bus	1 ch		1 ch			1 ch			1 ch	
	I ² C ^{Note}	1 ch		1 ch			1 ch			2 ch	
External	Address space		_	128 KB			3 MB			15 MB	
bus	Address bus		_	16 bits	16 bits				24 bits		
	Mode		_	Multiple	Multiplex only			ex/separat			
DMA cont	roller		_		-		4 ch			4 ch	
10-bit A/D	converter	8 ch		8 ch			8 ch			16 ch	
8-bit D/A d	converter		_		-		2 ch			2 ch	
Interrupt	External	9		9			9			9	
	Internal	27		30			42			48	
Key return	input	8 ch		8 ch			8 ch			8 ch	
Reset	RESET pin	Provided									
	POC	2.7 V or less	fixed								
	LVI	3.1 V/3.3 V	±0.15 V or 3.	5 V/3.7 V/3	3.9 V/4.1	V/4.3 V ±	0.2 V (se	lectable b	by softwa	ire)	
	Clock monitor	Provided (m	onitor by Rin	g-OSC)							
	WDT1	Provided									
	WDT2	Provided									
ROM corr	ection	4								None	
Regulator		None		Provide	d						
Standby fu	unction	HALT/IDLE/	STOP/sub-ID	LE mode	-	-	-	-	_		-
Operating	ambient temperature	$T_{A} = -40$ to -	+85°C								

Note Only in products with an l^2C bus (Y products). For the product name, refer to each user's manual.

DataSheet4U.com

et4U.com


	Product Name	V850E	S/KE1	V850ES/KF1						V	850ES/	KG1		V850ES/KJ1		
Number o	f pins	64	oins	80 pins						_	100 pii	ns		144 pins		
Internal memory	Mask ROM	128	-	64/ 96	128	-	256	-	64/ 96	12	.8 –	256	-	96/ 128	-	-
(KB)	Flash memory	_	128	-	-	128	-	256	-	-	128	-	256	-	128	256
	RAM		4	(6	1	12	4	4 6 16					6	16	
Supply vo	Itage	2.7 to 5.5 V														
Minimum i	instruction execution time	50 ns @20 M	ЛНz													
Clock	X1 input	2 to 10 MHz														
	Subclock	32.768 kHz														
	Ring-OSC								_							
Port	CMOS input	8		8					8					16		
	CMOS I/O	43			59				76					112		
	N-ch open-drain I/O	2			2			4					6			
Timer	16-bit (TMP)	1 ch			-		1 ch	ı		_		1 ch	1	-		1 ch
	16-bit (TM0)	1 ch		2 ch	2 ch				4 c	h				6 ch		
	8-bit (TM5)	2 ch			1				2 cl	h				2 ch		
	8-bit (TMH)				2 ch					h				2 ch		
	Interval timer	1 ch			1 ch					1 ch				1 ch		
	Watch	1 ch			1				1 ch				1 ch			
	WDT1	1 ch			1				1 ch				1 ch			
	WDT2	1 ch		1 ch	1 ch				1 ch					1 ch		
RTO	1	6 bits \times 1 ch	6 bits × 1 ch			6 bits × 1 ch				6 bits ×	2 ch					
Serial CSI		2 ch DataSh			ezah4U.com			2 ch				3 ch				
interface	Automatic transmit/receive 3-wire CSI	_			1 ch			2 c	h				2 ch			
	UART	2 ch		2 ch			2 ch					3 ch				
	UART supporting LIN-bus		-	-			-						-			
	I ² C ^{Note}	1 ch		1 ch					1 c	h				2 ch		
External	Address space			128 KB				3 MB					15 MB			
bus	Address bus		-	16 bits				22 bits					24 bits			
	Mode			Multiplex only			Multiplex/separate									
DMA cont	roller					-					-				-	
10-bit A/D	converter	8 ch		8 ch	1				8 c	h				16 ch		
8-bit D/A o	converter					-			2 cl	h				2 ch		
Interrupt	External	8		8					8					8		
	Internal	26		26			29		31			34		40		43
Key return	input	8 ch		8 ch	1				8 cl	h				8 ch		
Reset	RESET pin	Provided														
	POC	None														
	LVI	None														
	Clock monitor	None														
	WDT1	Provided														
	WDT2	Provided														
ROM corr	ection	4		_												
Regulator		None		Prov	vided											
Standby fu	unction	HALT/IDLE/	STOP/sub-ID	LE mo	ode											
Operating	ambient temperature	$T_A = -40$ to -	-85°C													

The function list of the V850ES/Kx1 is shown below.

et4U.com

DataSheet4U.com Note Only in products with an I²C bus (Y products). For the product name, refer to each user's manuawww.DataSheet4U.com

1.1.2 78K0/Kx1+, 78K0/Kx1 products lineup

The function list of the 78K0/Kx1+ is shown below.

Item	Product Name	78K0	/KB1+	78K0)/KC1+	78K0	/KD1+	7	BK0/KE	1+	78K0/KF1+					
Number of	f pins	30	pins	44	pins	52	pins		64 pins		80 pins					
Internal memory	Flash memory	8 K	16 K/24 K	16 K	24 K/32 K	16 K	24 K/32 K	16 K	24 K/ 32 K	48 K/ 60 K	60 K					
(byte)	RAM	512	768	512		512	1 K	512	1 K	2 K	2 K					
Supply vol	Itage	V _{DD} = 2.7	o 5.5 V													
Minimum i time	instruction execution	$\begin{array}{l} 0.125\mu \text{s} \ (16 \ \text{MHz}, \ \text{when} \ \text{V}_{\text{10}} = 4.0 \ \text{to} \ 5.5 \ \text{V}) \\ 0.24\mu \text{s} \ (8.38 \ \text{MHz}, \ \text{when} \ \text{V}_{\text{10}} = 3.3 \ \text{to} \ 5.5 \ \text{V}) \\ 0.4\mu \text{s} \ (5 \ \text{MHz}, \ \text{when} \ \text{V}_{\text{10}} = 2.7 \ \text{to} \ 5.5 \ \text{V}) \end{array}$														
Clock	X1 input	2 to 16 MHz														
	RC	3 to 4 MH	z (Vdd = 2.7	to 5.5 V)					-							
	Sub		-	32.768 kH	Ηz											
	Ring-OSC	240 kHz (240 kHz (TYP.)													
Port	CMOS I/O	17		19		26		38			54					
	CMOS input	4		8							•					
	CMOS output	1														
	N-ch open-drain I/O		_	4												
Timer	16-bit (TM0)	1 ch					2 ch									
	8-bit (TM5)	2 ch														
	8-bit (TMH)	1 ch		2 ch	2 ch											
	Watch		_	1 ch												
	WDT	1 ch														
Serial	3-wire CSI ^{Note}	1 ch		DataSh	eet4U.co	om	2 ch									
interface	Automatic transmit/ receive 3-wire CSI					-					1 ch					
		_	1 ch													
	UART supporting LIN-bus	1 ch														
10-bit A/D	converter	4 ch		8 ch												
Interrupt	External	6		7		8		9			9					
	Internal	11	12	15		15		16	19		20					
Key return	input		-	4 ch		8 ch										
Reset	RESET pin	Provided														
	POC	2.1 V ±0.1 V (detection voltage fixed)														
	LVI	2.35 V/2.6	V/2.85 V/3	.1 V/3.3 V ±	±0.15 V/3.5 \	//3.7 V/3.9	V/4.1 V/4.3 V	√ ±0.2 \	(select	able by	software)					
	Clock monitor	Provided														
	WDT	Provided														
Clock outp	out/buzzer output			_		Clock out	out only	Provid	ed							
	us interface					-		•			Provided					
Multiplier/a					_			16 bits	s × 16 bi	ts, 32 b	its ÷ 16 bits					
ROM corre					_					Provided						
	amming function	Provided – Provided –														
	ebug function		provided only	y in <i>µ</i> PD78	F0114HD, 7	8F0124HD.	78F0138H	D, and 7	8F0148	HD						
Standby fu	-	HALT/STO		_ , -	, -	-,										
	ambient temperature	-40 to +85														

Note If the pin is an alternate-function pin, either function is selected for use.

DataSheet4U.com

et4U.com

DataShe

www.DataSheet4U.com

The function list of the 78K0/Kx1 is shown below.

Item	Product Name	78	3K0/KE	31	78	3K0/K	C1	7	8K0/K[D1		7	8K0/KE	Ξ1		7	8K0/KF	1
Number of	pins	:	30 pins	5		44 pin	s		52 pins	3			64 pins	3			80 pins	6
Internal memory	Mask ROM	8 K	16 K/ 24 K	-	8 K/ 16 K	24 K/ 32 K	-	8 K/ 16 K	24 K/ 32 K	-	8 K/ 16 K	24 K/ 32 K	-	48 K/ 60 K	-	24 K/ 32 K	48 K/ 60 K	-
(byte)				24 14			20 K			22 1/			22.14		co K			60.1
	Flash memory	-		24 K		-	32 K		-	32 K	540	-	32 K	-	60 K		-	60
<u> </u>	RAM	512	70	68	512	1	K	512		K	512	1	K	2	K	1 K	2	K
Supply vol	-		(40.04)			4.0.4				: 2.7 to		.,						
time	nstruction execution	0.24 μ	0.2 μ s (10 MHz, when V _{DD} = 4.0 to 5.5 V) <regc connected="" pin="" to="" v<sub="">DD> 0.24 μs (8.38 MHz, when V_{DD} = 3.3 to 5.5 V) 0.2 μs (10 MHz, when V_{DD} = 4.0 to 5.5 V) 0.4 μs (5 MHz, when V_{DD} = 2.7 to 5.5 V) 0.24 μs (8.38 MHz, when V_{DD} = 3.3 to 5.5 V) 0.4 μs (5 MHz, when V_{DD} = 2.7 to 5.5 V) 0.4 μs (5 MHz, when V_{DD} = 2.7 to 5.5 V)</regc>															
Clock	X1 input	2 to 10 MHz																
	Sub		– 32.768 kHz															
	RC		-															
	Ring-OSC								240	kHz (T	YP.)							
Port	CMOS I/O		17			19			26				38				54	
	CMOS input		4			8												
	CMOS output		1															
	N-ch open-drain I/O		_									4						
Timer	16-bit (TM0)					1	ch						2	ch		1 ch	2	ch
	8-bit (TM5)		1 ch								2	ch						
	8-bit (TMH)	2 ch																
	Watch	– DataSheet4U.com 1 ch																
	WDT									1 ch								
Serial	3-wire CSI ^{Note}	1 ch 2 ch 1 ch 2 c										ch						
interface	Automatic transmit/ receive 3-wire CSI								_								1 ch	
		– 1 ch																
	UART supporting LIN-bus									1 ch								
10-bit A/D	converter		4 ch								8	ch						
Interrupt	External		6			7			8				9				9	
	Internal	11	1	2			1	5			16		1	9		17	2	:0
Key return	input		-			4 ch							8 ch					
Reset	RESET pin								F	Provide	d							
	POC					2.85	V ±0.15	5 V/3.5	V ±0.2	0 V (se	electabl	e by a	mask c	ption)				
	LVI			3.1	V/3.3	V ±0.1	5 V/3.5	5 V/3.7	V/3.9 \	//4.1 V/	/4.3 V =	±0.2 V	(selecta	able by	softwa	are)		
	Clock monitor	3.1 V/3.3 V ±0.15 V/3.5 V/3.7 V/3.9 V/4.1 V/4.3 V ±0.2 V (selectable by software) Provided																
	WDT								F	Provide	d							
Clock output/buzzer output								Clo	ock out	put				Prov	vided			
Multiplier/c				-						16	$\text{bits}\times$	16 bits,	32 bit	s ÷ 16 ł	oits			
ROM corre	ection							_						Prov	/ided		_	
Standby fu	Inction								HALT	/STOP	mode			-				
	ambient temperature	Speci	HALT/STOP mode Standard products, special grade (A) products: -40 to +85°C Special grade (A1) products: -40 to +110°C (mask ROM version), -40 to +105°C (flash memory version) Special grade (A2) products: -40 to +125°C (mask ROM version)															

DataSheet4U.com If the pin is an alternate-function pin, either function is selected for use.

www.DataSheet4U.com

DataShe

1.2 Features

O Minimum instruction execution time: 50 ns (operation at main clock (fxx) = 20 MHz)

O General-purpose registers: 32 bits × 32 registers

	O CPU features:	Signed multiplication (16	\times 16 \rightarrow 32): 1 to 2 clocks								
		(Instructions without crea	ting register hazards can be continuously ex	ecuted in parallel)							
			erflow and underflow detection functions are								
		32-bit shift instruction: 1 of	clock								
		Bit manipulation instruction	ons								
		Load/store instructions w	ith long/short format								
	O Memory space:	64 MB of linear address	space								
		Memory block division fu	nction: 2 MB, 2 MB (Total of 2 blocks)								
	 Internal 	memory									
		μPD703313, 703313Υ (Ν	lask ROM: 256 KB/RAM: 16 KB)								
		μPD70F3311, 70F3311Y	(Single-power flash memory: 128 KB/RAM:	6 KB)							
		μPD70F3313, 70F3313Y	(Single-power flash memory: 256 KB/RAM:	16 KB)							
	 Externa 	l bus interface									
		Separate bus/multiplex b	us output selectable								
		8-/16-bit data bus sizing function									
		Wait function									
		Programmable wait	function								
		 External wait functio 	n								
et4U.com		Idle state function		Data	aShe						
		Bus hold function	- Chaottill agen								
	O Interrupts and ex	xceptions	aSheet4U.com								
		Non-maskable interrupts:	3 sources								
		Maskable interrupts:	47 sources (µPD703313, 70F3311, 70F33	,13)							
			48 sources (µPD703313Y, 70F3311Y, 70F	-3313Y)							
		Software exceptions:	32 sources								
		Exception trap:	1 source								
	O I/O lines:	Total: 84									
	 Key interrupt fur 	nction									
	O Timer function										
		16-bit timer/event counter	r P: 1 channel								
		16-bit timer/event counter	r 0: 4 channels								
		8-bit timer/event counter	5: 2 channels								
		8-bit timer H:	2 channels								
		8-bit interval timer BRG:	1 channel								
		Watch timer/interval time	r: 1 channel								
		Watchdog timers									
		Watchdog timer 1 (also usable as oscillation stabilization timer)	: 1 channel							
		Watchdog timer 2:		1 channel							

O Serial interface

Asynchronous serial interface (UART) (supporting LIN):	1 channel
Asynchronous serial interface (UART):	2 channels
3-wire serial I/O (CSI0):	2 channels
3-wire serial I/O (with automatic transmit/receive function) (CSIA):	2 channels
I ² C bus interface (I ² C):	1 channel
(µPD703313Y, 70F3311Y, 70F3313Y)	

- O A/D converter: 10-bit resolution $\times\,8$ channels
- O D/A converter: 8-bit resolution $\times\,2$ channels
- O DMA controller: 4 channels
- O Real-time output port: 6 bits \times 1 channel
- O Standby functions: HALT/IDLE/STOP modes, subclock/sub-IDLE modes, ring clock operation/ring HALT modes
- O ROM correction: 4 correction addresses specifiable
- O Clock generator
- $\begin{array}{l} \mbox{Main clock oscillation (fx)/subclock oscillation (fxT)/Ring-OSC (fR) \\ \mbox{CPU clock (fcPu) 7 steps (fxx, fxx/2, fxx/4, fxx/8, fxx/16, fxx/32, fxT) } \end{array}$
- Clock-through mode/PLL mode selectable
- O Ring-OSC: 240 kHz (TYP.)

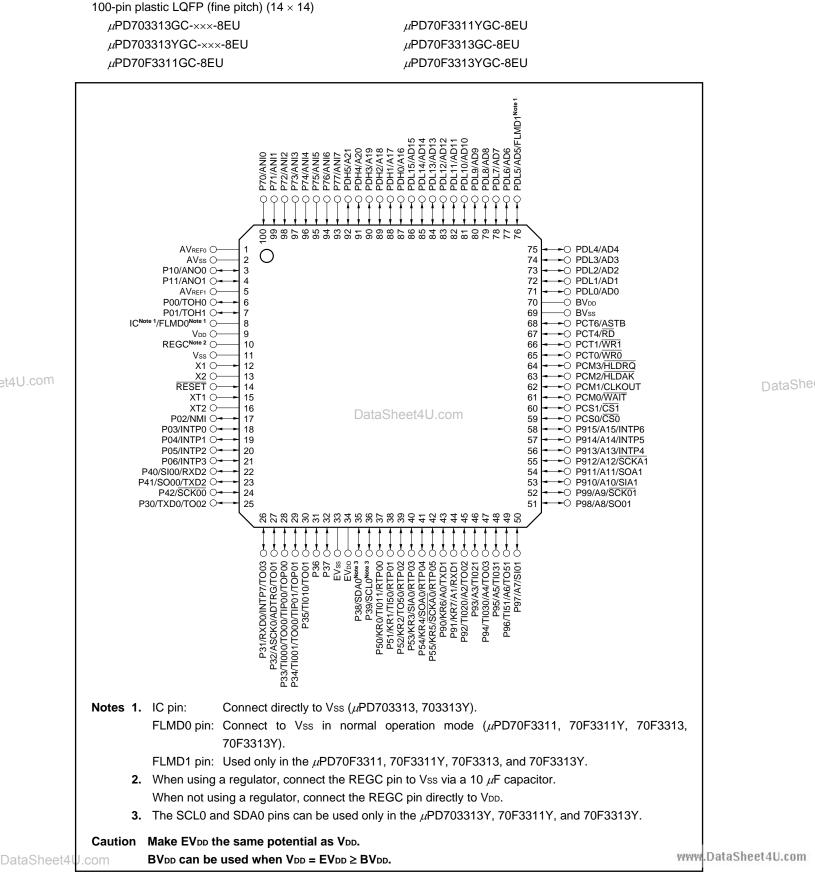
O Reset

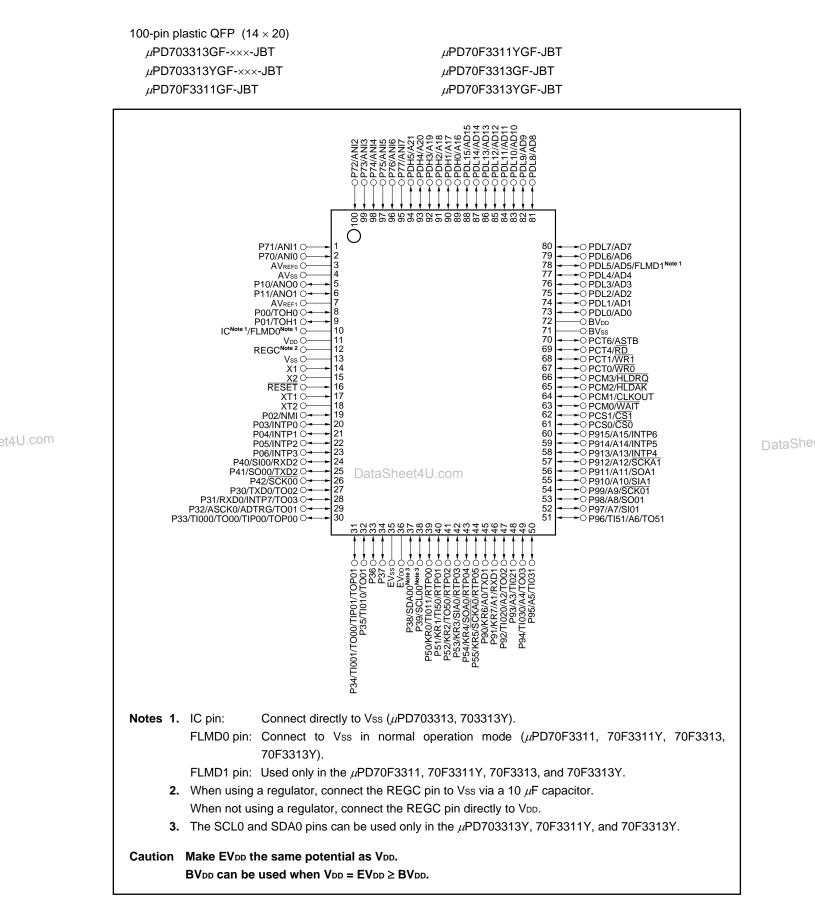
- Reset by RESET pin
- Reset by overflow of watchdog timer 1 (WDTRES1)
- Reset by overflow of watchdog timer 2 (WDTRES2)
- Reset by low-voltage detector (LVIRES)
- Reset by power-on-clear (POCRES)
 DataSheet4U.com
- Reset by clock monitor (CLMRES)
- Reset output function (P00/TOH0 pin)
- O Low-voltage detector (LVI)
- O Power-on-clear (POC) circuit
- $\, \odot \,$ Clock monitor (CLM) circuit
- O Package: 100-pin plastic LQFP (fine pitch) (14 \times 14)

100-pin plastic QFP (14 \times 20)

1.3 Applications

O Automotive

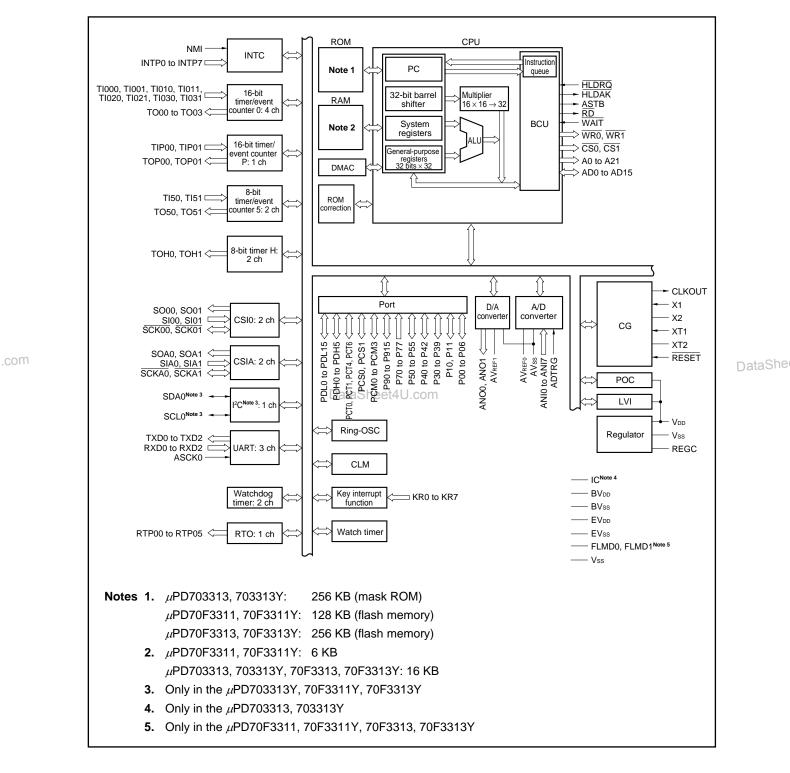

- System control of body electrical system (power windows, keyless entry reception, etc.)
- Submicrocontroller of control system
- O Home audio, car audio
- O AV equipment
- O PC peripheral devices (keyboards, etc.)
- O Household appliances
 - Outdoor units of air conditioners
 - Microwave ovens, rice cookers
- O Industrial devices
 - Pumps
 - Vending machines
 - FA


1.4 Ordering Information

Part Number	Package	Quality Grade	_
μPD703313GC-×××-8EU	100-pin plastic LQFP (fine pitch) (14 $ imes$ 14)	Standard	
μPD703313YGC-×××-8EU	100-pin plastic LQFP (fine pitch) (14 $ imes$ 14)	Standard	
μPD703313GF-×××-JBT	100-pin plastic QFP (14 $ imes$ 20)	Standard	
μ PD703313YGF-×××-JBT	100-pin plastic QFP (14 $ imes$ 20)	Standard	DataS
μPD70F3311GC-8EU	100-pin plastic LQFP (fine pitch) (14×14)	Standard	
μPD70F3311YGC-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14)	Standard	
μ PD70F3311GF-JBT	100-pin plastic QFP (14 $ imes$ 20)	Standard	
μ PD70F3311YGF-JBT	100-pin plastic QFP (14 $ imes$ 20)	Standard	
μPD70F3313GC-8EU	100-pin plastic LQFP (fine pitch) (14 $ imes$ 14)	Standard	
μPD70F3313YGC-8EU	100-pin plastic LQFP (fine pitch) (14 $ imes$ 14)	Standard	
μ PD70F3313GF-JBT	100-pin plastic QFP (14 $ imes$ 20)	Standard	
μ PD70F3313YGF-JBT	100-pin plastic QFP (14 $ imes$ 20)	Standard	

Remark ××× indicates ROM code suffix.

1.5 Pin Configuration (Top View)



Pin identification

A0 to A21:	Address bus	PDH0 to PDH5:	Port DH	
AD0 to AD15:	Address/data bus	PDL0 to PDL15:	Port DL	
ADTRG:	A/D trigger input	RD:	Read strobe	
ANI0 to ANI7:	Analog input	REGC:	Regulator control	
ANO0, ANO1:	Analog output	RESET:	Reset	
ASCK0:	Asynchronous serial clock	RTP00 to RTP05:	Real-time output port	
ASTB:	Address strobe	RXD0 to RXD2:	Receive data	
AVREF0, AVREF1:	Analog reference voltage	SCK00, SCK01,		
AVss:	Ground for analog	SCKA0, SCKA1:	Serial clock	
BVDD:	Power supply for bus interface	SCL0:	Serial clock	
BVss:	Ground for bus interface	SDA0:	Serial data	
CLKOUT:	Clock output	SI00, SI01,		
CS0, CS1:	Chip select	SIA0, SIA1:	Serial input	
EVDD:	Power supply for port	SO00, SO01,		
EVss:	Ground for port	SOA0, SOA1:	Serial output	
FLMD0, FLMD1	Flash programming mode	TI000, TI001,		
HLDAK:	Hold acknowledge	TI010, TI011,		
HLDRQ:	Hold request	TI020, TI021,		
IC:	Internally connected	TI030, TI031,		
INTP0 to INTP7:	External interrupt input	TI50, TI51,		
KR0 to KR7:	Key return	TIP00, TIP01:	Timer input	DataShee
NMI:	Non-maskable interrupt request	TO00 to TO03,		
P00 to P06:	Port 0 DataSh	TO50, TO51,		
P10, P11:	Port 1	TOH0, TOH1,		
P30 to P39:	Port 3	TOP00, TOP01:	Timer output	
P40 to P42:	Port 4	TXD0 to TXD2:	Transmit data	
P50 to P55:	Port 5	Vdd:	Power supply	
P70 to P77:	Port 7	Vss:	Ground	
P90 to P915:	Port 9	WAIT:	Wait	
PCM0 to PCM3:	Port CM	WR0:	Lower byte write strobe	
PCS0, PCS1:	Port CS	WR1:	Upper byte write strobe	
PCT0, PCT1		X1, X2:	Crystal for main clock	
PCT4, PCT6:	Port CT	XT1, XT2:	Crystal for subclock	

1.6 Function Block Configuration

(1) Internal block diagram

(2) Internal units

(a) CPU

The CPU uses five-stage pipeline control to enable single-clock execution of address calculations, arithmetic logic operations, data transfers, and almost all other types of instruction processing. Other dedicated on-chip hardware, such as a multiplier (16 bits \times 16 bits \rightarrow 32 bits) and a barrel shifter (32 bits) help accelerate complex processing.

(b) Bus control unit (BCU)

The BCU starts a required external bus cycle based on the physical address obtained by the CPU. When an instruction is fetched from external memory area and the CPU does not send a bus cycle start request, the BCU generates a prefetch address and prefetches the instruction code. The prefetched instruction code is stored in an internal instruction queue.

(c) ROM

This consists of a 256 KB or 128 KB mask ROM or flash memory mapped to the address spaces from 0000000H to 003FFFFH or 0000000H to 001FFFFH, respectively. ROM can be accessed by the CPU in one clock cycle during instruction fetch.

(d) RAM

et4U.com

This consists of a 16 KB or 6 KB RAM mapped to the address spaces from 3FFB000H to 3FFEFFFH or 3FFD800H to 3FFEFFFH.

RAM can be accessed by the CPU in one clock cycle during data access.

DataShe

(e) Interrupt controller (INTC)

DataSheet4U.com

This controller handles hardware interrupt requests (NMI, INTP0 to INTP7) from on-chip peripheral hardware and external hardware. Eight levels of interrupt priorities can be specified for these interrupt requests, and multiplexed servicing control can be performed.

(f) Clock generator (CG)

A main clock oscillator and subclock oscillator are provided and generate the main clock oscillation frequency (fx) and subclock frequency (fxr), respectively.

There are two modes: In the clock-through mode, f_x is used as the main clock frequency (f_{xx}) as is. In the PLL mode, f_x is used multiplied by 4.

The CPU clock frequency (fcPu) can be selected from among fxx, fxx/2, fxx/4, fxx/8, fxx/16, fxx/32, and fxt.

(g) Timer/counter

Four 16-bit timer/event counter 0 channels, one 16-bit timer/event counter P channel, and two 8-bit timer/event counter 5 channels are incorporated, enabling measurement of pulse intervals and frequency as well as programmable pulse output.

Two 8-bit timer/event counter 5 channels can be connected in cascade to configure a 16-bit timer. Two 8-bit timer H channels enabling programmable pulse output are provided on chip.

(h) Watch timer

This timer counts the reference time (0.5 seconds) for counting the clock from the subclock (32.768 kHz) or f_{BRG} (32.768 kHz) from the clock generator. At the same time, the watch timer can be used as an interval timer.

(i) Watchdog timer

Two watchdog timer channels are provided on chip to detect program loops and system abnormalities. Watchdog timer 1 can be used as an interval timer. When used as a watchdog timer, it generates a non-maskable interrupt request signal (INTWDT1) or system reset signal (WDTRES1) after an overflow occurs. When used as an interval timer, it generates a maskable interrupt request signal (INTWDT1) after an overflow occurs.

Watchdog timer 2 operates by default following reset release.

It generates a non-maskable interrupt request signal (INTWDT2) or system reset signal (WDTRES2) after an overflow occurs.

(j) Serial interface (SIO)

The V850ES/KG1+ includes four kinds of serial interfaces: an asynchronous serial interface (UARTn) (supporting 1-channel LIN), a clocked serial interface (CSI0m), a clocked serial interface with an automatic transmit/receive function (CSIAm), and an I²C bus interface (I²C0), and can simultaneously use up to seven channels.

For UARTn, data is transferred via the TXDn and RXDn pins. For CSI0m, data is transferred via the SO0m, SI0m, and $\overline{\text{SCK0m}}$ pins. For CSIAm, data is transferred via the SOAm, SIAm, and $\overline{\text{SCKAm}}$ pins. For I²C0, data is transferred via the SDA0 and SCL0 pins. I²C0 is provided only in the μ PD703313Y, 70F3311Y, and 70F3313Y.

DataShe

Remark n = 0 to 2 m = 0, 1

(k) A/D converter

This high-speed, high-resolution 10-bit A/D converter includes 8 analog input pins. Conversion is performed using the successive approximation method.

(I) D/A converter

Two 8-bit resolution D/A converter channels are included on chip. The D/A converter uses the R-2R ladder method.

(m) DMA controller

A 4-channel DMA controller is provided on chip. This controller transfers data between the internal RAM, on-chip peripheral I/O devices, and external memory in response to interrupt requests sent by on-chip peripheral I/O.

(n) ROM correction

This function is used to replace part of a program in the mask ROM with that contained in the internal RAM. Up to four correction addresses can be specified.

et4U.com

33

(o) Key interrupt function

A key interrupt request signal (INTKR) can be generated by inputting a falling edge to the eight key input pins.

(p) Real-time output function

This function transfers 6-bit data set beforehand to output latches upon occurrence of a timer compare register match signal.

A 1-channel 6-bit data real-time output function is provided on chip.

(q) Clock monitor

The clock monitor samples the main clock (fx) using the on-chip Ring-OSC clock (f_R), and generates a reset request signal when the oscillation of the main clock is stopped.

(r) Low-voltage detector (LVI)

The low-voltage detector compares the supply voltage (V_{DD}) and detection voltage (V_{LVI}), and generates an internal interrupt signal or internal reset signal when $V_{DD} < V_{LVI}$.

(s) Power-on-clear (POC) circuit

The power-on-clear circuit generates an internal reset signal at power on. The power-on-clear circuit compares the supply voltage (V_{DD}) and detection voltage (V_{POC}), and generates an internal reset signal when V_{DD} < V_{POC}.

(t) Ports

et4U.com

DataShe

As shown below, the following ports have general-purpose port functions and control pin functions. DataSheet4U.com

Port	I/O	Alternate Function
P0	7-bit I/O	NMI, external interrupt, timer output
P1	2-bit I/O	D/A converter analog output
P3	10-bit I/O	Serial interface, timer I/O, external interrupt, A/D converter trigger
P4	3-bit I/O	Serial interface
P5	6-bit I/O	Serial interface, timer I/O, key interrupt function, real-time output function
P7	8-bit input	A/D converter analog input
P9	16-bit I/O	External address bus, serial interface, timer I/O, external interrupt, key interrupt function
PCM	4-bit I/O	External bus control signal
PCS	2-bit I/O	Chip select output
PCT	4-bit I/O	External bus control signal
PDH	6-bit I/O	External address bus
PDL	16-bit I/O	External address/data bus

1.7 Overview of Functions

Part Number		μΡD703313/ μΡD703313Υ		μΡD70F3311/ μΡD70F3311Υ	μPD70F3313/ μPD70F3313Y					
Internal memory	ROM		256 KB	128 KB (single-power flash memory)	256 KB (single-power flash memory)					
	High-speed RAM		16 KB	6 KB	16 KB					
Buffer RA	λM			64 bytes	·					
Memory	Logical space			64 MB						
space	External memory area	3 MB								
External bus interface		Address bus: 24 bits Data bus: 8/16 bits Multiplex bus mode/separate bus mode								
General-purpose registers		32 bits × 32 registers								
Main clock (oscillation frequency)		Ceramic/crystal/external clock								
		When PLL not used 2 to 8 MHz ^{Note 1} : 2.7 to 5.5 V								
		When PLL	REGC pin connected directly to VDD	2 to 5 MHz: 4.5 to 5.5 V, 2 MHz: 2.7 to	5.5 V					
		used	used 10 μF capacitor 2 MHz: 4.0 to 5.5 V connected to REGC pin 2							
Subclock (oscillation frequency)		Crystal/external clock (32.768 kHz)								
Minimum execution	instruction time		50 ns	s (When main clock operated at (f _{xx}) = 20	MHz)					
DSP function		$32 \times 32 = 64$: 200 to 250 ns (at 20 MHz) $32 \times 32 + 32 = 32$: 300 ns (at 20 MHz) $16 \times 16 = 32$: 50 to 100 ns (at 20 MHz) $16 \times 16 + 32 = 32$: 150 ns (at 20 MHz)								
I/O ports		84 DataSheet4U.com • Input: 8 • I/O: 76 (among these, N-ch open-drain output selectable: 8, fixed to N-ch open-drain output: 4)								
Timer		16-bit timer/event counter P: 1 channel 16-bit timer/event counter 0: 4 channels 8-bit timer/event counter 5: 2 channels (16-bit timer/event counter: usable as 1 channel) 8-bit timer H: 2 channels Watchdog timer: 2 channels Watch timer: 1 channel 8-bit interval timer: 1 channel								
Real-time	e output port	4 bits \times 1, 2 bits \times 1, or 6 bits \times 1								
A/D converter		10-bit resolution × 8 channels								
D/A converter		8-bit resolution × 2 channels								
Serial interface		CSI: 1 channel CSI/UART: 1 channel CSIA (with automatic transmit/receive function): 2 channels UART (supporting LIN): 1 channel UART: 1 channel I ² C bus: 1 channel Dedicated baud rate generator: 3 channels								
Interrupt sources		External: 10 (10) ^{Note 3} , internal: 42/41 ^{Note 2}								
Power save function		STOP/IDLE/HALT/sub-IDLE mode								
Operating supply voltage		4.5 to 5.5 V (at 20 MHz)/2.7 to 5.5 V (at 8 MHz)								
	-									

Notes 1. These values may change after evaluation.

- **2.** Only in the μ PD703313Y, 70F3311Y, 70F3313Y
- **3.** The figure in parentheses indicates the number of external interrupts for which STOP mode can be released.

DataSheet4U.com

et4U.com

CHAPTER 2 PIN FUNCTIONS

The names and functions of the pins of the V850ES/KG1+ are described below, divided into port pins and non-port pins.

The pin I/O buffer power supplies are divided into three systems; AVREF0/AVREF1, BVDD, and EVDD. The relationship between these power supplies and the pins is shown below.

Power Supply	Corresponding Pins				
AVREFO	Port 7				
AV _{REF1}	Port 1				
BVDD	Ports CM, CS, CT, DH, DL				
EVDD	RESET, ports 0, 3 to 5, 9				

Table 2-1. Pin I/O Buffer Power Supplies

2.1 List of Pin Functions

(1) Port pins

	Pin Name	Pin No.		I/O	Pull-up	Function	Alternate Function
		GC	GC GF]	Resistor		
m	P00	6	8	1/0	Yes	Port 0 I/O port Input/output can be specified in 1-bit units.	ТОН0
	P01	7	9				TOH1
	P02	17	19				NMI
	P03	18	20				INTP0
	P04	19	21				INTP1
	P05	20	22				INTP2
	P06	21	23				INTP3
	P10	3	5	I/O	Yes	Port 1 I/O port Input/output can be specified in 1-bit units.	ANO0
	P11	4	6				ANO1
	P30	25	27	1/0	Yes No ^{Note 1}	Port 3 I/O port Input/output can be specified in 1-bit units. P36 to P39 are fixed to N-ch open-drain output.	TXD0/TO02
	P31	26	28				RXD0/INTP7/TO03
	P32	27	29				ASCK0/ADTRG/TO01
	P33	28	30				TI000/TO00/TIP00/TOP00
	P34	29	31				TI001/TO00/TIP01/TOP01
	P35	30	32				TI010/TO01
	P36	31	33				_
	P37	32	34				-
	P38	35	37				SDA0 ^{Note 2}
	P39	36	38				SCL0 ^{Note 2}

Notes 1. An on-chip pull-up resistor can be provided by a mask option (only in the μPD703313, 703313Y).
2. Only in the μPD703313Y, 70F3311Y, 70F3313Y

Remark GC: 100-pin plastic LQFP (fine pitch) (14 × 14)

DataSheet4U.com

www.DataSheet4U.com

DataShe

GF: 100-pin plastic QFP (14 \times 20)

Pin Name	Pin	No.	I/O	Pull-up	Function	Alternate Function
	GC	GF		Resistor		
P40	22	24	I/O	Yes	Port 4	SI00/RXD2
P41	23	25			I/O port	SO00/TXD2
P42	24	26	-		Input/output can be specified in 1-bit units. P41 and P42 can be specified as N-ch open- drain output in 1-bit units.	SCK00
P50	37	39	I/O	Yes	Port 5	TI011/RTP00/KR0
P51	38	40			I/O port	TI50/RTP01/KR1
P52	39	41			Input/output can be specified in 1-bit units. P54 and P55 can be specified as N-ch open-	TO50/RTP02/KR2
P53	40	42			drain output in 1-bit units.	SIA0/RTP03/KR3
P54	41	43				SOA0/RTP04/KR4
P55	42	44	1			SCKA0/RTP05/KR5
P70	100	2	Input	No	Port 7	ANIO
P71	99	1			Input port	ANI1
P72	98	100				ANI2
P73	97	99				ANI3
P74	96	98	-			ANI4
P75	95	97				ANI5
P76	94	96				ANI6
P77	93	95				ANI7
P90	43	45	I/O	Yes	PortataSheet4U.com	A0/TXD1/KR6
P91	44	46			I/O port Input/output can be specified in 1-bit units. P98, P99, P911, and P912 can be specified	A1/RXD1/KR7
P92	45	47				A2/TI020/TO02
P93	46	48			as N-ch open-drain output in 1-bit units.	A3/TI021
P94	47	49				A4/TI030/TO03
P95	48	50				A5/TI031
P96	49	51				A6/TI51/TO51
P97	50	52				A7/SI01
P98	51	53				A8/SO01
P99	52	54				A9/SCK01
P910	53	55]			A10/SIA1
P911	54	56				A11/SOA1
P912	55	57	1			A12/SCKA1
P913	56	58	1			A13/INTP4
P914	57	59	1			A14/INTP5
P915	58	60	1			A15/INTP6

Remark GC: 100-pin plastic LQFP (fine pitch) (14×14)

GF: 100-pin plastic QFP (14 \times 20)

Pin Name Pin No.		I/O	Pull-up	Function	Alternate Function	
	GC	GF		Resistor		
PCM0	61	63	I/O	Yes	Port CM	WAIT
PCM1	62	64			I/O port	CLKOUT
PCM2	63	65			Input/output can be specified in 1-bit units.	HLDAK
PCM3	64	66				HLDRQ
PCS0	59	61	I/O	Yes	Port CS	CS0
PCS1	60	62			I/O port Input/output can be specified in 1-bit units.	CS1
PCT0	65	67	I/O	Yes	Port CT	WRO
PCT1	66	68			I/O port	WR1
PCT4	67	69			Input/output can be specified in 1-bit units.	RD
PCT6	68	70				ASTB
PDH0	87	89	I/O	Yes	Port DH	A16
PDH1	88	90			I/O port	A17
PDH2	89	91			Input/output can be specified in 1-bit units.	A18
PDH3	90	92				A19
PDH4	91	93				A20
PDH5	92	94				A21
PDL0	71	73	I/O	Yes	Port DL	AD0
PDL1	72	74			I/O port	AD1
PDL2	73	75			Input/output can be specified in 1-bit units.	AD2
PDL3	74	76			DataSheet4U.com	AD3
PDL4	75	77				AD4
PDL5	76	78				AD5/FLMD1 ^{Note}
PDL6	77	79				AD6
PDL7	78	80				AD7
PDL8	79	81				AD8
PDL9	80	82	1			AD9
PDL10	81	83	1			AD10
PDL11	82	84	1			AD11
PDL12	83	85	1			AD12
PDL13	84	86	1			AD13
PDL14	85	87	1			AD14
		88	4			

Note Only in the μ PD70F3311, 70F3311Y, 70F3313, 70F3313Y

Remark GC: 100-pin plastic LQFP (fine pitch) (14 × 14)

GF: 100-pin plastic QFP (14 × 20)

DataShe

www.DataSheet4U.com

et4U.com

(2) Non-port pins

Pin Name	Pin	No.	I/O	Pull-up	Function	Alternate Function
	GC	GF		Resistor		
A0	43	45	Output	Yes	Address bus for external memory	P90/TXD1/KR6
A1	44	46			(when using a separate bus)	P91/RXD1/KR7
A2	45	47				P92/TI020/TO02
A3	46	48				P93/TI021
A4	47	49				P94/TI030/TO03
A5	48	50				P95/TI031
A6	49	51				P96/TI51/TO51
A7	50	52				P97/SI01
A8	51	53				P98/SO01
A9	52	54				P99/SCK01
A10	53	55	1			P910/SIA1
A11	54	56	1			P911/SOA1
A12	55	57				P912/SCKA1
A13	56	58				P913/INTP4
A14	57	59				P914/INTP5
A15	58	60				P915/INTP6
A16	87	89	Output	Yes	Address bus for external memory	PDH0
A17	88	90				PDH1
A18	89	91				PDH2
A19	90	92			DataSheet4U.com	PDH3
A20	91	93				PDH4
A21	92	94				PDH5
AD0	71	73	I/O	Yes	Address/data bus for external memory	PDL0
AD1	72	74				PDL1
AD2	73	75				PDL2
AD3	74	76				PDL3
AD4	75	77				PDL4
AD5	76	78				PDL5/FLMD1 ^{Note}
AD6	77	79				PDL6
AD7	78	80				PDL7
AD8	79	81				PDL8
AD9	80	82				PDL9
AD10	81	83				PDL10
AD11	82	84				PDL11
AD12	83	85				PDL12
AD13	84	86				PDL13
AD14	85	87				PDL14
AD15	86	88				PDL15

Note Only in the *µ*PD70F3311, 70F3311Y, 70F3313, 70F3313Y

Remark GC: 100-pin plastic LQFP (fine pitch) (14×14)

GF: 100-pin plastic QFP (14×20)

DataSheet4U.com

et4U.com

www.DataSheet4U.com

Pin Name Pin No.		I/O	Pull-up	Function	Alternate Function	
	GC	GF		Resistor		
ADTRG	27	29	Input	Yes	A/D converter external trigger input	P32/ASCK0/TO01
ANI0	100	2	Input	No	Analog voltage input for A/D converter	P70
ANI1	99	1				P71
ANI2	98	100				P72
ANI3	97	99				P73
ANI4	96	98				P74
ANI5	95	97				P75
ANI6	94	96				P76
ANI7	93	95				P77
ANO0	3	5	Output	Yes	Analog voltage output for D/A converter	P10
ANO1	4	6				P11
ASCK0	27	29	Input	Yes	UART0 serial clock input	P32/ADTRG/TO01
ASTB	68	70	Output	Yes	Address strobe signal output for external memory	PCT6
AV _{REF0}	1	3	_	-	Reference voltage for A/D converter and positive power supply for alternate-function ports	-
AV _{REF1}	5	7	-	-	Reference voltage for D/A converter and positive power supply for alternate-function ports	_
AVss	2	4	-	_	Ground potential for A/D and D/A converters and alternate-function ports	_
BVdd	70	72	-	_	Positive power supply for bus interface and alternate-function ports	_
BVss	69	73	-	-	Ground potential for bus interface and alternate-function ports	_
CLKOUT	62	64	Output	Yes	Internal system clock output	PCM1
CS0	59	61	Output	Yes	Chip select output	PCS0
CS1	60	62				PCS1
EVDD	34	36	-	-	Positive power supply for external	-
EVss	33	35	-	-	Ground potential for external	-
FLMD0 ^{Note 1}	8	10	Input	No	Flash programming mode setting pin	-
FLMD1 ^{Note 1}	76	78	1	Yes		PDL5/AD5
HLDAK	63	65	Output	Yes	Bus hold acknowledge output	PCM2
HLDRQ	64	66	Input	Yes	Bus hold request input	PCM3
IC ^{Note 2}	8	10	_	_	Internally connected	_

DataShe

Notes 1. Only in the μ PD70F3311, 70F3311Y, 70F3313, 70F3313Y

2. Only in the μPD703313, 703313Y

Remark GC: 100-pin plastic LQFP (fine pitch) (14 \times 14)

GF: 100-pin plastic QFP (14 × 20)

DataSheet4U.com

et4U.com

40

Pin Name	Pin	No.	I/O	Pull-up	Function	Alternate Function
	GC	GF		Resistor		
INTP0	18	20	Input	Yes	External interrupt request input	P03
INTP1	19	21			(maskable, analog noise elimination)	P04
INTP2	20	22				P05
INTP3	21	23			External interrupt request input (maskable, digital + analog noise elimination)	P06
INTP4	56	58			External interrupt request input	P913/A13
INTP5	57	59			(maskable, analog noise elimination)	P914/A14
INTP6	58	60				P915/A15
INTP7	26	28	-			P31/RXD0/TO03
KR0	37	39	Input	Yes	Key return input	P50/TI011/RTP00
KR1	38	40				P51/TI50/RTP01
KR2	39	41				P52/TO50/RTP02
KR3	40	42				P53/SIA0/RTP03
KR4	41	43				P54/SOA0/RTP04
KR5	42	44				P55/SCKA0/RTP05
KR6	43	45				P90/A0/TXD1
KR7	44	46				P91/A1/RXD1
NMI	17	19	Input	Yes	External interrupt input (non-maskable, analog noise elimination)	P02
RD	67	69	Output	Yes	Read strobe signal output for external memory	PCT4
REGC	10	12	-	-	DataSheet4U.com Connecting capacitor for regulator output stabilization	_
RESET	14	16	Input	-	System reset input	-
RTP00	37	39	Output	Yes	Real-time output port	P50/TI011/KR0
RTP01	38	40				P51/TI50/KR1
RTP02	39	41				P52/TO50/KR2
RTP03	40	42				P53/SIA0/KR3
RTP04	41	43	1			P54/SOA0/KR4
RTP05	42	44	1			P55/SCKA0/KR5
RXD0	26	28	Input	Yes	Serial receive data input for UART0	P31/INTP7/TO03
RXD1	44	46	1		Serial receive data input for UART1	P91/A1/KR7
RXD2	22	25	1		Serial receive data input for UART2	P40/SI00
SCK00	24	26	I/O	Yes	Serial clock I/O for CSI00, CSI01, CSIA0,	P42
SCK01	52	54	1		CSIA1	P99/A9
SCKA0	42	44	1		N-ch open-drain output can be specified in 1-	P55/RTP05/KR5
SCKA1	55	57	1		bit units.	P912/A12

DataShe

Remark GC: 100-pin plastic LQFP (fine pitch) (14×14)

GF: 100-pin plastic QFP (14 × 20)

et4U.com

						(4/5)
Pin Name	Pin	No.	I/O	Pull-up	Function	Alternate Function
	GC	GF		Resistor		
SCL0 ^{Note 1}	36	38	I/O	No ^{Note 2}	Serial clock I/O for I ² C0 Fixed to N-ch open-drain output	P39
SDA0 ^{Note 1}	35	37	I/O	No ^{Note 2}	Serial transmit/receive data I/O for I ² C0 Fixed to N-ch open-drain output	P38
SI00	22	24	Input	Yes	Serial receive data input for CSI00	P40/RXD2
SI01	50	52			Serial receive data input for CSI01	P97/A7
SIA0	40	42			Serial receive data input for CSIA0	P53/RTP03/KR3
SIA1	53	55			Serial receive data input for CSIA1	P910/A10
SO00	23	25	Output	Yes	Serial transmit data output for CSI00, CSI01,	P41/TXD2
SO01	51	53			CSIA0, CSIA1 N-ch open-drain output can be specified in 1- bit units.	P98/A8
SOA0	41	43				P54/RTP04/KR4
SOA1	54	56				P911/A11
TI000	28	30	Input	Yes	Capture trigger input/external event input for TM00	P33/TO00/TIP00/TOP00
TI001	29	31			Capture trigger input for TM00	P34/TO00/TIP01/TOP01
TI010	30	32			Capture trigger input/external event input for TM01	P35/TO01
TI011	37	39			Capture trigger input for TM01	P50/RTP00/KR0
TI020	45	47			Capture trigger input/external event input for TM02	P92/A2/TO02
TI021	46	48			Capture trigger input for TM02	P93/A3
TI030	47	49			Capture trigger input/external event input for TM03	P94/A4/TO03
TI031	48	50			Capture trigger input for TM03	P95/A5
TI50	38	40			External event input for TM50	P51/RTP01/KR1
TI51	49	51			External event input for TM51	P96/A6/TO51
TIP00	28	30			Capture trigger input/external event input for TMP0	P33/TI000/TO00/TOP00
TIP01	29	31			Capture trigger input for TMP0	P34/TI001/TO00/TOP01

Notes 1. Only in the μPD703313Y, 70F3311Y, 70F3313Y

2. An on-chip pull-up resistor can be provided by a mask option (only in the μ PD703313, 703313Y).

Pin Name	Pin	No.	I/O	Pull-up	Function	Alternate Function
	GC	GF	-	Resistor		
ТО00	28	30	Output	Yes	Timer output for TM00	P33/TI000/TIP00/TOP00
	29	31				P34/TI001/TIP01/TOP01
TO01	27	29			Timer output for TM01	P32/ASCK0/ADTRG
	30	32				P35/TI010
TO02	25	27			Timer output for TM02	P30/TXD0
	45	47				P92/A2/TI020
TO03	26	28]		Timer output for TM03	P31/RXD0/INTP7
	47	49				P94/A4/TI030
TO50	39	41			Timer output for TM50	P52/RTP02/KR2
TO51	49	51]		Timer output for TM51	P96/A6/TI51
ТОН0	6	8			Timer output for TMH0	P00
TOH1	7	9			Timer output for TMH1	P01
TOP00	28	30]		Timer output for TMP0	P33/TI000/TO00/TIP00
TOP01	29	31				P34/TI001/TO00/TIP01
TXD0	25	27	Output	Yes	Serial transmit data output for UART0	P30/TO02
TXD1	43	45			Serial transmit data output for UART1	P90/A0/KR6
TXD2	23	25			Serial transmit data output for UART2	P41/SO00
Vdd	9	11	-	-	Positive power supply pin for internal	-
Vss	11	13	-	-	Ground potential for internal	-
WAIT	61	63	Input	No	External wait input	PCM0
WR0	65	67	Output	No	Write strobe for external memory (lower 8 bits)	PCT0
WR1	66	68			Write strobe for external memory (higher 8 bits)	PCT1
X1	12	14	Input	No	Connecting resonator for main clock	-
X2	13	15	-	No		-
XT1	15	17	Input	No	Connecting resonator for subclock	
XT2	16	18	_	No		-

et4U.com

Remark GC: 100-pin plastic LQFP (fine pitch) (14×14)

GF: 100-pin plastic QFP (14 × 20)

2.2 Pin Status

The address bus becomes undefined during accesses to the internal RAM and ROM. The data bus goes into the high-impedance state without data output. The external bus control signal becomes inactive.

During peripheral I/O access, the address bus outputs the addresses of the on-chip peripheral I/Os that are accessed. The data bus goes into the high-impedance state without data output. The external bus control signal becomes inactive.

Operating Status Pin	Reset ^{Note 1}	HALT Mode	IDLE Mode/ STOP Mode	Idle State ^{Note 2}	Bus Hold
AD0 to AD15 (PDL0 to PDL15)	Hi-Z	Note 3	Hi-Z	Held	Hi-Z
A0 to A15 (P90 to P915)	Hi-Z	Undefined ^{Note 4}	Hi-Z	Held	Hi-Z
A16 to A21 (PDH0 to PDH5)	Hi-Z	Undefined	Hi-Z	Held	Hi-Z
WAIT (PCM0)	Hi-Z	_	_	_	_
CLKOUT (PCM1)	Hi-Z	Operating	L	Operating	Operating
CS0, CS1 (PCS0, PCS1)	Hi-Z	н	н	Held	Hi-Z
WR0, WR1 (PCT0, PCT1)	Hi-Z	н	н	Н	Hi-Z
RD (PCT4)	Hi-Z	н	н	Н	Hi-Z
ASTB (PCT6)	Hi-Z	н	н	н	Hi-Z
HLDAK (PCM2)	Hi-Z	Operating	Н	Н	L
HLDRQ (PCM3)	Hi-Z	DOperating t4 U	.com -	_	Operating

Table 2-2. Pin Operation Status in Operation
--

DataShe

www.DataSheet4U.com

Notes 1. Since the bus control pin is also used as a port pin, it is initialized to the port mode (input) after reset.

- **2.** The pin statuses in the idle state inserted after the T3 state in the multiplex bus mode and after the T2 state in the separate bus mode are listed.
- 3. In separate bus mode: Hi-Z

In multiplex bus mode: Undefined

4. Only in separate bus mode

Remark Hi-Z: High impedance

- H: High-level output
- L: Low-level output
- -: Input without sampling (input acknowledgment not possible)

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins
--

Pin	Alternate Function	Pin	No.	I/O Circuit	Recommended Connection	
		GC	GF	Туре		
P00	ТОНО	6	8	5-A	Input: Independently connect to EVDD or	
P01	TOH1	7	9]	EVss via a resistor.	
P02	NMI	17	19	5-W	Output: Leave open.	
P03 to P06	INTP0 to INTP3	18 to 21	20 to 23	l		
P10	ANO0	3	5	12-B	Input: Independently connect to AVREF1 or	
P11	ANO1	4	6		AVss via a resistor. Output: Leave open.	
P30	TXD0/TO02	25	27	5-A	Input: Independently connect to EVDD or	
P31	RXD0/INTP7/TO03	26	28	5-W	EVss via a resistor.	
P32	ASCK0/ADTRG/TO01	27	29	1	Output: Leave open.	
P33	TI000/TO00/TIP00/TOP00	28	30	1		
P34	TI001/TO00/TIP01/TOP01	29	31	1		
P35	TI010/TO01	30	32	1		
P36, P37	-	31, 32	33, 34	13-AH	1	
P38	SDA0 ^{Note}	35	37	13-AE	1	
P39	SCL0 ^{Note}	36	38			
P40	SI00/RXD2	22	24	5-W		Data
P41	SO00/TXD2	23	25	10-E		Data
P42	SCK00	D 24 aShee	14 <mark>26</mark> .com	10-F		
P50	TI011/RTP00/KR0	37	39	8-A		
P51	TI50/RTP01/KR1	38	40			
P52	TO50/RTP02/KR2	39	41			
P53	SIA0/RTP03/KR3	40	42			
P54	SOA0/RTP04/KR4	41	43	10-A		
P55	SCKA0/RTP05/KR5	42	44			
P70 to P77	ANI0 to ANI7	100 to 93	2, 1, 100 to 95	9-C	Connect to AVREFO or AVSS.	
P90	A0/TXD1/KR6	43	45	8-A	Input: Independently connect to EVDD or	
P91	A1/RXD1/KR7	44	46		EVss via a resistor.	
P92	A2/TI020/TO02	45	47		Output: Leave open.	
P93	A3/TI021	46	48	5-W		
P94	A4/TI030/TO03	47	49	8-A		
P95	A5/TI031	48	50	5-W		
P96	A6/TI51/TO51	49	51	8-A]	
P97	A7/SI01	50	52	5-W]	
P98	A8/SO01	51	53	10-E	1	

Note Only in the *µ*PD703313Y, 70F3311Y, 70F3313Y

Remark GC: 100-pin plastic LQFP (fine pitch) (14×14)

GF: 100-pin plastic QFP (14×20)

DataSheet4U.com

et4U.com

www.DataSheet4U.com

www.DataSheet4U.com

Pin	Alternate Function	Pir	n No.	I/O Circuit	Recommended Connection		
		GC	GF	Туре			
P99	A9/SCK01	52	54	10-F	Input: Independently connect to EVDD or		
P910	A10/SIA1	53	55	5-W	EVss via a resistor.		
P911	A11/SOA1	54	56	10-E	Output: Leave open.		
P912	A12/SCKA1	55	57	10-F			
P913 to P915	A13/INTP4 to A15/INTP6	56 to 58	58 to 60	5-W			
PCM0	WAIT	61	63	5-A	Input: Independently connect to BVDD or		
PCM1	CLKOUT	62	64	1	BVss via a resistor.		
PCM2	HLDAK	63	65	1	Output: Leave open.		
PCM3	HLDRQ	64	66	1			
PCS0, PCS1	CS0, CS1	59, 60	61, 62	5-A			
PCT0	WR0	65	67	5-A			
PCT1	WR1	66	68	1			
PCT4	RD	67	69	1			
PCT6	ASTB	68	70	1			
PDL0 to PDL4	AD0 to AD4	71 to 75	73 to 77	5-A			
PDL5	AD5/FLMD1	76	78	1			
PDL6 to PDL15	AD6 to AD15	77 to 86	79 to 88	1			
PDH0 to PDH5	A16 to A21	87 to 92	89 to 94	5-A			
AV _{REF0}	_	1	3	-	Directly connect to VDD.		
AV _{REF1}	_	5 Dat	aSheet4U	l.com_	Directly connect to VDD.		
AVss	-	2	4	-	_		
BVdd	-	70	72	-	_		
BVss	-	69	71	-	_		
EVdd	_	34	36	-	_		
EVss	_	33	35	-	_		
IC ^{Note 1}	_	8	10	-	Directly connect to EVss or Vss or pull down with a 10 k Ω resistor.		
RESET	_	14	16	2	_		
FLMD0 ^{Note 2}	_	8	10	-	Directly connect to EVss or Vss or pull down with a 10 k Ω resistor.		
Vdd	-	9	11	_	_		
Vss	-	11	13	_	_		
X1	_	12	14	_	_		
X2	_	13	15	_	_		
XT1	_	15	17	16	Directly connect to Vss ^{Note 3} .		
XT2	_	16	18	16	Leave open.		

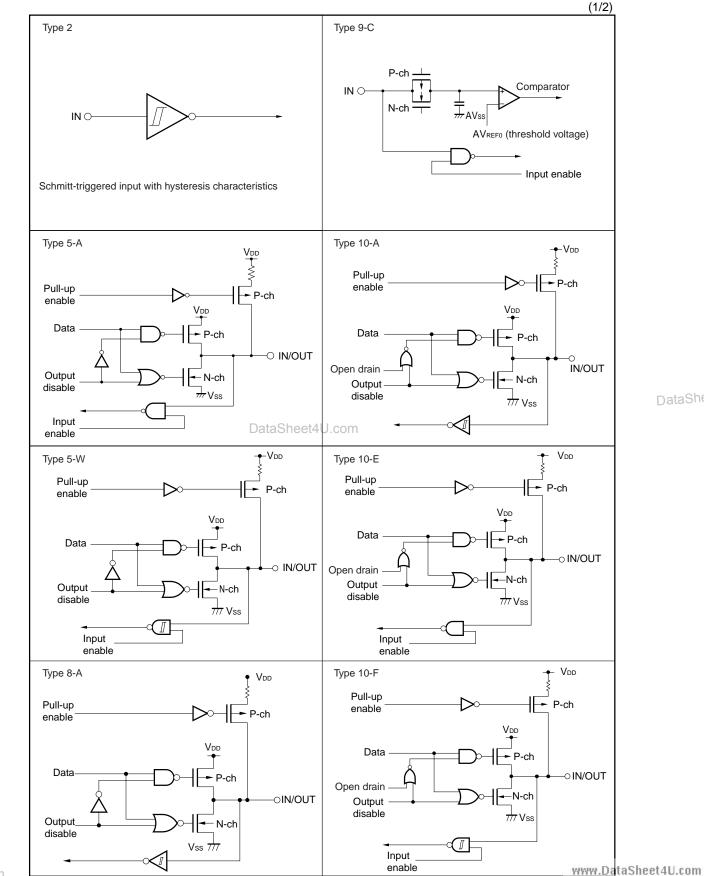
www.DataSheet4U.com

Notes 1. Only in the *µ*PD703313, 703313Y

- **2.** Only in the μPD70F3311, 70F3311Y, 70F3313, 70F3313Y
- 3. Be sure to set the PSMR.XTSTP bit to 1 when this pin is not used.

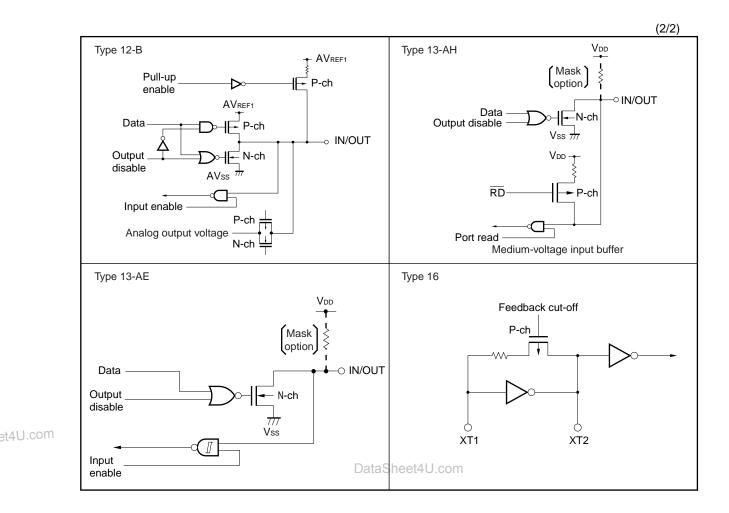
Remark GC: 100-pin plastic LQFP (fine pitch) (14 × 14)

DataSheet4U.com


et4U.com

GF: 100-pin plastic QFP (14×20)

46


DataSheet4U.com

2.4 Pin I/O Circuits

et4U.com

DataSheet4U.com

DataShee

Remark Read VDD as EVDD or BVDD. Also, read Vss as EVss or BVss.

DataSheet4U.com

CHAPTER 3 CPU FUNCTIONS

The CPU of the V850ES/KG1+ is based on the RISC architecture and executes most instructions in one clock cycle by using 5-stage pipeline control.

3.1 Features

O Number of instru	ictions:	83	
O Minimum instruc	tion execution time:	: 50.0 ns (@ 20 MHz operation: 4.5 to 5.5 V, not using regulator)	
		125 ns ^{Note} (@ 8 MHz operation: 2.7 to 5.5 V, not using regulator)	
O Memory space	Program (physical	al address) space: 64 MB linear	
	Data (logical addre	ress) space: 4 GB linear	
	 Memory block d 	division function: 2 MB, 2 MB/Total of 2 blocks	
O General-purpose	e registers: 32 bits $ imes$	× 32	
O Internal 32-bit ar	chitecture		
O 5-stage pipeline	control		
O Multiply/divide in	structions		
O Saturated opera	tion instructions		
O 32-bit shift instru	ction: 1 clock		
O Load/store instru	uction with long/shor	ort format	
 Four types of bit 	manipulation instru	uctions	
• SET1			DataShee
CLR1			
 NOT1 		DataSheet4U.com	

• TST1

Note This value may change after evaluation.

DataSheet4U.com

et4U.com

www.DataSheet4U.com

3.2 CPU Register Set

The CPU registers of the V850ES/KG1+ can be classified into two categories: a general-purpose program register set and a dedicated system register set. All the registers have 32-bit width.

For details, refer to the V850ES Architecture User's Manual.

	(1) Program register set			(2) System register set
31		0	31	<u>o</u>
rO	(Zero register)		EIPC	(Interrupt status saving register)
r1	(Assembler-reserved register)		EIPSW	(Interrupt status saving register)
r2				
r3	(Stack pointer (SP))		FEPC	(NMI status saving register)
r4	(Global pointer (GP))		FEPSW	(NMI status saving register)
r5	(Text pointer (TP))			
r6			ECR	(Interrupt source register)
r7				(
r8			PSW	(Program status word)
r9				(i rogram otatao wordy
r10			CTPC	(CALLT execution status saving register)
r11			CTPC	(CALLT execution status saving register)
r12			CIFSW	
r13			0000	(=
r14			DBPC	(Exception/debug trap status saving register)
r15		lataShee	DBPSW	(Exception/debug trap status saving register)
r16				
r17			CTBP	(CALLT base pointer)
r18				
r19				
r20				
r21				
r22				
r23				
r24				
r25				
r26				
r27				
r28				
r29				
r30	(Element pointer (EP))			
r31	(Link pointer (LP))			

et4U.com

DataSheet4U.com

et4U.com

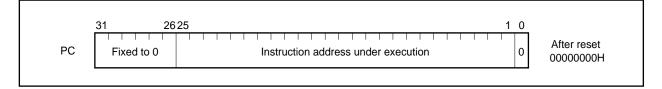
3.2.1 Program register set

The program register set includes general-purpose registers and a program counter.

(1) General-purpose registers (r0 to r31)

Thirty-two general-purpose registers, r0 to r31, are available. All of these registers can be used as a data variable or address variable.

However, r0 and r30 are implicitly used by instructions and care must be exercised when using these registers. r0 always holds 0 and is used for operations that use 0 and offset 0 addressing. r30 is used as a base pointer when performing memory access with the SLD and SST instructions.


Also, r1, r3 to r5, and r31 are implicitly used by the assembler and C compiler. Therefore, before using these registers, their contents must be saved so that they are not lost, and they must be restored to the registers after the registers have been used. There are cases when r2 is used by the real-time OS. If r2 is not used by the real-time OS, r2 can be used as a variable register.

Name	Usage	Operation
rO	Zero register	Always holds 0
r1	Assembler-reserved register	Working register for generating 32-bit immediate
r2	Address/data variable register (v	when r2 is not used by the real-time OS to be used)
r3	Stack pointer	Used to generate stack frame when function is called
r4	Global pointer	Used to access global variable in data area
r5	Text pointer	Register to indicate the start of the text area (area for placing program code)
r6 to r29	Address/data variable register	DataSheet4U.com
r30	Element pointer	Base pointer when memory is accessed
r31	Link pointer	Used by compiler when calling function
PC	Program counter	Holds instruction address during program execution

Table 3-1. Program Registers

(2) Program counter (PC)

This register holds the address of the instruction under execution. The lower 26 bits of this register are valid, and bits 31 to 26 are fixed to 0. If a carry occurs from bit 25 to bit 26, it is ignored. Bit 0 is fixed to 0, and branching to an odd address cannot be performed.

DataSheet4U.com

DataSheet4U.com

3.2.2 System register set

System registers control the status of the CPU and hold interrupt information.

Read from and write to system registers are performed by setting the system register numbers shown below with the system register load/store instructions (LDSR, STSR instructions).

System	System Register Name	Operand Specif	ication Enabled
Register No.		LDSR Instruction	STSR Instruction
0	Interrupt status saving register (EIPC) ^{Note 1}	Yes	Yes
1	Interrupt status saving register (EIPSW) ^{Note 1}	Yes	Yes
2	NMI status saving register (FEPC) ^{Note 1}	Yes	Yes
3	NMI status saving register (FEPSW) ^{Note 1}	Yes	Yes
4	Interrupt source register (ECR)	No	Yes
5	Program status word (PSW)	Yes	Yes
6 to 15	Reserved numbers for future function expansion (The operation is not guaranteed if accessed.)	No	No
16	CALLT execution status saving register (CTPC)	Yes	Yes
17	CALLT execution status saving register (CTPSW)	Yes	Yes
18	Exception/debug trap status saving register (DBPC)	Yes ^{Note 2}	Yes
19	Exception/debug trap status saving register (DBPSW)	Yes ^{Note 2}	Yes
20	CALLT base pointer (CTBP)	Yes	Yes
21 to 31	Reserved numbers for future function expansion (The operation is not guaranteed if accessed.)	No	No

Table 3-2. System Register Numbers

DataShe

Notes 1. Since only one set of these registers is available, the contents of this register must be saved by the program when multiple interrupt servicing is enabled.

2. Can be accessed only during the period from the DBTRAP instruction to the DBRET instruction.

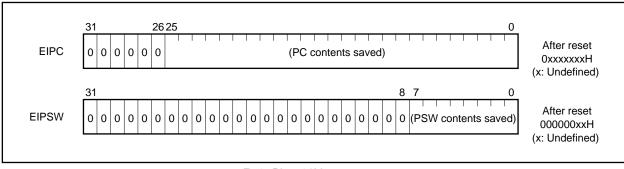
Caution Even if bit 0 of EIPC, FEPC, or CTPC is set (1) by the LDSR instruction, bit 0 is ignored during return with the RETI instruction following interrupt servicing (because bit 0 of PC is fixed to 0). When setting a value to EIPC, FEPC, and CTPC, set an even number (bit 0 = 0).

DataSheet4U.com

et4U.com

(1) Interrupt status saving registers (EIPC, EIPSW)

There are two interrupt status saving registers, EIPC and EIPSW.


Upon occurrence of a software exception or a maskable interrupt, the contents of the program counter (PC) are saved to EIPC and the contents of the program status word (PSW) are saved to EIPSW (upon occurrence of a non-maskable interrupt (NMI), the contents are saved to the NMI status saving registers (FEPC, FEPSW)). The address of the next instruction following the instruction executed when a software exception or maskable interrupt occurs is saved to EIPC, except for some instructions (refer to **21.9 Periods in Which Interrupts Are Not Acknowledged by CPU**).

The current PSW contents are saved to EIPSW.

Since there is only one set of interrupt status saving registers, the contents of these registers must be saved by the program when multiple interrupt servicing is enabled.

Bits 31 to 26 of EIPC and bits 31 to 8 of EIPSW are reserved (fixed to 0) for future function expansion.

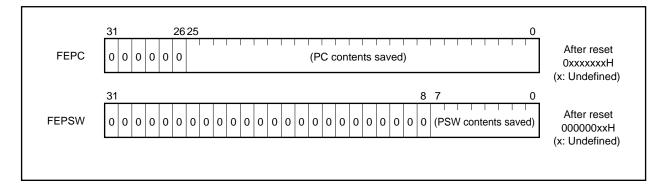
When the RETI instruction is executed, the values in EIPC and EIPSW are restored to the PC and PSW, respectively.

et4U.com

DataSheet4U.com

(2) NMI status saving registers (FEPC, FEPSW)

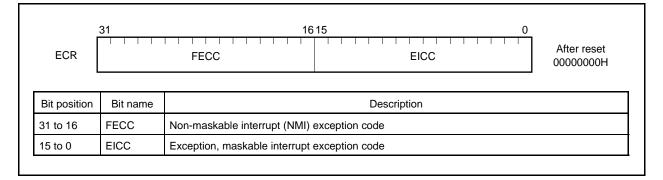
There are two NMI status saving registers, FEPC and FEPSW.


Upon occurrence of a non-maskable interrupt (NMI), the contents of the program counter (PC) are saved to FEPC and the contents of the program status word (PSW) are saved to FEPSW.

The address of the next instruction following the instruction executed when a non-maskable interrupt occurs is saved to FEPC, except for some instructions.

The current PSW contents are saved to FEPSW.

Since there is only one set of NMI status saving registers, the contents of these registers must be saved by the program when multiple interrupt servicing is performed.


Bits 31 to 26 of FEPC and bits 31 to 8 of FEPSW are reserved (fixed to 0) for future function expansion.

et4U.com

(3) Interrupt source register (ECR)

Upon occurrence of an interrupt or an exception, the interrupt source register (ECR) holds the source of an interrupt or an exception. The value held by ECR is the exception code coded for each interrupt source. This register is a read-only register, and thus data cannot be written to it using the LDSR instruction.

(4) Program status word (PSW)

The program status word (PSW) is a collection of flags that indicate the program status (instruction execution result) and the CPU status.

When the contents of this register are changed using the LDSR instruction, the new contents become valid immediately following completion of LDSR instruction execution. Interrupt request acknowledgment is held pending while a write to the PSW is being executed by the LDSR instruction.

Bits 31 to 8 are reserved (fixed to 0) for future function expansion.

PSW	31	8 7 6 5 4 3 2 1 0 RFU NP EP ID SAT CY OV S Z After reset 00000020H	
Bit position	Flag name	Description	
31 to 8	RFU	Reserved field. Fixed to 0.	
7	NP	Indicates that non-maskable interrupt (NMI) servicing is in progress. This flag is set to 1 when an NMI request is acknowledged, and disables multiple interrupts. 0: NMI servicing not in progress 1: NMI servicing in progress	
6	EP	Indicates that exception processing is in progress. This flag is set to 1 when an exception occurs. Moreover, interrupt requests can be acknowledged even when this bit is set.0: Exception processing not in progress1: Exception processing in progress	DataS
5	ID	Indicates whether maskable interrupt request acknowledgment is enabled. 0: Interrupt enabled 1: Interrupt disabled	
4	SAT ^{Note}	Indicates that the result of executing a saturated operation instruction has overflowed and that the calculation result is saturated. Since this is a cumulative flag, it is set to 1 when the result of a saturated operation instruction becomes saturated, and it is not cleared to 0 even if the operation results of successive instructions do not become saturated. This flag is neither set nor cleared when arithmetic operation instructions are executed. 0: Not saturated 1: Saturated	
3	CY	Indicates whether carry or borrow occurred as the result of an operation. 0: No carry or borrow occurred 1: Carry or borrow occurred	
2	OV ^{Note}	Indicates whether overflow occurred during an operation. 0: No overflow occurred 1: Overflow occurred.	
1	S ^{Note}	Indicates whether the result of an operation is negative. 0: Operation result is positive or 0. 1: Operation result is negative.	
0	Z	Indicates whether operation result is 0. 0: Operation result is not 0. 1: Operation result is 0.	

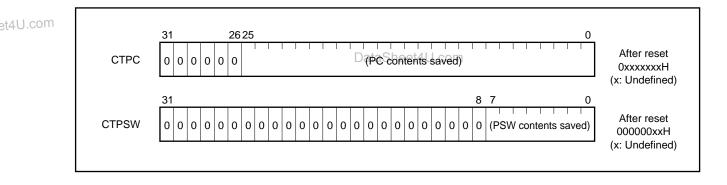
Remark Note is explained on the following page.

DataSheet4U.com

et4U.com

N

During saturated operation, t flag and S flag. The SAT flag		•		2	
Operation result status	;		Flag status		Saturated
		SAT	OV	S	operation result
Maximum positive value exceed	əd	1	1	0	7FFFFFFH
Maximum negative value exceed	led	1	1	1	8000000H
Positive (maximum value not exe	ceeded)	Holds value	0	0	Actual operation
Negative (maximum value not ex	(ceeded)	before operation		1	result


(5) CALLT execution status saving registers (CTPC, CTPSW)

There are two CALLT execution status saving registers, CTPC and CTPSW.

When the CALLT instruction is executed, the contents of the program counter (PC) are saved to CTPC, and the program status word (PSW) contents are saved to CTPSW.

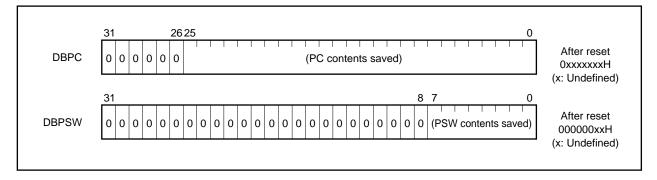
The contents saved to CTPC consist of the address of the next instruction after the CALLT instruction. The current PSW contents are saved to CTPSW.

Bits 31 to 26 of CTPC and bits 31 to 8 of CTPSW are reserved (fixed to 0) for future function expansion.

DataShe

www.DataSheet4U.com

(6) Exception/debug trap status saving registers (DBPC, DBPSW)

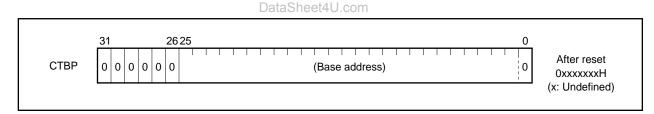

There are two exception/debug trap status saving registers, DBPC and DBPSW.

Upon occurrence of an exception trap or debug trap, the contents of the program counter (PC) are saved to DBPC, and the program status word (PSW) contents are saved to DBPSW.

The contents saved to DBPC consist of the address of the next instruction after the instruction executed when an exception trap or debug trap occurs.

The current PSW contents are saved to DBPSW.

Bits 31 to 26 of DBPC and bits 31 to 8 of DBPSW are reserved (fixed to 0) for future function expansion.



(7) CALLT base pointer (CTBP)

The CALLT base pointer (CTBP) is used to specify table addresses and generate target addresses (bit 0 is fixed to 0).

Bits 31 to 26 are reserved (fixed to 0) for future function expansion.

DataShe

et4U.com

DataSheet4U.com

3.3 Operating Modes

The V850ES/KG1+ has the following operating modes.

(1) Normal operating mode

After the system has been released from the reset state, the pins related to the bus interface are set to the port mode, execution branches to the reset entry address of the internal ROM, and instruction processing is started.

(2) Flash memory programming mode

This mode is valid only in flash memory versions (μ PD70F3311, 70F3311Y, 70F3313, and 70F3313Y). When this mode is specified, the internal flash memory can be programmed by using a flash programmer.

(a) Specifying operating mode

The operating mode is specified according to the status (input level) of the FLMD0 and FLMD1 pins. In the normal operating mode, input a low level to the FLMD0 pin during the reset period.

A high level is input to the FLMD0 pin by the flash programmer in the flash memory programming mode if a flash programmer is connected. In the self-programming mode, input a high level to this pin from an external circuit.

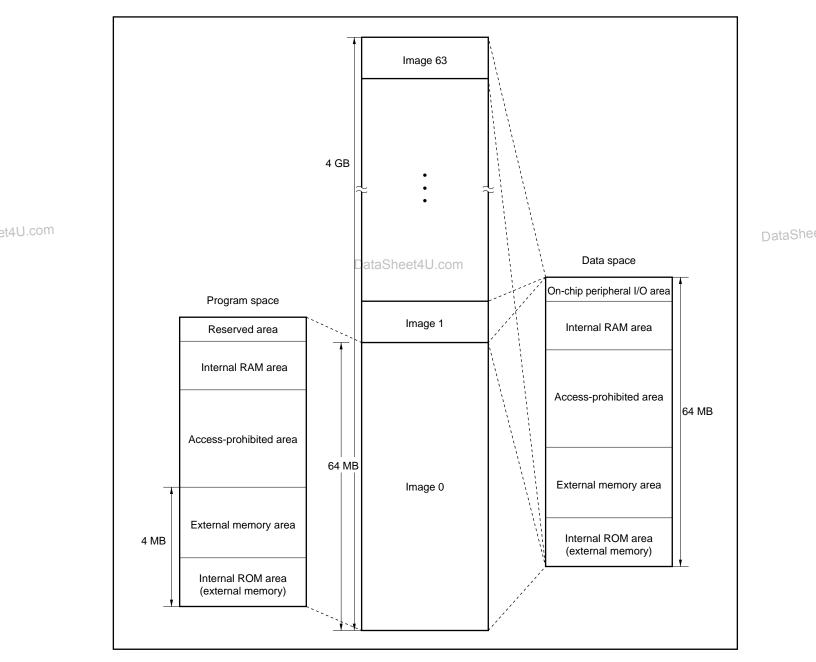
Fix the specification of these pins in the application system and do not change the setting of these pins during operation.

FLMD0	FLMD1	Operating Mode
L	×	Normal operating mode
Н	L	Flash memory programming mode
Н	Н	Setting prohibited

DataShe

Remark H: High level

L: Low level

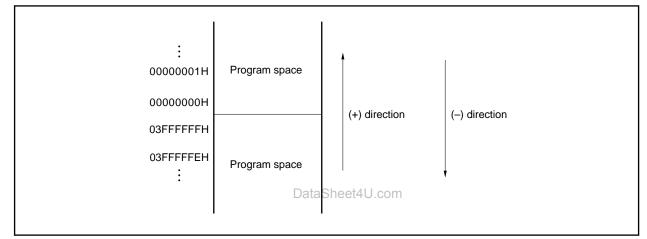

×: don't care

3.4 Address Space

3.4.1 CPU address space

Up to 4 MB of external memory area in a linear address space (program area) of up to 64 MB, internal ROM area, and internal RAM area are supported for instruction address addressing. During operand addressing (data access), up to 4 GB of linear address space (data space) is supported. However, the 4 GB address space is viewed as 64 images of a 64 MB physical address space. In other words, the same 64 MB physical address space is accessed regardless of the value of bits 31 to 26.

DataSheet4U.com

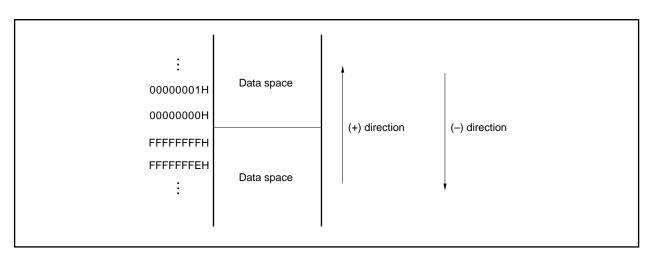

3.4.2 Wraparound of CPU address space

(1) Program space

Of the 32 bits of the program counter (PC), the higher 6 bits are fixed to 0 and only the lower 26 bits are valid. Even if a carry or borrow occurs from bit 25 to bit 26 as a result of branch address calculation, the higher 6 bits ignore this and remain 0.

Therefore, the lower-limit address of the program space, 00000000H, and the upper-limit address, 03FFFFFFH, are contiguous addresses, and the program space is wrapped around at the boundary of these addresses.

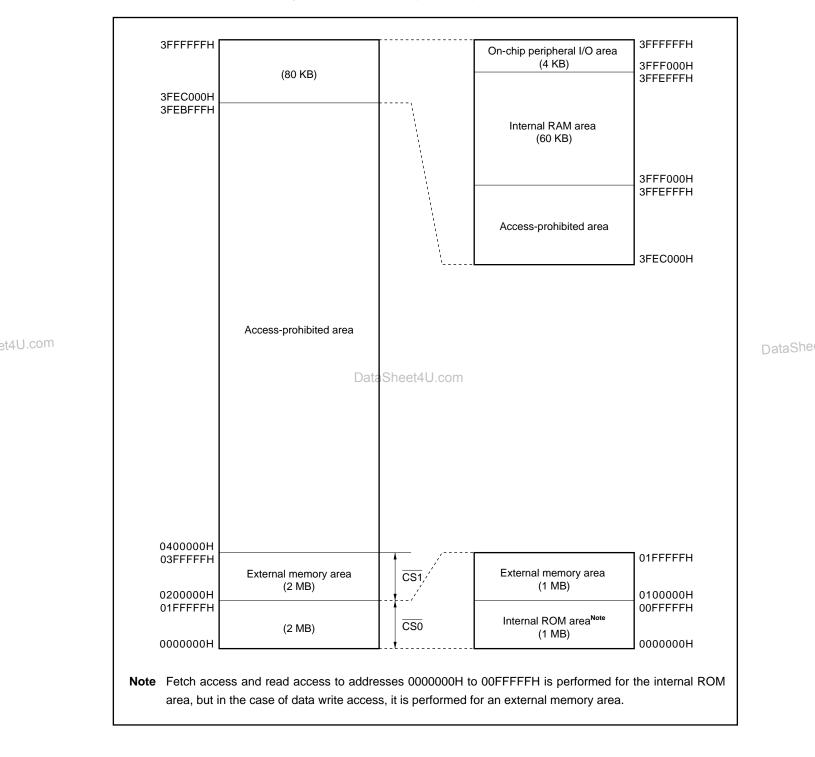
Caution No instructions can be fetched from the 4 KB area of 03FFF000H to 03FFFFFH because this area is an on-chip peripheral I/O area. Therefore, do not execute any branch operation instructions in which the destination address will reside in any part of this area.



et4U.com

(2) Data space

The result of an operand address calculation that exceeds 32 bits is ignored.


Therefore, the lower-limit address of the data space, address 00000000H, and the upper-limit address, FFFFFFFH, are contiguous addresses, and the data space is wrapped around at the boundary of these addresses.

DataSheet4U.com

3.4.3 Memory map

The V850ES/KG1+ has reserved areas as shown below.

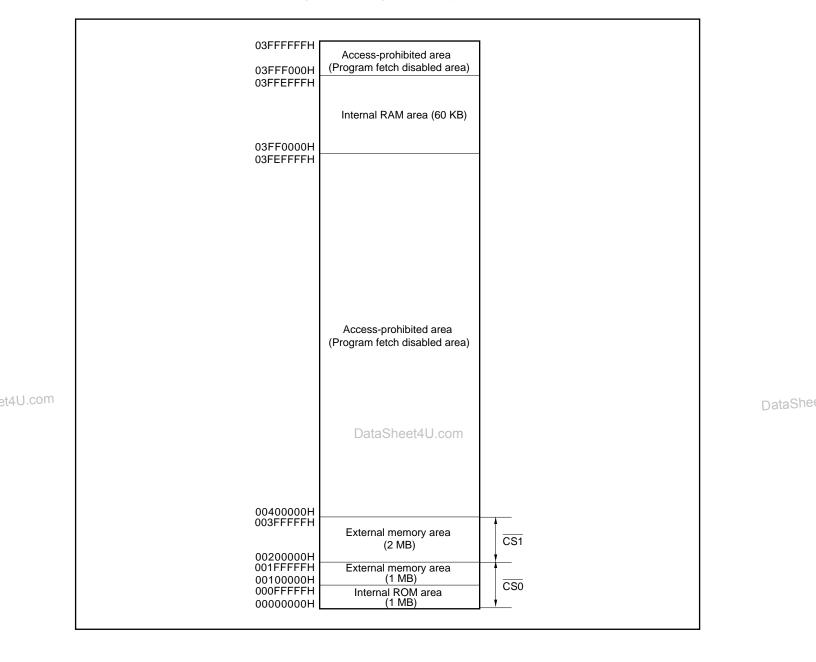
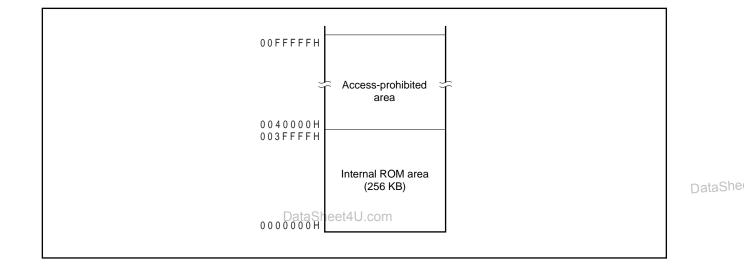


Figure 3-3. Program Memory Map

3.4.4 Areas

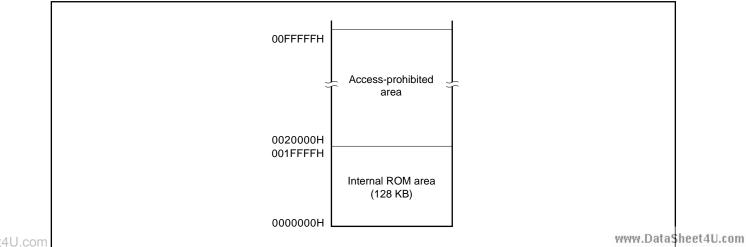
(1) Internal ROM area


An area of 1 MB from 0000000H to 00FFFFFH is reserved for the internal ROM area.

(a) Internal ROM (256 KB)

A 256 KB area from 0000000H to 003FFFFH is provided in the following products. Addresses 0040000H to 00FFFFFH are an access-prohibited area.

• μPD703313, 703313Y, 70F3313, 70F3313Y



(b) Internal ROM (128 KB)

A 128 KB area from 0000000H to 001FFFFH is provided in the following products. Addresses 0020000H to 00FFFFFH are an access-prohibited area.

• μPD70F3311, 70F3311Y

Figure 3-5. Internal ROM Area (128 KB)

DataSheet4U.com

et4U.com

(2) Internal RAM area

An area of 60 KB maximum from 3FF0000H to 3FFEFFFH is reserved for the internal RAM area.

(a) Internal RAM (16 KB)

A 16 KB area from 3FFB000H to 3FFEFFFH is provided as physical internal RAM. Addresses 3FF0000H to 3FFAFFFH are an access-prohibited area.

• μPD703313, 703313Y, 70F3313, 70F3313Y

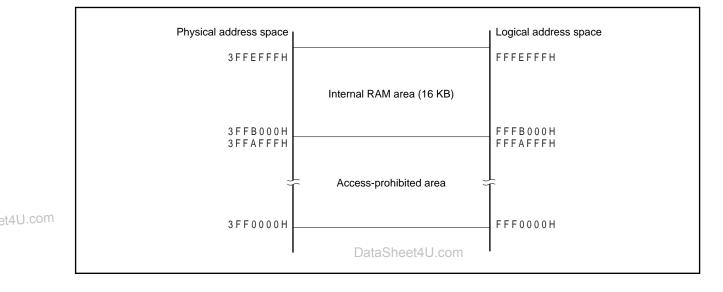
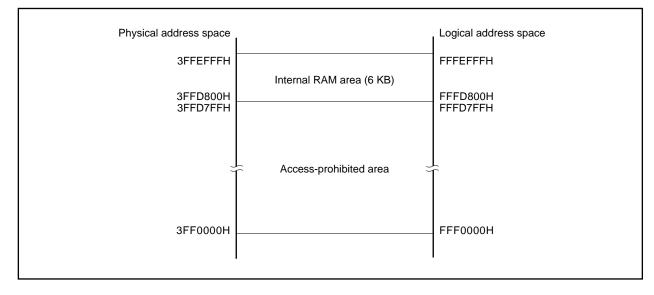


Figure 3-6. Internal RAM Area (16 KB)

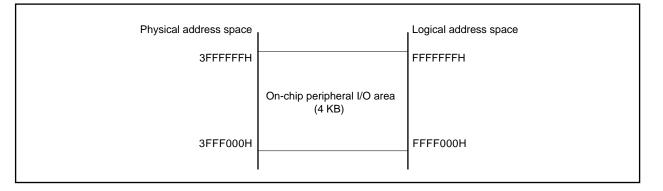

www.DataSheet4U.com

(b) Internal RAM (6 KB)

A 6 KB area from 3FFD800H to 3FFEFFFH is provided as physical internal RAM. Addresses 3FF0000H to 3FFD7FFH are an access-prohibited area.

• μPD70F3311, 70F3311Y

DataSheet4U.com


et4U.com

DataSheet4U.com

www.DataSheet4U.com

(3) On-chip peripheral I/O area

A 4 KB area from 3FFF000H to 3FFFFFH is reserved as the on-chip peripheral I/O area.

Peripheral I/O registers assigned with functions such as on-chip peripheral I/O operation mode specification and state monitoring are mapped to the on-chip peripheral I/O area. Program fetches are not allowed in this area.

- Cautions 1. If word access of a register is attempted, halfword access to the word area is performed twice, first for the lower bits, then for the higher bits, ignoring the lower 2 address bits.
- 2. If a register that can be accessed in byte units is accessed in halfword units, the higher 8 bits become undefined if the access is a read operation. If a write access is performed, only the data in the lower 8 bits is written to the register.
 - 3. Addresses that are not defined as registers are reserved for future expansion. If these addresses are accessed, the operation is undefined and not guaranteed.
- (4) External memory area

3 MB (0100000H to 03FFFFFH) are provided as the external memory area. For details, refer to **CHAPTER 5 BUS CONTROL FUNCTION**.

DataShe

et4U.com

3.4.5 Recommended use of address space

The architecture of the V850ES/KG1+ requires that a register that serves as a pointer be secured for address generation when operand data in the data space is accessed. The address stored in this pointer ±32 KB can be directly accessed by an instruction for operand data. Because the number of general-purpose registers that can be used as a pointer is limited, however, by keeping the performance from dropping during address calculation when a pointer value is changed, as many general-purpose registers as possible can be secured for variables, and the program size can be reduced.

(1) Program space

Of the 32 bits of the PC (program counter), the higher 6 bits are fixed to 0, and only the lower 26 bits are valid. Regarding the program space, therefore, a 64 MB space of contiguous addresses starting from 0000000H unconditionally corresponds to the memory map.

To use the internal RAM area as the program space, access following addresses.

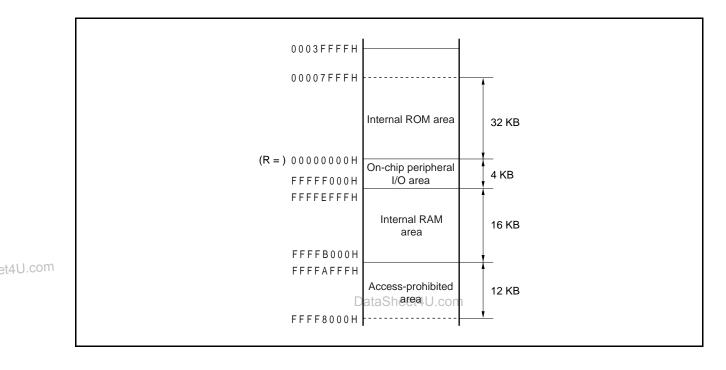
RAM Size	Access Address
6 KB	3FFD800H to 3FFEFFH
16 KB	3FFB000H to 3FFEFFFH

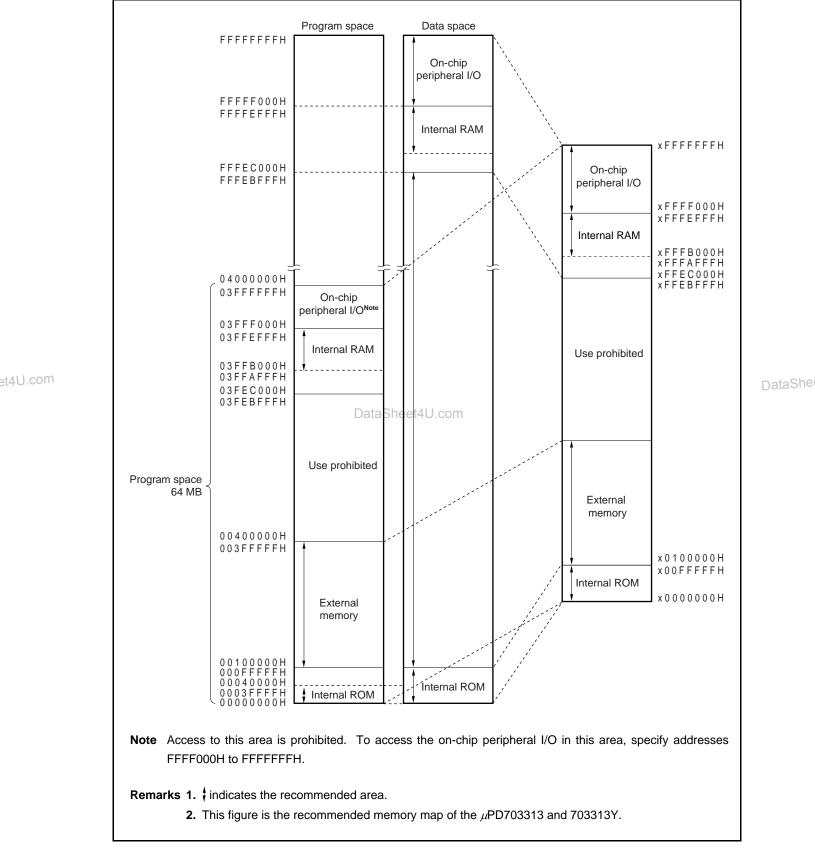
(2) Data space

With the V850ES/KG1+, it seems that there are sixty-four 64 MB address spaces on the 4 GB CPU address space. Therefore, the least significant bit (bit 25) of a 26-bit address is sign-extended to 32 bits and allocated as an address.

et4U.com

DataSheet4U.com


www.DataSheet4U.com


(a) Application example of wraparound

If R = r0 (zero register) is specified for the LD/ST disp16 [R] instruction, a range of addresses 00000000H \pm 32 KB can be addressed by sign-extended disp16. All the resources, including the internal hardware, can be addressed by one pointer.

The zero register (r0) is a register fixed to 0 by hardware, and practically eliminates the need for registers dedicated to pointers.

Example: *μ*PD703313, 703313Y

DataSheet4U.com

3.4.6 Peripheral I/O registers

Address	Function Register Name	Symbol	R/W	Oper	able B	it Unit	(1/11) After Reset
		• • • • • • • •		1	8	16	
FFFFF004H	Port DL register	PDL	R/W		-	√	0000H ^{Note}
FFFFF004H	Port DL register L	PDLL	R/W				00H ^{Note}
FFFFF005H	Port DL register H	PDLH	R/W				00H ^{Note}
FFFFF006H	Port DH register	PDH	R/W				00H ^{Note}
FFFFF008H	Port CS register	PCS	R/W				00H ^{Note}
FFFFF00AH	Port CT register	PCT	R/W				00H ^{Note}
FFFFF00CH	Port CM register	PCM	R/W				00H ^{Note}
FFFFF024H	Port DL mode register	PMDL	R/W				FFFFH
FFFFF024H	Port DL mode register L	PMDLL	R/W				FFH
FFFFF025H	Port DL mode register H	PMDLH	R/W				FFH
FFFFF026H	Port DH mode register	PMDH	R/W				FFH
FFFFF028H	Port CS mode register	PMCS	R/W				FFH
FFFFF02AH	Port CT mode register	PMCT	R/W				FFH
FFFFF02CH	Port CM mode register	PMCM	R/W	\checkmark			FFH
FFFFF044H	Port DL mode control register	PMCDL	R/W				0000H
FFFFF044H	Port DL mode control register L	PMCDLL	R/W	\checkmark			00H
FFFFF045H	Port DL mode control register H	PMCDLH	R/W	\checkmark			00H
FFFFF046H	Port DH mode control register	PMCDH	R/W	\checkmark			00H
FFFFF048H	Port CS mode control register DataSheet4U.co	PMCCS	R/W				00H
FFFFF04AH	Port CT mode control register	PMCCT	R/W	\checkmark			00H
FFFFF04CH	Port CM mode control register	PMCCM	R/W				00H
FFFFF066H	Bus size configuration register	BSC	R/W			\checkmark	5555H
FFFF66EH	System wait control register	VSWC	R/W	\checkmark	\checkmark		77H
FFFFF080H	DMA source address register 0L	DSA0L	R/W			\checkmark	Undefined
FFFF682H	DMA source address register 0H	DSA0H	R/W			\checkmark	Undefined
FFFF684H	DMA destination address register 0L	DDA0L	R/W			\checkmark	Undefined
FFFFF086H	DMA destination address register 0H	DDA0H	R/W			\checkmark	Undefined
FFFF088H	DMA source address register 1L	DSA1L	R/W			\checkmark	Undefined
FFFFF08AH	DMA source address register 1H	DSA1H	R/W			\checkmark	Undefined
FFFFF08CH	DMA destination address register 1L	DDA1L	R/W			\checkmark	Undefined
FFFFF08EH	DMA destination address register 1H	DDA1H	R/W			\checkmark	Undefined
FFFFF090H	DMA source address register 2L	DSA2L	R/W			\checkmark	Undefined
FFFFF092H	DMA source address register 2H	DSA2H	R/W			\checkmark	Undefined
FFFFF094H	DMA destination address register 2L	DDA2L	R/W			\checkmark	Undefined
FFFFF096H	DMA destination address register 2H	DDA2H	R/W			\checkmark	Undefined
FFFFF098H	DMA source address register 3L	DSA3L	R/W			\checkmark	Undefined
FFFFF09AH	DMA source address register 3H	DSA3H	R/W			\checkmark	Undefined
FFFFF09CH	DMA destination address register 3L	DDA3L	R/W			\checkmark	Undefined
FFFFF09EH	DMA destination address register 3H	DDA3H	R/W				Undefined

Note The output latch is 00H or 0000H. When input, the pin status is read.

DataSheet4U.com

et4U.com

	Address	Function Register Name	Symbol	R/W	Oper	able E	it Unit	After Reset	
					1	8	16		
	FFFFF0C0H	DMA byte count register 0	DBC0	R/W				Undefined	
	FFFFF0C2H	DMA byte count register 1	DBC1	R/W				Undefined	
	FFFFF0C4H	DMA byte count register 2	DBC2	R/W				Undefined	
	FFFFF0C6H	DMA byte count register 3	DBC3	R/W				Undefined	
	FFFFF0D0H	DMA addressing control register 0	DADC0	R/W				0000H	
	FFFFF0D2H	DMA addressing control register 1	DADC1	R/W				0000H	
	FFFFF0D4H	DMA addressing control register 2	DADC2	R/W				0000H	
	FFFFF0D6H	DMA addressing control register 3	DADC3	R/W				0000H	
	FFFF0E0H	DMA channel control register 0	DCHC0	R/W	\checkmark	\checkmark		00H	
	FFFF0E2H	DMA channel control register 1	DCHC1	R/W	\checkmark	\checkmark		00H	
	FFFF0E4H	DMA channel control register 2	DCHC2	R/W	\checkmark	\checkmark		00H	
	FFFF0E6H	DMA channel control register 3	DCHC3	R/W	\checkmark	\checkmark		00H	
	FFFFF100H	Interrupt mask register 0	IMR0	R/W				FFFFH	
	FFFFF100H	Interrupt mask register 0L	IMR0L	R/W	\checkmark	\checkmark		FFH	
	FFFFF101H	Interrupt mask register 0H	IMR0H	R/W	\checkmark	\checkmark		FFH	
	FFFFF102H	Interrupt mask register 1	IMR1	R/W				FFFFH	
	FFFFF102H	Interrupt mask register 1L	IMR1L	R/W	\checkmark	\checkmark		FFH	
J.com	FFFFF103H	Interrupt mask register 1H	IMR1H	R/W	\checkmark	\checkmark		FFH	
).00111	FFFFF104H	Interrupt mask register 2	IMR2	R/W				FFFFH	
	FFFFF104H	Interrupt mask register 2L DataSheet4U.com	IMR2L	R/W	\checkmark	\checkmark		FFH	
	FFFFF105H	Interrupt mask register 2H	IMR2H	R/W	\checkmark	\checkmark		FFH	
	FFFFF106H	Interrupt mask register 3	IMR3	R/W				FFFFH	
	FFFFF106H	Interrupt mask register 3L	IMR3L	R/W	\checkmark	\checkmark		FFH	
	FFFFF107H	Interrupt mask register 3H	IMR3H	R/W	\checkmark	\checkmark		FFH	
	FFFFF110H	Interrupt control register	WDT1IC	R/W	\checkmark	\checkmark		47H	
	FFFFF112H	Interrupt control register	PIC0	R/W				47H	
	FFFFF114H	Interrupt control register	PIC1	R/W				47H	
	FFFFF116H	Interrupt control register	PIC2	R/W				47H	
	FFFFF118H	Interrupt control register	PIC3	R/W	\checkmark	\checkmark		47H	
	FFFFF11AH	Interrupt control register	PIC4	R/W	\checkmark	\checkmark		47H	
	FFFFF11CH	Interrupt control register	PIC5	R/W	\checkmark	\checkmark		47H	
	FFFFF11EH	Interrupt control register	PIC6	R/W				47H	
	FFFFF120H	Interrupt control register	TM0IC00	R/W				47H	
	FFFFF122H	Interrupt control register	TM0IC01	R/W				47H	
	FFFFF124H	Interrupt control register	TM0IC10	R/W	\checkmark	\checkmark		47H	
	FFFFF126H	Interrupt control register	TM0IC11	R/W	\checkmark	\checkmark		47H	
	FFFFF128H	Interrupt control register	TM5IC0	R/W				47H	
	FFFFF12AH	Interrupt control register	TM5IC1	R/W				47H	
	FFFFF12CH	Interrupt control register	CSI0IC0	R/W				47H	
	FFFFF12EH	Interrupt control register	CSI0IC1	R/W				47H	
	FFFFF130H	Interrupt control register	SREIC0	R/W				47H	
aSheet4U.c		Interrupt control register	SRIC0	R/W	2	1		₩7₩w.Data\$	

et4U.com

Address	Function Register Name	Symbol	R/W	Oper	able B	it Unit	After Reset
				1	8	16	
FFFFF134H	Interrupt control register	STIC0	R/W				47H
FFFFF136H	Interrupt control register	SREIC1	R/W				47H
FFFFF138H	Interrupt control register	SRIC1	R/W				47H
FFFFF13AH	Interrupt control register	STIC1	R/W				47H
FFFFF13CH	Interrupt control register	TMHIC0	R/W				47H
FFFFF13EH	Interrupt control register	TMHIC1	R/W				47H
FFFFF140H	Interrupt control register	CSIAIC0	R/W				47H
FFFFF142H	Interrupt control register	IICIC0 ^{Note}	R/W				47H
FFFFF144H	Interrupt control register	ADIC	R/W	\checkmark			47H
FFFFF146H	Interrupt control register	KRIC	R/W	\checkmark			47H
FFFFF148H	Interrupt control register	WTIIC	R/W				47H
FFFFF14AH	Interrupt control register	WTIC	R/W	\checkmark			47H
FFFFF14CH	Interrupt control register	BRGIC	R/W		\checkmark	İ	47H
FFFFF14EH	Interrupt control register	TM0IC20	R/W	\checkmark			47H
FFFFF150H	Interrupt control register	TM0IC21	R/W	\checkmark			47H
FFFFF152H	Interrupt control register	TM0IC30	R/W				47H
FFFFF154H	Interrupt control register	TM0IC31	R/W	\checkmark			47H
FFFFF156H	Interrupt control register	CSIAIC1	R/W				47H
FFFFF162H	Interrupt control register	SREIC2	R/W				47H
FFFFF164H	Interrupt control register	SRIC2	R/W	\checkmark			47H
FFFFF166H	Interrupt control register	STIC2	R/W	\checkmark			47H
FFFFF170H	Interrupt control register	LVIIC	R/W				47H
FFFFF172H	Interrupt control register	PIC7	R/W				47H
FFFFF174H	Interrupt control register	TP00VIC	R/W	\checkmark			47H
FFFFF176H	Interrupt control register	TP0CCIC0	R/W				47H
FFFFF178H	Interrupt control register	TP0CCIC1	R/W				47H
FFFFF17AH	Interrupt control register	DMAIC0	R/W	\checkmark			47H
FFFFF17CH	Interrupt control register	DMAIC1	R/W				47H
FFFFF17EH	Interrupt control register	DMAIC2	R/W	\checkmark			47H
FFFFF180H	Interrupt control register	DMAIC3	R/W	\checkmark			47H
FFFFF1FAH	In-service priority register	ISPR	R				00H
FFFFF1FCH	Command register	PRCMD	W				Undefined
FFFFF1FEH	Power save control register	PSC	R/W				00H
FFFFF200H	A/D converter mode register	ADM	R/W	\checkmark			00H
FFFFF201H	Analog input channel specification register	ADS	R/W	\checkmark			00H
FFFFF202H	Power fail comparison mode register	PFM	R/W				00H
FFFFF203H	Power fail comparison threshold register	PFT	R/W		\checkmark		00H
FFFFF204H	A/D conversion result register	ADCR	R				Undefined
FFFFF205H	A/D conversion result register H	ADCRH	R				Undefined
FFFFF280H	D/A conversion value setting register 0	DACS0	R/W				00H
FFFFF282H	D/A conversion value setting register 1	DACS1	R/W				00H
FFFFF284H	D/A converter mode register	DAM	R/W				00H

DataSheet4 **Note** Only in the μ PD703313Y, 70F3311Y, 70F3313Y

www.DataSheet4U.com

Address	Function Register Name	Symbol	R/W	Operable Bit Unit			After Rese
				1	8	16	
FFFFF300H	Key return mode register	KRM	R/W				00H
FFFFF308H	Selector operation control register 0	SELCNT0	R/W		\checkmark		00H
FFFFF30AH	Selector operation control register 1	SELCNT1	R/W	\checkmark	\checkmark		00H
FFFFF318H	Digital noise elimination control register	NFC	R/W	\checkmark	\checkmark		00H
FFFFF400H	Port 0 register	P0	R/W	\checkmark	\checkmark		00H ^{Note}
FFFFF402H	Port 1 register	P1	R/W	\checkmark	\checkmark		00H ^{Note}
FFFFF406H	Port 3 register	P3	R/W			\checkmark	0000H ^{Note}
FFFFF406H	Port 3 register L	P3L	R/W	\checkmark	\checkmark		00H ^{Note}
FFFFF407H	Port 3 register H	P3H	R/W	\checkmark	\checkmark		00H ^{Note}
FFFFF408H	Port 4 register	P4	R/W	\checkmark	\checkmark		00H ^{Note}
FFFFF40AH	Port 5 register	P5	R/W	\checkmark	\checkmark		00H ^{Note}
FFFFF40EH	Port 7 register	P7	R		\checkmark		Undefined
FFFFF412H	Port 9 register	P9	R/W			\checkmark	0000H ^{Note}
FFFFF412H	Port 9 register L	P9L	R/W	\checkmark	\checkmark		00H ^{Note}
FFFFF413H	Port 9 register H	P9H	R/W	\checkmark	\checkmark		00H ^{Note}
FFFFF420H	Port 0 mode register	PM0	R/W	\checkmark	\checkmark		FEH
FFFFF422H	Port 1 mode register	PM1	R/W	\checkmark	\checkmark		FFH
FFFFF426H	Port 3 mode register	PM3	R/W			\checkmark	FFFFH
FFFFF426H	Port 3 mode register L	PM3L	R/W	\checkmark	\checkmark		FFH
FFFFF427H	Port 3 mode register H DataSheet4U.com	PM3H	R/W	\checkmark	\checkmark		FFH
FFFFF428H	Port 4 mode register	PM4	R/W		\checkmark		FFH
FFFFF42AH	Port 5 mode register	PM5	R/W	\checkmark	\checkmark		FFH
FFFFF432H	Port 9 mode register	PM9	R/W			\checkmark	FFFFH
FFFFF432H	Port 9 mode register L	PM9L	R/W		\checkmark		FFH
FFFFF433H	Port 9 mode register H	PM9H	R/W	\checkmark	\checkmark		FFH
FFFFF440H	Port 0 mode control register	PMC0	R/W	\checkmark	\checkmark		00H
FFFFF446H	Port 3 mode control register	PMC3	R/W			\checkmark	0000H
FFFFF446H	Port 3 mode control register L	PMC3L	R/W	\checkmark	\checkmark		00H
FFFFF447H	Port 3 mode control register H	РМС3Н	R/W	\checkmark	\checkmark		00H
FFFFF448H	Port 4 mode control register	PMC4	R/W		\checkmark		00H
FFFFF44AH	Port 5 mode control register	PMC5	R/W		\checkmark		00H
FFFFF452H	Port 9 mode control register	PMC9	R/W			\checkmark	0000H
FFFFF452H	Port 9 mode control register L	PMC9L	R/W		\checkmark		00H
FFFFF453H	Port 9 mode control register H	PMC9H	R/W	\checkmark	\checkmark		00H
FFFFF466H	Port 3 function control register	PFC3	R/W		\checkmark		00H
FFFFF468H	Port 4 function control register	PFC4	R/W	\checkmark	\checkmark		00H
FFFFF46AH	Port 5 function control register	PFC5	R/W		\checkmark		00H
FFFFF472H	Port 9 function control register	PFC9	R/W				0000H
FFFFF472H	Port 9 function control register L	PFC9L	R/W		\checkmark		00H
FFFFF473H	Port 9 function control register H	PFC9H	R/W	\checkmark	\checkmark		00H
FFFFF484H	Data wait control register 0	DWC0	R/W			\checkmark	7777H
FFFFF488H	Address wait control register	AWC	R/W				FFFFH

et4U.com

DataShe

DataSheet4U.com **Note** The output latch is 00H or 0000H. When input, the pin status is read.

www.DataSheet4U.com

	Address	Eurotian Projector Namo	Symbol	R/W	Opera	abla B	it L Init	(5/11) After Reset	
	Address	Function Register Name	Symbol	K/VV	Opera		16	Aller Resel	
	FFFFF48AH	Bus cycle control register	BCC	R/W	1	U	10	ААААН	
	FFFFF580H	8-bit timer H mode register 0	TMHMD0	R/W			v	00H	
	FFFFF581H	8-bit timer H carrier control register 0	TMCYC0	R/W	v √	v √		00H	
	FFFFF582H	8-bit timer H compare register 00	CMP00	R/W	v	v √		00H	
	FFFF583H	8-bit timer H compare register 01	CMP00	R/W		v √		00H	
	FFFFF590H	8-bit timer H mode register 1	TMHMD1	R/W		√ √		00H	
	FFFFF590H	8-bit timer H carrier control register 1 8-bit timer H carrier control register 1	TMHMD1 TMCYC1	R/W	√ √	N √		00H	
	FFFFF591H	8-bit timer H compare register 10	CMP10	R/W	v	v √		00H	
	FFFFF592H	8-bit timer H compare register 11	CMP10 CMP11	R/W		v √		00H	
	FFFF5A0H	TMP0 control register 0	TP0CTL0	R/W		v √		00H	
					√ √				
	FFFFF5A1H	TMP0 control register 1	TP0CTL1	R/W	N	$\sqrt{\frac{1}{\sqrt{2}}}$		00H	
	FFFFF5A2H	TMP0 I/O control register 0	TP0IOC0	R/W	N	· ·		00H	
	FFFFF5A3H	TMP0 I/O control register 1	TP0IOC1	R/W	V	1		00H	
	FFFFF5A4H	TMP0 I/O control register 2	TP0IOC2	R/W	√	1		00H	
	FFFF5A5H	TMP0 option register 0	TP0OPT0	R/W	V		,	00H	
	FFFF5A6H	TMP0 capture/compare register 0	TP0CCR0	R/W			V	0000H	
	FFFF5A8H	TMP0 capture/compare register 1	TP0CCR1	R/W			V	0000H	
m	FFFF5AAH	TMP0 counter read buffer register	TP0CNT	R			V	0000H	
/111	FFFF5C0H	16-bit timer counter 5	TM5	R			V	0000H	Dat
	FFFF5C0H	8-bit timer counter 50 DataSheet4U.co	TM50 m	R				00H	
	FFFF5C1H	8-bit timer counter 51	TM51	R		\checkmark		00H	
	FFFF5C2H	16-bit timer compare register 5	CR5	R/W				0000H	
	FFFF5C2H	8-bit timer compare register 50	CR50	R/W		\checkmark		00H	
	FFFF5C3H	8-bit timer compare register 51	CR51	R/W				00H	
	FFFF5C4H	Timer clock selection register 5	TCL5	R/W				0000H	
	FFFF5C4H	Timer clock selection register 50	TCL50	R/W		\checkmark		00H	
	FFFF5C5H	Timer clock selection register 51	TCL51	R/W		\checkmark		00H	
	FFFF5C6H	16-bit timer mode control register 5	TMC5	R/W				0000H	
	FFFF5C6H	8-bit timer mode control register 50	TMC50	R/W	\checkmark	\checkmark		00H	
	FFFF5C7H	8-bit timer mode control register 51	TMC51	R/W	\checkmark	\checkmark		00H	
	FFFF600H	16-bit timer counter 00	TM00	R				0000H	
	FFFF602H	16-bit timer capture/compare register 000	CR000	R/W				0000H	
	FFFF604H	16-bit timer capture/compare register 001	CR001	R/W				0000H	
	FFFF606H	16-bit timer mode control register 00	TMC00	R/W	\checkmark	\checkmark		00H	
	FFFF607H	Prescaler mode register 00	PRM00	R/W		\checkmark		00H	
	FFFF608H	Capture/compare control register 00	CRC00	R/W	\checkmark	\checkmark		00H	
	FFFF609H	16-bit timer output control register 00	TOC00	R/W	\checkmark	\checkmark		00H	
	FFFF610H	16-bit timer counter 01	TM01	R				0000H	
	FFFF612H	16-bit timer capture/compare register 010	CR010	R/W				0000H	
	FFFF614H	16-bit timer capture/compare register 011	CR011	R/W				0000H	
	FFFF616H	16-bit timer mode control register 01	TMC01	R/W	\checkmark			00H	1
	FFFF617H	Prescaler mode register 01	PRM01	R/W				00H	
	FFFF618H	Capture/compare control register 01	CRC01	R/W					.DataSheet4U.

74

Address	Function Register Name	n Register Name Symbol		Oper	able E	Bit Unit	After Reset
				1	8	16	
FFFFF619H	16-bit timer output control register 01	TOC01	R/W				00H
FFFF620H	16-bit timer counter 02	TM02	R			\checkmark	0000H
FFFFF622H	16-bit timer capture/compare register 020	CR020	R/W			\checkmark	0000H
FFFFF624H	16-bit timer capture/compare register 021	CR021	R/W			\checkmark	0000H
FFFF626H	16-bit timer mode control register 02	TMC02	R/W				00H
FFFFF627H	Prescaler mode register 02	PRM02	R/W	\checkmark			00H
FFFFF628H	Capture/compare control register 02	CRC02	R/W		\checkmark		00H
FFFFF629H	16-bit timer output control register 02	TOC02	R/W		\checkmark		00H
FFFFF630H	16-bit timer counter 03	TM03	R			\checkmark	0000H
FFFF632H	16-bit timer capture/compare register 030	CR030	R/W			\checkmark	0000H
FFFFF634H	16-bit timer capture/compare register 031	CR031	R/W			\checkmark	0000H
FFFFF636H	16-bit timer mode control register 03	TMC03	R/W	\checkmark			00H
FFFFF637H	Prescaler mode register 03	PRM03	R/W	\checkmark			00H
FFFFF638H	Capture/compare control register 03	CRC03	R/W		\checkmark		00H
FFFFF639H	16-bit timer output control register 03	TOC03	R/W		\checkmark		00H
FFFFF680H	Watch timer operation mode register	WTM	R/W	\checkmark			00H
FFFF6C0H	Oscillation stabilization time selection register	OSTS	R/W		\checkmark		Note
FFFF6C1H	Watchdog timer clock selection register	WDCS	R/W				00H
FFFF6C2H	Watchdog timer mode register 1	WDTM1	R/W				00H
FFFF6D0H	Watchdog timer mode register 2 DataSheet4U.com	WDTM2	R/W		\checkmark		67H
FFFF6D1H	Watchdog timer enable register	WDTE	R/W				9AH
FFFF6E0H	Real-time output buffer register L0	RTBL0	R/W				00H
FFFF6E2H	Real-time output buffer register H0	RTBH0	R/W				00H
FFFF6E4H	Real-time output port mode register 0	RTPM0	R/W	\checkmark	\checkmark		00H
FFFF6E5H	Real-time output port control register 0	RTPC0	R/W	\checkmark			00H
FFFFF706H	Port 3 function control expansion register	PFCE3	R/W	\checkmark			00H
FFFFF802H	System status register	SYS	R/W	\checkmark			00H
FFFFF806H	PLL control register	PLLCTL	R/W	\checkmark	\checkmark		01H
FFFFF80CH	Ring-OSC mode register	RCM	R/W	\checkmark	\checkmark		00H
FFFFF810H	DMA trigger factor register 0	DTFR0	R/W	\checkmark	\checkmark		00H
FFFFF812H	DMA trigger factor register 1	DTFR1	R/W	\checkmark	\checkmark		00H
FFFFF814H	DMA trigger factor register 2	DTFR2	R/W	\checkmark	\checkmark		00H
FFFFF816H	DMA trigger factor register 3	DTFR3	R/W	\checkmark	\checkmark		00H
FFFFF820H	Power save mode register	PSMR	R/W	\checkmark	\checkmark		00H
FFFFF828H	Processor clock control register	PCC	R/W				03H

DataShe

Note The value can be set to 00H or 01H by the option byte or a mask option setting.

For details, refer to CHAPTER 30 MASK OPTION/OPTION BYTE.

								(7/11)	
Address	Function Register Name	Symbol	R/W	Ор	erabl	e Bit l	Jnit	After Reset	
				1	8	16	32		
FFFFF82EH	CPU operation clock status register	CCLS	R	\checkmark	\checkmark			00H	
FFFFF840H	Correction address register 0	CORAD0	R/W					0000000H	
FFFFF840H	Correction address register 0L	CORADOL	R/W			\checkmark		0000H	
FFFFF842H	Correction address register 0H	CORAD0H	R/W			\checkmark		0000H	
FFFFF844H	Correction address register 1	CORAD1	R/W				\checkmark	0000000H	
FFFFF844H	Correction address register 1L	CORAD1L	R/W			\checkmark		0000H	
FFFFF846H	Correction address register 1H	CORAD1H	R/W			\checkmark		0000H	
FFFFF848H	Correction address register 2	CORAD2	R/W				\checkmark	0000000H	
FFFFF848H	Correction address register 2L	CORAD2L	R/W			\checkmark		0000H	
FFFFF84AH	Correction address register 2H	CORAD2H	R/W			\checkmark		0000H	
FFFFF84CH	Correction address register 3	CORAD3	R/W				\checkmark	0000000H	
FFFFF84CH	Correction address register 3L	CORAD3L	R/W			\checkmark		0000H	
FFFFF84EH	Correction address register 3H	CORAD3H	R/W					0000H	
FFFFF860H	Reset noise elimination control register	RNZC	R/W					00H	
FFFFF870H	Clock monitor mode register	CLM	R/W					00H	
FFFFF880H	Correction control register	CORCN	R/W					00H	
FFFFF888H	Reset source flag register	RESF	R/W					Note	
FFFFF890H	Low-voltage detection register	LVIM	R/W					00H	
FFFFF891H	Low-voltage detection level selection register	LVIS	R/W					00H	
FFFFF8B0H	Interval timer BRG mode register	PRSM	R/W					00H	
FFFFF8B1H	Interval timer BRG compare register	PRSCM	R/W					00H	
FFFFFA00H	Asynchronous serial interface mode register @taSheet4U.	ASIM0	R/W					01H	
FFFFFA02H	Receive buffer register 0	RXB0	R					FFH	
FFFFFA03H	Asynchronous serial interface status register 0	ASIS0	R					00H	
FFFFFA04H	Transmit buffer register 0	TXB0	R/W					FFH	
FFFFFA05H	Asynchronous serial interface transmit status register 0	ASIF0	R					00H	
FFFFFA06H	Clock select register 0	CKSR0	R/W					00H	
FFFFFA07H	Baud rate generator control register 0	BRGC0	R/W					FFH	
FFFFFA08H	LIN operation control register 0	ASICL0	R/W					16H	
FFFFFA10H	Asynchronous serial interface mode register 1	ASIM1	R/W					01H	
FFFFFA12H	Receive buffer register 1	RXB1	R					FFH	
FFFFFA13H	Asynchronous serial interface status register 1	ASIS1	R					00H	
FFFFFA14H	Transmit buffer register 1	TXB1	R/W					FFH	
FFFFFA15H	Asynchronous serial interface transmit status register 1	ASIF1	R		V			00H	
FFFFFA16H	Clock select register 1	CKSR1	R/W		V			00H	
FFFFFA17H	Baud rate generator control register 1	BRGC1	R/W		, √			FFH	
	Asynchronous serial interface mode register 2	ASIM2	R/W		√			01H	
FFFFFA22H	Receive buffer register 2	RXB2	R	,	, √			FFH	
FFFFFA23H	Asynchronous serial interface status register 2	ASIS2	R		v √	-		00H	
FFFFFA24H	Transmit buffer register 2	TXB2	R/W		v √			FFH	
	Asynchronous serial interface transmit status register 2	ASIF2	R		v √	-		00H	
FFFFFA26H	Clock select register 2	CKSR2	R/W	v	v √	-	<u> </u>	00H 00H	
	Baud rate generator control register 2	BRGC2	R/W		 √			FFH	
		P0NFC	R/W	a/	v √			00H	
FFFFFB00H	TIP00 noise elimination control register	FUNFU	r\/ VV	N	V		(DE		

DataShe

Note The value varies depending on the reset source (refer to 24.3 (1) Reset source flag register (RESF)).

DataSheet4U.com

	After Reset	: Unit	able Bi	Opera	R/W	Symbol	Symbol	s Function Register Name Symbol R/W	Address
		16	8	1					
	00H				R/W	P1NFC	TIP01 noise elimination control register	FFFFB04H	
	00H			\checkmark	R/W	INTF0	External interrupt falling edge specification register 0	FFFFFC00H	
	00H				R/W	INTF3	External interrupt falling edge specification register 3	FFFFFC06H	
	00H		\checkmark		R/W	INTF9H	External interrupt falling edge specification register 9H	FFFFFC13H	
	00H		\checkmark		R/W	INTR0	External interrupt rising edge specification register 0	FFFFFC20H	
	00H		\checkmark		R/W	INTR3	External interrupt rising edge specification register 3	FFFFFC26H	
	00H		\checkmark		R/W	INTR9H	External interrupt rising edge specification register 9H	FFFFFC33H	
	00H		\checkmark		R/W	PU0	Pull-up resistor option register 0	FFFFFC40H	
	00H		\checkmark		R/W	PU1	Pull-up resistor option register 1	FFFFFC42H	
	00H		\checkmark		R/W	PU3	Pull-up resistor option register 3	FFFFFC46H	
	00H		\checkmark		R/W	PU4	Pull-up resistor option register 4	FFFFFC48H	
	00H		\checkmark		R/W	PU5	Pull-up resistor option register 5	FFFFFC4AH	
1	0000H	\checkmark			R/W	PU9	Pull-up resistor option register 9	FFFFFC52H	
1	00H		\checkmark		R/W	PU9L	Pull-up resistor option register 9L	FFFFFC52H	
1	00H		\checkmark		R/W	PU9H	Pull-up resistor option register 9H	FFFFFC53H	
	00H		\checkmark		R/W	PF3H	Port 3 function register H	FFFFFC67H	
	00H		\checkmark		R/W	PF4	Port 4 function register	FFFFC68H	
	00H		\checkmark		R/W	PF5	Port 5 function register	FFFFC6AH	
	00H		\checkmark		R/W	PF9H	Port 9 function register H	FFFFFC73H	
	00H		\checkmark		R/W	CSIM00	Clocked serial interface mode register 00	FFFFFD00H	
	00H		\checkmark		R/W	CSIC0	Clocked serial interface clock selection register 0	FFFFFD01H	
	0000H				R	SIRB0	Clocked serial interface receive buffer register 0	FFFFD02H	
	00H		\checkmark		R	SIRB0L	Clocked serial interface receive buffer register 0L	FFFFFD02H	
	0000H				R/W	SOTB0	Clocked serial interface transmit buffer register 0	FFFFFD04H	
	00H		\checkmark		R/W	SOTB0L	Clocked serial interface transmit buffer register 0L	FFFFFD04H	
	0000H				R	SIRBE0	Clocked serial interface read-only receive buffer register 0	FFFFFD06H	
	00H		\checkmark		R	SIRBE0L	Clocked serial interface read-only receive buffer register 0L	FFFFFD06H	
-	0000H				R/W	SOTBF0	Clocked serial interface initial transmit buffer register 0	FFFFFD08H	
	00H		\checkmark		R/W	SOTBF0L	Clocked serial interface initial transmit buffer register 0L	FFFFFD08H	
	00H				R/W	SIO00	Serial I/O shift register 0	FFFFD0AH	
	0000H		\checkmark		R/W	SIO00L	Serial I/O shift register 0L	FFFFFD0AH	
	00H		\checkmark	\checkmark	R/W	CSIM01	Clocked serial interface mode register 01	FFFFFD10H	
	00H		\checkmark	\checkmark	R/W	CSIC1	Clocked serial interface clock selection register 1	FFFFFD11H	
	0000H	\checkmark			R	SIRB1	Clocked serial interface receive buffer register 1	FFFFFD12H	
	00H		\checkmark		R	SIRB1L	Clocked serial interface receive buffer register 1L	FFFFFD12H	
	0000H				R/W	SOTB1	Clocked serial interface transmit buffer register 1	FFFFD14H	
1	00H	_	\checkmark		R/W	SOTB1L	Clocked serial interface transmit buffer register 1L	FFFFD14H	
1	0000H	\checkmark			R	SIRBE1	Clocked serial interface read-only receive buffer register 1	FFFFFD16H	
1	00H		\checkmark		R	SIRBE1L	Clocked serial interface read-only receive buffer register 1L	FFFFFD16H	
1	0000H				R/W	SOTBF1	Clocked serial interface initial transmit buffer register 1	FFFFFD18H	
1	00H		\checkmark		R/W	SOTBF1L	Clocked serial interface initial transmit buffer register 1L	FFFFFD18H	
1	00H	\checkmark			R/W	SIO01	Serial I/O shift register 1	FFFFFD1AH	
1	0000H		\checkmark		R/W	SIO01L	Serial I/O shift register 1L	FFFFFD1AH	

77

et4U.com

Address	Function Register Name	Symbol	R/W	Operable Bit Unit			After Reset	
				1	8	16		
FFFFFD40H	Serial operation mode specification register 0	CSIMA0	R/W		\checkmark		00H	
FFFFFD41H	Serial status register 0	CSIS0	R/W				00H	
FFFFFD42H	Serial trigger register 0	CSIT0	R/W				00H	
FFFFFD43H	Divisor selection register 0	BRGCA0	R/W				03H	
FFFFFD44H	Automatic data transfer address point specification register 0	ADTP0	R/W				00H	
FFFFFD45H	Automatic data transfer interval specification register 0	ADTI0	R/W				00H	
FFFFFD46H	Serial I/O shift register A0	SIOA0	R/W				00H	
FFFFFD47H	Automatic data transfer address count register 0	ADTC0	R				00H	
FFFFFD50H	Serial operation mode specification register 1	CSIMA1	R/W				00H	
FFFFFD51H	Serial status register 1	CSIS1	R/W				00H	
FFFFFD52H	Serial trigger register 1	CSIT1	R/W				00H	
FFFFFD53H	Divisor selection register 1	BRGCA1	R/W		\checkmark		03H	
FFFFD54H	Automatic data transfer address point specification register 1	ADTP1	R/W				00H	
FFFFFD55H	Automatic data transfer interval specification register 1	ADTI1	R/W				00H	
FFFFFD56H	Serial I/O shift register A1	SIOA1	R/W				00H	
FFFFFD57H	Automatic data transfer address count register 1	ADTC1	R				00H	
FFFFFD80H	IIC shift register 0	IIC0 ^{Note}	R/W				00H	
FFFFFD82H	IIC control register 0	IICC0 ^{Note}	R/W		\checkmark		00H	
FFFFD83H	Slave address register 0	SVA0 ^{Note}	R/W				00H	
FFFFD84H	IIC clock selection register 0 DataSheet4U.co	HCCL0 ^{Note}	R/W				00H	
FFFFFD85H	IIC function expansion register 0	IICX0 ^{Note}	R/W				00H	
FFFFFD86H	IIC status register 0	IICS0 ^{Note}	R		\checkmark		00H	
FFFFFD8AH	IIC flag register 0	IICF0 ^{Note}	R/W	\checkmark	\checkmark		00H	
FFFFE00H	CSIA0 buffer RAM 0	CSIA0B0	R/W			\checkmark	Undefined	
FFFFE00H	CSIA0 buffer RAM 0L	CSIA0B0L	R/W				Undefined	
FFFFE01H	CSIA0 buffer RAM 0H	CSIA0B0H	R/W				Undefined	
FFFFFE02H	CSIA0 buffer RAM 1	CSIA0B1	R/W			\checkmark	Undefined	
FFFFE02H	CSIA0 buffer RAM 1L	CSIA0B1L	R/W				Undefined	
FFFFE03H	CSIA0 buffer RAM 1H	CSIA0B1H	R/W				Undefined	
FFFFFE04H	CSIA0 buffer RAM 2	CSIA0B2	R/W				Undefined	
FFFFE04H	CSIA0 buffer RAM 2L	CSIA0B2L	R/W				Undefined	
FFFFE05H	CSIA0 buffer RAM 2H	CSIA0B2H	R/W				Undefined	
FFFFE06H	CSIA0 buffer RAM 3	CSIA0B3	R/W				Undefined	
FFFFE06H	CSIA0 buffer RAM 3L	CSIA0B3L	R/W				Undefined	
FFFFE07H	CSIA0 buffer RAM 3H	CSIA0B3H	R/W		V		Undefined	
FFFFFE08H	CSIA0 buffer RAM 4	CSIA0B4	R/W				Undefined	
FFFFE08H	CSIA0 buffer RAM 4L	CSIA0B4L	R/W				Undefined	
FFFFFE09H	CSIA0 buffer RAM 4H	CSIA0B4H	R/W		V		Undefined	
FFFFE0AH	CSIA0 buffer RAM 5	CSIA0B5	R/W				Undefined	
FFFFE0AH	CSIA0 buffer RAM 5L	CSIA0B5L	R/W			, i	Undefined	
FFFFE0BH	CSIA0 buffer RAM 5E	CSIA0B5L	R/W		v √	-	Undefined	

DataSheet4U Only in the μ PD703313Y, 70F3311Y, 70F3313Y

Address	Function Register Name	Symbol	R/W	Oper	able B	it Unit	After Rese
				1	8	16	
FFFFE0CH	CSIA0 buffer RAM 6	CSIA0B6	R/W				Undefined
FFFFFE0CH	CSIA0 buffer RAM 6L	CSIA0B6L	R/W				Undefined
FFFFFE0DH	CSIA0 buffer RAM 6H	CSIA0B6H	R/W				Undefined
FFFFFE0EH	CSIA0 buffer RAM 7	CSIA0B7	R/W				Undefined
FFFFFE0EH	CSIA0 buffer RAM 7L	CSIA0B7L	R/W				Undefined
FFFFFE0FH	CSIA0 buffer RAM 7H	CSIA0B7H	R/W				Undefined
FFFFE10H	CSIA0 buffer RAM 8	CSIA0B8	R/W			\checkmark	Undefined
FFFFFE10H	CSIA0 buffer RAM 8L	CSIA0B8L	R/W				Undefined
FFFFFE11H	CSIA0 buffer RAM 8H	CSIA0B8H	R/W				Undefined
FFFFE12H	CSIA0 buffer RAM 9	CSIA0B9	R/W				Undefined
FFFFFE12H	CSIA0 buffer RAM 9L	CSIA0B9L	R/W				Undefined
FFFFFE13H	CSIA0 buffer RAM 9H	CSIA0B9H	R/W				Undefined
FFFFFE14H	CSIA0 buffer RAM A	CSIA0BA	R/W				Undefined
FFFFFE14H	CSIA0 buffer RAM AL	CSIA0BAL	R/W				Undefined
FFFFFE15H	CSIA0 buffer RAM AH	CSIA0BAH	R/W				Undefined
FFFFE16H	CSIA0 buffer RAM B	CSIA0BB	R/W				Undefined
FFFFFE16H	CSIA0 buffer RAM BL	CSIA0BBL	R/W				Undefined
FFFFFE17H	CSIA0 buffer RAM BH	CSIA0BBH	R/W				Undefined
FFFFE18H	CSIA0 buffer RAM C	CSIA0BC	R/W				Undefined
FFFFFE18H	CSIA0 buffer RAM CL Data Sheet 411 com	CSIA0BCL	R/W				Undefined
FFFFFE19H	CSIA0 buffer RAM CH	CSIA0BCH	R/W				Undefined
FFFFE1AH	CSIA0 buffer RAM D	CSIA0BD	R/W				Undefined
FFFFFE1AH	CSIA0 buffer RAM DL	CSIA0BDL	R/W				Undefined
FFFFFE1BH	CSIA0 buffer RAM DH	CSIA0BDH	R/W				Undefined
FFFFE1CH	CSIA0 buffer RAM E	CSIA0BE	R/W				Undefined
FFFFFE1CH	CSIA0 buffer RAM EL	CSIA0BEL	R/W				Undefined
FFFFFE1DH	CSIA0 buffer RAM EH	CSIA0BEH	R/W				Undefined
FFFFFE1EH	CSIA0 buffer RAM F	CSIA0BF	R/W				Undefined
FFFFFE1EH	CSIA0 buffer RAM FL	CSIA0BFL	R/W				Undefined
FFFFFE1FH	CSIA0 buffer RAM FH	CSIA0BFH	R/W				Undefined
FFFFFE20H	CSIA1 buffer RAM 0	CSIA1B0	R/W			\checkmark	Undefined
FFFFFE20H	CSIA1 buffer RAM 0L	CSIA1B0L	R/W				Undefined
FFFFFE21H	CSIA1 buffer RAM 0H	CSIA1B0H	R/W				Undefined
FFFFFE22H	CSIA1 buffer RAM 1	CSIA1B1	R/W			\checkmark	Undefined
FFFFFE22H	CSIA1 buffer RAM 1L	CSIA1B1L	R/W				Undefined
FFFFFE23H	CSIA1 buffer RAM 1H	CSIA1B1H	R/W				Undefined
FFFFE24H	CSIA1 buffer RAM 2	CSIA1B2	R/W			\checkmark	Undefined
FFFFFE24H	CSIA1 buffer RAM 2L	CSIA1B2L	R/W				Undefined
FFFFFE25H	CSIA1 buffer RAM 2H	CSIA1B2H	R/W				Undefined
FFFFE26H	CSIA1 buffer RAM 3	CSIA1B3	R/W			\checkmark	Undefined
FFFFFE26H	CSIA1 buffer RAM 3L	CSIA1B3L	R/W				Undefined
FFFFFE27H	CSIA1 buffer RAM 3H	CSIA1B3H	R/W	1			Undefined

et4U.com

DataSheet4U.com

www.DataSheet4U.com

							(11/11)	
Address	Function Register Name	Symbol	R/W	Opera	able B	it Unit	After Reset	
				1	8	16		
FFFFE28H	CSIA1 buffer RAM 4	CSIA1B4	R/W				Undefined	
FFFFE28H	CSIA1 buffer RAM 4L	CSIA1B4L	R/W		\checkmark		Undefined	
FFFFE29H	CSIA1 buffer RAM 4H	CSIA1B4H	R/W		\checkmark		Undefined	
FFFFFE2AH	CSIA1 buffer RAM 5	CSIA1B5	R/W				Undefined	
FFFFE2AH	CSIA1 buffer RAM 5L	CSIA1B5L	R/W		\checkmark		Undefined	
FFFFE2BH	CSIA1 buffer RAM 5H	CSIA1B5H	R/W		\checkmark		Undefined	
FFFFE2CH	CSIA1 buffer RAM 6	CSIA1B6	R/W				Undefined	
FFFFE2CH	CSIA1 buffer RAM 6L	CSIA1B6L	R/W		\checkmark		Undefined	
FFFFFE2DH	CSIA1 buffer RAM 6H	CSIA1B6H	R/W		\checkmark		Undefined	
FFFFE2EH	CSIA1 buffer RAM 7	CSIA1B7	R/W				Undefined	
FFFFE2EH	CSIA1 buffer RAM 7L	CSIA1B7L	R/W		\checkmark		Undefined	
FFFFFE2FH	CSIA1 buffer RAM 7H	CSIA1B7H	R/W		\checkmark		Undefined	
FFFFE30H	CSIA1 buffer RAM 8	CSIA1B8	R/W				Undefined	
FFFFE30H	CSIA1 buffer RAM 8L	CSIA1B8L	R/W		\checkmark		Undefined	
FFFFFE31H	CSIA1 buffer RAM 8H	CSIA1B8H	R/W		\checkmark		Undefined	
FFFFE32H	CSIA1 buffer RAM 9	CSIA1B9	R/W				Undefined	
FFFFE32H	CSIA1 buffer RAM 9L	CSIA1B9L	R/W		\checkmark		Undefined	
FFFFFE33H	CSIA1 buffer RAM 9H	CSIA1B9H	R/W		\checkmark		Undefined	
FFFFE34H	CSIA1 buffer RAM A	CSIA1BA	R/W				Undefined	DataShe
FFFFE34H	CSIA1 buffer RAM AL	CSIA1BAL	R/W		\checkmark		Undefined	Datasnee
FFFFFE35H	CSIA1 buffer RAM AH DataSheet4U.co	CSIA1BAH	R/W		\checkmark		Undefined	
FFFFE36H	CSIA1 buffer RAM B	CSIA1BB	R/W				Undefined	
FFFFE36H	CSIA1 buffer RAM BL	CSIA1BBL	R/W		\checkmark		Undefined	
FFFFFE37H	CSIA1 buffer RAM BH	CSIA1BBH	R/W		\checkmark		Undefined	
FFFFE38H	CSIA1 buffer RAM C	CSIA1BC	R/W				Undefined	
FFFFE38H	CSIA1 buffer RAM CL	CSIA1BCL	R/W		\checkmark		Undefined	
FFFFFE39H	CSIA1 buffer RAM CH	CSIA1BCH	R/W		\checkmark		Undefined	
FFFFE3AH	CSIA1 buffer RAM D	CSIA1BD	R/W			\checkmark	Undefined	
FFFFE3AH	CSIA1 buffer RAM DL	CSIA1BDL	R/W		\checkmark		Undefined	
FFFFFE3BH	CSIA1 buffer RAM DH	CSIA1BDH	R/W				Undefined	
FFFFE3CH	CSIA1 buffer RAM E	CSIA1BE	R/W				Undefined	
FFFFFE3CH	CSIA1 buffer RAM EL	CSIA1BEL	R/W				Undefined	
FFFFFE3DH	CSIA1 buffer RAM EH	CSIA1BEH	R/W				Undefined	
FFFFE3EH	CSIA1 buffer RAM F	CSIA1BF	R/W				Undefined	
FFFFE3EH	CSIA1 buffer RAM FL	CSIA1BFL	R/W		\checkmark		Undefined	
FFFFE3FH	CSIA1 buffer RAM FH	CSIA1BFH	R/W				Undefined	
FFFFFF44H	Pull-up resistor option register DL	PUDL	R/W				0000H	
FFFFFF44H	Pull-up resistor option register DLL	PUDLL	R/W		\checkmark		00H	
FFFFFF45H	Pull-up resistor option register DLH	PUDLH	R/W	\checkmark			00H	
FFFFF46H	Pull-up resistor option register DH	PUDH	R/W	\checkmark			00H	
FFFFF48H	Pull-up resistor option register CS	PUCS	R/W	V	V		00H	
FFFFFF4AH	Pull-up resistor option register CT	PUCT	R/W	V	V		00H	
FFFFF4CH	Pull-up resistor option register CM	PUCM	R/W	V	V		00H	
FFFFFBEH	External bus interface mode control register	EXIMC	R/W	\checkmark	\checkmark		00H	.DataSheet4U.com
U.com								

DataSheet4U.com

3.4.7 Special registers

Special registers are registers that prevent invalid data from being written when an inadvertent program loop occurs.

The V850ES/KG1+ has the following six special registers.

- Power save control register (PSC)
- Processor clock control register (PCC)
- Watchdog timer mode register (WDTM1)
- Clock monitor mode register (CLM)
- Reset source flag register (RESF)
- Low-voltage detection register (LVIM)

Moreover, there is also the PRCMD register, which is a protection register for write operations to the special registers that prevents the application system from unexpectedly stopping due to an inadvertent program loop. Write access to the special registers is performed with a special sequence and illegal store operations are notified to the SYS register.

(1) Setting data to special registers

Setting data to a special register is done in the following sequence.

- <1> Disable the DMA operation.
- <2> Prepare the data to be set to the special register in a general-purpose register.
- <3> Write the data prepared in step <2> to the PRCMD register.

- <4> Write the setting data to the special register (using following instructions).
 - Store instruction (ST/SST instruction)
 - Bit manipulation instruction (SET1/CLR1/NOT1 instruction)

<5> to <9> Insert NOP instructions (5 instructions)^{Note}.

- <10> Enable the DMA operation if DMA is necessary.
- **Note** When switching to the IDLE mode or the STOP mode (PSC.STP bit = 1), 5 NOP instructions must be inserted immediately after switching is performed.
- Caution To resume the DMA operation in the status before the DMA operation is disabled after a special sequence, the DCHCn register status must be stored before the DMA operation is disabled.

After the DCHCn register status is stored, the DCHCn.TCn bit must be checked before the DMA operation is resumed and the following processing must be executed according to the TCn bit status because the DMA transfer completion may occur before the DMA operation is disabled.

- When the TCn bit is 0 (DMA transfer not completed), the contents of the DCHCn register stored before the DMA operation is disabled are written to the DCHCn register again.
- When the TCn bit is 1 (DMA transfer completed), the DMA transfer completion processing is executed.

[Description Example] When using PSC register (standby mode setting)

-		
	ST.B r11, PSMR[r0]	; PSMR register setting (IDLE, STOP mode setting)
	LD.B DCHCn[r0], r12	; (a) DMA transfer status stored
	ANDI Oxfe, r12, r13	
<1>	ST.B r13, DCHCn[r0]	; (b) DMA operation stopped ^{Note 1}
<2>	MOV 0x02, r10	
<3>	ST.B r10, PRCMD[r0]	; PRCMD register write
<4>	ST.B r10, PSC[r0]	; PSC register setting
<5>	NOP ^{Note 2}	; Dummy instruction
<6>	NOP ^{Note 2}	; Dummy instruction
<7>	NOP ^{Note 2}	; Dummy instruction
<8>	NOP ^{Note 2}	; Dummy instruction
<9>	NOP ^{Note 2}	; Dummy instruction
	TST1 7, DCHCn[r0]	; Check whether DMA transfer is completed or not between (a) and (b)
		(whether the DCHCn register status is updated or not)
	BNE next	; If updated, DMA transfer completion processing (to next routine)
<10>	ST.B r12, DCHCn[r0]	; If not updated, return to the status of (a) (DMA transfer enable)
	(next instruction)	

No special sequence is required to read special registers.

- Notes 1. A bit manipulation instruction is not used so as to prevent the DMA transfer completion status flag (DCHCn.TCn bit) from being cleared to 0 via reading. The TCn bit cannot be cleared to 0 by writing 0.
 - 2. When switching to the IDLE mode or the STOP mode (PSC.STP bit = 1), 5 NOP instructions must be inserted immediately after switching is performed.

Remark n = 0 to 3

- Cautions 1. Interrupts are not acknowledged for the store instruction for the PRCMD register. This is because continuous execution of store instructions by the program in steps <3> and <4> above is assumed. If another instruction is placed between step <3> and <4>, the above sequence may not be realized when an interrupt is acknowledged for that instruction, which may cause malfunction.
 - 2. The data written to the PRCMD register is dummy data, but use the same register as the general-purpose register used for setting data to the special register (step <4>) when writing to the PRCMD register (step <3>). The same applies to when using a generalpurpose register for addressing.

DataSheet4U.com

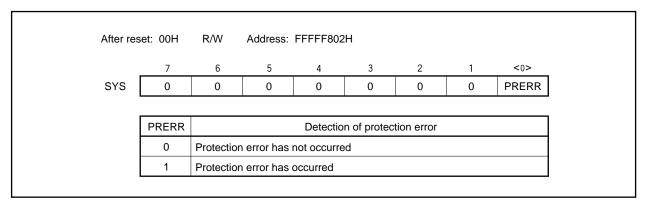
(2) Command register (PRCMD)

The PRCMD register is an 8-bit register used to prevent data from being written to registers that may have a large influence on the system, possibly causing the application system to unexpectedly stop, when an inadvertent program loop occurs. Only the first write operation to the special register following the execution of a previously executed write operation to the PRCMD register, is valid.

As a result, register values can be overwritten only using a preset sequence, preventing invalid write operations.

This register can only be written in 8-bit units (if it is read, an undefined value is returned).

After reset: Undefined W Address: FFFF1FCH		
7 6 5 4 3	2 1	0
PRCMD REG7 REG6 REG5 REG4 REG3	REG2 REG1	REG0


et4U.com

DataShe

DataSheet4U.com

(3) System status register (SYS)

This register is allocated with status flags showing the operating state of the entire system. This register can be read or written in 8-bit or 1-bit units.

The operation conditions of the PRERR flag are described below.

(a) Set conditions (PRERR = 1)

- (i) When a write operation to the special register takes place without write operation being performed to the PRCMD register (when step <4> is performed without performing step <3> as described in 3.4.7
 (1) Setting data to special registers).
- et4U.com

(ii) When a write operation (including bit manipulation instruction) to an on-chip peripheral I/O register other than a special register is performed following write to the PRCMD register (when <4> in 3.4.7 (1) Setting data to special registers is not a special register).

DataSheet4U.com

Remark Regarding the special registers other than the WDTM register (PCC and PSC registers), even if on-chip peripheral I/O register read (except bit manipulation instruction) (internal RAM access, etc.) is performed in between write to the PRCMD register and write to a special register, the PRERR flag is not set and setting data can be written to the special register.

(b) Clear conditions (PRERR = 0)

- (i) When 0 is written to the PRERR flag
- (ii) When system reset is performed
- Cautions 1. If 0 is written to the PRERR bit of the SYS register that is not a special register immediately following write to the PRCMD register, the PRERR bit becomes 0 (write priority).
 - 2. If data is written to the PRCMD register that is not a special register immediately following write to the PRCMD register, the PRERR bit becomes 1.

DataShe

DataSheet4U.com

3.4.8 Cautions

(1) Wait when accessing register

Be sure to set the following register before using the V850ES/KG1+.

• System wait control register (VSWC)

After setting the VSWC register, set the other registers as required.

When using an external bus, set the VSWC register and then set the various pins to the control mode by setting the port-related registers.

(a) System wait control register (VSWC)

The VSWC register controls the bus access wait time for the on-chip peripheral I/O registers. Access to the on-chip peripheral I/O register lasts 3 clocks (during no wait), but in the V850ES/KG1+, waits are required according to the internal system clock frequency. Set the values shown below to the VSWC register according to the internal system clock frequency that is used.

This register can be read or written in 8-bit units (Address: FFFF06EH, After reset: 77H).

Operation Conditions	Internal System Clock Frequency (fc∟κ)	VSWC Register Setting
$REGC = V_{DD} = 5 V \pm 10\%,$	$32 \text{ kHz} \leq f_{CLK} < 16.6 \text{ MHz}$	00H
In PLL mode (fx = 2 to 5 MHz)	16.6 MHz ≤ fc∟к ≤ 20 MHz	01H
REGC = V _{DD} = 4.0 to 5.5 V	32 kHz ≤ fcpu < 16 MHz	00H
REGC = Capacity, VDD = 4.0 to 5.5 VpataSheet	J32 kHz ≤ fc∟κ < 8 MHz	00H
REGC = VDD = 2.7 to 4.0 V	$32 \text{ kHz} \leq f_{\text{CLK}} \leq 8 \text{ MHz}$	00H

DataShe

(b) Access to special on-chip peripheral I/O register

This product has two types of internal system buses.

One type is for the CPU bus and the other is for the peripheral bus to interface with low-speed peripheral hardware.

Since the CPU bus clock and peripheral bus clock are asynchronous, if a conflict occurs during access between the CPU and peripheral hardware, illegal data may be passed unexpectedly. Therefore, when accessing peripheral hardware that may cause a conflict, the number of access cycles is changed so that the data is received/passed correctly in the CPU. As a result, the CPU does not shift to the next instruction processing and enters the wait status. When this wait status occurs, the number of execution clocks of the instruction is increased by the number of wait clocks.

Note this with caution when performing real-time processing.

When accessing a special on-chip peripheral I/O register, additional waits may be required further to the waits set by the VSWC register.

The access conditions at that time and the method to calculate the number of waits to be inserted (number of CPU clocks) are shown below.

Peripheral Function	Register Name	Access	k					
Watchdog timer 1 (WDT1)	WDTM1	Write	1 to 5					
	<calculation number="" of="" wa<br="">{(1/fx) × 2/((2 + m)/fcPu)} + fx: Main clock oscillation</calculation>	1						
Watchdog timer 2 (WDT2)	WDTM2	Write	3 (fixed)					
16-bit timer/event counter P0 (TMP0)	TP0CCR0, TP0CCR1, TP0CNT	Read	1					
	<calculation number="" of="" waits=""> {(1/fxx)/((2 + m)/fcPu)} + 1</calculation>							
	TP0CCR0, TP0CCR1	Write	0 to 2					
	<calculation number="" of="" waits=""> {(1/fxx) × 5/((2 + m)/fcPU)} A wait occurs when performing continuous write to same register</calculation>							
16-bit timer/event counters 00 to 03 (TM00 to TM03)	TMC00 to TMC03	Read-modify-write	1 (fixed) A wait occurs during write					
Clocked serial interfaces 0 and 1 with automatic transmit/receive function (CSIA0, CSIA1)	CSIA0B0 to CSIA0BF, CSIA1B0 to CSIA1BF	Write ^{Note 1}	0 to 18 (when performing continuous write via write instruction)					
	<calculation number="" of="" wa<br="">{(1/fscka) × 5 – (4 + m)/fcPu However, 1 wait if fcPu fscka: CSIA selection cl</calculation>	u)}/{((2 + m)/fcpu)} = fxx if the CSISn.CKSAn1 and	CSISn.CKSAn0 bits are 00.					
	CSIA0B0 to CSIA0BF CSIA1B0 to CSIA1BF	t ^{Write^{Note 1}}	0 to 20 (when conflict occurs between write instruction and write via receive operation)					
	<calculation number="" of="" waits=""> {((1/fscka) × 5)/((2 + m)/fcPU)} fscka: CSIA selection clock frequency</calculation>							
I ² C0 ^{Note 2}	IICS0	Read	1 (fixed)					
Asynchronous serial interfaces 0 to 2 (UART0 to UART2)	ASIS0 to ASIS2	Read	1 (fixed)					
Real-time output function 0 (RTO0)	RTBL0, RTBH0	Write (when RTPC0.RTPOE0 bit = 0)	1					
A/D converter	ADM, ADS, PFM, PFT	Write	1 to 2					
	ADCR, ADCRH	Read	1 to 2					
	<calculation maximum="" nur<br="" of="">{(1/fxx) × 2/[(2 + m)/fcPu]} +</calculation>							

Number of waits to be added = $(2 + m) \times k$ [clocks]

www.DataSheet4U.com

DataShe

Notes 1. If fetched from the internal RAM, the number of waits is as shown above. If fetched from the external memory, the number of waits may be fewer than the number shown above.

> The effect of the external memory access cycle differs depending on the wait settings, etc. However, the number of waits above is the maximum value.

- **2.** I^2C0 is available only in the $\mu PD703313Y$, 70F3311Y, and 70F3313Y.
- Caution When the CPU operates on the subclock and no clock is input to the X1 pin, do not access a register in which a wait occurs using an access method that causes a wait. If a wait occurs, it can only be released by a reset.

Remarks 1. In the calculation for the number of waits:

fcPU: CPU clock frequency m: Set value of bits 2 to 0 of the VSWC register fcLk: Internal system clock

> When fclk < 16.6 MHz: m = 0When fclk \ge 16.6 MHz: m = 1

2. n = 0, 1

et4U.com

The digits below the decimal point are truncated if less than $(1/f_{CPU})/(2 + m)$ or rounded up if larger than $(1/f_{CPU})/(2 + m)$ when multiplied by $(1/f_{CPU})$.

DataSheet4U.com

(2) Restriction on conflict between sld instruction and interrupt request

(a) Description

If a conflict occurs between the decode operation of an instruction in <2> immediately before the sld instruction following an instruction in <1> and an interrupt request before the instruction in <1> is complete, the execution result of the instruction in <1> may not be stored in a register.

Instruction <1>

- Id instruction: ld.b, ld.h, ld.w, ld.bu, ld.hu
- sld instruction: sld.b, sld.h, sld.w, sld.bu, sld.hu
- Multiplication instruction: mul, mulh, mulhi, mulu

Instruction <2>

mov reg1, reg2	not reg1, reg2	satsubr reg1, reg2	satsub reg1, reg2
satadd reg1, reg2	satadd imm5, reg2	or reg1, reg2	xor reg1, reg2
and reg1, reg2	tst reg1, reg2	subr reg1, reg2	sub reg1, reg2
add reg1, reg2	add imm5, reg2	cmp reg1, reg2	cmp imm5, reg2
mulh reg1, reg2	shr imm5, reg2	sar imm5, reg2	shl imm5, reg2

<Example>

<i> ld.w [r11], r10</i>	If the decode operation of the mov instruction <ii> immediately before the sld</ii>
•	instruction <iii> and an interrupt request conflict before execution of the ld</iii>
•	instruction <i> is complete, the execution result of instruction <i> may not be</i></i>
	stored in a register. DataSheet4U.com

<ii> mov r10, r28 <iii> sld.w 0x28, r10

(b) Countermeasure

When executing the sld instruction immediately after instruction <ii>, avoid the above operation using either of the following methods.

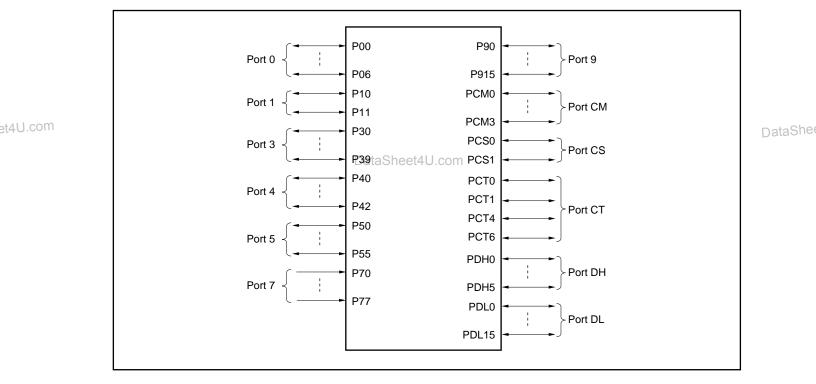
- Insert a nop instruction immediately before the sld instruction.
- Do not use the same register as the sld instruction destination register in the above instruction <ii> executed immediately before the sld instruction.

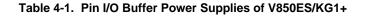
DataShe

DataSheet4U.com

CHAPTER 4 PORT FUNCTIONS

4.1 Features


O Input-only ports: 8 pins


- O I/O ports: 76 pins
 - Fixed to N-ch open-drain output: 4 (medium: 2)
 - Switchable to N-ch open-drain output: 8

O Input/output can be specified in 1-bit units

4.2 Basic Port Configuration

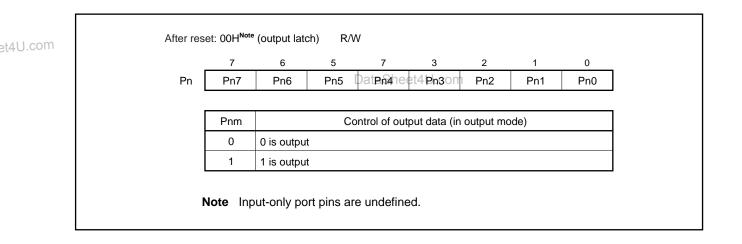
The V850ES/KG1+ incorporates a total of 84 I/O port pins consisting of ports 0, 1, 3 to 5, 7, 9, CM, CS, CT, DH, and DL (including 8 input-only port pins). The port configuration is shown below.

Power Supply	Corresponding Pins
AV _{REF0}	Port 7
AV _{REF1}	Port 1
BVdd	Ports CM, CS, CT, DH, DL
EVDD	RESET, ports 0, 3 to 5, 9

DataSheet4U.com

www.DataSheet4U.com

4.3 Port Configuration


Table 4-2. Port Configuration

Item	Configuration	
Control registers	Port n register (Pn: n = 0, 1, 3 to 5, 7, 9, CM, CS, CT, DL, DH)	
	Port n mode register (PMn: n = 0, 1, 3 to 5, 9, CM, CS, CT, DL, DH)	
	Port n mode control register (PMCn: n = 0, 3 to 5, 9, CM, CS, CT, DL, DH)	
	Port n function control register (PFCn: $n = 3, 5, 9$)	
	Port n function register (PFn: $n = 3$ to 5, 9)	
	Port 3 function control expansion register (PFCE3)	
	Pull-up resistor option register (PUn: n = 0, 1, 3 to 5, 9, CM, CS, CT, DL, DH)	
Ports	Input only: 8	
	I/O: 76	
Pull-up resistors	Software control: 72	

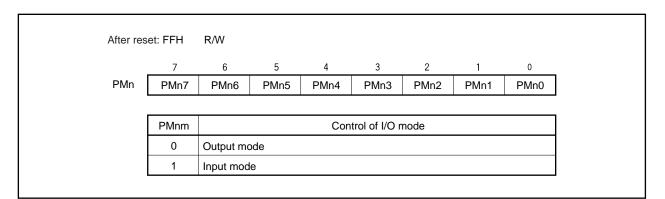
(1) Port n register (Pn)

Data I/O with external devices is performed by writing to and reading from the Pn register. The Pn register is configured of a port latch that retains the output data and a circuit that reads the pin status.

Each bit of the Pn register corresponds to one pin of port n and can be read or written in 1-bit units.

Writing to and reading from the Pn register is executed as follows independent of the setting of the PMCn register.

Table 4-3. Reading to/Writing from Pn Register


Setting of PMn Register	Writing to Pn Register	Reading from Pn Register
Output mode (PMnm bit = 0)	Write to the output latch ^{Note} . In the port mode (PMCnm bit = 0), the contents of the output latch are output from the pin.	The value of the output latch is read.
Input mode (PMnm bit = 1)	Write to the output latch. The status of the pin is not affected ^{Note} .	The pin status is read.

Note The value written to the output latch is retained until a value is next written to the output latch.

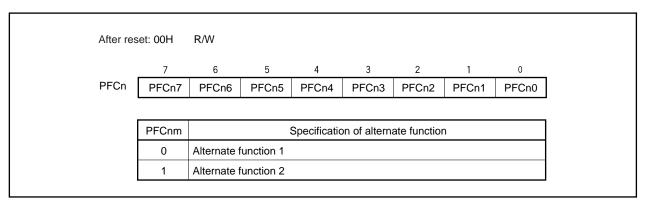
DataSheet4U.com

(2) Port n mode register (PMn)

PMn specifies the input mode/output mode of the port. Each bit of the PMn register corresponds to one pin of port n and can be specified in 1-bit units.

(3) Port n mode control register (PMCn)

PMCn specifies the port mode/alternate function.


Each bit of the PMCn register corresponds to one pin of port n and can be specified in 1-bit units.

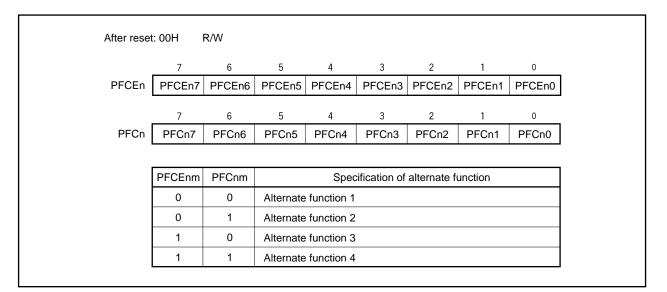
	7	6	5	4	3	2	1	0
PMCn	PMCn7	PMCn6	PMCn5	PMCn4	PMCn3	PMCn2	PMCn1	PMCn0
			DataSr	Specificat	ion of opera	ation mode		
	PMCnm			opecificat	ion of open	allon moue		
	PMCnm 0	Port mode		opecificat				

(4) Port n function control register (PFCn)

PFCn is a register that specifies the alternate function to be used when one pin has two or more alternate functions.

Each bit of the PFCn register corresponds to one pin of port n and can be specified in 1-bit units.

DataSheet4U.com

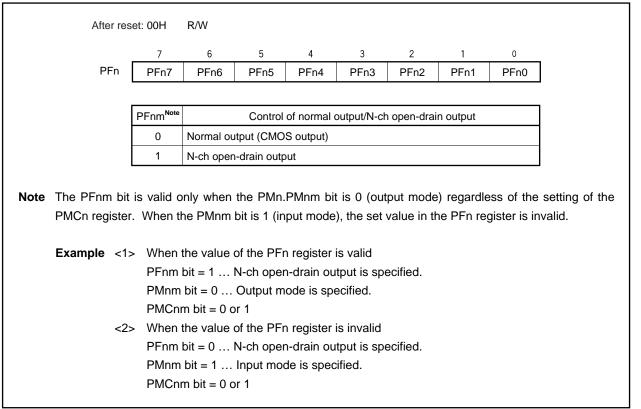

et4U.com

www.DataSheet4U.com

(5) Port n function control expansion register (PFCEn)

PFCEn is a register that specifies the alternate function to be used when one pin has three or more alternate functions.

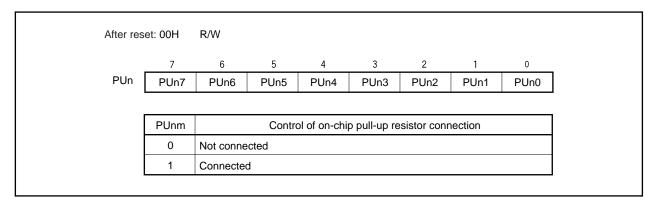
Each bit of the PFCEn register corresponds to one pin of port n and can be specified in 1-bit units.



(6) Port n function register (PFn)

PFn is a register that specifies normal output/N-ch open-drain output.

Each bit of the PFn register corresponds to one pin of port n and can be specified in 1-bit units.


DataSheet4U.com

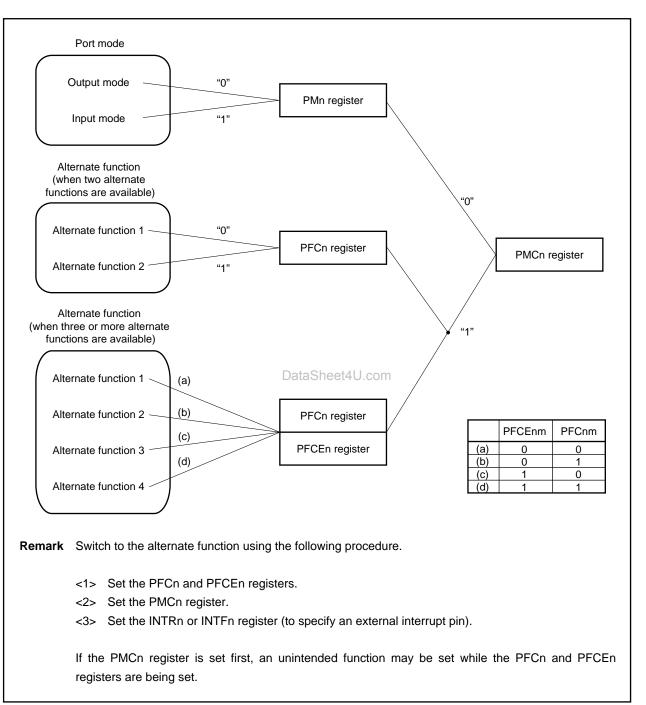
et4U.com

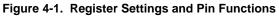
(7) Pull-up resistor option register (PUn)

PUn is a register that specifies the connection of an on-chip pull-up resistor.

Each bit of the PUn register corresponds to one pin of port n and can be specified in 1-bit units.

et4U.com


DataShe


DataSheet4U.com

DataSheet4U.com

(8) Port settings

Set the ports as follows.

DataSheet4U.com

et4U.com

4.3.1 Port 0

Port 0 is a 7-bit I/O port for which I/O settings can be controlled in 1-bit units. Port 0 includes the following alternate functions.

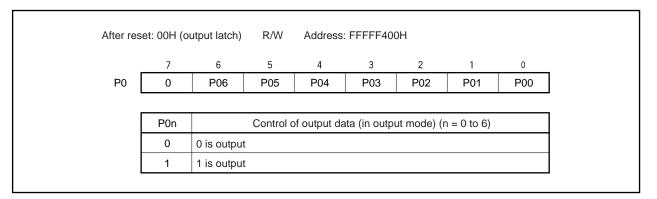
Pin	No.	Pin Name	Alternate Function	I/O	PULL ^{Note 1}	Remark	Block Type
GC	GF						
6	8	P00 ^{Note 2}	ТОН0	Output	Yes	-	D0-U
7	9	P01	TOH1	Output			D0-U
17	19	P02	NMI	Input		Analog noise elimination	D1-SUIL
18	20	P03	INTP0	Input			D1-SUIL
19	21	P04	INTP1	Input			D1-SUIL
20	22	P05	INTP2	Input			D1-SUIL
21	23	P06	INTP3	Input		Analog/digital noise elimination	D1-SUIL

Table 4-4. Alternate-Function Pins of Port 0

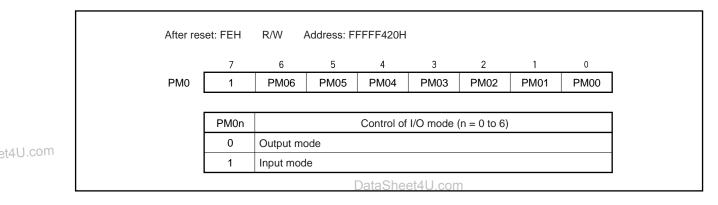
Notes 1. Software pull-up function

 Only the P00 pin outputs a low level after reset (other port pins are in input mode). Therefore, the low-level output from the P00 pin after reset can be used as a dummy reset signal from the CPU.

Caution P02 to P06 have hysteresis characteristics when the alternate function is input, but not in the port mode.

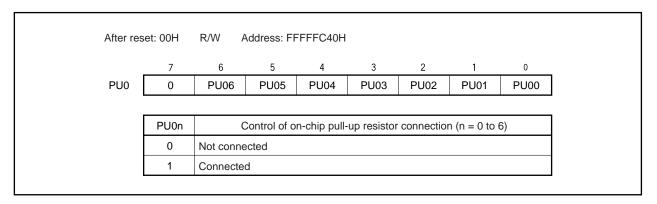

DataShee

 Data Sheet4U.com


 Remark
 GC: 100-pin plastic LQFP (fine pitch) (14 × 14)

 GF:
 100-pin plastic QFP (14 × 20)

(1) Port 0 register (P0)


(2) Port 0 mode register (PM0)

	7	6	5	4	3	2	1	0
PMC	0 0	PMC06	PMC05	PMC04	PMC03	PMC02	PMC01	PMC00
	PMC06		Sne	ecification of	of P06 pip (neration m	ode	
	0	I/O port	000			peration n		
	1	INTP3 inp	ut					
	PMC05		Spe	ecification o	of P05 pin c	peration m	ode	
	0	I/O port				-		
	1	INTP2 inp	ut					
	PMC04		Spe	ecification o	of P04 pin c	peration m	ode	
	0	I/O port						
	1	INTP1 inp	ut					
	PMC03		Spe	ecification o	of P03 pin c	peration m	ode	
	0	I/O port						
	1	INTP0 inp	ut					
	PMC02		Spe	ecification o	of P02 pin o	peration m	ode	
	0	I/O port						
	1	NMI input	DataSh	eet4U.co	om			
	PMC01		Spe	ecification o	of P01 pin c	peration m	ode	
	0	I/O port						
	1	TOH1 out	put					
	PMC00		Spe	ecification o	of P00 pin o	peration m	ode	
	0	I/O port						
	1	TOH0 out	put					

(3) Port 0 mode control register (PMC0)

(4) Pull-up resistor option register 0 (PU0)

97

4.3.2 Port 1

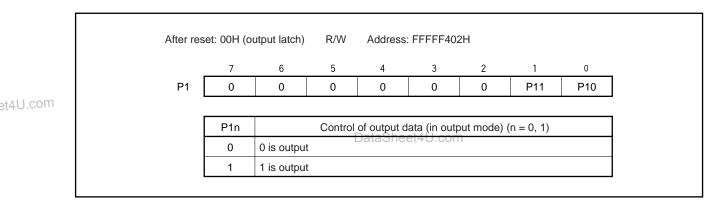
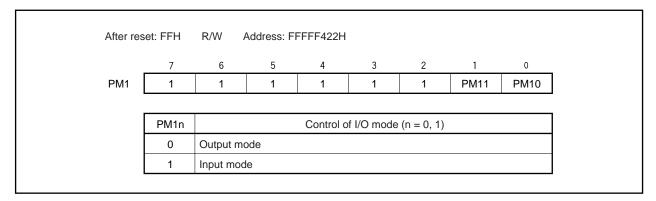

Port 1 is a 2-bit I/O port for which I/O settings can be controlled in 1-bit units. Port 1 includes the following alternate functions.

Table 4-5. Alternate-Function Pins of Port 1

Pin	No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
GC	GF						
3	5	P10	ANO0	Output	Yes	_	C-UA
4	6	P11	ANO1	Output			C-UA


Note Software pull-up function

(1) Port 1 register (P1)

(2) Port 1 mode register (PM1)

Caution When used as the ANO0 and ANO1 pins, set PM1 = FFH all together.

DataSheet4U.com

(3) Pull-up resistor option register 1 (PU1)

After re	eset: 00H	R/W	Address: FF	FFFC42H				
	7	6	5	4	3	2	1	0
PU1	0	0	0	0	0	0	PU11	PU10
	PU1n		Control of	on-chip pull-	up resisto	or connecti	on (n = 0, 1)
	0	Not cor	nnected					
	1	Connec	cted					

et4U.com

DataShee

DataSheet4U.com

DataSheet4U.com

4.3.3 Port 3

Port 3 is a 10-bit I/O port for which I/O settings can be controlled in 1-bit units. Port 3 includes the following alternate functions.

Pin	No.	Pin Name	Alternate Function	I/O	PULL ^{Note 1}	Remark	Block Type
GC	GF						
25	27	P30	TXD0/TO02	Output	Yes	-	E00-U
26	28	P31	RXD0/INTP7/TO03	I/O			E10-SUIHL
27	29	P32	ASCK0/ADTRG/TO01	I/O			E10-SUL
28	30	P33	TI000/TO00/TIP00/ TOP00	I/O			G1010-SUL
29	31	P34	TI001/TO00/TIP01/ TOP01	I/O			G1010-SUL
30	32	P35	TI010/TO01	I/O			E10-SUL
31	33	P36	-	-	No ^{Note 2}	N-ch open-drain output	C-NMU
32	34	P37	-	_]		C-NMU
35	37	P38	SDA0 ^{Note 3}	I/O]		D2-SNMUFH
36	38	P39	SCL0 ^{Note 3}	I/O			D2-SNMUFH

Table 4-6. Alternate-Function Pins of Port 3

et4U.com

Notes 1. Software pull-up function

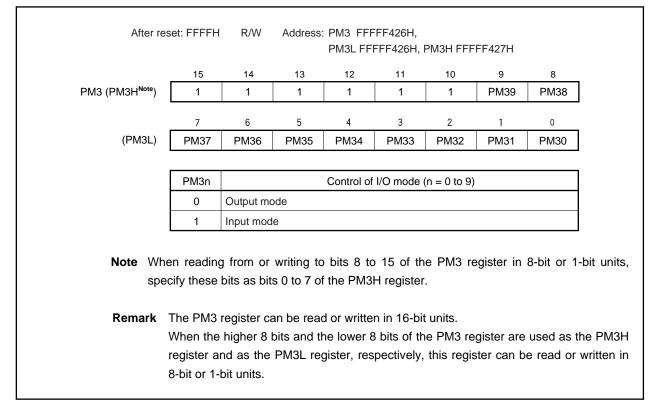
2. An on-chip pull-up resistor can be provided by a mask option (only in the μ PD703313, 703313Y).

DataShe

3. Only in the μ PD703313Y, 70F3311Y, 70F3313Y DataSheet4U.com

Caution P31 to P35, P38, and P39 have hysteresis characteristics when the alternate function is input, but not in the port mode.

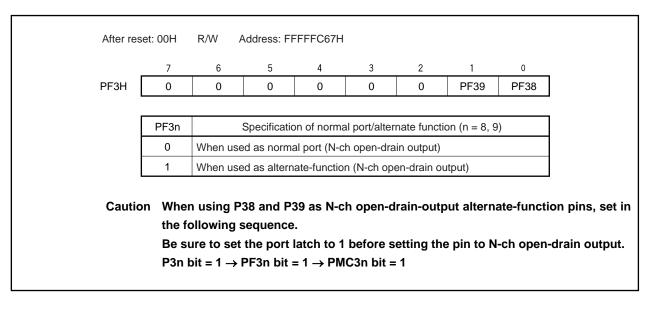
RemarkGC: 100-pin plastic LQFP (fine pitch) (14×14) GF: 100-pin plastic QFP (14×20)


(1) Port 3 register (P3)

After re	set: 00H (o	utput latch)	R/W	Address:	P3 FFFF P3L FFF	,	3H FFFF	407H
	15	14	13	12	11	10	9	8
P3 (P3H ^{Note})	0	0	0	0	0	0	P39	P38
	7	6	5	4	3	2	1	0
(P3L)	P37	P36	P35	P34	P33	P32	P31	P30
	P3n 0	0 is outpu		of output da	ita (in outp		1 = 0 (0.9)	
	_							
		· ·						
	1	1 is outpu						
	1 hen read becify thes The P3 Howeve	· ·	t or writing its 0 to 7 an be read ne higher	of the P3H d or writter 8 bits and	H register n in 16-bit I the lowe	: units. er 8 bits c	of the P3	register ar

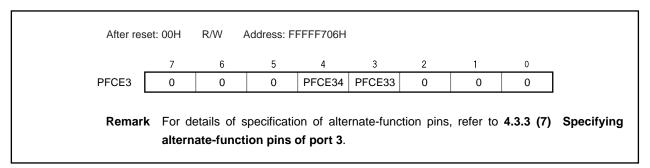
et4U.com

(2) Port 3 mode register (PM3)


DataSheet4U.com

(3) Port 3 mode control register (PMC3)

	15	14	13	12	11	10	9	8	
PMC3 (PMC3H ^{Note}	¹) 0	0	0	0	0	0	PMC39 ^{Note 2}	PMC38 ^{Note 2}	
	7	6	5	4	3	2	1	0	
(PMC3		0	PMC35	PMC34	PMC33	PMC32	PMC31	PMC30	
	PMC39		Spe	ecification o	of P39 pin o	operation r	node		
	0	I/O port							
	1	SCL0 1/O	SCL0 I/O						
	PMC38		Spe	ecification o	of P38 pin o	operation r	node		
	0	I/O port							
	1	SDA0 I/O							
	PMC35		Spe	ecification o	of P35 pin o	operation r	node		
	0	I/O port							
			out/TO01 ou						
	PMC34		Spe	ecification o	of P34 pin o	operation r	node		
	0	I/O port	ut/TO00 ou						
			DataS	heet4U.c	om				
	PMC33 0	1/O port	Spe	ecification o	of P33 pin o	peration r	node		
	1	I/O port TI000 inp	out/TO00 ou	itput/TIP00	input/TOP	00 output			
	PMC32		Spe	ecification of	of P32 pin o	operation r	node		
	0	I/O port							
	1	ASCK0 in	nput/ADTRO	G input/TO)1 output				
	PMC31		Spe	ecification o	of P31 pin o	operation r	node		
	0	I/O port							
	1	RXD0 inp	out/INTP7 ir	nput/TO03	output				
	PMC30		Spe	ecification o	of P30 pin o	operation r	node		
	0	I/O port							
	1	TXD0 out	tput/TO02 c	output					
	specify the Valid only bit to 0.	ese bits as in the μ Pl	bits 0 to 7 D703313Y	7 of the PN 7, 70F331	//C3H reg 1Y, 70F3	ister. 313Y. In	-	3-bit or 1-bit units, products, set this	
								are used as the er can be read or	


(4) Port 3 function register H (PF3H)

(5) Port 3 function control register (PFC3)

After res	set: 00H	R/W	Address: F	FFF466H					
	7	6	5	4	3	2	1	0	Data
PFC3	0	0	PFC35	BFC34	PFC33	PFC32	PFC31	PFC30	

(6) Port 3 function control expansion register (PFCE3)

(7) Specifying alternate-function pins of port 3

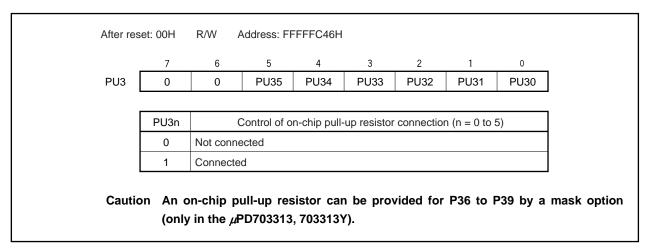
PFC35	Specification of Alternate-Function Pin of P35 Pin
0	TI010 input
1	TO01 output

PFCE34	PFC34	Specification of Alternate-Function Pin of P34 Pin
0	0	TI001 input
0	1	TO00 output
1	0	TIP01 input
1	1	TOP01 output

PFCE33	PFC33	Specification of Alternate-Function Pin of P33 Pin
0	0	TI000 input
0	1	TO00 output
1	0	TIP00 input
1	1	TOP00 output

PFC32	Specification of Alternate-Function Pin of P32 Pin
0	ASCK0/ADTRG ^{Note 1} input
1	TO01 output

et4U.com


PFC31	Specification of Alternate-Function Pin of P31 Pin
0	RXD0/INTP7 ^{Note 2} input
1	TO03 output

PFC30	Specification of Alternate-Function Pin of P30 Pin
0	TXD0 output
1	TO02 output

- Notes 1. The ASCK0 and ADTRG pins are alternate-function pins. When using the pin as the ASCK0 pin, disable the trigger input of the alternate-function ADTRG pin (clear the ADS.TRG bit to 0 or set the ADS.ADTMD bit to 1). When using the pin as the ADTRG pin, do not set the UART0 operation clock to external input (set the CKSR0.TPS03 to CKSR0.TPS00 bits to other than 1011).
 - 2. The INTP7 and RXD0 pins are alternate-function pins. When using the pin as the RXD0 pin, disable edge detection of the alternate-function INTP7 pin (clear the INTF3.INTF31 and INTR3.INTR31 bits to 0). When using the pin as the INTP7 pin, stop the UART0 receive operation (clear the ASIM0.RXE0 bit to 0).

DataSheet4U.com

(8) Pull-up resistor option register 3 (PU3)

et4U.com

DataShe

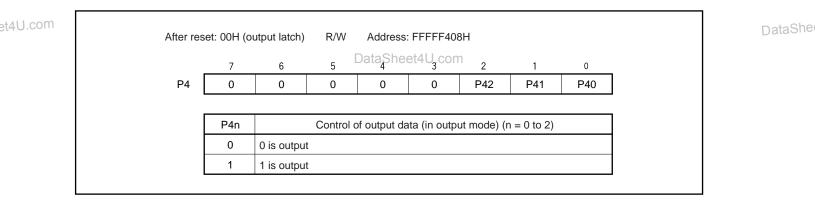
DataSheet4U.com

DataSheet4U.com

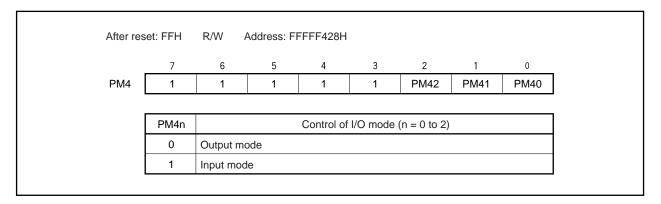
www.DataSheet4U.com

4.3.4 Port 4

Port 4 is a 3-bit I/O port for which I/O settings can be controlled in 1-bit units. Port 4 includes the following alternate functions.


Table 4-7. Alternate-Function Pins of Port 4

Pin	No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
GC	GF						
22	24	P40	SI00/RXD2	Input	Yes	-	E11-SULH
23	25	P41	SO00/TXD2	Output		N-ch open-drain output can	E00-UF
24	26	P42	SCK00	I/O		be selected.	D2-SUFL


Note Software pull-up function

Caution P40 and P42 have hysteresis characteristics when the alternate function is input, but not in the port mode.

(1) Port 4 register (P4)

(2) Port 4 mode register (PM4)

DataSheet4U.com

After res	set: 00H	R/W	Address: Fl	FFF448H							
	7	6	5	4	3	2	1	0			
PMC4	0	0	0	0	0	PMC42	PMC41	PMC40			
	PMC42		Spe	ecification o	f P42 pin o	operation m	node				
	0	I/O port									
	1	SCK00 I/O									
	PMC41	C41 Specification of P41 pin operation mode									
	0	I/O port	I/O port								
	1	SO00 output/TXD2 output									
	PMC40		Spe	ecification o	f P40 pin o	operation m	ode				
	0	I/O port									
	1	SI00 inpu	it/RXD2 inp	ut							

(3) Port 4 mode control register (PMC4)

(4) Port 4 function control register (PFC4)

	7	6	DataShe	et4⊌.cor	n ₃	2	1	0
PFC4	0	0	0	0	0	0	PFC41	PFC40
	PFC41		Specifi	cation of alt	ornata fun	otion nin d	of D41 pip	
	PFC41		Specini	cation of all	emale-lun	cuon pin c	n P41 pin	
	0	SO00 out	put					
	1	TXD2 out	put					
	PFC40		Specifi	cation of alt	ernate-fun	ction pin o	of P40 pin	
	0	SI00 inpu	t					
	1	RXD2 inp	ut					

(5) Port 4 function register (PF4)

After re	set: 00H	R/W	Address: FF	FFFC68H					
	7	6	5	4	3	2	1	0	_
PF4	0	0	0	0	0	PF42	PF41	0	
	PF4n	0	Control of no	rmal output	/N-ch ope	en-drain out	put (n = 1,	2)	
	0	Normal o	utput						
	1	N-ch ope	n-drain outp	ut					
	on Whe		P41 and P4		open-	drain-outp	out alterna	ate-funct	ion pins
Cauti	(1 /	·							
Cauti		•	sequence		before	sotting the	a nin to N	-ch onen	-drain o
Cauti	Be s	ure to set	sequence t the port I PF4n bit -	atch to 1		-	e pin to N	-ch open	-drain o

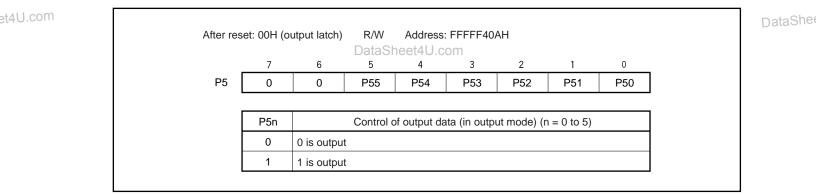
(6) Pull-up resistor option register 4 (PU4)

	After res	After reset: 00H		Address: FFFFFC48H					
com		7	6	5	4	3	2	1	0
_	PU4	0	0	0	0	0	PU42	PU41	PU40
		DataSheet4U.com							
		PU4n	Control of on-chip pull-up resistor connection $(n = 0 \text{ to } 2)$						
		0	Not connected						
		1	Connected						

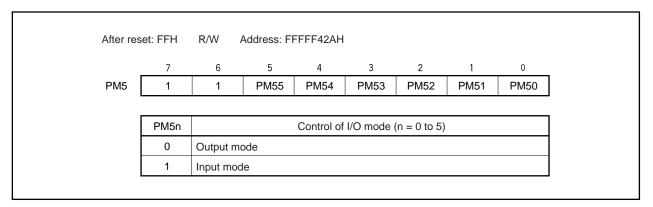
4.3.5 Port 5

Port 5 is a 6-bit I/O port for which I/O settings can be controlled in 1-bit units. Port 5 includes the following alternate functions.

Table 4-8. Alternate-Function Pins of Pe	ort 5
--	-------


Pin	No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
GC	GF						
37	39	P50	TI011/RTP00/KR0	I/O	Yes	-	E10-SULT
38	40	P51	TI50/RTP01/KR1	I/O			E10-SULT
39	41	P52	TO50/RTP02/KR2	I/O			E00-SUT
40	42	P53	SIA0/RTP03/KR3	I/O			E10-SULT
41	43	P54	SOA0/RTP04/KR4	I/O]	N-ch open-drain output can	E00-SUFT
42	44	P55	SCKA0/RTP05/KR5	I/O		be selected.	E20-SUFLT

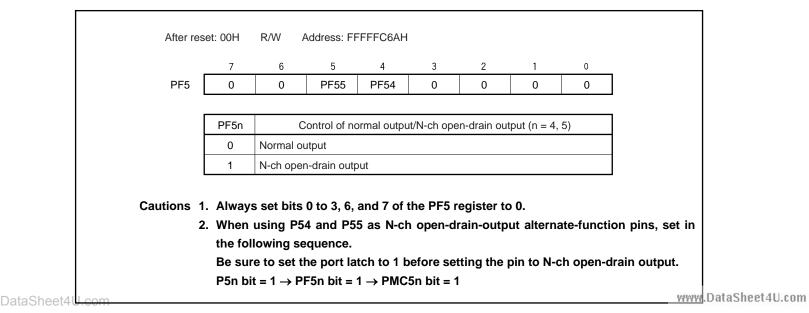
Note Software pull-up function


Remark GC: 100-pin plastic LQFP (fine pitch) (14×14)

GF: 100-pin plastic QFP (14 × 20)

(1) Port 5 register (P5)

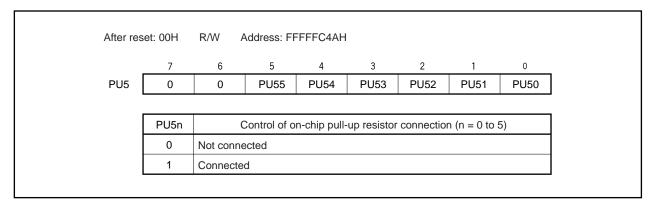
(2) Port 5 mode register (PM5)



	7	6	5	4	3	2	1	0					
PMC5	0	0	PMC55	PMC54	PMC53	PMC52	PMC51	PMC50					
	PMC55			ecification of	of P55 pin c	peration m	node						
	0		KR5 input										
	1	SCKA0 I	/O/RTP05 o	utput									
	PMC54		Specification of P54 pin operation mode										
	0	I/O port/KR4 input											
	1	1 SOA0 output/RTP04 output											
	PMC53		Specification of P53 pin operation mode										
	0	I/O port/I	/O port/KR3 input										
	1	SIA0 input/RTP03 output											
	PMC52		Specification of P52 pin operation mode										
	0	I/O port/I	KR2 input										
	1	TO50 ou	tput/RTP02	output									
	PMC51		Spe	ecification of	of P51 pin c	peration m	node						
	0		KR1 input										
	1	TI50 inpu	ut/RTP01 ou	ataShee	et4U.com	1							
	PMC50		Spe	ecification of	of P50 pin c	peration m	node						
	0	I/O port/I	KR0 input										
	1	TI011 input/RTP00 output											

DataShe

(3) Port 5 mode control register (PMC5)


(4) Port 5 function register 5 (PF5)

	7	6	5	4	3	2	1	0	
PFC	5 0	0	PFC55	PFC54	PFC53	PFC52	PFC51	PFC50	
	PFC5	5	Specifi	cation of al	ternate-fun	ction pin o	f P55 pin		
	0	SCKA) I/O						
	1	RTP05	output						
	PFC5	4	Specifi	cation of al	ternate-fun	ction pin o	f P54 pin		
	0	SOA0	output						
	1	RTP04	output						
	PFC5			cation of al	ternate-fun	ction pin o	f P53 pin		
	0	SIA0 ir	-						
	1	RTP03	output						
	PFC5	2	Specifi	cation of al	ternate-fun	ction nin o	P52 nin		
	0	Z TO50 0			lemale-lun	cuon pin o	r 52 pin		
	1		output						
		KIP02							
	PFC5	1	Palaoi	neet4U.c cation of al		ction pin o	f P51 pin		
	0	TI50 in							
	1	RTP01	output						
			•						
	PFC5	0	Specifi	cation of al	ternate-fun	ction pin o	f P50 pin		
	0	TI011 i	nput						
	1	RTP00	output						

(5) Port 5 function control register (PFC5)

(6) Pull-up resistor option register 5 (PU5)

DataSheet4U.com

4.3.6 Port 7

Port 7 is an 8-bit input-only port for which all the pins are fixed to input. Port 7 includes the following alternate functions.

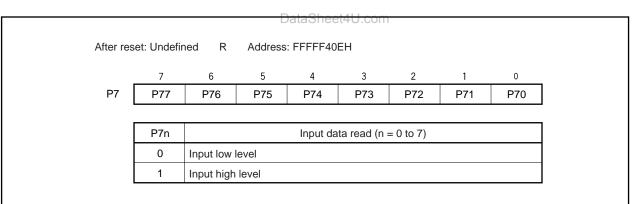

Pin	No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
GC	GF						
100	2	P70	ANIO	Input	No	-	A-A
99	1	P71	ANI1	Input			A-A
98	100	P72	ANI2	Input]		A-A
97	99	P73	ANI3	Input			A-A
96	98	P74	ANI4	Input]		A-A
95	97	P75	ANI5	Input			A-A
94	96	P76	ANI6	Input			A-A
93	95	P77	ANI7	Input			A-A

Table 4-9. Alternate-Function Pins of Port 7

Note Software pull-up function

(1) Port 7 register (P7)

et4U.com

DataShe

Remark GC: 100-pin plastic LQFP (fine pitch) (14 × 14) GF: 100-pin plastic QFP (14 × 20)

4.3.7 Port 9

Port 9 is a 16-bit I/O port for which I/O settings can be controlled in 1-bit units. Port 9 includes the following alternate functions.

Pin	No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
GC	GF						
43	45	P90	A0/TXD1/KR6	I/O	No	_	E00-SUTZ
44	46	P91	A1/RXD1/KR7	I/O			E01-SUHTZ
45	47	P92	A2/TI020/TO02	I/O			E00-SUTZ
46	48	P93	A3/TI021	I/O			E01-SULZ
47	49	P94	A4/TI030/TO03	I/O			E00-SUTZ
48	50	P95	A5/TI031	I/O			E01-SULZ
49	51	P96	A6/TI51/TO51	I/O			E00-SUTZ
50	52	P97	A7/SI01	I/O			E01-SUHTZ
51	53	P98	A8/SO01	Output		N-ch open-drain output can	E00-UFZ
52	54	P99	A9/SCK01	I/O		be specified.	E02-SUFLZ
53	55	P910	A10/SIA1	I/O		-	E01-SULZ
54	56	P911	A11/SOA1	Output		N-ch open-drain output can	E00-UFZ
55	57	P912	A12/SCKA1	I/O		be specified.	E02-SUFLZ
56	58	P913	A13/INTP4	I/O		Analog noise elimination	E01-SUILZ
57	59	P914	A14/INTP5 DataSh	¶∕ð4U.co	n		E01-SUILZ
58	60	P915	A15/INTP6	I/O			E01-SUILZ

Table 4-10. Alternate-Function Pins of Port 9

et4U.com

Note Software pull-up function

Caution P93, P95, P97, P99, P910, and P912 to P915 have hysteresis characteristics when the alternate function is input, but not in the port mode.

(1) Port 9 register (P9)

	15	14	13	12	11	10	9	8				
P9 (P9H ^{Note})	P915	P914	P913	P912	P911	P910	P99	P98				
(P9L) Note Wi	7	C	F	4	n	0	1	0				
(P9L)	/ P97	6 P96	5 P95	4 P94	3 P93	2 P92	P91	P90				
(-)				-		-	-					
	P9n		Control of	output da	ta (in outpu	ıt mode) (n	= 0 to 15)					
	0	0 0 is output										
	1	1 is output										
	ecify thes	e bits as bi	its 0 to 7	of the P9I	H register.		egister in	8-bit or 1-b				

et4U.com

After res	et: FFFFH	R/W	Address:	PM9 FFFI PM9L FFF	,	PM9H FFF	FF433H					
	15	14	13	12	11	10	9	8				
PM9 (PM9H ^{Note})	PM915	PM914	PM913	PM912	PM911	PM910	PM99	PM98				
	7	6	5	4	3	2	1	0				
(PM9L)	PM97	PM96	PM95	PM94	PM93	PM92	PM91	PM90				
	PM9n Control of I/O mode (n = 0 to 15)											
	0 Output mode											
	1 Input mode											
spec	cify these	n reading from or writing to bits 8 to 15 of the PM9 register in 8-bit or 1-bit u ify these bits as bits 0 to 7 of the PM9H register. The PM9 register can be read or written in 16-bit units.										
		-					ne PM9 re	gister are	used			
	the PM9H register and as the PM9L register, respectively, this register can be read o written in 8-bit or 1-bit units.											

DataShe

(3) Port 9 mode control register (PMC9)

DataSheet4U.com Caution When using port 9 as the A0 to A15 pins, set the PMC9 register to FFFFH in 16-bit units. www.DataSheet4U.com

After re	set: 0000H	R/W		PMC9 FFF PMC9L FF		PMC9H F	FFFF453H	I	
	15	14	13	12	11	10	9	8	
1C9 (PMC9H ^{Note})	PMC915	PMC914	PMC913	PMC912	PMC911	PMC910	PMC99	PMC98	
	7	6	5	4	з	2	1	0	
(PMC9L)	PMC97	PMC96	PMC95	PMC94		PMC92	PMC91		
· · · · ·									
	PMC915		Spec	ification of	P915 pin o	operation r	node		
	0	I/O port							
	1	A15 outpu	it/INTP6 inp	out					
	PMC914		Spec	ification of	P914 pin	operation n	node		
	0	I/O port							
	1	A14 outpu	t/INTP5 inp	out					
	PMC913		Spec	ification of	P913 pin	operation n	node		
	0	I/O port							
	1	A13 outpu	t/INTP4 inp	out					
	PMC912		Spec	ification of	P912 pin	operation n	node		
	0	I/O port							
	1	A12 outpu	t/SCKA1 I/	C					
	PMC911	Data	aSheet4	ification of	P911 pin	operation n	node		
	0	I/O port							
	1	A11 outpu	t/SOA1 out	put					
	PMC910		Spec	cification of	P910 pin	operation n	node		
	0	I/O port							
	1	A10 outpu	t/SIA1 inpu	t					
	PMC99		Spe	cification o	f P99 pin c	peration m	ode		
	0	I/O port							
	1	A9 output/	SCK01 I/O						
	PMC98		Spe	cification c	of P98 pin c	peration m	ode		
	0	I/O port							
	1	-	/SO01 outp	ut					
	1C9 (PMC9H ^{Note}) (PMC9L)	IC9 (PMC9H ^{Note}) PMC915 7 PMC97 PMC915 0 1 PMC914 0 1 PMC914 0 1 PMC913 0 1 PMC913 0 1 PMC913 0 1 PMC911 0 1 PMC911 0 1 PMC911 0 1 PMC911 0 1 PMC912 0 1 PMC912 0 1 PMC911 0 1 PMC913 0 1 PMC913 0 1 PMC913 0 1 PMC914 0 1 PMC913 0 1 PMC914 0 1 PMC913 0 1 PMC914 0 1 PMC913 0 1 PMC914 0 1 PMC914 0 1 PMC914 0 1 PMC913 0 1 PMC914 0 1 PMC914 0 1 PMC913 0 1 PMC912 0 1 PMC911 0 1 PMC911 0 1 PMC910 0 1 PMC9910 0 1 PMC998 0 1 PMC998 0 1 PMC998 0 1 PMC998 0 1 1 PMC998 0 1 1 PMC988 1 1 PMC988 1 1 PMC988 1 1 PMC988 1 1 PMC988 1 1 PMC988 1 1 PMC988 1 1 PMC988 1 1 PMC988 1 1 PMC988 1 1 PMC988 1 1 PMC988 1 1 PMC988 1 1 PMC988 1 1 1 PMC988 1 1 1 1 PMC988 1 1 1 1 1 1 1 1 1 1 1 1 1	IC9 (PMC9H ^{Note}) PMC915 PMC914 7 6 PMC91 PMC96 PMC915 PMC96 PMC915 0 0 I/O port 1 A15 output PMC914 0 0 I/O port 1 A15 output PMC913 0 0 I/O port 1 A13 output PMC912 0 0 I/O port 1 A12 output PMC911 Data 0 I/O port 1 A11 output PMC910 0 0 I/O port 1 A10 output PMC99 0 0 I/O port 1 A9 output/	15 14 13 PMC915 PMC914 PMC913 7 6 5 PMC91 PMC96 PMC95 PMC915 Spect 0 I/O port 1 A15 output/INTP6 inp PMC914 Spect 0 I/O port 1 A15 output/INTP6 inp PMC913 Spect 0 I/O port 1 A14 output/INTP5 inp PMC913 Spect 0 I/O port 1 A13 output/INTP4 inp PMC912 Spect 0 I/O port 1 A12 output/SCKA1 I/A PMC910 Spect 0 I/O port 1 A11 output/SOA1 out PMC910 Spect 0 I/O port 1 A10 output/SIA1 input PMC99 Spect 0 I/O port 1 A9 output/SCK01 I/O PMC98 Spect	15 14 13 12 PMC915 PMC914 PMC913 PMC912 7 6 5 4 PMC91 PMC96 PMC95 PMC94 PMC915 Specification of 0 1/O port 1 A15 output/INTP6 input PMC914 Specification of 0 1/O port 1 A15 output/INTP6 input PMC914 Specification of 0 1/O port 1 A14 output/INTP5 input PMC913 Specification of 0 1/O port 1 A13 output/INTP4 input PMC912 Specification of 0 1/O port 1 A12 output/SCKA1 1/O PMC910 Specification of 0 1/O port 1 A11 output/SOA1 output PMC910 Specification of 0 1/O port 1 A10 output/SCKA1 1/O PMC99 Specification of 0 1/O port 1 A10 output/SCK01 1/O PMC99 Specification of 0 1/O port 1 A9 output/SCK01 1/O PMC98 Specification of <th>15 14 13 12 11 PMC915 PMC914 PMC913 PMC912 PMC911 7 6 5 4 3 (PMC9L) PMC97 PMC96 PMC95 PMC94 PMC93 PMC915 Specification of P915 pin of 0 1/O port 1 A15 output/INTP6 input PMC914 Specification of P914 pin of 0 1/O port 1 A14 output/INTP5 input PMC913 Specification of P913 pin of 0 1/O port 1 A13 output/INTP4 input PMC912 Specification of P912 pin of 0 1/O port 1 A12 output/SCKA1 I/O PMC911 Data Sheedard of P912 pin of 0 1/O port 1 A11 output/SCKA1 I/O PMC910 Specification of P911 pin of 0 1/O port 1 A11 output/SOA1 output PMC910 Specification of P910 pin of 0 1/O port 1 A10 output/SIA1 input PMC99 Specification of P99 pin of 0 1/O port 1 A9 output/SCK01 I/O PMC98 Specification of P98 pin of 1 A9 outp</th> <th>15 14 13 12 11 10 PMC915 PMC914 PMC913 PMC912 PMC911 PMC910 7 6 5 4 3 2 PMC91 PMC916 PMC93 PMC93 PMC92 PMC915 Specification of P915 pin operation r 0 1/0 port 1 A15 output/INTP6 input PMC913 PMC914 perification of P914 pin operation r 0 1/0 port 1 A14 output/INTP5 input PMC913 Specification of P913 pin operation r 0 1/0 port 1 A13 output/INTP4 input PMC912 Specification of P912 pin operation r 0 1/0 port 1 A12 output/SCKA1 1/0 T T PMC911 Data Sheetat 1/0 T T T T 1 A11 output/SOA1 output PMC910 Specification of P910 pin operation r T 0 1/0 port 1 A10 output/SOA1 output T T PMC910 Specification of P910 pin operation r <t< th=""><th>15 14 13 12 11 10 9 MC9 (PMC9H*Note) PMC915 PMC914 PMC913 PMC912 PMC911 PMC910 PMC909 7 6 5 4 3 2 1 (PMC9L) PMC97 PMC96 PMC95 PMC94 PMC93 PMC92 PMC91 PMC915 Specification of P915 pin operation mode 0 I/O port 1 A15 output/INTP6 input PMC914 Specification of P914 pin operation mode 0 I/O port 1 A14 output/INTP5 input PMC913 Specification of P913 pin operation mode 0 I/O port 1 A13 output/INTP4 input PMC912 Specification of P912 pin operation mode 0 I/O port 1 A12 output/SCKA1 I/O PMC911 Data Steperification of P911 pin operation mode 0 I/O port 1 A11 output/SOA1 output PMC910 Specification of P910 pin operation mode 0 I/O port 1 A10 output/SCKA1 I/O PMC910 Specification of P910 pin oper</th><th>IC9 (PMC9H^{Nore)} PMC915 PMC914 PMC912 PMC911 PMC910 PMC90 PMC98 7 6 5 4 3 2 1 0 (PMC9L) PMC97 PMC96 PMC95 PMC94 PMC93 PMC92 PMC91 PMC90 PMC915 Specification of P915 pin operation mode 0 1/O port 1 A15 output/INTP6 input PMC914 Specification of P914 pin operation mode 0 1/O port 1 A14 output/INTP6 input PMC913 Specification of P913 pin operation mode 0 1/O port 1 A13 output/INTP6 input PMC912 Specification of P913 pin operation mode 0 1/O port 1 A13 output/INTP6 input PMC912 Specification of P912 pin operation mode 0 1/O port 1 A13 output/INTP6 input PMC912 Specification of P912 pin operation mode 0 1/O port 1 A11 output/SCKA1 1/O PMC911 DataSher44 from 1 A11 output/SCKA1 1/O 1 A11 output/SCKA1 1/O 1</th></t<></th>	15 14 13 12 11 PMC915 PMC914 PMC913 PMC912 PMC911 7 6 5 4 3 (PMC9L) PMC97 PMC96 PMC95 PMC94 PMC93 PMC915 Specification of P915 pin of 0 1/O port 1 A15 output/INTP6 input PMC914 Specification of P914 pin of 0 1/O port 1 A14 output/INTP5 input PMC913 Specification of P913 pin of 0 1/O port 1 A13 output/INTP4 input PMC912 Specification of P912 pin of 0 1/O port 1 A12 output/SCKA1 I/O PMC911 Data Sheedard of P912 pin of 0 1/O port 1 A11 output/SCKA1 I/O PMC910 Specification of P911 pin of 0 1/O port 1 A11 output/SOA1 output PMC910 Specification of P910 pin of 0 1/O port 1 A10 output/SIA1 input PMC99 Specification of P99 pin of 0 1/O port 1 A9 output/SCK01 I/O PMC98 Specification of P98 pin of 1 A9 outp	15 14 13 12 11 10 PMC915 PMC914 PMC913 PMC912 PMC911 PMC910 7 6 5 4 3 2 PMC91 PMC916 PMC93 PMC93 PMC92 PMC915 Specification of P915 pin operation r 0 1/0 port 1 A15 output/INTP6 input PMC913 PMC914 perification of P914 pin operation r 0 1/0 port 1 A14 output/INTP5 input PMC913 Specification of P913 pin operation r 0 1/0 port 1 A13 output/INTP4 input PMC912 Specification of P912 pin operation r 0 1/0 port 1 A12 output/SCKA1 1/0 T T PMC911 Data Sheetat 1/0 T T T T 1 A11 output/SOA1 output PMC910 Specification of P910 pin operation r T 0 1/0 port 1 A10 output/SOA1 output T T PMC910 Specification of P910 pin operation r <t< th=""><th>15 14 13 12 11 10 9 MC9 (PMC9H*Note) PMC915 PMC914 PMC913 PMC912 PMC911 PMC910 PMC909 7 6 5 4 3 2 1 (PMC9L) PMC97 PMC96 PMC95 PMC94 PMC93 PMC92 PMC91 PMC915 Specification of P915 pin operation mode 0 I/O port 1 A15 output/INTP6 input PMC914 Specification of P914 pin operation mode 0 I/O port 1 A14 output/INTP5 input PMC913 Specification of P913 pin operation mode 0 I/O port 1 A13 output/INTP4 input PMC912 Specification of P912 pin operation mode 0 I/O port 1 A12 output/SCKA1 I/O PMC911 Data Steperification of P911 pin operation mode 0 I/O port 1 A11 output/SOA1 output PMC910 Specification of P910 pin operation mode 0 I/O port 1 A10 output/SCKA1 I/O PMC910 Specification of P910 pin oper</th><th>IC9 (PMC9H^{Nore)} PMC915 PMC914 PMC912 PMC911 PMC910 PMC90 PMC98 7 6 5 4 3 2 1 0 (PMC9L) PMC97 PMC96 PMC95 PMC94 PMC93 PMC92 PMC91 PMC90 PMC915 Specification of P915 pin operation mode 0 1/O port 1 A15 output/INTP6 input PMC914 Specification of P914 pin operation mode 0 1/O port 1 A14 output/INTP6 input PMC913 Specification of P913 pin operation mode 0 1/O port 1 A13 output/INTP6 input PMC912 Specification of P913 pin operation mode 0 1/O port 1 A13 output/INTP6 input PMC912 Specification of P912 pin operation mode 0 1/O port 1 A13 output/INTP6 input PMC912 Specification of P912 pin operation mode 0 1/O port 1 A11 output/SCKA1 1/O PMC911 DataSher44 from 1 A11 output/SCKA1 1/O 1 A11 output/SCKA1 1/O 1</th></t<>	15 14 13 12 11 10 9 MC9 (PMC9H*Note) PMC915 PMC914 PMC913 PMC912 PMC911 PMC910 PMC909 7 6 5 4 3 2 1 (PMC9L) PMC97 PMC96 PMC95 PMC94 PMC93 PMC92 PMC91 PMC915 Specification of P915 pin operation mode 0 I/O port 1 A15 output/INTP6 input PMC914 Specification of P914 pin operation mode 0 I/O port 1 A14 output/INTP5 input PMC913 Specification of P913 pin operation mode 0 I/O port 1 A13 output/INTP4 input PMC912 Specification of P912 pin operation mode 0 I/O port 1 A12 output/SCKA1 I/O PMC911 Data Steperification of P911 pin operation mode 0 I/O port 1 A11 output/SOA1 output PMC910 Specification of P910 pin operation mode 0 I/O port 1 A10 output/SCKA1 I/O PMC910 Specification of P910 pin oper	IC9 (PMC9H ^{Nore)} PMC915 PMC914 PMC912 PMC911 PMC910 PMC90 PMC98 7 6 5 4 3 2 1 0 (PMC9L) PMC97 PMC96 PMC95 PMC94 PMC93 PMC92 PMC91 PMC90 PMC915 Specification of P915 pin operation mode 0 1/O port 1 A15 output/INTP6 input PMC914 Specification of P914 pin operation mode 0 1/O port 1 A14 output/INTP6 input PMC913 Specification of P913 pin operation mode 0 1/O port 1 A13 output/INTP6 input PMC912 Specification of P913 pin operation mode 0 1/O port 1 A13 output/INTP6 input PMC912 Specification of P912 pin operation mode 0 1/O port 1 A13 output/INTP6 input PMC912 Specification of P912 pin operation mode 0 1/O port 1 A11 output/SCKA1 1/O PMC911 DataSher44 from 1 A11 output/SCKA1 1/O 1 A11 output/SCKA1 1/O 1

PMC97	Specification of P97 pin operation mode	
0	I/O port	
1	A7 output/SI01 input	
PMC96	Specification of P96 pin operation mode	
0	I/O port/TI51 input	
1	A6 output/TO51 output	
PMC95	Specification of P95 pin operation mode	
0	I/O port	
1	A5 output/TI031 input	
PMC94	Specification of P94 pin operation mode	
0	I/O port/TI030 input	
1	A4 output/TO03 output	
PMC93	Specification of P93 pin operation mode	
0	I/O port	
1	A3 output/TI021 input	
PMC92	Specification of P92 pin operation mode	
0	I/O port/TI020 input	
1	A2 output/TO02 output	DataSh
PMC91	Specification of P91 pin operation mode	
0	I/O port/KR7 input	
1	A1 output/RXD1 input	
PMC90	Specification of P90 pin operation mode	
0	I/O port/KR6 input	
1	A0 output/TXD1 output	

(4) Port 9 function register H (PF9H)

After res	et: 00H	R/W	Address: Fl	FFFFC73H					
	7	6	5	4	3	2	1	0	
PF9H	0	0	0	PF912	PF911	0	PF99	PF98	
	PF9n	Co	ntrol of norr	nal output/N	N-ch open-o	drain outpu	ut (n = 0, 1,	3, 4)	
	0	Normal o	utput						
	1	N-ch ope	n-drain out	put					
Cautic	func Be s	tion pins sure to s	, set in the	e followin	g sequer	ice.	•	•	ut alternate open-drain
	outp P9n		PFC9n bi	it = 0/1 →	PF9n bit	= 1 → PI	MC9n bit =	= 1	

(5) Port 9 function control register (PFC9)

Caution When using port 9 as the A0 to A15 pins, set the PFC9 register to 0000H in 16-bit units.

et4U.com

DataSheet4U.com

	After re	set: 0000H	R/W	Address:	PFC9 FFF PFC9L FF		PFC9H FF	FFF473H			
		15	14	13	12	11	10	9	8		
	PFC9 (PFC9H ^{Note})	PFC915	PFC914	PFC913	PFC912	PFC911	PFC910	PFC99	PFC98		
		7	6	5	4	3	2	1	0		
	(PFC9L)	PFC97	PFC96	PFC95	PFC94	PFC93	PFC92	PFC91	PFC90		
		PFC915		Specific	ation of alte	ernate-fund	tion pin of	P915 pin			
		0	A15 outpu				•				
		1	INTP6 inp	ut							
		PFC914		Specific	ation of alte	ernate-fund	tion pin of	P914 pin			
		0	A14 outpu	-				i o i i più			
		1	INTP5 inp								
		PFC913		Specific	ation of alte	ernate-fund	tion pin of	P913 nin			
		0	A13 outpu								
		1	INTP4 inp								
		PFC912		Specific	ation of alt	arnata-fund	tion pin of	P012 nin			
com		0	A12 outpu	-				1 912 pill			Da
		1	SCKA1 I/C		Sheet4U.	com					
				Dutuc			tion nin of				
		PFC911 0	A11 outpu	-	ation of alte	ernate-tunc	tion pin of	P911 pin			
		1	SOA1 out								
								D010 :			
		PFC910 0	A10 output		ation of alte	ernate-fund	tion pin of	P910 pin			
		1	A10 outpu SIA1 input								
		PFC99	A.Q. and and		cation of all	ernate-fun	ction pin of	P99 pin			
		0	A9 output								
			SCRUTIK								
		PFC98		Specific	cation of alt	ernate-fun	ction pin of	P98 pin			
		0	A8 output								
		1	SO01 outp	out							
	Note Whe spec	n reading ify these b						jister in 8	-bit or 1-bit	: units,	
	Remark	The PFC9	register ca	an be read	d or writte	n in 16-bi	t units.				
								PFC9 re	gister are us	sed as	
		he PFC9H ead or writ				register,	respective	ely, these	registers o	can be	

DataSheet4U.com

	PFC97	Specification of alternate-function pin of P97 pin	
	0	A7 output	
	1	SI01 input	
	PFC96	Specification of alternate-function pin of P96 pin	
	0	A6 output	
	1	TO51 output	
	PFC95	Specification of alternate-function pin of P95 pin	7 I
	0	A5 output	
	1	TI031 input	
	PFC94	Specification of alternate-function pin of P94 pin	
	0	A4 output	
	1	TO03 output	
	PFC93	Specification of alternate-function pin of P93 pin	
	0	A3 output	
	1	TI021 input	
	PFC92	Specification of alternate-function pin of P92 pin	
J.com	0	A2 output	Data
	1	TO02 output	Data
	PFC91	DataSheet4U.com Specification of alternate-function pin of P91 pin	
	0	A1 output	
	1	RXD1 input	
	PFC90	Specification of alternate-function pin of P90 pin	
	0	A0 output	
	1	TXD1 output	

(2/2)

(6) Pull-up resistor option register 9 (PU9)

				PU9L FFF	FFC52H, F	PU9H FFFF	FC53H	
	15	14	13	12	11	10	9	8
PU9 (PU9H ^{Note})	PU915	PU914	PU913	PU912	PU911	PU910	PU99	PU98
	7	6	5	4	3	2	1	0
(PU9L)	PU97	PU96	PU95	PU94	PU93	PU92	PU91	PU90
	PU9n	С	ontrol of or	n-chip pull-ı	up resistor	connection	(n = 0 to 1	5)
	0	Not conne	ected					
	1	Connecte	d					
	en reading	-	-				gister in 8	8-bit or 1-bit un

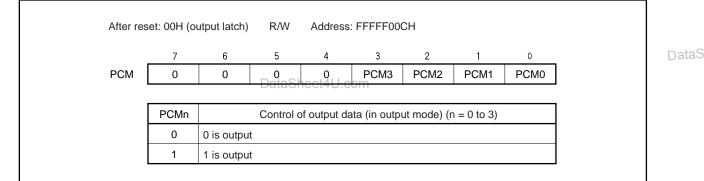
DataShee

DataSheet4U.com

DataSheet4U.com

4.3.8 Port CM

Port CM is a 4-bit I/O port for which I/O settings can be controlled in 1-bit units. Port CM includes the following alternate functions.


Table 4-11. Alternate-Function Pins of Port CM

Pin	No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
GC	GF						
61	63	PCM0	WAIT	Input	Yes	-	D1-UH
62	64	PCM1	CLKOUT	Output			D0-U
63	65	PCM2	HLDAK	Output			D0-U
64	66	PCM3	HLDRQ	Input			D1-UH

Note Software pull-up function

GF: 100-pin plastic QFP (14 × 20)

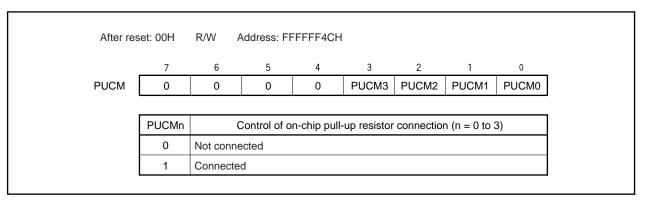
(1) Port CM register (PCM)

(2) Port CM mode register (PMCM)

After res	et: FFH	R/W	Address: F	FFFF02CH						
	7	6	5	4	3	2	1	0		
PMCM	1	1	1	1	PMCM3	PMCM2	PMCM1	PMCM0		
	PMCMn		Control of I/O mode (n = 0 to 3)							
	0	Output m	Output mode							
	1	Input mo	nput mode							

et4U.com

121


Remark GC: 100-pin plastic LQFP (fine pitch) (14 × 14)

After re:	set: 00H	R/W	Address: FF	FFF04CH				
	7	6	5	4	3	2	1	0
PMCCM	0	0	0	0	PMCCM3	PMCCM2	PMCCM1	PMCCM0
	РМССМЗ		Spec	ification of	PCM3 pin	operation r	node	
	0	I/O port						
	1	HLDRQ i	nput					
	PMCCM2		Spec	cification of	PCM2 pin	operation r	node	
	0	I/O port						
	1	HLDAK o	utput					
	PMCCM1		Spec	cification of	PCM1 pin	operation r	node	
	0	I/O port						
	1	CLKOUT	output					
	PMCCM0		Spec	cification of	PCM0 pin	operation r	node	
	0	I/O port						
	1	WAIT inp	ut					

(3) Port CM mode control register (PMCCM)

et4U.com

(4) Pull-up resistor option register CM (PUCM) DataSheet4U.com

4.3.9 Port CS

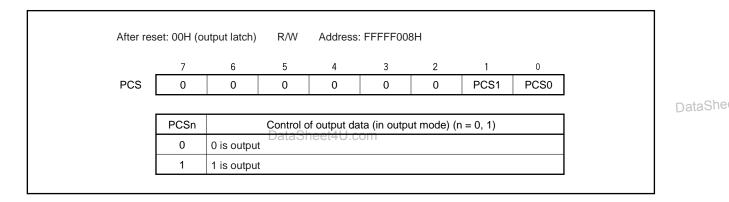

Port CS is a 2-bit I/O port for which I/O settings can be controlled in 1-bit units. Port CS includes the following alternate functions.

Table 4-12. Alternate-Function Pins of Port CS

Pin	No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
GC	GF						
59	61	PCS0	CSO	Output	Yes	-	D0-UZ
60	62	PCS1	CS1	Output			D0-UZ

Note Software pull-up function

(1) Port CS register (PCS)

(2) Port CS mode register (PMCS)

After res	set: FFH	R/W	Address: Fl	FFFF028H						
	7	6	5	4	3	2	1	0		
PMCS	0	0	0	0	0	0	PMCS1	PMCS0		
	PMCSn			Control of I/0) mode (n = 0, 1)				
	0	Output r	Output mode							
	1	Input mo	nput mode							

et4U.com

Remark GC: 100-pin plastic LQFP (fine pitch) (14×14) GF: 100-pin plastic QFP (14×20)

(3) Port CS mode control register (PMCCS)

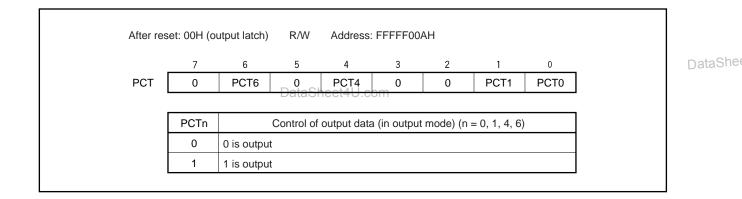
7 6 5 4 3 2 1 0 PMCCS 0 0 0 0 0 0 PMCCS1 PMCCS0 PMCCSn Specification of PCSn pin operation mode (n = 0, 1) 0 I/O port 1 CSn output	After res	et: 00H	R/W	Address: Fl	FFF048H				
PMCCSn Specification of PCSn pin operation mode (n = 0, 1) 0 I/O port		7	6	5	4	3	2	1	0
0 I/O port	PMCCS	0	0	0	0	0	0	PMCCS1	PMCCS0
0 I/O port									
		PMCCSn		Specificat	ion of PCSn	pin opera	ation mod	e (n = 0, 1)	
1 CSn output		0	I/O port						
		1	CSn outp	out					

(4) Pull-up resistor option register CS (PUCS)

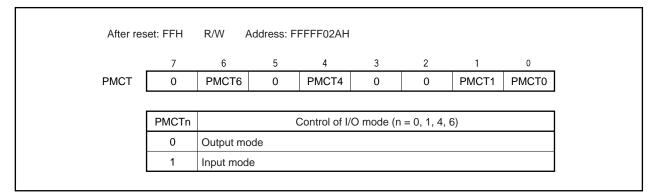
	After reset	:00H F	R/W Add	dress: FFF	FFF48H				
		7	6	5	4	3	2	1	0
	PUCS	0	0	0	0	0	0	PUCS1	PUCS0
		PUCSn	(Control of c	on-chip pull	-up resistor	connecti	on (n = 0, 1)	
		0	Not conne	ected					
m		1	Connecte	d					

4.3.10 Port CT

Port CT is a 4-bit I/O port for which I/O settings can be controlled in 1-bit units. Port CT includes the following alternate functions.


Table 4-13. Alternate-Function Pins of Port CT

Pin	No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
GC	GF						
65	67	PCT0	WR0	Output	Yes	-	D0-UZ
66	68	PCT1	WR1	Output			D0-UZ
67	69	PCT4	RD	Output			D0-UZ
68	70	PCT6	ASTB	Output			D0-UZ

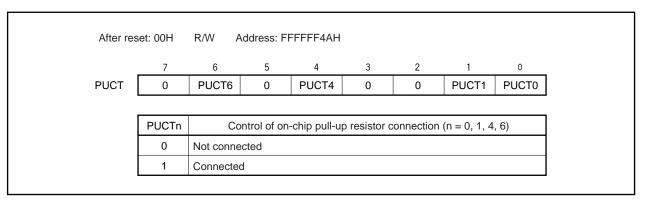

Note Software pull-up function

Remark GC: 100-pin plastic LQFP (fine pitch) (14×14) GF: 100-pin plastic QFP (14×20)

(1) Port CT register (PCT)

(2) Port CT mode register (PMCT)

DataSheet4U.com


et4U.com

After re	set: 00H	R/W Ad	dress: F	FFFF04AH					
	7	6	5	4	3	2	1	0	
PMCCT	0	PMCCT6	0	PMCCT4	0	0	PMCCT1	PMCCT0	
	PMCCT6		Sp	ecification of	PCT6 pin	operation	mode		
	0	I/O port							
	1	ASTB outpu	ıt						
	PMCCT4		Specification of PCT4 pin operation mode						
	0	I/O port							
	1	RD output							
	PMCCT1		Sp	ecification of	PCT1 pin	operation	mode		
	0	I/O port							
	1	WR1 output							
	PMCCT0		Sp	ecification of	PCT0 pir	operation	n mode		
	0	I/O port							
	1	WR0 output							

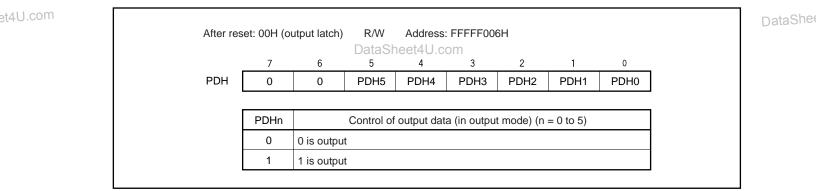
(3) Port CT mode control register (PMCCT)

et4U.com

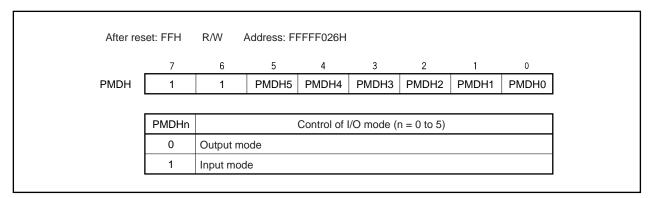
(4) Pull-up resistor option register CT (PUCT)_{DataSheet4U.com}

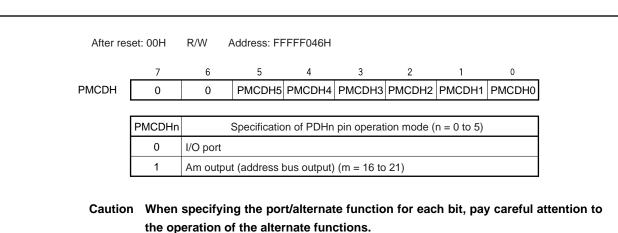
4.3.11 Port DH

Port DH is a 6-bit I/O port for which I/O settings can be controlled in 1-bit units. Port DH includes the following alternate functions.

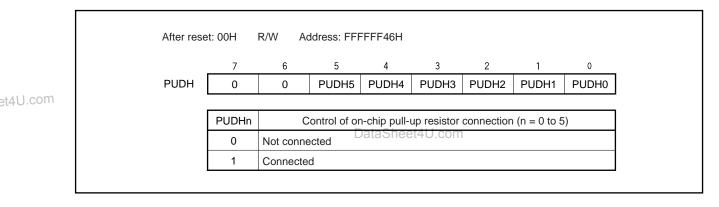

Pin	Pin No. Pin Name		Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
GC	GF						
87	89	PDH0	A16	Output	Yes	-	D0-UZ
88	90	PDH1	A17	Output			D0-UZ
89	91	PDH2	A18	Output			D0-UZ
90	92	PDH3	A19	Output			D0-UZ
91	93	PDH4	A20	Output			D0-UZ
92	94	PDH5	A21	Output			D0-UZ

Note Software pull-up function


Remark GC: 100-pin plastic LQFP (fine pitch) (14 × 14)


GF: 100-pin plastic QFP (14 × 20)

(1) Port DH register (PDH)


(2) Port DH mode register (PMDH)

(3) Port DH mode control register (PMCDH)

(4) Pull-up resistor option register DH (PUDH)

4.3.12 Port DL

Port DL is a 16-bit I/O port for which I/O settings can be controlled in 1-bit units. Port DL includes the following alternate functions.

Pin	No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
GC	GF						
71	73	PDL0	AD0	I/O	Yes	_	D2-ULZ
72	74	PDL1	AD1	I/O			D2-ULZ
73	75	PDL2	AD2	I/O			D2-ULZ
74	76	PDL3	AD3	I/O			D2-ULZ
75	77	PDL4	AD4	I/O			D2-ULZ
76	78	PDL5	AD5	I/O			D2-ULZ
77	79	PDL6	AD6	I/O			D2-ULZ
78	80	PDL7	AD7	I/O			D2-ULZ
79	81	PDL8	AD8	I/O			D2-ULZ
80	82	PDL9	AD9	I/O			D2-ULZ
81	83	PDL10	AD10	I/O			D2-ULZ
82	84	PDL11	AD11	I/O			D2-ULZ
83	85	PDL12	AD12	I/O			D2-ULZ
84	86	PDL13	AD13	I/O			D2-ULZ
85	87	PDL14	AD14 DataSh	¶∕ot4U.co	n		D2-ULZ
86	88	PDL15	AD15	I/O			D2-ULZ

Table 4-15. Alternate-Function Pins of Port DL

DataShe

Note Software pull-up function

Remark GC: 100-pin plastic LQFP (fine pitch) (14×14)

GF: 100-pin plastic QFP (14 \times 20)

et4U.com

(1) Port DL register (PDL)

PDL (PDLH ^{Note}) PDL15 PDL14 PDL13 PDL12 PDL11 PDL10 PDL9	-	PDL15		-	12	11	10	9	8
(PDLL)PDL7PDL6PDL5PDL4PDL3PDL2PDL1PDLnControl of output data (in output mode) (n = 0 to 15)00 is output11 is output11 is outputNoteWhen reading from or writing to bits 8 to 15 of the PDL register in 8-b specify these bits as bits 0 to 7 of the PDLH register.RemarkThe PDL register can be read or written in 16-bit units. However, when the higher 8 bits and the lower 8 bits of the PDL regist the PDLH register and as the PDLL register, respectively, these regist	(PDLL)	-		PDL13					PDL8
(PDLL)PDL7PDL6PDL5PDL4PDL3PDL2PDL1PDLnControl of output data (in output mode) (n = 0 to 15)00 is output11 is output11 is outputNoteWhen reading from or writing to bits 8 to 15 of the PDL register in 8-b specify these bits as bits 0 to 7 of the PDLH register.RemarkThe PDL register can be read or written in 16-bit units. However, when the higher 8 bits and the lower 8 bits of the PDL regist the PDLH register and as the PDLL register, respectively, these regist	(PDLL)		6	Б	Δ	3	2	1	0
PDLn Control of output data (in output mode) (n = 0 to 15) 0 0 is output 1 1 is output Note When reading from or writing to bits 8 to 15 of the PDL register in 8-b specify these bits as bits 0 to 7 of the PDLH register. Remark The PDL register can be read or written in 16-bit units. However, when the higher 8 bits and the lower 8 bits of the PDL register the PDLH register and as the PDLL register, respectively, these register	` ' L								PDL0
0 0 is output 1 1 is output Note When reading from or writing to bits 8 to 15 of the PDL register in 8-b specify these bits as bits 0 to 7 of the PDLH register. Remark The PDL register can be read or written in 16-bit units. However, when the higher 8 bits and the lower 8 bits of the PDL register the PDLH register and as the PDLL register, respectively, these register	_	I							
1 1 is output Note When reading from or writing to bits 8 to 15 of the PDL register in 8-b specify these bits as bits 0 to 7 of the PDLH register. Remark The PDL register can be read or written in 16-bit units. However, when the higher 8 bits and the lower 8 bits of the PDL register the PDLH register and as the PDLL register, respectively, these register		PDLn		Control of	output data	a (in output	mode) (n =	0 to 15)	
 Note When reading from or writing to bits 8 to 15 of the PDL register in 8-b specify these bits as bits 0 to 7 of the PDLH register. Remark The PDL register can be read or written in 16-bit units. However, when the higher 8 bits and the lower 8 bits of the PDL register the PDLH register and as the PDLL register, respectively, these regist 	_	0 () is output						
specify these bits as bits 0 to 7 of the PDLH register. Remark The PDL register can be read or written in 16-bit units. However, when the higher 8 bits and the lower 8 bits of the PDL register the PDLH register and as the PDLL register, respectively, these regist	L	1	1 is output						
(2) Port DL mode register (PMDL) After reset: FFFFH R/W Address: PMDL FFFFF024H,					: PMDL FF	FFF024H,			
PMDLL FFFF024H, PMDLH FFFF025H					PMDLL F	FFFF024H	I, PMDLH F	FFFF025	H
		15	14	13	12	11	10	9	8
	PMDL (PMDLH)	PMDL15	PMDL14	PIVIDL'13	PMDL12	PNIDL11	PIVIDL'10	PMDL9	PMDL8
15 14 13 12 11 10 9 PMDL (PMDLH ^{Note}) PMDL15 PMDL14 PMDL13 PMDL12 PMDL11 PMDL10 PMDL9		7	6	5	4	3	2	1	0
PMDL (PMDLH ^{Note}) PMDL15 PMDL14 PMDL13 PMDL12 PMDL11 PMDL10 PMDL9 7 6 5 4 3 2 1	(PMDLL)	PMDL7	PMDL6	PMDL5	PMDL4	PMDL3	PMDL2	PMDL1	PMDL0
PMDL (PMDLH ^{Note}) PMDL15 PMDL14 PMDL13 PMDL12 PMDL11 PMDL10 PMDL9					Control of	I/O mode (n = 0 to 15)	
PMDL (PMDLHNote)PMDL15PMDL14PMDL13PMDL12PMDL11PMDL10PMDL97654321(PMDL1)PMDL7PMDL6PMDL5PMDL4PMDL3PMDL2PMDL1		PMDLn						,	
PMDL (PMDLH ^{Note}) PMDL15 PMDL14 PMDL13 PMDL12 PMDL11 PMDL10 PMDL9 7 6 5 4 3 2 1			Output m	ode					

DataSheet4U.com

DataShe

be read or written in 8-bit or 1-bit units.

as the PMDLH register and as the PMDLL register, respectively, these registers can

(3) Port DL mode control register (PMCDL)

After re	set: 0000H	R/W Address: PMCDL FFFF044H, PMCDLL FFFF044H, PMCDLH FFFF045H									
	15	14	13	12	11	10	9	8			
PMCDL (PMCDLH ^{Note})	PMCDL15	PMCDL14	PMCDL13	PMCDL12	PMCDL11	PMCDL10	PMCDL9	PMCDL8			
	7	6	5	4	3	2	1	0			
(PMCDLL)	PMCDL7	PMCDL6	PMCDL5	PMCDL4	PMCDL3	PMCDL2	PMCDL1	PMCDL0			
	PMCDLn	PMCDLn Specification of PDLn pin operation mode (n = 0 to 15)									
	0	I/O port									
	1	1 ADn I/O (address/data bus I/O)									
specify Caution Wh	specify these bits as bits 0 to 7 of the PMCDLH register.										
Ho as	Remark The PMCDL register can be read or written in 16-bit units. However, when the higher 8 bits and the lower 8 bits of the PMCDL register are us as the PMCDLH register and as the PMCDLL register, respectively, these regist can be read or written in 8-bit or 1-bit units. DataSheet4U.com										

(4) Pull-up resistor option register DL (PUDL)

After res	et: 0000H	R/W	R/W Address: PUDL FFFFFF44H, PUDLL FFFFFF44H, PUDLH FFFFFF45H							
	15	14	13	12	11	10	9	8		
PUDL (PUDLH ^{Note})	PUDL15	PUDL14	PUDL13	PUDL12	PUDL11	PUDL10	PUDL9	PUDL8]	
	7	6	5	4	3	2	1	0	_	
(PUDLL)	PUDL7	PUDL6	PUDL5	PUDL4	PUDL3	PUDL2	PUDL1	PUDL0		
	PUDLn 0									
	1	Connected								
	0		0	oits 8 to 1 the PUDL		0	ister in 8-	bit or 1-b	it units	
H	owever, v s the PUE	vhen the l DLH regis	higher 8 k	d or writte bits and th s the PUE bit units.	ne lower 8	bits of th		0		

DataSheet4U.com

et4U.com

Г

4.4 Block Diagrams

Figure 4-2. Block Diagram of Type A-A

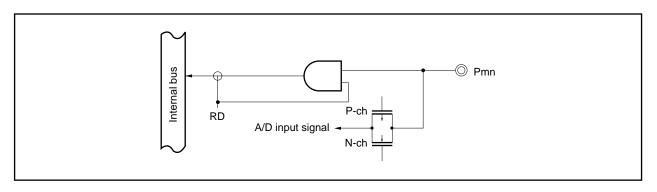
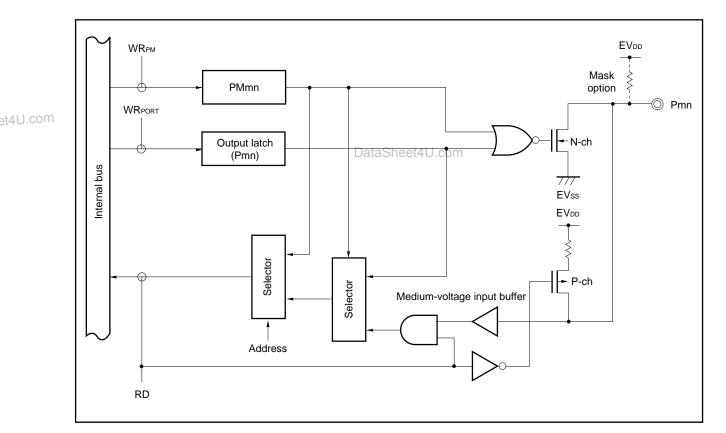



Figure 4-3. Block Diagram of Type C-NMU

DataShe

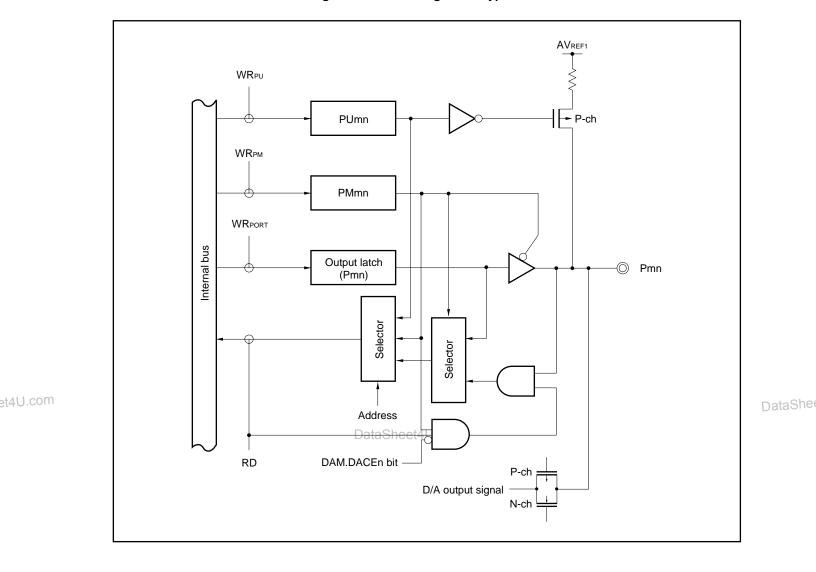
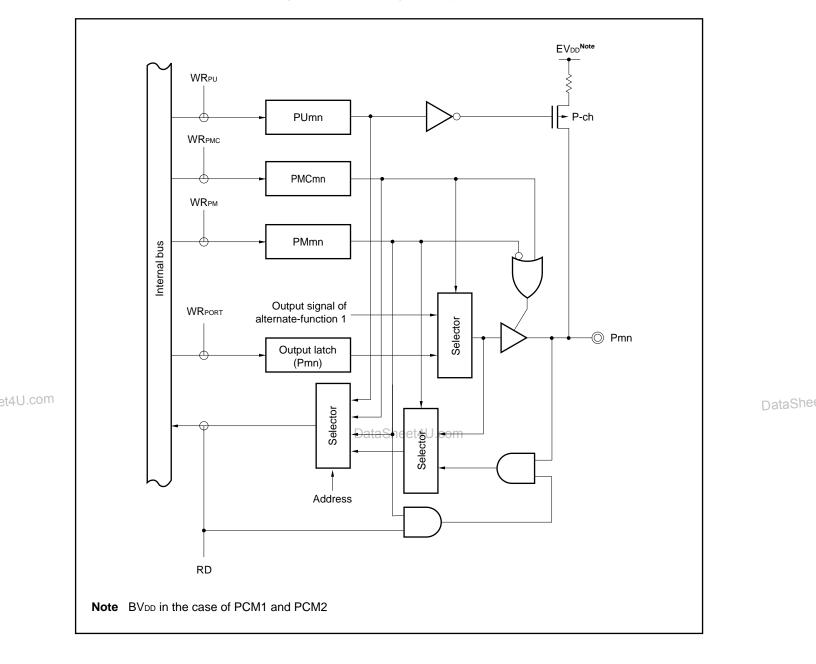



Figure 4-4. Block Diagram of Type C-UA

DataSheet4U.com

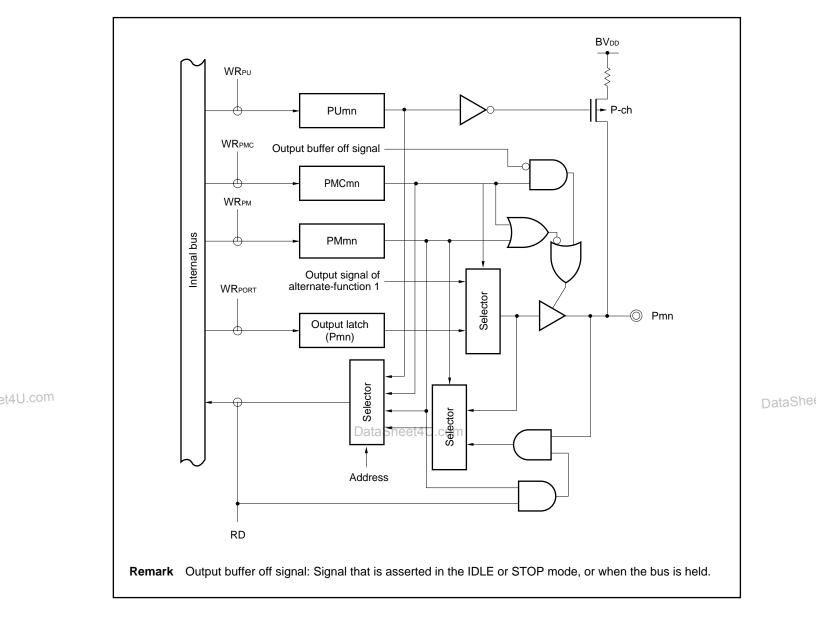


Figure 4-6. Block Diagram of Type D0-UZ

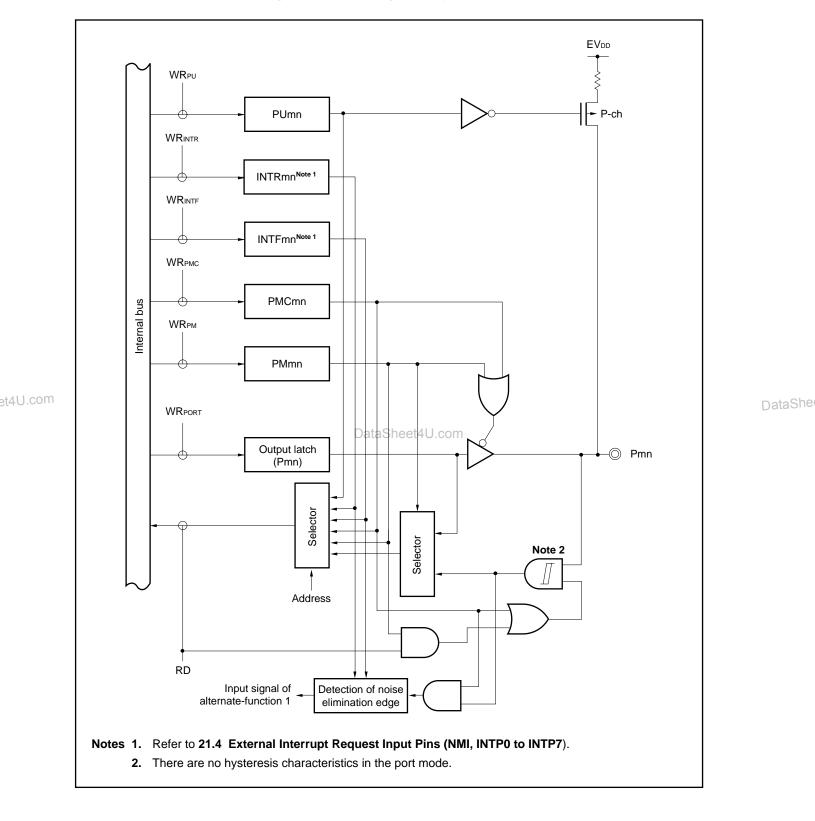


Figure 4-7. Block Diagram of Type D1-SUIL

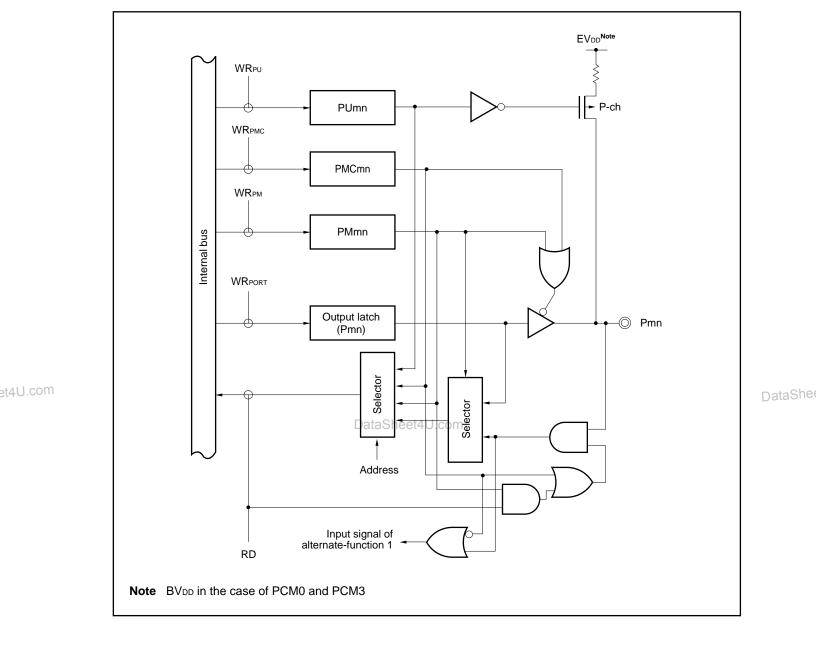
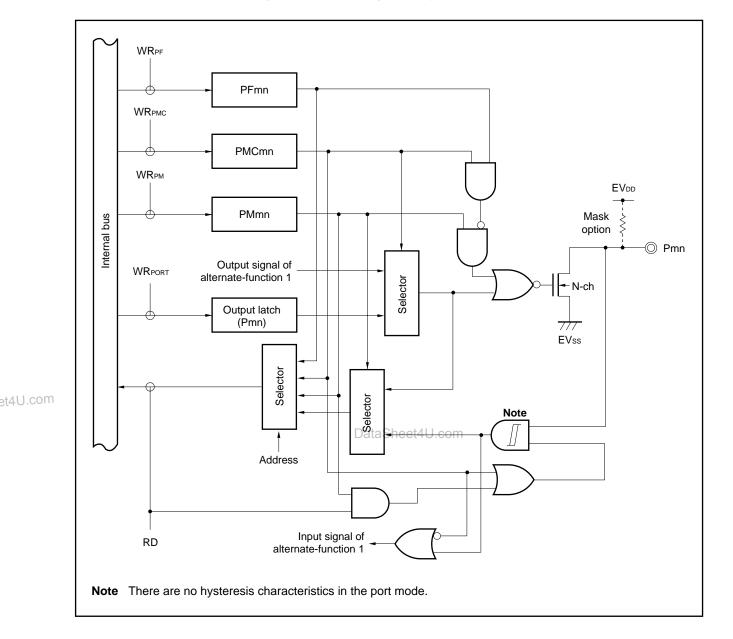



Figure 4-8. Block Diagram of Type D1-UH

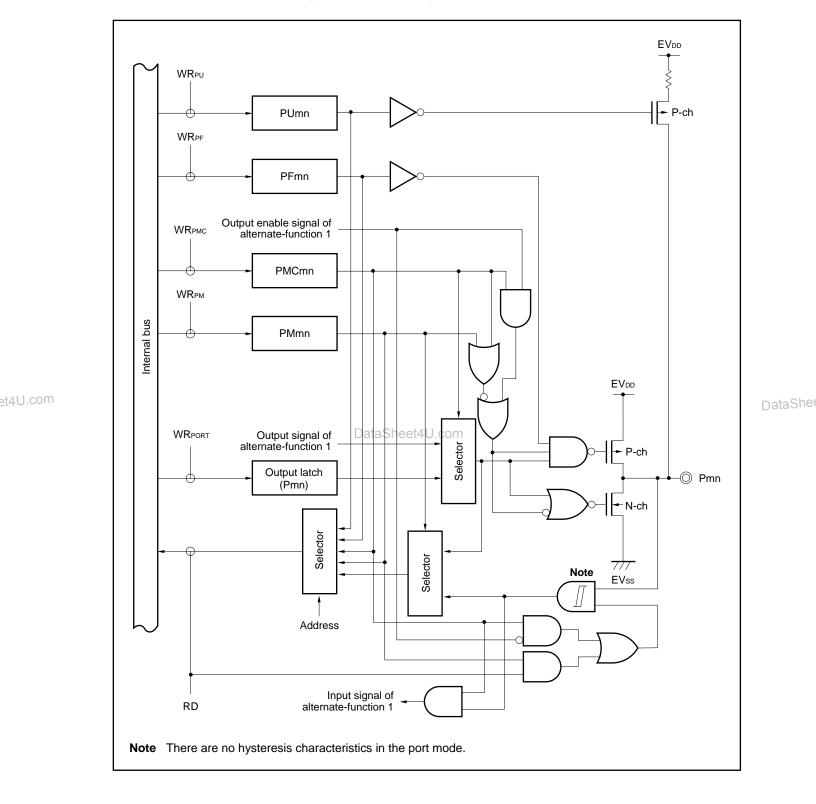


Figure 4-10. Block Diagram of Type D2-SUFL

DataSheet4U.com

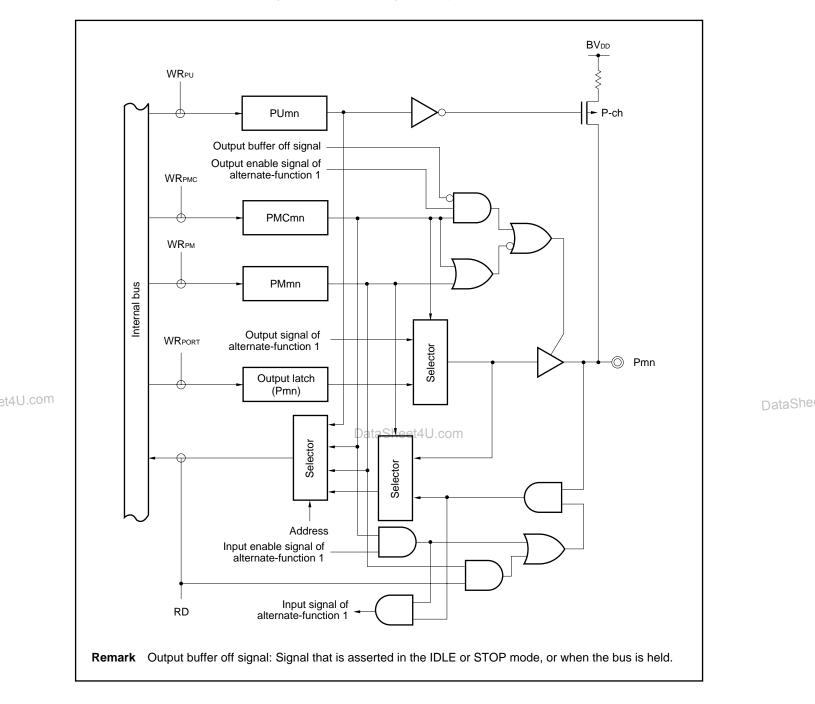


Figure 4-11. Block Diagram of Type D2-ULZ

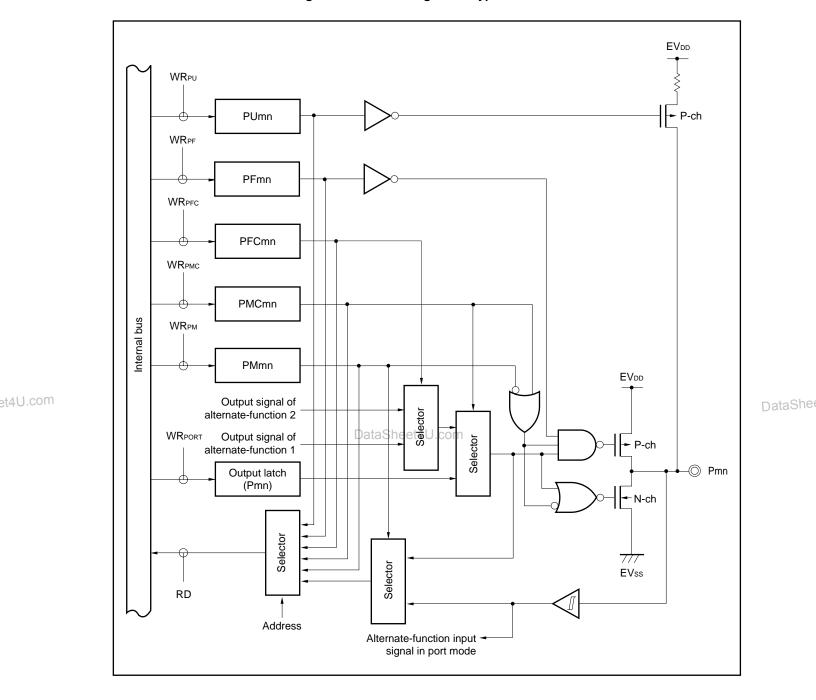
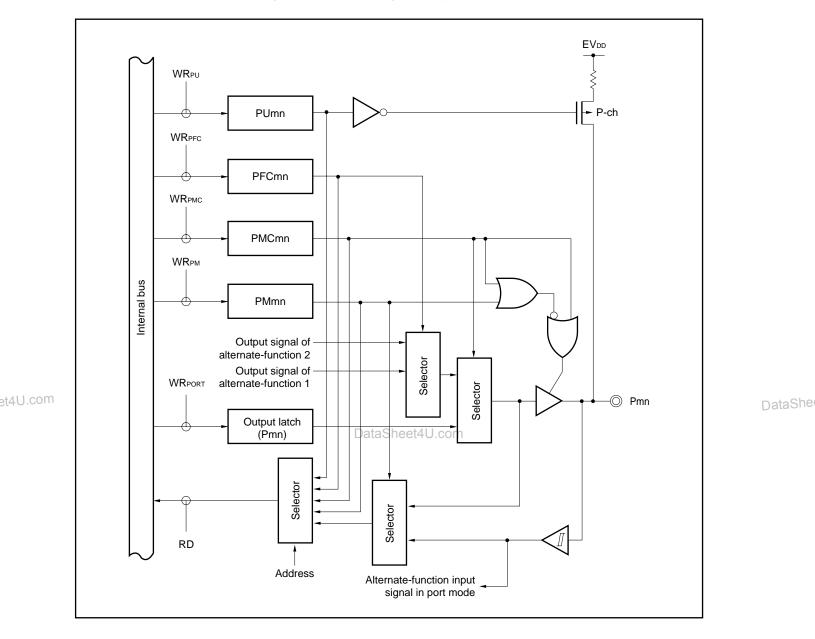
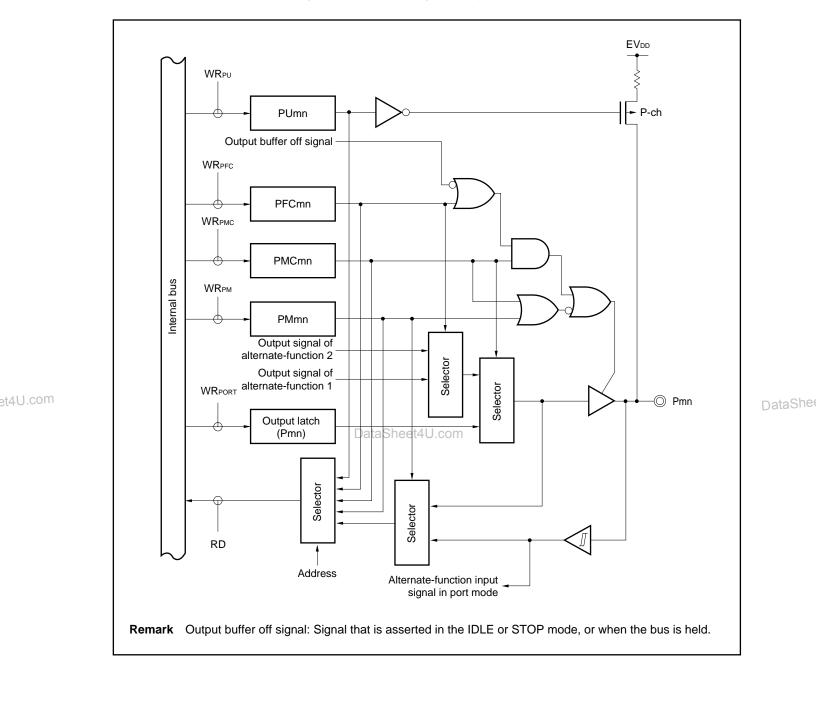




Figure 4-12. Block Diagram of Type E00-SUFT

DataSheet4U.com

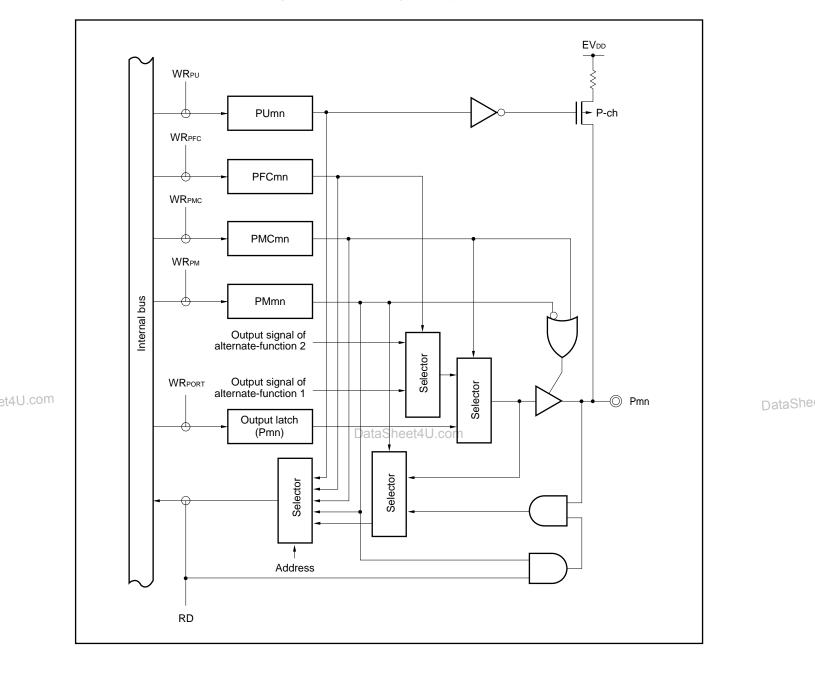
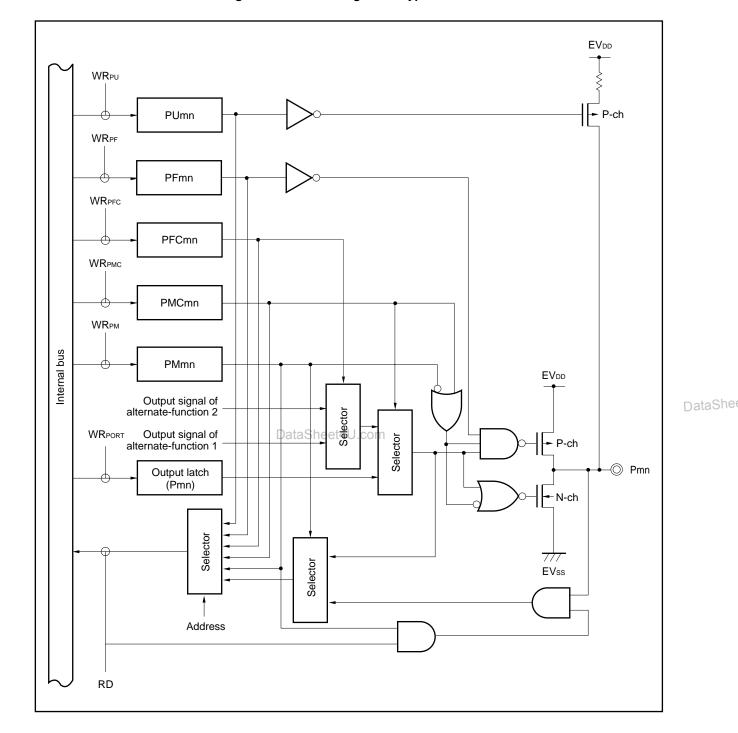



Figure 4-15. Block Diagram of Type E00-U

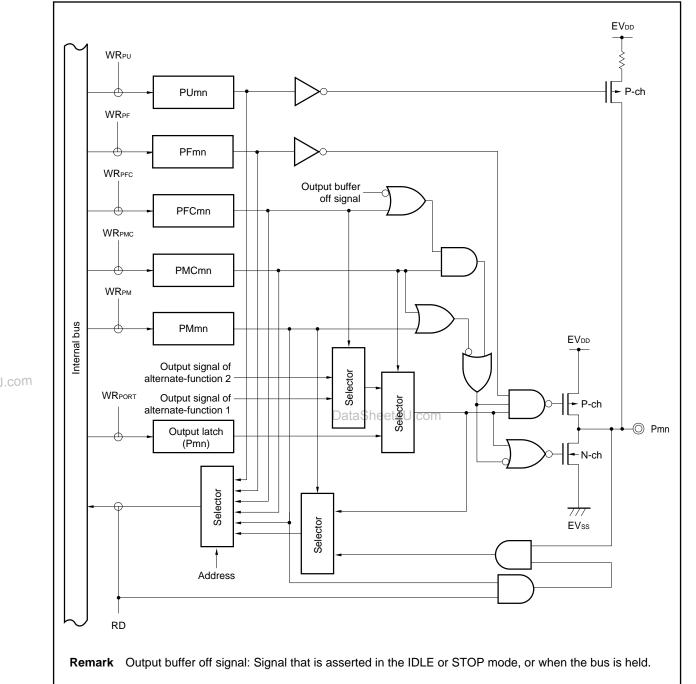
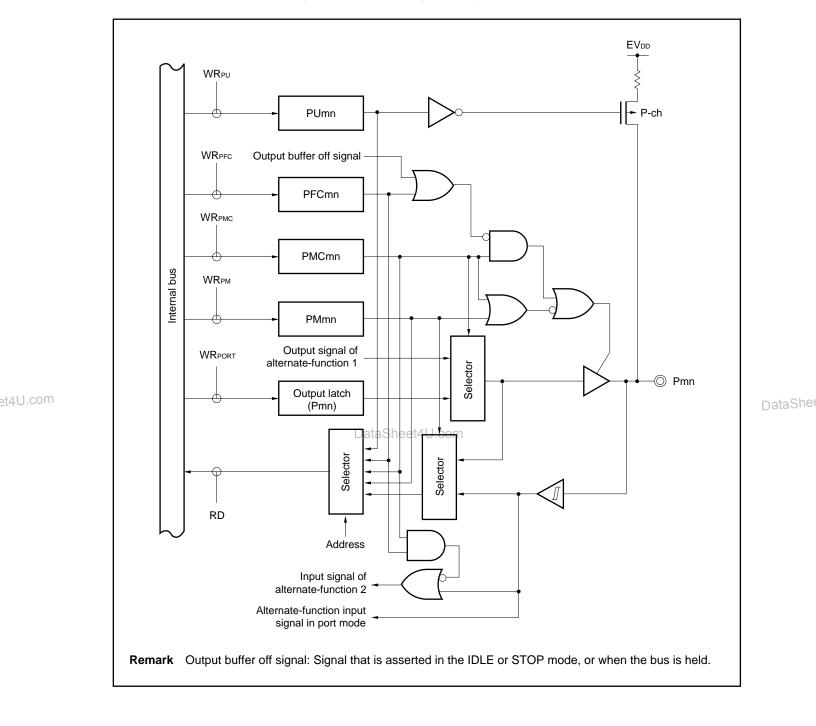
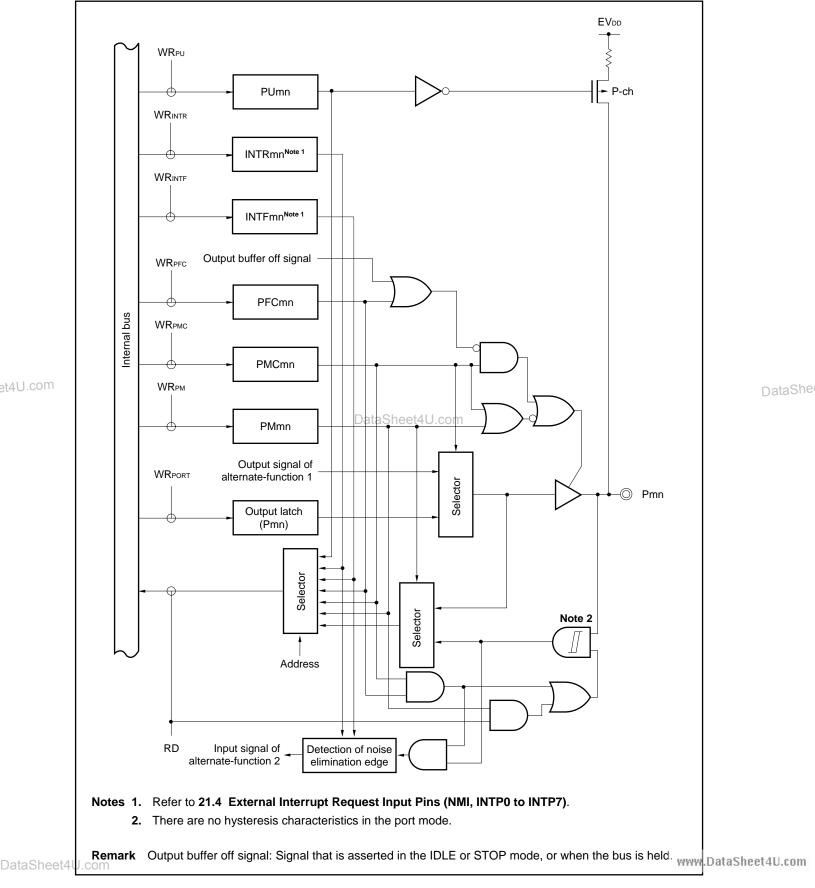
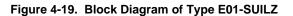
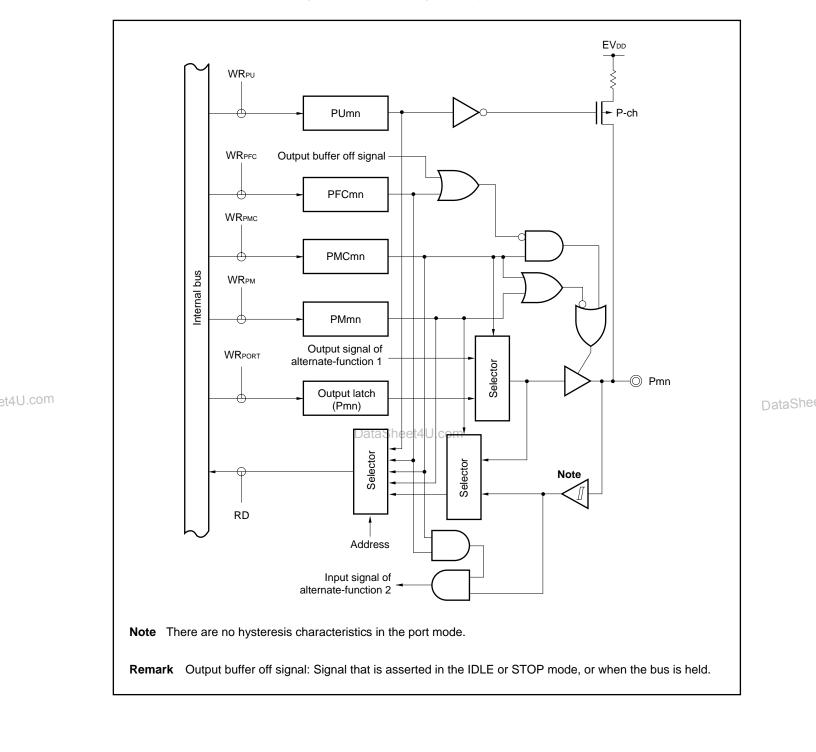


Figure 4-17. Block Diagram of Type E00-UFZ

et4U.com

DataSheet4U.com


Figure 4-18. Block Diagram of Type E01-SUHTZ

148

DataSheet4U.com

www.DataSheet4U.com

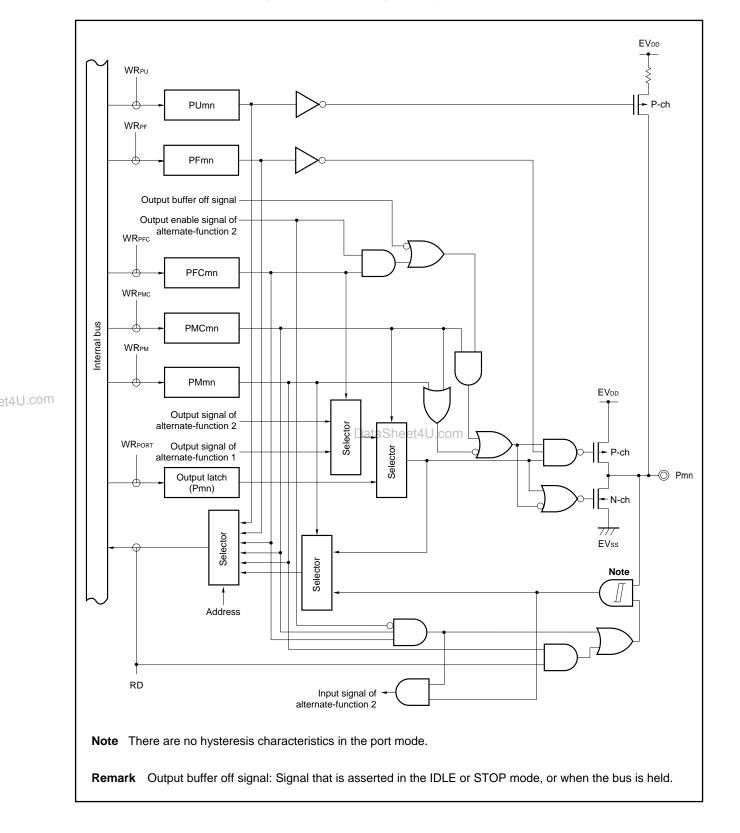
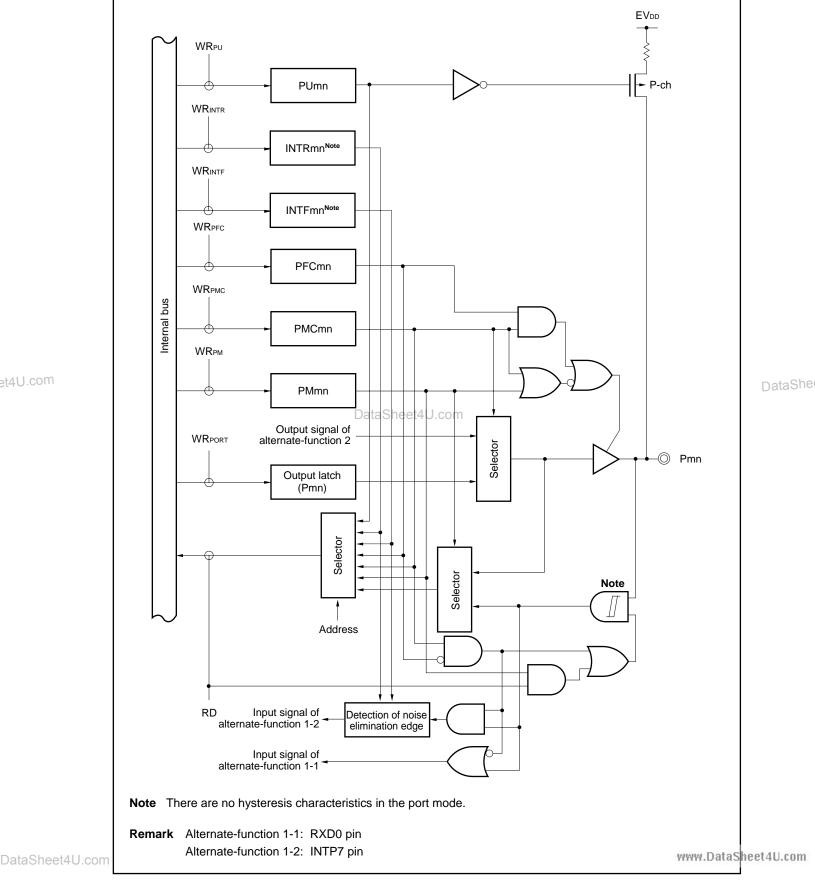



Figure 4-21. Block Diagram of Type E02-SUFLZ

DataSheet4U.com

DataShe

150

Preliminary User's Manual U16894EJ1V0UD

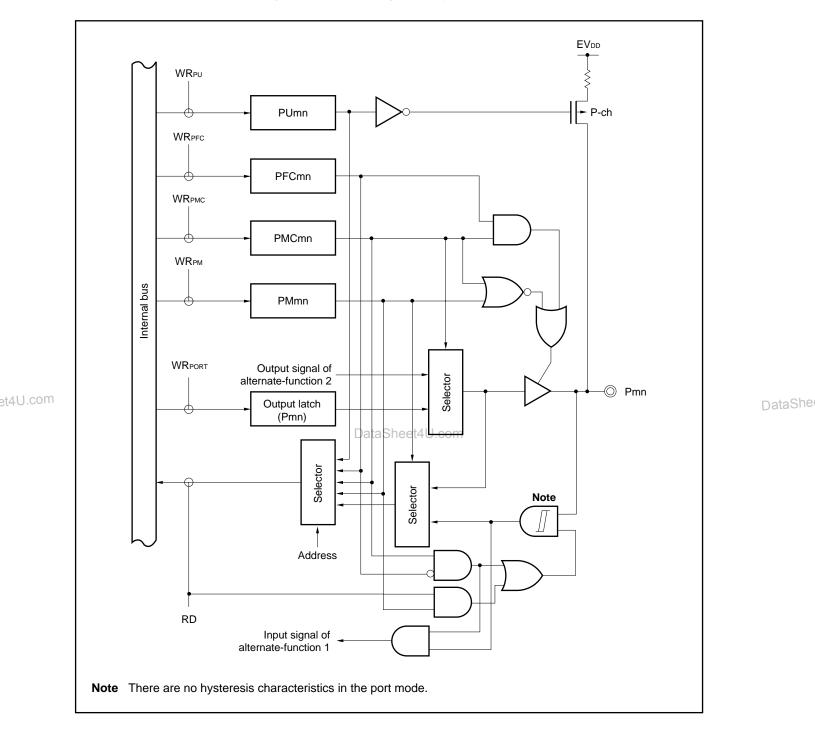
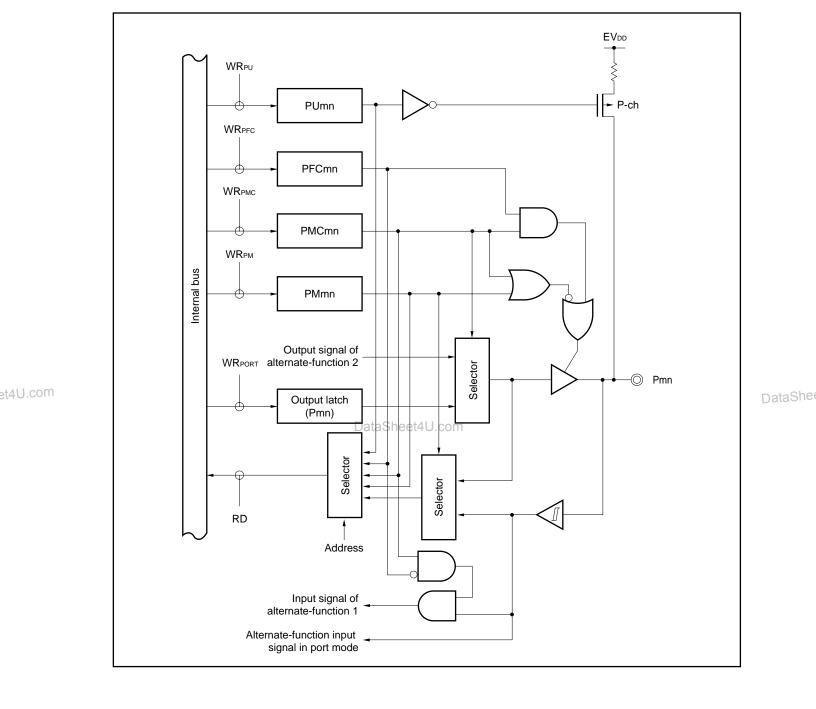
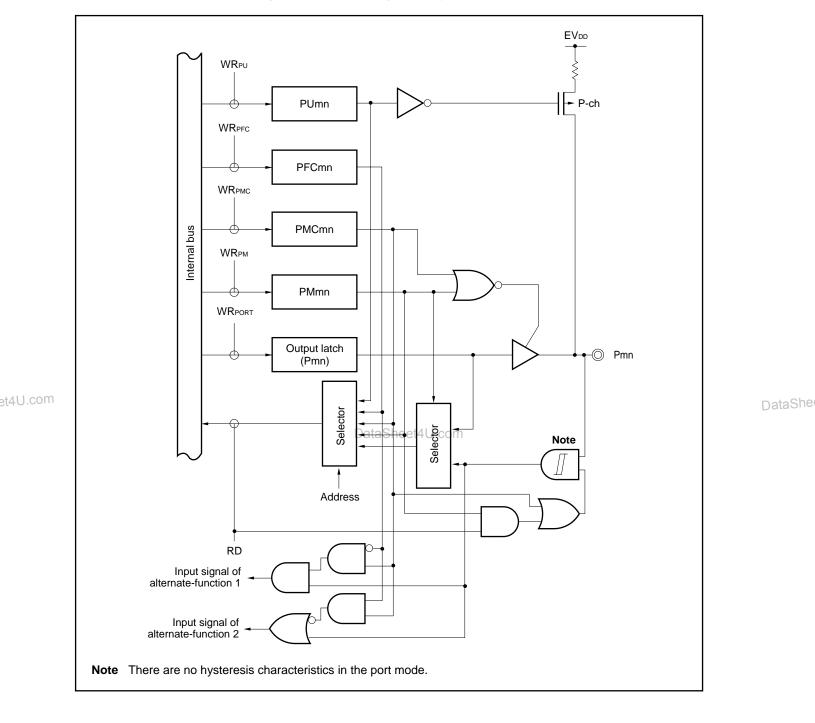
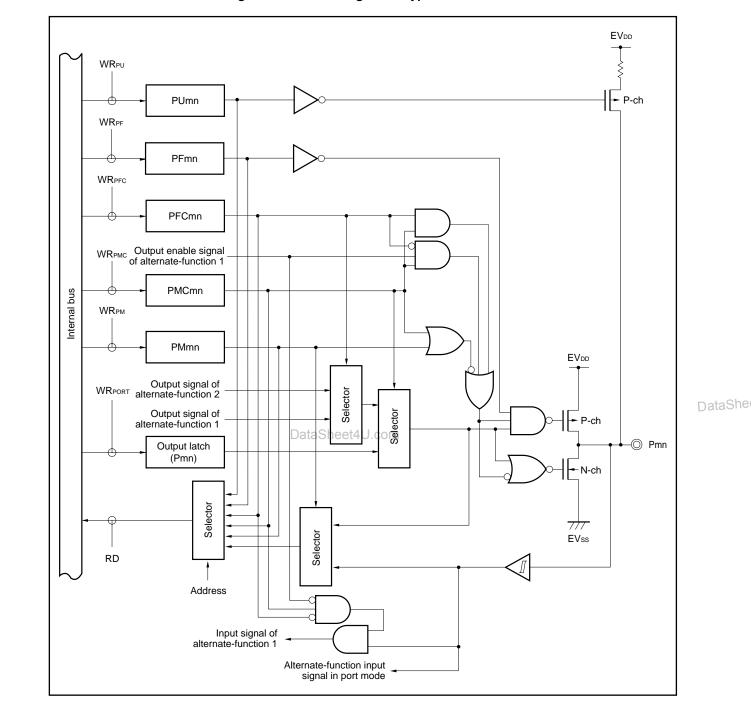
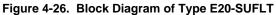
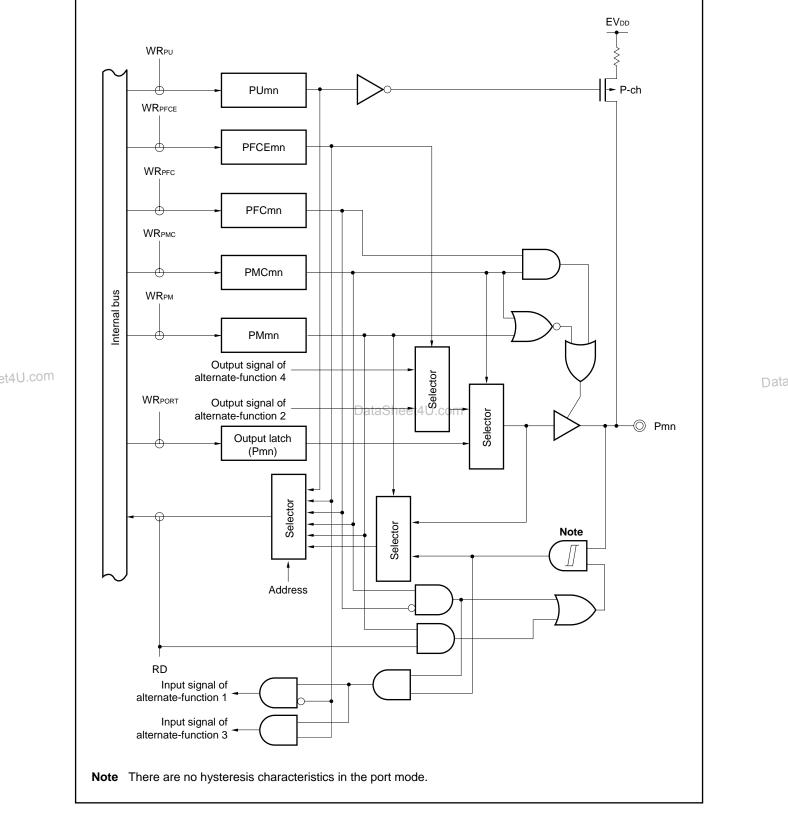
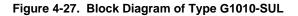


Figure 4-23. Block Diagram of Type E10-SUL


Figure 4-24. Block Diagram of Type E10-SULT



DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

4.5 Port Register Setting When Alternate Function Is Used

Table 4-16 shows the port register settings when each port is used for an alternate function. When using a port pin as an alternate-function pin, refer to description of each pin.

et4U.com

DataSheet4U.com

DataSheet4U.com

DataShe

www.DataSheet4U.com

DataSheet4U

<u> </u>			Table 4-16. Settings V	When Port Pins Are Used for	Alternate Funci	ions (1/6)		
Pin Name	Alternat	e Function	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of	PFCEnx Bit of	PFCnx Bit of PFCn	Other Bits (Registers)
	Function Name	I/O			PMCn Register	PFCEn Register	Register	
P00	ТОН0	Output	P00 = Setting not required	PM00 = Setting not required	PMC00 = 1	_	_	-
P01	TOH1	Output	P01 = Setting not required	PM01 = Setting not required	PMC01 = 1	-	_	-
P02	NMI	Input	P02 = Setting not required	PM02 = Setting not required	PMC02 = 1	-	_	-
P03	INTP0	Input	P03 = Setting not required	PM03 = Setting not required	PMC03 = 1	-	PFC03 = 0	-
P04	INTP1	Input	P04 = Setting not required	PM04 = Setting not required	PMC04 = 1	-	_	-
P05	INTP2	Input	P05 = Setting not required	PM05 = Setting not required	PMC05 = 1	-	_	-
P06	INTP3	Input	P06 = Setting not required	PM06 = Setting not required	PMC06 = 1	-	_	-
P10	ANO0	Output	P10 = Setting not required	PM10 = 1	-	-	_	-
P11	ANO1	Output	P11 = Setting not required	PM11 = 1	-	-	_	-
P30	TXD0	Output	P30 = Setting not required	PM30 = Setting not required	PMC30 = 1	-	PFC30 = 0	-
	TO02	Output	P30 = Setting not required	PM30 = Setting not required	PMC30 = 1	-	PFC30 = 1	-
P31	RXD0	Input	P31 = Setting not required	PM31 = Setting not required	PMC31 = 1	-	Note 1 , PFC31 = 0	-
	INTP7	Input	P31 = Setting not required	PM31 = Setting not required	PMC31 = 1	-	Note 1 , PFC31 = 0	-
	TO03	Output	P31 = Setting not required	PM31 = Setting not required	PMC31 = 1	-	PFC31 = 1	-
P32	ASCK0	Input	P32 = Setting not required	PM32 = Setting not required	PMC32 = 1	-	Note 2 , PFC32 = 0	-
	ADTRG	Input	P32 = Setting not required	PM32 = Setting not required	PMC32 = 1	-	Note 2 , PFC32 = 0	-
	TO01	Output	P32 = Setting not required	PM32 = Setting not required	PMC32 = 1	-	PFC32 = 1	-

Notes 1. The INTP7 and RXD0 pins are alternate-function pins. When using the pin as the RXD0 pin, disable edge detection of the alternate-function INTP7 pin (clear the INTF3.INTF31 and INTR3.INTR31 bits to 0). When using the pin as the INTP7 pin, stop the UART0 receive operation (clear the ASIM0.RXE0 bit to 0).

2. The ASCK0 and ADTRG pins are alternate-function pins. When using the pin as the ASCK0 pin, disable the trigger input of the alternate-function ADTRG pin (clear the ADS.TRG bit to 0 or set the ADS.ADTMD bit to 1). When using the pin as the ADTRG pin, do not set the UART0 operation clock to external input (set the CKSR0.TPS03 to CKSR0.TPS00 bits to other than 1011).

Caution When using the P10 and P11 pins as an alternate function (ANO0 and ANO1 pins), set the PM1 register to FFH.

Table 4-16. Settings When Port Pins Are Used for Alternate Functions (1/6)

DataSheet4U.com

-								
Pin Name	Alternat	e Function	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of	PFCEnx Bit of	PFCnx Bit of	Other Bits (Registers)
	Function Name	I/O			PMCn Register	PFCEn Register	PFCn Register	
P33	T1000	Input	P33 = Setting not required	PM33 = Setting not required	PMC33 = 1	PFCE33 = 0	PFC33 = 0	-
	ТО00	Output	P33 = Setting not required	PM33 = Setting not required	PMC33 = 1	PFCE33 = 0	PFC33 = 1	-
	TIP00	Input	P33 = Setting not required	PM33 = Setting not required	PMC33 = 1	PFCE33 = 1	PFC33 = 0	-
	TOP00	Output	P33 = Setting not required	PM33 = Setting not required	PMC33 = 1	PFCE33 = 1	PFC33 = 1	-
P34	TI001	Input	P34 = Setting not required	PM34 = Setting not required	PMC34 = 1	PFCE34 = 0	PFC34 = 0	_
	ТО00	Output	P34 = Setting not required	PM34 = Setting not required	PMC34 = 1	PFCE34 = 0	PFC34 = 1	_
	TIP10	Input	P34 = Setting not required	PM34 = Setting not required	PMC34 = 1	PFCE34 = 1	PFC34 = 0	_
	TOP10	Output	P34 = Setting not required	PM34 = Setting not required	PMC34 = 1	PFCE34 = 1	PFC34 = 1	_
P35	TI010	Input	P35 = Setting not required	PM35 = Setting not required	PMC35 = 1	-	PFC35 = 0	_
	TO01	Output	P35 = Setting not required	PM35 = Setting not required	PMC35 = 1	-	PFC35 = 1	_
P38	SDA0 ^{Note}	I/O	P38 = Setting not required	PM38 = Setting not required	PMC38 = 1	-	-	_
P39	SCL0 ^{Note}	I/O	P39 = Setting not required	PM39 = Setting not required	PMC39 = 1	-	-	_
P40	SI00	Input	P40 = Setting not required	PM40 = Setting not required	PMC40 = 1	-	PFC40 = 0	_
	RXD2	Input	P40 = Setting not required	PM40 = Setting not required	PMC40 = 1	-	PFC40 = 1	_
P41	SO00	Output	P41 = Setting not required	PM41 = Setting not required	PMC41 = 1	-	PFC41 = 0	_
	TXD2	Output	P41 = Setting not required	PM41 = Setting not required	PMC41 = 1	_	PFC41 = 1	_
P42	SCK00	I/O	P42 = Setting not required	PM42 = Setting not required	PMC42 = 1	-	-	-

Table 4-16. Settings When Port Pins Are Used for Alternate Functions (2/6)

Note Only in the *µ*PD703313Y, 70F3311Y, 70F3313Y

159

www.DataSheet4U.com

\leq
<u> </u>
S
5
<u></u>
_
-
\Box
Q
-
Q
S
<u> </u>
_
Ð
D
÷.
4
_
0
õ
0
\square

D	
ata	
S	
ne	
et	
+	
l.c	
on	

160

Preliminary	
User's Manual	
U16894EJ1V0UD	

Pin Name	Alternate	e Function	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of	PFCnx Bit of	
i in Name	Function Name	I/O		T MILL DI OFT MILLINGSLEF	PMCn Register	PFCn Register	Other Bits (Registers)
P50	TI011	Input	P50 = Setting not required	PM50 = Setting not required	PMC50 = 1	PFC50 = 0	_
		Output	P50 = Setting not required	PM50 = Setting not required	PMC50 = 1	PFC50 = 1	_
	KR0	Input	P50 = Setting not required	PM50 = 1	PMC50 = 0	PFC50 = 0	KRM0 (KRM) = 1
P51	TI50	Input	P51 = Setting not required	PM51 = Setting not required	PMC51 = 1	PFC51 = 0	-
	RTP01	Output	P51 = Setting not required	PM51 = Setting not required	PMC51 = 1	PFC51 = 1	-
	KR1	Input	P51 = Setting not required	PM51 = 1	PMC51 = 0	PFC51 = 0	KRM1 (KRM) = 1
P52	TO50	Output	P52 = Setting not required	PM52 = Setting not required	PMC52 = 1	PFC52 = 0	_
	RTP02	Output	P52 = Setting not required	PM52 = Setting not required	PMC52 = 1	PFC52 = 1	_
	KR2	Input	P52 = Setting not required	PM52 = 1	PMC52 = 0	PFC52 = 0	KRM2 (KRM) = 1
P53	SIA0	Input	P53 = Setting not required	PM53 = Setting not required	PMC53 = 1	PFC53 = 0	-
	RTP03	Output	P53 = Setting not required	PM53 = Setting not required	PMC53 = 1	PFC53 = 1	-
	KR3	Input	P53 = Setting not required	PM53 = 1	PMC53 = 0	PFC53 = 0	KRM3 (KRM) = 1
P54	SOA0	Output	P54 = Setting not required	PM54 = Setting not required	PMC54 = 1	PFC54 = 0	PF54 (PF5) = Don't care
	RTP04	Output	P54 = Setting not required	PM54 = Setting not required	PMC54 = 1	PFC54 = 1	PF54 (PF5) = 0
	KR4	Input	P54 = Setting not required	PM54 = 1 ∃	PMC54 = 0	PFC54 = 0	PF54 (PF5) = 0, KRM4 (KRM) = 1
P55	SCKA0	I/O	P55 = Setting not required	PM55 = Setting not required	PMC55 = 1	PFC55 = 0	PF55 (PF5) = Don't care
	RTP05	Output	P55 = Setting not required	PM55 = Setting not required	PMC55 = 1	PFC55 = 1	PF55 (PF5) = 0
	KR5	Input	P55 = Setting not required	PM55 = 1	PMC55 = 0	PFC55 = 0	PF55 (PF5) = 0, KRM5 (KRM) = 1
P70	ANI0	Input	P70 = Setting not required	-	-	-	-
P71	ANI1	Input	P71 = Setting not required	-	-	-	-
P72	ANI2	Input	P72 = Setting not required	-	-	-	-
P73	ANI3	Input	P73 = Setting not required	-	-	-	-
P74	ANI4	Input	P74 = Setting not required	-	-	-	-
P75	ANI5	Input	P75 = Setting not required	-	-	-	-
P76	ANI6	Input	P76 = Setting not required	-	-	-	-
P77	ANI7	Input	P77 = Setting not required	-	-	-	-

DataSheet4U.com				∋t4U.com			
Pin Name	A léa ra at	e Function		When Port Pins Are Used for	Alternate Func	tions (4/6) PFCnx Bit of	Other Bits (Registers)
Pin Name	Function Name		Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCn Register		
P90	A0	Output	P90 = Setting not required	PM90 = Setting not required	PMC90 = 1	PFC90 = 0	Note
	TXD1	Output	P90 = Setting not required	PM90 = Setting not required	PMC90 = 1	PFC90 = 1	_
	KR6	Input	P90 = Setting not required	PM90 = 1	PMC90 = 0	PFC90 = 0	KRM6 (KRM) = 1
P91	A1	Output	P91 = Setting not required	PM91 = Setting not required	PMC91 = 1	PFC91 = 0	Note
	RXD1	Input	P91 = Setting not required	PM91 = Setting not required	PMC91 = 1	PFC91 = 1	_
	KR7	Input	P91 = Setting not required	PM91 = 1	PMC91 = 0	PFC91 = 0	KRM7 (KRM) = 1
P92	A2	Output	P92 = Setting not required	PM92 = Setting not required	PMC92 = 1	PFC92 = 0	Note
	TI020	Input	P92 = Setting not required	PM92 = 1	PMC92 = 0	PFC92 = 0	-
	TO02	Output	P92 = Setting not required	PM92 = Setting not required	PMC92 = 1	PFC92 = 1	_
P93	A3	Output	P93 = Setting not required	PM93 = Setting not required	PMC93 = 1	PFC93 = 0	Note
	TI021	Input	P93 = Setting not required	PM93 = Setting not required	PMC93 = 1	PFC93 = 1	_
P94	A4	Output	P94 = Setting not required	PM94 = Setting not required	PMC94 = 1	PFC94 = 0	Note
	T1030	Input	P94 = Setting not required	PM94 = 1	PMC94 = 0	PFC94 = 0	_
	TO03	Output	P94 = Setting not required	PM94 = Setting not required	PMC94 = 1	PFC94 = 1	_
P95	A5	Output	P95 = Setting not required	PM95 = Setting not required	PMC95 = 1	PFC95 = 0	Note
	TI031	Input	P95 = Setting not required	PM95 = Setting not required	PMC95 = 1	PFC95 = 1	_
P96	A6	Output	P96 = Setting not required	PM96 = Setting not required	PMC96 = 1	PFC96 = 0	Note
	TI51	Input	P96 = Setting not required	PM96 = 1	PMC96 = 0	PFC96 = 0	_
	TO51	Output	P96 = Setting not required	PM96 = Setting not required	PMC96 = 1	PFC96 = 1	_
P97	A7	Output	P97 = Setting not required	PM97 = Setting not required	PMC97 = 1	PFC97 = 0	Note
	SI01	Input	P97 = Setting not required	PM97 = Setting not required	PMC97 = 1	PFC97 = 1	_
P98	A8	Output	P98 = Setting not required	PM98 = Setting not required	PMC98 = 1	PFC98 = 0	Note , PF98 (PF9) = 0
	SO01	Output	P98 = Setting not required	PM98 = Setting not required	PMC98 = 1	PFC98 = 1	PF98 (PF9) = Don't care
99 MWW.D	A9	Output	P99 = Setting not required	PM99 = Setting not required	PMC99 = 1	PFC99 = 0	Note , PF98 (PF9) = 0
P.Da	SCK01	I/O	P99 = Setting not required	PM99 = Setting not required	PMC99 = 1	PFC99 = 1	PF98 (PF9) = Don't care

DataShee

When setting the A0 to A15 pins, set the PFC9 register to 0000H and the PMC9 register to FFFFH in 16-bit units.

www.DataSheet4U.com

П

J.cc	Table 4-16. Settings When Port Pins Are Used for Alternate Functions (5/6)								
Pin Name	Alternate	e Function	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of	PFCnx Bit of	Other Bits (Registers)		
	Function Name	I/O			PMCn Register	PFCn Register			
P910	A10	Output	P910 = Setting not required	PM910 = Setting not required	PMC910 = 1	PFC910 = 0	Note		
	SIA1	Input	P910 = Setting not required	PM910 = Setting not required	PMC910 = 1	PFC910 = 1	_		
P911	A11	Output	P911 = Setting not required	PM911 = Setting not required	PMC911 = 1	PFC911 = 0	Note , PF911 (PF9) = 0		
	SOA1	Output	P911 = Setting not required	PM911 = Setting not required	PMC911 = 1	PFC911 = 1	PF911 (PF9) = Don't care		
P912	A12	Output	P912 = Setting not required	PM912 = Setting not required	PMC912 = 1	PFC912 = 0	Note , PF912 (PF9) = 0		
	SCKA1	I/O	P912 = Setting not required	PM912 = Setting not required	PMC912 = 1	PFC912 = 1	PF912 (PF9) = Don't care		
P913	A13	Output	P913 = Setting not required	PM913 = Setting not required	PMC913 = 1	PFC913 = 0	Note		
	INTP4	Input	P913 = Setting not required	PM913 = Setting not required	PMC913 = 1	PFC913 = 1	-		
P914	A14	Output	P914 = Setting not required	PM914 = Setting not required	PMC914 = 1	PFC914 = 0	Note		
	INTP5	Input	P914 = Setting not required	PM914 = Setting not required	PMC914 = 1	PFC914 = 1	-		
P915	A15	Output	P915 = Setting not required	PM915 = Setting not required	PMC915 = 1	PFC915 = 0	Note		
	INTP6	Input	P915 = Setting not required	PM915 = Setting not required	PMC915 = 1	PFC915 = 1	-		
PCM0	WAIT	Input	PCM0 = Setting not required	PMCM0 = Setting not required	PMCCM0 = 1	-	-		
PCM1	CLKOUT	Output	PCM1 = Setting not required	PMCM1 = Setting not required	PMCCM1 = 1	-	-		
PCM2	HLDAK	Output	PCM2 = Setting not required	$\stackrel{i}{\rightarrow}$ PMCM2 = Setting not required	PMCCM2 = 1	-	-		
РСМ3	HLDRQ	Input	PCM3 = Setting not required	PMCM3 = Setting not required	PMCCM3 = 1	-	_		
PCS0	CS0	Output	PCS0 = Setting not required	PMCS0 = Setting not required	PMCCS0 = 1	-	-		
PCS1	CS1	Output	PCS1 = Setting not required	PMCS1 = Setting not required	PMCCS1 = 1	-	_		
PCT0	WR0	Output	PCT0 = Setting not required	PMCT0 = Setting not required	PMCCT0 = 1	-	_		
PCT1	WR1	Output	PCT1 = Setting not required	PMCT1 = Setting not required	PMCCT1 = 1	-	-		
PCT4	RD	Output	PCT4 = Setting not required	PMCT4 = Setting not required	PMCCT4 = 1	-	_		
PCT6	ASTB	Output	PCT6 = Setting not required	PMCT6 = Setting not required	PMCCT6 = 1	-	-		

et4U.com

Note When setting the A0 to A15 pins, set the PFC9 register to 0000H and the PMC9 register to FFFFH in 16-bit units.

DataSheet4U.com

		Table 4-16. Settii
rnate	e Function	Pnx Bit of Pn Regis
ame	I/O	

ings When Port Pins Are Used for Alternate Functions (6/6)

	Table 4-16. Settings when Fort Fins Are Used for Alternate Functions (6/6)						
Pin Name		e Function	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of	PFCnx Bit of	Other Bits (Registers)
	Function Name	I/O			PMCn Register	PFCn Register	
PDH0	A16	Output	PDH0 = Setting not required	PMDH0 = Setting not required	PMCDH0 = 1	-	
PDH1	A17	Output	PDH1 = Setting not required	PMDH1 = Setting not required	PMCDH1 = 1	_	_
PDH2	A18	Output	PDH2 = Setting not required	PMDH2 = Setting not required	PMCDH2 = 1	-	_
PDH3	A19	Output	PDH3 = Setting not required	PMDH3 = Setting not required	PMCDH3 = 1	-	_
PDH4	A20	Output	PDH4 = Setting not required	PMDH4 = Setting not required	PMCDH4 = 1	-	_
PDH5	A21	Output	PDH5 = Setting not required	PMDH5 = Setting not required	PMCDH5 = 1	-	_
PDL0	AD0	I/O	PDL0 = Setting not required	PMDL0 = Setting not required	PMCDL0 = 1	-	_
PDL1	AD1	I/O	PDL1 = Setting not required	PMDL1 = Setting not required	PMCDL1 = 1	-	_
PDL2	AD2	I/O	PDL2 = Setting not required	PMDL2 = Setting not required	PMCDL2 = 1	-	_
PDL3	AD3	I/O	PDL3 = Setting not required	PMDL3 = Setting not required	PMCDL3 = 1	-	_
PDL4	AD4	I/O	PDL4 = Setting not required	PMDL4 = Setting not required	PMCDL4 = 1	-	_
PDL5	AD5	I/O	PDL5 = Setting not required	PMDL5 = Setting not required	PMCDL5 = 1	-	_
PDL6	AD6	I/O	PDL6 = Setting not required	PMDL6 = Setting not required	PMCDL6 = 1	-	_
PDL7	AD7	I/O	PDL7 = Setting not required	PMDL7 = Setting not required	PMCDL7 = 1	_	_
PDL8	AD8	I/O	PDL8 = Setting not required	PMDL8 = Setting not required	PMCDL8 = 1	_	_
PDL9	AD9	I/O	PDL9 = Setting not required	PMDL9 = Setting not required	PMCDL9 = 1	-	_
PDL10	AD10	I/O	PDL10 = Setting not required	PMDL10 = Setting not required	PMCDL10 = 1	_	_
PDL11	AD11	I/O	PDL11 = Setting not required	PMDL11 = Setting not required	PMCDL11 = 1	_	_
PDL12	AD12	I/O	PDL12 = Setting not required	PMDL12 = Setting not required	PMCDL12 = 1	_	_
PDL13	AD13	I/O	PDL13 = Setting not required	PMDL13 = Setting not required	PMCDL13 = 1	_	_
PDL14	AD14	I/O	PDL14 = Setting not required	PMDL14 = Setting not required	PMCDL14 = 1	-	_
PDL15	AD15	I/O	PDL15 = Setting not required	PMDL15 = Setting not required	PMCDL15 = 1	-	_
www.DataSheet4U.com				DataShe			

4.6 Cautions

4.6.1 Cautions on bit manipulation instruction for port n register (Pn)

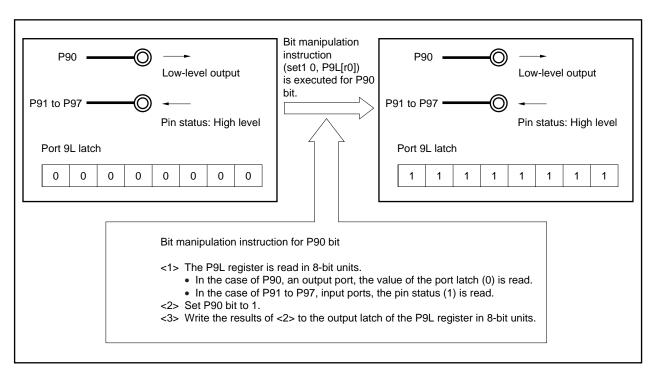
When a 1-bit manipulation instruction is executed on a port that provides both input and output functions, the value of the output latch of an input port that is not subject to manipulation may be written in addition to the targeted bit.

Therefore, it is recommended to rewrite the output latch when switching a port from input mode to output mode.

<Example> When P90 is an output port, P91 to P97 are input ports (all pin statuses are high level), and the value of the port latch is 00H, if the output of output port P90 is changed from low level to high level via a bit manipulation instruction, the value of the port latch is FFH. Explanation: The targets of writing to and reading from the Pn register of a port whose PMnm bit is

1 are the output latch and pin status, respectively.

A bit manipulation instruction is executed in the following order in the V850ES/KG1+.


- <1> The Pn register is read in 8-bit units.
- <2> The targeted one bit is manipulated.
- <3> The Pn register is written in 8-bit units.

In step <1>, the value of the output latch (0) of P90, which is an output port, is read, while the pin statuses of P91 to P97, which are input ports, are read. If the pin statuses of P91 to P97 are high level at this time, the read value is FEH.

The value is changed to FFH by the manipulation in <2>.

FFH is written to the output latch by the manipulation in <3>.

DataShe

Figure 4-28. Bit Manipulation Instruction (P90)

4.6.2 Hysteresis characteristics

In port mode, the following ports do not have hysteresis characteristics.

P02 to P06 P31 to P35, P38, P39 P40, P42 P93, P95, P97, P99, P910, P912 to P915

et4U.com

DataSheet4U.com

DataSheet4U.com

CHAPTER 5 BUS CONTROL FUNCTION

The V850ES/KG1+ is provided with an external bus interface function by which external memories such as ROM and RAM, and I/O can be connected.

5.1 Features

- O Output is selectable from a multiplex bus with a minimum of 3 bus cycles and a separate bus with a minimum of 2 bus cycles
- O Chip select function for up to 2 spaces
- O 8-bit/16-bit data bus selectable (for each area selected by chip select function)
- O Wait function
 - Programmable wait function of up to 7 states (selectable for each area selected by chip select function)
 - External wait function using WAIT pin
- O Idle state function
- O Bus hold function
- O The bus can be controlled using a different voltage from the operating voltage by setting $BV_{DD} \le V_{DD} = EV_{DD}$ (however, only in multiplex bus mode).

et4U.com

DataShee

DataSheet4U.com

5.2 Bus Control Pins

The pins used to connect an external device are listed in the table below.

Table 5-1.	Bus Control Pins	(When Multiplex	Bus Selected)
------------	------------------	-----------------	----------------------

Bus Control Pin	Alternate-Function Pin	I/O	Function
AD0 to AD15	PDL0 to PDL15	I/O	Address/data bus
A16 to A21	PDH0 to PDH5	Output	Address bus
WAIT	PCM0	Input	External wait control
CLKOUT	PCM1	Output	Internal system clock output
$\overline{\text{CS0}}, \overline{\text{CS1}}$	PCS0, PCS1	Output	Chip select
$\overline{\text{WR0}}, \overline{\text{WR1}}$	PCT0, PCT1	Output	Write strobe signal
RD	PCT4	Output	Read strobe signal
ASTB	PCT6	Output	Address strobe signal
HLDRQ	PCM3	Input	Bus hold control
HLDAK	PCM2	Output	

Table 5-2. Bus Control Pins (When Separate Bus Selected)

Bus Control Pin	Alternate-Function Pin	I/O	Function
AD0 to AD15	PDL0 to PDL15	I/O	Data bus
A0 to A15	P90 to P915	Dutputh	Address bus
A16 to A21	PDH0 to PDH5	Output	Address bus
WAIT	PCM0	Input	External wait control
CLKOUT	PCM1	Output	Internal system clock output
CS0, CS1	PCS0, PCS1	Output	Chip select
WR0, WR1	PCT0, PCT1	Output	Write strobe signal
RD	PCT4	Output	Read strobe signal
HLDRQ	PCM3	Input	Bus hold control
HLDAK	PCM2	Output	

5.2.1 Pin status when internal ROM, internal RAM, or on-chip peripheral I/O is accessed

When the internal ROM, internal RAM, or on-chip peripheral I/O is accessed, the status of each pin is as follows.

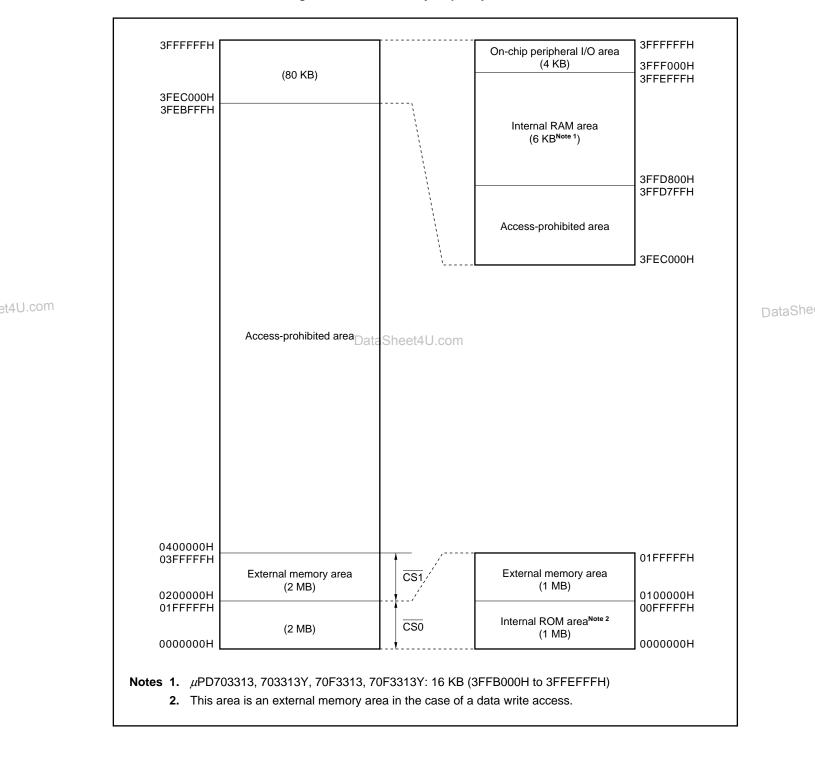
Table 5-3. Pin Statuses When Internal ROM, Internal RAM, or On-Chip Peripheral I/O Is Accessed

Separate Bus M	lode	Multiplex Bus M	lode
Address bus (A21 to A0)	Undefined	Address bus (A21 to A16)	Undefined
Data bus (AD15 to AD0)	Hi-Z	Address/data bus (AD15 to AD0)	Undefined
Control signal	Inactive	Control signal	Inactive

Caution When a write access is performed to the internal ROM area, address, data, and control signals are activated in the same way as access to the external memory area.

5.2.2 Pin status in each operation mode

For the pin status of the V850ES/KG1+ in each operation mode, refer to 2.2 Pin Status.


et4U.com

DataShe

DataSheet4U.com

5.3 Memory Block Function

The 64 MB memory space is divided into chip select areas of (lower) 2 MB and 2 MB. The programmable wait function and bus cycle operation mode for each of these chip select areas can be independently controlled.

5.3.1 Chip select control function

Of the 64 MB (linear) address space, the lower 4 MB (0000000H to 03FFFFH) include two chip select control functions, $\overline{CS0}$ and $\overline{CS1}$. The areas that can be selected by $\overline{CS0}$ and $\overline{CS1}$ are fixed.

By using these chip select control functions, the memory space can be used effectively. The allocation of the chip select areas is shown in the table below.

CS0	0000000H to 01FFFFFH (2 MB)
CS1	0200000H to 03FFFFFH (2 MB)

5.4 External Bus Interface Mode Control Function

The V850ES/KG1+ includes the following two external bus interface modes.

- · Multiplex bus mode
- Separate bus mode

These two modes can be selected by using the EXIMC register.

(1) External bus interface mode control register (EXIMC) This register can be read or written in 8-bit or 1-bit units.

After reset, EXIMC is cleared to 00H.

et4U.com

After res	set: 00H	R/W	Address: F	ataShee FFFFBEH	t4U.com 1			
	7	6	5	4	3	2	1	0
EXIMC	0	0	0	0	0	0	0	SMSEL
	SMSEL			M	ode selecti	on		
	0	Multiplex	bus mode					
	1	Separate	bus mode					
	Caution	area be	fore exter setting the	nal acces	SS.			ternal RAM set a NOI

5.5 Bus Access

5.5.1 Number of clocks for access

The following table shows the number of basic clocks required for accessing each resource.

Area (Bus Width) Bus Cycle Type	Internal ROM (32 Bits)	Internal RAM (32 Bits)	External Memory (16 Bits)	On-Chip Peripheral I/O (16 Bits)
Instruction fetch (normal access)	1	1 ^{Note 1}	3 + n ^{Note 2}	-
Instruction fetch (branch)	2	2 ^{Note 1}	3+ n ^{Note 2}	-
Operand data access	3	1	3 +n ^{Note 2}	3 ^{Note 3}

Notes 1. If the access conflicts with a data access, the number of clock is increased by 1.

- 2. 2 + n clocks (n: Number of wait states) when the separate bus mode is selected.
- 3. This value varies depending on the setting of the VSWC register.

Remark Unit: Clocks/access

5.5.2 Bus size setting function

The bus size of each external memory area selected by \overline{CSn} can be set to 8 bits or 16 bits by using the BSC register.

The external memory area of the V850ES/KG1+ is selected by $\overline{\text{CS0}}$ and $\overline{\text{CS1}}$.

(1) Bus size configuration register (BSC)

This register can be read or written in 16-bit units. After reset, BSC is set to 5555H. DataSheet4U.com DataShe

Caution Write to the BSC register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the BSC register are complete.

BSC 0	14	13 0	12	11 0	10 1	9	8
7	6	5	4	3	2	1	0
0	0/1 ^{Note}	0	0/1 ^{Note}	0	BS10	0	BS00
CSn signal					CS1		CS0
BSn0		Data	bus width	of CSn spa	ace (n = 0, ⁻	1)	
0	8 bits						
1	16 bits						
Note C Caution	hanging th Be sure					d clear b	its 15, 13

5.5.3 Access by bus size

The V850ES/KG1+ accesses the on-chip peripheral I/O and external memory in 8-bit, 16-bit, or 32-bit units. The bus size is as follows.

- The bus size of the on-chip peripheral I/O is fixed to 16 bits.
- The bus size of the external memory is selectable from 8 bits or 16 bits (by using the BSC register).

The operation when each of the above is accessed is described below. All data is accessed starting from the lower side.

The V850ES/KG1+ supports only the little endian format.

Figure 5-2. Little Endian Address in Word

31	24 2	3 16	15	8 7	0
000E	зн	000AH	0009H	0008H	
0007	7H	0006H	0005H	0004H	
0003	ЗН	0002H	0001H	0000H	

(1) Data space

et4U.com

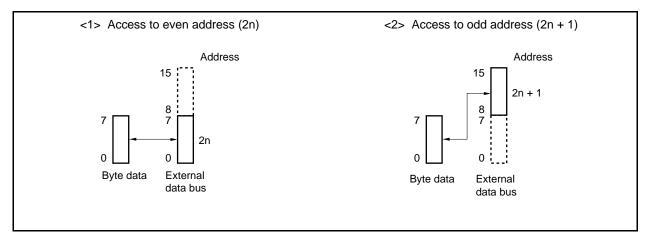
The V850ES/KG1+ has an address misalign function.

With this function, data can be placed at all addresses, regardless of the format of the data (word data or halfword data). However, if the word data or halfword data is not aligned at the boundary, a bus cycle is generated at least twice, causing the bus efficiency to drop.

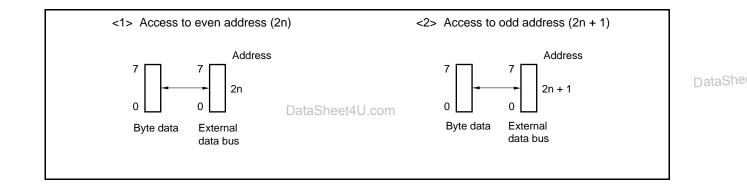
(a) Halfword-length data access

A byte-length bus cycle is generated twice if the least significant bit of the address is 1.

(b) Word-length data access


- (i) A byte-length bus cycle, halfword-length bus cycle, and byte-length bus cycle are generated in that order if the least significant bit of the address is 1.
- (ii) A halfword-length bus cycle is generated twice if the lower 2 bits of the address are 10.

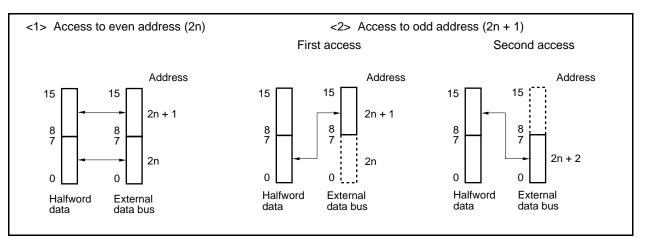
172


DataSheet4U.com

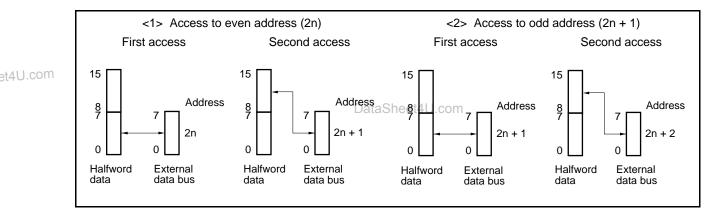
(2) Byte access (8 bits)

(a) 16-bit data bus width

(b) 8-bit data bus width



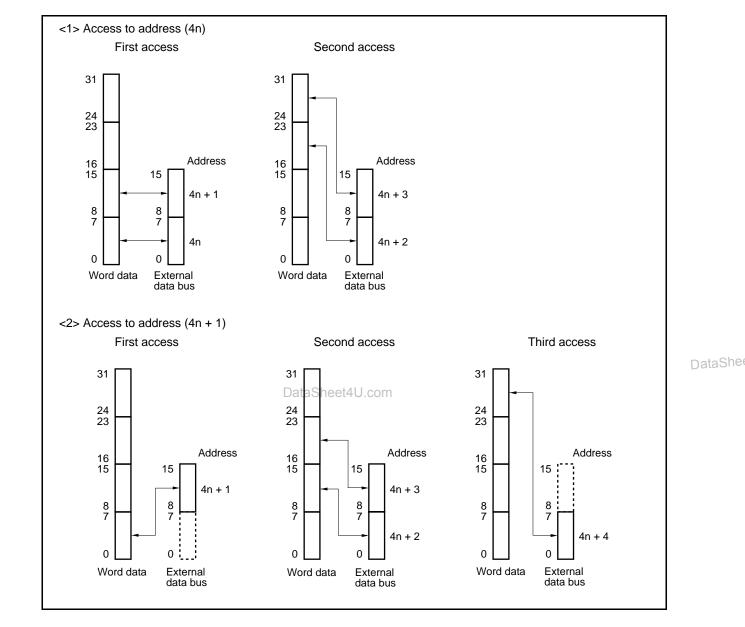
DataSheet4U.com


DataSheet4U.com

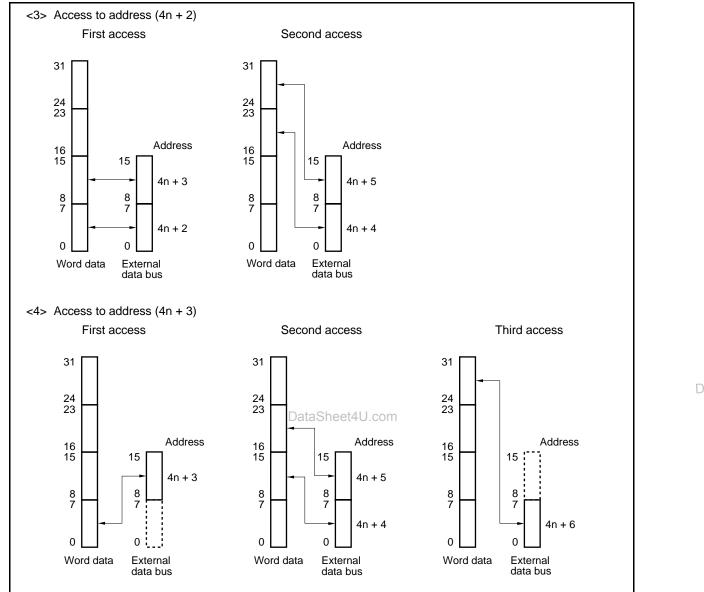
(3) Halfword access (16 bits)

(a) With 16-bit data bus width

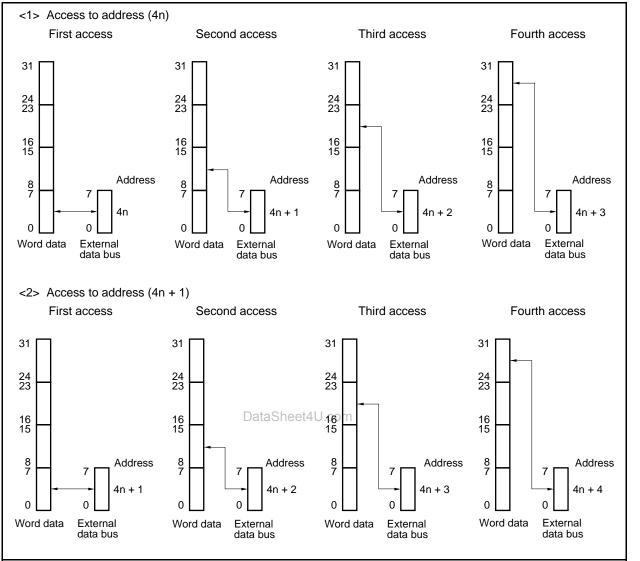
(b) 8-bit data bus width



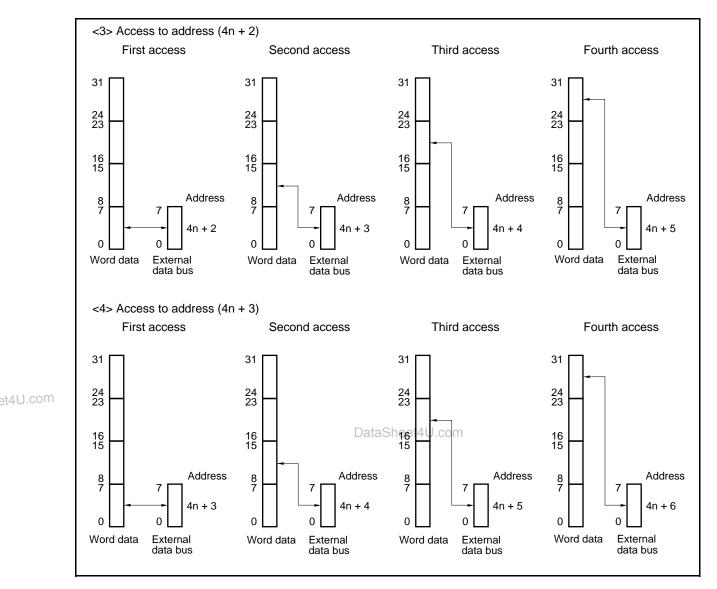
DataShe


www.DataSheet4U.com

(4) Word access (32 bits)


(a) 16-bit data bus width (1/2)

(a) 16-bit data bus width (2/2)



www.DataSheet4U.com

(b) 8-bit data bus width (1/2)

et4U.com

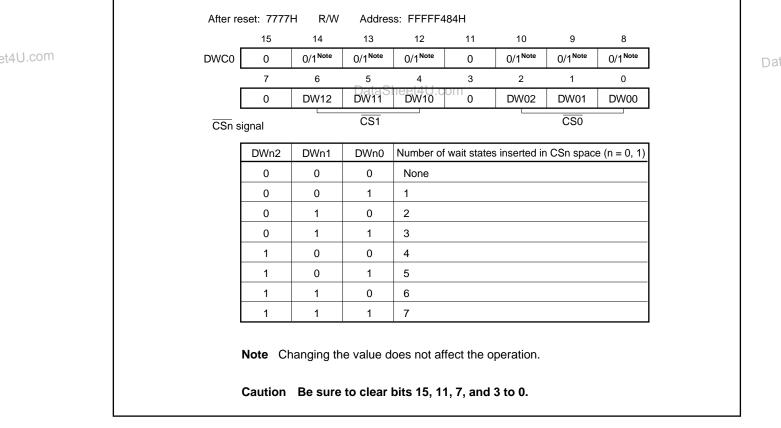
(b) 8-bit data bus width (2/2)

www.DataSheet4U.com

5.6 Wait Function

5.6.1 Programmable wait function

(1) Data wait control register 0 (DWC0)


To realize interfacing with a low-speed memory or I/O, up to seven data wait states can be inserted in the bus cycle that is executed for each CS space.

The number of wait states can be programmed by using the DWC0 register. Immediately after system reset, 7 data wait states are inserted for all the chip select areas.

The DWC0 register can be read or written in 16-bit units.

After reset, DWC0 is set to 7777H.

- Cautions 1. The internal ROM and internal RAM areas are not subject to programmable wait, and are always accessed without a wait state. The on-chip peripheral I/O area is also not subject to programmable wait, and only wait control from each peripheral function is performed.
 - 2. Write to the DWC0 register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the DWC0 register are complete.

DataShe

DataSheet4U.com

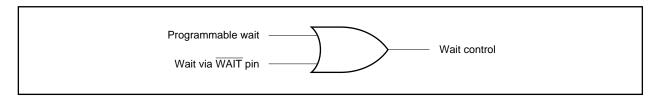
5.6.2 External wait function

To synchronize an extremely slow memory, I/O, or asynchronous system, any number of wait states can be inserted in the bus cycle by using the external wait pin (\overline{WAIT}).

Access to each area of the internal ROM, internal RAM, and on-chip peripheral I/O is not subject to control by the external wait function, in the same manner as the programmable wait function.

The WAIT signal can be input asynchronously to CLKOUT, and is sampled at the falling edge of the clock in the T2 and TW states of the bus cycle in the multiplex bus mode. In the separate bus mode, it is sampled at the rising edge of the clock immediately after the T1 and TW states of the bus cycle. If the setup/hold time of the sampling timing is not satisfied, a wait state is inserted in the next state, or not inserted at all.

t4U.com


DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

5.6.3 Relationship between programmable wait and external wait

Wait cycles are inserted as the result of an OR operation between the wait cycles specified by the set value of the programmable wait and the wait cycles controlled by the \overline{WAIT} pin.

For example, if the timing of the programmable wait and the \overline{WAIT} pin signal is as illustrated below, three wait states will be inserted in the bus cycle.

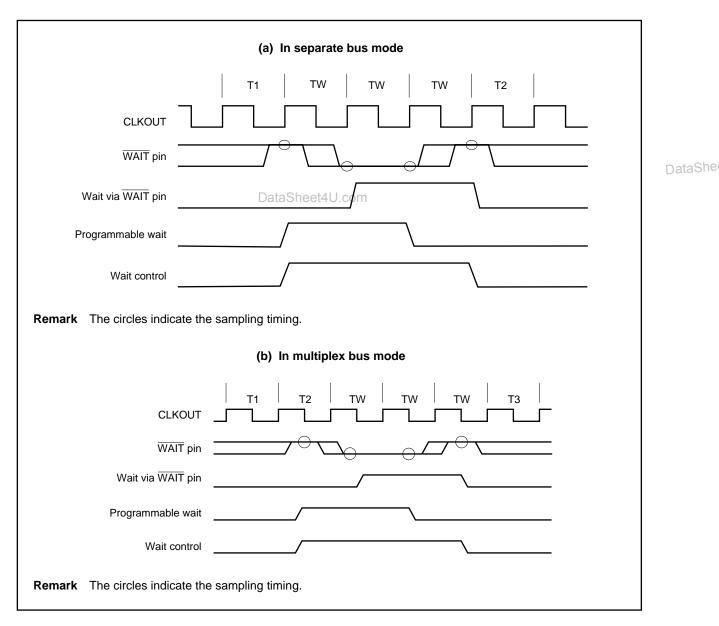


Figure 5-3. Example of Inserting Wait States

DataSheet4U.com

et4U.com

www.DataSheet4U.com

5.6.4 Programmable address wait function

Address-setup or address-hold waits to be inserted in each bus cycle can be set by using the AWC register. Address wait insertion is set for each chip select area ($\overline{CS0}$ and $\overline{CS1}$).

If an address setup wait is inserted, it seems that the high-clock period of T1 state is extended by 1 clock. If an address hold wait is inserted, it seems that the low-clock period of T1 state is extended by 1 clock.

(1) Address wait control register (AWC)

This register can be read or written in 16-bit units. After reset, AWC is set to FFFFH.

- Cautions 1. The internal ROM, internal RAM, and on-chip peripheral I/O areas are not subject to address setup wait or address hold wait insertion.
 - 2. Write the AWC register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the AWC register are complete.

	15	14	13	12	11	10	9	8
AWC	1	1	1	1	1	1	1	1
	7	6	5	4	3	2	1	0
	0/1 ^{Note}	0/1 ^{Note}	0/1 ^{Note}	0/1 ^{Note}	AHW1	ASW1	AHW0	ASW0
CSn sigr	nal				C	S1	C	<u>S0</u>
	AHWn		Specifies	insertion of	address h	old wait (n	= 0, 1)	
	0	Not inser	ted					
	1	Inserted						
	ASWn		Specifies i	nsertion of	address se	tup wait (n	= 0, 1)	
	0	Not inser	ted					
	1	Inserted						
		anging the Be sure	e value do to set bit			peration.		

www.DataSheet4U.com

5.7 Idle State Insertion Function

To facilitate interfacing with low-speed memories, one idle state (TI) can be inserted after the T3 state in the bus cycle that is executed for each space selected by \overline{CSn} in the multiplex address/data bus mode. In the separate bus mode, one idle state (TI) can be inserted after the T2 state. By inserting idle states, the data output float delay time of the memory can be secured during read access (an idle state cannot be inserted during write access).

Whether the idle state is to be inserted can be programmed by using the BCC register.

An idle state is inserted for all the areas immediately after system reset.

(1) Bus cycle control register (BCC)

This register can be read or written in 16-bit units. After reset, BCC is set to AAAAH.

- Cautions 1. The internal ROM, internal RAM, and on-chip peripheral I/O areas are not subject to idle state insertion.
 - 2. Write to the BCC register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the BCC register are complete.

15	14	13	12	11	10	9	8
BCC 1	0	1	0	1	0	1	0
7	6	5	4	3	2	1	0
0/1 ^{Note}	0	0/1 ^{Note}	0	BC11	0	BC01	0
CSn signal		Dataon	66140.0	CS1		CS0	
BCn1		Specif	ies inserti	on of idle sta	ate (n = 0	, 1)	
0	Not inse	rted					
1	Inserted						
Note Cl		ne value do e to set bit s				d clear bit	ts 14, 12

5.8 Bus Hold Function

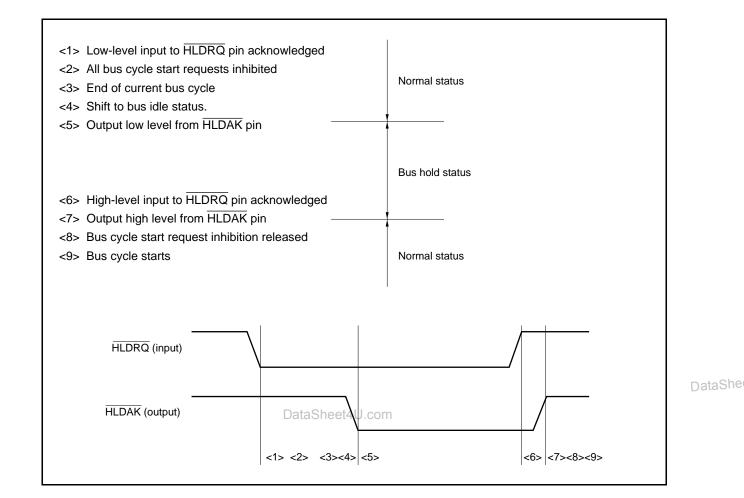
5.8.1 Functional outline

The HLDRQ and HLDAK functions are valid if the PCM2 and PCM3 pins are set to their alternate functions.

When the HLDRQ pin is asserted (low level), indicating that another bus master has requested bus mastership, the external address/data bus goes into a high-impedance state and is released (bus hold status). If the request for the bus mastership is cleared and the HLDRQ pin is deasserted (high level), driving these pins is started again.

During the bus hold period, execution of the program in the internal ROM and internal RAM is continued until a peripheral I/O register or the external memory is accessed.

The bus hold status is indicated by assertion (low level) of the HLDAK pin. The bus hold function enables the configuration of multi-processor type systems in which two or more bus masters exist.


Note that the bus hold request is not acknowledged during a multiple-access cycle initiated by the bus sizing function or a bit manipulation instruction.

Status	Data Bus Width	Access Type	Timing in Which Bus Hold Request Not Acknowledged
CPU bus lock	16 bits	Word access to even address	Between first and second access
		Word access to odd address	Between first and second access
			Between second and third access
		Halfword access to odd address	Between first and second access
	8 bits	Word access	Between first and second access
			Between second and third access
			Between third and fourth access
		Halfword accesset4U.com	Between first and second access
Read-modify-write access of bit manipulation instruction	_	-	Between read access and write access

DataShe

5.8.2 Bus hold procedure

The bus hold status transition procedure is shown below.

5.8.3 Operation in power save mode

Because the internal system clock is stopped in the STOP and IDLE modes, the bus hold status is not entered even if the HLDRQ pin is asserted.

In the HALT mode, the $\overline{\text{HLDAK}}$ pin is asserted as soon as the $\overline{\text{HLDRQ}}$ pin has been asserted, and the bus hold status is entered. When the $\overline{\text{HLDRQ}}$ pin is later deasserted, the $\overline{\text{HLDAK}}$ pin is also deasserted, and the bus hold status is cleared.

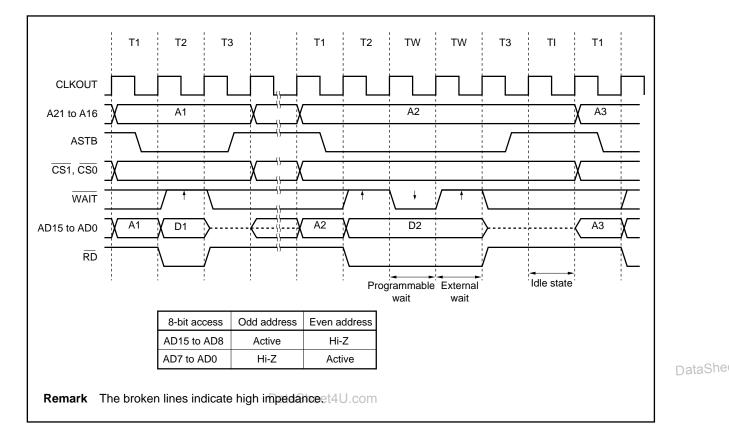
5.9 Bus Priority

Bus hold, instruction fetch (branch), instruction fetch (successive), operand data access, and DMA transfer are executed in the external bus cycle.

Bus hold has the highest priority, followed by DMA transfer, operand data access, instruction fetch (branch), and instruction fetch (successive).

An instruction fetch may be inserted between the read access and write access in a read-modify-write access.

If an instruction is executed for two or more accesses, an instruction fetch and bus hold are not inserted between accesses due to bus size limitations.


Priority	External Bus Cycle	Bus Master
High	Bus hold	External device
↑	DMA transfer	DMAC
	Operand data access	CPU
↓	Instruction fetch (branch)	CPU
Low	Instruction fetch (successive)	CPU

et4U.com

DataShe

DataSheet4U.com

5.10 Bus Timing



Figure 5-5. Multiplex Bus Read Timing (Bus Size: 8 Bits)

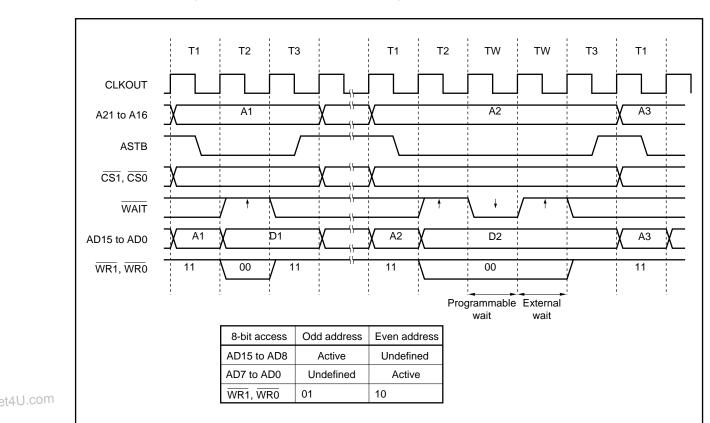
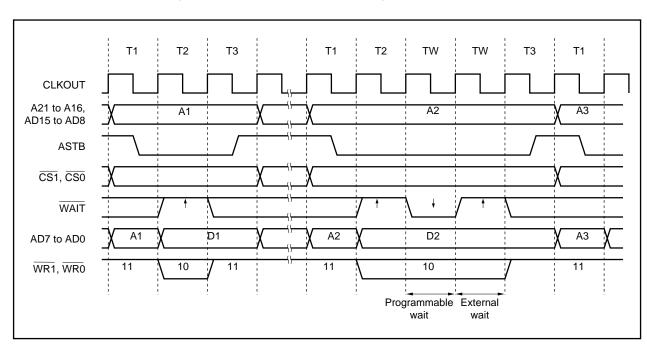



Figure 5-6. Multiplex Bus Write Timing (Bus Size: 16 Bits, 16-Bit Access)

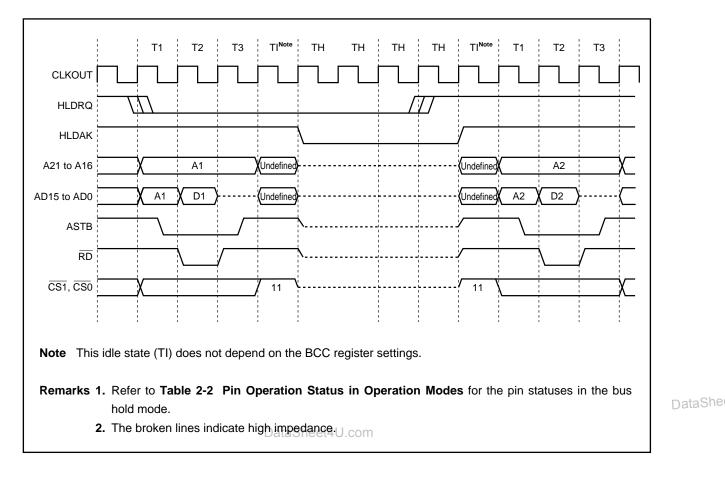
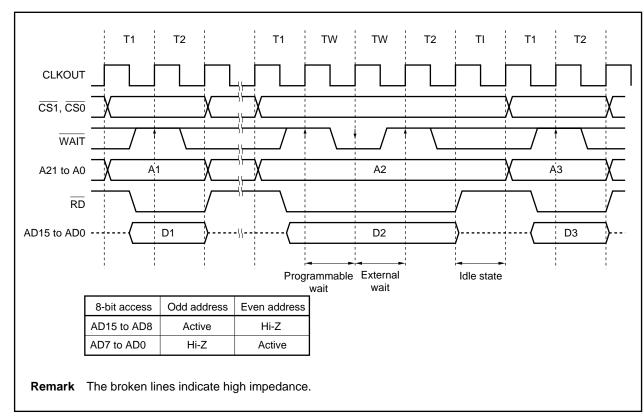

DataShe

Figure 5-7. Multiplex Bus Write Timing (Bus Size: 8 Bits)

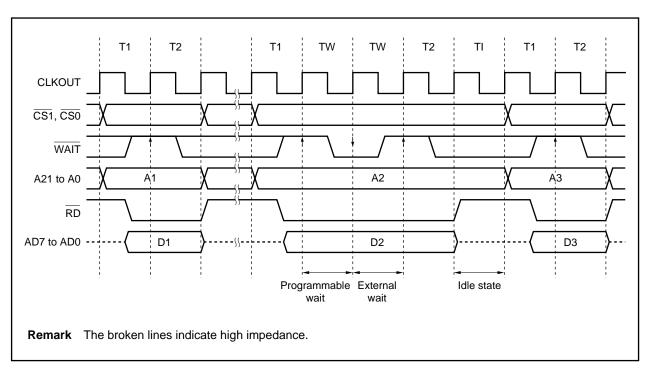
DataSheet4U.com

DataSheet4U.com

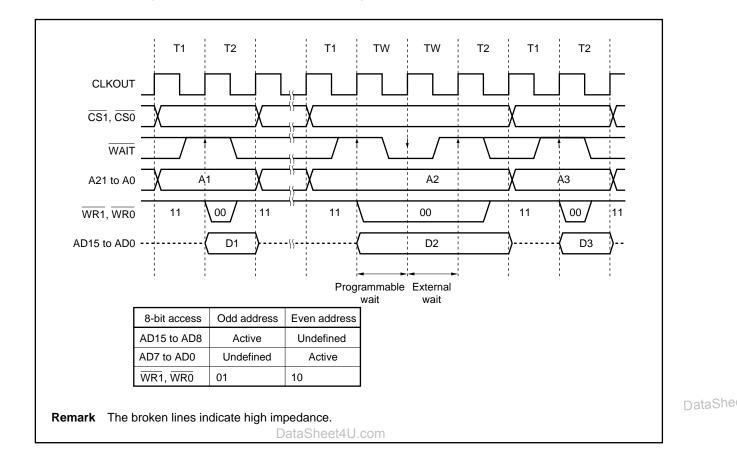


et4U.com

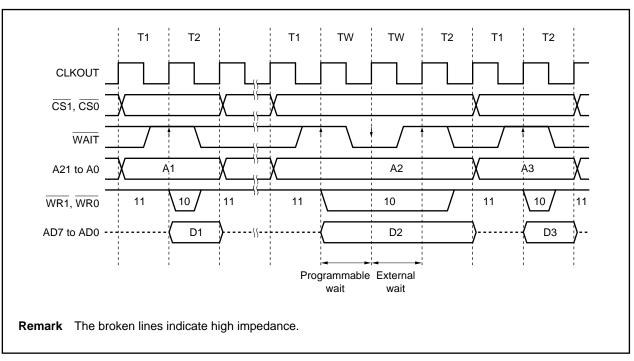
DataSheet4U.com


www.DataSheet4U.com

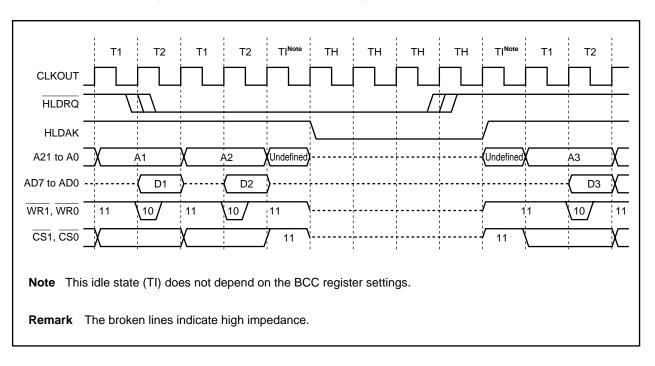
DataShe



DataSheet4U.com


et4U.com

190



DataSheet4U.com

Figure 5-13. Separate Bus Hold Timing (Bus Size: 8 Bits, Write)

et4U.com

Figure 5-14. Address Wait Timing (Separate Bus Read, Bus Size: 16 Bits, 16-Bit Access)

DataSheet4U.com T2 TASW T1 TAHW T2 T1 CLKOUT CLKOUT ASTB ASTB CS1, CS0 CS1, CS0 WAIT WAIT A21 to A0 A21 to A0 A1 Α1 RD RD AD15 to AD0 AD15 to AD0 D1 D1 Remarks 1. TASW (address setup wait): Image of high-level width of T1 state expanded. 2. TAHW (address hold wait): Image of low-level width of T1 state expanded. 3. The broken lines indicate high impedance.

DataShe

DataSheet4U.com

5.11 Cautions

With the external bus function, signals may not be output at the correct timing under the following conditions.

<Operating conditions>

- O Multiplex bus mode
 - <1> CLKOUT asynchronous (2.7 V \leq VDD = EVDD = AVREF0 \leq 5.5 V, 2.7 V \leq BVDD \leq 5.5 V) When 1/fCPU < 84 ns
- O Separate bus mode
 - <1> Read cycle, CLKOUT asynchronous (4.0 V \leq VDD = BVDD = EVDD = AVREF0 \leq 5.5 V) When 1/fCPU < 100 ns
 - <2> Write cycle, CLKOUT asynchronous (4.0 V \leq VDD = BVDD = EVDD = AVREF0 \leq 5.5 V) When 1/fCPU < 60 ns
 - <3> Read cycle, CLKOUT asynchronous (2.7 V \leq Vdd = BVdd = EVdd = AVREF0 \leq 5.5 V) When 1/fcPu < 200 ns
 - <4> Write cycle, CLKOUT asynchronous (2.7 V \leq VDD = BVDD = EVDD = AVREF0 \leq 5.5 V) When 1/fcPU < 100 ns

<Countermeasure>

When used under the above conditions, be sure to insert an address setup/hold wait using the AWC register (n = 0, 1).

et4U.com

O When used in multiplex bus mode and under condition <1>

- 70 ns < 1/fcpu < 84 ns
 Set an address setup wait (ASWn bit = 1).
- 62.5 ns < 1/fcpu < 70 ns

Set an address setup wait (ASWn bit = 1) and address hold wait (AHWn bit = 1).

O When used in separate bus mode and under conditions <1> to <4>

Set an address setup wait (ASWn bit = 1).

DataShe

CHAPTER 6 CLOCK GENERATION FUNCTION

6.1 Overview

The following clock generation functions are available.

- O Main clock oscillator
 - fx = 2 MHz (fxx = 8 MHz, REGC = VDD = 2.7 to 5.5 V, in PLL mode)
 - fx = 2 to 5 MHz (fxx = 8 to 20 MHz, REGC = VDD = 4.5 to 5.5 V, in PLL mode)
 - fx = 2 MHz (fxx = 8 MHz, REGC = capacitor, VDD = 4.0 to 5.5 V, in PLL mode)
 - $f_x = 2 \text{ to } 8^{\text{Note}} \text{ MHz}$ ($f_{xx} = 2 \text{ to } 8^{\text{Note}} \text{ MHz}$, REGC = VDD = 2.7 to 5.5 V, in clock-through mode)
- O Subclock oscillator
 - 32.768 kHz
- O On-chip ring oscillator (Ring-OSC)
 - f_R = 120 to 480 kHz (240 kHz (TYP.))
- O Multiplication (×4) function by PLL (Phase Locked Loop)
 - Clock-through mode/PLL mode selectable
 - Usable voltage: VDD = 2.7 to 5.5 V
- O Internal system clock generation
 - 7 steps (fxx, fxx/2, fxx/4, fxx/8, fxx/16, fxx/32, fxt)
- Operates at fR after the reset signal for the clock monitor is generated upon detection of main clock stop.
- O Peripheral clock generation
- O Clock output function

DataSheet4U.com

Note This value may change after evaluation.

- **Remark** fx: Main clock oscillation frequency
 - fxx: Main clock frequency
 - fR: Ring-OSC clock frequency

et4U.com

DataShe

6.2 Configuration

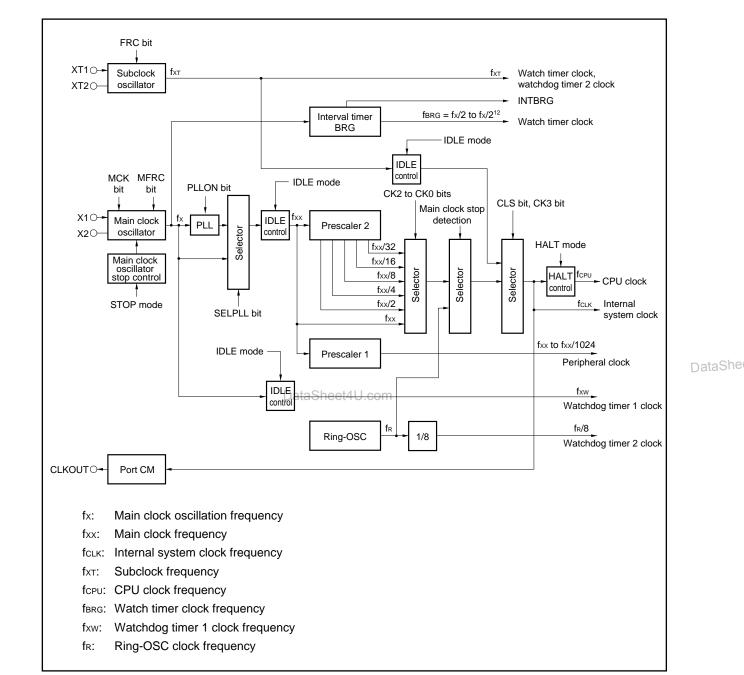


Figure 6-1. Clock Generator

(1) Main clock oscillator

The main clock oscillator oscillates the following frequencies (fx):

- fx = 2 MHz (REGC = V_{DD} = 2.7 to 5.5 V, in PLL mode)
- fx = 2 to 5 MHz (REGC = V_{DD} = 4.5 to 5.5 V, in PLL mode)
- $f_X = 2$ to 8^{Note} MHz (REGC = VDD = 2.7 to 5.5 V, in clock-through mode)

Note This value may change after evaluation.

(2) Subclock oscillator

The subclock oscillator oscillates a frequency of 32.768 kHz (fxr).

(3) Main clock oscillator stop control

This circuit generates a control signal that stops oscillation of the main clock oscillator. Oscillation of the main clock oscillator is stopped in the STOP mode or when the PCC.MCK bit = 1 (valid only when the PCC.CLS bit = 1).

(4) Prescaler 1

(5) Prescaler 2

This prescaler generates the clock (fxx to fxx/1024) to be supplied to the following on-chip peripheral functions: TMP0, TM00 to TM03, TM50, TM51, TMH0, TMH1, CSI00, CSI01, CSIA0, CSIA1, UART0 to UART2, I²C0, ADC, and DAC

4U.com

DataShe

www.DataSheet4U.com

This circuit divides the main clock (fxx).

The clock generated by prescaler 2 (fxx to fxx/32) is supplied to the selector that generates the CPU clock (fcPU) and internal system clock (fcLK).

fcLK is the clock supplied to the INTC, ROM correction, DMA controller, ROM, and RAM blocks, and can be output from the CLKOUT pin.

(6) Interval timer BRG

This circuit divides the clock (fx) generated by the main clock oscillator to a specific frequency (32.768 kHz) and supplies that clock to the watch timer block.

For details, refer to CHAPTER 11 INTERVAL TIMER, WATCH TIMER.

(7) PLL

This circuit multiplies the clock (fx) generated by the main clock oscillator. It operates in two modes: clock-through mode in which fx is output as is, and PLL mode in which a multiplied clock is output. These modes can be selected by using the PLLCTL.SELPLL bit. Operation of the PLL can be started or stopped by the PLLCTL.PLLON bit.

(8) Ring-OSC (on-chip ring oscillator)

The Ring-OSC oscillator oscillates a frequency (fR) of 120 to 480 kHz (240 kHz (TYP.)).

6.3 Registers

(1) Processor clock control register (PCC)

The PCC register is a special register. Data can be written to this register only in combination of specific sequences (refer to **3.4.7 Special registers**).

This register can be read or written in 8-bit or 1-bit units.

After reset, PCC is set to 03H.

PCC	7	<6>	5	<4>	<3>	2	1	0	
100	FRC	MCK	MFRC	CLS ^{Note}	CK3	CK2	CK1	CK0	
	FRC		Use	of subclock	on-chip fe	edback re	sistor		
	0	Used							
	1	Not used							
		1							
	MCK			Control of	main clocl	k oscillator			
	0	Oscillation							
	1	Oscillation		while the sy					
	When the the MCI	ne main clo K bit to 0 ar	ck is stopp nd wait unti	e subclock. ed and the o I the oscillat back to the	levice is o on stabiliz	zation time	n the subcle has been s	ock, clear secured by	
	MFRC		Use	of main cloc	on-chip 1	feedback r	esistor		
		Used							
	0	0000							
	0	Not used							
	1								
	1 CLS ^{Note}	Not used			f CPU clo	ck (fcpu)			
	1	Not used	k operatior		f CPU clo	ck (fcpu)			

СКЗ	CK2	CK1	CK0	Clock selection (fcLk/fcPU)
0	0	0	0	fxx
0	0	0	1	fxx/2
0	0	1	0	fxx/4
0	0	1	1	fxx/8 (default value)
0	1	0	0	fxx/16
0	1	0	1	fxx/32
0	1	1	×	Setting prohibited
1	×	×	×	fхт
o not cha tput.	nge the	CPU cloo	k (by us	sing the CK3 to CK0 bits) while CLI

DataShe

- (a) Example of setting main clock operation \rightarrow subclock operation
 - <1> CK3 bit \leftarrow 1: Use of a bit manipulation instruction is recommended. Do not change the CK2 to CK0 bits.
 - <2> Subclock operation: Read the CLS bit to check if subclock operation has started. It takes the following time after the CK3 bit is set until subclock operation is started.

Max.: 1/fxT (1/subclock frequency)

<3> MCK bit \leftarrow 1: Set the MCK bit to 1 only when stopping the main clock.

Cautions 1. When stopping the main clock, stop the PLL.

2. If the following conditions are not satisfied, change the CK2 to CK0 bits so that the conditions are satisfied, then change to the subclock operation mode.

Main clock (fxx) > Subclock (fxr: 32.768 kHz) × 4

[Description example]

<1>	_SET_SUB_R	UN :		
	st.b	r0, PRCMD[r0]		
	set1	3, PCC[r0]	CK3 bit \leftarrow 1	
<2>	_CHECK_CLS	:		
	tst1	4, PCC[r0]	Wait until subclock operation starts.	
	bz	_CHECK_CLS		DataShee
<3>	_STOP_MAIN	_CLOCK :	Leon	
	st.b	r0, prCMD[r0]	J.com	
	set1	6, PCC[r0]	MCK bit \leftarrow 1, main clock is stopped	

Remark The above description is an example. Note with caution that the CLS bit is read in a closed loop in <2>.

et4U.com

DataSheet4U.com

www.DataSheet4U.com

(b) Example of setting subclock operation \rightarrow main clock operation

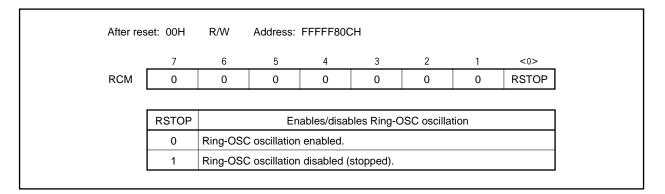
<1>	MCK bit \leftarrow 0:	Main clock starts oscillating	
-----	-------------------------	-------------------------------	--

- <2> Insert waits by the program and wait until the oscillation stabilization time of the main clock elapses.
- <3> CK3 bit \leftarrow 0: Use of a bit manipulation instruction is recommended. Do not change the CK2 to CK0 bits.
- <4> Main clock operation: It takes the following time after the CK3 bit is set until main clock operation is started.

Max.: 1/fxT (1/subclock frequency)

Therefore, insert one NOP instruction immediately after setting the CK3 bit to 0 or read the CLS bit to check if main clock operation has started.

[Description example] <1> _START_MAIN_OSC : -- Release of protection of special registers st.b r0, PRCMD[r0] -- Main clock starts oscillating clr1 6, PCC[r0] <2> movea 0x55, r0, r11 -- Wait for oscillation stabilization time _WAIT_OST : nop nop nop DataShe addi -1, r11, r11 mp r0, r11 DataSheet4U.com _PROGRAM_WAIT bne <3> st.b r0, PRCMD[r0] -- CK3 \leftarrow 0 clr1 3, PCC[r0] <4> _CHECK_CLS : -- Wait until main clock operation starts tst1 4, PCC[r0] bnz _CHECK_CLS


Remark The above description is an example. Note with caution that the CLS bit is read in a closed loop in <4>.

(2) Ring-OSC mode register (RCM)

The RCM register is an 8-bit register that sets the operation mode of the Ring-OSC oscillator. This register can be read or written in 8-bit or 1-bit units. After reset, RCM is cleared to 00H.

Caution The settings of the RCM register differ for a mask ROM version and flash memory version. Refer to CHAPTER 30 MASK OPTION/OPTION BYTE for details.

- Mask ROM version (µPD703313, 703313Y)
 - Valid when "(Ring-OSC) Can be stopped by software" is selected by the mask option.
- Flash memory version (μ PD70F3311, 70F3311Y, 70F3313, 70F3313Y) Valid when RINGSTP is cleared to 0 by the option byte setting.

et4U.com

(3) CPU operation clock status register (CCLS)

The CCLS register indicates the CPU operation clock status. This register is read-only, in 8-bit or 1-bit units. After reset, CCLS is cleared to 00H.

After res	set: 00H	R A	ddress: FF	FFF82EH				
	7	6	5	4	3	2	1	0
CCLS	0	0	0	0	0	0	0	CCLSF
	CCLSF			CPU ope	eration cloo	ck status		
	0	Operates	on main cl	ock (fx) or s	ubclock (fx	ат).		
	1	Operates	on Ring-O	SC (f _R).				

DataShe

6.4 Operation

6.4.1 Operation of each clock

The following table shows the operation status of each clock.

Register Setting and				P	CC Regist	er			
Operation Status	CLS bit = MCK bit =					CLS bit = MCK bit =	,	CLS bit = MCK bit =	
Target Clock	During reset	During oscillation stabilization time count	HALT mode	IDLE mode	STOP mode	Subclock mode	Sub-IDLE mode	Subclock mode	Sub-IDLE mode
Main clock oscillator (fx)	×	0	0	0	×	0	0	×	×
Subclock oscillator (fxT)	0	0	0	0	0	0	0	0	0
CPU clock (fcpu)	×	×	×	×	×	0	×	0	×
Internal system clock (fclk)	×	×	0	×	×	0	×	0	×
Peripheral clock (fxx to fxx/1024)	×	×	0	×	×	0	×	×	×
WT clock (main)	×	0	0	0	×	0	0	×	×
WT clock (sub)	0	0	0	0	0	0	0	0	0
WDT1 clock (fxw)	×	0	0	0	×	0	0	×	×
WDT2 clock (Ring-OSC)	×	0	0	0	0	0	0	0	0
WDT2 clock (sub)	0	0	0	0	0	0	0	0	0

Table 6-1. Operation Status of Each Clock

DataShe

et4U.com

Remark O: Operable

DataSheet4U.com

×: Stopped

6.4.2 Clock output function

The clock output function is used to output the internal system clock (fcLK) from the CLKOUT pin.

The internal system clock (fcLK) is selected by using the PCC.CK3 to PCC.CK0 bits.

The CLKOUT pin functions alternately as the PCM1 pin and functions as a clock output pin if so specified by the control register of port CM.

The status of the CLKOUT pin is the same as the internal system clock in Table 6-1 and the pin can output the clock when it is in the operable status. It outputs a low level in the stopped status. However, the port mode (PCM1: input mode) is selected until the CLKOUT pin output is set after reset. Consequently, the CLKOUT pin goes into a high-impedance state.

6.4.3 External clock input function

An external clock can be directly input to the oscillator. Input the clock to the X1 pin and its inverse signal to the X2 pin. Set the PCC.MFRC bit to 1 (on-chip feedback resistor not used). Note, however, that oscillation stabilization time is inserted even in the external clock mode. Connect Vbb directly to the REGC pin.

6.5 PLL Function

6.5.1 Overview

The PLL function is used to output the operating clock of the CPU and peripheral macro at a frequency 4 times higher than the oscillation frequency, and select the clock-through mode.

When PLL function is used:Input clock = 2 to 5 MHz (fxx: 8 to 20 MHz)Clock-through mode:Input clock = 2 to 10 MHz (fxx: 2 to 10 MHz)

6.5.2 Register

(1) PLL control register (PLLCTL)

The PLLCTL register is an 8-bit register that controls the security function of PLL and RTO. This register can be read or written in 8-bit or 1-bit units. After reset, PLLCTL is set to 01H.

PLLCTL 0 0 0 0 RTOSTO ^{Note} SELPLL PLLON PLLON PLLON 0 PLL stopped
com
CON
1 PLL operating ta Sheet 4U.com
SELPLL PLL clock selection register
0 Clock-through operation
1 PLL operation

203

6.5.3 Usage

(1) When PLL is used

- After reset has been released, the PLL operates (PLLCTL.PLLON bit = 1), but because the default mode is the clock-through mode (PLLCTL.SELPLL bit = 0), select the PLL mode (SELPLL bit = 1).
- To set the STOP mode in which the main clock is stopped, or to set the IDLE mode, first select the clockthrough mode and then stop the PLL. To return from the IDLE or STOP mode, first enable PLL operation (PLLON bit = 1), and then select the PLL mode (SELPLL bit = 1).
- To enable the PLL operation, first set the PLLON bit to 1, wait for 200 μs, and then set the SELPLL bit to 1.
 To stop the PLL, first select the clock-through mode (SELPLL bit = 0), wait for 8 clocks or more, and then stop the PLL (PLLON bit = 0).

(2) When PLL is not used

- The clock-through mode (SELPLL bit = 0) is selected after reset has been released, but the PLL is operating (PLLON bit = 1) and must therefore be stopped (PLLON bit = 0).
- **Remark** The PLL is operable in the IDLE mode. To realize low power consumption, stop the PLL. Be sure to stop the PLL when shifting to the STOP mode.

et4U.com

DataShe

DataSheet4U.com

CHAPTER 7 16-BIT TIMER/EVENT COUNTER P (TMP)

Timer P (TMP) is a 16-bit timer/event counter. The V850ES/KG1+ incorporates TMP0.

7.1 Overview

An outline of TMP0 is shown below.

- Clock selection: 8 ways
- Capture trigger input pins: 2
- External event count input pins: 1
- External trigger input pins: 1
- Timer/counters: 1
- Capture/compare registers: 2
- Capture/compare match interrupt request signals: 2
- Timer output pins: 2

7.2 Functions

TMP0 has the following functions.

• Interval timer

DataSheet4U.com

- External trigger pulse output
- One-shot pulse output

• External event counter

- PWM output
- Free-running timer
- Pulse width measurement

et4U.com

DataShe

7.3 Configuration

TMP0 includes the following hardware.

Table 7-1.	Configuration of TMP0
------------	-----------------------

Item	Configuration
Timer register	16-bit counter
Registers	TMP0 capture/compare registers 0, 1 (TP0CCR0, TP0CCR1) TMP0 counter read buffer register (TP0CNT) CCR0, CCR1 buffer registers
Timer inputs	2 (TIP00 ^{Note} , TIP01 pins)
Timer outputs	2 (TOP00, TOP01 pins)
Control registers	TMP0 control registers 0, 1 (TP0CTL0, TP0CTL1) TMP0 I/O control registers 0 to 2 (TP0IOC0 to TP0IOC2) TMP0 option registers 0, 1 (TP0OPT0, TP0OPT1)

Note The TIP00 pin functions alternately as a capture trigger input signal, external event count input signal, and external trigger input signal.

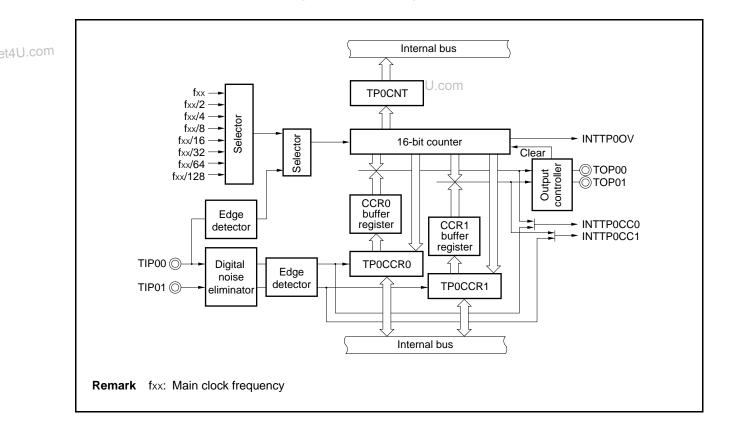


Figure 7-1. Block Diagram of TMP0

DataSheet4U.com

DataShe

(1) 16-bit counter

This 16-bit counter can count internal clocks or external events.

The count value of this counter can be read by using the TP0CNT register.

When the TP0CTL0.TP0CE bit = 0, the value of the 16-bit counter is FFFFH. If the TP0CNT register is read at this time, 0000H is read.

Reset input clears the TP0CE bit to 0. Therefore, the 16-bit counter is set to FFFFH.

(2) CCR0 buffer register

This is a 16-bit compare register that compares the count value of the 16-bit counter.

When the TP0CCR0 register is used as a compare register, the value written to the TP0CCR0 register is transferred to the CCR0 buffer register. When the count value of the 16-bit counter matches the value of the CCR0 buffer register, a compare match interrupt request signal (INTTP0CC0) is generated.

The CCR0 buffer register cannot be read or written directly.

The CCR0 buffer register is cleared to 0000H after reset, as the TP0CCR0 register is cleared to 0000H.

(3) CCR1 buffer register

This is a 16-bit compare register that compares the count value of the 16-bit counter.

When the TP0CCR1 register is used as a compare register, the value written to the TP0CCR1 register is transferred to the CCR1 buffer register. When the count value of the 16-bit counter matches the value of the CCR1 buffer register, a compare match interrupt request signal (INTTP0CC1) is generated.

The CCR1 buffer register cannot be read or written directly.

The CCR1 buffer register is cleared to 0000H after reset, as the TP0CCR1 register is cleared to 0000H.

DataShe

(4) Edge detector

This circuit detects the valid edges input to the TIP00 and TIP01 pins. No edge, rising edge, falling edge, or both the rising and falling edges can be selected as the valid edge by using the TP0IOC1 and TP0IOC2 registers.

(5) Output controller

This circuit controls the output of the TOP00 and TOP01 pins. The output controller is controlled by the TP0IOC0 register.

(6) Selector

This selector selects the count clock for the 16-bit counter. Eight types of internal clocks or an external event can be selected as the count clock.

(7) Digital noise eliminator

This circuit is valid only when the TIP00 and TIP01 pins are used as a capture trigger input pin. This circuit is controlled by the P0NFC and P1NFC registers.

7.4 Registers

(1) TMP0 control register 0 (TP0CTL0)

The TP0CTL0 register is an 8-bit register that controls the operation of TMP0.

This register can be read or written in 8-bit or 1-bit units.

Reset input clears this register to 00H.

The same value can always be written to the TP0CTL0 register by software.

		<7>	6	5	4	3	2	1	0					
TPO	СТL0	TP0CE	0	0	0	0	TP0CKS2	TP0CKS1	TP0CKS0					
	7	TP0CE	TMP0 operation control											
		0	TMP0 operation disabled (TMP0 reset asynchronously ^{Note}).											
	L	1 TMP0 operation enabled. TMP0 operation started.												
	Т	P0CKS2	2 TP0CKS1 TP0CKS0 Internal count clock selection											
		0	0	0	fxx									
		0	0	1	fxx/2									
		0	1	0	fxx/4									
m		0	1	1	fxx/8									
		1	0	0	fxx/16	HLeom								
		1	0	1 Da	fxx/32	ro.com								
		1	1	0	fxx/64									
		1	1	1	fxx/128									

www.DataSheet4U.com

Г

(2) TMP0 control register 1 (TP0CTL1)

The TP0CTL1 register is an 8-bit register that controls the operation of TMP0. This register can be read or written in 8-bit or 1-bit units.

Reset input clears this register to 00H.

					ł				
TRACT		<6>	<5>	4	3	2	1		
TPOCTI	L1 0	TP0EST	TP0EEE	0	0	TP0MD2	TP0MD1	TP0MD0	
	TP0EST			Softwa	are trigge	r control			
	0				_				
	1	 In one-s 		utput mode	e: A one- 1 to the t mode: /	er input. shot pulse is POEST bi A PWM wave writing 1 to th rigger.	t as the trig eform is out	ger. tput with	
	TPOEEE			Coun	t clock se	election			
	0	(Perform	peration witl counting wit L0.TP0CK2	h external	event cou		e TP0CTL0	.ТРОСКО	
com	1		peration with counting at			int input. e external ev	ent count i	nput	Da
			ects whethe the external			ned with the	internal co	unt clock	
	TP0MD2	TP0MD1	TP0MD0		Tim	ner mode sel	ection		
	0	0	0	Interval t	imer moo	le			
	0	0	1	External	event co	unt mode			
	0	1	0	External	trigger p	ulse output n	node		
	0	1	1	One-sho	t pulse ou	utput mode			
	1	0	0	PWM ou	tput mod	e			
	1	0	1	Free-run	ning time	r mode			
	1	1	0	Pulse wi	dth meas	urement mo	de		
	1	1	1	Setting p	rohibited				
	Cautions	mod to th 2. Exte mod 3. Set TP00 perfe	le or one- nis bit is ig ernal even le regardie the TPO CTL0.TPO CE bit = 1 ormed wi	shot puls gnored. at count ess of the 0EEE a 0EEE a CE bit = 1.) The c th the T	input is value nd TP 0. (The pperatio	ut mode. s selected of the TP0I 0MD2 to e same va on is not g bit = 1.	In any ot in the ex EEE bit. TP0MD0 lue can b uarantee If rewritin	igger pulse output her mode, writing 1 sternal event count 0 bits when the be written when the d when rewriting is ng was mistakenly he bits again.	
		-	sure to cle				inen set t	ne bits again.	

٦

Г

(3) TMP0 I/O control register 0 (TP0IOC0)

The TP0IOC0 register is an 8-bit register that controls the timer output (TOP00, TOP01 pins). This register can be read or written in 8-bit or 1-bit units.

Reset input clears this register to 00H.

	7	6	5	4	3	<2>	1	<0>							
TPOIOCO	0	0	0	0	TP0OL1	TP0OE1	TP0OL0	TP0OE0							
	TP0OL1				oin output le	vel setting									
	0		pin output i												
	1	TOP01	TOP01 pin output inversion enabled												
	TP0OE1	TOP01 pin output setting													
	0	When T	tput disable FP0OL1 bit FP0OL1 bit	= 0: Low l	evel is outpu evel is outp	ut from the ut from the	TOP01 pin TOP01 pir	1							
	1	Timer ou	tput enable	ed (a squar	e wave is o	utput from	the TOP01	pin).							
	TP0OL0			TOP00 p	oin output le	vel settina									
com	0	TOP00	pin output i		•	<u> </u>									
	1		pin output i												
		DataSheet4U.com													
	TP0OE0	DE0 TOP00 pin output setting													
	0	When		= 0: Low l	evel is outpo evel is outp										
	1	1 Timer output enabled (a square wave is output from the TOP00 pin).													

www.DataSheet4U.com

٦

DataSheet4U.com

(4) TMP0 I/O control register 1 (TP0IOC1)

The TP0IOC1 register is an 8-bit register that controls the valid edge of the capture trigger input signals (TIP00, TIP01 pins).

This register can be read or written in 8-bit units.

Reset input clears this register to 00H.

	7	6	5	4	3	2	1	0	
TPOIC		0	0	0	TP0IS3	TP0IS2	TP0IS1	TP0IS0	
		1	1	1	1				
	TP0IS3	TP0IS2	Captur	e trigger in	put signal (⁻	TIP01 pin)	valid edge	setting	
	0	0	No edge	detection (capture ope	eration inva	lid)		
	0	1	Detection	of rising e	dge				
	1	0	Detection	of falling	edge				
	1	1	Detection	of both ec	lges				
		1	1						
	TP0IS1	TP0IS0	-		put signal (-	setting	
	0	0	-		capture ope	eration inva	lid)		
	0	1		of rising e	0				
n	1	0		of falling	•				
	1	1	Detection	of both ec	iges				
	Caution	whe	CTL0.TP(n the TF ormed, c	DCE bit =	3 to 0. (The = 1.) If	rewritin	lue can l g was m	hen the be written histakenly ht the bits	
		runı moc	ning time	r mode	and the	pulse w	idth mea	the free- surement on is not	

(5) TMP0 I/O control register 2 (TP0IOC2)

The TP0IOC2 register is an 8-bit register that controls the valid edge of the external event count input signal (TIP00 pin) and external trigger input signal (TIP00 pin).

This register can be read or written in 8-bit or 1-bit units.

Reset input clears this register to 00H.

Cautions 1. Rewrite the TP0EES1, TP0EES0, TP0ETS1, and TP0ETS0 bits when the TP0CTL0.TP0CE bit = 0. (The same value can be written when the TP0CE bit = 1.) If rewriting was mistakenly performed, clear the TP0CE bit to 0 and then set the bits again. 2. The TP0EES1 and TP0EES0 bits are valid only when the	After	reset: 00H	R/W	Address: I	FFFF5A4	н									
TPOEES1 TPOEES0 External event count input signal (TIP00 pin) valid edge setting 0 0 No edge detection (external event count invalid) 0 1 Detection of rising edge 1 0 Detection of falling edge 1 1 Detection of both edges TPOETS1 TPOETS0 External trigger input signal (TIP00 pin) valid edge setting 0 0 No edge detection (external trigger invalid) 0 1 Detection of rising edge 1 0 No edge detection (external trigger invalid) 0 1 Detection of rising edge 1 0 Detection of falling edge 1 1 Detection of both edges Cautions 1. Rewrite the TPOEES1, TPOEES0, TPOETS1, and TPOETS0 bits when the TPOCE bit = 0. (The same value can be written when the TPOCE bit = 1.) If rewriting was mistakenly performed, clear the TPOCE bit to 0 and then set the bits again.		7	6	5	4	3	2	1	0						
0 0 No edge detection (external event count invalid) 0 1 Detection of rising edge 1 0 Detection of falling edge 1 1 Detection of both edges TPOETS1 TPOETS0 External trigger input signal (TIP00 pin) valid edge setting 0 0 No edge detection (external trigger invalid) 0 1 Detection of rising edge 1 0 Detection of falling edge 1 0 Detection of falling edge 1 1 Detection of both edges Cautions 1. Rewrite the TPOEES1, TP0EES0, TP0ETS1, and TP0ETS0 bits when the TP0CE bit = 0. (The same value can be written when the TP0CE bit = 1.) If rewriting was mistakenly performed, clear the TP0CE bit to 0 and then set the bits again. 2. The TP0EES1 and TP0EES0 bits are valid only when the	TP0IOC2	2 0	0	0	0	TP0EES1	TP0EES0	TP0ETS1	TP0ETS0						
0 0 No edge detection (external event count invalid) 0 1 Detection of rising edge 1 0 Detection of falling edge 1 1 Detection of both edges TPOETS1 TPOETS0 External trigger input signal (TIP00 pin) valid edge setting 0 0 No edge detection (external trigger invalid) 0 1 Detection of rising edge 1 0 Detection of falling edge 1 0 Detection of falling edge 1 1 Detection of both edges Cautions 1. Rewrite the TP0EES1, TP0EES0, TP0ETS1, and TP0ETS0 bits when the TP0CE bit = 0. (The same value can be written when the TP0CE bit = 1.) If rewriting was mistakenly performed, clear the TP0CE bit to 0 and then set the bits again. 2. The TP0EES1 and TP0EES0 bits are valid only when the															
0 1 Detection of rising edge 1 0 Detection of falling edge 1 1 Detection of both edges 1 1 Detection of both edges 0 0 No edge detection (external trigger invalid) 0 1 Detection of rising edge 1 0 Detection of rising edge 1 0 Detection of rising edge 1 0 Detection of falling edge 1 1 Detection of both edges Cautions 1. Rewrite the TP0EES1, TP0EES0, TP0ETS1, and TP0ETS0 bits when the TP0CELD.TP0CE bit = 0. (The same value can be written when the TP0CE bit = 0. (The same value can be written when the TP0CE bit = 1.) If rewriting was mistakenly performed, clear the TP0CE bit to 0 and then set the bits again. 2. The TP0EES1 and TP0EES0 bits are valid only when the		TP0EES1	TP0EES0	External e	event count	input signa	al (TIP00 pi	n) valid ed	ge setting						
1 0 Detection of falling edge 1 1 Detection of falling edge 1 1 Detection of both edges TPOETS1 TPOETS0 External trigger input signal (TIP00 pin) valid edge setting 0 0 No edge detection (external trigger invalid) 0 1 Detection of rising edge 1 0 Detection of falling edge 1 1 Detection of both edges Cautions 1. Rewrite the TPOEES1, TPOEES0, TPOETS1, and TPOETS0 bits when the TPOCEL bit = 0. (The same value can be written when the TPOCE bit = 1.) If rewriting was mistakenly performed, clear the TPOCE bit to 0 and then set the bits again. 2. The TPOEES1 and TPOEES0 bits are valid only when the		0	0	No edge											
1 1 Detection of both edges 1 1 Detection of both edges 0 0 No edge detection (external trigger invalid) 0 1 Detection of rising edge 1 0 Detection of falling edge 1 1 Detection of falling edge 1 1 Detection of both edges Cautions 1. Rewrite the TP0EES1, TP0EES0, TP0ETS1, and TP0ETS0 bits when the TP0CTL0.TP0CE bit = 0. (The same value can be written when the TP0CE bit = 1.) If rewriting was mistakenly performed, clear the TP0CE bit to 0 and then set the bits again. 2. The TP0EES1 and TP0EES0 bits are valid only when the		0	1	Detection	Detection of rising edge										
TPOETS1 TPOETS0 External trigger input signal (TIP00 pin) valid edge setting 0 0 No edge detection (external trigger invalid) 0 1 Detection of rising edge 1 0 Detection of falling edge 1 1 Detection of both edges Cautions 1. Rewrite the TPOEES1, TPOEES0, TPOETS1, and TPOETS0 bits when the TPOCTL0.TPOCE bit = 0. (The same value can be written when the TPOCE bit = 1.) If rewriting was mistakenly performed, clear the TPOCE bit to 0 and then set the bits again. 2. The TPOEES1 and TPOEES0 bits are valid only when the		1 0 Detection of falling edge													
0 0 No edge detection (external trigger invalid) 0 1 Detection of rising edge 1 0 Detection of falling edge 1 1 Detection of both edges Cautions 1. Rewrite the TP0EES1, TP0EES0, TP0ETS1, and TP0ETS0 bits when the TP0CTL0.TP0CE bit = 0. (The same value can be written when the TP0CE bit = 1.) If rewriting was mistakenly performed, clear the TP0CE bit to 0 and then set the bits again. 2. The TP0EES1 and TP0EES0 bits are valid only when the		1													
0 0 No edge detection (external trigger invalid) 0 1 Detection of rising edge 1 0 Detection of falling edge 1 1 Detection of both edges Cautions 1. Rewrite the TP0EES1, TP0EES0, TP0ETS1, and TP0ETS0 bits when the TP0CTL0.TP0CE bit = 0. (The same value can be written when the TP0CE bit = 1.) If rewriting was mistakenly performed, clear the TP0CE bit to 0 and then set the bits again. 2. The TP0EES1 and TP0EES0 bits are valid only when the															
0 1 Detection of rising edge 1 0 Detection of falling edge 1 1 Detection of both edges Cautions 1. Rewrite the TP0EES1, TP0EES0, TP0ETS1, and TP0ETS0 bits when the TP0CTL0.TP0CE bit = 0. (The same value can be written when the TP0CE bit = 1.) If rewriting was mistakenly performed, clear the TP0CE bit to 0 and then set the bits again. 2. The TP0EES1 and TP0EES0 bits are valid only when the		TP0ETS1	TP0ETS1 TP0ETS0 External trigger input signal (TIP00 pin) valid edge setting												
1 0 Detection of falling edge 1 1 Detection of both edges DataSheet4U.com Cautions 1. Rewrite the TP0EES1, TP0EES0, TP0ETS1, and TP0ETS0 bits when the TP0CTL0.TP0CE bit = 0. (The same value can be written when the TP0CE bit = 0. (The same value can be written when the TP0CE bit = 1.) If rewriting was mistakenly performed, clear the TP0CE bit to 0 and then set the bits again. 2. The TP0EES1 and TP0EES0 bits are valid only when the		0	0	No edge	detection (external trig	gger invalid)							
1 1 Detection of both edges DataSheet4U.com Cautions 1. Rewrite the TP0EES1, TP0EES0, TP0ETS1, and TP0ETS0 bits when the TP0CTL0.TP0CE bit = 0. (The same value can be written when the TP0CE bit = 0. (The same value can be written when the TP0CE bit = 1.) If rewriting was mistakenly performed, clear the TP0CE bit to 0 and then set the bits again. 2. The TP0EES1 and TP0EES0 bits are valid only when the		0	1	Detection	n of rising e	dge									
Cautions 1. Rewrite the TP0EES1, TP0EES0, TP0ETS1, and TP0ETS0 bits when the TP0CTL0.TP0CE bit = 0. (The same value can be written when the TP0CE bit = 1.) If rewriting was mistakenly performed, clear the TP0CE bit to 0 and then set the bits again. 2. The TP0EES1 and TP0EES0 bits are valid only when the		1	0	Detection	n of falling e	edge									
bits when the TP0CTL0.TP0CE bit = 0. (The same value can be written when the TP0CE bit = 1.) If rewriting was mistakenly performed, clear the TP0CE bit to 0 and then set the bits again. 2. The TP0EES1 and TP0EES0 bits are valid only when the	J.com	1	1	Detection	n of both ea	lges									
mode (TP0CTL1.TP0EEE bit = 1 of when the external event count mode (TP0CTL1.TP0MD2 to TP0CTL1.TP0MD0 bits = 001)		Caution	bits can mist set t 2. The TP0	when th be writte takenly p the bits a TP0EES CTL1.TP0	e TP0CT en when erformed gain. 1 and TF DEEE bit	L0.TP0CE the TP0C I, clear th P0EES0 bi = 1 or wh	E bit = 0. E bit = 1. e TP0CE its are va en the ex	(The sa) If rewr bit to 0 Ilid only ternal eve	me value iting was and then when the ent count						

www.DataSheet4U.com

(6) TMP0 option register 0 (TP0OPT0)

The TP0OPT0 register is an 8-bit register used to set the capture/compare operation and detect an overflow. This register can be read or written in 8-bit or 1-bit units. Reset input clears this register to 00H.

	-	7	6	5	4	3	2	1	<0>	
٦	ГРООРТО	0	0	TP0CCS1	TP0CCS0	0	0	0	TP00VF	
	г									
		TP0CCS1			R1 register	capture/c	compare se	election		
	-	0		re register se						
	F	1	•	e register sele						
	L	Ine IPU		t setting is val	d only in the	e free-run	ning timer	mode.		
	Г									
		rpoccso	0		R0 register	capture/c	compare se	election		
	F	0		re register se						
	F	-	•	e register sele t setting is val		free-run	ning timer	mode		
	L		5000 bit	setting is var				moue.		
	Г	тро	OVF			flow data	ation floo			
m	ŀ		OVF	Overflow	TMP0 over	now dete	ection hag			
	-	Set (1) Reset (0)			bit/0 written			bit – 0		
	-	()		t is reset when					from	
		FFFFH		in the free-ru						
		mode.An inter	rupt requ	uest signal (IN	ITTP0OV) is	generat	ed at the sa	ame time	that the	
				et to 1. The II						
		The TP	00VF bit	t is not cleare	d even wher	the TP0				
		0		I when the TP t can be both			the TP00\	/F bit can	not be set	
							operation			

(7) TMP0 capture/compare register 0 (TP0CCR0)

The TP0CCR0 register can be used as a capture register or a compare register depending on the mode. This register can be used as a capture register or a compare register only in the free-running timer mode, depending on the setting of the TP0OPT0.TP0CCS0 bit. In the pulse width measurement mode, the TP0CCR0 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TP0CCR0 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset input clears this register to 0000H.

Caution Accessing the TP0CCR0 register is disabled during subclock operation with the main clock stopped. For details, refer to 3.4.8 (2).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TPOCCR0	After res	set: C	000H	F	R/W	Ad	dress	: FFF	FF5A	A6H							
TPOCCR0		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TP0CCR0																

et4U.com

DataShe

DataSheet4U.com

(a) Function as compare register

The TP0CCR0 register can be rewritten even when the TP0CTL0.TP0CE bit = 1.

The set value of the TP0CCR0 register is transferred to the CCR0 buffer register. When the value of the 16-bit counter matches the value of the CCR0 buffer register, a compare match interrupt request signal (INTTP0CC0) is generated. If TOP00 pin output is enabled at this time, the output of the TOP00 pin is inverted.

When the TP0CCR0 register is used as a cycle register in the interval timer mode, external event count mode, external trigger pulse output mode, one-shot pulse output mode, or PWM output mode, the value of the 16-bit counter is cleared (0000H) if its count value matches the value of the CCR0 buffer register.

(b) Function as capture register

When the TP0CCR0 register is used as a capture register in the free-running timer mode, the count value of the 16-bit counter is stored in the TP0CCR0 register if the valid edge of the capture trigger input pin (TIP00 pin) is detected. In the pulse width measurement mode, the count value of the 16-bit counter is stored in the TP0CCR0 register and the 16-bit counter is cleared (0000H) if the valid edge of the capture trigger input pin (TIP00 pin) is detected.

Even if the capture operation and reading the TP0CCR0 register conflict, the correct value of the TP0CCR0 register can be read.

The following table shows the functions of the capture/compare register in each mode, and how to write data to the compare register.

Table 7-2. Function of Capture/Compare Register in Each Mode and How to Write Compare Register

Operation Mode	Capture/Compare Register	How to Write Compare Register
Interval timer	Compare register	Anytime write
External event counter	Compare register	Anytime write
External trigger pulse output	Compare register	Batch write
One-shot pulse output	Compare register	Anytime write
PWM output	Compare register	Batch write
Free-running timer	Capture/compare register	Anytime write
Pulse width measurement	Capture register	-

(8) TMP0 capture/compare register 1 (TP0CCR1)

The TP0CCR1 register can be used as a capture register or a compare register depending on the mode. This register can be used as a capture register or a compare register only in the free-running timer mode, depending on the setting of the TP0OPT0.TP0CCS1 bit. In the pulse width measurement mode, the TP0CCR1 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TP0CCR1 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset input clears this register to 0000H.

Caution Accessing the TP0CCR1 register is disabled during subclock operation with the main clock stopped. For details, refer to 3.4.8 (2).

After re	eset: C	000H	F	۲/W	Ad	dress	: FFF	FF5A	N8H							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TP0CCR1																

et4U.com

DataShe

DataSheet4U.com

(a) Function as compare register

The TP0CCR1 register can be rewritten even when the TP0CTL0.TP0CE bit = 1.

The set value of the TP0CCR1 register is transferred to the CCR1 buffer register. When the value of the 16-bit counter matches the value of the CCR1 buffer register, a compare match interrupt request signal (INTTP0CC1) is generated. If TOP01 pin output is enabled at this time, the output of the TOP01 pin is inverted.

(b) Function as capture register

When the TP0CCR1 register is used as a capture register in the free-running timer mode, the count value of the 16-bit counter is stored in the TP0CCR1 register if the valid edge of the capture trigger input pin (TIP01 pin) is detected. In the pulse width measurement mode, the count value of the 16-bit counter is stored in the TP0CCR1 register and the 16-bit counter is cleared (0000H) if the valid edge of the capture trigger input pin (TIP01 pin) is detected.

Even if the capture operation and reading the TP0CCR1 register conflict, the correct value of the TP0CCR1 register can be read.

The following table shows the functions of the capture/compare register in each mode, and how to write data to the compare register.

Operation Mode	Capture/Compare Register	How to Write Compare Register
Interval timer	Compare register	Anytime write
External event counter	Compare register	Anytime write
External trigger pulse output	Compare register	Batch write
One-shot pulse output	Compare register	Anytime write
PWM output	Compare register	Batch write
Free-running timer	Capture/compare register	Anytime write
Pulse width measurement	Capture register	_

Table 7-3. Function of Capture/Compare Register in Each Mode and How to Write Compare Register

et4U.com

(9) TMP0 counter read buffer register (TP0CNT)

The TP0CNT register is a read buffer register that can read the count value of the 16-bit counter. If this register is read when the TP0CTL0.TP0CE bit = 1, the count value of the 16-bit timer can be read. This register is read-only, in 16-bit units.

The value of the TP0CNT register is cleared to 0000H when the TP0CE bit = 0. If the TP0CNT register is read at this time, the value of the 16-bit counter (FFFFH) is not read, but 0000H is read.

The value of the TP0CNT register is cleared to 0000H after reset, as the TP0CE bit is cleared to 0.

Caution Accessing the TP0CNT register is disabled during subclock operation with the main clock stopped. For details, refer to 3.4.8 (2).

After res	set: 0	000H	F	2	Addre	ss: F	FFFF	5AAH	4							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TP0CNT																

et4U.com

DataShe

DataSheet4U.com

7.5 Operation

TMP0 can perform the following operations.

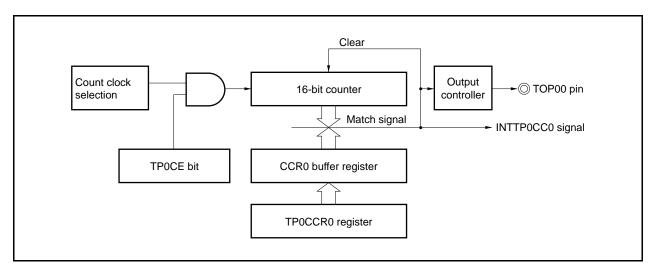
Operation	TP0CTL1.TP0EST Bit (Software Trigger Bit)	TIP00 Pin (External Trigger Input)	Capture/Compare Register Setting	Compare Register Write
Interval timer mode	Invalid	Invalid	Compare only	Anytime write
External event count mode ^{Note 1}	Invalid	Invalid	Compare only	Anytime write
External trigger pulse output mode ^{Note 2}	Valid	Valid	Compare only	Batch write
One-shot pulse output mode ^{Note 2}	Valid	Valid	Compare only	Anytime write
PWM output mode	Invalid	Invalid	Compare only	Batch write
Free-running timer mode	Invalid	Invalid	Switching enabled	Anytime write
Pulse width measurement mode ^{Note 2}	Invalid	Invalid	Capture only	Not applicable

Notes 1. To use the external event count mode, specify that the valid edge of the TIP00 pin capture trigger input is not detected (by clearing the TP0IOC1.TP0IS1 and TP0IOC1.TP0IS0 bits to "00").

2. When using the external trigger pulse output mode, one-shot pulse output mode, and pulse width measurement mode, select the internal clock as the count clock (by clearing the TP0CTL1.TP0EEE bit to 0).

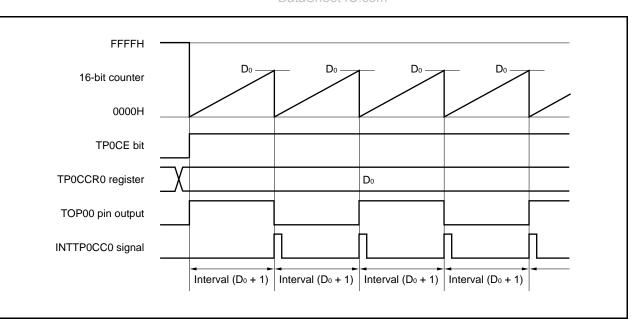
et4U.com

DataSheet4U.com


DataSheet4U.com

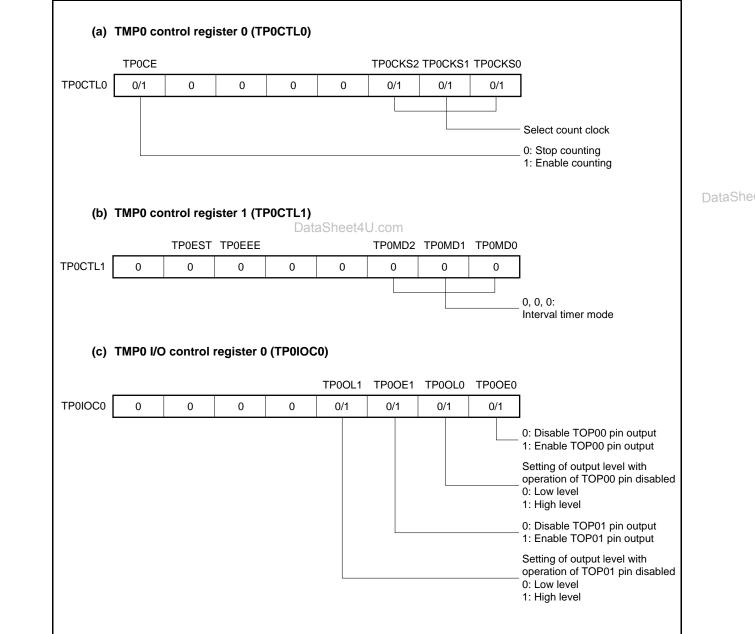
7.5.1 Interval timer mode (TP0MD2 to TP0MD0 bits = 000)

In the interval timer mode, an interrupt request signal (INTTP0CC0) is generated at the specified interval if the TP0CTL0.TP0CE bit is set to 1. A square wave whose half cycle is equal to the interval can be output from the TOP00 pin.


Usually, the TP0CCR1 register is not used in the interval timer mode.

et4U.com

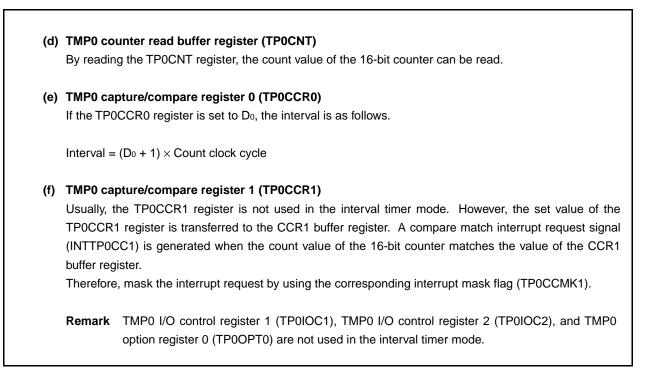
Figure 7-3. Basic Timing of Operation in Interval Timer Mode


When the TP0CE bit is set to 1, the value of the 16-bit counter is cleared from FFFFH to 0000H in synchronization with the count clock, and the counter starts counting. At this time, the output of the TOP00 pin is inverted. Additionally, the set value of the TP0CCR0 register is transferred to the CCR0 buffer register.

When the count value of the 16-bit counter matches the value of the CCR0 buffer register, the 16-bit counter is cleared to 0000H, the output of the TOP00 pin is inverted, and a compare match interrupt request signal (INTTP0CC0) is generated.

The interval can be calculated by the following expression.

Interval = (Set value of TP0CCR0 register + 1) \times Count clock cycle



et4U.com

DataSheet4U.com

Figure 7-4. Register Setting for Interval Timer Mode Operation (2/2)

et4U.com

DataShee

DataSheet4U.com

(1) Interval timer mode operation flow

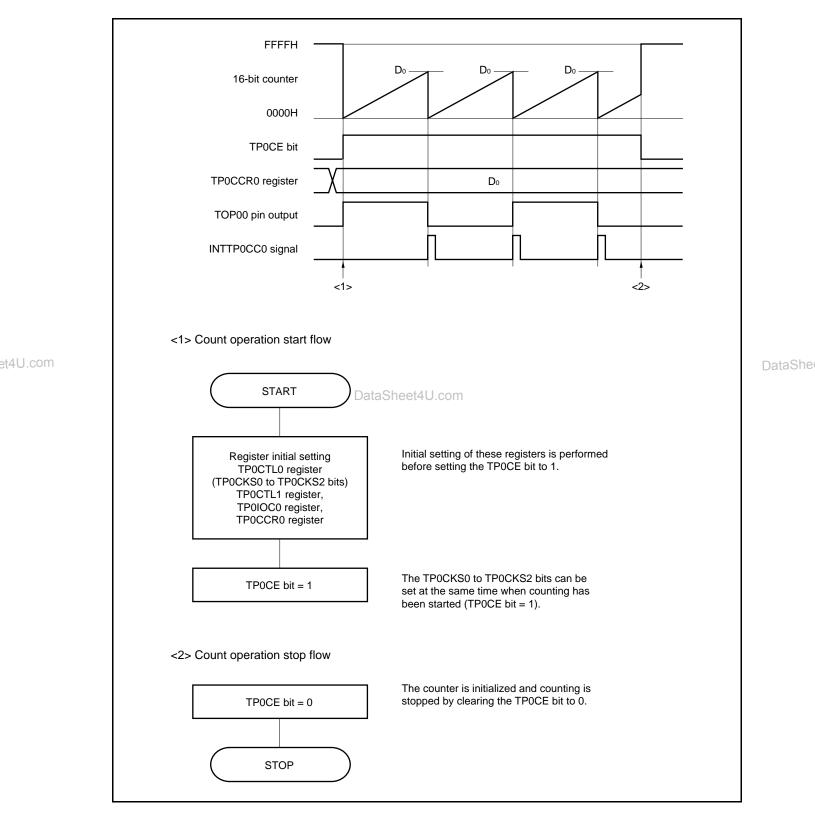
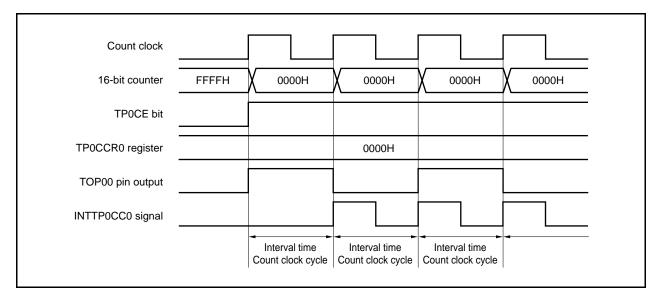


Figure 7-5. Software Processing Flow in Interval Timer Mode

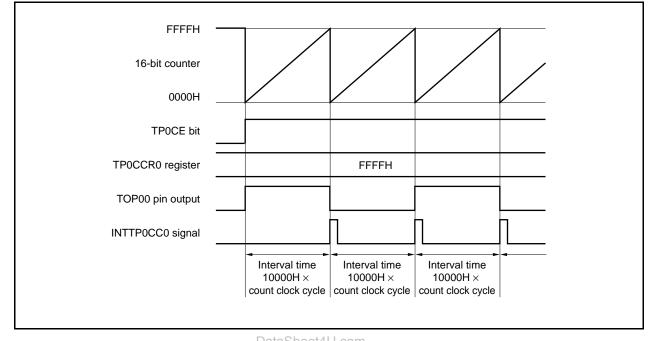

DataSheet4U.com

(2) Interval timer mode operation timing

(a) Operation if TP0CCR0 register is cleared to 0000H

If the TP0CCR0 register is cleared to 0000H, the INTTP0CC0 signal is generated at each count clock, and the output of the TOP00 pin is inverted.

The value of the 16-bit counter is always 0000H.

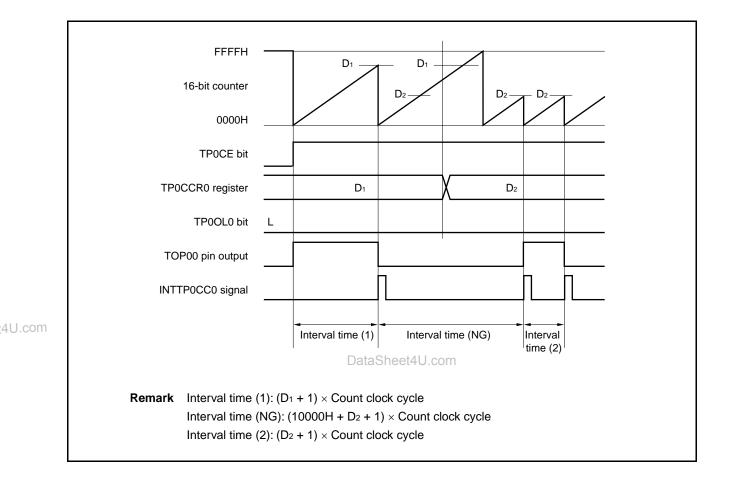


et4U.com

DataSheet4U.com

(b) Operation if TP0CCR0 register is set to FFFFH

If the TP0CCR0 register is set to FFFFH, the 16-bit counter counts up to FFFFH. The counter is cleared to 0000H in synchronization with the next count-up timing. The INTTPOCC0 signal is generated and the output of the TOP00 pin is inverted. At this time, an overflow interrupt request signal (INTTP0OV) is not generated, nor is the overflow flag (TP0OPT0.TP0OVF bit) set to 1.


et4U.com

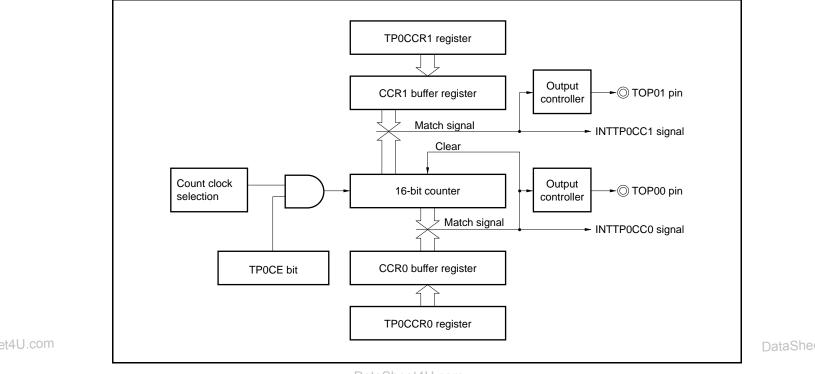
DataSheet4U.com

(c) Notes on rewriting TP0CCR0 register

To change the value of the TP0CCR0 register to a smaller value, stop counting once and then change the set value.

If the value of the TP0CCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.

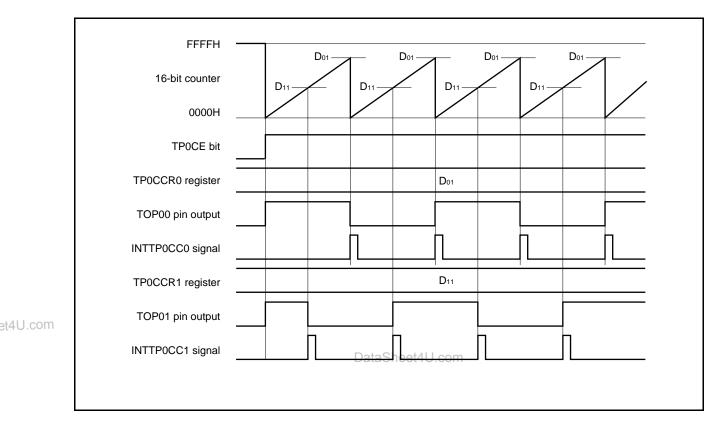
If the value of the TP0CCR0 register is changed from D_1 to D_2 while the count value is greater than D_2 but less than D_1 , the count value is transferred to the CCR0 buffer register as soon as the TP0CCR0 register has been rewritten. Consequently, the value of the 16-bit counter that is compared is D_2 .


Because the count value has already exceeded D₂, however, the 16-bit counter counts up to FFFH, overflows, and then counts up again from 0000H. When the count value matches D₂, the INTTPOCCO signal is generated and the output of the TOP00 pin is inverted.

Therefore, the INTTP0CC0 signal may not be generated at the interval time " $(D_1 + 1) \times$ Count clock cycle" or " $(D_2 + 1) \times$ Count clock cycle" originally expected, but may be generated at an interval of " $(10000H + D_2 + 1) \times$ Count clock cycle".

www.DataSheet4U.com

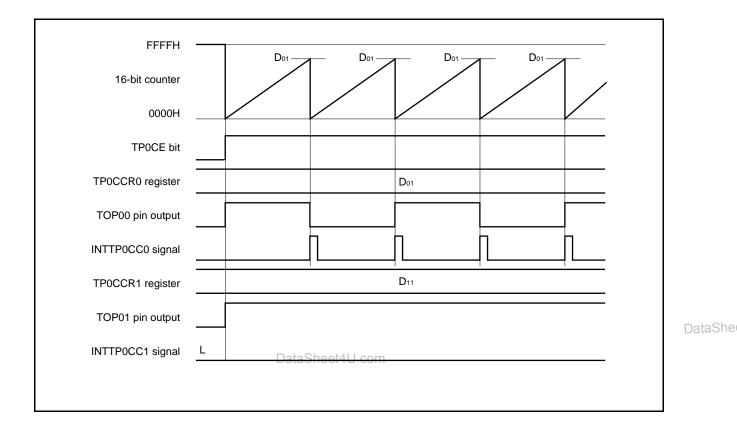
(d) Operation of TP0CCR1 register



DataSheet4U.com

DataSheet4U.com

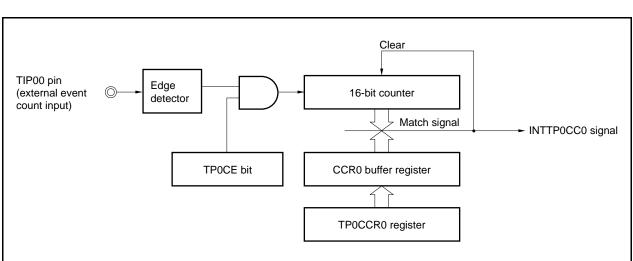
If the set value of the TP0CCR1 register is less than the set value of the TP0CCR0 register, the INTTP0CC1 signal is generated once per cycle. At the same time, the output of the TOP01 pin is inverted. The TOP01 pin outputs a square wave with the same cycle as that output by the TOP00 pin.



DataShe

DataSheet4U.com

If the set value of the TP0CCR1 register is greater than the set value of the TP0CCR0 register, the count value of the 16-bit counter does not match the value of the TP0CCR1 register. Consequently, the INTTP0CC1 signal is not generated, nor is the output of the TOP01 pin changed.



et4U.com

7.5.2 External event count mode (TP0MD2 to TP0MD0 bits = 001)

In the external event count mode, the valid edge of the external event count input is counted when the TP0CTL0.TP0CE bit is set to 1, and an interrupt request signal (INTTP0CC0) is generated each time the specified number of edges have been counted. The TOP00 pin cannot be used.

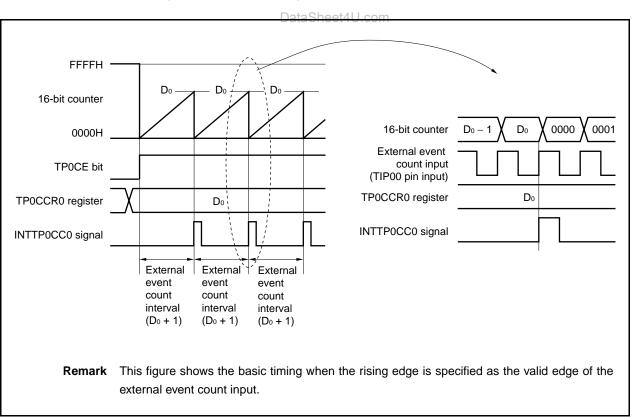

Usually, the TP0CCR1 register is not used in the external event count mode.

Figure 7-9. Configuration in External Event Count Mode

et4U.com

Figure 7-10. Basic Timing in External Event Count Mode

DataSheet4U.com

When the TP0CE bit is set to 1, the value of the 16-bit counter is cleared from FFFFH to 0000H. The counter counts each time the valid edge of external event count input is detected. Additionally, the set value of the TP0CCR0 register is transferred to the CCR0 buffer register.

When the count value of the 16-bit counter matches the value of the CCR0 buffer register, the 16-bit counter is cleared to 0000H, and a compare match interrupt request signal (INTTP0CC0) is generated.

The INTTP0CC0 signal is generated each time the valid edge of the external event count input has been detected (set value of TP0CCR0 register + 1) times.

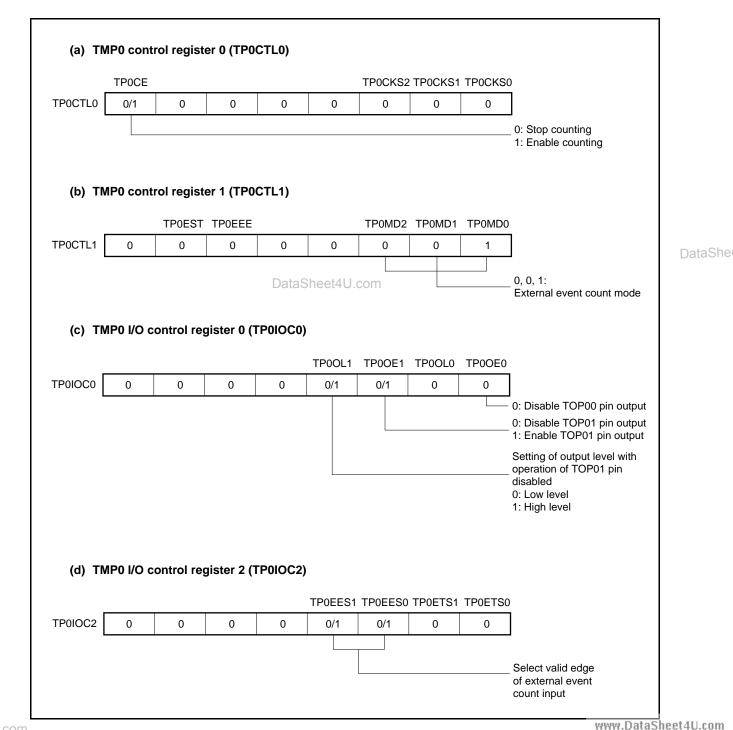


Figure 7-11. Register Setting for Operation in External Event Count Mode (1/2)

DataSheet4U.com

Figure 7-11. Register Setting for Operation in External Event Count Mode (2/2)

(e)	TMP0 counter read buffer register (TP0CNT) The count value of the 16-bit counter can be read by reading the TP0CNT register.
(f)	TMP0 capture/compare register 0 (TP0CCR0) If D_0 is set to the TP0CCR0 register, the counter is cleared and a compare match interrupt request signal (INTTP0CC0) is generated when the number of external event counts reaches (D_0 + 1).
(g)	TMP0 capture/compare register 1 (TP0CCR1) Usually, the TP0CCR1 register is not used in the external event count mode. However, the set value of the TP0CCR1 register is transferred to the CCR1 buffer register. When the count value of the 16-bit counter matches the value of the CCR1 buffer register, a compare match interrupt request signal (INTTP0CC1) is generated. Therefore, mask the interrupt signal by using the interrupt mask flag (TP0CCMK1).
	Remark TMP0 I/O control register 1 (TP0IOC1) and TMP0 option register 0 (TP0OPT0) are not used in the external event count mode.

et4U.com

DataShe

DataSheet4U.com

(1) External event count mode operation flow

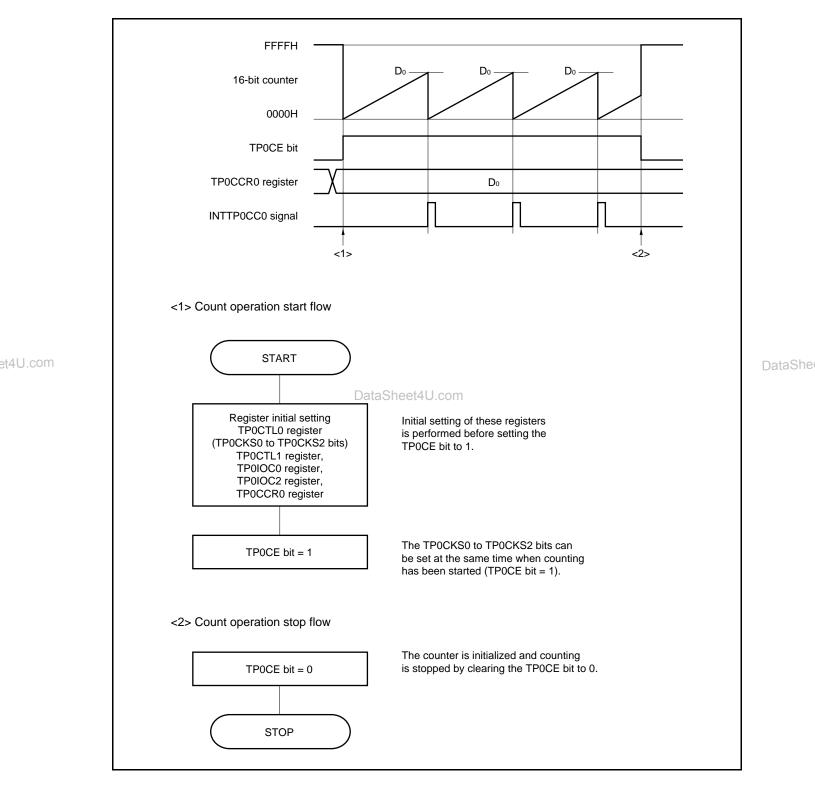
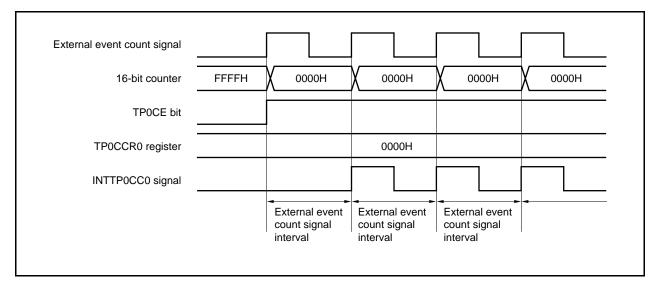
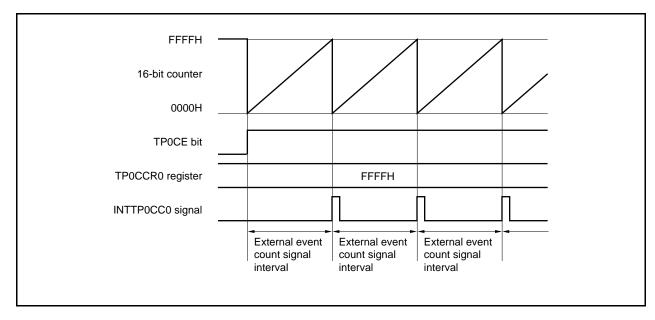


Figure 7-12. Flow of Software Processing in External Event Count Mode


DataSheet4U.com

(2) Operation timing in external event count mode

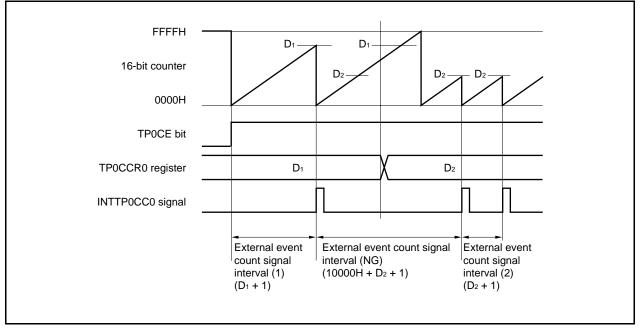
(a) Operation if TP0CCR0 register is cleared to 0000H


If the TP0CCR0 register is cleared to 0000H, the INTTP0CC0 signal is generated each time the valid signal of the external event count signal has been detected.

The 16-bit counter is always 0000H.

(b) Operation if TP0CCR0 register is set to FFFFH

If the TPOCCR0 register is set to FFFFH, the 16-bit counter counts to FFFFH each time the valid edge of the external event count signal has been detected. The 16-bit counter is cleared to 0000H in synchronization with the next count-up timing, and the INTTPOCCO signal is generated. At this time, the TPOOPT0.TPOOVF bit is not set.



DataSheet4U.com

(c) Notes on rewriting the TP0CCR0 register

To change the value of the TP0CCR0 register to a smaller value, stop counting once and then change the set value.

If the value of the TP0CCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.

DataSheet4U.com

If the value of the TP0CCR0 register is changed from D_1 to D_2 while the count value is greater than D_2 but less than D_1 , the count value is transferred to the CCR0 buffer register as soon as the TP0CCR0 register has been rewritten. Consequently, the value that is compared with the 16-bit counter is D_2 .

Because the count value has already exceeded D₂, however, the 16-bit counter counts up to FFFFH, overflows, and then counts up again from 0000H. When the count value matches D₂, the INTTPOCCO signal is generated.

Therefore, the INTTP0CC0 signal may not be generated at the valid edge count of " $(D_1 + 1)$ times" or " $(D_2 + 1)$ times" originally expected, but may be generated at the valid edge count of " $(10000H + D_2 + 1)$ times".

www.DataSheet4U.com

(d) Operation of TP0CCR1 register

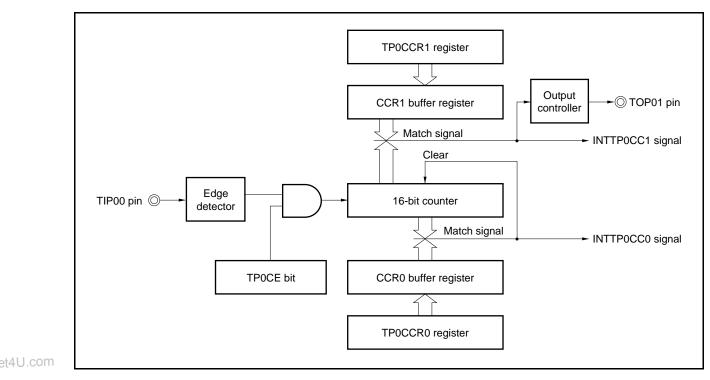


Figure 7-13. Configuration of TP0CCR1 Register

If the set value of the TP0CCR1 register is smaller than the set value of the TP0CCR0 register, the INTTP0CC1 signal is generated once per cycle. At the same time, the output signal of the TOP01 pin is inverted.

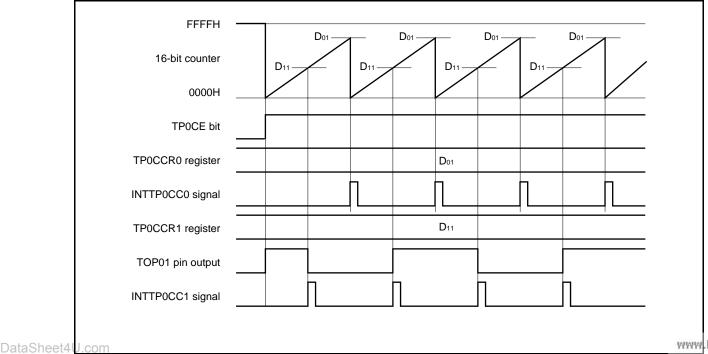


Figure 7-14. Timing Chart When $D_{01} \ge D_{11}$

236

DataSheet4U.com

If the set value of the TP0CCR1 register is greater than the set value of the TP0CCR0 register, the INTTP0CC1 signal is not generated because the count value of the 16-bit counter and the value of the TP0CCR1 register do not match. Nor is the output signal of the TOP01 pin changed.

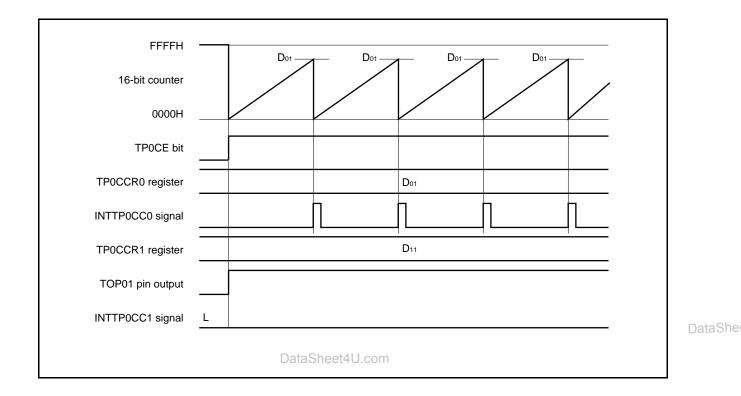
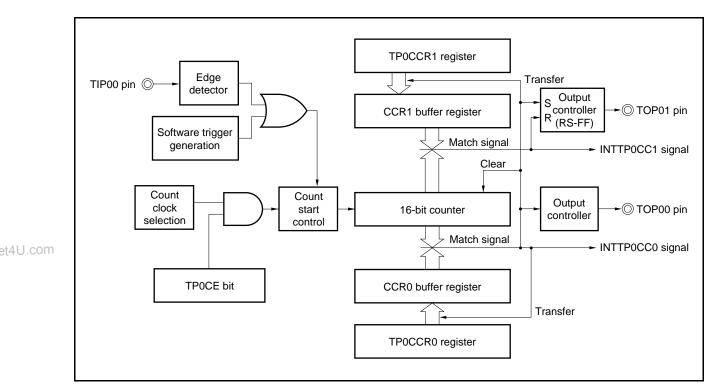
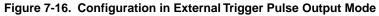
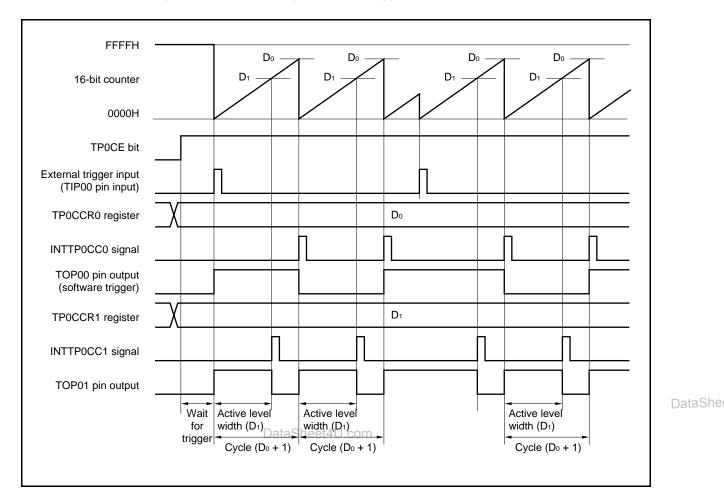


Figure 7-15. Timing Chart When Do1 < D11


DataSheet4U.com


et4U.com


7.5.3 External trigger pulse output mode (TP0MD2 to TP0MD0 bits = 010)

In the external trigger pulse output mode, 16-bit timer/event counter P waits for a trigger when the TP0CTL0.TP0CE bit is set to 1. When the valid edge of an external trigger input signal is detected, 16-bit timer/event counter P starts counting, and outputs a PWM waveform from the TOP01 pin.

Pulses can also be output by generating a software trigger instead of using the external trigger. When using a software trigger, a square wave that has one cycle of the PWM waveform as half its cycle can also be output from the TOP00 pin.

16-bit timer/event counter P waits for a trigger when the TP0CE bit is set to 1. When the trigger is generated, the 16-bit counter is cleared from FFFFH to 0000H, starts counting at the same time, and outputs a PWM waveform from the TOP01 pin.

If the trigger is generated again while the counter is operating, the counter is cleared to 0000H and restarted. The active level width, cycle, and duty factor of the PWM waveform can be calculated as follows.

Active level width = (Set value of TP0CCR1 register) × Count clock cycle Cycle = (Set value of TP0CCR0 register + 1) × Count clock cycle Duty factor = (Set value of TP0CCR1 register)/(Set value of TP0CCR0 register + 1)

The compare match interrupt request signal INTTP0CC0 is generated when the 16-bit counter counts next time after its count value matches the value of the CCR0 buffer register, and the 16-bit counter is cleared to 0000H. The compare match interrupt request signal INTTP0CC1 is generated when the count value of the 16-bit counter matches the value of the CCR1 buffer register.

The value set to the TPOCCRa register is transferred to the CCRa buffer register when the count value of the 16-bit counter matches the value of the CCRa buffer register and the 16-bit counter is cleared to 0000H.

The valid edge of an external trigger input signal, or setting the software trigger (TP0CTL1.TP0EST bit) to 1 is used as the trigger.

		- 6
		F
taSheet4L	LCOM	

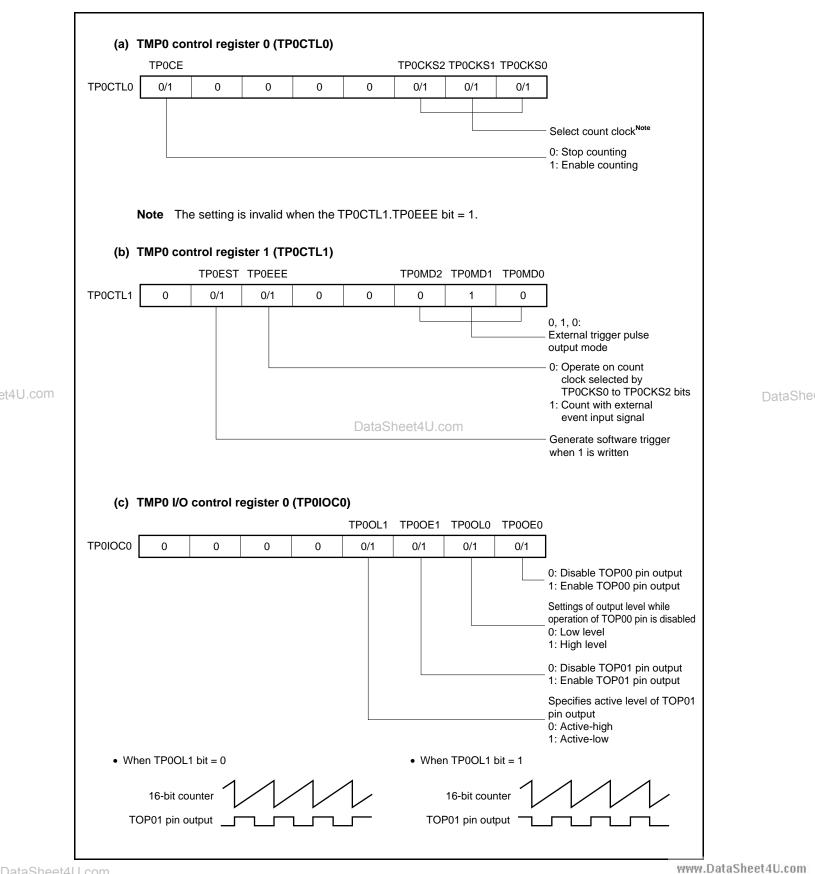
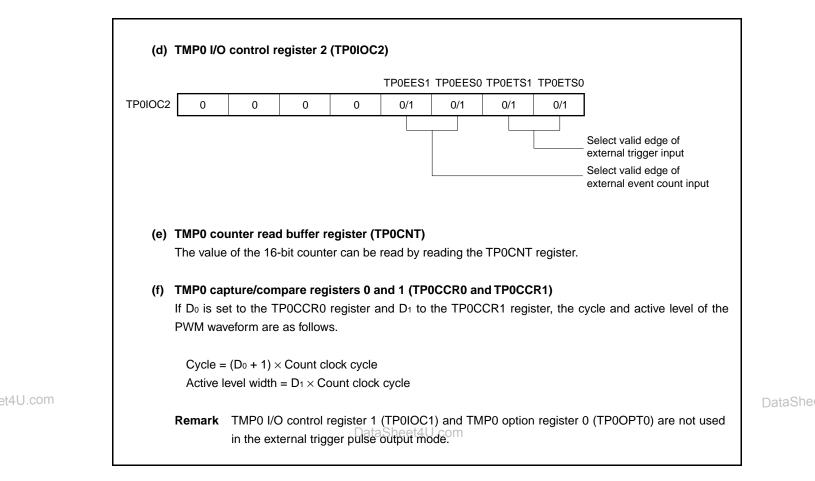
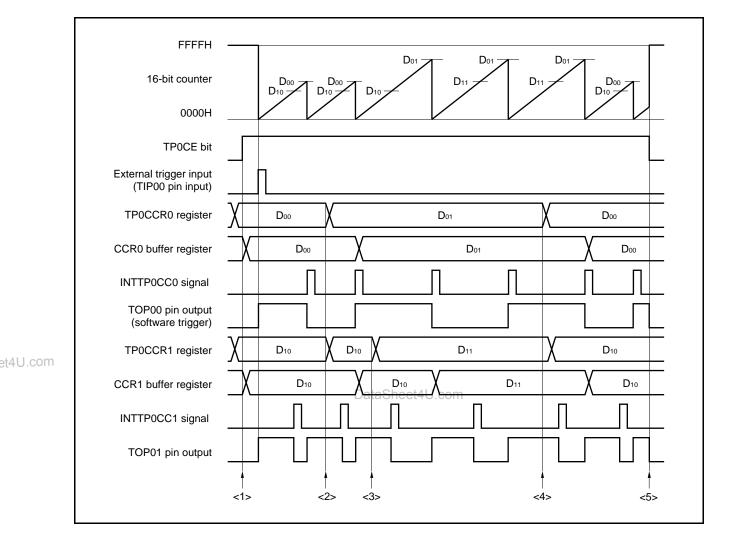



Figure 7-18. Setting of Registers in External Trigger Pulse Output Mode (1/2)


DataSheet4U.com

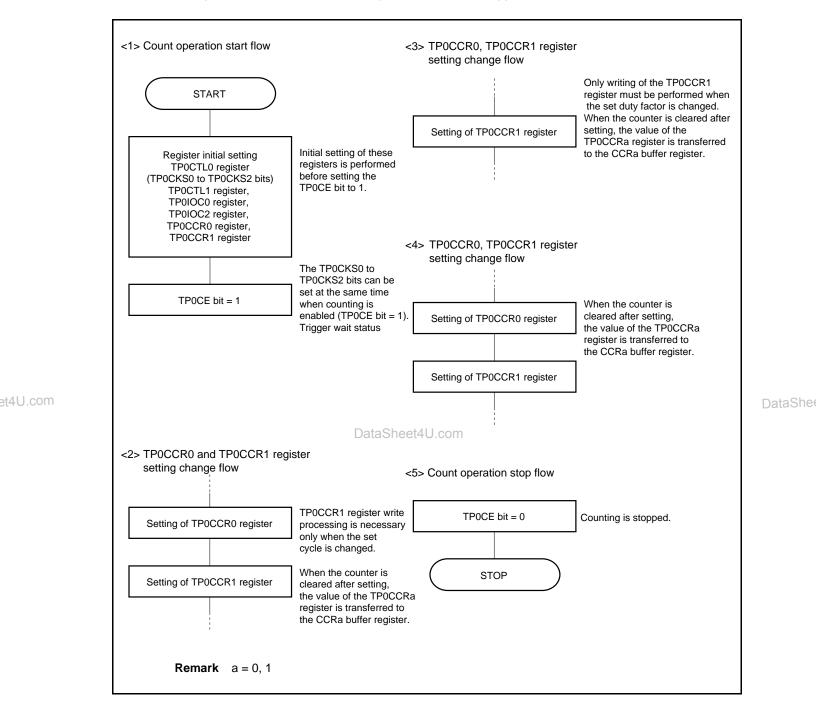
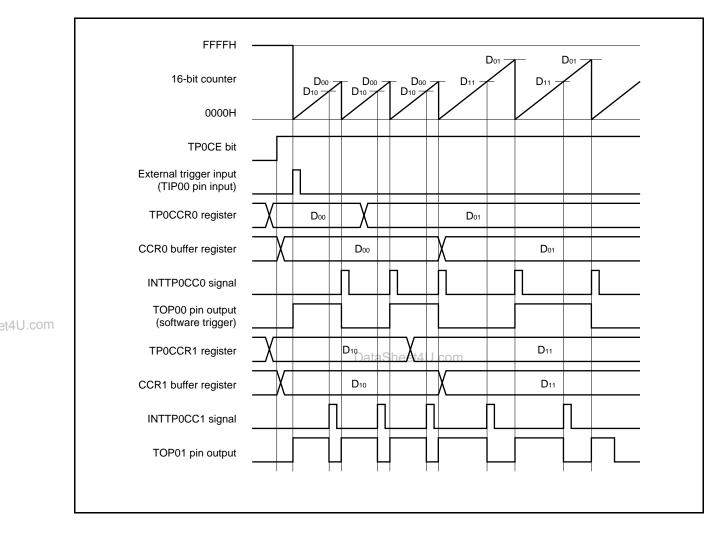


Figure 7-18. Setting of Registers in External Trigger Pulse Output Mode (2/2)

(1) Operation flow in external trigger pulse output mode

Figure 7-19. Software Processing Flow in External Trigger Pulse Output Mode (1/2)



DataSheet4U.com

(2) External trigger pulse output mode operation timing

(a) Note on changing pulse width during operation

To change the PWM waveform while the counter is operating, write the TP0CCR1 register last. Rewrite the TP0CCRa register after writing the TP0CCR1 register after the INTTP0CC0 signal is detected.

DataShe

In order to transfer data from the TP0CCRa register to the CCRa buffer register, the TP0CCR1 register must be written.

To change both the cycle and active level width of the PWM waveform at this time, first set the cycle to the TP0CCR0 register and then set the active level width to the TP0CCR1 register.

To change only the cycle of the PWM waveform, first set the cycle to the TP0CCR0 register, and then write the same value to the TP0CCR1 register.

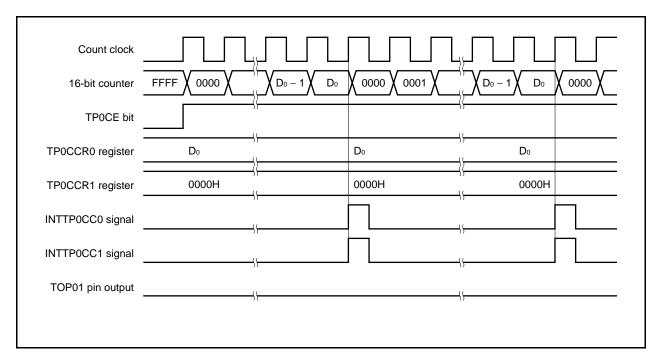
To change only the active level width (duty factor) of the PWM waveform, only the TP0CCR1 register has to be set.

After data is written to the TP0CCR1 register, the value written to the TP0CCRa register is transferred to the CCRa buffer register in synchronization with clearing of the 16-bit counter, and is used as the value compared with the 16-bit counter.

To write the TP0CCR0 or TP0CCR1 register again after writing the TP0CCR1 register once, do so after the INTTP0CC0 signal is generated. Otherwise, the value of the CCRa buffer register may become undefined because the timing of transferring data from the TP0CCRa register to the CCRa buffer register conflicts with writing the TP0CCRa register.

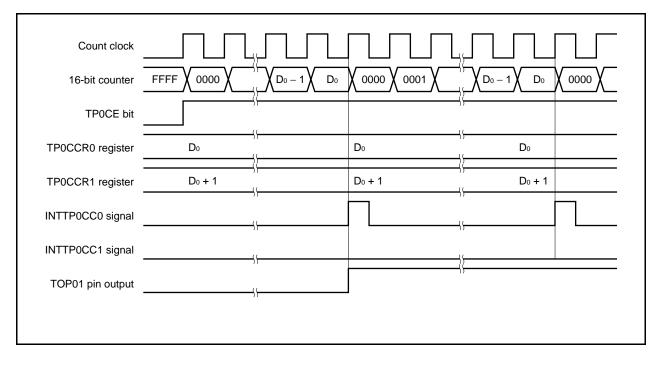
Remark a = 0, 1

et4U.com


DataSheet4U.com

DataSheet4U.com

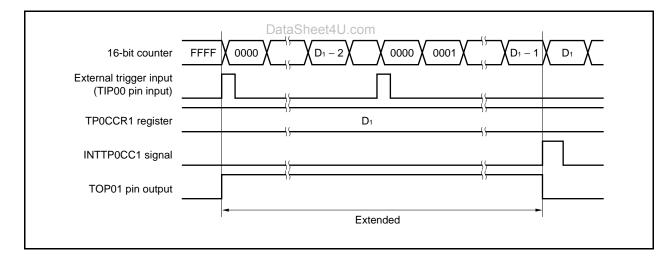
www.DataSheet4U.com


(b) 0%/100% output of PWM waveform

To output a 0% waveform, clear the TP0CCR1 register to 0000H. If the set value of the TP0CCR0 register is FFFFH, the INTTP0CC1 signal is generated periodically.

et4U.com

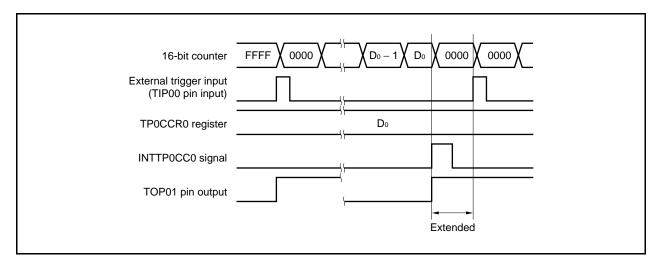
To output a 100% waveform, set a value of (set value of TP0CCR0 register + 1) to the TP0CCR1 register. If the set value of the TP0CCR0 register is FFFFH, 100% output cannot be produced.



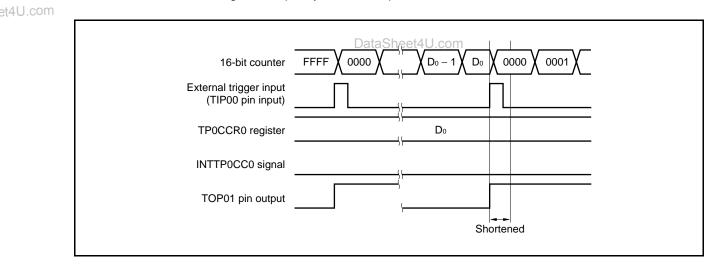
(c) Conflict between trigger detection and match with TP0CCR1 register

If the trigger is detected immediately after the INTTPOCC1 signal is generated, the 16-bit counter is immediately cleared to 0000H, the output signal of the TOP01 pin is asserted, and the counter continues counting. Consequently, the inactive period of the PWM waveform is shortened.

If the trigger is detected immediately before the INTTPOCC1 signal is generated, the INTTPOCC1 signal is not generated, and the 16-bit counter is cleared to 0000H and continues counting. The output signal of the TOP01 pin remains active. Consequently, the active period of the PWM waveform is extended.


DataShe

DataSheet4U.com


et4U.com

(d) Conflict between trigger detection and match with TP0CCR0 register

If the trigger is detected immediately after the INTTPOCC0 signal is generated, the 16-bit counter is cleared to 0000H and continues counting up. Therefore, the active period of the TOP01 pin is extended by time from generation of the INTTPOCC0 signal to trigger detection.

If the trigger is detected immediately before the INTTP0CC0 signal is generated, the INTTP0CC0 signal is not generated. The 16-bit counter is cleared to 0000H, the TOP01 pin is asserted, and the counter continues counting. Consequently, the inactive period of the PWM waveform is shortened.

(e) Generation timing of compare match interrupt request signal (INTTP0CC1)

The timing of generation of the INTTP0CC1 signal in the external trigger pulse output mode differs from the timing of other INTTP0CC1 signals; the INTTP0CC1 signal is generated when the count value of the 16-bit counter matches the value of the TP0CCR1 register.

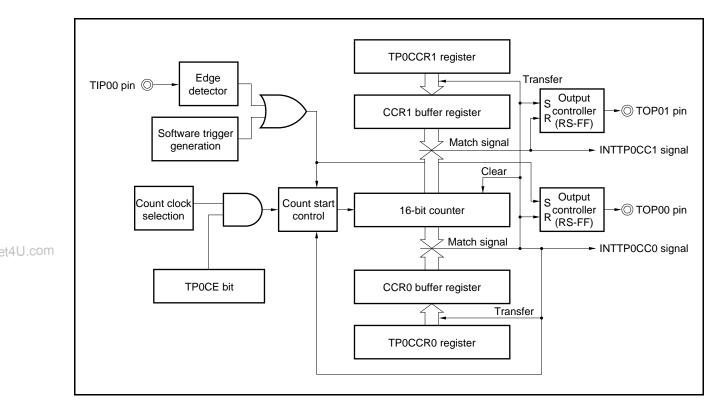
Count clock		
16-bit counter	D1-2 D1-1 D1 D1 +1 D1+2	
TP0CCR1 register	D1	
TOP01 pin output		
INTTP0CC1 signal		

Usually, the INTTP0CC1 signal is generated in synchronization with the next count up, after the count value of the 16-bit counter matches the value of the TP0CCR1 register.

In the external trigger pulse output mode, however, it is generated one clock earlier. This is because the timing is changed to match the timing of changing the output signal of the TOP01 pin.

et4U.com

DataSheet4U.com


DataSheet4U.com

www.DataSheet4U.com

7.5.4 One-shot pulse output mode (TP0MD2 to TP0MD0 bits = 011)

In the one-shot pulse output mode, 16-bit timer/event counter P waits for a trigger when the TP0CTL0.TP0CE bit is set to 1. When the valid edge of an external trigger input is detected, 16-bit timer/event counter P starts counting, and outputs a one-shot pulse from the TOP01 pin.

Instead of the external trigger, a software trigger can also be generated to output the pulse. When the software trigger is used, the TOP00 pin outputs the active level while the 16-bit counter is counting, and the inactive level when the counter is stopped (waiting for a trigger).

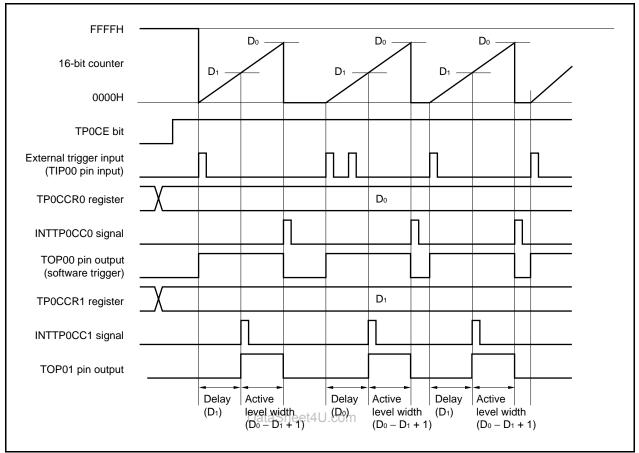
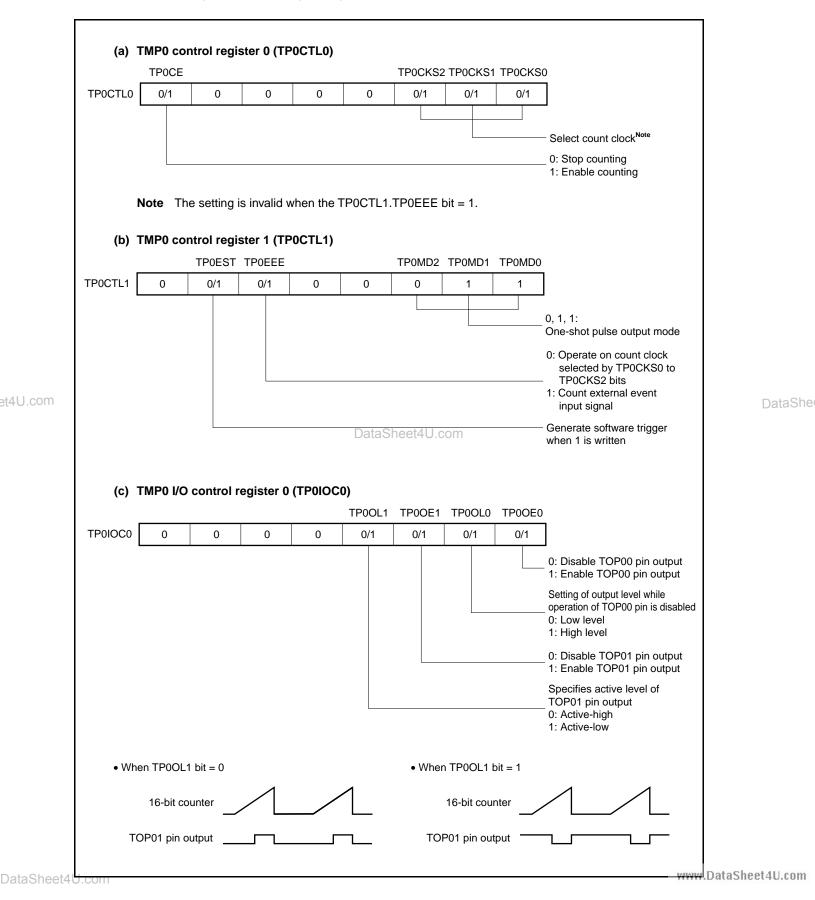


Figure 7-21. Basic Timing in One-Shot Pulse Output Mode

When the TP0CE bit is set to 1, 16-bit timer/event counter P waits for a trigger. When the trigger is generated, the

16-bit counter is cleared from FFFFH to 0000H, starts counting, and outputs a one-shot pulse from the TOP01 pin. After the one-shot pulse is output, the 16-bit counter is set to FFFFH, stops counting, and waits for a trigger. If a trigger is generated again while the one-shot pulse is being output, it is ignored.

The output delay period and active level width of the one-shot pulse can be calculated as follows.


Output delay period = (Set value of TP0CCR1 register) × Count clock cycle Active level width = (Set value of TP0CCR0 register – Set value of TP0CCR1 register + 1) × Count clock cycle

The compare match interrupt request signal INTTPOCC0 is generated when the 16-bit counter counts after its count value matches the value of the CCR0 buffer register. The compare match interrupt request signal INTTPOCC1 is generated when the count value of the 16-bit counter matches the value of the CCR1 buffer register.

The valid edge of an external trigger input or setting the software trigger (TP0CTL1.TP0EST bit) to 1 is used as the trigger.

DataSheet4U.com

www.DataSheet4U.com

252

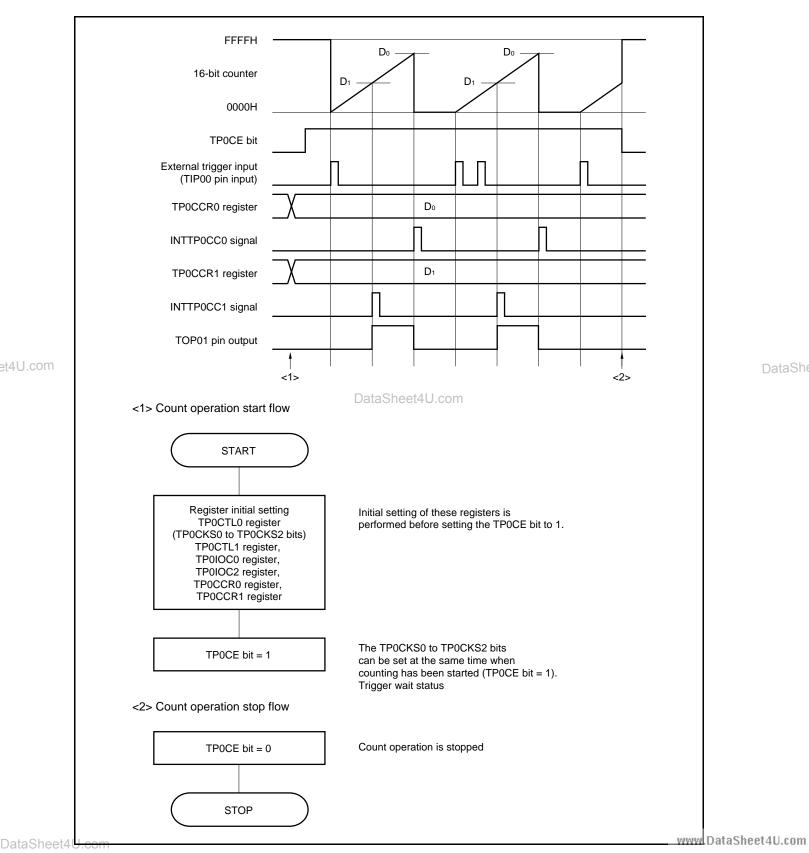

					TP0EES1	TP0EES	D TP0ETS1	TP0ETS	0
TP0IOC2	0	0	0	0	0/1	0/1	0/1	0/1]
									-
									Select valid edge of external trigger input
									 Select valid edge of external event count input
(e)	TMP0 cou	unter read	d buffer r	register (TP0CNT)				
	The value	of the 16	-bit count	er can be	read by r	eading the	€ TP0CN1	register.	
(f)	The value					-		-	
(f)	TMP0 cap	oture/com	npare reg	jisters 0 a	and 1 (TP	0CCR0 ai	nd TP0CC	CR1)	
(f)	TMP0 cap	oture/com t to the T	n pare reg P0CCR0	jisters 0 a register a	and 1 (TP and D₁ to	0CCR0 and the TP0C	nd TP0CC	CR1)	active level width and o
(f)	TMP0 cap If D ₀ is se	oture/com t to the T od of the o	n pare reg P0CCR0 one-shot	jisters 0 a register a pulse are	and 1 (TP and D1 to as follows	0CCR0 a the TP0C	nd TP0CC	CR1)	
(f)	TMP0 cap If D ₀ is se delay peri	oture/com t to the T od of the o el width =	npare reg P0CCR0 one-shot (D1 – D0	jisters 0 a register a pulse are + 1) × Co	and 1 (TP and D1 to as follows unt clock o	0CCR0 a the TP0C	nd TP0CC	CR1)	
(f)	TMP0 cap If D ₀ is se delay peri Active leve	oture/com t to the T od of the o el width = lay period	pare reg POCCR0 one-shot $(D_1 - D_0$ $I = D_1 \times C$	jisters 0 a register a pulse are + 1) × Co Count cloc	and 1 (TP and D1 to as follows unt clock o k cycle	0CCR0 an the TP0C s. cycle	nd TP0CC	CR1) ster, the a	

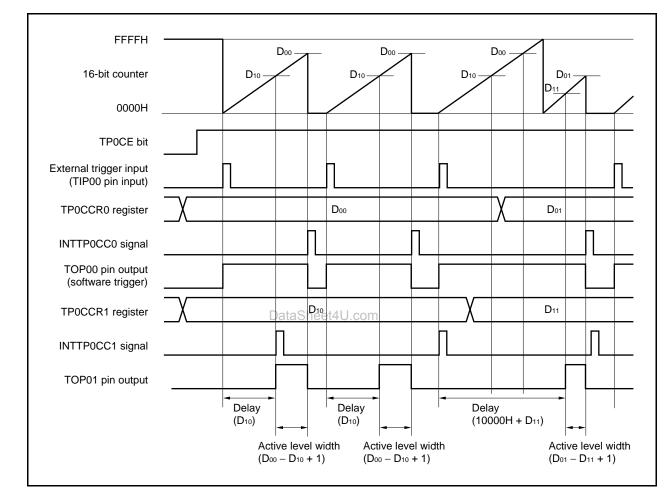
Figure 7-22. Setting of Registers in One-Shot Pulse Output Mode (2/2)

et4U.com

www.DataSheet4U.com

(1) Operation flow in one-shot pulse output mode

DataShe


254

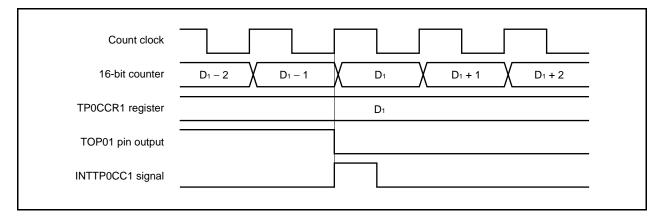
(2) Operation timing in one-shot pulse output mode

(a) Note on rewriting TP0CCRa register

To change the set value of the TP0CCRa register to a smaller value, stop counting once, and then change the set value.

If the value of the TP0CCRa register is rewritten to a smaller value during counting, the 16-bit counter may overflow.

DataShee


When the TP0CCR0 register is rewritten from D_{00} to D_{01} and the TP0CCR1 register from D_{10} to D_{11} where $D_{00} > D_{01}$ and $D_{10} > D_{11}$, if the TP0CCR1 register is rewritten when the count value of the 16-bit counter is greater than D_{11} and less than D_{10} and if the TP0CCR0 register is rewritten when the count value is greater than D_{01} and less than D_{00} , each set value is reflected as soon as the register has been rewritten and compared with the count value. The counter counts up to FFFFH and then counts up again from 0000H. When the count value matches D_{11} , the counter generates the INTTP0CC1 signal and asserts the TOP01 pin. When the count value matches D_{01} , the counter generates the INTTP0CC0 signal, deasserts the TOP01 pin, and stops counting.

Therefore, the counter may output a pulse with a delay period or active period different from that of the one-shot pulse that is originally expected.

DataSheet4U.com

(b) Generation timing of compare match interrupt request signal (INTTP0CC1)

The generation timing of the INTTPOCC1 signal in the one-shot pulse output mode is different from other INTTPOCC1 signals; the INTTPOCC1 signal is generated when the count value of the 16-bit counter matches the value of the TPOCCR1 register.

Usually, the INTTP0CC1 signal is generated when the 16-bit counter counts up next time after its count value matches the value of the TP0CCR1 register.

In the one-shot pulse output mode, however, it is generated one clock earlier. This is because the timing is changed to match the change timing of the TOP01 pin.

et4U.com

DataSheet4U.com

7.5.5 PWM output mode (TP0MD2 to TP0MD0 bits = 100)

In the PWM output mode, a PWM waveform is output from the TOP01 pin when the TP0CTL0.TP0CE bit is set to 1. In addition, a pulse with one cycle of the PWM waveform as half its cycle is output from the TOP00 pin.

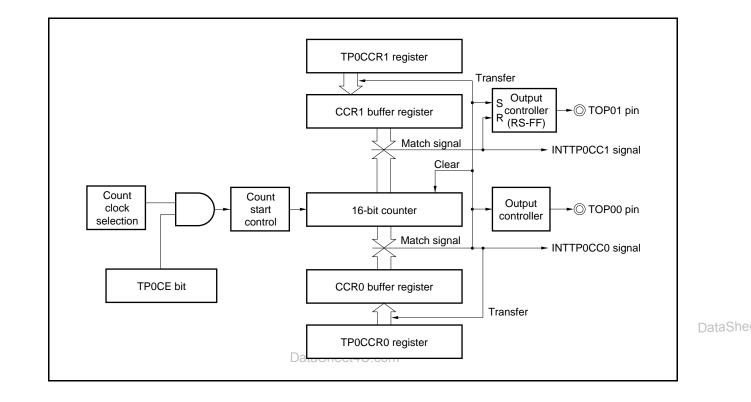


Figure 7-24. Configuration in PWM Output Mode

DataSheet4U.com

et4U.com

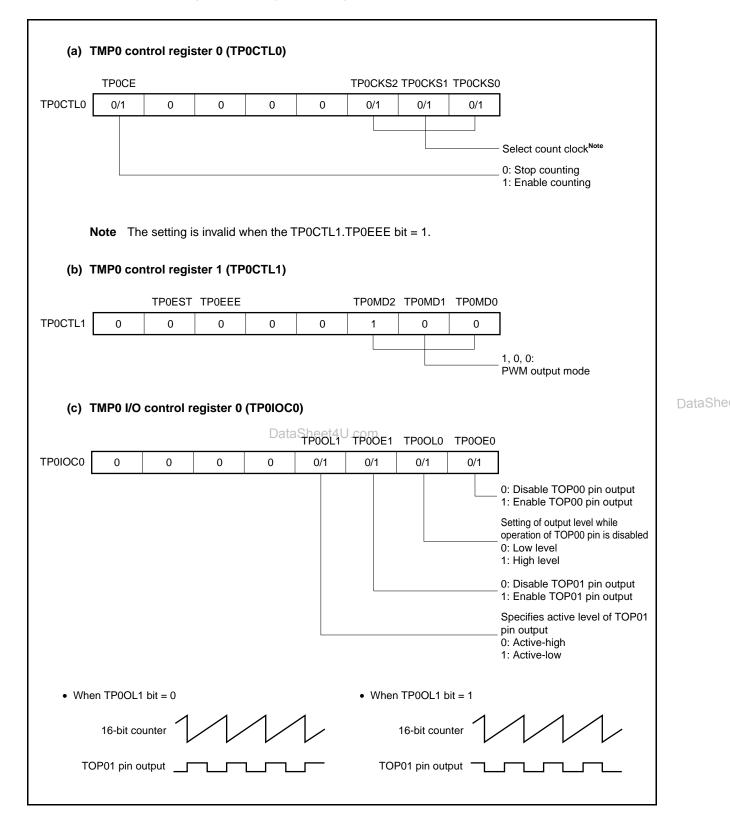
www.DataSheet4U.com



Figure 7-25. Basic Timing in PWM Output Mode

When the TP0CE bit is set to 1, the 16-bit counter is cleared from FFFFH to 0000H, starts counting, and outputs a PWM waveform from the TOP01 pin.

The active level width, cycle, and duty factor of the PWM waveform can be calculated as follows.


Active level width = (Set value of TP0CCR1 register) × Count clock cycle Cycle = (Set value of TP0CCR0 register + 1) × Count clock cycle Duty factor = (Set value of TP0CCR1 register)/(Set value of TP0CCR0 register + 1)

The PWM waveform can be changed by rewriting the TP0CCRa register while the counter is operating. The newly written value is reflected when the count value of the 16-bit counter matches the value of the CCR0 buffer register and the 16-bit counter is cleared to 0000H.

The compare match interrupt request signal INTTP0CC0 is generated when the 16-bit counter counts next time after its count value matches the value of the CCR0 buffer register, and the 16-bit counter is cleared to 0000H. The compare match interrupt request signal INTTP0CC1 is generated when the count value of the 16-bit counter matches the value of the CCR1 buffer register.

The value set to the TP0CCRa register is transferred to the CCRa buffer register when the count value of the 16-bit counter matches the value of the CCRa buffer register and the 16-bit counter is cleared to 0000H.

Remark a = 0, 1 DataSheet4U.com

Figure 7-26. Register Setting in PWM Output Mode (1/2)

et4U.com

Figure 7-26. Register Setting in PWM Output Mode (2/2)

					TP0EES1	TP0EES0	TP0ETS1	TP0ETS	60
TP0IOC2	0	0	0	0	0/1	0/1	0	0	
									 Select valid edge of external event count input.
(f)	The value				-	-		-	
(f)	TMP0 cap	oture/con t to the T	n pare reg P0CCR0	isters 0 a register a	and 1 (TP	0CCR0 an	d TP0CC	:R1)	
(f)	TMP0 cap If D₀ is se PWM wav	oture/con t to the T eform are	n pare reg P0CCR0	isters 0 a register a s.	and 1 (TP) and D1 to	0CCR0 an	d TP0CC	:R1)	
(f)	TMP0 cap If D ₀ is se PWM wav Cycle =	t to the T eform are (D ₀ + 1) >	n pare reg P0CCR0 e as follow	isters 0 a register a s. ock cycle	and 1 (TP) and D1 to	0CCR0 an	d TP0CC	:R1)	
(f)	TMP0 cap If D ₀ is se PWM wav Cycle = Active le	oture/con t to the T eform are (Do + 1) > evel width TMP0 I/(npare reg POCCR0 e as follow \times Count cl $a = D_1 \times Co$	isters 0 a register a s. ock cycle punt clock register 1	and 1 (TP and D ₁ to	0CCR0 an the TP0C	d TP0CC CR1 regi	R1) ster, the	cycle and active level of 0 (TP0OPT0) are not us

www.DataSheet4U.com

(1) Operation flow in PWM output mode

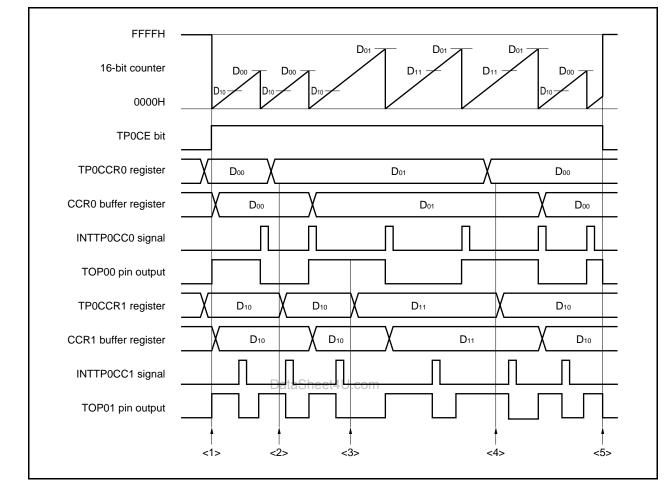
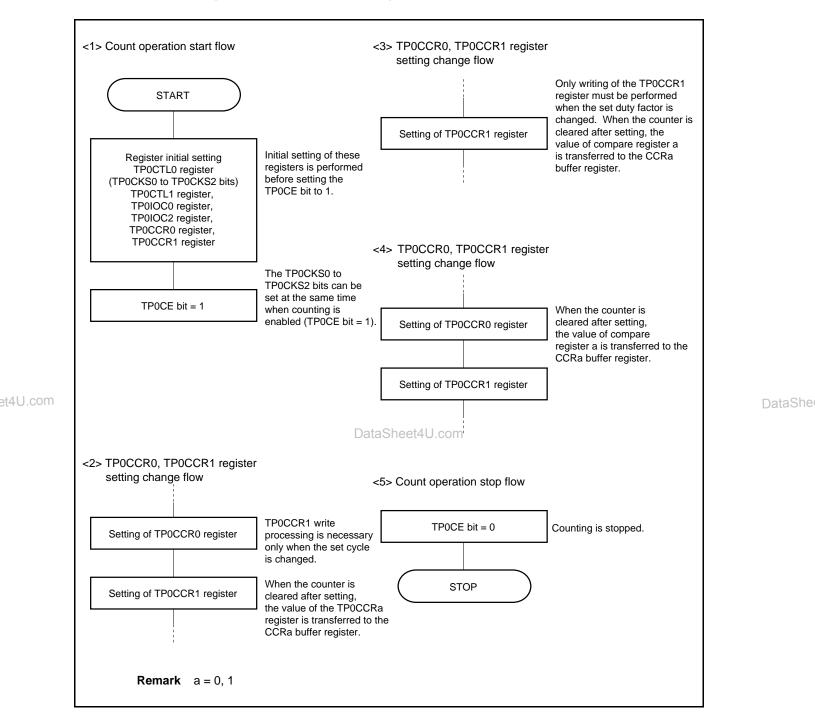
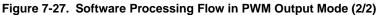
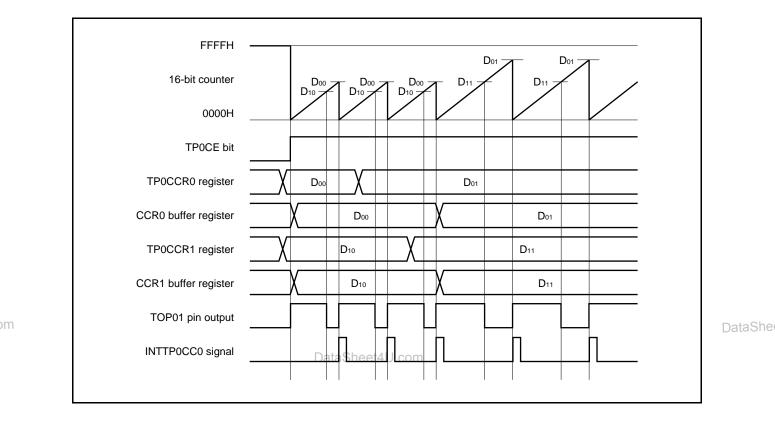




Figure 7-27. Software Processing Flow in PWM Output Mode (1/2)

DataShee

et4U.com



DataSheet4U.com

(2) PWM output mode operation timing

(a) Changing pulse width during operation

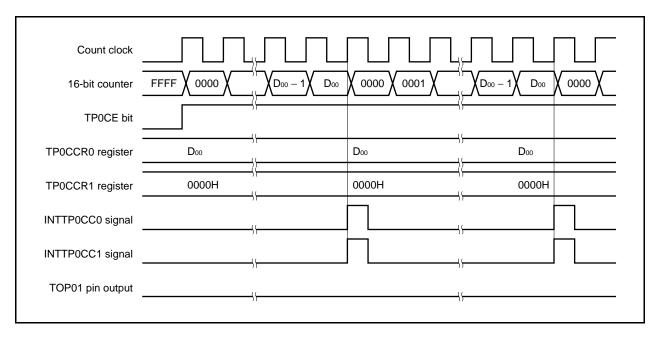
To change the PWM waveform while the counter is operating, write the TP0CCR1 register last. Rewrite the TP0CCRa register after writing the TP0CCR1 register after the INTTP0CC1 signal is detected.

To transfer data from the TP0CCRa register to the CCRa buffer register, the TP0CCR1 register must be written.

To change both the cycle and active level of the PWM waveform at this time, first set the cycle to the TP0CCR0 register and then set the active level to the TP0CCR1 register.

To change only the cycle of the PWM waveform, first set the cycle to the TP0CCR0 register, and then write the same value to the TP0CCR1 register.

To change only the active level width (duty factor) of the PWM waveform, only the TP0CCR1 register has to be set.


After data is written to the TP0CCR1 register, the value written to the TP0CCRa register is transferred to the CCRa buffer register in synchronization with clearing of the 16-bit counter, and is used as the value compared with the 16-bit counter.

To write the TP0CCR0 or TP0CCR1 register again after writing the TP0CCR1 register once, do so after the INTTP0CC0 signal is generated. Otherwise, the value of the CCRa buffer register may become undefined because the timing of transferring data from the TP0CCRa register to the CCRa buffer register conflicts with writing the TP0CCRa register.

Remark a = 0, 1

(b) 0%/100% output of PWM waveform

To output a 0% waveform, set the TP0CCR1 register to 0000H. If the set value of the TP0CCR0 register is FFFFH, the INTTP0CC1 signal is generated periodically.

et4U.com

To output a 100% waveform, set a value of (set value of TP0CCR0 register + 1) to the TP0CCR1 register. If the set value of the TP0CCR0 register is FFFFH, 100% output cannot be produced.

Count clock 0000 0001 16-bit counter FFFF 0000 D₀₀ - 1 **D**00 D00 -D00 0000 TP0CE bit D00 D00 TP0CCR0 register D00 Doo + 1 D00 + 1 D00 + 1 TP0CCR1 register INTTP0CC0 signal INTTP0CC1 signal TOP01 pin output

(c) Generation timing of compare match interrupt request signal (INTTP0CC1)

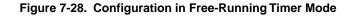
The timing of generation of the INTTP0CC1 signal in the PWM output mode differs from the timing of other INTTP0CC1 signals; the INTTP0CC1 signal is generated when the count value of the 16-bit counter matches the value of the TP0CCR1 register.

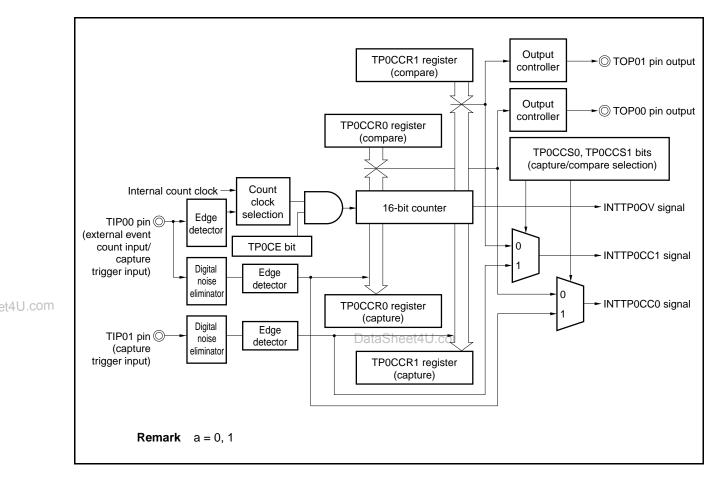
Count clock		
16-bit counter	D1 - 2 D1 - 1 D1 D1 + 1 D1 + 2	
TP0CCR1 register	D1	
TOP01 pin output		
INTTP0CC1 signal		

Usually, the INTTP0CC1 signal is generated in synchronization with the next counting up after the count value of the 16-bit counter matches the value of the TP0CCR1 register.

In the PWM output mode, however, it is generated one clock earlier. This is because the timing is changed to match the change timing of the output signal of the TOP01 pin.

et4U.com

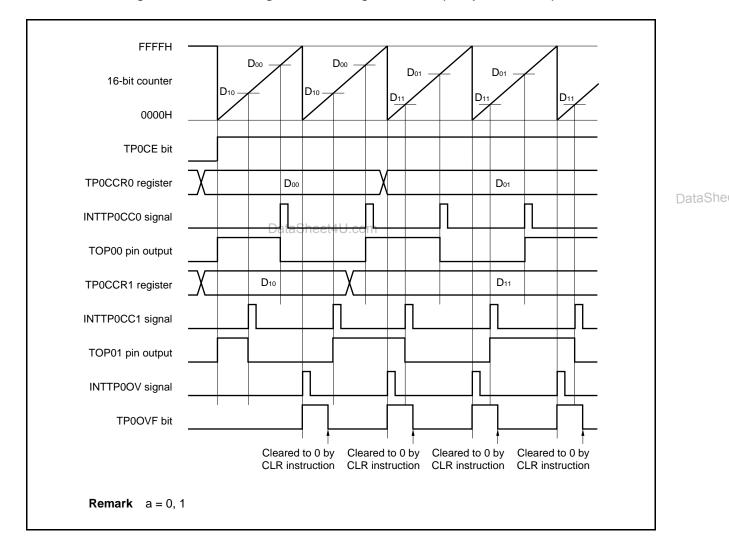

DataSheet4U.com


DataSheet4U.com

www.DataSheet4U.com

7.5.6 Free-running timer mode (TP0MD2 to TP0MD0 bits = 101)

In the free-running timer mode, 16-bit timer/event counter P starts counting when the TP0CTL0.TP0CE bit is set to 1. At this time, the TP0CCRa register can be used as a compare register or a capture register, depending on the setting of the TP0OPT0.TP0CCS0 and TP0OPT0.TP0CCS1 bits.



When the TP0CE bit is set to 1, 16-bit timer/event counter P starts counting, and the output signals of the TOP00 and TOP01 pins are inverted. When the count value of the 16-bit counter later matches the set value of the TP0CCRa register, a compare match interrupt request signal (INTTP0CCa) is generated, and the output signal of the TOP0a pin is inverted.

The 16-bit counter continues counting in synchronization with the count clock. When it counts up to FFFFH, it generates an overflow interrupt request signal (INTTPOOV) at the next clock, is cleared to 0000H, and continues counting. At this time, the overflow flag (TP0OPT0.TP0OVF bit) is also set to 1. Clear the overflow flag to 0 by executing the CLR instruction by software.

The TP0CCRa register can be rewritten while the counter is operating. If it is rewritten, the new value is reflected at that time, and compared with the count value.

When the TPOCE bit is set to 1, the 16-bit counter starts counting. When the valid edge input to the TIPOa pin is detected, the count value of the 16-bit counter is stored in the TPOCCRa register, and a capture interrupt request signal (INTTPOCCa) is generated.

The 16-bit counter continues counting in synchronization with the count clock. When it counts up to FFFH, it generates an overflow interrupt request signal (INTTPOOV) at the next clock, is cleared to 0000H, and continues counting. At this time, the overflow flag (TP0OPT0.TP0OVF bit) is also set to 1. Clear the overflow flag to 0 by executing the CLR instruction by software.

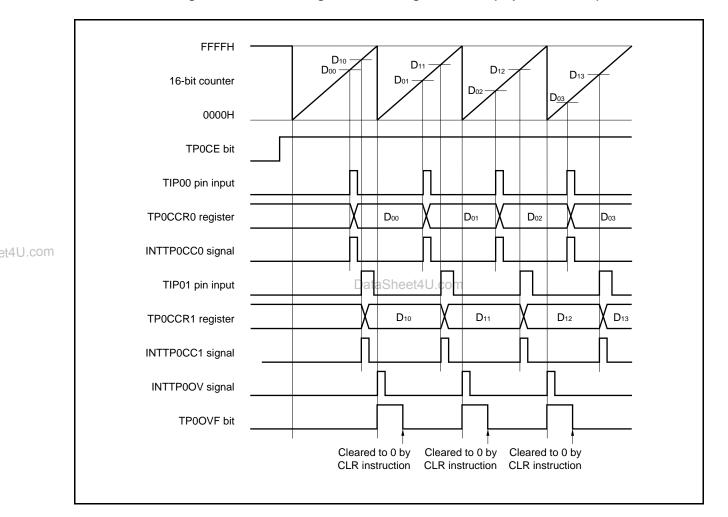
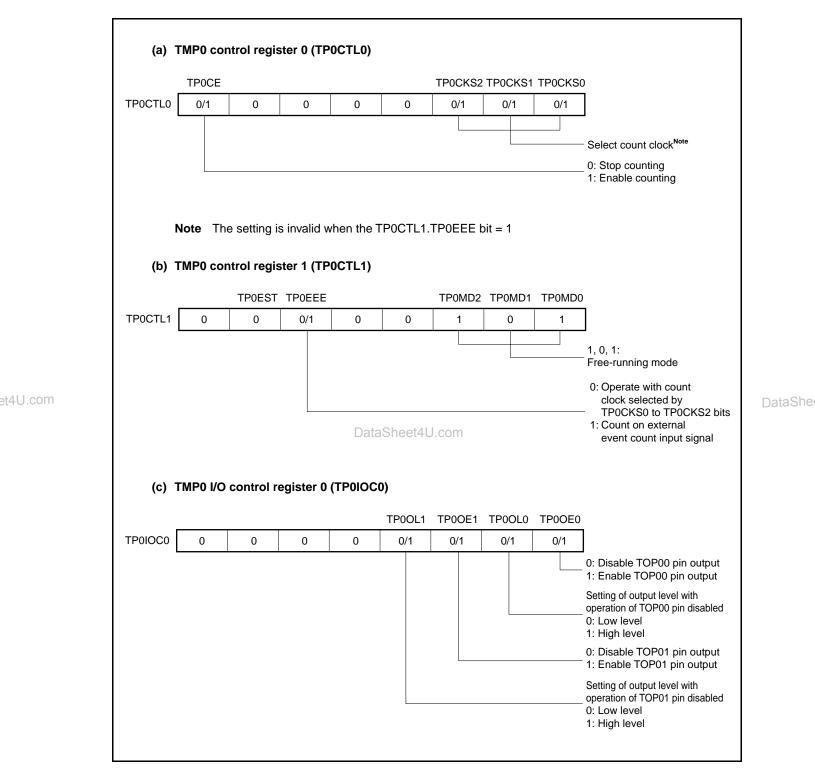
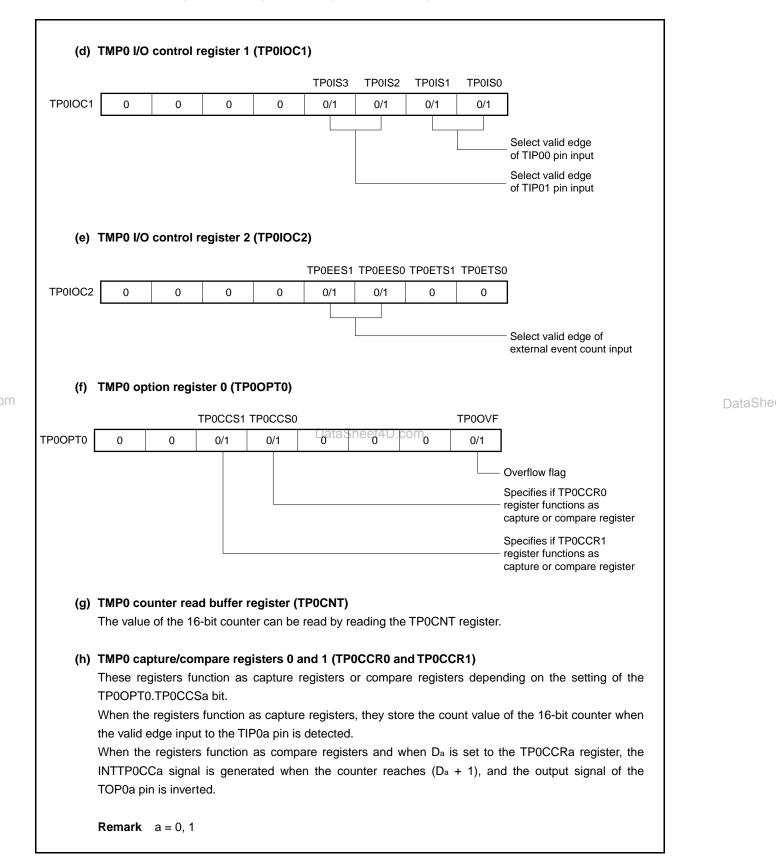
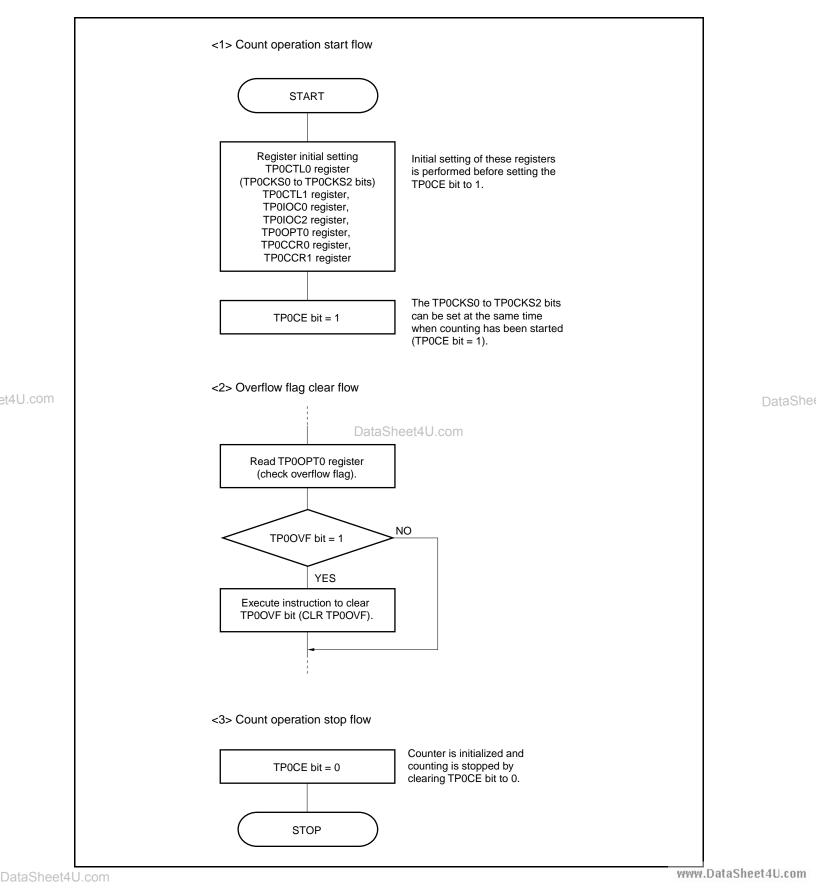
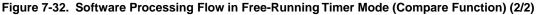
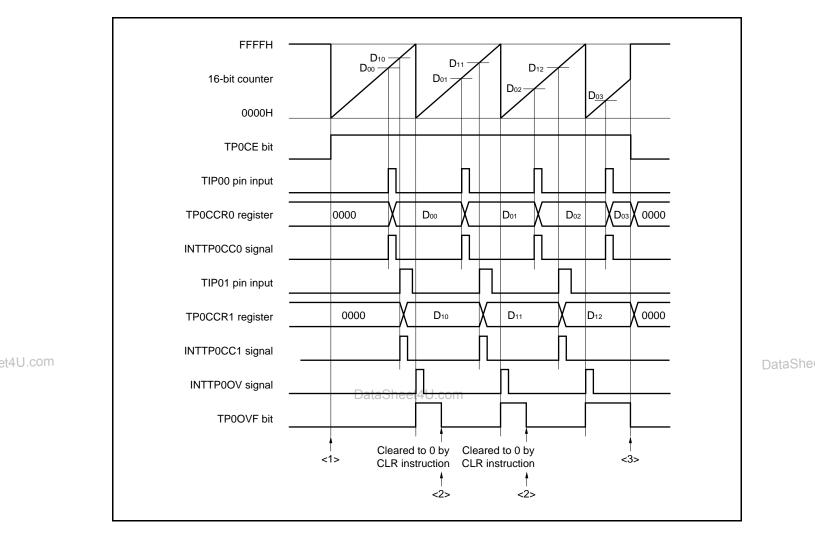




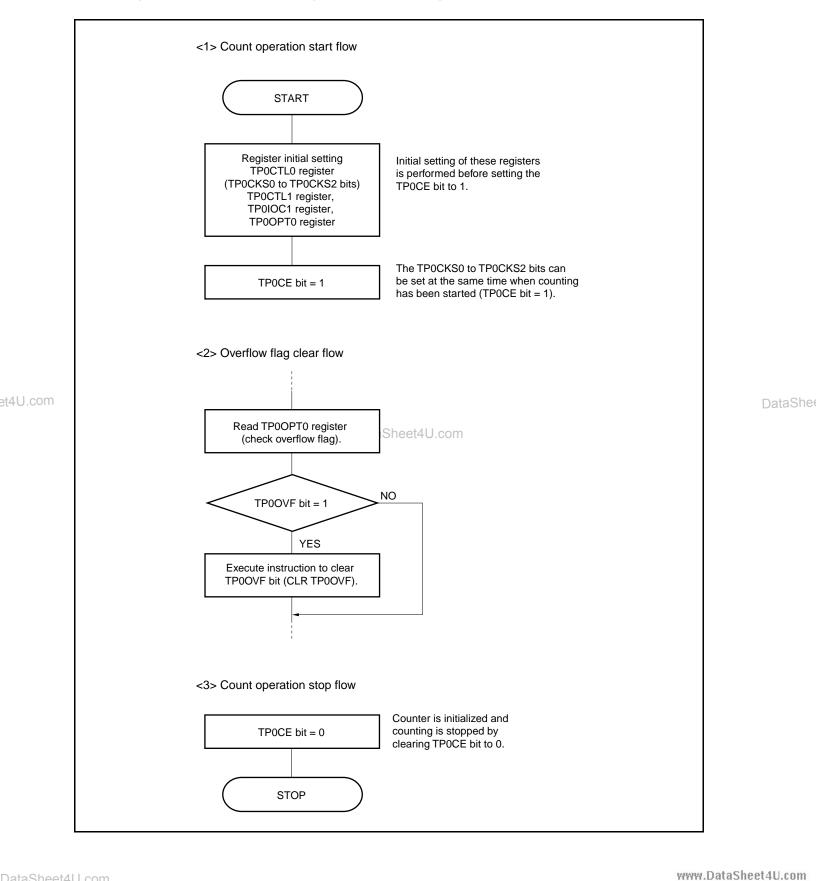
Figure 7-30. Basic Timing in Free-Running Timer Mode (Capture Function)




DataSheet4U.com

- (1) Operation flow in free-running timer mode
 - (a) When using capture/compare register as compare register

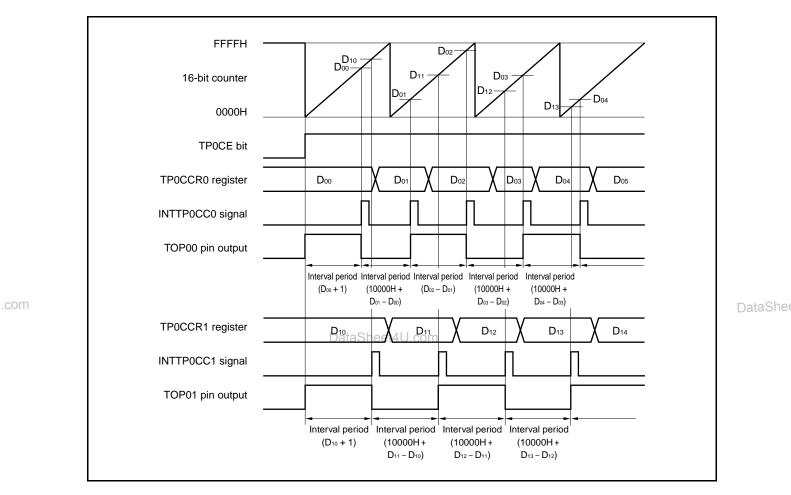

Figure 7-32. Software Processing Flow in Free-Running Timer Mode (Compare Function) (1/2)



272

(b) When using capture/compare register as capture register

Figure 7-33. Software Processing Flow in Free-Running Timer Mode (Capture Function) (1/2)



DataSheet4U.com

(2) Operation timing in free-running timer mode

(a) Interval operation with compare register

When 16-bit timer/event counter P is used as an interval timer with the TP0CCRa register used as a compare register, software processing is necessary for setting a comparison value to generate the next interrupt request signal each time the INTTP0CCa signal has been detected.

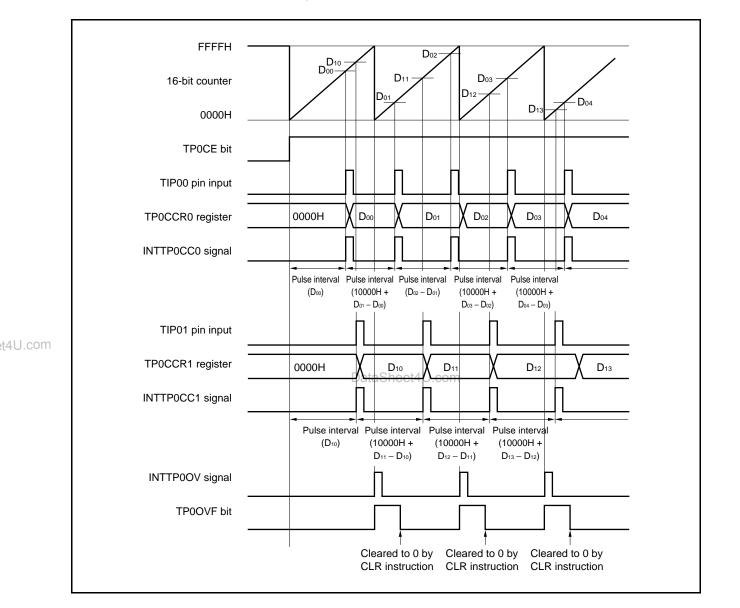
When performing an interval operation in the free-running timer mode, two intervals can be set with one channel.

To perform the interval operation, the value of the corresponding TP0CCRa register must be re-set in the interrupt servicing that is executed when the INTTP0CCa signal is detected.

The set value for re-setting the TP0CCRa register can be calculated by the following expression, where "D_a" is the interval period.

Compare register default value: $D_{\rm a}-1$

Value set to compare register second and subsequent time: Previous set value + Da

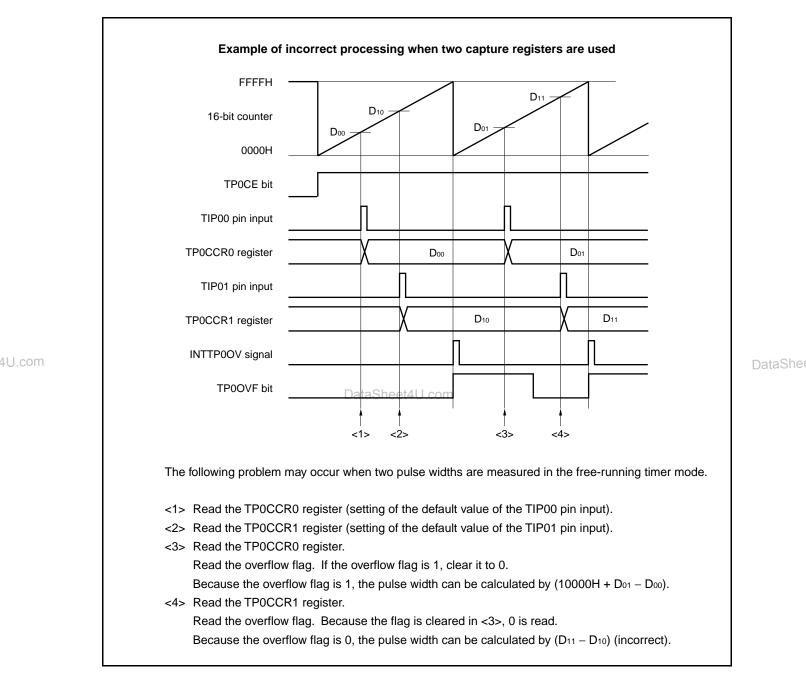

(If the calculation result is greater than FFFFH, subtract 10000H from the result and set this value to the register.)

DataSheet4U.com

www.DataSheet4U.com

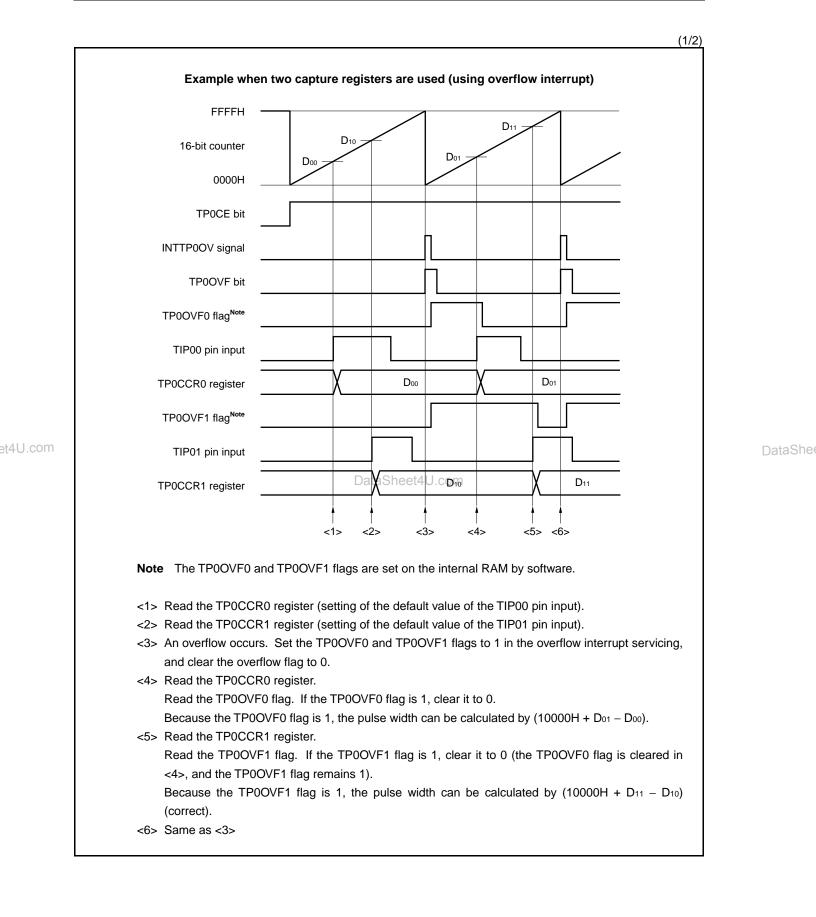
(b) Pulse width measurement with capture register

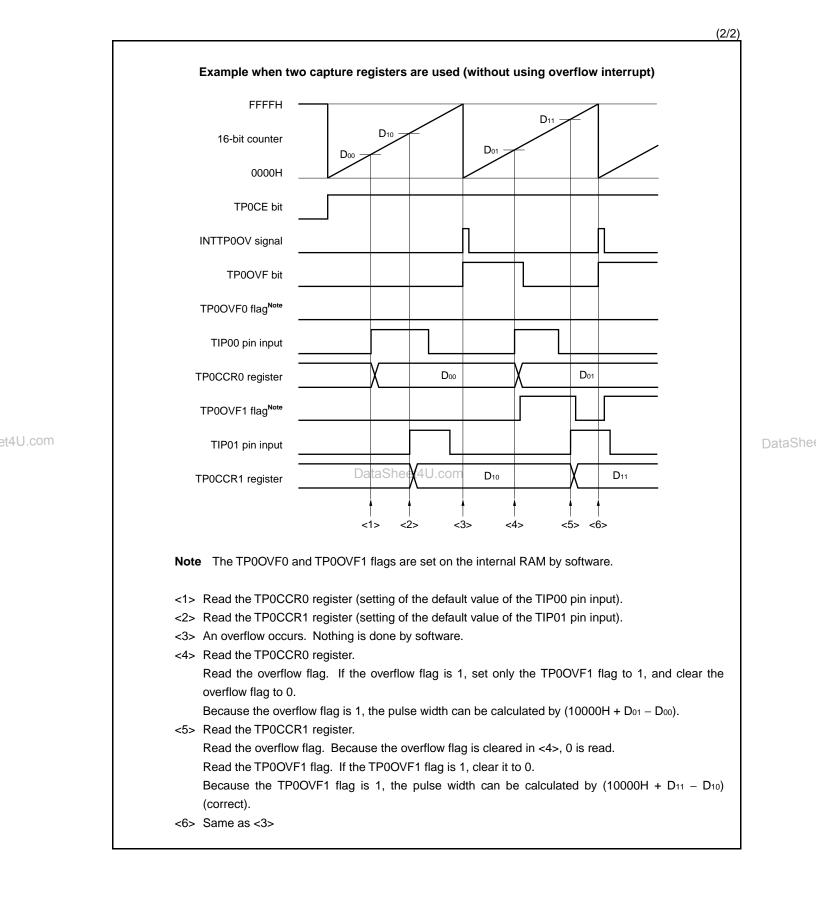
When pulse width measurement is performed with the TP0CCRa register used as a capture register, software processing is necessary for reading the capture register each time the INTTP0CCa signal has been detected and for calculating an interval.


When executing pulse width measurement in the free-running timer mode, two pulse widths can be measured with one channel.

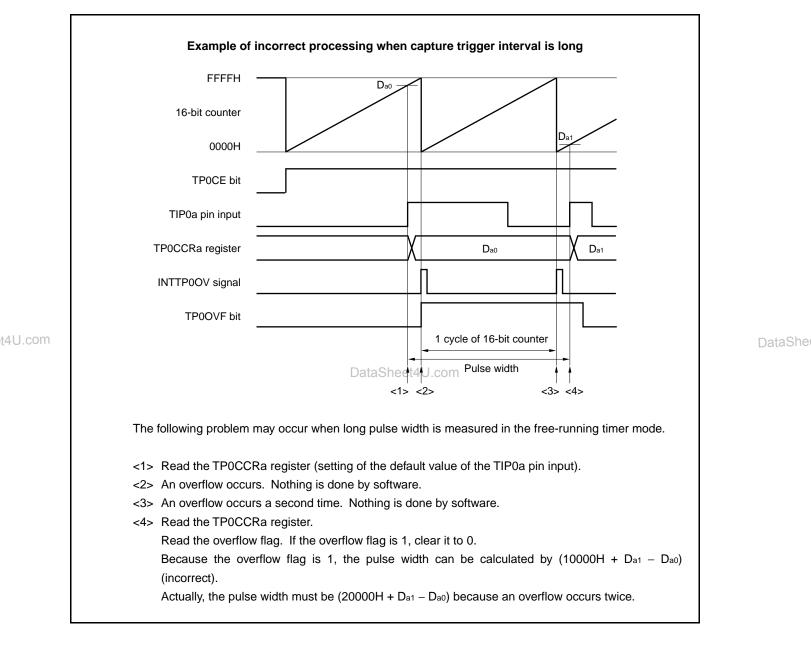
To measure a pulse width, the pulse width can be calculated by reading the value of the TP0CCRa register in synchronization with the INTTP0CCa signal, and calculating the difference between the read value and the previously read value.

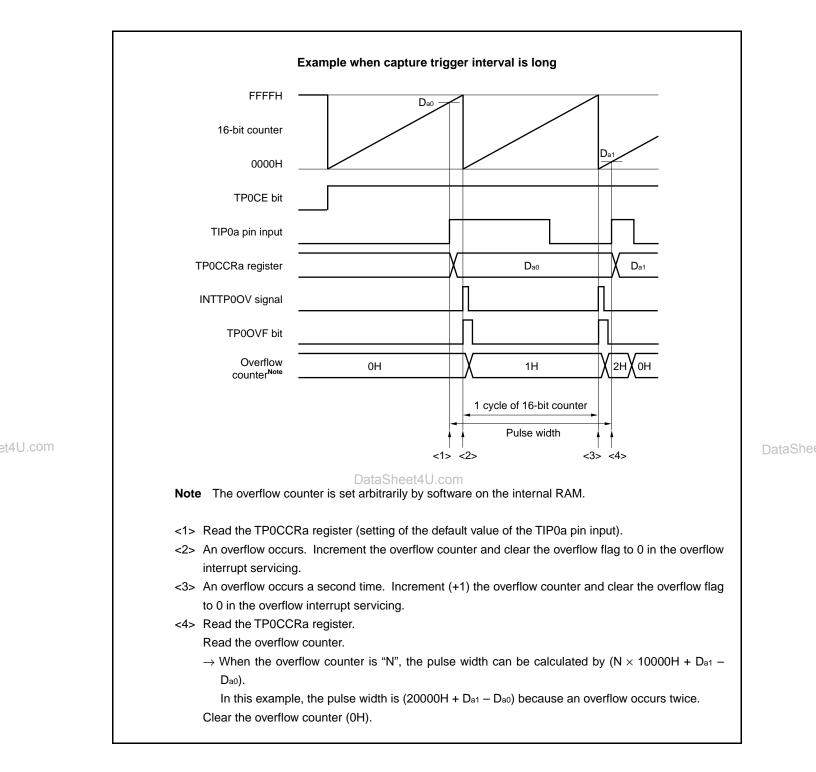
Remark a = 0, 1


(c) Processing of overflow when two capture registers are used

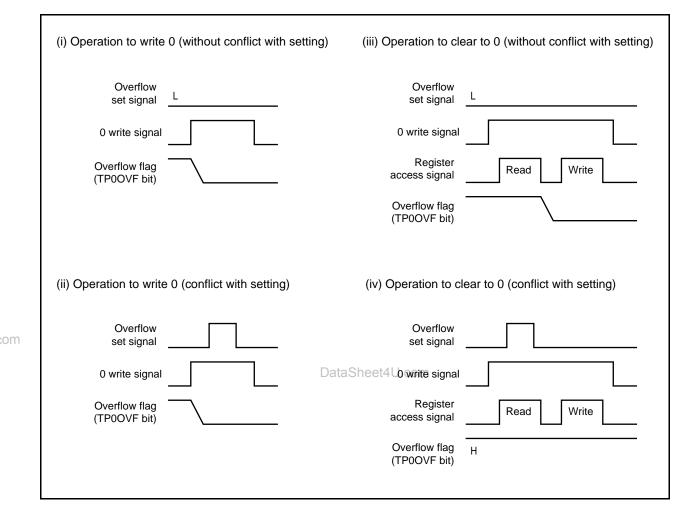

Care must be exercised in processing the overflow flag when two capture registers are used. First, an example of incorrect processing is shown below.

When two capture registers are used, and if the overflow flag is cleared to 0 by one capture register, the other capture register may not obtain the correct pulse width.


Use software when using two capture registers. An example of how to use software is shown below.


(d) Processing of overflow if capture trigger interval is long

If the pulse width is greater than one cycle of the 16-bit counter, care must be exercised because an overflow may occur more than once from the first capture trigger to the next. First, an example of incorrect processing is shown below.


If an overflow occurs twice or more when the capture trigger interval is long, the correct pulse width may not be obtained.

If the capture trigger interval is long, slow the count clock to lengthen one cycle of the 16-bit counter, or use software. An example of how to use software is shown next.

(e) Clearing overflow flag

The overflow flag can be cleared to 0 by clearing the TP0OVF bit to 0 with the CLR instruction and by writing 8-bit data (bit 0 is 0) to the TP0OPT0 register. To accurately detect an overflow, read the TP0OVF bit when it is 1, and then clear the overflow flag by using a bit manipulation instruction.

To clear the overflow flag to 0, read the overflow flag to check if it is set to 1, and clear it with the CLR instruction. If 0 is written to the overflow flag without checking if the flag is 1, the set information of overflow may be erased by writing 0 ((ii) in the above chart). Therefore, software may judge that no overflow has occurred even when an overflow actually has occurred.

If execution of the CLR instruction conflicts with occurrence of an overflow when the overflow flag is cleared to 0 with the CLR instruction, the overflow flag remains set even after execution of the clear instruction.

7.5.7 Pulse width measurement mode (TP0MD2 to TP0MD0 bits = 110)

In the pulse width measurement mode, 16-bit timer/event counter P starts counting when the TP0CTL0.TP0CE bit is set to 1. Each time the valid edge input to the TIP0a pin has been detected, the count value of the 16-bit counter is stored in the TP0CCRa register, and the 16-bit counter is cleared to 0000H.

The interval of the valid edge can be measured by reading the TP0CCRa register after a capture interrupt request signal (INTTP0CCa) occurs.

Select either the TIP00 or TIP01 pin as the capture trigger input pin. Specify "No edge detected" by using the TP0IOC1 register for the unused pins.

When an external clock is used as the count clock, measure the pulse width of the TIP01 pin because the external clock is fixed to the TIP00 pin. At this time, clear the TP0IOC1.TP0IS1 and TP0IOC1.TP0IS0 bits to 00 (capture trigger input (TIP00 pin): No edge detected).

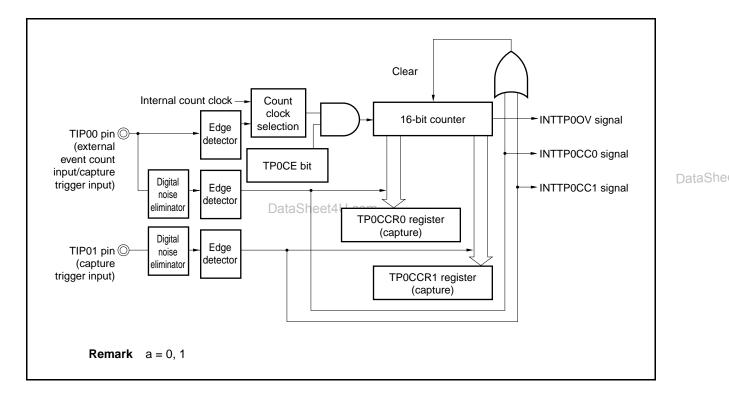
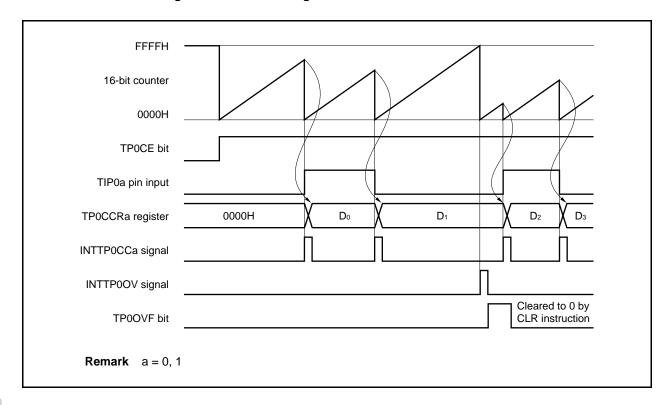



Figure 7-34. Configuration in Pulse Width Measurement Mode

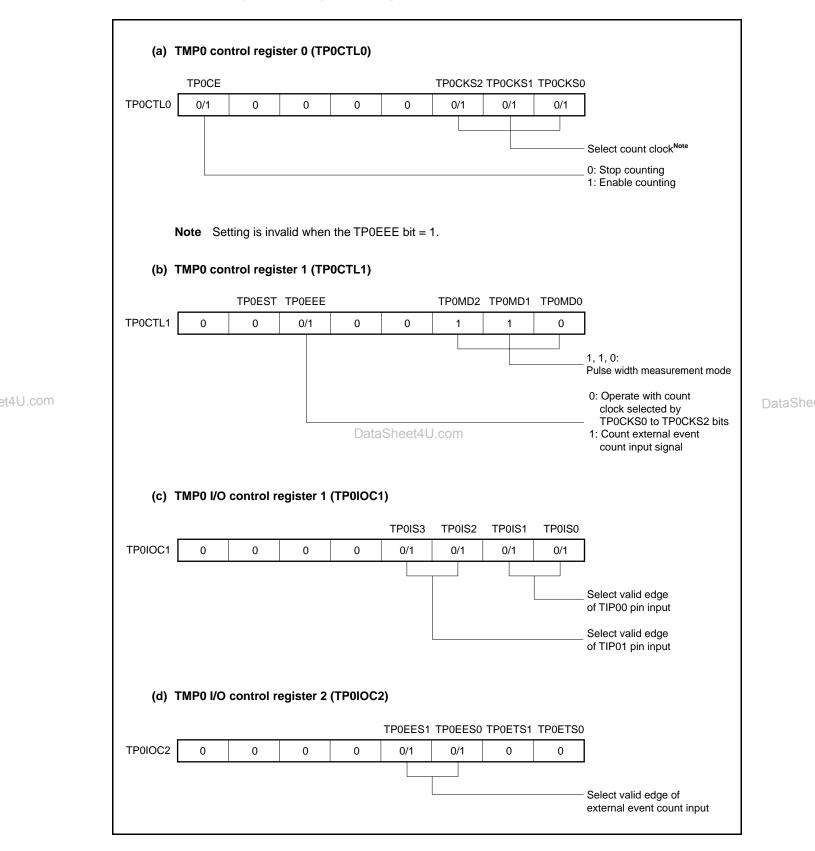
Figure 7-35. Basic Timing in Pulse Width Measurement Mode

et4U.cor

When the TP0CE bit is set to 1, the 16-bit counter starts counting. When the valid edge input to the TIP0a pin is later detected, the count value of the 16-bit counter is stored in the TP0CCRa register, the 16-bit counter is cleared to 0000H, and a capture interrupt request signal (INTTP0CCa) is generated.

The pulse width is calculated as follows.

First pulse width = $(D_0 + 1) \times \text{Count clock cycle}$ Second and subsequent pulse width = $(D_N - D_{N-1}) \times \text{Count clock cycle}$


If the valid edge is not input to the TIP0a pin even when the 16-bit counter counted up to FFFFH, an overflow interrupt request signal (INTTP0OV) is generated at the next count clock, and the counter is cleared to 0000H and continues counting. At this time, the overflow flag (TP0OPT0.TP0OVF bit) is also set to 1. Clear the overflow flag to 0 by executing the CLR instruction via software.

If the overflow flag is set to 1, the pulse width can be calculated as follows.

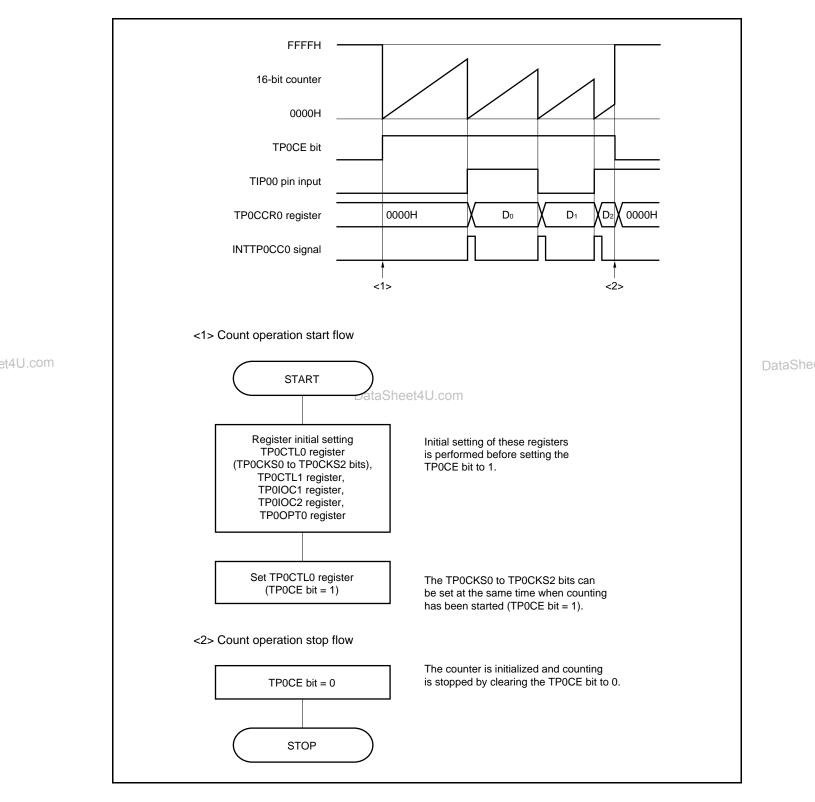
First pulse width = $(D_0 + 10001H) \times Count clock cycle$ Second and subsequent pulse width = $(10000H + D_N - D_{N-1}) \times Count clock cycle$

Remark a = 0, 1

DataSheet4U.com

www.DataSheet4U.com

(e)	TMP0 opt	ion regist	ter 0 (TP0	OPT0)			
			TP0CCS1	TP0CCS0			TPOOVF
TP0OPT0	0	0	0	0	0	0	0 0/1
(f)	TMP0 cou			• •			Overflow flag
(7)					2	U	ne TP0CNT register.
(g)	-				-		and TP0CCR1) er when the valid edge input to the TIP0a pin is
	Remarks	 TMP0 a = 0, 		ol register	r 0 (TP0IC)C0) is no	not used in the pulse width measurement mode.


Figure 7-36. Register Setting in Pulse Width Measurement Mode (2/2)

et4U.com

DataShe

DataSheet4U.com

(1) Operation flow in pulse width measurement mode

Figure 7-37. Software Processing Flow in Pulse Width Measurement Mode

DataSheet4U.com

www.DataSheet4U.com

(2) Operation timing in pulse width measurement mode

(a) Clearing overflow flag

The overflow flag can be cleared to 0 by clearing the TP0OVF bit to 0 with the CLR instruction and by writing 8-bit data (bit 0 is 0) to the TP0OPT0 register. To accurately detect an overflow, read the TP0OVF bit when it is 1, and then clear the overflow flag by using a bit manipulation instruction.

Overflow set signal 0 write signal	Overflow set signal 0 write signal	<u> </u>
Overflow flag (TP0OVF bit)	Register access signal	Read Write
	Overflow flag (TP0OVF bit)	
(ii) Operation to write 0 (conflict with setting) Overflow set signal	(iv) Operation to c Overflow DataSheet4U.coverflow	ear to 0 (conflict with setting)
Overflow		ear to 0 (conflict with setting)
Overflow	Overflow DataSheet4U.confised signal	ear to 0 (conflict with setting)

DataShe

To clear the overflow flag to 0, read the overflow flag to check if it is set to 1, and clear it with the CLR instruction. If 0 is written to the overflow flag without checking if the flag is 1, the set information of overflow may be erased by writing 0 ((ii) in the above chart). Therefore, software may judge that no overflow has occurred even when an overflow actually has occurred.

If execution of the CLR instruction conflicts with occurrence of an overflow when the overflow flag is cleared to 0 with the CLR instruction, the overflow flag remains set even after execution of the clear instruction.

DataSheet4U.com

7.5.8 Timer output operations

The following table shows the operations and output levels of the TOP00 and TOP01 pins.

Operation Mode	TOP01 Pin	TOP00 Pin
Interval timer mode	Square wave output	
External event count mode	Square wave output	-
External trigger pulse output mode	External trigger pulse output	Square wave output
One-shot pulse output mode	One-shot pulse output	
PWM output mode	PWM output	
Free-running timer mode	Square wave output (only when con	npare function is used)
Pulse width measurement mode		_

Table 7-4. Timer Output Control in Each Mode	Table 7-4.	Timer Ou	tput Control	l in Eac	h Mode
--	------------	----------	--------------	----------	--------

Table 7-5. Truth Table of TOP00 and TOP01 Pins Under Control of Timer Output Control Bits

TP0IOC0.TP0OLa Bit	TP0IOC0.TP0OEa Bit	TP0CTL0.TP0CE Bit	Level of TOP0a Pin
0	0	×	Low-level output
	1	0	Low-level output
		1	Low level immediately before counting, high level after counting is started
1	0	×	High-level output
	1	0	High-level output
	Da	taSheet4U.com	High level immediately before counting, low level after counting is started

et4U.com

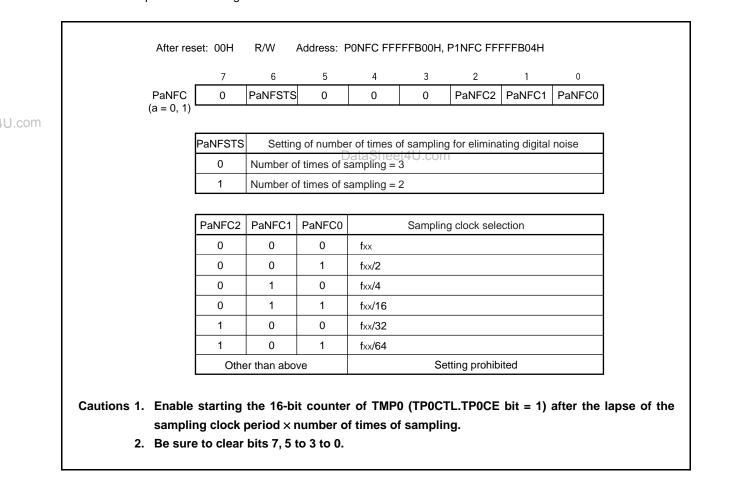
Remark a = 0, 1

DataSheet4U.com

7.6 Eliminating Noise on Capture Trigger Input Pin (TIP0a)

The TIP0a pin has a digital noise eliminator.

However, this circuit is valid only when the pin is used as a capture trigger input pin; it is invalid when the pin is used as an external event count input pin or external trigger input pin.


Digital noise can be eliminated by specifying the alternate function of the TIP0a pin using the PMC3, PFC3, and PFCE3 registers.

The number of times of sampling can be selected from three or two by using the PaNFC.PaNFSTS bit. The sampling clock can be selected from fxx, fxx/2, fxx/4, fxx/16, fxx/32, or fxx/64, by using the PaNFC.PaNFC2 to PaNFC.PaNFC0 bits.

(1) TIP0a noise elimination control register (PaNFC)

This register is used to select the sampling clock and the number of times of sampling for eliminating digital noise.

This register can be read or written in 8-bit or 1-bit units. Reset input clears this register to 00H.

www.DataSheet4U.com

<Setting procedure>

- <1> Select the number of times of sampling and the sampling clock by using the PaNFC register.
- <2> Select the alternate function (of the TIP0a pin) by using the PMC3, PFC3, and PFCE3 registers.
- <3> Set the operating mode of TMP0 (such as the capture mode or the valid edge of the capture trigger).
- <4> Enable the TMP0 count operation.

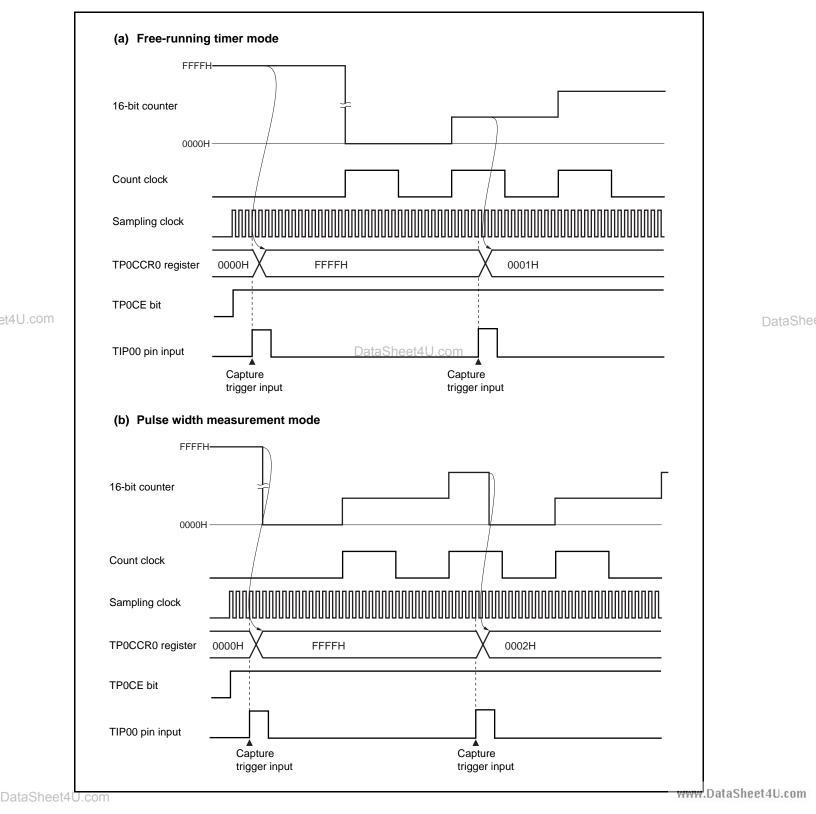
<Noise elimination width>

The digital noise elimination width (t_{WTIP0a}) is as follows, where T is the sampling clock period and M is the number of times of sampling.

- twTIP0a < (M 1)T: Accurately eliminated as noise
- $(M 1)T \le twTIPOa < MT$: Eliminated as noise or detected as valid edge
- twTIP0a ≥ MT: Accurately detected as valid edge

Therefore, a pulse width of MT or longer must be input so that the valid edge of the capture trigger input can be accurately detected.

et4U.com


DataShe

DataSheet4U.com

7.7 Cautions

(1) Capture operation

When the capture operation is used and a slow clock is selected as the count clock, FFFFH, not 0000H, may be captured in the TP0CCRn register if the capture trigger is input immediately after the TP0CE bit is set to 1.

CHAPTER 8 16-BIT TIMER/EVENT COUNTER 0

In the V850ES/KG1+, four channels of 16-bit timer/event counter 0 are provided.

8.1 Functions

16-bit timer/event counter 0n has the following functions (n = 0 to 3).

- (1) Interval timer Generates an interrupt at predetermined time intervals.
- (2) PPG output Can output a rectangular wave with any frequency and any output pulse width.
- (3) Pulse width measurement Can measure the pulse width of a signal input from an external source.
- (4) External event counter

Can measure the pulse width of a signal input from an external source.

(5) Square-wave output

Can output a square wave of any frequency.

(6) One-shot pulse output DataSheet4U.com

Can output a one-shot pulse with any output pulse width.

8.2 Configuration

16-bit timer/event counter 0n consists of the following hardware.

Table 8-1. Configuration of 16-Bit Timer/Event Counter 0n

ltem	Configuration
Timer/counters	16-bit timer counter $0n \times 1$ (TM0n)
Registers	16-bit timer capture/compare register: 16 bits × 2 (CR0n0, CR0n1)
Timer inputs	2 (TI0n0, TI0n1 pins)
Timer outputs	1 (TO0n pin), output controller
Control registers ^{Note}	16-bit timer mode control register n (TMC0n) Capture/compare control register n (CRC0n) 16-bit timer output control register n (TOC0n) Prescaler mode register 0n (PRM0n) Selector operation control register 1 (SELCNT1)

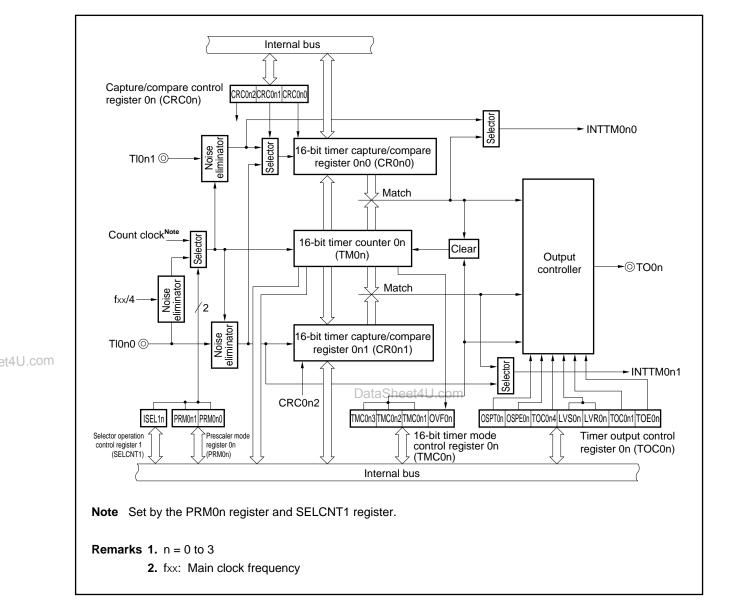
Note To use the TI0n0, TI0n1, and TO0n pin functions, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.

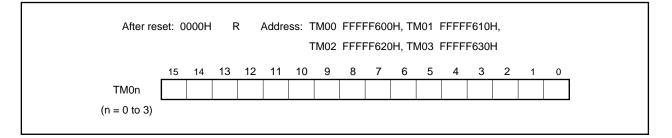
Remark n = 0 to 3

DataSheet4U.com

et4U.com

The block diagram is shown below.




Figure 8-1. Block Diagram of 16-Bit Timer/Event Counter 0n

www.DataSheet4U.com

DataSheet4U.com

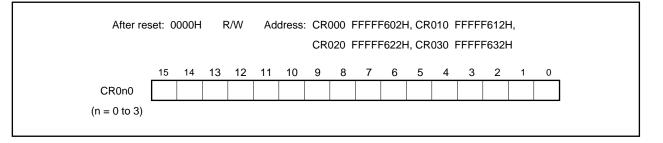
(1) 16-bit timer counter 0n (TM0n)

The TM0n register is a 16-bit read-only register that counts count pulses. The counter is incremented in synchronization with the rising edge of the input clock.

The count value is reset to 0000H in the following cases.

- <1> Reset
- <2> If the TMC0n.TMC0n3 and TMC0n.TMC0n2 bits are cleared (0).
- <3> If the valid edge of the TI0n0 pin is input in the mode in which clear & start occurs when inputting the valid edge of the TI0n0 pin
- <4> If the TM0n register and the CR0n0 register match each other in the mode in which clear & start occurs on a match between the TM0n register and the CR0n0 register
- <5> If the TOC0n.OSPT0n bit is set (1) or if the valid edge of the TI0n0 pin is input in the one-shot pulse output mode

DataShe


Remark n = 0 to 3

DataSheet4U.com

(2) 16-bit timer capture/compare register 0n0 (CR0n0)

The CR0n0 register is a 16-bit register that combines capture register and compare register functions. The CRC0n.CRC0n0 bit is used to set whether to use the CR0n0 register as a capture register or as a compare register.

The CR0n0 register can be read or written in 16-bit units. After reset, this register is cleared to 0000H.

(a) When using the CR0n0 register as a compare register

The value set to the CR0n0 register and the count value set to the TM0n register are always compared and when these values match, an interrupt request signal (INTTM0n0) is generated. The values are retained until rewritten.

295

(b) When using the CR0n0 register as a capture register

The TM0n register count value is captured to the CR0n0 register by inputting a capture trigger.

The valid edge of the TI0n0 pin or TI0n1 pin can be selected as the capture trigger. The valid edge of the TI0n0 pin is set with the PRM0n.ESn01 and PRM0n.ESn00 bits. The valid edge of the TI0n1 pin is set with the PRM0n.ESn11 and PRM0n.ESn10 bits.

Table 8-2 shows the settings when the valid edge of the TI0n0 pin is specified as the capture trigger, and Table 8-3 shows the settings when the valid edge of the TI0n1 is specified as the capture trigger.

Table 8-2. Capture Trigger of CR0n0 Register and Valid Edge of TI0n0 Pin

Capture Trigger of CR0n0	Valid Edge of TI0	n0 Pin	
		ESn01	ESn00
Falling edge	Rising edge	0	1
Rising edge	Falling edge	0	0
No capture operation	Both rising and falling edges	1	1

Remarks 1. n = 0 to 3

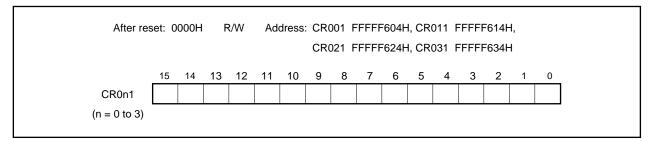
2. Setting the ESn01 and ESn00 bits to 10 is prohibited.

Table 8-3. Capture Trigger of CR0n0 Register and Valid Edge of Tl0n1 Pin

Capture Trigger of CR0n0	Valid Edge of TI0	Valid Edge of TI0n1 Pin						
		ESn11	ESn10					
Falling edge	Falling edge	0	0					
Rising edge	Rising edge	0	1					
Both rising and falling edges	Both rising and falling edges	1	1					

DataShe

Remarks 1. n = 0 to 3


- 2. Setting the ESn11 and ESn10 bits to 10 is prohibited.
- Cautions 1. Set a value other than 0000H to the CR0n0 register in the mode in which clear & start occurs upon a match of the values of the TM0n register and CR0n0 register. However, if 0000H is set to the CR0n0 register in the free-running timer mode or the TI0n0 pin valid edge clear & start mode, an interrupt request signal (INTTM0n0) is generated when the value changes from 0000H to 0001H after an overflow (FFFFH).
 - 2. When the P33, P35, P92, and P94 pins are used as the valid edges of Tl000, Tl010, Tl020, and Tl030, and the timer output function is used, set the P34, P32, P30, and P31 pins as the timer output pins (TO00 to TO03).
 - 3. If, when the CR0n0 register is used as a capture register, the register read interval and capture trigger input conflict, the read data becomes undefined (but the capture data itself is normal). Moreover, when the count stop input and capture trigger input conflict, the capture data becomes undefined.
 - 4. The CR0n0 register cannot be rewritten during timer count operation.

(3) 16-bit timer capture/compare register 0n1 (CR0n1)

The CR0n1 register is a 16-bit register that combines capture register and compare register functions. The CRC0n.CRC0n2 bit is used to set whether to use the CR0n1 register as a capture register or as a compare register.

The CR0n1 register can be read or written in 16-bit units.

After reset, this register is cleared to 0000H.

(a) When using the CR0n1 register as a compare register

The value set to the CR0n1 register and the count value of the TM0n register are always compared and when these values match, an interrupt request signal (INTTM0n1) is generated.

(b) When using the CR0n1 register as a capture register

The TM0n register count value is captured to the CR0n1 register by inputting a capture trigger.

The valid edge of the TI0n0 pin can be selected as the capture trigger. The valid edge of the TI0n0 pin is set with the PRM0n.ESn01 and PRM0n.ESn00 bits.

Table 8-4 shows the settings when the valid edge of the TI0n0 pin is specified as the capture trigger.

DataSheet4U.com

Capture Trigger of CR0n1 Valid Edge of TI0n0 Pin ESn01 ESn00 Falling edge Falling edge 0 0 Rising edge Rising edge 0 1 1 Both rising and falling edges Both rising and falling edges 1

Table 8-4. Capture Trigger of CR0n1 Register and Valid Edge of TI0n0 Pin

Remarks 1. n = 0 to 3

2. Setting the ESn01 and ESn00 bits to 10 is prohibited.

- Cautions 1. If 0000H is set to the CR0n1 register, an interrupt request signal (INTTM0n1) is generated after overflow of the TM0n register, after clear & start on a match between the TM0n register and CR0n0 register, after clear by the valid edge of the Tl0n0 pin, or after clear by a one-shot pulse output trigger.
 - 2. When the P33, P35, P92, and P94 pins are used as the valid edges of TI000, TI010, TI020, and TI030, and the timer output function is used, set the P34, P32, P30, and P31 pins as the timer output pins (TO00 to TO03).
 - 3. If, when the CR0n1 register is used as a capture register, the register read interval and capture trigger input conflict, the read data becomes undefined (but the capture data itself is normal). Moreover, when the count stop input and capture trigger input conflict, the capture data becomes undefined.
 - 4. The CR0n1 register can be rewritten during TM0n register operation only in the PPG output mode. Refer to 8.4.2 PPG output operation.

DataSheet4U.com

8.3 Registers

The registers that control 16-bit timer/event counter 0n are as follows.

- 16-bit timer mode control register 0n (TMC0n)
- Capture/compare control register 0n (CRC0n)
- 16-bit timer output control register 0n (TOC0n)
- Prescaler mode register 0n (PRM0n)
- Selector operation control register 1 (SELCNT1)

Remark To use the TI0n0, TI0n1, and TO0n pin functions, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.

(1) 16-bit timer mode control register 0n (TMC0n)

The TMC0n register is used to set the operation mode of 16-bit timer/event counter 0n, the clear mode of the TM0n register, the output timing, and to detect overflow.

The TMCOn register can be read or written in 8-bit or 1-bit units.

After reset, this register is cleared to 00H.

- Cautions 1. 16-bit timer/event counter 0n starts operating when a value other than 00 (operation stop mode) is set to the TMC0n.TMC0n3 and TMC0n.TMC0n2 bits. To stop the operation, set 00 to the TMC0n3 and TMC0n2 bits.
 - When the main clock is stopped and the CPU operates on the subclock, do not access the TMC0n register using an access method that causes a wait. For details, refer to 3.4.8 (2).

Remark n = 0 to 3

www.DataSheet4U.com

		7		6	5	4	3	2	1	<0>		
	TMC0n	0		0	0	0	TMC0n3	TMC0n2	TMC0n1 ^{Note}	OVF0n		
	(n = 0 to 3)											
		TMC0n3	TMC0n2	TMC0n1 ^{Note}	operatio	tion of on mode ar mode	Selection output inve		Genera interr			
		0	0	0	Operation		Unchanged	b	Not genera	ited		
		0	0	1	(TM0n cle	ared to 0)						
		0	1	0	Free-runn	ing timer	Match of T	M0n and	Generated	upon		
					mode		CR0n0 or r	match of	match of T	M0n and		
							TM0n and	CR0n1	CR0n0 and	l match		
		0	1	1	1		Match of T		of TM0n ar	nd CR0n1		
							CR0n0, ma					
							TM0n and or valid edg					
							TI0n0	9				
		1	0	0	Clear & st	art with	Match of TM	10n and				
					valid edge	e of TI0n0	CR0n0 or m	atch of				
							TM0n and C	R0n1				
		1	0	1			Match of T					
com							CR0n0, ma					Data
					DataShe	et411.cou	TM0n and or valid edg					
					Pataono	0110.001	TI0n0	go 01				
		1	1	0	Clear & st	art upon	Match of T	M0n and				
					match of -	TM0n and	CR0n0 or r	natch of				
					CR0n0		TM0n and	CR0n1				
		1	1	1			Match of T					
							CR0n0, ma					
							TM0n and or valid edg					
							TI0n0					
		OVF	Dn		Detect	ion of over	flow of 16-bi	t timer reg	ister 0n			
		0	No	overflo								
		1	O	/erflow								
	Note Be sure to o	lear th	e TMC	0n1 bi	it to 0 whe	en the TO	0n pin and	TI0n0 pi	n are used	alternate	ly.	
	Cautions 1. Writ	te to bi	ts oth	er tha	n the OV	F0n flag a	after stopp	oina the	timer oper	ation.		
						-	the PRMC	_	-			
	3. Whe	en the	mode	e in wl	hich the	timer is	cleared ar	nd starte	d upon m	natch of	TM0n and	
					-				and when	the valu	e of TM0n	
	cha	nges f	rom F	FFFH	to 0000H	the OVF	0n flag is	set to 1.				
	Remark TO0n:	-	-		it timer/ev							
	TI0n0:	-	-		timer/ever	nt counter	0n					
	TM0n:			counte	-	o roalata-	000					
		no-Dit	umer	captur	e/compar	e register						1

Г

(2) Capture/compare control register 0n (CRC0n)

The CRC0n register controls the operation of the CR0n0 and CR0n1 registers.

The CRC0n register can be read or written in 8-bit or 1-bit units.

After reset, CRC0n is cleared to 00H.

After	reset: 00H	R/W	Address			8H, CRC01 8H, CRC03				
	7	6	5	4	3	2	1	0		
CRC0n	0	0	0	0	0	CRC0n2	CRC0n1	CRC0n0		
(n = 0 to 3)										
	CRC0n2		Selec	ion of oper	ation mod	e of CR0n1	register			
	0	Operation	n as compa	re register						
	1	Operation	n as captur	e register						
		1								
	CRC0n1		Selection of capture trigger of CR0n0 register							
	0	Capture a	Capture at valid edge of TI0n1 pin							
	Capture a	at inverse p	hase of val	id edge o	f Tl0n0 pin					
		1								
	CRC0n0		Selec	ion of oper	ation mod	e of CR0n0	register			
	0	Operation	n as compa	re register						
U.com	1	Operation	n as captur	e register						
	efore settin hen the mo gister and	ode in w	hich the	timer is	cleared	and starte	ed upon	match of		
c	- R0n0 regist	er as the	capture	register.	-		-		-	
	hen both t pture oper	-	-		s are s	pecified fo	or the TI	0n0 pin va	alid edge,	
	o ensure re ock selecte				•	-		cycles of t	the count	

DataShe

٦

(3) 16-bit timer output control register 0n (TOC0n)

The TOCOn register controls the operation of the 16-bit timer/event counter 0n output controller by setting or resetting the timer output F/F, enabling or disabling inverse output, enabling or disabling the timer of 16-bit timer/event counter 0n, enabling or disabling the one-shot pulse output operation, and selecting an output trigger for a one-shot pulse by software.

The TOC0n register can be read or written in 8-bit or 1-bit units.

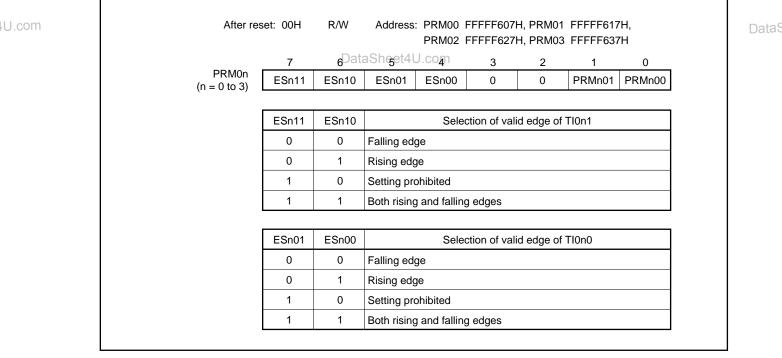
After reset, TOC0n is cleared to 00H.

	After res	set: 00H	R/W	Address				FFFFF619		
		7	<6>	<5>	4	<3>	<2>	1	<0>	
	TOC0n	0	OSPT0n	OSPE0n	TOC0n4	LVS0n	LVR0n	TOC0n1	TOE0n	
	(n = 0 to 3)									
		OSPT0n		Outpu	t trigger for	one-shot	pulse by s	oftware		
		0				-				
		1	One-shot	pulse outpu	ut					
		00050-		Cont		h at mula a				
		OSPE0n 0	Successiv	/e pulse ou	rol of one-s	not puise	output ope	eration		
		1		pulse outpu						
om										
		TOC0n4	Control o	f timer outpu	ut F/F upon	match of C	R0n1 regis	ter and TM0	n register	
		0		operation of		n				
		1	Inversion	operation e	nabled					
		LVS0n	LVR0n		Setting	of status of	of timer ou	tput F/F		
		0	0	Unchange	d					
		0	1	Reset time	er output F/	F (0)				
		1	0	Set timer	output F/F	1)				
		1	1	Setting pro	ohibited					
			1							
		TOC0n1	Control o	f timer outpu	ut F/F upon	match of C	R0n0 regis	ster and TM0	n register	
		0	Inversion	operation of	lisabled					
		1	Inversion	operation e	enabled					
		TOE0n			Contr	ol of timer	outout			
		0	Output di	sabled (out			•			
		1	Output er				,,,			
			Output ei	lableu						
	Note The one-sh	ot pulse o	output ope	erates nor	mally in th	e free-ru	nning tim	er mode a	nd the mode ir	ו which
	clear & star	rt occurs o	on the val	id edge of	the TIOn0	pin. In t	he mode	in which c	lear & start oc	curs on
	match betw	veen the	TM0n reg	ister and t	the CR0n) register	, one-sho	ot pulse ou	itput is not per	formed

301

			(2/2
Cautions 1	Be sure to stop the timer operation before setting other t	han the TOC0n4 bit.	
	The LVS0n and LVR0n bits are 0 when read.		
3.	The OSPT0n bit is 0 when read because it is automatical set.	ly cleared after data has bee	n
4.	Do not set the OSPT0n bit (1) other than for one-shot pul	se output.	
5.	When performing successive writes to the OSPT0n bi writes of two or more cycles of the count clock selected	· •	n
F	Do not set the LVS0n bit (1) before setting the TOE0n bit.	, 0	
0.	Do not set the LVS0n bit (1) before setting the TOEon bit. Do not set the LVS0n bit and TOE0n bit (1) at the same ti		
7.	Do not set <1> and <2> below at the same time. Set as f	ollows.	
	<1> Set the TOC0n1, TOC0n4, TOE0n, and OSPE0n bits:	Setting of timer output operation	
 	<2> Set the LVS0n and LVR0n bits:	Setting of timer output F/F	

DataSheet4U.com


(4) Prescaler mode register 0n (PRM0n)

The PRM0n register sets the count clock of the TM0n register and the valid edge of the TI0n0 and TI0n1 pin inputs. The PRMn01 and PRMn00 bits are set in combination with the SELCNT1.ISEL1n bit. Refer to 8.3 (6) Count clock setting for 16-bit timer/event counter 0n for details.

The PRMOn register can be read or written in 8-bit or 1-bit units.

After reset, PRM0n is cleared to 00H.

- Cautions 1. When setting the count clock to the TI0n0 pin valid edge, do not set the mode in which clear & start occurs on TI0n0 pin valid edge and do not set the TI0n0 pin as a capture trigger.
 - 2. Before setting the PRM0n register, be sure to stop the timer operation.
 - 3. If 16-bit timer/event counter 0n operation is enabled by specifying the rising edge of both edges for the valid edge of the TI0n0 pin or TI0n1 pin while the TI0n0 pin or TI0n1 pin is high level immediately after system reset, the rising edge is detected immediately after the rising edge or both edges is specified. Be careful when pulling up the TI0n0 pin or TI0n1 pin. However, the rising edge is not detected when operation is enabled after it has been stopped.
 - 4. When the P33, P35, P92, and P94 pins are used as the valid edges of TI000, TI010, TI020, and TI030, and the timer output function is used, set the P34, P32, P30, and P31 pins as the timer output pins (TO00 to TO03).


(5) Selector operation control register 1 (SELCNT1)

The SELCNT1 register sets the count clock of 16-bit timer/event counter 0n.

The SELCNT1 register can be read or written in 8-bit or 1-bit units.

After reset, SELCNT1 is cleared to 00H.

The SELCNT1 register is set in combination with the PRM0n.PRMn01 and PRM0n.PRMn00 bits. Refer to **8.3** (6) Count clock setting for 16-bit timer/event counter 0n for details.

(6) Count clock setting for 16-bit timer/event counter 0n

The count clock for 16-bit timer/event counter 0n is set by using the PRM0n.PRMn01, PRM0n.PRMn00, and SELCNT1.ISEL1n bits in combination.

(a) Count clock for 16-bit timer/event counters 00 and 02

SELCNT1 Register	PRM0n	Register	Selection of Count Clock ^{Note 1}						
ISEL1n Bit	PRM0n1 Bit	PRM0n0 Bit	Count Clock	fxx = 20 MHz	fxx = 16 MHz	fxx = 10 MHz			
0	0	0	fxx/2	100 ns	125 ns	200 ns			
0	0	1	fxx/4	200 ns	250 ns	400 ns			
0	1	0	fxx/8	m 400 ns	500 ns	800 ns			
0	1	1	Valid edge of TI0n0 ^{Note 2}	-	-	_			
1	0	0	fxx/32	1.6 <i>μ</i> s	2.0 <i>µ</i> s	3.2 <i>µ</i> s			
1	0	1	fxx/64	3.2 <i>μ</i> s	4.0 <i>μ</i> s	6.4 <i>µ</i> s			
1	1	0	fxx/128	6.4 <i>μ</i> s	8.0 <i>µ</i> s	12.8 <i>µ</i> s			
1	1	1		Setting prohil	bited				

DataShe

Notes 1. When the internal clock is selected, set so as to satisfy the following conditions:

VDD = REGC = 4.0 to 5.5 V: Count clock \leq 10 MHz

VDD = 4.0 to 5.5 V, REGC = Capacity: Count clock \leq 5 MHz

 V_{DD} = REGC = 2.7 to 4.0 V: Count clock \leq 5 MHz

2. The external clock requires a pulse longer than two cycles of the internal clock (fxx/4).

Remark n = 0 or 2

et4U.com

SELCNT1 Register	PRM01	Register	Ş	Selection of Count	Clock ^{Note 1}	
ISEL11 Bit	PRM011 Bit	PRM010 Bit	Count Clock	fxx = 20 MHz	fxx = 16 MHz	fxx = 10 MHz
0	0	0	fxx	Setting prohibited	Setting prohibited	100 ns
0	0	1	fxx/4	200 ns	250 ns	400 ns
0	1	0	INTWT	_	-	_
0	1	1	Valid edge of TI010 ^{Note 2}	-	-	_
1	0	0	fxx/2	100 ns	125 ns	200 ns
1	0	1	fxx/8	400 ns	500 ns	800 ns
1	1	0	fxx/16	800 ns	1.0 <i>μ</i> s	1.6 <i>μ</i> s
1	1	1		Setting prohil	bited	

(b) Count clock for 16-bit timer/event counter 01

Notes 1. When the internal clock is selected, set so as to satisfy the following conditions:

 V_{DD} = REGC = 4.0 to 5.5 V: Count clock \leq 10 MHz

VDD = 4.0 to 5.5 V, REGC = Capacity: Count clock \leq 5 MHz

 V_{DD} = REGC = 2.7 to 4.0 V: Count clock \leq 5 MHz

2. The external clock requires a pulse longer than two cycles of the internal clock (fxx/4).

(c) Count clock for 16-bit timer/event counter 03

SELCNT1 Register	PRM03 Register		Selection of Count Clock ^{Note 1}			
ISEL13 Bit	PRM031 Bit	PRM030 Bit	Count Clock	fxx = 20 MHz	fxx = 16 MHz	fxx = 10 MHz
0	0	0 Da	a t∞⁄9 heet4U.com	200 ns	250 ns	400 ns
0	0	1	fxx/16	800 ns	1.0 <i>μ</i> s	1.6 <i>μ</i> s
0	1	0	fxx/512	25.6 <i>µ</i> s	32.0 <i>μ</i> s	51.2 <i>μ</i> s
0	1	1	Valid edge of TI030 ^{Note 2}	-	-	_
1	0	0	fxx	Setting prohibited	Setting prohibited	100 ns
1	0	1	fxx/2	100 ns	125 ns	200 ns
1	1	0	fxx/8	400 ns	500 ns	800 ns
1	1	1	Setting prohibited			

Notes 1. When the internal clock is selected, set so as to satisfy the following conditions:

 V_{DD} = REGC = 4.0 to 5.5 V: Count clock \leq 10 MHz

VDD = 4.0 to 5.5 V, REGC = Capacity: Count clock \leq 5 MHz

 V_{DD} = REGC = 2.7 to 4.0 V: Count clock $\leq 5~\text{MHz}$

2. The external clock requires a pulse longer than two cycles of the internal clock (fxx/4).

et4U.com

8.4 Operation

8.4.1 Operation as interval timer

16-bit timer/event counter 0n can be made to operate as an interval timer by setting the TMC0n register and the CRC0n register as shown in Figure 8-2.

Setting procedure

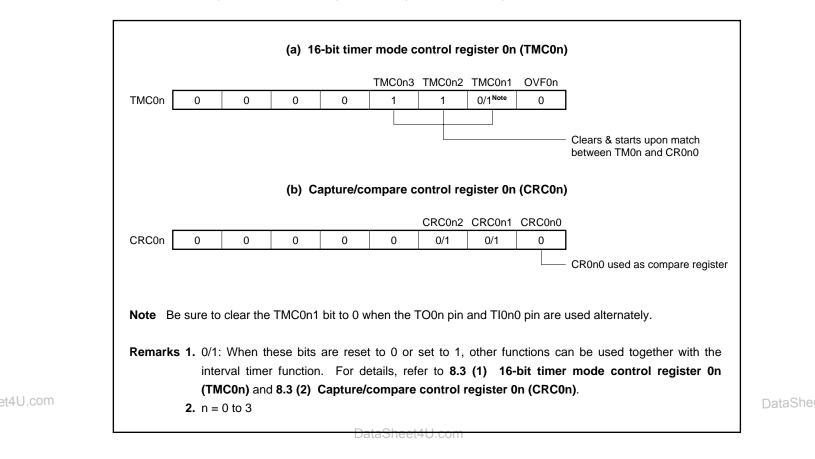
The basic operation setting procedure is as follows.

- <1> Set the count clock using the PRM0n register and the SELCNT1 register.
- <2> Set the CRC0n register (refer to Figure 8-2 for the setting value).
- <3> Set any value to the CR0n0 register.
- <4> Set the TMCOn register: Start operation (refer to Figure 8-2 for the setting value).

Caution The CR0n0 register cannot be rewritten during 16-bit timer/event counter 0n operation.

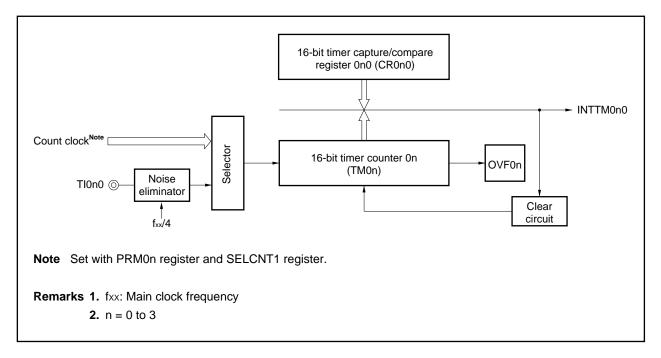
- Remarks 1. For the alternate-function pin settings, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.
 - 2. For INTTM0n0 interrupt enable, refer to CHAPTER 21 INTERRUPT/EXCEPTION PROCESSING FUNCTION.

+411 com


The interval timer repeatedly generates interrupts at the interval of the preset count value in the CR0n0 register.

If the count value in the TM0n register matches the value set in the CR0n0 register, an interrupt request signal (INTTM0n0) is generated at the same time that the value of the TM0n register is cleared to 0000H and counting is continued.

DataShe


The count clock of 16-bit timer/event counter 0n can be selected with the PRM0n.PRM0n0, PRM0n.PRM0n1, and SELCNT1.ISEL1n bits.

Remark n = 0 to 3

Figure 8-2. Control Register Setting Contents During Interval Timer Operation

DataSheet4U.com

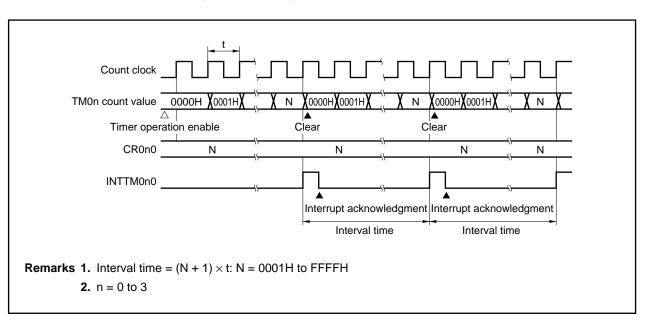


Figure 8-4. Timing of Interval Timer Operation

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

8.4.2 PPG output operation

16-bit timer/event counter 0n can be used for PPG (Programmable Pulse Generator) output by setting the TMC0n register and the CRC0n register as shown in Figure 8-5.

Setting procedure

The basic operation setting procedure is as follows.

<1> Set the CRC0n register (refer to Figure 8-5 for the setting value).

<2> Set any value as a cycle to the CR0n0 register.

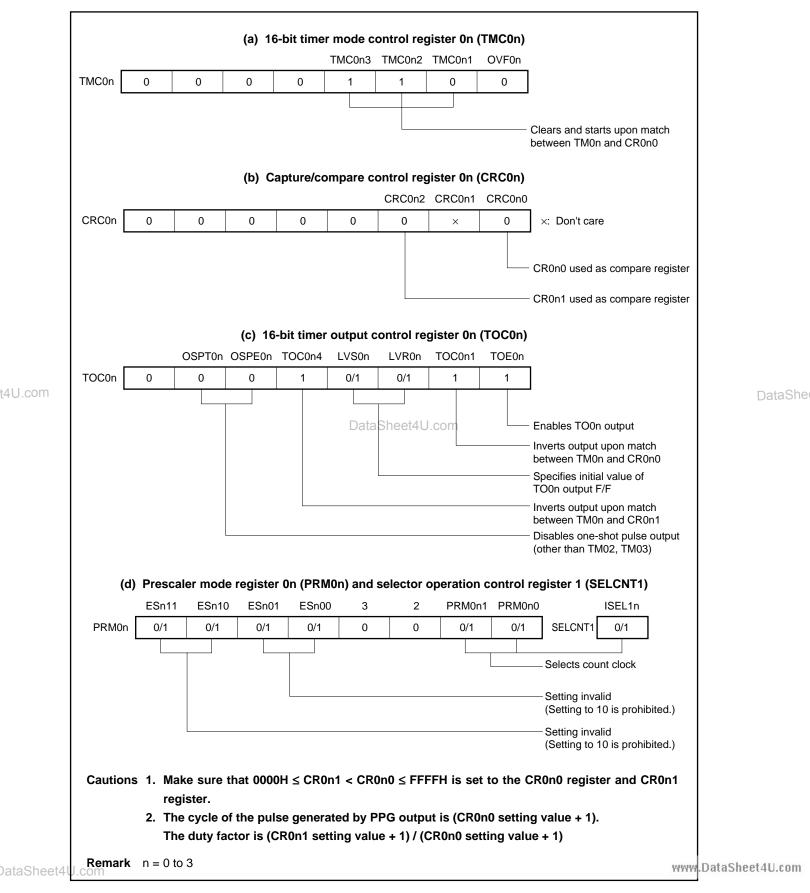
<3> Set any value as a duty to the CR0n1 register.

<4> Set the TOC0n register (refer to **Figure 8-5** for the setting value).

<5> Set the count clock using the PRM0n register and SELCNT1 register.

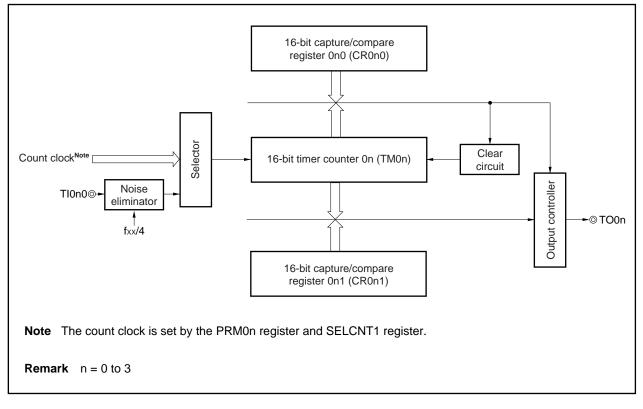
<6> Set the TMC0n register: Start operation (refer to Figure 8-5 for the setting value).

Caution To change the duty value (CR0n1 register) during operation, refer to Remark 2 in Figure 8-7 PPG Output Operation Timing.


Remarks 1. For the alternate-function pin (TO0n) settings, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.

2. For INTTM0n0 interrupt enable, refer to CHAPTER 21 INTERRUPT/EXCEPTION PROCESSING FUNCTION.

The PPG output function outputs a rectangular wave from the TO0n pin with the cycle specified by the count value set in advance to the CR0n0 register and the pulse width specified by the count value set in advance to the CR0n1 register.


DataShee

309

Figure 8-5. Control Register Settings in PPG Output Operation

DataSheet4U.com

et4U.com

DataSheet4U.com

www.DataSheet4U.com

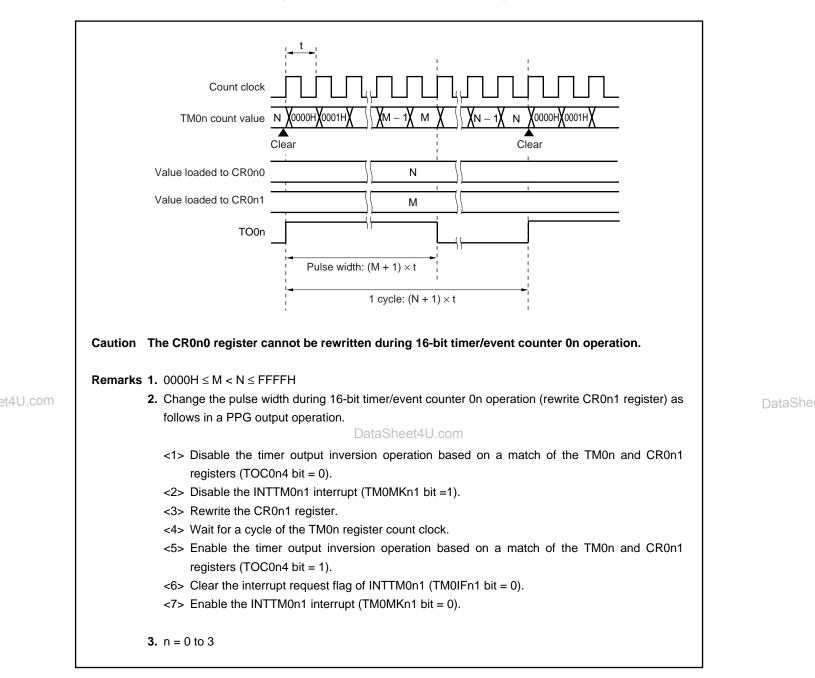


Figure 8-7. PPG Output Operation Timing

8.4.3 Pulse width measurement

The TM0n register can be used to measure the pulse widths of the signals input to the TI0n0 and TI0n1 pins.

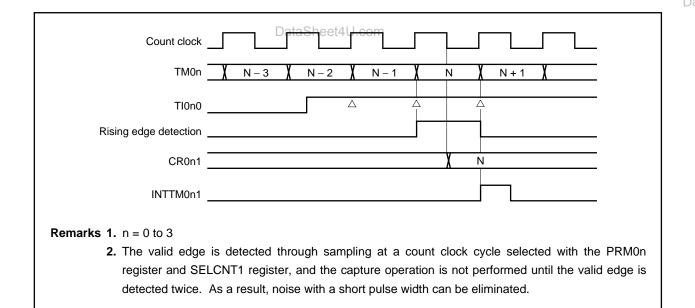
Measurement can be carried out with 16-bit timer/event counter 0n used in the free-running timer mode or by restarting the timer in synchronization with the edge of the signal input to the TI0n0 pin.

When an interrupt is generated, read the valid capture register value. After confirming the TMC0n.OVF0n flag, clear it (0) by software and measure the pulse width.

Setting procedure

The basic operation setting procedure is as follows.

<1> Set the CRC0n register (refer to Figures 8-9, 8-12, 8-14, and 8-16 for the setting value).


<2> Set the count clock using the PRM0n register and SELCNT1 register.

<3> Set the TMCOn register: Start operation (refer to Figures 8-9, 8-12, 8-14, and 8-16 for the setting value).

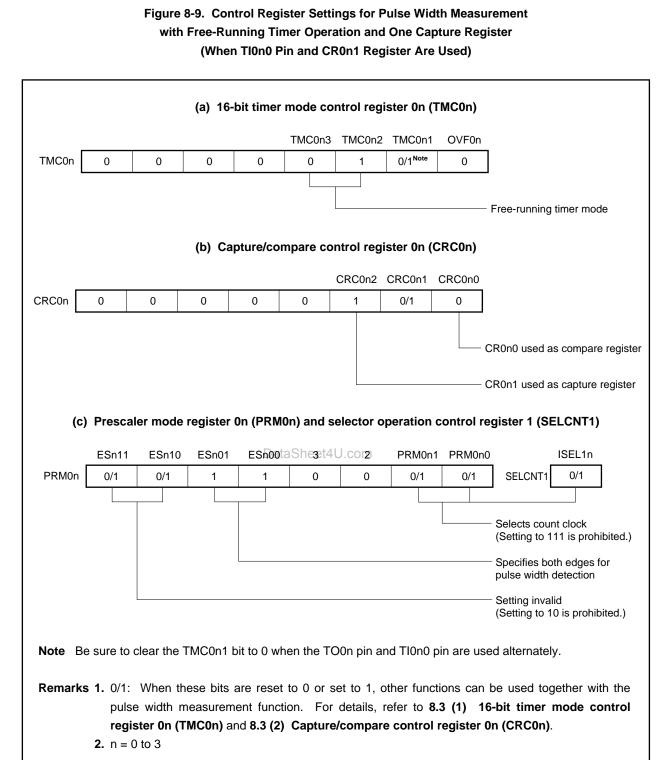
Caution When using two capture registers, set the TI0n0 and TI0n1 pins.

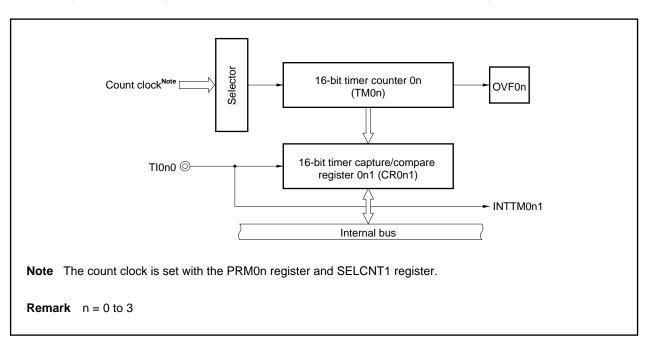
- Remarks 1. For the alternate-function pin (TI0n0, TI0n1) settings, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.
 - 2. For INTTM0n0 and INTTM0n1 interrupt enable, refer to CHAPTER 21 INTERRUPT/EXCEPTION PROCESSING FUNCTION.

Figure 8-8. CR0n1 Capture Operation with Rising Edge Specified

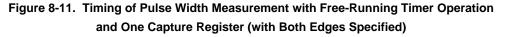
(1) Pulse width measurement with free-running timer operation and one capture register

If the edge specified by the PRM0n register is input to the TI0n0 pin when 16-bit timer/event counter 0n is operated in the free-running timer mode (refer to **Figure 8-9**), the value of the TM0n register is loaded to the CR0n1 register and an external interrupt request signal (INTTM0n1) is generated.


The valid edge is specified by the PRM0n.ESn00 and PRM0n.ESn01 bits. The rising edge, falling edge, or both the rising and falling edges can be selected.


The valid edge is detected through sampling at a count clock cycle selected with the PRM0n register and SELCNT1 register, and the capture operation is not performed until the valid edge is detected twice. As a result, noise with a short pulse width can be eliminated.

Remark n = 0 to 3


et4U.com

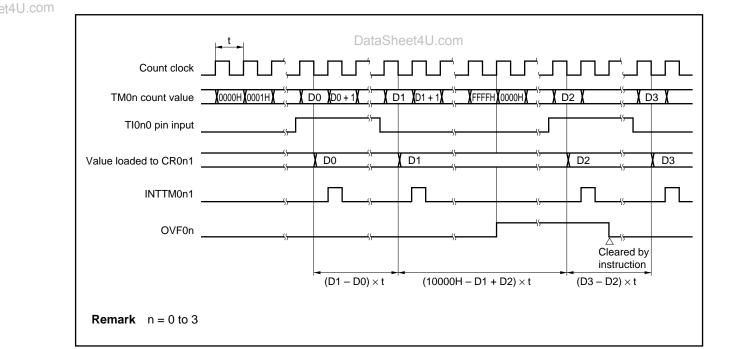

DataSheet4U.com

Figure 8-10. Configuration for Pulse Width Measurement with Free-Running Timer Operation

DataShe

www.DataSheet4U.com

DataSheet4U.com

(2) Measurement of two pulse widths with free-running timer operation

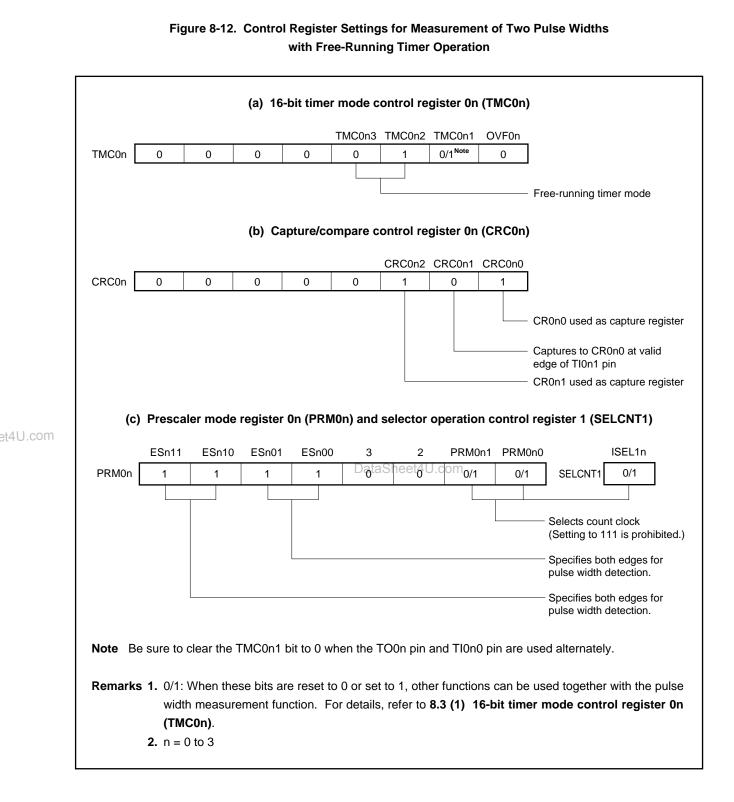
The pulse widths of two signals respectively input to the Tl0n0 pin and the Tl0n1 pin can be simultaneously measured when 16-bit timer/event counter 0n is used in the free-running timer mode (refer to **Figure 8-12**). When the edge specified by the PRM0n.ESn00 and PRM0n.ESn01 bits is input to the Tl0n0 pin, the value of the TM0n register is loaded to the CR0n1 register and an external interrupt request signal (INTTM0n1) is generated.

When the edge specified by the PRM0n.ESn10 and PRM0n.ESn11 bits is input to the TI0n1 pin, the value of the TM0n register is loaded to the CR0n0 register and an external interrupt request signal (INTTM0n0) is generated.

The edges of the TI0n0 and TI0n1 pins are specified by the PRM0n.ESn00 and PRM0n.ESn01 bits and the PRM0n.ESn10 and PRM0n.ESn11 bits, respectively. Specify both rising and falling edges.

The valid edge of the TI0n0 pin is detected through sampling at the count clock cycle selected with the PRM0n register and SELCNT1 register, and the capture operation is not performed until the valid level is detected twice. As a result, noise with a short pulse width can be eliminated.

Remark n = 0 to 3

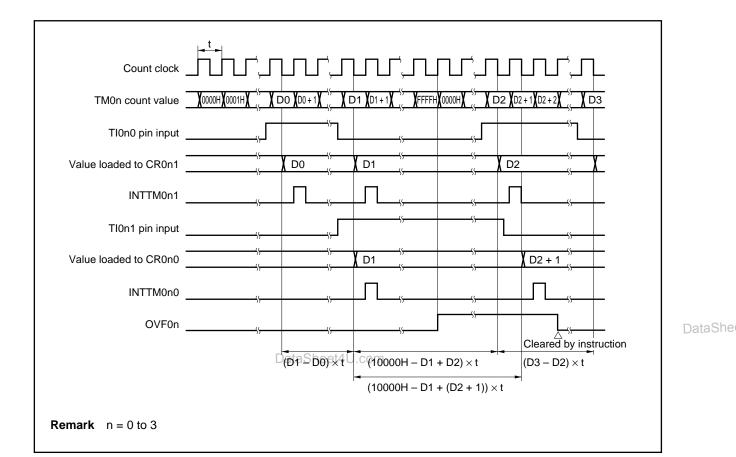

et4U.com

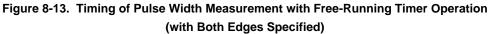
DataSheet4U.com

DataSheet4U.com

DataShe

317



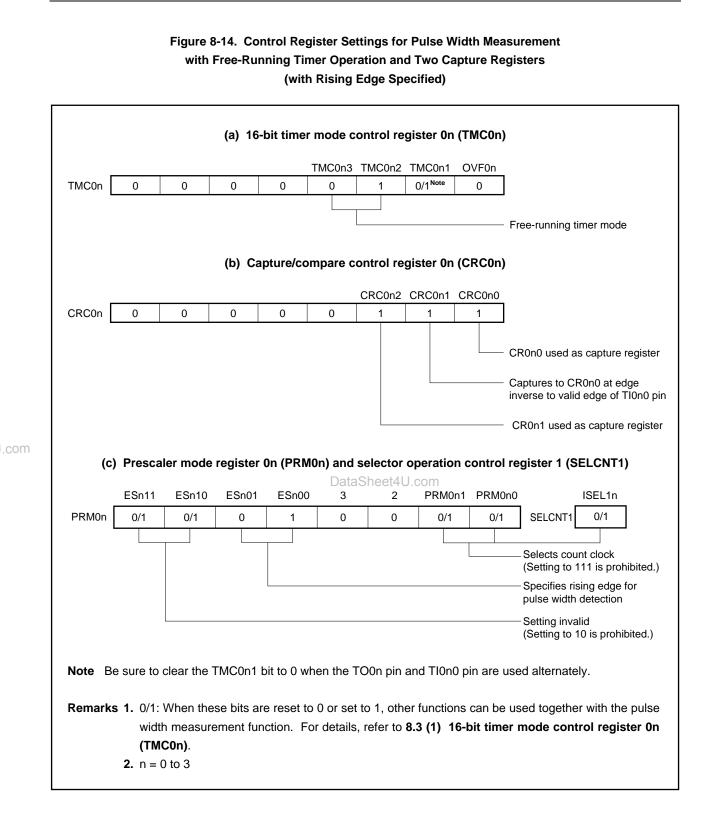

DataShe

www.DataSheet4U.com

• Capture operation (free-running timer mode)

The following figure illustrates the operation of the capture register when the capture trigger is input.

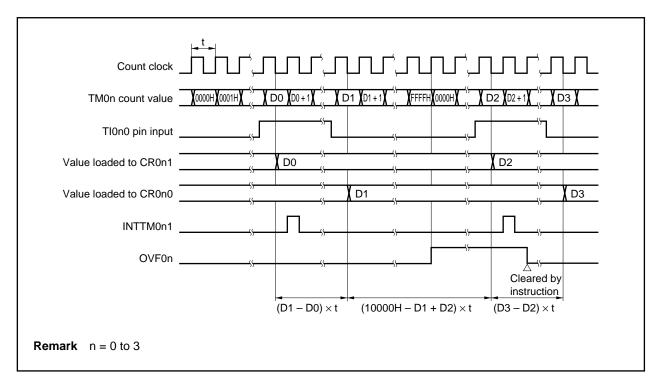
(3) Pulse width measurement with free-running timer operation and two capture registers

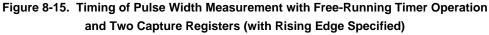

When 16-bit timer/event counter 0n is used in the free-running timer mode (refer to **Figure 8-14**), the pulse width of the signal input to the TI0n0 pin can be measured.

When the edge specified by the PRM0n.ESn00 and PRM0n.ESn01 bits is input to the TI0n0 pin, the value of the TM0n register is loaded to the CR0n1 register and an external interrupt request signal (INTTM0n1) is generated.

The value of the TM0n register is also loaded to the CR0n0 register when an edge inverse to the one that triggers capturing to the CR0n1 register is input.

The valid edge of the TI0n0 pin is detected through sampling at a count clock cycle selected with the PRM0n register and SELCNT1 register, and the capture operation is not performed until the valid edge is detected twice. As a result, noise with a short pulse width can be eliminated.

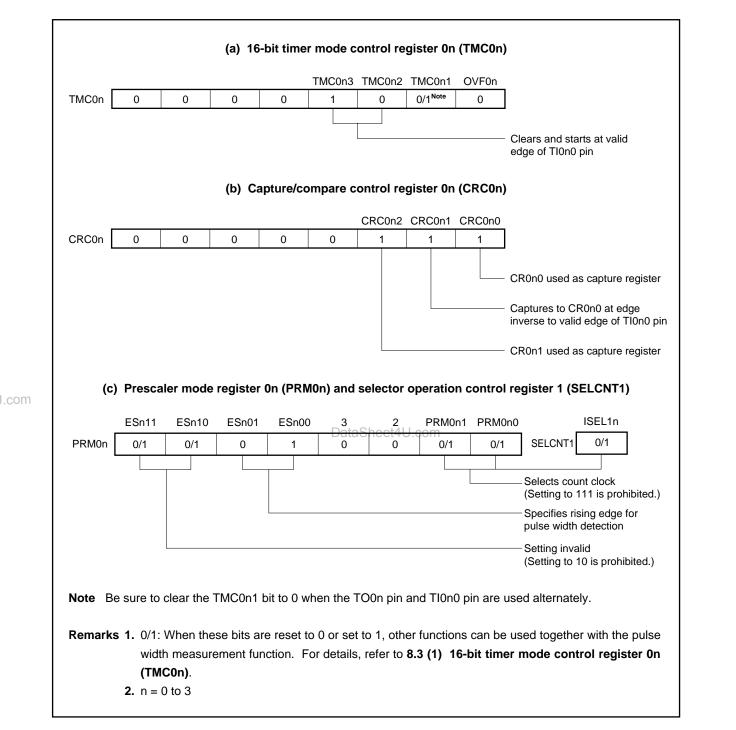

www.DataSheet4U.com



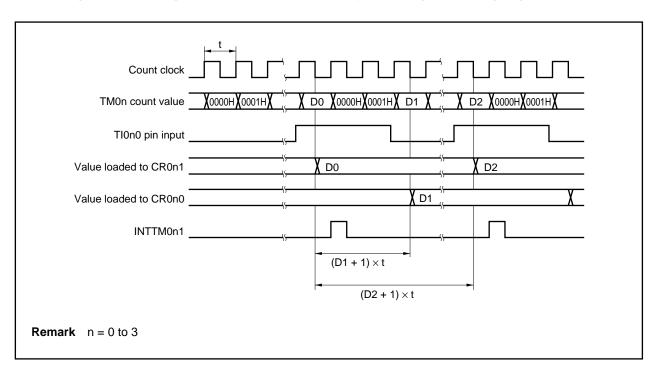
DataShe

www.DataSheet4U.com

DataSheet4U.com


et4U.com

(4) Pulse width measurement by restarting


When the valid edge of the TI0n0 pin is detected, the pulse width of the signal input to the TI0n0 pin can be measured by clearing the TM0n register and then resuming counting after loading the count value of the TM0n register to the CR0n1 register (refer to **Figure 8-17**).

The edge is specified by the PRM0n.ESn00 and PRM0n.ESn01 bits. The rising or falling edge can be specified.

The valid edge is detected through sampling at a count clock cycle selected with the PRM0n register and SELCNT1 register, and the capture operation is not performed until the valid level is detected twice. As a result, noise with a short pulse can be eliminated.

Figure 8-16. Control Register Settings for Pulse Width Measurement by Restarting

et4U.com

DataSheet4U.com

DataSheet4U.com

DataShe

www.DataSheet4U.com

www.DataSheet4U.com

8.4.4 Operation as external event counter

Setting procedure

The basic operation setting procedure is as follows.

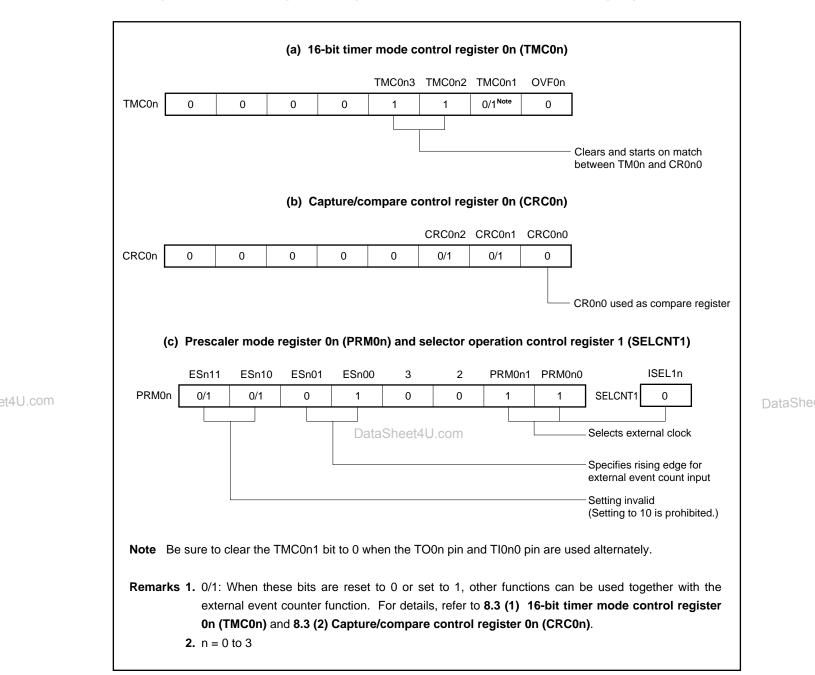
- <1> Set the CRC0n register (refer to Figure 8-18 for the setting value).
- <2> Set the count clock using the PRM0n register and SELCNT1 register.
- <3> Set any value (except for 0000H) to the CR0n0 register.
- <4> Set the TMCOn register: Start operation (refer to Figure 8-18 for the setting value).
- Remarks 1. For the alternate-function pin (TI0n0) settings, refer to Table 4-16 Settings When Port Pins Are **Used for Alternate Functions.**
 - 2. For INTTM0n0 interrupt enable, refer to CHAPTER 21 INTERRUPT/EXCEPTION PROCESSING FUNCTION.

The external event counter counts the number of clock pulses input to the TI0n0 pin from an external source by using the TM0n register.

Each time the valid edge specified by the PRM0n register has been input, the TM0n register is incremented.

When the count value of the TM0n register matches the value of the CR0n0 register, the TM0n register is cleared to 0000H and an interrupt request signal (INTTM0n0) is generated.

Set the CR0n0 register to a value other than 0000H (one-pulse count operation is not possible).


The edge is specified by the PRM0n.ESn00 and PRM0n.ESn01 bits. The rising, falling, or both the rising and falling edges can be specified.

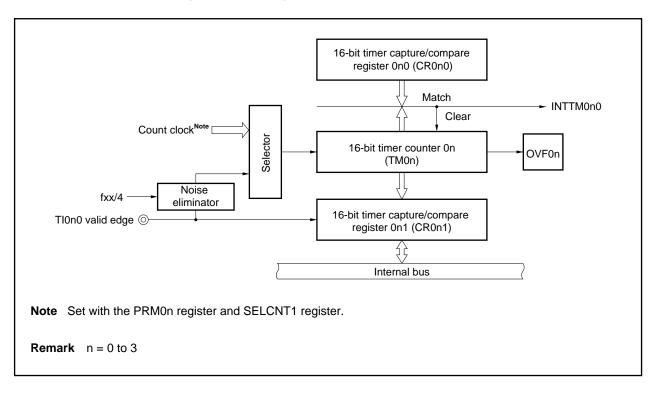
The valid edge is detected through sampling at a count clock cycle of fxx/4, and the capture operation is not performed until the valid level is detected twice. As a result, noise with a short pulse width can be eliminated.

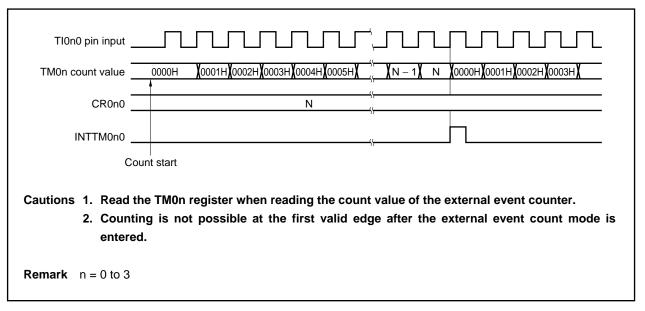
Caution The value of the CR0n0 and CR0n1 registers cannot be changed during timer count operation.

Remark n = 0 to 3

DataSheet4U.com

Figure 8-18. Control Register Settings in External Event Count Mode (with Rising Edge Specified)




Figure 8-19. Configuration of External Event Counter

et4U.com

DataShe

www.DataSheet4U.com

Figure 8-20. Timing of External Event Counter Operation (with Rising Edge Specified) DataSheet4U.com

8.4.5 Square-wave output operation

Setting procedure

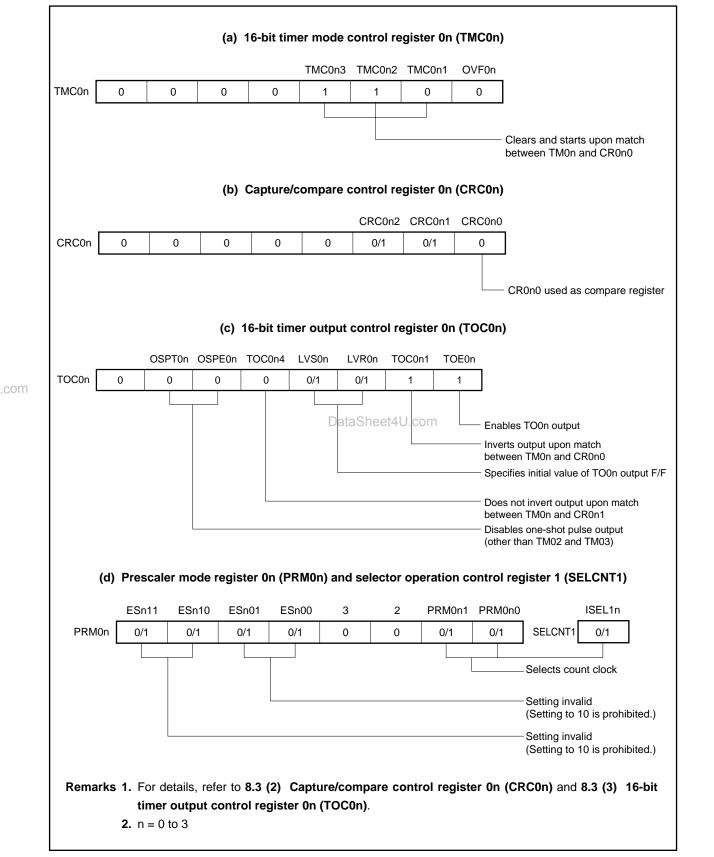
The basic operation setting procedure is as follows.

<1> Set the count clock using the PRM0n register and SELCNT1 register.

- <2> Set the CRC0n register (refer to Figure 8-21 for the setting value).
- <3> Set the TOC0n register (refer to **Figure 8-21** for the setting value).
- <4> Set any value (except for 0000H) to the CR0n0 register.
- <5> Set the TMC0n register: Start operation (refer to Figure 8-21 for the setting value).
- Remarks 1. For the alternate-function pin (TO0n) settings, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.
 - 2. For INTTM0n0 interrupt enable, refer to CHAPTER 21 INTERRUPT/EXCEPTION PROCESSING FUNCTION.

16-bit timer/event counter 0n can be used to output a square wave with any frequency at an interval specified by the count value set in advance to the CR0n0 register.

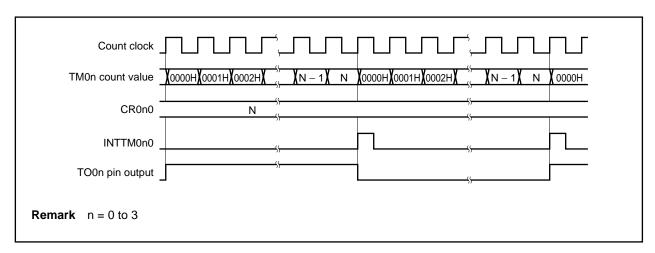
By setting the TOC0n.TOE0n and TOC0n.TOC0n1 bits to 11, the output status of the TO0n pin is inverted at an interval set in advance to the CR0n0 register. In this way, a square wave of any frequency can be output.


Caution The value of the CR0n0 and CR0n1 registers cannot be changed during timer count operation.

DataShee

DataSheet4U.com

DataSheet4U.com


www.DataSheet4U.com

DataShe

DataSheet4U.com

Figure 8-22. Timing of Square-Wave Output Operation

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

8.4.6 One-shot pulse output operation

16-bit timer/event counter 0n can output a one-shot pulse in synchronization with a software trigger or an external trigger (TI0n0 pin input).

Setting procedure

The basic operation setting procedure is as follows.

<1> Set the count clock using the PRM0n register and SELCNT1 register.

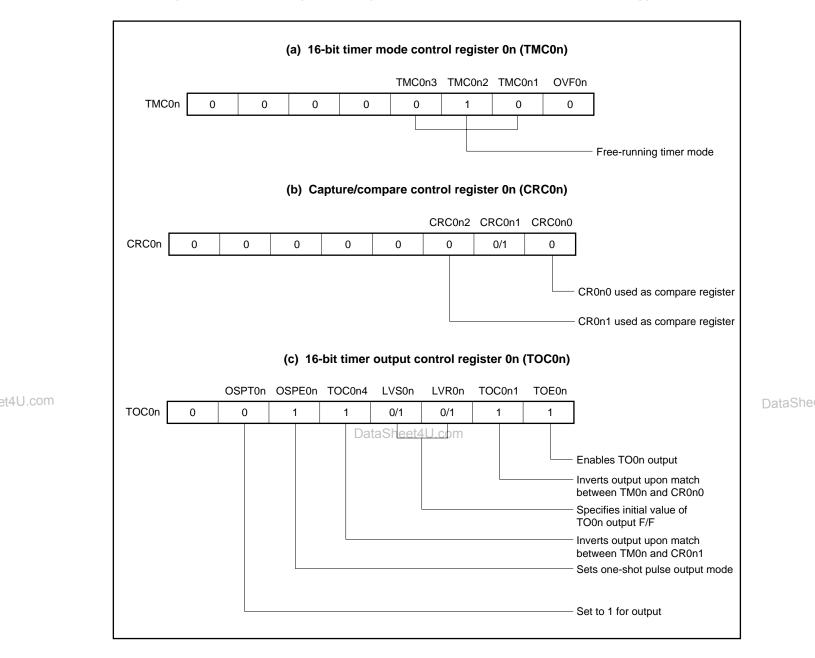
- <2> Set the CRC0n register (refer to Figures 8-23 and 8-25 for the setting value).
- <3> Set the TOC0n register (refer to Figures 8-23 and 8-25 for the setting value).
- <4> Set any value to the CR0n0 and CR0n1 registers.
- <5> Set the TMC0n register: Start operation (refer to Figures 8-23 and 8-25 for the setting value).
- Remarks 1. For the alternate-function pin (TOOn) settings, refer to Table 4-16 Settings When Port Pins Are **Used for Alternate Functions.**
 - 2. For INTTM0n0 interrupt enable, refer to CHAPTER 21 INTERRUPT/EXCEPTION PROCESSING FUNCTION.

(1) One-shot pulse output with software trigger

A one-shot pulse can be output from the TOOn pin by setting the TMCOn, CRCOn, and TOCOn registers as shown in Figure 8-23, and by setting the TOCOn.OSPT0n bit to 1 by software.

By setting the OSPT0n bit to 1, 16-bit timer/event counter 0n is cleared and started, and its output becomes active at the count value (N) set in advance to the CR0n1 register. After that, the output becomes inactive at the count value (M) set in advance to the CR0n0 register Vote

Even after the one-shot pulse has been output, 16-bit timer/event counter 0n continues its operation. To stop 16-bit timer/event counter 0n, the TMC0n.TMC0n3 and TMC0n.TMC0n2 bits must be cleared to 00.


Note The case where N < M is described here. When N > M, the output becomes active with the CR0n0 register and inactive with the CR0n1 register.

Cautions 1. Do not set the OSPT0n bit to 1 while the one-shot pulse is being output. To output the one-shot pulse again, wait until the current one-shot pulse output is completed.

2. The value of the CR0n0 and CR0n1 registers cannot be changed during timer count operation.

Remark n = 0 to 3

www.DataSheet4U.com

Figure 8-23. Control Register Settings for One-Shot Pulse Output with Software Trigger (1/2)

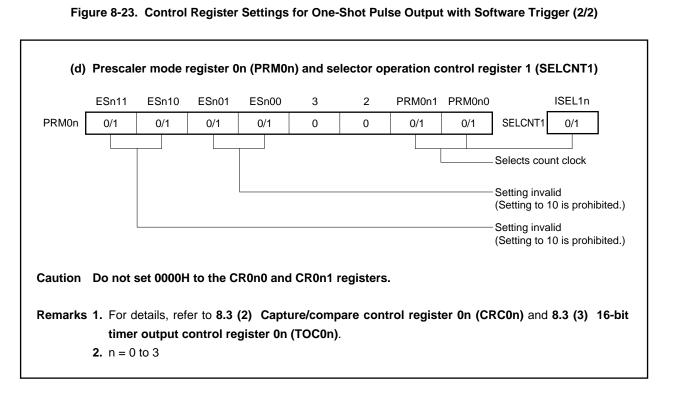
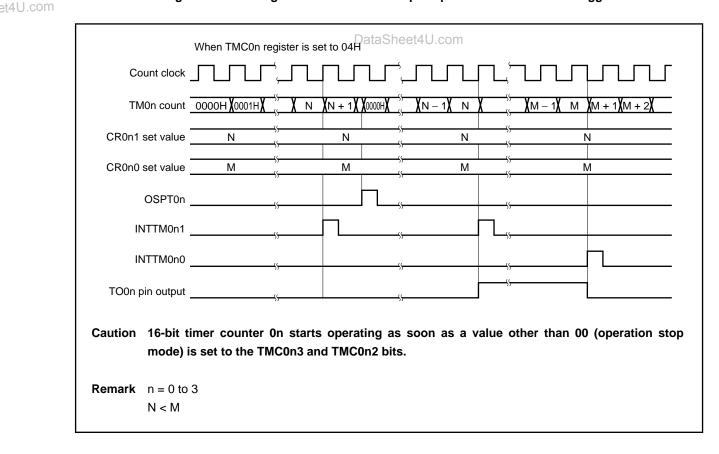



Figure 8-24. Timing of One-Shot Pulse Output Operation with Software Trigger

DataShe

www.DataSheet4U.com

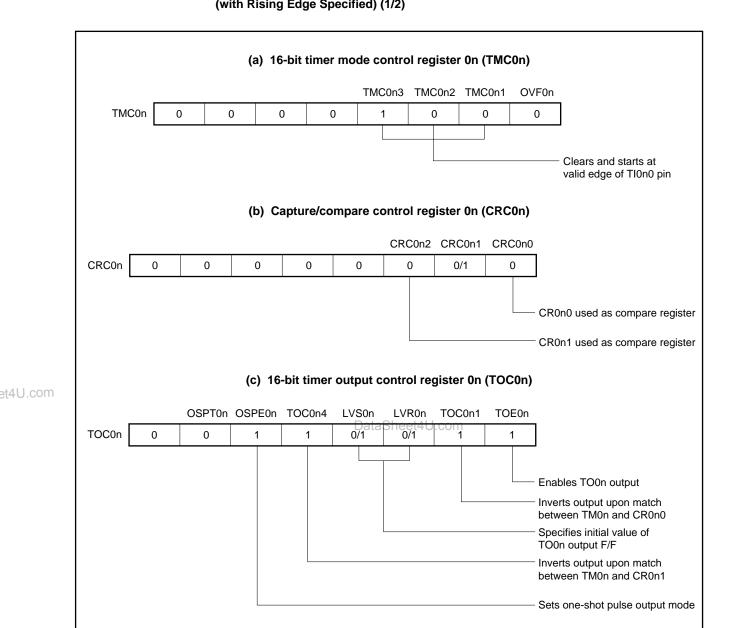
DataSheet4U.com

(2) One-shot pulse output with external trigger

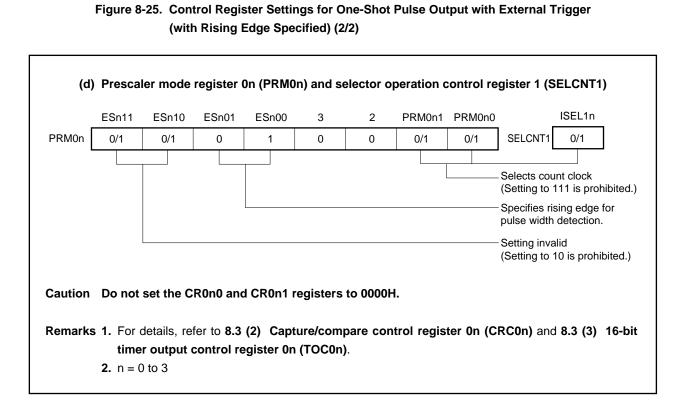
A one-shot pulse can be output from the TOOn pin by setting the TMCOn, CRCOn, and TOCOn registers as shown in Figure 8-25, and by using the valid edge of the TIOnO pin as an external trigger.

The valid edge of the TI0n0 pin is specified by the PRM0n.ESn00 and PRM0n.ESn01 bits. The rising, falling, or both the rising and falling edges can be specified.

When the valid edge of the TI0n0 pin is detected, 16-bit timer/event counter 0n is cleared and started, and the output becomes active at the count value set in advance to the CR0n1 register. After that, the output becomes inactive at the count value set in advance to the CR0n0 register^{Note}.


- **Note** The case where N < M is described here. When N > M, the output becomes active with the CR0n0 register and inactive with the CR0n1 register.
- Cautions 1. Even if the external trigger is generated again while the one-shot pulse is output, it is ignored.
 - 2. The value of the CR0n0 and CR0n1 registers cannot be changed during timer count operation.

Remark n = 0 to 3


et4U.com

DataShe

DataSheet4U.com

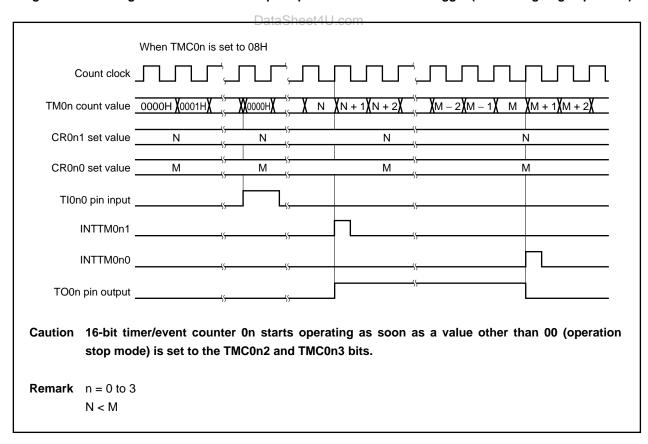


Figure 8-25. Control Register Settings for One-Shot Pulse Output with External Trigger (with Rising Edge Specified) (1/2)

Figure 8-26. Timing of One-Shot Pulse Output Operation with External Trigger (with Rising Edge Specified)

DataShee

DataSheet4U.com

et4U.com

335

8.4.7 Cautions

Channel	Pin	Alternate Function	Remarks	
TM00	TI000	P33/TO00/TIP00/TOP00	Shares the pin with TO00.	
	TI001	P34/TO00/TIP01/TOP01	Shares the pin with TO00.	
	TO00	P33/TI000/TIP00/TOP00	Assigned to two pins, P33 and P34.	
		P34/TI001/TIP01/TOP01		
TM01	TI010	P35/TO01	Shares the pin with TO01.	
	TI011	P50/KR0/RTP00		
	TO01	P32/ASCK0/ADTRG	Assigned to two pins, P32 and P35.	
		P35/TI010		
TM02	TI020	P92/A2/TO02	Shares the pin with TO02.	
	TI021	P93/A3		
	TO02	P30/TXD0	Assigned to two pins, P30 and P92.	
		P92/TI020/A2		
TM03	TI030	P94/A4/TO03	Shares the pin with TO03.	
	TI031	P95/A5		
	TO03	P31/RXD0/INTP7	Assigned to two pins, P31 and P94.	
		P94/TI030/A4		

(1) Alternate functions of TI0n0/TO0n pins

t4U.com

(a) For TM00 channel

DataSheet4U.com

- When using the output of TO00 that functions alternately as P33, only a software trigger (TOC00.OSPT00 bit) can be used as the trigger in the one-shot pulse output mode. A P33/TI000 pin input signal cannot be used as the trigger since TI000 and TO00 share a pin and are used alternately. A TI000 pin input signal can be used as the trigger, however, when using the output of TO00 that functions alternately as P34.
- When using the output of TO00 that functions alternately as P33, the timer output inversion operation
 using the valid edge of the TI000 pin input cannot be performed. The valid edge cannot be input to the
 P33/TI000 pin since TI000 and TO00 share a pin and are used alternately. Set the TMC00.TMC001 bit
 to 0 in this event.

The timer output inversion operation using the valid edge of the TI000 pin input can be performed, however, when using the output of TO00 that functions alternately as P34.

(b) For TM01 channel

- When using the output of TO01 that functions alternately as P35, only a software trigger (TOC01.OSPT01 bit) can be used as the trigger in the one-shot pulse output mode. A P35/TI010 pin input signal cannot be used as the trigger since TI010 and TO01 share a pin and are used alternately. A TI010 pin input signal can be used as the trigger, however, when using the output of TO01 that functions alternately as P32.
- When using the output of TO01 that functions alternately as P35, the timer output inversion operation using the valid edge of the TI010 pin input cannot be performed. The valid edge cannot be input to the P35/TI010 pin since TI010 and TO01 share a pin and are used alternately. Set the TMC01.TMC011 bit to 0 in this event.

The timer output inversion operation using the valid edge of the TI010 pin input can be performed, however, when using the output of TO01 that functions alternately as P32. www.DataSheet4U.com

(c) For TM02 channel

• When using the output of TO02 that functions alternately as P92, the one-shot pulse output mode is not available.

The one-shot pulse output mode is available, however, when using the output of TO02 that functions alternately as P30.

When using the output of TO02 that functions alternately as P92, the timer output inversion operation
using the valid edge of the TI020 pin input cannot be performed. The valid edge cannot be input to the
P92/TI020 pin since TI020 and TO02 share a pin and are used alternately. Set the TMC02.TMC021 bit
to 0 in this event.

The timer output inversion operation using the valid edge of the TI020 pin input can be performed, however, when using the output of TO02 that functions alternately as P30.

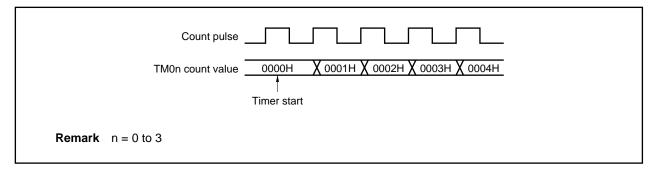
(d) For TM03 channel

 When using the output of TO03 that functions alternately as P94, the one-shot pulse output mode is not available.

The one-shot pulse output mode is available, however, when using the output of TO03 that functions alternately as P31.

When using the output of TO03 that functions alternately as P94, the timer output inversion operation
using the valid edge of the TI030 pin input cannot be performed. The valid edge cannot be input to the
P94/TI030 pin since TI030 and TO03 share a pin and are used alternately. Set the TMC03.TMC031 bit
to 0 in this event.

The timer output inversion operation using the valid edge of the TI030 pin input can be performed, however, when using the output of TO03 that functions alternately as P31.


DataShe

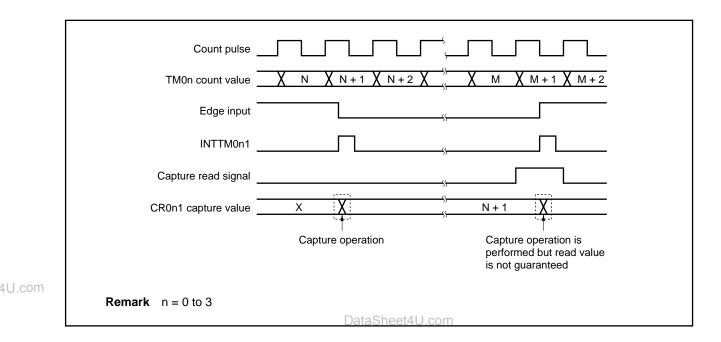
(2) Error on starting timer

DataSheet4U.com

An error of up to 1 clock occurs before the match signal is generated after the timer has been started. This is because the count of the TM0n register is started asynchronously to the count pulse.

Figure 8-27. Count Start Timing of TM0n Register

(3) Setting CR0n0 and CR0n1 registers (in the mode in which clear & start occurs upon match between TM0n register and CR0n0 register)


Set the CR0n0 and CR0n1 registers to a value other than 0000H (when using these registers as external event counters, one-pulse count operation is not possible).

Remark n = 0 to 3

DataSheet4U.com

(4) Data hold timing of capture register

<1> If the valid edge of the TI0n0 pin is input while the CR0n1 register is read, the CR0n1 register performs capture operation, but the read value at this time is not guaranteed. However, the interrupt request signal (INTTM0n1) is generated as a result of detection of the valid edge.

Figure 8-28. Data Hold Timing of Capture Register

<2> The values of the CR0n0 and CR0n1 registers are not guaranteed after 16-bit timer/event counter 0n has stopped.

(5) Setting valid edge

Before setting the valid edge of the TI0n0 pin, stop the timer operation by clearing the TMC0n.TMC0n2 and TMC0n.TMC0n3 bits to 00. Set the valid edge by using the PRM0n.ESn00 and PRM0n.ESn01 bits.

Remark n = 0 to 3

(6) Re-triggering one-shot pulse

(a) One-shot pulse output by software

When a one-shot pulse is output, do not set the TOC0n.OSPT0n bit to 1. Do not output the one-shot pulse again until the INTTM0n0 signal, which occurs upon match with the CR0n0 register, or the INTTM0n1 signal, which occurs upon match with the CR0n1 register, occurs.

Remark n = 0 to 3

(b) One-shot pulse output with external trigger

If the external trigger occurs again while a one-shot pulse is output, it is ignored.

DataSheet4U.com

(7) Operation of OVF0n flag

(a) Setting of OVF0n flag

The TMC0n.OVF0n flag is set to 1 in the following case in addition to when the TM0n register overflows.

Select the mode in which clear & start occurs upon match between the TM0n register and the CR0n0 register.

Set the CR0n0 register to FFFFH

T

J

When the TM0n register is cleared from FFFFH to 0000H upon match with the CR0n register

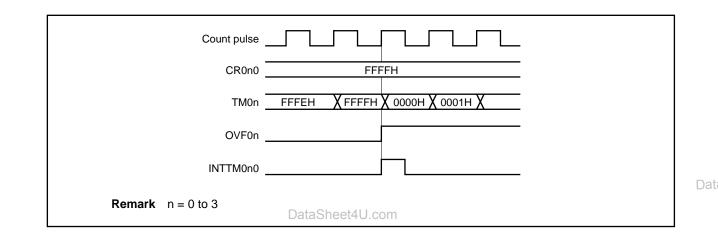


Figure 8-29. Operation Timing of OVF0n Flag

(b) Clearing of OVF0n flag

After the TM0n register overflows, clearing OVF0n flag is invalid and set (1) again even if the OVF0n flag is cleared (0) before the next count clock is counted (before TM0n register becomes 0001H).

Remark n = 0 to 3

(8) Timer operation

(a) CR0n1 register capture

Even if the TM0n register is read, the read data cannot be captured into the CR0n1 register.

(b) TI0n0, TI0n1 pin acknowledgment

Regardless of the CPU's operation mode, if the timer is stopped, signals input to the TI0n0 and TI0n1 pins are not acknowledged.

(c) One-shot pulse output

One-shot pulse output operates normally in either the free-running timer mode or the mode in which clear & start occurs on the valid edge of the TI0n0 pin. Because no overflow occurs in the mode in which clear & start occurs upon match between the TM0n register and the CR0n0 register, one-shot pulse output is not possible.

Remark n = 0 to 3

(9) Capture operation

(a) If valid edge of TI0n0 is specified for count clock

If the valid edge of TI0n0 is specified for the count clock, the capture register that specified TI0n0 as the trigger does not operate normally.

(b) If both rising and falling edges are selected for valid edge of TI0n0

If both the rising and falling edges are selected for the valid edge of TI0n0, capture operation is not performed.

(c) To ensure that signals from TI0n1 and TI0n0 are correctly captured

For the capture trigger to capture the signals from TI0n1 and TI0n0 correctly, a pulse longer than two of the count clocks selected by the PRM0n register and SELCNT1 register is required.

(d) Interrupt request input

Although a capture operation is performed at the falling edge of the count clock, an interrupt request signal (INTTM0n0, INTTM0n1) is generated at the rising edge of the next count clock.

Remark n = 0 to 3

(10) Compare operation

When set to the compare mode, the CR0n0 and CR0n1 registers do not perform capture operation even if a capture trigger is input.

Caution The value of the CR0n0 register cannot be changed during timer operation. The value of the CR0n1 register cannot be changed during timer operation other than in the PPG output mode. To change the CR0n1 register in the PPG output mode, refer to 8.4.2 PPG output operation.

Remark n = 0 to 3

(11) Edge detection

(a) Sampling clock for noise elimination

The sampling clock for noise elimination differs depending on whether the valid edge of TI0n0 is used for the count clock or as a capture trigger. In the former case, sampling is performed using fxx/4, and in the latter case, sampling is performed using the count clock selected by the PRM0n register and SELCNT1 register. The first capture operation does not start until the valid edges are sampled and two valid levels are detected, thus eliminating noise with a short pulse width.

Remarks 1. fxx: Main clock frequency

2. n = 0 to 3

CHAPTER 9 8-BIT TIMER/EVENT COUNTER 5

In the V850ES/KG1+, two channels of 8-bit timer/event counter 5 are provided.

9.1 Functions

8-bit timer/event counter 5n has the following two modes (n = 0, 1).

- Mode using 8-bit timer/event counter alone (individual mode)
- Mode using cascade connection (16-bit resolution: cascade connection mode)

These two modes are described below.

(1) Mode using 8-bit timer/event counter alone (individual mode)

8-bit timer/event counter 5n operates as an 8-bit timer/event counter. The following functions can be used.

- Interval timer
- External event counter
- Square-wave output
- PWM output

DataShe

(2) Mode using cascade connection (16-bit resolution: cascade connection mode) 8-bit timer/event counter 5n operates as a 16-bit timer/event counter by connecting the TM50 and TM51

registers in cascade. The following functions can be used.

- Interval timer with 16-bit resolution
- External event counter with 16-bit resolution
- Square-wave output with 16-bit resolution

et4U.com

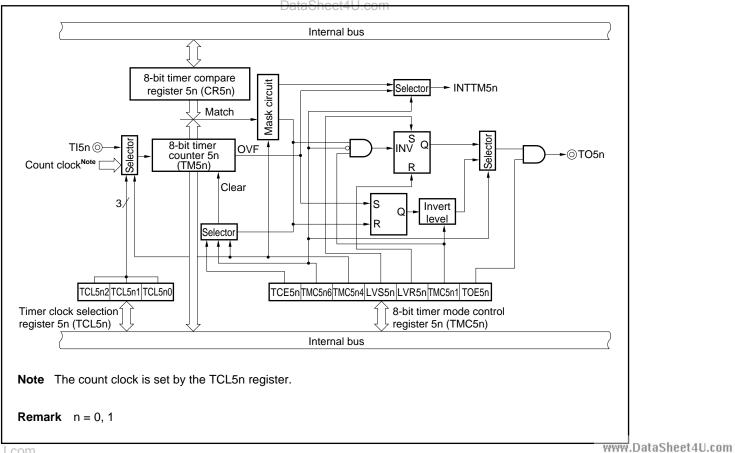
9.2 Configuration

8-bit timer/event counter 5n consists of the following hardware.

Table 9-1. Configuration of 8-Bit Timer/Event Counter 5n

ltem	Configuration
Timer registers	8-bit timer counters 50, 51 (TM50, TM51) 16-bit timer counter 5 (TM5): Only when using cascade connection
Registers	8-bit timer compare registers 50, 51 (CR50, CR51) 16-bit timer compare register 5 (CR5): Only when using cascade connection
Timer output	TO50, TO51
Control registers ^{Note}	Timer clock selection registers 50, 51 (TCL50, TCL51) 8-bit timer mode control registers 50, 51 (TMC50, TMC51) 16-bit timer mode control register 5 (TMC5): Only when using cascade connection

Note When using the functions of the TI5n and TO5n pins, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.


Remark n = 0, 1

The block diagram of 8-bit timer/event counter 5n is shown below.

et4U.com

Figure 9-1. Block Diagram of 8-Bit Timer/Event Counter 5n

DataShe

DataSheet4U.com

342

(1) 8-bit timer counter 5n (TM5n)

The TM5n register is an 8-bit read-only register that counts the count pulses.

The counter is incremented in synchronization with the rising edge of the count clock.

Through cascade connection, the TM5n registers can be used as a 16-bit timer.

When using the TM50 register and the TM51 register in cascade as a 16-bit timer, these registers are readonly, in 16-bit units. Therefore, read these registers twice and compare the values, taking into consideration that the reading occurs during a count change.

7 6 5 4 3 2 1 0 TM5n	After res	et: 00H	R Ad	dress: TM	50 FFFFF	5C0H, TM5	1 FFFF5	C1H	
		7	6	5	4	3	2	1	0
(n = 0, 1)	TM5n								
	(n = 0, 1)								

The count value is reset to 00H in the following cases.

- <1> Reset
- <2> When the TMC5n.TCE5n bit is cleared (0)
- <3> The values of the TM5n register and CR5n register match in the mode in which clear & start occurs on a match between the TM5n register and the CR5n register

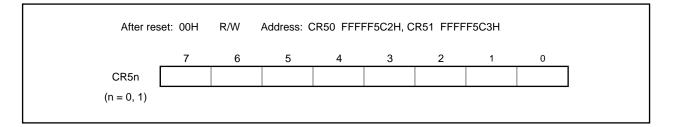
Caution When connected in cascade, these registers become 0000H even when the TCE50 bit in the lowest timer (TM50) is cleared Sheet4U.com

Remark n = 0, 1

et4U.com

DataSheet4U.com

level.


(2) 8-bit timer compare register 5n (CR5n)

The CR5n register can be read and written in 8-bit units.

In a mode other than the PWM mode, the value set to the CR5n register is always compared to the count value of the TM5n register, and if the two values match, an interrupt request signal (INTTM5n) is generated. In the PWM mode, TM5n register overflow causes the TO5n pin output to change to the active level, and when the values of the TM5n register and the CR5n register match, the TO5n pin output changes to the inactive

The value of the CR5n register can be set in the range of 00H to FFH.

When using the TM50 register and TM51 register in cascade as a 16-bit timer, the CR50 register and CR51 register operate as 16-bit timer compare register 5 (CR5). The counter value and register value are compared in 16-bit lengths, and if they match, an interrupt request signal (INTTM50) is generated.

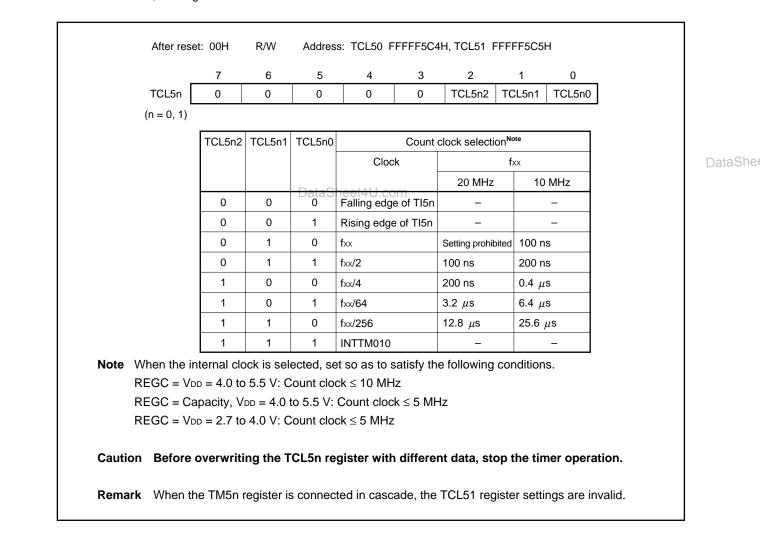
- Cautions 1. In the mode in which clear & start occurs upon a match of the TM5n register and CR5n register (TMC5n.TMC5n6 bit = 0), do not write a different value to the CR5n register during the count operation.
 - 2. In the PWM mode, set the CR5n register rewrite interval to three or more count clocks (clock selected with the TCL5n register).
 - 3. Before changing the value of the CR5n register when using a cascade connection, be sure to stop the timer operation.

Remark n = 0, 1

DataShee

www.DataSheet4U.com

9.3 Registers


The following two registers are used to control 8-bit timer/event counter 5n.

- Timer clock selection register 5n (TCL5n)
- 8-bit timer mode control register 5n (TMC5n)

Remark To use the functions of the TI5n and TO5n pins, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.

(1) Timer clock selection register 5n (TCL5n)

The TCL5n register sets the count clock of 8-bit timer/event counter 5n and the valid edge of the TI5n pin input. The TCL5n register can be read or written in 8-bit units. After reset, this register is cleared to 00H.

www.DataSheet4U.com

(2) 8-bit timer mode control register 5n (TMC5n)

The TMC5n register performs the following six settings.

- Controls counting by the TM5n register
- Selects the operation mode of the TM5n register
- Selects the individual mode or cascade connection mode
- Sets the status of the timer output flip-flop
- Controls the timer output flip-flop or selects the active level in the PWM (free-running timer) mode
- Controls timer output

The TMC5n register can be read or written in 8-bit or 1-bit units. After reset, this register is cleared to 00H.

et4U.com

DataShee

DataSheet4U.com

CHAPTER 9 8-BIT TIMER/EVENT COUNTER 5

	<7>	6	5	4	3	2	1	<0>	
TMC5n	TCE5n	TMC5n6	0	TMC514 ^{Note}	LVS5n	LVR5n	TMC5n1	TOE5n	
(n = 0, 1)				· ·					
	TCE5n	Co	ontrol of c	ount operatio	n of 8-bit	timer/even	t counter 5n		
	0	Counting	is disable	d after the co	unter is cl	eared to 0	(counter dis	abled)	
	1	Start cour	nt operatio	on					
	TMC5n6	Se	election o	f operation m	ode of 8-b	it timer/eve	ent counter	5n	
	0	Mode in wh	ich clear &	start occurs on	match betw	reen TM5n re	egister and CF	R5n register	
	1	PWM (free	e-running	timer) mode					
	TMC514	Selection of	f individual ı	mode or cascad	e connectio	n mode for 8-	bit timer/even	t counter 51	
	0	Individual	mode						
	1	Cascade	connectio	n mode (coni	nected wit	h 8-bit time	er/event cou	nter 50)	
	LVS5n	LVR5n		Setting	of status of	of timer out	put F/F		
	0	0	Unchang	ged					
	0	1 Reset timer output F/F to 0							
m	1	0 Set timer output F/F to 1							D
	1	1 Setting prohibited							
	TMC5n1	Other than PWM (free-running timer) PWM (free-running timer) mode						r) mode	
				5n6 bit = 0)			5n6 bit = 1)		
		C	Controls ti	mer F/F		Select	s active leve	el	
	0	Disable in	version o	peration	High	active			
	1	Enable inversion operation Low active							
	TOE5n	Timer output control							
	0	Disable output (TO5n pin is low level)							
	1	Enable ou	itput						
Note Bit 4 of th	e TMC50 re	egister is f	ixed to 0).					
Cautions 1. Be	ecause the	TO51 an	d TI51 p	oins are alte	ernate fu	nctions	of the sam	e pin, only one can	
	used at o							· · · · · ·	
2. Tł	e LVS5n a	nd LVR5	n bit set	tings are v	alid in m	odes oth	er than th	e PWM mode.	
3. De	o not set <	1> to <4>	below a	at the same	time. S	et as foll	ows.		
<1	> Set the ⁻	TMC5n1,	TMC5n6	, and TMC	514 ^{Note} bit	s: Setti	ng of ope	ration mode	
				er output e			er output e		
	Set the l Set the ⁻			n bits (Caut	ion 2):	Setti	ng of time	er output F/F	
Remarks 1. In	the PWM r	node, the	PWM ou	utput is set t	o the ina	ctive leve	l by the TC	E5n bit = 0.	
2 \//	hen the I V	S5n and I	VR5n bi	its are read,	0 is read	4.			
2. VV				to allo roud,	0 10 1040				

9.4 Operation

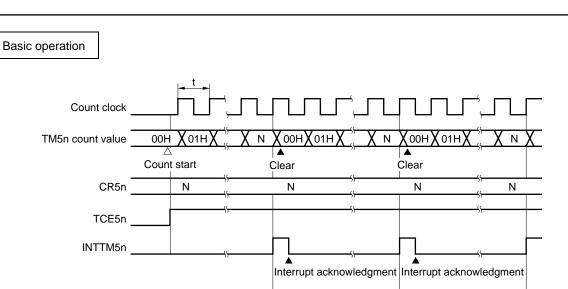
9.4.1 Operation as interval timer

8-bit timer/event counter 5n operates as an interval timer that repeatedly generates interrupts at the interval of the count value preset in the CR5n register. If the count value in the TM5n register matches the value set in the CR5n register, the value of the TM5n register is cleared to 00H and counting is continued, and at the same time, an interrupt request signal (INTTM5n) is generated.

Setting method

<1> Set each register.

- TCL5n register: Selects the count clock (t).
- CR5n register: Compare value (N)
- TMC5n register: Stops count operation and selects the mode in which clear & start occurs on a match between the TM5n register and CR5n register (TMC5n register = 0000xx00B, x: don't care).
- <2> When the TMC5n.TCE5n bit is set to 1, the count operation starts.
- <3> When the values of the TM5n register and CR5n register match, the INTTM5n signal is generated (TM5n register is cleared to 00H).
- <4> Then, the INTTM5n signal is repeatedly generated at the same interval. To stop counting, set the TCE5n bit = 0.


t4U.com

Interval time = $(N + 1) \times t$: N = 00H to FFH

DataShe

Caution During interval timer operation, do not rewrite the value of the CR5n register.

Remark n = 0, 1

Remark n = 0, 1

Interval time

Interval time

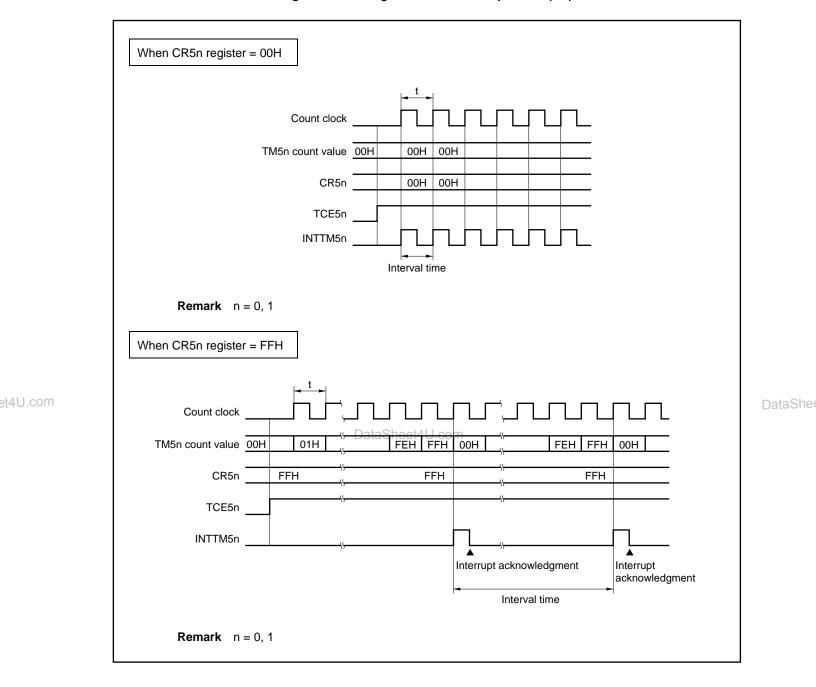


Figure 9-2. Timing of Interval Timer Operation (2/2)

DataSheet4U.com

www.DataSheet4U.com

9.4.2 Operation as external event counter

The external event counter counts the number of clock pulses input to the TI5n pin from an external source by using the TM5n register.

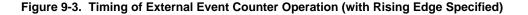
Each time the valid edge specified by the TCL5n register is input to the TI5n pin, the TM5n register is incremented. Either the rising edge or the falling edge can be specified as the valid edge.

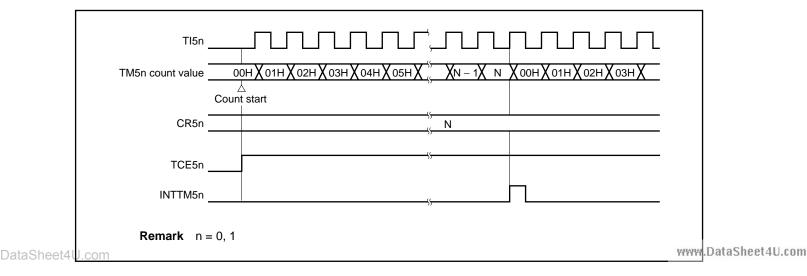
When the count value of the TM5n register matches the value of the CR5n register, the TM5n register is cleared to 0 and an interrupt request signal (INTTM5n) is generated.

Setting method

<1> Set each register.

- TCL5n register: Selects the TI5n pin input edge.
 - Falling edge of TI5n pin \rightarrow TCL5n register = 00H
 - Rising edge of TI5n pin \rightarrow TCL5n register = 01H
- CR5n register: Compare value (N)
- TMC5n register: Stops count operation, selects the mode in which clear & start occurs on a match between the TM5n register and CR5n register, disables timer output F/F inversion operation, and disables timer output.


(TMC5n register = 0000xx00B, x: don't care)


- For the alternate-function pin settings, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.
- <2> When the TMC5n.TCE5n bit is set to 1, the counter counts the number of pulses input from the TI5n pin.
- <3> When the values of the TM5n register and CR5n register match, the INTTM5n signal is generated (TM5n register is cleared to 00H).
- <4> Then, the INTTM5n signal is generated each time the values of the TM5n register and CR5n register match.

INTTM5n signal is generated when the valid edge is input to the TI5n pin N + 1 times: N = 00H to FFH

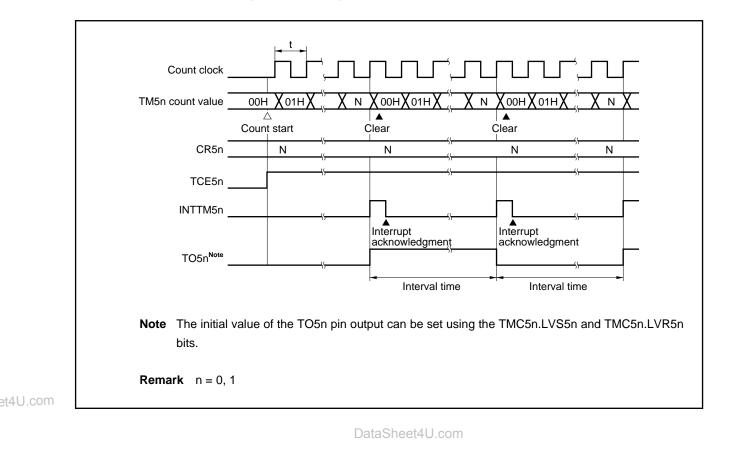
Caution During external event counter operation, do not rewrite the value of the CR5n register.

Remark n = 0, 1

9.4.3 Square-wave output operation

A square wave with any frequency can be output at an interval determined by the value preset in the CR5n register. By setting the TMC5n.TOE5n bit to 1, the output status of the TO5n pin is inverted at an interval determined by the count value preset in the CR5n register. In this way, a square wave of any frequency can be output (duty = 50%) (n = 0, 1).

Setting method


<1> Set each register.

- TCL5n register: Selects the count clock (t).
- CR5n register: Compare value (N)
- TMC5n register: Stops count operation, selects the mode in which clear & start occurs on a match between the TM5n register and CR5n register, sets initial value of timer output, enables timer output F/F inversion operation, and enables timer output. (TMC5n register = 00001011B or 00000111B)
- For the alternate-function pin settings, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.
- <2> When the TMC5n.TCE5n bit is set to 1, counting starts.
- <3> When the values of the TM5n register and CR5n register match, the timer output F/F is inverted. Moreover, the INTTM5n signal is generated and the TM5n register is cleared to 00H.
- <4> Then, the timer output F/F is inverted during the same interval and a square wave is output from the TO5n pin.

et4U.com

Frequency = 1/2t(N + 1): N = 00H to FFH DataSheet4U.com DataShe

Caution Do not rewrite the value of the CR5n register during square-wave output.

9.4.4 8-bit PWM output operation

By setting the TMC5n.TMC5n6 bit to 1, 8-bit timer/event counter 5n performs PWM output.

Pulses with a duty factor determined by the value set in the CR5n register are output from the TO5n pin.

Set the width of the active level of the PWM pulse in the CR5n register. The active level can be selected using the TMC5n.TMC5n1 bit.

The count clock can be selected using the TCL5n register.

PWM output can be enabled/disabled by the TMC5n.TOE5n bit.

Caution The CR5n register rewrite interval must be three or more operation clocks (set by the TCL5n register).

Use method

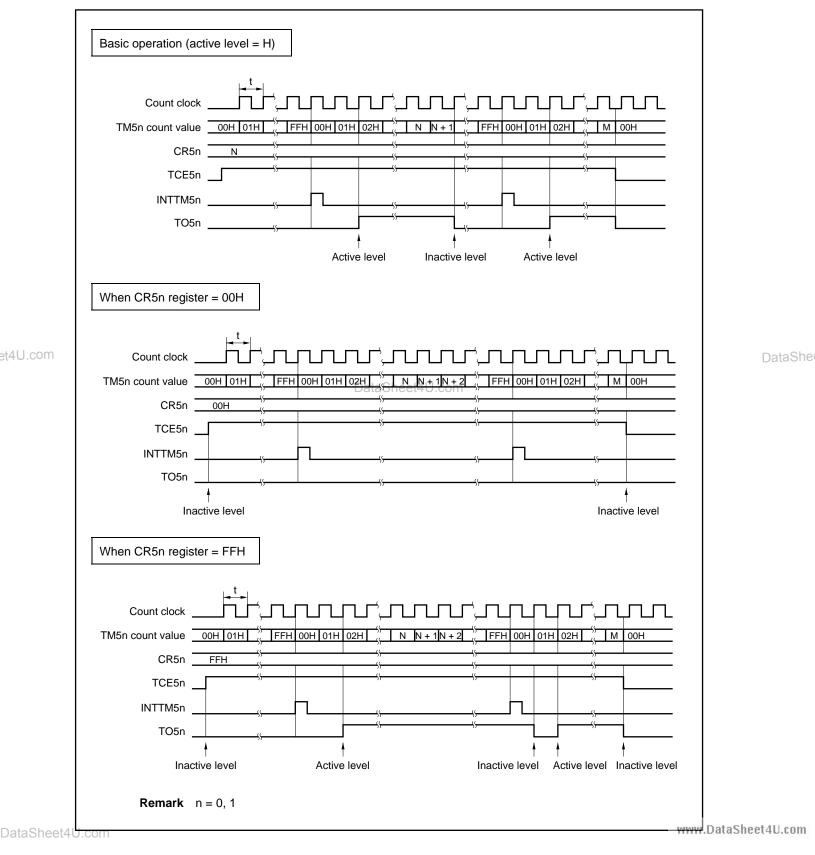
<1> Set each register.

- TCL5n register: Selects the count clock (t).
- CR5n register: Compare value (N)
- TMC5n register: Stops count operation, selects PWM mode, and leave timer output F/F unchanged, sets active level, and enables timer output. (TMC5n register = 01000001B or 01000011B)
- For the alternate-function pin settings, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.
- <2> When the TMC5n.TCE5n bit is set to 1, counting starts.

DataShe

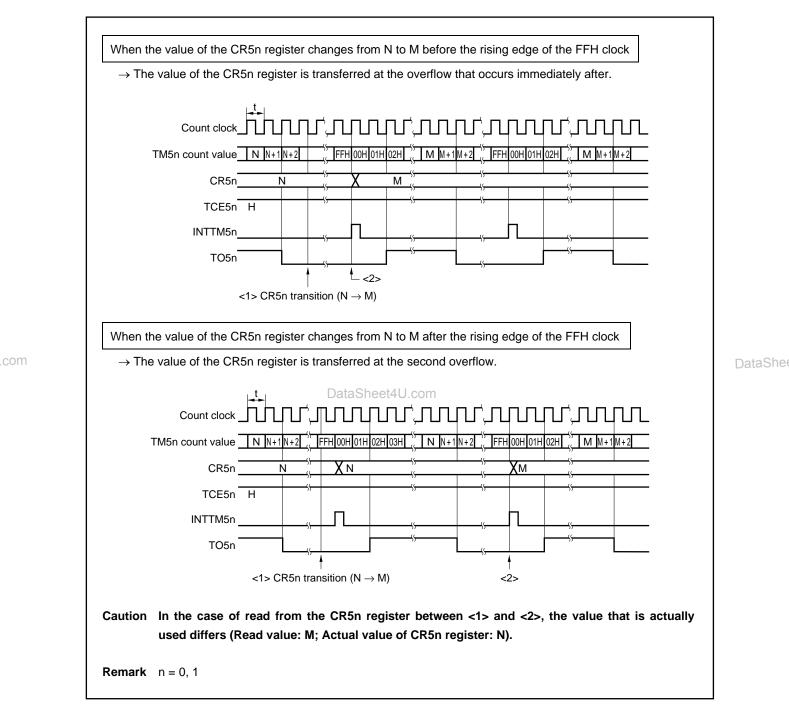
PWM output operation

- <1> When counting starts, PWM output (output from the TO5n pin) outputs the inactive level until an overflow occurs.
- <2> When an overflow occurs, the active level set by setting method <1> is output. The active level is output until the value of the CR5n register and the count value of the TM5n register match. An interrupt request signal (INTTM5n) is generated.
- <3> When the value of the CR5n register and the count value of the TM5n register match, the inactive level is output and continues to be output until an overflow occurs again.
- <4> Then, steps <2> and <3> are repeated until counting is stopped.
- <5> When counting is stopped by clearing TCE5n bit to 0, PWM output becomes inactive.


Cycle = 256t, active level width = Nt, duty = N/256: N = 00H to FFH

Remarks 1. n = 0, 1

2. For the detailed timing, refer to Figure 9-5 Timing of PWM Output Operation and Figure 9-6 Timing of Operation Based on CR5n Register Transitions.


(a) Basic operation of PWM output

(b) Operation based on CR5n register transitions

9.4.5 Operation as interval timer (16 bits)

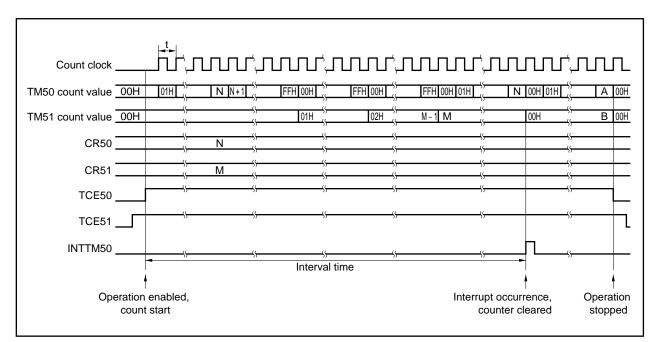
The 16-bit resolution timer/event counter mode is selected by setting the TMC51.TMC514 bit to 1.

8-bit timer/event counter 5n operates as an interval timer by repeatedly generating interrupts using the count value preset in 16-bit timer compare register 5 (CR5) as the interval.

Setting method

- <1> Set each register.
 - TCL50 register: Selects the count clock (t)
 - (The TCL51 register does not need to be set in cascade connection)
 - CR50 register: Compare value (N) ... Lower 8 bits (settable from 00H to FFH)
 - CR51 register: Compare value (N) ... Higher 8 bits (settable from 00H to FFH)
 - TMC50, TMC51 registers: Selects the mode in which clear & start occurs on a match between TM5
 - register and CR5 register (x: don't care)
 - TMC50 register = 0000xx00B
 - TMC51 register = 0001xx00B
- <2> Set the TMC51.TCE51 bit to 1. Then set the TMC50.TCE50 bit to 1 to start the count operation.
- <3> When the values of the TM5 register and CR5 register connected in cascade match, the INTTM50 signal is generated (the TM5 register is cleared to 0000H).
- <4> The INTTM50 signal is then generated repeatedly at the same interval.

Interval time = $(N + 1) \times t$: N = 0000H to FFFFH


et4U.com

DataShe

- Cautions 1. To write using 8-bit access during cascade connection, set the TCE51 bit to 1 at operation start and then set the TCE50 bit to 1. When operation is stopped, clear the TCE50 bit to 0 and then clear the TCE51 bit to 0.
 - 2. During cascade connection, TI50 pin input, TO50 pin output, and the INTTM50 signal are used. Do not use TI51 pin input, TO51 pin output, and the INTTM51 signal; mask them instead (for details, refer to CHAPTER 21 INTERRUPT/EXCEPTION PROCESSING FUNCTION). Clear the LVS51, LVR51, TMC511, and TOE51 bits to 0.
 - 3. Do not change the value of the CR5 register during timer operation.

356

Figure 9-7 shows a timing example of the cascade connection mode with 16-bit resolution.

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

9.4.6 Operation as external event counter (16 bits)

The 16-bit resolution timer/event counter mode is selected by setting the TMC51.TMC514 bit to 1.

The external event counter counts the number of clock pulses input to the TI50 pin from an external source using 16-bit timer counter 5 (TM5).

Setting method	
<1> Set each register.	
TCL50 register:	Selects the TI50 pin input edge.
	(The TCL51 register does not have to be set during cascade connection.)
	Falling edge of TI50 pin \rightarrow TCL50 register = 00H
	Rising edge of TI50 pin \rightarrow TCL50 register = 01H
CR50 register:	Compare value (N) Lower 8 bits (settable from 00H to FFH)
CR51 register:	Compare value (N) Higher 8 bits (settable from 00H to FFH)
 TMC50, TMC51 registers: 	Stops count operation, selects the clear & start mode entered on a match
	between the TM5 register and CR5 register, disables timer output F/F
	inversion, and disables timer output.
	(x: don't care)
	TMC50 register = 0000xx00B

- For the alternate-function pin settings, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.
- <2> Set the TMC51.TCE51 bit to 1. Then set the TMC50.TCE50 bit to 1 and count the number of pulses input from the TI50 pin.

TMC51 register = 0001xx00B

DataShe

- <3> When the values of the TM5 register and <u>CR5 register connected</u> in cascade match, the INTTM50 signal is generated (the TM5 register is cleared to 0000H).
- <4> The INTTM50 signal is then generated each time the values of the TM5 register and CR5 register match.

INTTM50 signal is generated when the valid edge is input to the TI50 pin N + 1 times: N = 0000H to FFFFH

- Cautions 1. During external event counter operation, do not rewrite the value of the CR5n register.
 - 2. To write using 8-bit access during cascade connection, set the TCE51 bit to 1 and then set the TCE50 bit to 1. When operation is stopped, clear the TCE50 bit to 0 and then clear the TCE51 bit to 0 (n = 0, 1).
 - 3. During cascade connection, TI50 pin input and the INTTM50 signal are used. Do not use TI51 pin input, TO51 pin output, and the INTTM51 signal; mask them instead (for details, refer to CHAPTER 21 INTERRUPT/EXCEPTION PROCESSING FUNCTION). Clear the LVS51, LVR51, TMC511, and TOE51 bits to 0.
 - 4. Do not change the value of the CR5 register during external event counter operation.

9.4.7 Square-wave output operation (16-bit resolution)

The 16-bit resolution timer/event counter mode is selected by setting the TMC51.TMC514 bit to 1.

8-bit timer/event counter 5n outputs a square wave of any frequency using the interval preset in 16-bit timer compare register 5 (CR5).

Setting method

<1> Set each register.

- TCL50 register:
- Selects the count clock (t)

(The TCL51 register does not have to be set in cascade connection)

- CR50 register: Compare value (N) ... Lower 8 bits (settable from 00H to FFH)
- CR51 register: Compare value (N) ... Higher 8 bits (settable from 00H to FFH)
- TMC50, TMC51 registers: Stops count operation, selects the mode in which clear & start occurs on a match between the TM5 register and CR5 register.

LVS50	LVR50	Timer Output F/F Status Settings
1	0	High-level output
0	1	Low-level output

Enables timer output F/F inversion, and enables timer output.

TMC50 register = 00001011B or 00000111B

- TMC51 register = 00010000B
- For the alternate-function pin settings, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.

DataShe

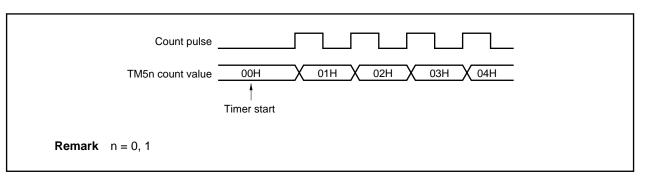
- <2> Set the TMC51.TCE51 bit to 1. Then set the TMC50.TCE50 bit to 1 to start the count operation.
- <3> When the values of the TM5 register and the CR5 register connected in cascade match, the TO50 timer output F/F is inverted. Moreover, the INTTM50 signal is generated and the TM5 register is cleared to 0000H.
- <4> Then, the timer output F/F is inverted during the same interval and a square wave is output from the TO50 pin.

Frequency = 1/2t(N + 1): N = 0000H to FFFFH

Caution Do not write a different value to the CR5 register during operation.

et4U.com

DataSheet4U.com


www.DataSheet4U.com

9.4.8 Cautions

(1) Error on starting timer

An error of up to 1 clock occurs before the match signal is generated after the timer has been started. This is because the TM5n register is started asynchronously to the count pulse.

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

CHAPTER 10 8-BIT TIMER H

In the V850ES/KG1+, two channels of 8-bit timer H are provided.

10.1 Functions

8-bit timer Hn has the following functions.

- Interval timer
- PWM output
- Square ware output
- Carrier generator mode

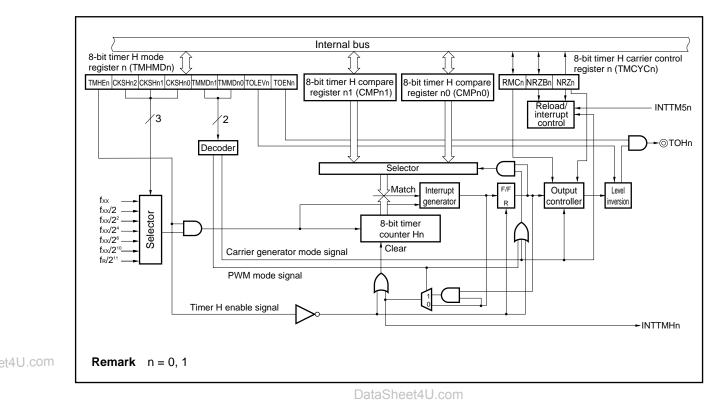
Remark n = 0, 1

10.2 Configuration

8-bit timer Hn consists of the following hardware.

Table 10-1. Configuration of 8-Bit Timer Hn

et4U.com


Item	Configuration
Timer registers	8-bit timer counter Hn: 1 each
Registers	8-bit timer H compare register n0 (CMPn0): 1 each 8-bit timer H compare register n1 (CMPn1): 1 each
Timer outputs	1 each (TOHn pin)
Control registers ^{Note}	8-bit timer H mode register n (TMHMDn) 8-bit timer H carrier control register n (TMCYCn)

Note To use the TOHn pin function, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.

Remark n = 0, 1

The block diagram of 8-bit timer Hn is shown below.

DataShe

DataSheet4U.com

(1) 8-bit timer H compare register n0 (CMPn0)

The CMPn0 register can be read or written in 8-bit units. After reset, CMPn0 is cleared to 00H.

After res	et: 00H	R/W	Address	CMP00 F	FFFF582H	I, CMP10	FFFFF592	Н
_	7	6	5	4	3	2	1	0
CMPn0								
(n = 0, 1)								

Caution Rewriting the CMPn0 register during timer count operation is prohibited.

(2) 8-bit timer H compare register n1 (CMPn1)

The CMPn1 register can be read or written in 8-bit units. After reset, CMPn1 is cleared to 00H.

	7	6	5	4	3	2	1	0	
CMPn1									

DataSheet4U.com

The CMPn1 register can be rewritten during timer count operation.

In the carrier generator mode, after the CMPn1 register is set, if the count value of 8-bit timer counter Hn and the set value of the CMPn1 register match, an interrupt request signal (INTTMHn) is generated. At the same time, the value of 8-bit timer counter Hn is cleared to 00H.

If the set value of the CMPn1 register is rewritten during timer operation, the reload timing is when the count value of 8-bit timer counter Hn and the set value of the CMPn1 register match. If the transfer timing and write to the CMPn1 register by software conflict, transfer is not performed.

Caution In the PWM output mode and carrier generator mode, be sure to set the CMPn1 register when starting the timer count operation (TMHMDn.TMHEn bit = 1) after the timer count operation was stopped (TMHEn bit = 0) (be sure to set again even if setting the same value to the CMPn1 register).

www.DataSheet4U.com

10.3 Registers

The registers that control 8-bit timer Hn are as follows.

- 8-bit timer H mode register n (TMHMDn)
- 8-bit timer H carrier control register n (TMCYCn)

Remarks 1. To use the TOHn pin function, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.

2. n = 0, 1

(1) 8-bit timer H mode register n (TMHMDn) The TMHMDn register controls the mode of 8-bit timer Hn. The TMHMDn register can be read or written in 8-bit or 1-bit units. After reset, TMHMDn is cleared to 00H.

Remark n = 0, 1

et4U.com

DataSheet4U.com

DataSheet4U.com

Г	(4) 0 20 0000											
	After res	set: 00H	R/W	Address	: FFFFF580	θH						
		<7>	6	5	4	3	2	<1>	<0>	_		
	TMHMD0	TMHE0	CKSH02	CKSH01	CKSH00	TMMD01	TMMD00	TOLEV	TOEN0]		
										-		
		TMHE0	<u> </u>		8-bit timer H					-		
		0			eration (8-bit					-		
		1	Enable tin	ner count o	operation (Co	ounting sta	rts when o	clock is in	put)]		
		CKSH02	CKSH01	CKSH00		Selection	of count	clock		1		
					Count clock [№]	te fxx = 20	MHz fxx =	16.0 MHz f	xx = 10.0 MHz			
		0	0	0	fxx	Setting prol	hibited Settin	g prohibited	100 ns]		
		0	0	1	fxx/2	100 ns	125	ns	200 ns			
		0	1	0	fxx/4	200 ns	250	ns	400 ns			
		0	1	1	fxx/16	800 ns	1 μ		1.6 <i>µ</i> s	-		
		1	0	0	fxx/64	1.6 μs	4 μ		6.4 <i>μ</i> s	_		
		1	0	1	fxx/1024	51.2 μs			102.4 μs	-		
		Othe	er than abo	ve		Sett	ing prohib	oited]		
4U.com		TMMD01	TMMD00	TMMD00 8-bit timer H0 operation mode								taShe
51-0.00m		0	0	Interval ti	mer mode]	Da	laone
		0	1									
		1	0									
		1	1 Setting prohibited									
		TOLEV0		Tir	1							
		0	Timer output level control (default)									
		1	High level									
		TOFNO	<u> </u>		T ¹					1		
		TOEN0 0			l imer o	utput contr	0			-		
		1	Disable ou Enable ou	-						-		
			1	-						1		
	Note Set so		•	•	nditions. it clock ≤ 10							
					icity: Count		MHz					
				-	it clock ≤ 5							
	Coutions 1	Whon th) hit _ 1	cotting hit	a athar i	han tha	co of th		0 register	in	
	Cautions 1.	prohibite		<i>)</i> DIL = 1,	Setting bit	s other i		se or in		o register	15	
	2.	•		ut mode	and carrie	er genera	ator mo	de, be s	ure to set	the CMPC	01	
										er the time		
)) (be su	re to se	t again ev	en if settin	ıg	
	3.				P01 registe enerator m	-	8-bit tin	ner H0 c	ount cloc	k frequenc	cv	
DataSheet4U.com											ataSheet4U	J.com
Bataoneet+0.00m												

(a) 8-bit timer H mode register 0 (TMHMD0)

Preliminary User's Manual U16894EJ1V0UD

	After re	eset: 00H	R/W	Address	s: FFFFF590)Η			ſ		
		<7>	6	5	4	3	2 <1>	> <0>			
	TMHMD1	TMHE1	CKSH12	CKSH11	CKSH10	TMMD11 TM	IMD10 TOLE	V1 TOEN1			
		TMHE1			8-bit timer	H1 operation e	enable		1		
		0	Stop time	r count ope		t timer counter					
		1					when clock is i	input)			
		CKSH12	CKSH11	CKSH10		Selection of	count clock				
			ļ!		Count clock [№]		Hz fxx = 16.0 MHz				
		0	0	0	fxx	Setting prohibite	ed Setting prohibited	d 100 ns			
		0	0	1	fxx/2	100 ns	125 ns	200 ns	-		
		0	1	0	fxx/4	200 ns	250 ns	400 ns			
		0	1	1	fxx/16	800 ns	1 µs	1.6 <i>μ</i> s			
		1	0	0	fxx/64	1.6 μs	4 μs	6.4 μs			
		1	0	1			/2048				
		Oth	her than ab	ove	<u> </u>	Setting	prohibited		J		
m		TMMD11	TMMD10		8-bit 1	timer H1 opera	ation mode			Data	
		0	0		imer mode					Provide a constraint of the second se	
		0	1	Carrier ge	enerator mod	-					
		1	0								
		1	1	Setting pr	ohibited				J		
		TOLEV1		Tir	mer output le	evel control (de			1		
		0	Low level								
			High level								
		ı							1		
		TOEN1			Timer o	output control					
		0	Disable ou	utput				I			
		1	Enable ou	Jtput							
	Note Set so	as to satis	sfy the foll	owing cor	nditions.						
					t clock ≤ 10						
						t clock ≤ 5 MI	Hz				
	VDD	= REGC =	2.7 to 4.0) V: Coun	t clock ≤ 5	MHz					
	Cautions 1.			bit = 1,	setting bi	ts other tha	n those of f	the TMHMD1	l register is		
	2	prohibite		-t ada			······································	10 001			
	۷.		=			-		sure to set bit = 1) afte			
		-		-		=	-	set again eve			
		=			P11 registe				J		
	3	When up	sing the (carrier a	anarator n	node set 8.	bit timer H1	count clock	k frequency		

(2) 8-bit timer H carrier control register n (TMCYCn)

This register controls the 8-bit timer Hn remote control output and carrier pulse output status. The TMCYCn register can be read or written in 8-bit or 1-bit units, but the NRZn bit is a read-only bit. After reset, TMCYCn is cleared to 00H.

After res	et: 00H	R/W	Address	TMCYC0	FFFFF58	31H, TMCY	C1 FFFFF	591H		
	7	6	5	4	3	2	1	<0>		
TMCYCn	0	0	0	0	0	RMCn	NRZBn	NRZn		
(n = 0, 1)										
	RMCn									
	0	0 0 Low-level output								
	0	1	1 High-level output							
	1	0	Low-leve	el output						
	1	1	Carrier p	ulse output						
	NRZn		C	arrier pulse	output st	atus flag				
	0	Carrier ou	tput disable	ed status (lo	w-level st	atus)				
	1	Carrier ou	arrier output enable status							

et4U.com

DataSheet4U.com

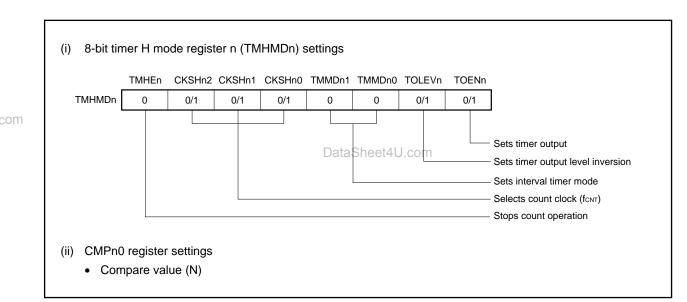
DataSheet4U.com

www.DataSheet4U.com

10.4 Operation

10.4.1 Operation as interval timer/square wave output

When the count value of 8-bit timer counter Hn and the set value of the CMPn0 register match, an interrupt request signal (INTTMHn) is generated and 8-bit timer counter Hn is cleared to 00H.


The CMPn1 register cannot be used in the interval timer mode. Even if the CMPn1 register is set, this has no effect on the timer output because matches between 8-bit timer counter Hn and the CMPn1 register are not detected.

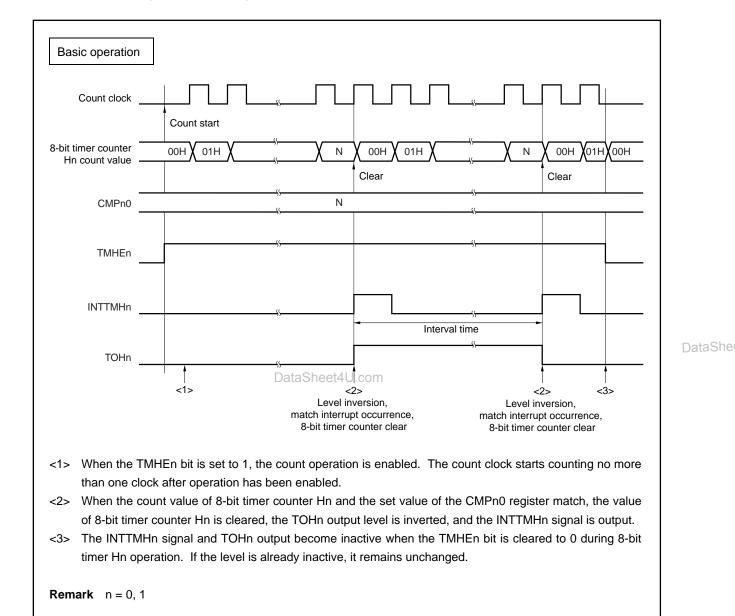
A square wave of the desired frequency (duty = 50%) is output from the TOHn pin, by setting the TMHMDn.TOENn bit to 1.

(1) Usage method

The INTTMHn signal is repeatedly generated in the same interval.

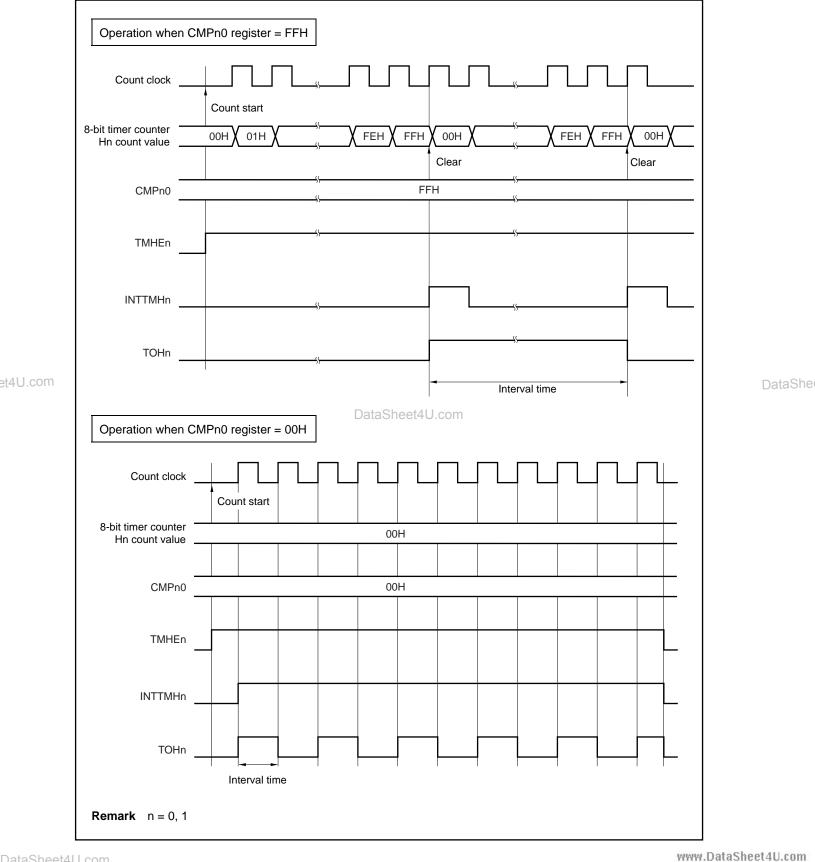
<1> Set each register.

Figure 10-2. Register Settings in Interval Timer Mode


- <2> When the TMHEn bit is set to 1, counting starts.
- <3> When the count value of 8-bit timer counter Hn and the set value of the CMPn0 register match, the INTTMHn signal is generated and 8-bit timer counter Hn is cleared to 00H.

		Interva	al tim	e = (N -	⊦ 1)/f смт			

<4> Then, the INTTMHn signal is generated in the same interval. To stop the count operation, clear the TMHEn bit to 0.


(2) Timing chart

The timing in the interval timer mode is as follows.

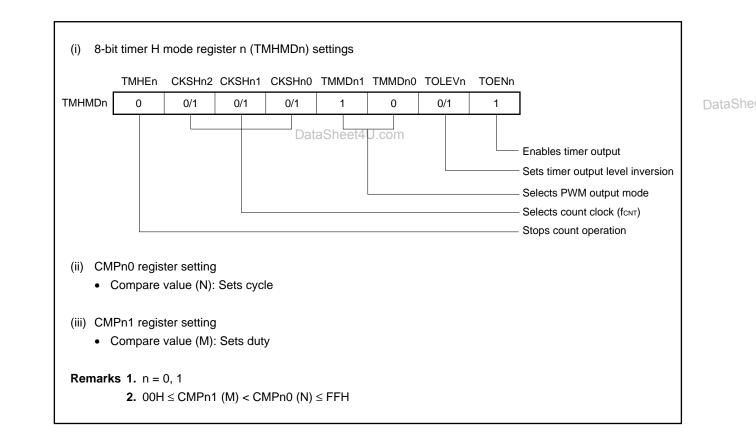
et4U.com

10.4.2 PWM output mode operation

In the PWM output mode, a pulse of any duty and cycle can be output.

The CMPn0 register controls the timer output (TOHn) cycle. Rewriting the CMPn0 register during timer operation is prohibited.

The CMPn1 register controls the timer output (TOHn) duty. The CMPn1 register can be rewritten during timer operation.


The operation in the PWM output mode is as follows.

After timer counting starts, when the count value of 8-bit timer counter Hn and the set value of the CMPn0 register match, the TOHn output becomes active and 8-bit timer counter Hn is cleared to 00H. When the count value of 8-bit timer counter Hn and the set value of the CMPn1 register match, TOHn output becomes inactive.

(1) Usage method

In the PWM output mode, a pulse of any duty and cycle can be output.

<1> Set each register.

Figure 10-4. Register Settings in PWM Output Mode

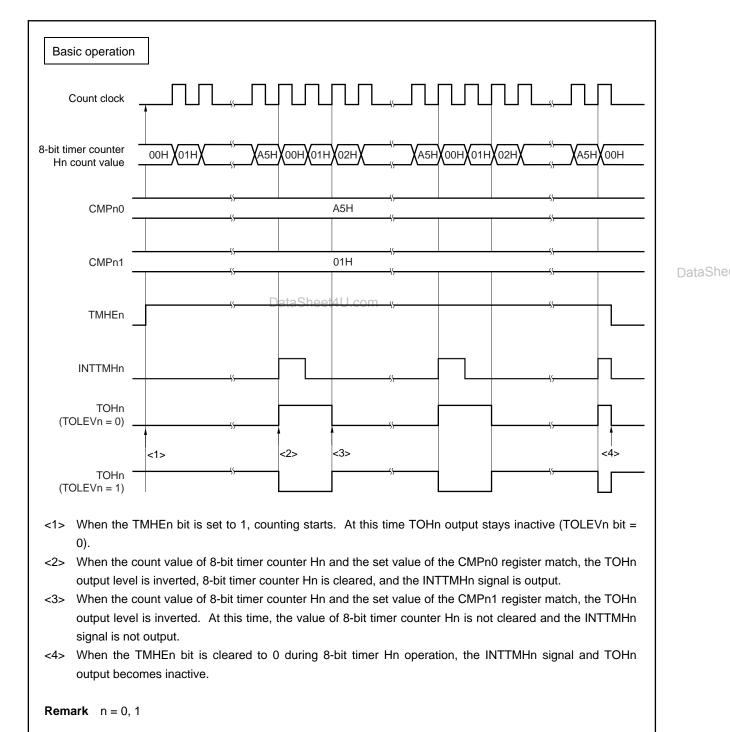
<2> When the TMHEn bit is set to 1, counting starts.

- <3> After the count operation is enabled, the first compare register to be compared is the CMPn0 register. When the count value of 8-bit timer counter Hn and the set value of the CMPn0 register match, 8-bit timer counter Hn is cleared, an interrupt request signal (INTTMHn) is generated, and the TOHn output becomes active. At the same time, the register that is compared with 8-bit timer counter Hn changes from the CMPn0 register to the CMPn1 register.
- <4> When the count value of 8-bit timer counter Hn and the set value of the CMPn1 register match, the TOHn output becomes inactive, and at the same time the register that is compared with 8-bit timer counter Hn changes from the CMPn1 register to the CMPn0 register. At this time, 8-bit timer counter Hn is not cleared and the INTTMHn signal is not generated.
- <5> A pulse of any duty can be obtained through the repetition of steps <3> and <4> above.
- <6> To stop the count operation, clear the TMHEn bit to 0.

Designating the set value of the CMPn0 register as (N), the set value of the CMPn1 register as (M), and the count clock frequency as fCNT, the PWM pulse output cycle and duty are as follows.

PWM pulse output cycle = $(N + 1)/f_{CNT}$ Duty = inactive width: Active width = (M + 1) : (N + 1)

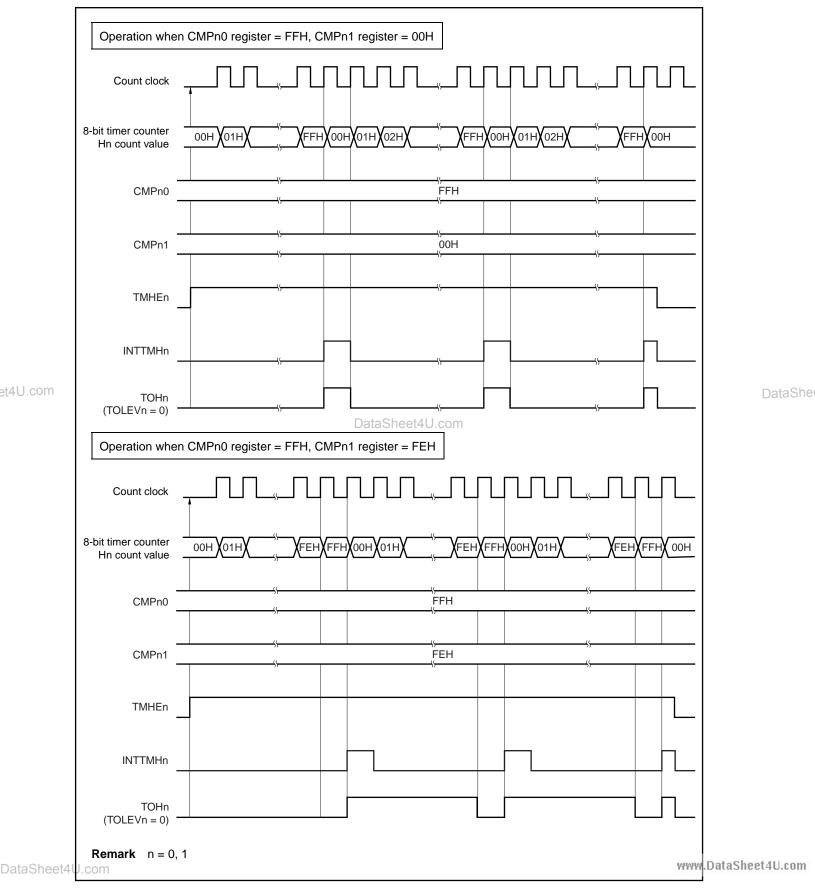
- Cautions 1. In the PWM output mode, three operating clocks (signal selected by CKSHn0 to CKSHn2 bits) are required for actual transfer of the new value to the register after the CMPn1 register has been rewritten.
 - Be sure to set the CMPn1 register when starting the timer count operation (TMHEn bit =
 1) after the timer count operation was stopped (TMHEn bit = 0) (be sure to set again
 even if setting the same value to the CMPn1 register).

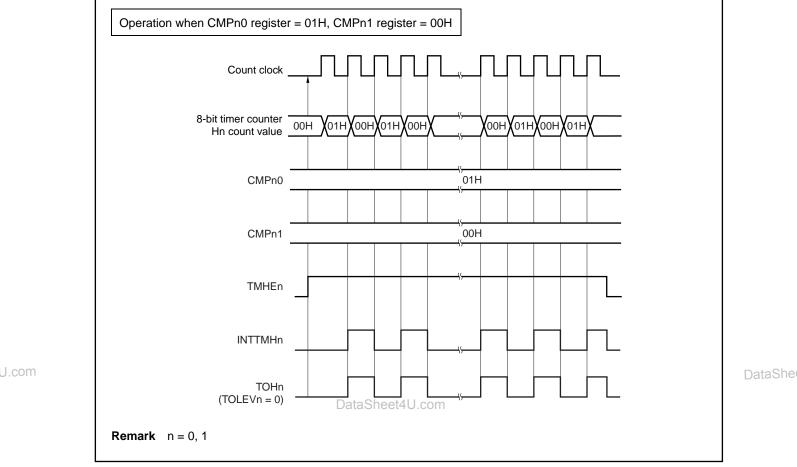

DataShe

et4U.com

(2) Timing chart

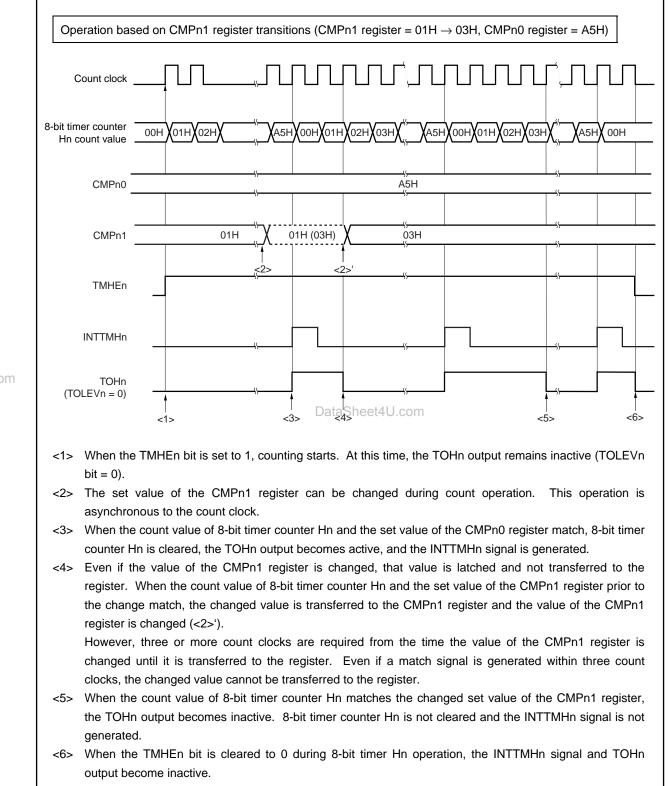
The operation timing in the PWM output mode is as follows.

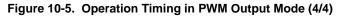

Caution The set value (M) of the CMPn1 register and the set value (N) of the CMPn0 register must always be set within the following range. $00H \le CMPn1$ (M) < CMPn0 (N) \le FFH


DataSheet4U.com

et4U.com

374





et4U.com

DataSheet4U.com

www.DataSheet4U.com

10.4.3 Carrier generator mode operation

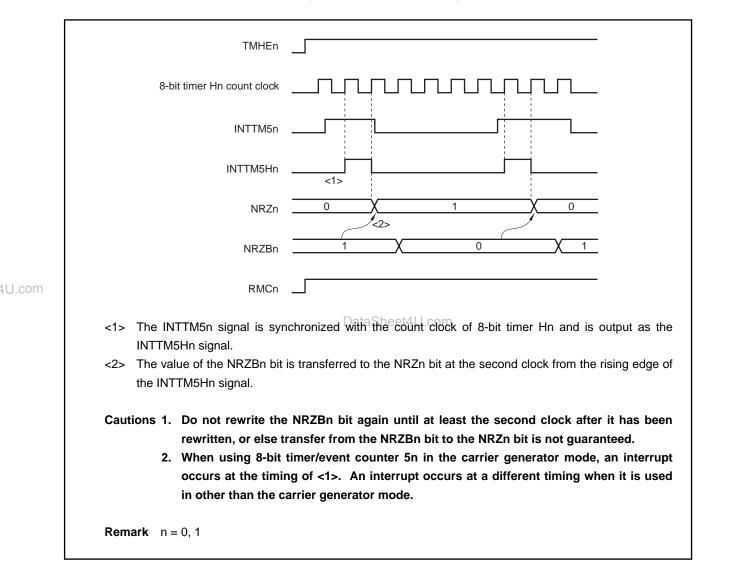
The carrier clock generated by 8-bit timer Hn is output using the cycle set with 8-bit timer/event counter 5n. In the carrier generator mode, 8-bit timer/event counter 5n is used to control the extent to which the carrier pulse of 8-bit timer Hn is output, and the carrier pulse is output from the TOHn output.

(1) Carrier generation

In the carrier generator mode, the CMPn0 register generates a waveform with the low-level width of the carrier pulse and the CMPn1 register generates a waveform with the high-level width of the carrier pulse. During 8-bit timer Hn operation, the CMPn1 register can be rewritten, but rewriting of the CMPn0 register is prohibited.

(2) Carrier output control

Carrier output control is performed with the interrupt request signal (INTTM5n) of 8-bit timer/event counter 5n and the TMCYCn.NRZBn and TMCYCn.RMCn bits. The output relationships are as follows.

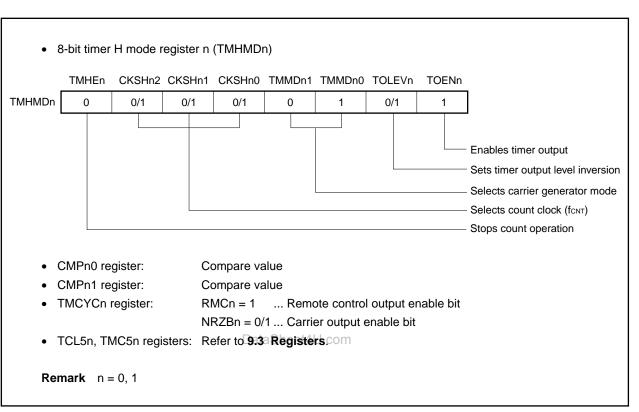

RMCn Bit	NRZBn Bit	Output
0	0	Low level output
0	1	High level output
1	0	Low level output
1	1	Carrier pulse output

Remark n = 0, 1

et4U.com

DataShe

To control carrier pulse output during count operation, the TMCYCn.NRZn and TMCYCn.NRZBn bits have a master and slave bit configuration. The NRZn bit is read-only while the NRZBn bit can be read and written. The INTTM5n signal is synchronized with the 8-bit timer Hn clock and output as the INTTM5Hn signal. The INTTM5Hn signal becomes the data transfer signal of the NRZn bit and the value of the NRZBn bit is transferred to the NRZn bit. The transfer timing from the NRZBn bit to the NRZn bit is as follows.



(3) Usage method

Any carrier clock can be output from the TOHn pin.

<1> Set each register.

- <2> When the TMHEn bit is set to 1, 8-bit timer Hn count operation starts.
- <3> When the TMC5n.TCE5n bit is set to 1, 8-bit timer/event counter 5n count operation starts.
- <4> After the count operation is enabled, the first compare register to be compared is the CMPn0 register. When the count value of 8-bit timer counter Hn and the set value of the CMPn0 register match, the INTTMHn signal is generated, 8-bit timer counter Hn is cleared, and at the same time, the register that is compared with 8-bit timer counter Hn changes from the CMPn0 register to the CMPn1 register.
- <5> When the count value of 8-bit timer counter Hn and the set value of the CMPn1 register match, the INTTMHn signal is generated, 8-bit timer counter Hn is cleared, and at the same time, the register that is compared with 8-bit timer counter Hn changes from the CMPn1 register to the CMPn0 register.
- <6> The carrier clock is obtained through the repetition of steps <4> and <5> above.
- <7> The INTTM5n signal is synchronized with 8-bit timer Hn and output as the INTTM5Hn signal. This signal becomes the data transfer signal of the NRZBn bit and the value of the NRZBn bit is transferred to the NRZn bit.
- <8> When the NRZn bit becomes high level, the carrier clock is output from the TOHn pin.
- <9> Any carrier clock can be obtained through the repetition of the above steps. To stop the count operation, clear the TMHEn bit to 0.

Designating the set value of the CMPn0 register as (N), the set value of the CMPn1 register as (M), and the count clock frequency as fcNT, the carrier clock output cycle and duty are as follows.

Carrier clock output cycle = $(N + M + 2)/f_{CNT}$ Duty = High level width: Carrier clock output width = (M + 1): (N + M + 2)

Caution Be sure to set the CMPn1 register when starting the timer count operation (TMHEn bit = 1) after the timer count operation was stopped (TMHEn bit = 0) (be sure to set again even if setting the same value to the CMPn1 register).

(4) Timing chart

The carrier output control timing is as follows.

Cautions 1. Set the values of the CMPn0 and CMPn1 registers in the range of 01H to FFH.

- 2. In the carrier generator mode, three operating clocks (signal selected by the TMHMDn.CKSHn0 to TMHMDn.CKSHn2 bits) are required for actual transfer of the new value to the register after the CMPn1 register has been rewritten.
- 3. Be sure to perform the TMCYCn.RMCn bit setting before the start of the count operation.
- 4. When using the carrier generator mode, set the 8-bit timer Hn count clock frequency to six times the 8-bit timer/event counter 5n count clock frequency or higher.

et4U.com

DataShe

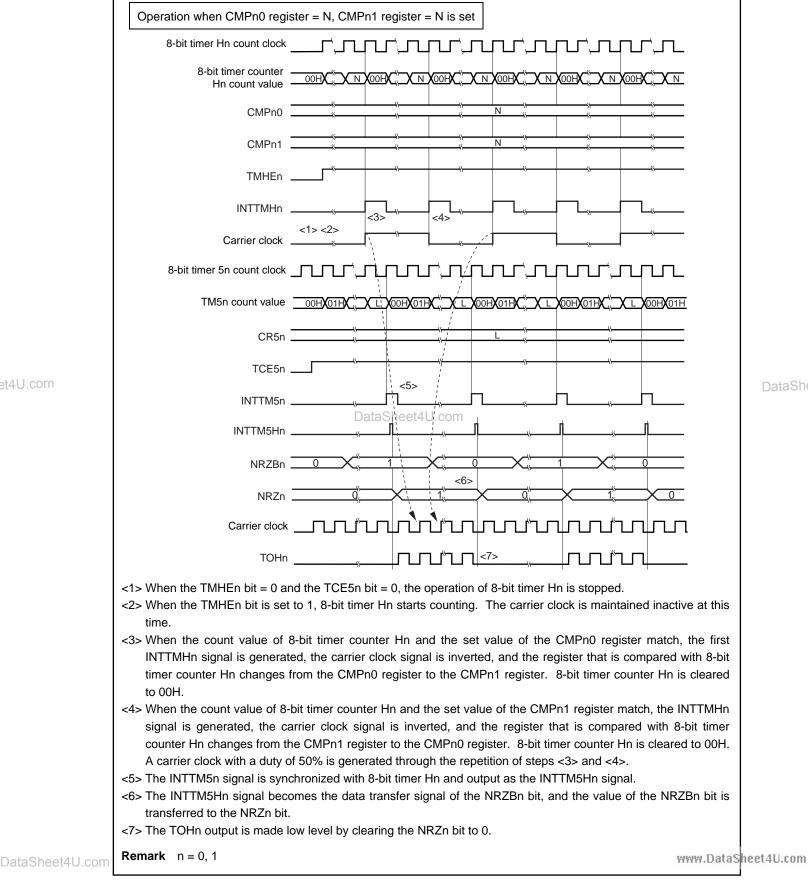
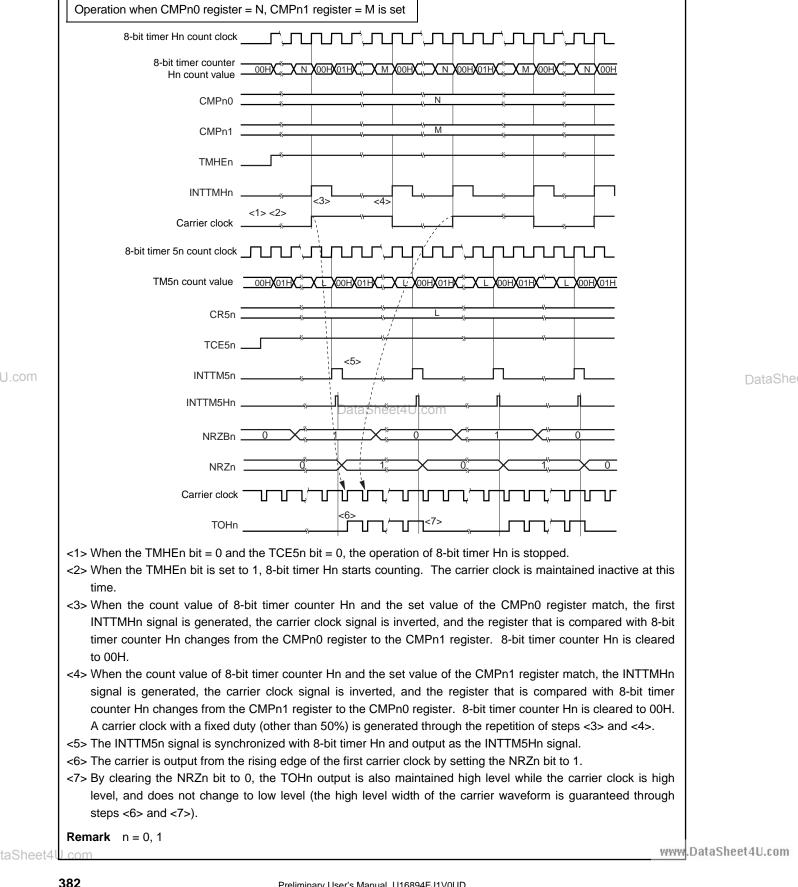



Figure 10-8. Carrier Generator Mode (1/3)

Figure 10-8. Carrier Generator Mode (2/3)

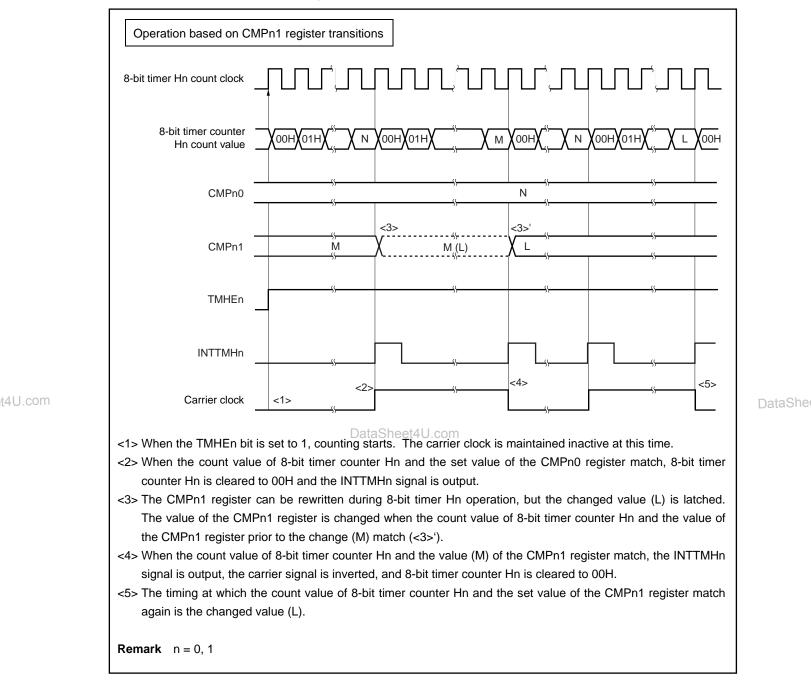


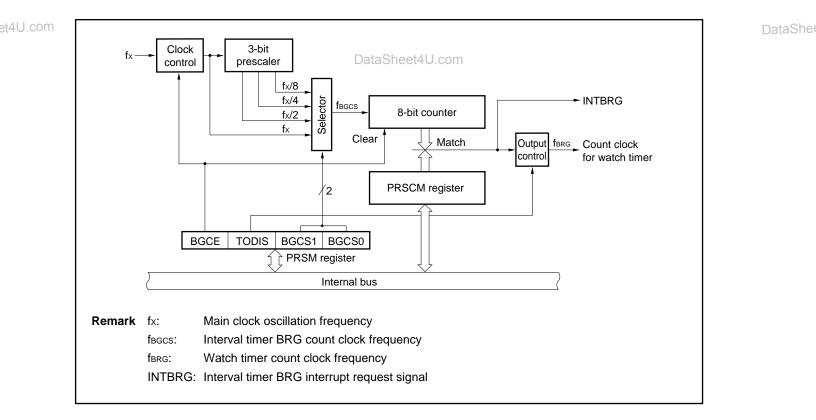
Figure 10-8. Carrier Generator Mode (3/3)

CHAPTER 11 INTERVAL TIMER, WATCH TIMER

The V850ES/KG1+ includes interval timer BRG and a watch timer. Interval timer BRG can also be used as the source clock of the watch timer. The watch timer can also be used as interval timer WT.

Two interval timer channels and one watch timer channel can be used at the same time.

11.1 Interval Timer BRG


11.1.1 Functions

Interval timer BRG has the following functions.

- Interval timer BRG: An interrupt request signal (INTBRG) is generated at a specified interval.
- Generation of count clock for watch timer: When the main clock is used as the count clock for the watch timer, a count clock (fbrg) is generated.

11.1.2 Configuration

The following shows the block diagram of interval timer BRG.

Figure 11-1. Block Diagram of Interval Timer BRG

....

(1) Clock control

The clock control controls supply/stop of the operation clock (fx) of interval timer BRG.

(2) 3-bit prescaler

The 3-bit prescaler divides fx to generate fx/2, fx/4, and fx/8.

(3) Selector

The selector selects the count clock (fBGCs) for interval timer BRG from fx, fx/2, fx/4, and fx/8.

(4) 8-bit counter

The 8-bit counter counts the count clock (fBGCS).

(5) Output control

The output control controls supply of the count clock (fbrg) for the watch timer.

(6) PRSCM register

The PRSCM register is an 8-bit compare register that sets the interval time.

(7) PRSM register

The PRSM register controls the operation of interval timer BRG, the selector, and clock supply to the watch timer.

et4U.com

DataSheet4U.com

385

11.1.3 Registers

Interval timer BRG includes the following registers.

(1) Interval timer BRG mode register (PRSM)

PRSM controls the operation of interval timer BRG, selection of count clock, and clock supply to the watch timer.

This register can be read or written in 8-bit or 1-bit units.

After reset, PRSM is cleared to 00H.

	7	6	5	<4>	3	2	1	0				
PRSM	0	0	0	BGCE	0	TODIS	BGCS1	BGCS0				
	BGCE			Control of i	nterval time	er operation	า					
	0	Operation	n stopped,	8-bit counte	er cleared to	o 01H						
	1	Operate										
	TODIS			ontrol of clo		or watch tir	ner					
	0		lock for watch timer not supplied									
	1	Clock for										
	BGCS1 BGCS0 Selection of input clock (fBGCS) ^{Note}											
	100031	BGC30	Γ	DataSher				4 MHz				
	0	0	fx		00 ns	200 ns		250 ns				
	0	1	fx/2		00 ns	400 ns		500 ns				
		0	fx/4		00 ns	800 ns		1 μs				
	1	1	fx/8		00 ns	1.6 μs		2 μs				
	Vd	D = 4.0 to	5.5 V: fво	the followi scs ≤ 10 M	Hz	ons are s	atisfied.					
		 VDD = 2.7 to 4.0 V: fBGCS ≤ 5 MHz ons 1. Do not change the values of the TODIS, BGCS1, an BGCS0 bits while interval timer BRG is operating (BGC bit = 1). Set the TODIS, BGCS1, and BGCS0 bits befor setting (1) the BGCE bit. 2. When the BGCE bit is cleared (to 0), the 8-bit counter is the set of the top of top of top of the top of the top of /li>										

www.DataSheet4U.com

DataShe

et4U.

(2) Interval timer BRG compare register (PRSCM)

PRSCM is an 8-bit compare register. This register can be read or written in 8-bit units. After reset, PRSCM is cleared to 00H.

After re:	set: 00H	R/W	Address: F	FFFF8B1H	1			
	7	6	5	4	3	2	1	0
PRSCM	PRSCM7	PRSCM6	PRSCM5	PRSCM4	PRSCM3	PRSCM2	PRSCM1	PRSCM0
	Caution	operatir	ng (PRSN		oit = 1).			er BRG is I register

et4U.com

DataShee

DataSheet4U.com

11.1.4 Operation

(1) Operation of interval timer BRG

Set the count clock by using the PRSM.BGCS1 and PRSM.BGCS0 bits and the 8-bit compare value by using the PRSCM register.

When the PRSM.BGCE bit is set (1), interval timer BRG starts operating.

Each time the count value of the 8-bit counter and the set value in the PRSCM register match, an interrupt request signal (INTBRG) is generated. At the same time, the 8-bit counter is cleared to 00H and counting is continued.

The interval time can be obtained from the following equation.

Interval time = $2^m \times N/fx$

Remark m: Divided value (set value in the BGCS1 and BGCS0 bits) = 0 to 3

- N: Set value in PRSCM register = 1 to 256 (when the set value in the PRSCM register is 00H, N = 256)
- fx: Main clock oscillation frequency

(2) Count clock supply for watch timer

Set the count clock by using the PRSM.BGCS1 and PRSM.BGCS0 bits and the 8-bit compare value by using the PRSCM register, so that the count clock frequency (fBRG) of the watch timer is 32.768 kHz. Set (1) the PRSM.TODIS bit at the same time.

4U.com

DetaChor

When the PRSM.BGCE bit is set (1), fBRG is supplied to the watch timer.

fBRG is obtained from the following equation.

DataSheet4U.com

 $f_{BRG} = f_X/(2^{m+1} \times N)$

To set fBRG to 32.768 kHz, perform the following calculation to set the BGCS1 and BGCS0 bits and the PRSCM register.

<1> Set N = fx/65,536 (round off the decimal) to set m = 0.

- <2> If N is even, N = N/2 and m = m + 1
- <3> Repeat step <2> until N is odd or m = 3
- <4> Set N to the PRSCM register and m to the BGCS1 and BGCS0 bits.

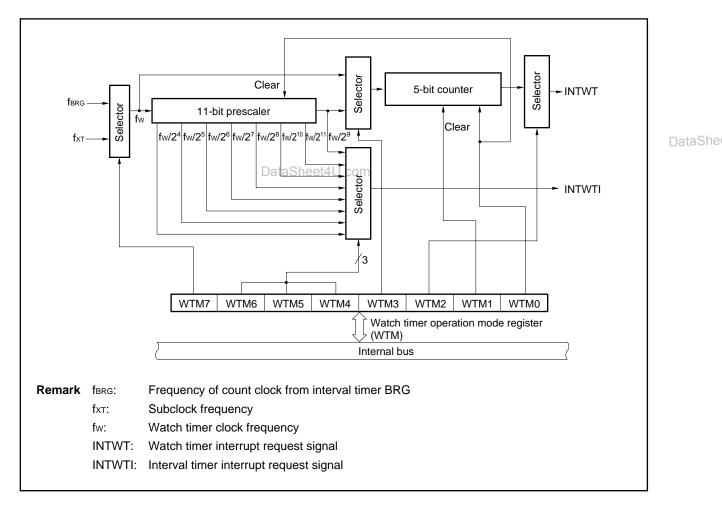
Example: When fx = 4.00 MHz

<1> N = 4,000,000/65,536 = 61 (round off the decimal), m = 0

- <2>, <3> Since N is odd, the values remain as N = 61, m = 0
- <4> The set value in the PRSCM register: 3DH (61), the set values in the BGCS1 and BGCS0 bits: 00
- **Remark** m: Divided value (set value in the BGCS1 and BGCS0 bits) = 0 to 3
 - N: Set value in PRSCM register = 1 to 256 (when the set value in the PRSCM register is 00H, N = 256)
 - fx: Main clock oscillation frequency

11.2 Watch Timer

11.2.1 Functions


The watch timer has the following functions.

- Watch timer: An interrupt request signal (INTWT) is generated at time intervals of 0.5 or 0.25 seconds by using the main clock or subclock.
- Interval timer: An interrupt request signal (INTWTI) is generated at the preset time interval.

The watch timer and interval timer functions can be used at the same time.

11.2.2 Configuration

The following shows the block diagram of the watch timer.

et4U.com

(1) 11-bit prescaler

The 11-bit prescaler generates a clock of $fw/2^4$ to $fw/2^{11}$ by dividing fw.

(2) 5-bit counter

The 5-bit counter generates the watch timer interrupt request signal (INTWT) at intervals of 2^4 /fw, 2^5 /fw, 2^{13} /fw, or 2^{14} /fw by counting fw or fw/ 2^9 .

(3) Selectors

The watch timer has the following four selectors.

- Selector that selects the main clock (the clock from interval timer BRG (fBRG) or the subclock (fXT)) as the clock for the watch timer.
- Selector that selects fw or fw/2⁹ as the count clock frequency of the 5-bit counter
- Selector that selects 2⁴/fw or 2¹³/fw, or 2⁵/fw or 2¹⁴/fw as the INTWT signal generation time interval.
- Selector that selects the generation time interval of the interval timer WT interrupt request signal (INTWTI) from 2⁴/fw to 2¹¹/fw.

(4) 8-bit counter

The 8-bit counter counts the count clock (fbgcs).

(5) WTM register

et4U.com

The WTM register is an 8-bit register that controls the operation of the watch timer/interval timer WT and sets the interval of interrupt request signal generation.

11.2.3 Register

DataSheet4U.com

m

DataShe

The watch timer includes the following register.

(1) Watch timer operation mode register (WTM)

This register enables or disables the count clock and operation of the watch timer, sets the interval time of the 11-bit prescaler, controls the operation of the 5-bit counter, and sets the time of watch timer interrupt request signal (INTWT) generation.

The WTM register can be read or written in 8-bit or 1-bit units.

After reset, WTM is cleared to 00H.

		7	6	5	4	3	2	<1>	<0>	
	WTM	WTM7	WTM6	WTM5	WTM4	WTM3	WTM2	WTM1	WTM0	
		WTM7	WTM6	WTM5	WTM4	Soloction	ofictorialt	ime of pres	aglar	
		0	0	0	0	2 ⁴ /fw (488		-		
		0	0	0	1	2 /lw (488) 2⁵/fw (977)				
		0	0	1	0	2 ⁶ /fw (1.95				
		0	0	1	1	2 ⁷ /fw (3.91				
		0	1	0	0	2 ⁸ /fw (7.81				
		0	1	0	1	2 ⁹ /fw (15.6				
		0	1	1	0	2 ¹⁰ /fw (31.3				
		0	1	1	1	2 ¹¹ /fw (62.5				
		1	0	0	0	2 ⁴ /fw (488,				
		1	0	0	1	2⁵/fw (977				
		1	0	1	0	2 ⁶ /fw (1.95				
		1	0	1	1	2 ⁷ /fw (3.91	ms: fw = f	BRG)		
		1	1	0	0	2 ⁸ /fw (7.81	ms: fw = f	BRG)		
		1	1	0	1	2 ⁹ /fw (15.6	ms: fw = f	BRG)		
1		1	1	1	0	2 ¹⁰ /fw (31.3	3 ms: fw =	fbrg)		D
		1	1	1	1	2 ¹¹ /fw (62.5	5 ms: fw =	fbrg)		D
				Datas	Sheet4U.	com				
		WTM7	WTM3	WTM2		Selection of		watch flag		
		0	0	0		5 s: fw = fxt)				
		0	0	1		25 s: fw = fx	,			
		0	1	0		7 μ s: fw = fx				
		0	1	1		$B \mu s: fw = fxt$				
		1	0	0		5 s: fw = fBRC				
		1	0	1		25 s: fw = fm				
		1	1	0		$7 \mu s: fw = f_{BF}$				
		1	1	1	271W (466	8μ s: fw = fBF	RG)			
		WTM1			Control of	5-bit counte	r operation	1		
		0	Clear after	er operatio						
		1	Start							
					\\/atab t]	
		0 WTM0	Stop opp	viation (ala		imer operatio		r)		
		1	Enable o		ai notti pre	scaler and 5		')		
				μειαιιοπ						
Cautio	n Rewrite t	he WTM2	to WTM7	7 bits wh	ile both ti	he WTM0 a	Ind WTM	1 bits are	0.	

11.2.4 Operation

(1) Operation as watch timer

The watch timer generates an interrupt request at fixed time intervals.

The watch timer operates using time intervals of 0.25 or 0.5 seconds with the subclock (32.768 kHz).

The count operation starts when the WTM.WTM0 and WTM.WTM1 bits are set to 11. When these bits are cleared to 00, the 11-bit prescaler and 5-bit counter are cleared and the count operation stops.

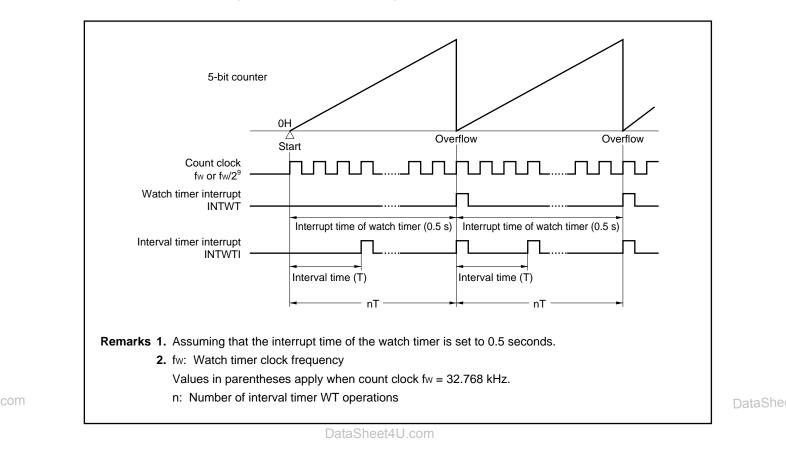
The 5-bit counter can be cleared to synchronize the time by clearing the WTM1 bit to 0 when the watch timer and interval timer WT operate simultaneously. At this time, an error of up to 15.6 ms may occur in the watch timer, but interval timer WT is not affected.

(2) Operation as interval timer

The watch timer can also be used as an interval timer that repeatedly generates an interrupt request signal (INTWTI) at intervals specified by a count value set in advance.

The interval time can be selected by the WTM.WTM4 to WTM.WTM7 bits.

WTM7	WTM6	WTM5	WTM4		Interval Time
0	0	0	0	$2^4 \times 1/f_W$	488 μ s (operating at fw = fxt = 32.768 kHz)
0	0	0	1	$2^5 \times 1/fw$	977 μ s (operating at fw = fxt = 32.768 kHz)
0	0	1	0	$2^6 \times 1/f_W$	1.95 ms (operating at $f_W = f_{XT} = 32.768 \text{ kHz}$)
0	0	1	1	$2^7 \times 1/f_W$	3.91 ms (operating at $f_W = f_{XT} = 32.768 \text{ kHz}$)
0	1	0	0	2° xD17fwaSheet4U.c	(7.81 ms (operating at fw = fxt = 32.768 kHz)
0	1	0	1	$2^9 \times 1/f_W$	15.6 ms (operating at $f_W = f_{XT} = 32.768 \text{ kHz}$)
0	1	1	0	$2^{10} \times 1/fw$	31.3 ms (operating at $f_W = f_{XT} = 32.768 \text{ kHz}$)
0	1	1	1	$2^{11} \times 1/fw$	62.5 ms (operating at $f_W = f_{XT} = 32.768 \text{ kHz}$)
1	0	0	0	$2^4 \times 1/f_W$	488 μ s (operating at fw = f _{BRG} = 32.768 kHz)
1	0	0	1	$2^5 \times 1/fw$	977 μ s (operating at fw = f _{BRG} = 32.768 kHz)
1	0	1	0	$2^6 \times 1/f_W$	1.95 ms (operating at $f_{W} = f_{BRG} = 32.768 \text{ kHz}$)
1	0	1	1	$2^7 \times 1/f_W$	3.91 ms (operating at fw = fBRG = 32.768 kHz)
1	1	0	0	$2^8 \times 1/f_W$	7.81 ms (operating at $f_{W} = f_{BRG} = 32.768 \text{ kHz}$)
1	1	0	1	$2^9 \times 1/fw$	15.6 ms (operating at $f_{W} = f_{BRG} = 32.768 \text{ kHz}$)
1	1	1	0	$2^{10} \times 1/fw$	31.3 ms (operating at fw = fBRG = 32.768 kHz)
1	1	1	1	$2^{11} \times 1/fw$	62.5 ms (operating at fw = fBRG = 32.768 kHz)

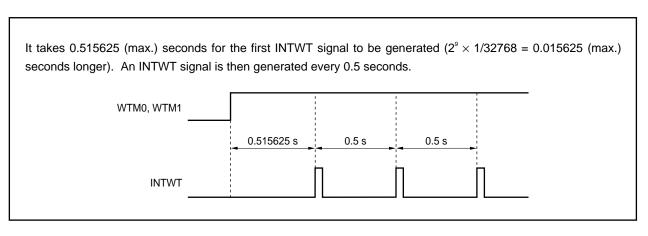

Table 11-1. Interval Time of Interval Timer

Remark fw: Watch timer clock frequency

DataShe

DataSheet4U.com

392


Figure 11-3. Operation Timing of Watch Timer/Interval Timer

11.3 Cautions

(1) Operation as watch timer

Some time is required before the first watch timer interrupt request signal (INTWT) is generated after operation is enabled (WTM.WTM1 and WTM.WTM0 bits = 11).

Figure 11-4. Example of Generation of Watch Timer Interrupt Request Signal (INTWT) (When Interrupt Period = 0.5 s)

DataSheet4U.com

393

(2) When watch timer and interval timer BRG operate simultaneously

When using the subclock as the count clock for the watch timer, the interval time of interval timer BRG can be set to any value. Changing the interval time does not affect the watch timer (before changing the interval time, stop operation).

When using the main clock as the count clock for the watch timer, set the interval time of interval timer BRG to approximately 65,536 Hz. Do not change this value.

(3) When interval timer BRG and interval timer WT operate simultaneously

When using the subclock as the count clock for interval timer WT, the interval times of interval timers BRG and WT can be set to any values. They can also be changed later (before changing the value, stop operation). When using the main clock as the count clock for interval timer WT, the interval time of interval timer BRG can be set to any value, but cannot be changed later (it can be changed only when interval timer WT stops operation). The interval time of interval timer WT can be set to $\times 2^5$ to $\times 2^{12}$ of the set value of interval timer BRG. It can also be changed later.

(4) When watch timer and interval timer WT operate simultaneously

The interval time of interval timer WT can be set to a value between 488 μ s and 62.5 ms. It cannot be changed later.

Do not stop interval timer WT (clear (0) the WTM.WTM0 bit) while the watch timer is operating. If the WTM0 bit is set (1) after it had been cleared (0), the watch timer will have a discrepancy of up to 0.5 or 0.25 seconds.

(5) When watch timer, interval timer BRG, and interval timer WT operate simultaneously

When using the subclock as the count clock for the watch timer, the interval times of interval timers BRG and WT can be set to any values. The interval time of interval timer BRG can be changed later (before changing the value, stop operation).

When using the main clock as the count clock for the watch timer, set the interval time of interval timer BRG to approximately 65,536 kHz. It cannot be changed later. The interval time of interval timer WT can be set to a value between 488 µs and 62.5 ms. It cannot be changed later.

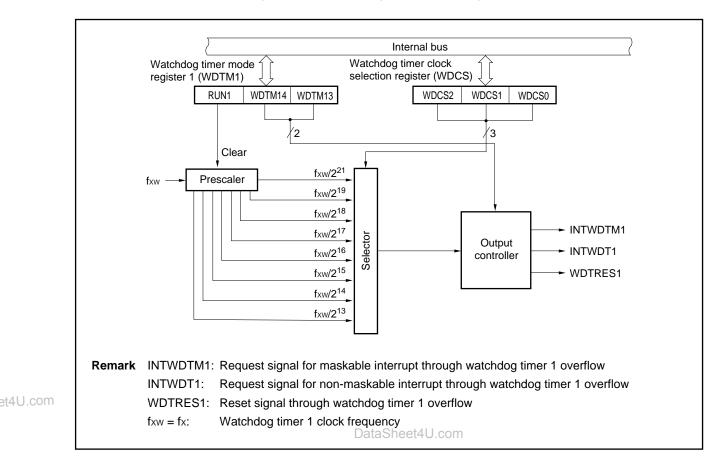
Do not stop interval timer BRG (clear (0) the PRSM.BGCE bit) or interval timer WT (clear (0) the WTM.WTM0 bit) while the watch timer is operating.

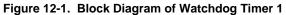
CHAPTER 12 WATCHDOG TIMER FUNCTIONS

12.1 Watchdog Timer 1

12.1.1 Functions

Watchdog timer 1 has the following operation modes.


- Watchdog timer
- Interval timer


The following functions are realized from the above-listed operation modes.

- Generation of non-maskable interrupt request signal (INTWDT1) upon overflow of watchdog timer 1^{Note}
- · Generation of system reset signal (WDTRES1) upon overflow of watchdog timer 1
- Generation of maskable interrupt request signal (INTWDTM1) upon overflow of interval timer
- **Note** For non-maskable interrupt servicing due to non-maskable interrupt request signal (INTWDT1, INTWDT2), refer to **21.10 Cautions**.
- **Remark** Select whether to use watchdog timer 1 in the watchdog timer 1 mode or the interval timer mode with the WDTM1 register.

DataShe

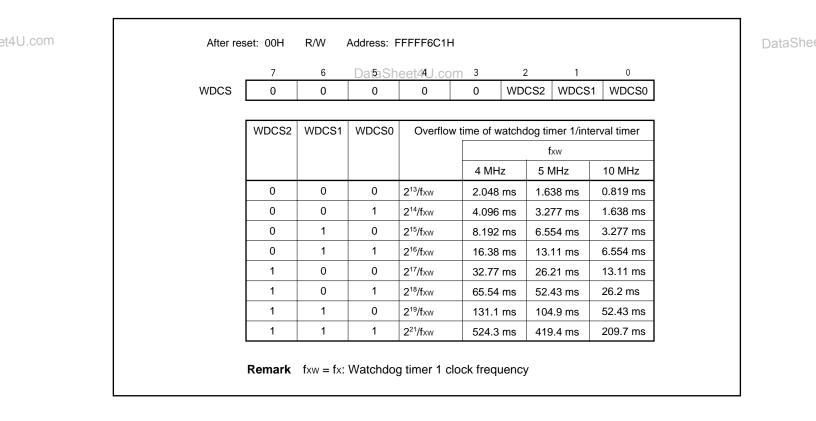
et4U.com

12.1.2 Configuration

Watchdog timer 1 consists of the following hardware.

Table 12-1. Configuration of Watchdog Timer 1

Item	Configuration
Control registers	Watchdog timer clock selection register (WDCS)
	Watchdog timer mode register 1 (WDTM1)


12.1.3 Registers

The registers that control watchdog timer 1 are as follows.

- Watchdog timer clock selection register (WDCS)
- Watchdog timer mode register 1 (WDTM1)

(1) Watchdog timer clock selection register (WDCS)

This register sets the overflow time of watchdog timer 1 and the interval timer. The WDCS register can be read or written in 8-bit or 1-bit units. After reset, WDCS is cleared to 00H.

(2) Watchdog timer mode register 1 (WDTM1)

This register sets the watchdog timer 1 operation mode and enables/disables count operations. This register is a special register that can be written only in a special sequence (refer to 3.4.7 Special registers).

The WDTM1 register can be read or written in 8-bit or 1-bit units.

After reset, WDTM1 is cleared to 00H.

Caution When the main clock is stopped and the CPU is operating on the subclock, do not access the WDTM1 register using an access method that causes a wait. For details, refer to 3.4.8 (2).

		<7>	6	5	4	3	2	1	0	
	WDTM1	RUN1	0	0	WDTM14	WDTM13	0	0	0	
			1							
		RUN1		Selectio	n of operatio	n mode of w	atchdog t	imer 1 ^{Note 1}		
		0	Stop cour	nting						
		1	Clear cou	nter and s	start counting	g				
		WDTM14	WDTM13	Selectio	n of operatio	n mode of w	atchdog t	imer 1 ^{Note 2}	2	
		0	0		timer mode					
		0	1	` '	verflow, mas		pt in i wi	JTIVIT IS GE	enerated.)	
		1	0		og timer moo verflow, non-		errupt IN ⁻	TWDT1 is g	generated.)	
		1	1		og timer mod verflow, rese		VDTRES	1 is started	J.)	
2.	Once the cle	, when cou WDTM13 eared only naskable i	inting is st and WDT by reset. nterrupt s	arted, it M14 bits	cannot be s are set (to	stopped exe 1), they ca	cept by r annot be	eset. cleared		oftware and (INTWDT1),

www.DataSheet4U.com

12.1.4 Operation

(1) Operation as watchdog timer 1

Watchdog timer 1 operation to detect a program loop is selected by setting the WDTM1.WDTM14 bit to 1. The count clock (program loop detection time interval) of watchdog timer 1 can be selected using the WDCS.WDCS0 to WDCS.WDCS2 bits. The count operation is started by setting the WDTM1.RUN1 bit to 1. When, after the count operation is started, the RUN1 bit is again set to 1 within the set program loop detection time interval, watchdog timer 1 is cleared and the count operation starts again.

If the program loop detection time is exceeded without RUN1 bit being set to 1, a reset signal (WDTRES1) or a non-maskable interrupt request signal (INTWDT1) is generated depending on the value of the WDTM1.WDTM13 bit.

The count operation of watchdog timer 1 stops in the STOP mode and IDLE mode. Set the RUN1 bit to 1 before the STOP mode or IDLE mode is entered in order to clear watchdog timer 1.

Because watchdog timer 1 operates in the HALT mode, make sure that an overflow will not occur during HALT.

Cautions 1. When the subclock is selected for the CPU clock, the count operation of watchdog timer 1 is stopped (the value of watchdog timer 1 is maintained).

2. For non-maskable interrupt servicing due to the INTWDT1 signal, refer to 21.10 Cautions.

Clock	Prog	ram Loop Detection	Time
	fxw = 4 MHz	fxw = 5 MHz	fxw = 10 MHz
2 ¹³ /fxw	2.048 ms Sheet4	1.638 ms	0.819 ms
2 ¹⁴ /fxw	4.096 ms	3.277 ms	1.683 ms
2 ¹⁵ /fxw	8.192 ms	6.554 ms	3.277 ms
2 ¹⁶ /fxw	16.38 ms	13.11 ms	6.554 ms
2 ¹⁷ /fxw	32.77 ms	26.21 ms	13.11 ms
2 ¹⁸ /fxw	65.54 ms	52.43 ms	26.21 ms
2 ¹⁹ /fxw	131.1 ms	104.9 ms	52.43 ms
2 ²¹ /fxw	524.3 ms	419.4 ms	209.7 ms

Table 12-2. Program Loop Detection Time of Watchdog Timer 1

Remark fxw = fx: Watchdog timer 1 clock frequency

(2) Operation as interval timer

Watchdog timer 1 can be made to operate as an interval timer that repeatedly generates interrupts using the count value set in advance as the interval, by clearing the WDTM1.WDTM14 bit to 0.

When watchdog timer 1 operates as an interval timer, the interrupt mask flag (WDTMK) and priority specification flags (WDTPR0 to WDTPR2) of the WDTIC register are valid and maskable interrupt request signals (INTWDTM1) can be generated. The default priority of the INTWDTM1 signal is set to the highest level among the maskable interrupt request signals.

The interval timer continues to operate in the HALT mode, but it stops operating in the STOP mode and the IDLE mode.

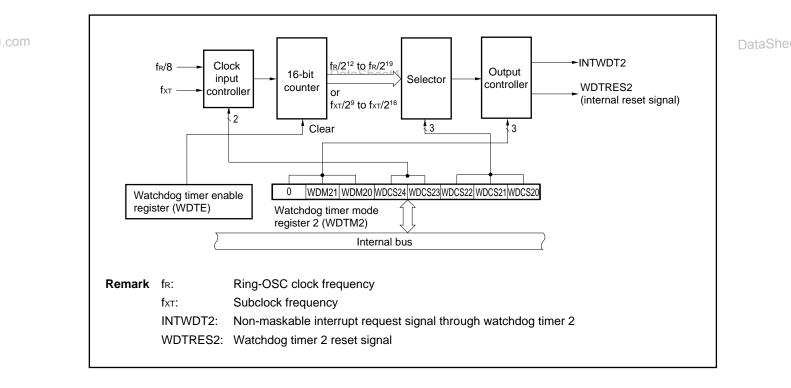
- Cautions 1. Once the WDTM14 bit is set to 1 (thereby selecting the watchdog timer 1 mode), the interval timer mode is not entered as long as reset is not performed.
 - 2. When the subclock is selected for the CPU clock, the count operation of the watchdog timer 1 stops (the value of the watchdog timer is maintained).

Clock		Interval Time	
	fxw = 4 MHz	fxw = 5 MHz	fxw = 10 MHz
2 ¹³ /fxw	2.048 ms	1.638 ms	0.819 ms
2 ¹⁴ /fxw	4.096 ms	3.277 ms	1.638 ms
2 ¹⁵ /fxw	8.192 ms	6.554 ms	3.277 ms
2 ¹⁶ /fxw	16.38 ms	13.11 ms	6.554 ms
2 ¹⁷ /fxw	32.77 ms Datas	26.214 s.com	13.11 ms
2 ¹⁸ /fxw	65.54 ms	52.43 ms	26.21 ms
2 ¹⁹ /fxw	131.1 ms	104.9 ms	52.43 ms
2 ²¹ /fxw	524.3 ms	419.4 ms	209.7 ms

Table 12-3. Interval Time of Interval Timer

Remark fxw = fx: Watchdog timer 1 clock frequency

DataShe


www.DataSheet4U.com

12.2 Watchdog Timer 2

12.2.1 Functions

Watchdog timer 2 has the following functions.

- Default start watchdog timer^{Note 1}
 - → Reset mode: Reset operation upon overflow of watchdog timer 2 (generation of WDTRES2 signal)
 - → Non-maskable interrupt request mode: NMI operation upon overflow of watchdog timer 2 (generation of INTWDT2 signal)^{Note 2}
- Input selectable from Ring-OSC clock and subclock as the source clock
 - Notes 1. Watchdog timer 2 automatically starts in the reset mode following reset release. When watchdog timer 2 is not used, either stop its operation before reset is executed through this function, or clear once watchdog timer 2 and stop it within the next interval time. Also, write to the WDTM2 register for verification purposes only once, even if the default settings (reset mode, interval time: fxx/2²⁵) need not be changed.
 - 2. For non-maskable interrupt servicing due to a non-maskable interrupt request signal (INTWDT2), refer to 21.10 Cautions.

Figure 12-2. Block Diagram of Watchdog Timer 2

12.2.2 Configuration

Watchdog timer 2 consists of the following hardware.

Table 12-4. Configuration of Watchdog Timer 2

Item	Configuration
Control registers	Watchdog timer mode register 2 (WDTM2)
	Watchdog timer enable register (WDTE)

12.2.3 Registers

(1) Watchdog timer mode register 2 (WDTM2)

This register sets the overflow time and operation clock of watchdog timer 2. The WDTM2 register can be read or written in 8-bit units. This register can be read any number of times, but it can be written only once following reset release. After reset, WDTM2 is set to 67H.

Caution When the main clock is stopped and the CPU is operating on the subclock, do not access the WDTM2 register using an access method that causes a wait. For details, refer to 3.4.8 (2).

WDTM2 0 WDM21 WDM20 WDCS24 WDCS23 WDCS22 WDCS21 WDCS20 WDM21 WDM20 Selection of operation mode of watchdog timer 2 0 0 Stops operation		7	6	5	4	t4U.com 3	2	1	0	
	WDTM2	0						WDCS21		
0 0 Stops operation		WDM21	WDM20	Selectio	on of opera	tion mode of	of watchdo	g timer 2		
		0	0	Stops ope	eration					
0 1 Non-maskable interrupt request mode (generation of INTWDT2)		0	1	Non-mask	able interro	upt request	mode (gen	eration of	INTWDT2)	
1 – Reset mode (generation of WDTRES2)		1	_	Reset mo	de (genera	tion of WD	TRES2)			
		taile abou	ut bits W	DCS0 to	WDCS4,	refer to	Table 12	-5 Wato	hdog Tim	ier 2 Clock
2. For details about bits WDCS0 to WDCS4, refer to Table 12-5 Watchdog Timer 2 Clock	2. For de								-	

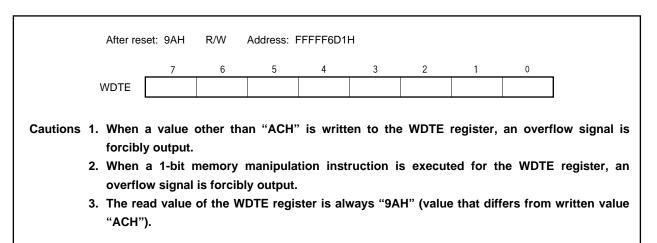

WDCS24	WDCS23	WDCS22	WDCS21	WDCS20	Selected Clock	Program Loop Detection Time
0	0	0	0	0	2 ¹² /f _R	17.1 ms (f _R = 240 kHz (TYP.))
0	0	0	0	1	2 ¹³ /f _R	34.1 ms (f _R = 240 kHz (TYP.))
0	0	0	1	0	2 ¹⁴ /f _R	68.2 ms (f _R = 240 kHz (TYP.))
0	0	0	1	1	2 ¹⁵ /f _R	136.5 ms (f _R = 240 kHz (TYP.))
0	0	1	0	0	2 ¹⁶ /f _R	273.1 ms (f _R = 240 kHz (TYP.))
0	0	1	0	1	2 ¹⁷ /f _R	546.1 ms (f _R = 240 kHz (TYP.))
0	0	1	1	0	2 ¹⁸ /f _R	1092.3 ms (f _R = 240 kHz (TYP.))
0	0	1	1	1	2 ¹⁹ /f _R	2184.5 ms (f _R = 240 kHz (TYP.))
0	1	0	0	0	2 ⁹ /fxT	15.625 ms (f _{XT} = 32.768 kHz)
0	1	0	0	1	2 ¹⁰ /fxT	31.25 ms (f _{XT} = 32.768 kHz)
0	1	0	1	0	2 ¹¹ /fxT	62.5 ms (f _{XT} = 32.768 kHz)
0	1	0	1	1	2 ¹² /fxT	125 ms (fxt = 32.768 kHz)
0	1	1	0	0	2 ¹³ /fxT	250 ms (f _{XT} = 32.768 kHz)
0	1	1	0	1	2 ¹⁴ /fxT	500 ms (f _{XT} = 32.768 kHz)
0	1	1	1	0	2 ¹⁵ /fxT	1000 ms (f _{XT} = 32.768 kHz)
0	1	1	1	1	2 ¹⁶ /fxT	2000 ms (f _{XT} = 32.768 kHz)
1	×	×	×	×	Operation stoppe	ed

Table 12-5. Watchdog Timer 2 Clock Selection

et4U.com

(2) Watchdog timer enable register (WDTE) The counter of watchdog timer 2 is cleared and counting restarted by writing "ACH" to the WDTE register. The WDTE register can be read or written in 8-bit units.

After reset, WDTE is set to 9AH.

12.2.4 Operation

Watchdog timer 2 automatically starts in the reset mode following reset release.

The WDTM2 register can be written to only once following reset through byte access. To use watchdog timer 2, write the operation mode and the interval time to the WDTM2 register using 8-bit memory manipulation instructions. After this is done, the operation of watchdog timer 2 cannot be stopped.

The watchdog timer 2 program loop detection time interval can be selected by the WDTM2.WDCS24 to WDTM2.WDCS20 bits. Writing ACH to the WDTE register clears the counter of watchdog timer 2 and starts the count operation again. After the count operation starts, write ACH to the WDTE register within the set program loop detection time interval.

If the program loop detection time is exceeded without ACH being written to the WDTE register, a reset signal (WDTRES2) or non-maskable interrupt request signal (INTWDT2) is generated depending on the set value of the WDTM2.WDM21 and WDTM2.WDM20 bits.

To not use watchdog timer 2, write 1FH to the WDTM2 register.

For non-maskable interrupt servicing when the non-maskable interrupt request mode is set, refer to **21.10** Cautions.

Because watchdog timer 2 operates in the HALT/IDLE/STOP mode, exercise care that the timer does not overflow in the HALT/IDLE/STOP mode.

et4U.com

DataShe

DataSheet4U.com

CHAPTER 13 REAL-TIME OUTPUT FUNCTION (RTO)

13.1 Function

The real-time output function (RTO) transfers preset data to the RTBL0 and RTBH0 registers, and then transfers this data with hardware to an external device via the real-time output latches, upon occurrence of a timer interrupt. The pins through which the data is output to an external device constitute a port called a real-time output port.

Because RTO can output signal without jitter, it is suitable for controlling a stepping motor.

In the V850ES/KG1+, a 6-bit real-time output port channel is provided.

The real-time output port can be set in the port mode or real-time output port mode in 1-bit units. The block diagram of RTO is shown below.

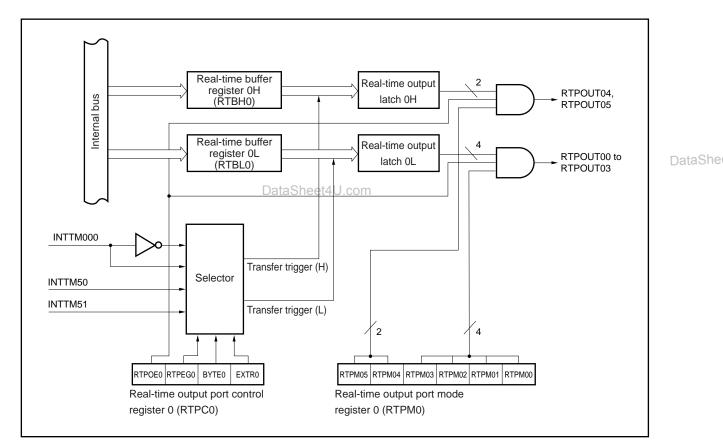


Figure 13-1. Block Diagram of RTO

et4U.com

www.DataSheet4U.com

13.2 Configuration

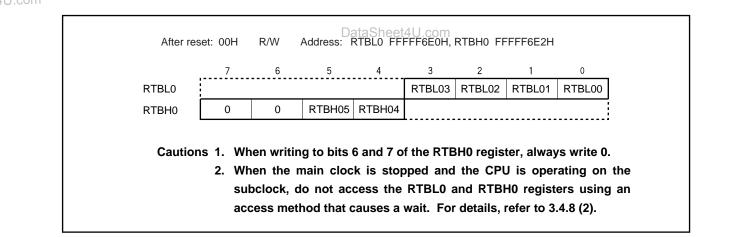
RTO consists of the following hardware.

Table 13-1. Configuration of RTO

Item	Configuration
Registers	Real-time output buffer register 0 (RTBL0, RTBH0)
Control registers	Real-time output port mode register 0 (RTPM0) Real-time output port control register 0 (RTPC0)

(1) Real-time output buffer register 0 (RTBL0, RTBH0)

RTBL0 and RTBH0 are 4-bit registers that hold output data in advance.


These registers are mapped to independent addresses in the peripheral I/O register area.

They can be read or written in 8-bit or 1-bit units.

If an operation mode of 4 bits \times 1 channel or 2 bits \times 1 channel is specified (RTPC0.BYTE0 bit = 0), data can be individually set to the RTBL0 and RTBH0 registers. The data of both these registers can be read at once by specifying the address of either of these registers.

If an operation mode of 6 bits \times 1 channel is specified (BYTE0 bit = 1), 8-bit data can be set to both the RTBL0 and RTBH0 registers by writing the data to either of these registers. Moreover, the data of both these registers can be read at once by specifying the address of either of these registers.

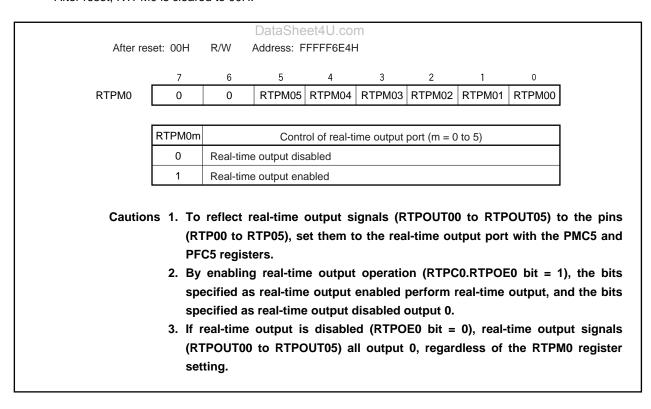
Table 13-2 shows the operation when the RTBL0 and RTBH0 registers are manipulated.

Operation Mode	Register to Be	Re	ad	Writ	e ^{Note}
	Manipulated	Higher 4 bits	Lower 4 bits	Higher 4 bits	Lower 4 bits
4 bits \times 1 channel, 2 bits \times	RTBL0	RTBH0	RTBL0	Invalid	RTBL0
1 channel	RTBH0	RTBH0	RTBL0	RTBH0	Invalid
6 bits × 1 channel	RTBL0	RTBH0	RTBL0	RTBH0	RTBL0
	RTBH0	RTBH0	RTBL0	RTBH0	RTBL0

Table 13-2. Operation During Manipulation of RTBL0 and RTBH0 Registers

Note After setting the real-time output port, set output data to the RTBL0 and RTBH0 registers by the time a real-time output trigger is generated.

13.3 Registers


RTO is controlled using the following two types of registers.

- Real-time output port mode register 0 (RTPM0)
- Real-time output port control register 0 (RTPC0)

(1) Real-time output port mode register 0 (RTPM0)

This register selects the real-time output port mode or port mode in 1-bit units. The RTPM0 register can be read or written in 8-bit or 1-bit units.

After reset, RTPM0 is cleared to 00H.

(2) Real-time output port control register 0 (RTPC0)

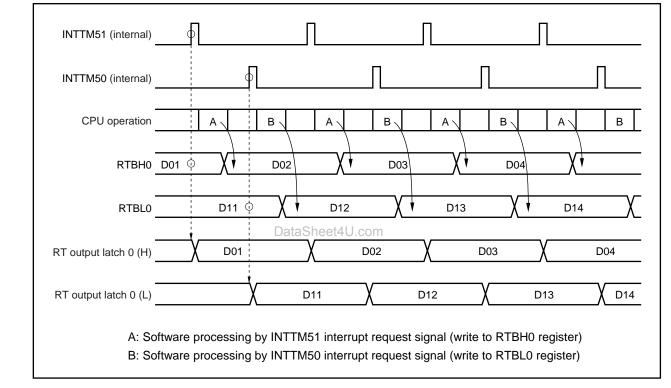
This register sets the operation mode and output trigger of the real-time output port.

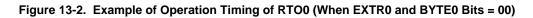
The relationship between the operation mode and output trigger of the real-time output port is as shown in Table 13-3.

The RTPC0 register can be read or written in 8-bit or 1-bit units.

After reset, RTPC0 is cleared to 00H.

		<7>	6	5	4	3	2	1	0	
	RTPC0	RTPOE0	RTPEG0	BYTE0	EXTR0 ^{Note 1}	0	0	0	0	
		RTPOE0			Control of real	-time out	put operati	on		
		0	Disables o	•	ote 2					
		1	Enables o	peration						
		DTDECO								
		RTPEG0	E all'a a a d	Note 3	Valid edge		1000 signal			
		0	Falling ed	-						
		1	Rising edg	je						
		BYTEO	S	pecificatio	on of channel	configura	tion for rea	Il-time outp	ut	
		0			bits \times 1 char	0				
		1	6 bits \times 1 o	channel						
					DataSheet4	U.com				
	Notes	1. For th	e EXTR0	bit, refer	to Table 13	-3.				
				-	•		,	OE0 bit =	= 0), real-time o	output
			•		RTPOUT05)					
					s output for	1 clock	c of the c	ount cloc	k selected with	16-bit
1		timer/	event cou	nter 00.						


Table 13-3. Operation Modes and Output Triggers of Real-Time Output Port


BYTE0	EXTR0	Operation Mode	RTBH0 (RTP04, RTP05)	RTBL0 (RTP00 to RTP03)
0	0	4 bits × 1 channel,	INTTM51	INTTM50
	1	2 bits × 1 channel	INTTM50	INTTM000
1	0	6 bits × 1 channel	INTTM50	
	1		INTTM000	

13.4 Operation

If the real-time output operation is enabled by setting the RTPC0.RTPOE0 bit to 1, the data of the RTBH0 and RTBL0 registers is transferred to the real-time output latch in synchronization with the generation of the selected transfer trigger (set by the RTPC0.EXTR0 and RTPC0.BYTE0 bits). Of the transferred data, only the data of the bits specified as real-time output enabled by the RTPM0 register is output from bits RTPOUT00 to RTPOUT05. The bits specified as real-time output disabled by the RTPM0 register output 0.

If the real-time output operation is disabled by clearing the RTPOE0 bit to 0, the RTPOUT00 to RTPOUT05 signals output 0 regardless of the setting of the RTPM0 register.

Remark For the operation during standby, refer to **CHAPTER 23 STANDBY FUNCTION**.

13.5 Usage

- Disable real-time output.
 Clear the RTPC0.RTPOE0 bit to 0.
- (2) Perform initialization as follows.
 - Specify the real-time output port mode or port mode in 1-bit units. Set the RTPM0 register.
 - Channel configuration: Select the trigger and valid edge. Set the RTPC0.EXTR0, RTPC0.BYTE0, and RTPC0.RTPEG0 bits.
 - Set the initial values to the RTBH0 and RTBL0 registers^{Note 1}.
- (3) Enable real-time output. Set the RTPOE0 bit to 1.
- (4) Set the next output value to the RTBH0 and RTBL0 registers by the time the selected transfer trigger is generated^{Note 2}.
- (5) Set the next real-time output value to the RTBH0 and RTBL0 registers through interrupt servicing corresponding to the selected trigger.
- **Notes 1.** If write to the RTBH0 and RTBL0 registers is performed when the RTPOE0 bit = 0, that value is transferred to real-time output latches 0H and 0L, respectively.

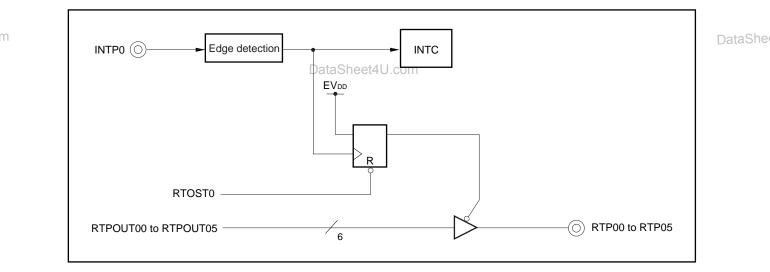
www.DataSheet4U.com

- Even if write is performed to the RTBH0 and RTBL0 registers when the RTPOE0 bit = 1, data transfer to real-time output latches 0H and 0L is not performed.
- Caution To reflect the real-time output signals (RTPOUT00 to RTPOUT05) to the pins, set the real-time output ports (RTP00 to RTP05) with the PMC5 and PFC5 registers.

13.6 Cautions

- (1) Prevent the following conflicts by software.
 - Conflict between real-time output disable/enable switching (RTPOE0 bit) and selected real-time output trigger
 - Conflict between write to the RTBH0 and RTBL0 registers in the real-time output enabled status and the selected real-time output trigger.
- (2) Before performing initialization, disable real-time output (RTPOE0 bit = 0).
- (3) Once real-time output has been disabled (RTPOE0 bit = 0), be sure to initialize the RTBH0 and RTBL0 registers before enabling real-time output again (RTPOE0 bit = $0 \rightarrow 1$).

13.7 Security Function


A circuit that sets the pin outputs to high impedance as a security function for when malfunctions of a stepping motor controlled by RTO occur is provided on chip. It forcibly resets the pins allocated to RTP00 to RTP05 via external interrupt INTP0 pin edge detection, placing them in the high-impedance state.

The ports (P50 to P55 pins) placed in high impedance by $INTP0^{Note 1}$ pin are initialized^{Note 2}, so settings for these ports must be performed again.

Notes 1. Regardless of the port settings, P50 to P55 pins are all placed in high impedance via the INTP0 pin.

- 2. The bits that are initialized are all the bits corresponding to P50 to P55 pins of the following registers.
 - P5 register
 - PM5 register
 - PMC5 register
 - PU5 register
 - PFC5 register
 - PF5 register

The block diagram of the security function is shown below.

Figure 13-3. Block Diagram of Security Function

This function is set with the PLLCTL.RTOST0 bit.

(1) PLL control register (PLLCTL)

The PLLCTL register is an 8-bit register that controls the RTO security function and PLL. This register can be read or written in 8-bit or 1-bit units. After reset, PLLCTL is set to 01H.

	After res	set: 01H	R/W	Address: F	FFFF806F	l				
		7	6	5	4	3	<2>	<1>	<0>	
	PLLCTL	0	0	0	0	0	RTOST0	SELPLL ^{Note}	PLLON ^{Note}	
										•
		RTOST0		Contro	ol of RTP0) to RTP()5 security fu	unction		
		0	INTP0 pir	n is not used	d as trigger	for secu	rity function			
		1	INTP0 pir	n is used as	trigger for	security f	unction			
	I	FUNCTIO ns 1. Be sel	N. fore out lect the l	putting a NTP0 pin	value to interrupt	the rea	er to CHAF al-time our etection ar 5 pins) as	tput port nd then se	s (RTP00 et the RT() to RTP(OST0 bit.
m	I	FUNCTIO ns 1. Be sel 2. To pla fur [Pr	N. fore out lect the li set aga acing the action. rocedure	putting a NTP0 pin in the po m in high to set po	value to interrupt orts (P50 n impeda	the rea edge de to P5 nce via	al-time our etection ar 5 pins) as the INTPO	tput port nd then so s real-tim) pin, firs	s (RTP00 et the RT0 e output st cancel) to RTP(OST0 bit. ports at the secu
m	I	FUNCTIO ns 1. Be sel 2. To pla fur [Pr <1:	N. fore out lect the li set aga acing the nction. rocedure > Cancel RTOST	putting a NTP0 pin in the po m in high to set po the sec 0 bit to 0.	value to interrupt orts (P50 n impeda rts again urity fun	the rea edge de to P55 nce via	al-time our etection ar 5 pins) as the INTPO nd enable	tput port nd then so s real-tim) pin, firs	s (RTP00 et the RT0 e output st cancel) to RTP(OST0 bit. ports at the secu
m	I	FUNCTIO ns 1. Be sel 2. To pla fur [Pr <1: <2:	N. fore out lect the li set aga ncing the nction. rocedure > Cancel RTOST > Set the	putting a NTP0 pin in the po m in high to set po the sec	value to interrupt orts (P50 n impeda rts again urity fun bit to 1 (the rea edge de to P5 nce via l ction ai only if r	al-time our etection ar 5 pins) as the INTPO nd enable equired)	tput port nd then so s real-tim) pin, firs	s (RTP00 et the RT0 e output st cancel) to RTP(OST0 bit. ports at the secu

CHAPTER 14 A/D CONVERTER

14.1 Overview

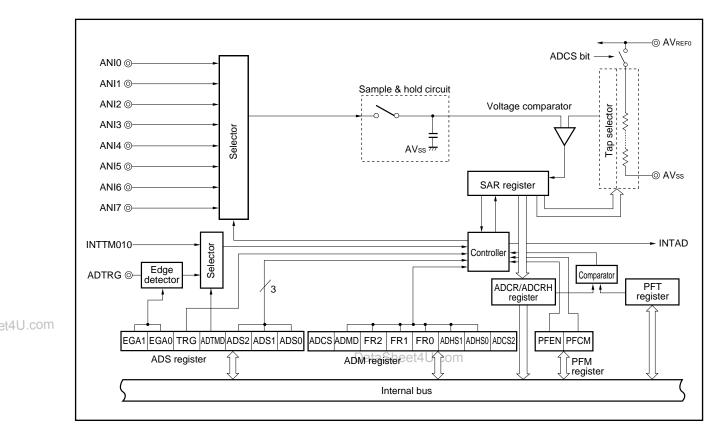
The A/D converter converts analog input signals into digital values and has an 8-channel (ANI0 to ANI7) configuration.

The A/D converter has the following functions.

- Operating voltage (AVREF0): 2.7 to 5.5 V
- O Successive approximation method 10-bit A/D converter
- O Analog input pin: 8
- Trigger mode:
 - Software trigger mode
 - Timer trigger mode (INTTM010)
 - External trigger mode (ADTRG pin)
- Operation mode
 - Select mode
 - Scan mode
- A/D conversion time:
 - Normal mode: 14 to 100 μ s @ 4.0 V \leq AV_{REF0} \leq 5.5 V
 - 17 to 100 μ s @ 2.7 V \leq AVREF0 < 4.0 V
 - High-speed mode: DataSheet4U.com
 - 3 to 100 μ s @ 4.5 V \leq AVREF0 \leq 5.5 V 4.8 to 100 μ s @ 4.0 V \leq AVREF0 < 4.5 V 6 to 100 μ s @ 2.85 V \leq AVREF0 < 4.0 V
 - 14 to 100 μ s @ 2.7 V \leq AVREF0 < 2.85 V
- Power fail detection function

14.2 Functions

(1) 10-bit resolution A/D conversion


1 analog input channel is selected from the ANI0 to ANI7 pins, and an A/D conversion operation with resolution of 10 bits is repeatedly executed. Every time A/D conversion is completed, an interrupt request signal (INTAD) is generated.

(2) Power fail detection function

This is a function to detect low voltage in a battery. The results of A/D conversion (the value in the ADCRH register) and the PFT register are compared, and INTAD signal is generated only when the comparison conditions match.

14.3 Configuration

The A/D converter consists of the following hardware.

Table 14-1. Registers of A/D Converter Used by Software

Item	Configuration
Registers	A/D conversion result register (ADCR)
	A/D conversion result register H (ADCRH): Only higher 8 bits can be read
	Power fail comparison threshold register (PFT)
	A/D converter mode register (ADM)
	Analog input channel specification register (ADS)
	Power fail comparison mode register (PFM)

(1) ANI0 to ANI7 pins

These are analog input pins for the 8 channels of the A/D converter. They are used to input analog signals to be converted into digital signals. Pins other than those selected as analog input by the ADS register can be used as input ports.

(2) Sample & hold circuit

The sample & hold circuit samples the analog input signals selected by the input circuit and sends the sampled data to the voltage comparator. This circuit holds the sampled analog input voltage during A/D conversion.

(3) Series resistor string

The series resistor string is connected between AVREF0 and AVss and generates a voltage for comparison with the analog input signal.

(4) Voltage comparator

The voltage comparator compares the value that is sampled and held with the output voltage of the series resistor string.

(5) Successive approximation register (SAR)

This register compares the sampled analog voltage value with the voltage value from the series resistor string, and converts the comparison result starting from the most significant bit (MSB).

When the least significant bit (LSB) has been converted to a digital value (end of A/D conversion), the contents of the SAR register are transferred to the ADCR register.

The SAR register cannot be read or written directly. DataSheet4U.com

(6) A/D conversion result register (ADCR), A/D conversion result register H (ADCRH)

Each time A/D conversion ends, the conversion results are loaded from the successive approximation register and the results of A/D conversion are held in the higher 10 bits of this register (the lower 6 bits are fixed to 0).

(7) Controller

The controller compares the A/D conversion results (the value of the ADCRH register) with the value of the PFT register when A/D conversion ends or the power fail detection function is used. It generates INTAD signal only when the comparison conditions match.

(8) AVREFO pin

This is the analog power supply pin/reference voltage input pin of the A/D converter. Always use the same potential as the V_{DD} pin even when not using the A/D converter.

The signals input to the ANI0 to ANI7 pins are converted into digital signals based on the voltage applied across AVREF0 and AVss.

(9) AVss pin

This is the ground potential pin of the A/D converter. Always use the same potential as the Vss pin even when not using the A/D converter.

415

(10) A/D converter mode register (ADM)

This register sets the conversion time of the analog input to be converted to a digital signal and the conversion operation start/stop.

(11) Analog input channel specification register (ADS)

This register specifies the input port for the analog voltage to be converted to a digital signal.

(12) Power fail comparison mode register (PFM)

This register sets the power fail detection mode.

(13) Power fail comparison threshold register (PFT)

This register sets the threshold to be compared with the ADCR register.

14.4 Registers

The A/D converter is controlled by the following registers.

- A/D converter mode register (ADM)
- Analog input channel specification register (ADS)
- Power fail comparison mode register (PFM)
- Power fail comparison threshold register (PFT)
- A/D conversion result register, A/D conversion result register H (ADCR, ADCRH)

et4U.com

DataSheet4U.com

(1) A/D converter mode register (ADM)

This register sets the conversion time of the analog input signal to be converted into a digital signal as well as conversion start and stop.

The ADM register can be read or written in 8-bit or 1-bit units.

After reset, ADM is cleared to 00H.

		After res	set: 00H	R/W Address: FFFFF200H	
			<7>	6 5 4 3 2 1 < 0>	
		ADM	ADCS	ADMD FR2 ^{Note 1} FR1 ^{Note 1} FR0 ^{Note 1} ADHS1 ^{Note 1} ADHS0 ^{Note 1} ADCS2	
			ADCS	Control of A/D conversion operation	
			0	Conversion operation stopped	
			1	Conversion operation enabled	
			ADMD	Control of operation mode	
			0	Select mode	
			1	Scan mode	
			ADHS1	Selection of 5 V A/D conversion time mode (AV _{REF0} \geq 4.5 V)	
			0	Normal mode	
et4U.com			1	High-speed mode (valid only when $AV_{REF0} \ge 4.5 V$)	DataShe
					Dataono
			ADHS0	Selection of 3 V A/D conversion time mode (AV _{REF0} ≥ 2.7 or 2.85 V)	
			0	Normal mode	
			1	High-speed mode (valid only when AV _{REF0} ≥2.7 or 2.85 V)	
			ADCS2	Control of reference voltage generator for boosting ^{Note 2}	
			0	Reference voltage generator operation stopped	
			1	Reference voltage generator operation enabled	
	T 2. ⊤ ta (/	Time . The ope akes 1 A/D cor	eration of t or 14 μ s a nversion is	FR2 to FR0 bits and the A/D conversion, refer to Table 14-2 A/D Conversion he reference voltage generator for boosting is controlled by the ADCS2 bit and it after operation is started until it is stabilized. Therefore, if the ADCS bit is set to 1 is started) at least 1 or 14 μ s after the ADCS2 bit was set to 1 (reference voltage sting is on), the first conversion result is valid.	
		acce ADH	ss to the S0 is prol	FR2 to FR0, ADHS1, and ADHS0 while the ADCS bit = 1 is prohibited (write ADM register is enabled and rewriting of bits FR2 to FR0, ADHS1, and hibited).	
			-	n clock is stopped and the CPU is operating on the subclock, do not access	
				ter using an access method that causes a wait.	
			-	fer to 3.4.8 (2).	
DataSheet4U.com	Remark fx	: Mair	o clock free	quency www.DataS	heet4U.com

ADHS1	ADHS0	FR2	FR1	FR0			A/D Conversion	Time (µs)		Conversion
						20 MHz@	16 MHz@	8 MHz@	8 MHz@	Time Mode
						$AV_{REF0} \ge 4.5 V$	$AV_{\text{REF0}} \geq 4.0 \text{ V}$	$AV_{REF0} \ge 2.85 V$	$AV_{REF0} \ge 2.7 V$	
0	0	0	0	0	288/fxx	14.4	18.0	36.0	36.0	Normal mode
0	0	0	0	1	240/fxx	Setting prohibited	15.0	30.0	30.0	$AV_{REF0} \ge 2.7 V$
0	0	0	1	0	192/fxx	Setting prohibited	Setting prohibited	24.0	24.0	
0	0	0	1	1	Setting	prohibited				
0	0	1	0	0	144/fxx	Setting prohibited	Setting prohibited	18.0	18.0	Normal mode AV _{REF0} ≥ 2.7 V
0	0	1	0	1	120/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited	
0	0	1	1	0	96/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited	
0	0	1	1	1	Setting	prohibited				
0	1	0	0	0	96/fxx	4.8	6.0	12.0	Setting prohibited	High-speed mode
0	1	0	0	1	72/f xx	Setting prohibited	Setting prohibited	9.0	Setting prohibited	AV _{REF0} ≥ 2.85 V
0	1	0	1	0	48/fxx	Setting prohibited	Setting prohibited	6.0	Setting prohibited	
0	1	0	1	1	24/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited	
0	1	1	0	0	224/fxx	11.2	14.0	28.0	28.0	High-speed
0	1	1	0	1	168/fxx	Setting prohibited	10.5	21.0	21.0	mode $AV_{REF0} \ge 2.7 V$
0	1	1	1	0	112/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited	
0	1	1	1	1	56/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited	
1	0	0	0	0	72/fxx	3.6	Setting prohibited	Setting prohibited	Setting prohibited	High-speed mode
1	0	0	0	1	54/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited	$AV_{REF0} \ge 4.5 V$
1	0	0	1	0	36/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited	
1	0	0	1	1	18/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited	
1	0	1	×	×	Setting	prohibited				
1	1	×	×	×	Setting	orohibited				

Table 14-2. A/D Conversion Time

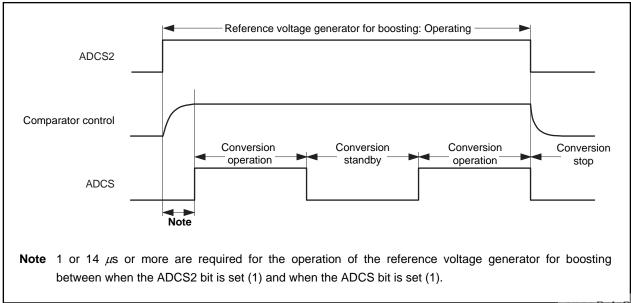
et4U.com

(a) Controlling reference voltage generator for boosting

When the ADCS2 bit = 0, power to the A/D converter drops. The converter requires a setup time of 14 μ s (normal mode: ADHS1 and ADHS0 bits = 00) or 1 μ s (high-speed mode: ADHS1 and ADHS0 bits = 11) or more after the ADCS2 bit has been set to 1.

Therefore, the result of A/D conversion becomes valid from the first result by setting the ADCS bit to 1 at least 14 or 1 μ s after the ADCS2 bit has been set to 1.

Table 14-3. Setting of ADCS Bit and ADCS2 Bit


ADCS	ADCS2	A/D Conversion Operation
0	0	Stopped status (DC power consumption path does not exist)
0	1	Conversion standby mode (only the reference voltage generator for boosting consumes power)
1	0	Conversion mode (reference voltage generator stops operation ^{Note 1})
1	1	Conversion mode (reference voltage generator is operating ^{Note 2})

Notes 1. If the ADCS and ADCS2 bits are changed from 00B to 10B, the reference voltage generator for boosting automatically turns on. If the ADCS bit is cleared to 0 while the ADCS2 bit is 0, the voltage generator automatically turns off. In the software trigger mode (ADS.TRG bit = 0), use of the first A/D conversion result is prohibited.

In the hardware trigger mode (TRG bit = 1), use the A/D conversion result only if A/D conversion is started after the lapse of the oscillation stabilization time of the reference voltage generator for boosting.

2. If the ADCS and ADCS2 bits are changed from 00B to 11B, the reference voltage generator for boosting automatically turns on. If the ADCS bit is cleared to 0 while the ADCS2 bit is 1, the voltage generator stays on. In the software trigger mode (TRG bit = 0), use of the first A/D conversion result is prohibited.

In the hardware trigger mode (TRG bit = 1), use the A/D conversion result only if A/D conversion is started after the lapse of the oscillation stabilization time of the reference voltage generator for boosting.

Figure 14-2. Operation Sequence

DataSheet4U.com

www.DataSheet4U.com

(2) Analog input channel specification register (ADS)

This register specifies the analog voltage input port for A/D conversion. The ADS register can be read or written in 8-bit or 1-bit units. After reset, ADS is cleared to 00H.

		7	6	5	4	3	2	1	0		
	ADS	EGA1 ^{Note 1}	EGA0 ^{Note 1}	TRG	ADTMD ^{Note 2}	0	ADS2	ADS1	ADS0		
		EGA1 ^{Note 1}	EGA0 ^{Note 1}	Spec	ification of ex	tornal tri			adae		
		0	0		e detection		gger signar	(ADTRO) C	Juge		
		0	1	Falling							
		1	0	Rising e	-						
		1	1	Both ris	ing and falling	edges					
		TRG			Trigger n	node sele	ection				
		0	Software	trigger m	ode						
		1	Hardware	e trigger m	node						
		ADTMD ^{Note 2}		Sp	ecification of I	nardware	e trigger mo	de			
.com		0	External	trigger (Al	DTRG pin inpu	ut)					Del
,0011		1	Timer trig	ger (INTT	M010 signal (generate	d)				Dat
		ADS2	ADS1	ADS0	PataSheet			innut chon			
		AD52	ADST	AD50		t mode	of analog	Scan mc			
		0	0	0	ANIO		ANIO				
		0	0	1	ANI1			, ANI1			
		0	1	0	ANI2		ANIO	to ANI2			
		0	1	1	ANI3		ANIO	to ANI3			
		1	0	0	ANI4		ANIO	to ANI4			
		1	0	1	ANI5		ANIO	to ANI5			
		1	1	0	ANI6		ANIO	to ANI6			
		1	1	1	ANI7		ANIO	to ANI7			

(3) A/D conversion result register, A/D conversion result register H (ADCR, ADCRH)

The ADCR and ADCRH registers store the A/D conversion results.

These registers are read-only in 16-bit or 8-bit units. However, specify the ADCR register for 16-bit access, and the ADCRH register for 8-bit access. In the ADCR register, the 10 bits of conversion results are read in the higher 10 bits and 0 is read in the lower 6 bits. In the ADCRH register, the higher 8 bits of the conversion results are read.

After reset, these registers are undefined.

ADCR A	D9 AD8	AD7 AD6	AD5 AD4	AD3 AD2	AD1 AD0	0 0	0 0	0 0
	7	6	5	4	3	2	1	0
ADCRH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2

et4U.com

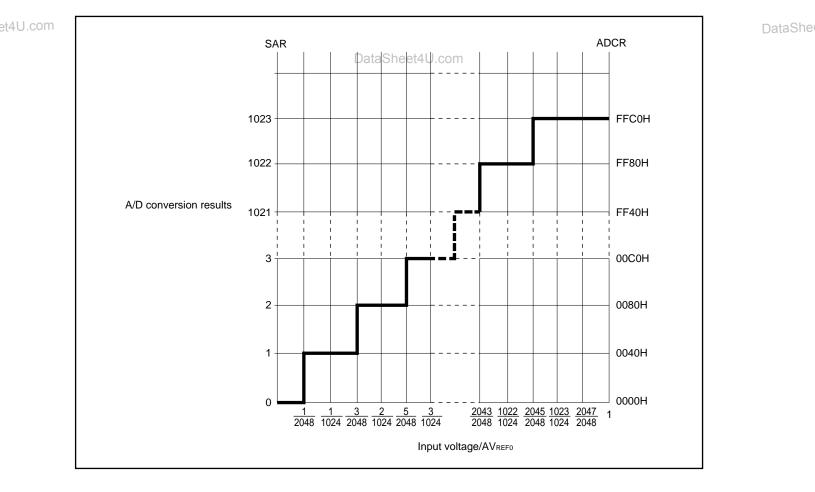
DataSheet4U.com

www.DataSheet4U.com

421

The following shows the relationship between the analog input voltage input to the analog input pins (ANI0 to ANI7) and A/D conversion results (ADCR register).

SAR = INT (
$$\frac{V_{IN}}{AV_{REF0}}$$
 × 1024 + 0.5)
ADCR^{Note} = SAR × 64


Or,

$$(SAR - 0.5) \times \frac{AV_{REF0}}{1024} \le V_{IN} < (SAR + 0.5) \times \frac{AV_{REF0}}{1024}$$

INT ():	Function that returns the integer part of the value in parentheses
Vin:	Analog input voltage
AVREF0:	Voltage of AVREF0 pin
ADCR:	Value in the ADCR register

Note The lower 6 bits of the ADCR register are fixed to 0.

The following shows the relationship between the analog input voltage and A/D conversion results.

Figure 14-3. Relationship Between Analog Input Voltage and A/D Conversion Results

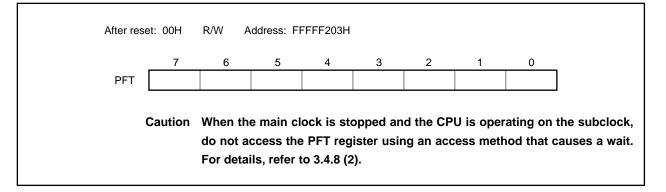
DataSheet4U.com

www.DataSheet4U.com

(4) Power fail comparison mode register (PFM)

This register sets the power fail detection mode.

The PFM register compares the value in the PFT register with the value of the ADCRH register.


The PFM register can be read or written in 8-bit or 1-bit units.

After reset, PFM is cleared to 00H.

	<7>	< 6 >	5	4	3	2	1	0				
PFM	PFEN	PFCM	0	0	0	0	0	0				
	PFEN		Selectio	n of power	fail compa	urison enab	le/disable					
	0	Power fai	l comparis	on disable	ł							
	1	Power fai	l comparis	on enablec	l							
	PFCM Selection of power fail comparison mode 0 Interrupt request signal (INTAD) generated when ADCR ≥ PFT											
	1	1 Interrupt request signal (INTAD) generated when ADCR < PFT										
	Caution											

(5) Power fail comparison threshold register (PFT)

The PFT register sets the comparison value in the power fail detection mode. The 8-bit data set in the PFT register is compared with the value of the ADCRH register. The PFT register can be read or written in 8-bit units. After reset, PFT is cleared to 00H.

et4U.com

14.5 Operation

14.5.1 Basic operation

- <1> Select the channel whose analog signal is to be converted into a digital signal using the ADS register. Set the ADM.ADHS1 or ADM.ADHS0 bit.
- <2> Set the ADM.ADCS2 bit to 1 and wait 1 or 14 μ s or longer.
- <3> Set the ADM.ADCS bit to 1 to start A/D conversion. (Steps <4> to <10> are executed by hardware.)
- <4> The sample & hold circuit samples the voltage input to the selected analog input channel.
- <5> After sampling for a specific time, the sample & hold circuit enters the hold status and holds the input analog voltage until it has been converted into a digital signal.
- <6> Set bit 9 of the successive approximation register (SAR) to 1. The tap selector sets the voltage tap of the series resistor string to (1/2) × AV_{REF0}.
- <7> The voltage comparator compares the voltage difference between the voltage tap of the series resistor string and the analog input voltage. If the analog input voltage is greater than (1/2) × AV_{REF0}, the MSB of the SAR register remains set to 1. If the analog input voltage is less than (1/2) × AV_{REF0}, the MSB is cleared to 0.

DataShe

- <8> Next, bit 8 of the SAR register is automatically set to 1 and the next comparison starts. Depending on the previously determined value of bit 9, the voltage tap of the series resistor string is selected as follows.
 - Bit 9 = 1: (3/4) × AVREF0
 - Bit 9 = 0: (1/4) × AVREF0

The analog input voltage is compared with one of these voltage taps and bit 8 of the SAR register is manipulated as follows depending on the result of the comparison.

Analog input voltage \geq voltage tap: Bit 8 = 1 Analog input voltage \leq voltage tap: Bit 8 = 0

<9> The above steps are repeated until bit 0 of the SAR register has been manipulated.

- <10> When comparison of all 10 bits of the SAR register has been completed, the valid digital value remains in the SAR register, and the value of the SAR register is transferred and latched to the ADCR register. At the same time, an A/D conversion end interrupt request signal (INTAD) is generated.
- <11> Repeat steps <4> to <10> until the ADCS bit is cleared to 0. For another A/D conversion, start at <3>. However, when operating the A/D converter with the ADCS2 bit cleared to 0, start at <2>.

14.5.2 Trigger modes

The V850ES/KG1+ has the following three trigger modes that set the A/D conversion start timing. These trigger modes are set by the ADS register.

- Software trigger mode
- External trigger mode (hardware trigger mode)
- Timer trigger mode (hardware trigger mode)

(1) Software trigger mode

This mode is used to start A/D conversion by setting the ADM.ADCS bit to 1 while the ADS.TRG bit is 0. Conversion is repeatedly performed as long as the ADCS bit is not cleared to 0 after completion of A/D conversion.

If the ADM, ADS, PFM, or PFT register is written during conversion, A/D conversion is aborted and started again from the beginning.

(2) External trigger mode (hardware trigger mode)

This is the status in which the ADS.TRG bit is set to 1 and ADS.ADTMD bit is cleared to 0. This mode is used to start A/D conversion by detecting an external trigger (ADTRG) after the ADCS bit has been set to 1.

The A/D converter waits for the external trigger (ADTRG) after the ADCS bit is set to 1.

The valid edge of the signal input to the ADTRG pin is specified by using the ADS.EGA1 and ADS.EGA0 bits. When the specified valid edge is detected, A/D conversion is started.

When A/D conversion is completed, the A/D converter waits for the external trigger (ADTRG) again.

If a valid edge is input to the ADTRG pin during A/D conversion, A/D conversion is aborted and started again from the beginning.

If the ADM, ADS, PFM, or PFT register is written during conversion, A/D conversion is aborted and the A/D converter waits for an external trigger (ADTRG).

(3) Timer trigger mode (hardware trigger mode)

This mode is used to start A/D conversion by detecting a timer trigger (INTTM010) after the ADCS bit has been set to 1 with the TGR bit = 1 and ADTMD bit = 1.

The A/D converter waits for the timer trigger (INTTM010) after the ADCS bit is set to 1.

When the INTTM010 signal is generated, A/D conversion is started.

When A/D conversion is completed, the A/D converter waits for the timer trigger (INTTM010) again.

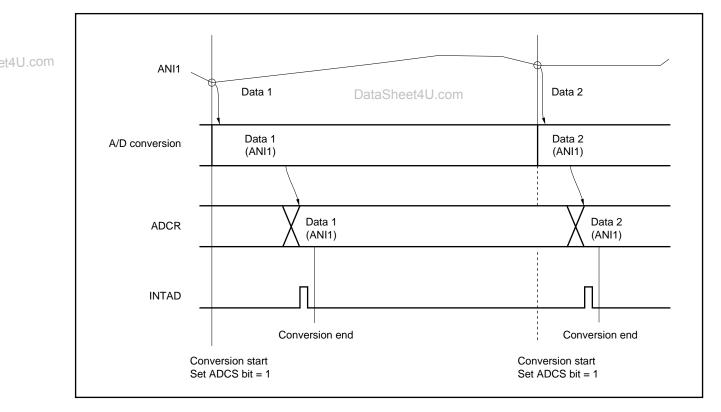
If the INTTM010 signal is generated during A/D conversion, A/D conversion is aborted and started again from the beginning.

If the ADM, ADS, PFM, or PFT register is written during conversion, A/D conversion is aborted and the A/D converter waits for a timer trigger (INTTM010).

14.5.3 Operation modes

The following two operation modes are available. These operation modes are set by the ADM register.

- · Select mode
- Scan mode


(1) Select mode

One input analog signal specified by the ADS register while the ADM.ADMD bit = 0 is converted. When conversion is complete, the result of conversion is stored in the ADCR register.

At the same time, the A/D conversion end interrupt request signal (INTAD) is generated. However, the INTAD signal may or may not be generated depending on setting of the PFM and PFT registers. For details, refer to **14.5.4 Power fail detection function**.

If anything is written to the ADM, ADS, PFM, and PFT registers during conversion, A/D conversion is aborted. In the software trigger mode, A/D conversion is started from the beginning again. In the hardware trigger mode, the A/D converter waits for a trigger.

If the trigger is detected during conversion in hardware trigger mode, A/D conversion is aborted and started again from the beginning.

Figure 14-4. Example of Select Mode Operation Timing (ADS.ADS2 to ADS.ADS0 Bits = 0001B)

(2) Scan mode

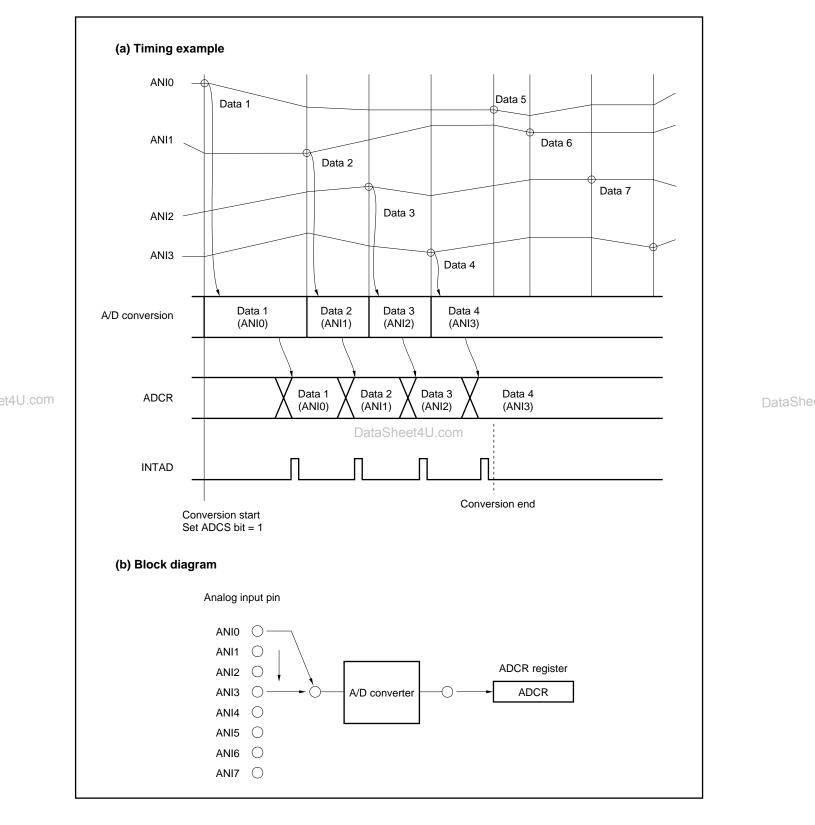
In this mode, the analog signals specified by the ADS register and input from the ANI0 pin while the ADM.ADMD bit = 1 are sequentially selected and converted.

When conversion of one analog input signal is complete, the conversion result is stored in the ADCR register and, at the same time, the A/D conversion end interrupt request signal (INTAD) is generated.

The A/D conversion results of all the analog input signals are stored in the ADCR register. It is therefore recommended to save the contents of the ADCR register to RAM once A/D conversion of one analog input signal has been completed.

In the hardware trigger mode (ADS.TRG bit = 1), the A/D converter waits for a trigger after it has completed A/D conversion of the analog signals specified by the ADS register and input from the ANI0 pin.

If anything is written to the ADM, ADS, PFM, and PFT registers during conversion, A/D conversion is aborted. In the software trigger mode, A/D conversion is started from the beginning again. In the hardware trigger mode, the A/D converter waits for a trigger. Conversion starts again from the ANI0 pin.

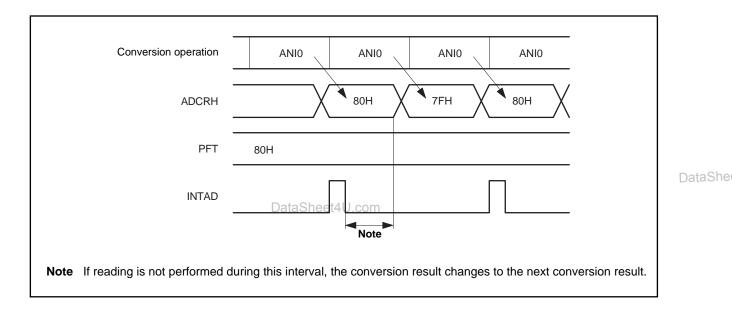

If the trigger is detected during conversion in hardware trigger mode, A/D conversion is aborted and started again from the beginning (ANI0 pin).

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com




DataSheet4U.com

14.5.4 Power fail detection function

The conversion end interrupt request signal (INTAD) can be controlled as follows using the PFM and PFT registers.

- If the PFM.PFEN bit = 0, the INTAD signal is generated each time conversion ends.
- If the PFEN bit = 1 and the PFM.PFCM bit = 0, the conversion result (ADCRH register) and the value of the PFT register are compared when conversion ends, and the INTAD signal is generated only if ADCRH ≥ PFT.
- If the PFEN and PFCM bits = 1, the conversion result and the value of the PFT register are compared when conversion ends, and the INTAD signal is generated only if ADCRH < PFT.
- Because, when the PFEN bit = 1, the conversion result is overwritten after the INTAD signal has been generated, unless the conversion result is read by the time the next conversion ends, in some cases it may appear as if the actual operation differs from the operation described above (refer to **Figure 14-6**).

14.5.5 Setting method

The following describes how to set registers.

(1) When using the A/D converter for A/D conversion

- <1> Set (1) the ADM.ADCS2 bit.
- <2> Select the channel and conversion time by setting the ADS.ADS2 to ADS.ADS0 bits and the ADM.ADHS1, ADM.ADHS0, and ADM.FR2 to ADM.FR0 bits.
- <3> Set (1) the ADM.ADCS bit.
- <4> Transfer the A/D conversion data to the ADCR register.
- <5> An interrupt request signal (INTAD) is generated.

<Changing the channel>

- <6> Change the channel by setting the ADS2 to ADS0 bits.
- <7> Transfer the A/D conversion data to the ADCR register.
- <8> The INTAD signal is generated.

<Ending A/D conversion>

<9> Clear (0) the ADCS bit.

<10> Clear (0) the ADCS2 bit.

Cautions 1. The time taken from <1> to <3> must be 1 or 14 μ s or longer.

- 2. Steps <1> and <2> may be reversed.
- 3. Step <1> may be omitted. However, if omitted, do not use the first conversion result after <3>.
- 4. The time taken from <4> to <7> is different from the conversion time set by the ADHS1, ADHS0, and FR2 to FR0 bits.

The time taken for <6> and <7> is the conversion time set by the ADHS1, ADHS0, and FR2 to FR0 bits.

(2) When using the A/D converter for the power fail detection function

- <1> Set (1) the PFM.PFEN bit.
- <2> Set the power fail comparison conditions by using the PFM.PFCM bit.
- <3> Set (1) the ADM.ADCS2 bit.
- <4> Select the channel and conversion time by setting the ADS.ADS2 to ADS.ADS0 bits and the ADM.ADHS1, ADM.ADHS0, and ADM.FR2 to ADM.FR0 bits.
- <5> Set the threshold value in the PFT register.
- <6> Set (1) the ADM.ADCS bit.
- <7> Transfer the A/D conversion data to the ADCR register.
- <8> Compare the ADCRH register with the PFT register. An interrupt request signal (INTAD) is generated when the conditions match.

<Changing the channel>

- <9> Change the channel by setting the ADS2 to ADS0 bits.
- <10> Transfer the A/D conversion data to the ADCR register.
- <11> The ADCRH register is compared with the PFT register. When the conditions match, an INTAD signal is generated.

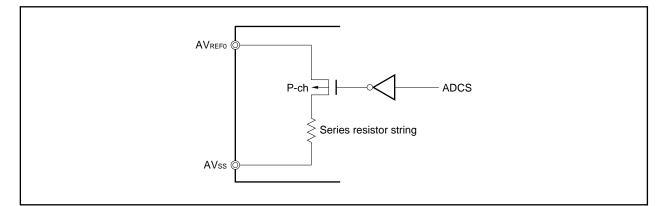
<Ending A/D conversion>

- <12> Clear (0) the ADCS bit.
- <13> Clear (0) the ADCS2 bit.

Remark If the operation of the power fail detection function is enabled, all the A/D conversion results are compared, regardless of whether the select mode or scan mode is set.

ataSheet4U.com

430


14.6 Cautions

(1) Power consumption in standby mode

The operation of the A/D converter stops in the standby mode. At this time, the power consumption can be reduced by stopping the conversion operation (the ADM.ADCS bit = 0).

Figure 14-7 shows an example of how to reduce the power consumption in the standby mode.

Figure 14-7. Example of How to Reduce Power Consumption in Standby Mode

(2) Input range of ANI0 to ANI7 pins

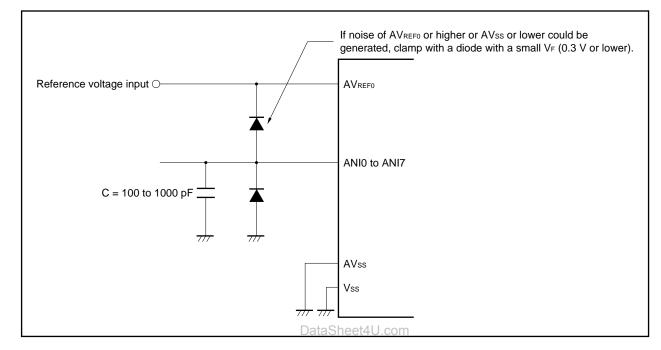
Use the A/D converter with the ANI0 to ANI7 pin input voltages within the specified range. If a voltage of AVREF0 or higher or AVss or lower (even if within the absolute maximum ratings) is input to these pins, the conversion value of the channel is undefined. Also, this may affect the conversion value of other channels.

DataShee

(3) Conflicting operations

(a) Conflict between writing to the ADCR register and reading from ADCR register upon the end of conversion

Reading the ADCR register takes precedence. After the register has been read, a new conversion result is written to the ADCR register.


(b) Conflict between writing to the ADCR register and writing to the ADM register or writing to the ADS register upon the end of conversion Writing to the ADM register or ADS register takes precedence. The ADCR register is not written, and neither is the conversion end interrupt request signal (INTAD) generated.

DataSheet4U.com

www.DataSheet4U.com

(4) Measures against noise

To keep a resolution of 10 bits, be aware of noise on the AVREF0 and ANI0 to ANI7 pins. The higher the output impedance of the analog input source, the greater the effect of noise. Therefore, it is recommended to connect external capacitors as shown in Figure 14-8 to reduce noise.

Figure 14-8. Handling of Analog Input Pins

et4U.com

(5) ANI0/P70 to ANI7/P77 pins

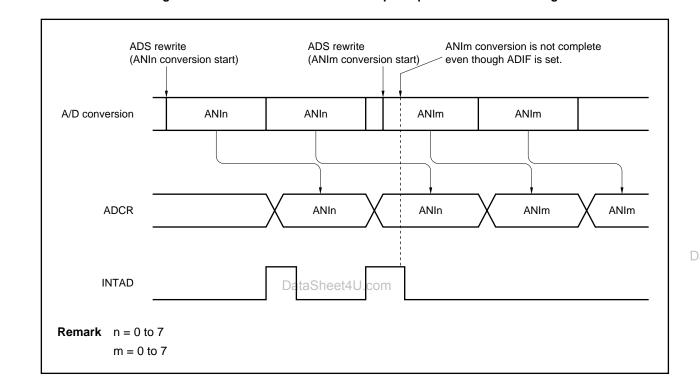
The analog input pins (ANI0 to ANI7) function alternately as input port pins (P70 to P77).

When performing A/D conversion by selecting any of the ANI0 to ANI7 pins, do not execute an input instruction to port 7 during conversion. This may decrease the conversion resolution.

If digital pulses are applied to the pin adjacent to the pin subject to A/D conversion, the value of the A/D conversion may differ from the expected value because of coupling noise. Therefore, do not apply pulses to the pin adjacent to the pin subject to A/D conversion.

(6) Input impedance of AVREFO pin

A series resistor string of tens of $k\Omega$ is connected between the AV_{REF0} pin and AV_{SS} pin.


Therefore, if the output impedance of the reference voltage source is high, this will result in a series connection to the series resistor string between the AVREF0 pin and AVss pin, resulting in a large reference voltage error.

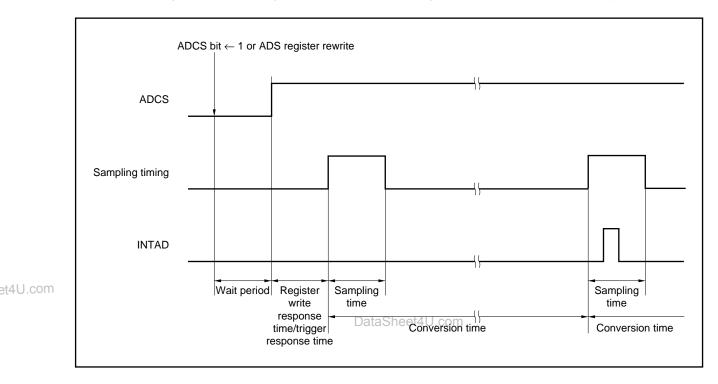
(7) Interrupt request flag (ADIC.ADIF bit)

Even when the ADS register is changed, the ADIF bit is not cleared (0).

Therefore, if the analog input pin is changed during A/D conversion, the ADIF bit may be set (1) because A/D conversion of the previous analog input pin ends immediately before the ADS register is rewritten. In a such case, note that if the ADIF bit is read immediately after the ADS register has been rewritten, the ADIF bit is set (1) even though A/D conversion of the analog input pin after the change has not been completed. When stopping A/D conversion once and resuming it, clear the ADIF bit (0) before resuming A/D conversion.

(8) Conversion results immediately after A/D conversion start

If the ADM.ADCS bit is set to 1 within 1 or 14 μ s after the ADM.ADCS2 bit has been set to 1, or if the ADCS bit is set to 1 with the ADCS2 bit cleared to 0, the converted value immediately after the A/D conversion operation has started may not satisfy the rating. Take appropriate measures such as polling the A/D conversion end interrupt request signal (INTAD) and discarding the first conversion result.


(9) Reading A/D conversion result register (ADCR)

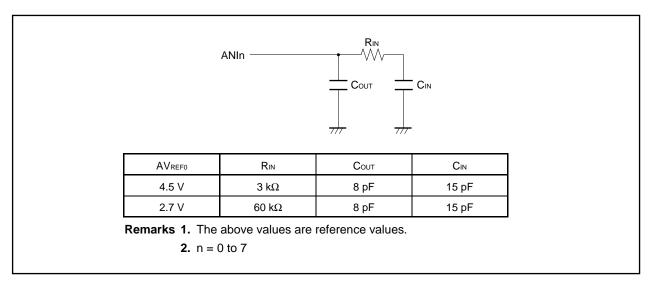
When the ADM or ADS register has been written, the contents of the ADCR register may become undefined. When the conversion operation is complete, read the conversion results before writing to the ADM or ADS register. A correct conversion result may not be able to be read at a timing other than the above. When the CPU is operating on the subclock and main clock oscillation (fx) is stopped, do not read the ADCR register. For details, refer to **3.4.8 (2)**.

(10) A/D converter sampling time and A/D conversion start delay time

The A/D converter sampling time differs depending on the set value of the ADM register. A delay time exists until actual sampling is started after A/D converter operation is enabled.

When using a set in which the A/D conversion time must be strictly observed, care is required for the contents shown in Figure 14-10 and Table 14-4.

ADHS1	ADHS0	DHS0 FR2 FR1 FR0		1 FR0 Conversion Time Sampling Ti		Sampling Time	-	er Write e Time ^{∾₀te}	Trigger Response Time ^{Note}		
							MIN.	MAX.	MIN.	MAX.	
0	0	0	0	0	288/fxx	176/fxx	11/fxx	12/fxx	7/fxx	8/fxx	
0	0	0	0	1	240/fxx	176/fxx	11/fxx	12/fxx	7/fxx	8/fxx	
0	0	0	1	0	192/fxx	132/fxx	10/fxx	11/fxx	6/fxx	7/f×x	
0	0	1	0	0	144/fxx	88/fxx	9/fxx	10/fxx	5/fxx	6/fxx	
0	0	1	0	1	120/fxx	88/fxx	9/fxx	10/fxx	5/fxx	6/f×x	
0	0	1	1	0	96/fxx	48/fxx	11/fxx	12/fxx	7/fxx	8/fxx	
0	1	0	0	0	96/fxx	48/fxx	11/fxx	12/fxx	7/fxx	8/fxx	
0	1	0	0	1	72/fxx	36/fxx	10/fxx	11/fxx	6/fxx	7/f×x	
0	1	0	1	0	48/fxx	24/fxx	9/fxx	10/fxx	5/fxx	6/f×x	
0	1	0	1	1	24/fxx	12/fxx	8/fxx	9/fxx	4/fxx	5/fxx	
0	1	1	0	0	224/fxx	176/fxx	11/fxx	12/fxx	7/fxx	8/f×x	
0	1	1	0	1	168/fxx	132/fxx	10/fxx	11/fxx	6/fxx	7/fxx	
0	1	1	1	0	112/fxx	88/fxx	9/fxx	10/fxx	5/fxx	6/fxx	
0	1	1	1	1	56/fxx	44/fxx	8/fxx	9/f×x	4/fxx	5/fxx	
1	0	0	0	0	72/fxx	24/fxx	11/fxx	12/fxx	7/fxx	8/f×x	
1	0	0	0	1	54/fxx	18/fxx	10/fxx	11/fxx	6/fxx	7/f×x	
1	0	0	1	0	36/fxx	12/fxx	9/fxx	10/fxx	5/fxx	6/fxx	
1	0	0	1	1	18/fxx DataShee	6/f×x	8/fxx	9/fxx	4/fxx	5/fxx	
	Other	than ab	ove		Setting prohibited	-	_	-	-	_	


Table 14-4. A/D Converter Conversion Time

Note Each response time is the time after the wait period. For the wait function, refer to 3.4.8 (2) Access to special on-chip peripheral I/O register.

Remark fxx: Main clock frequency

(11) Internal equivalent circuit

The following shows the equivalent circuit of the analog input block.

Figure 14-11. Internal Equivalent Circuit of ANIn Pin

et4U.com

DataSheet4U.com

DataSheet4U.com

14.7 How to Read A/D Converter Characteristics Table

Here, special terms unique to the A/D converter are explained.

(1) Resolution

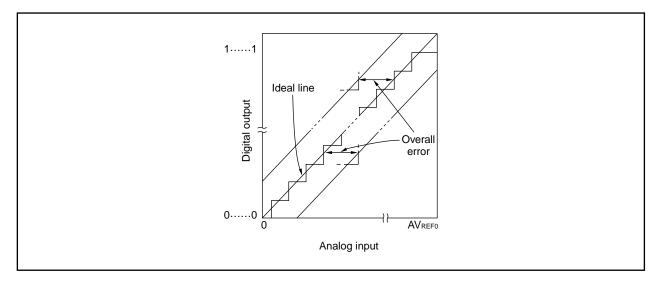
This is the minimum analog input voltage that can be identified. That is, the percentage of the analog input voltage per bit of digital output is called 1 LSB (Least Significant Bit). The percentage of 1 LSB with respect to the full scale is expressed by %FSR (Full Scale Range). %FSR indicates the ratio of analog input voltage that can be converted as a percentage, and is always represented by the following formula regardless of the resolution.

1 %FSR = (Max. value of analog input voltage that can be converted – Min. value of analog input voltage that can be converted)/100

- $= (AV_{REF0} 0)/100$
- = AVREF0/100

1 LSB is as follows when the resolution is 10 bits.

1 LSB = 1/2¹⁰ = 1/1024 = 0.098 %FSR

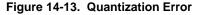

Accuracy has no relation to resolution, but is determined by overall error.

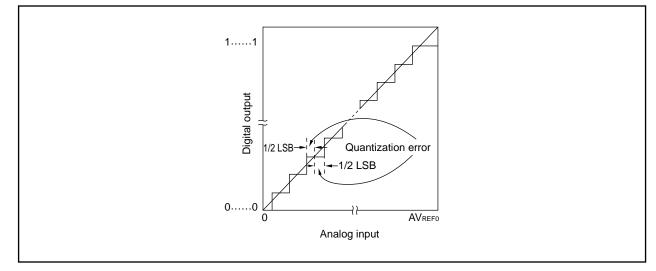
DataShe

(2) Overall error

This shows the maximum error value between the actual measured value and the theoretical value. Zero-scale error, full-scale error, linearity error and errors that are combinations of these express the overall error.

Note that the quantization error is not included in the overall error in the characteristics table.

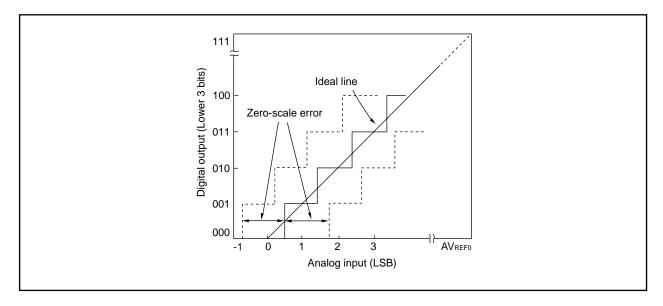

Figure 14-12. Overall Error


DataSheet4U.com

(3) Quantization error

When analog values are converted to digital values, a $\pm 1/2$ LSB error naturally occurs. In an A/D converter, an analog input voltage in a range of $\pm 1/2$ LSB is converted to the same digital code, so a quantization error cannot be avoided.

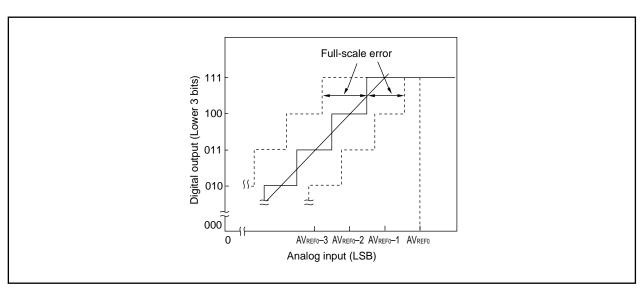
Note that the quantization error is not included in the overall error, zero-scale error, full-scale error, integral linearity error, and differential linearity error in the characteristics table.


t411 com

(4) Zero-scale error

DataSheet4U.com

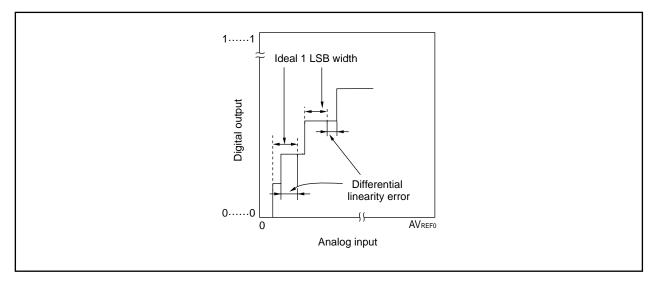
This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (1/2 LSB) when the digital output changes from 0.....000 to 0.....001.



DataSheet4U.com

(5) Full-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (full scale -3/2 LSB) when the digital output changes from 1.....110 to 1.....111.

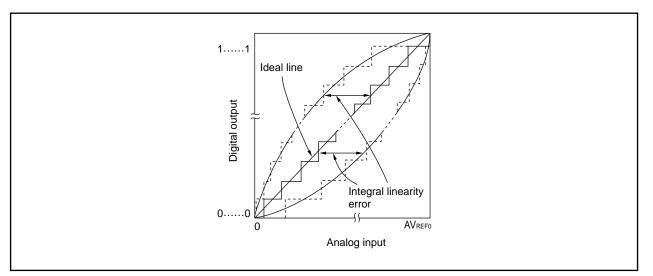

Figure 14-15. Full-Scale Error

(6) Differential linearity error

While the ideal width of code output is 1 LSB, this indicates the difference between the actual measurement DataSheet value and the ideal value.

DataSheet4U.com

Figure 14-16. Differential Linearity Error



et4U.com

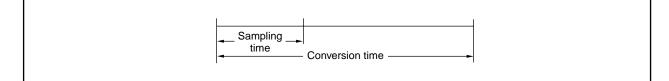
(7) Integral linearity error

This shows the degree to which the conversion characteristics deviate from the ideal linear relationship. It expresses the maximum value of the difference between the actual measurement value and the ideal straight line when the zero-scale error and full-scale error are 0.

(8) Conversion time

et4U.com

This expresses the time from when the analog input voltage was applied to the time when the digital output was obtained. DataSheet4U.com


DataShe

The sampling time is included in the conversion time in the characteristics table.

(9) Sampling time

This is the time the analog switch is turned on for the analog voltage to be sampled by the sample & hold circuit.

Figure 14-18. Sampling Time

CHAPTER 15 D/A CONVERTER

15.1 Functions

In the V850ES/KG1+, two channels of D/A converter (DAC0, DAC1) are provided. The D/A converter has the following functions.

O 8-bit resolution $\times\,2$ channels

O R-2R ladder string method

O Conversion time: 20 μ s (MAX.) (AV_{REF1} = 2.7 to 5.5 V)

O Analog output voltage: AVREF1 \times m/256 (m = 0 to 255; value set to DACSn register)

O Operation modes: Normal mode, real-time output mode

Remark n = 0, 1

et4U.com

DataSheet4U.com

DataSheet4U.com

15.2 Configuration

The D/A converter configuration is shown below.

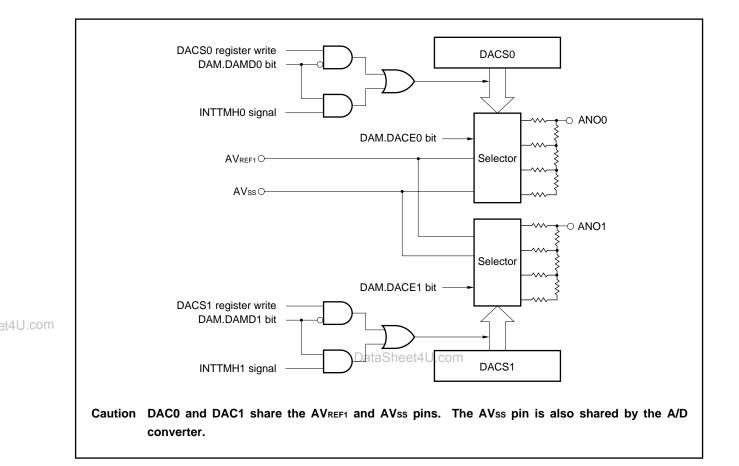


Figure 15-1. Block Diagram of D/A Converter

The D/A converter consists of the following hardware.

Table 15-1. Configuration of D/A Converter

Item Configuration						
Control registers	D/A converter mode register (DAM)					
	D/A conversion value setting registers 0 and 1 (DACS0, DACS1)					

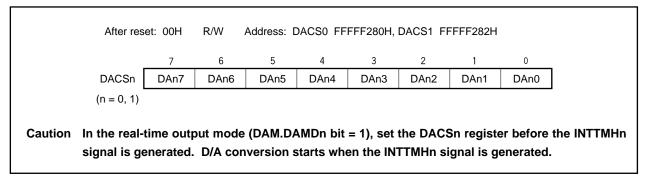
15.3 Registers

The registers that control the D/A converter are as follows.

- D/A converter mode register (DAM)
- D/A conversion value setting registers 0 and 1 (DACS0, DACS1)

(1) D/A converter mode register (DAM)

This register controls the operation of the D/A converter. The DAM register can be read or written in 8-bit or 1-bit units. After reset, DAM is cleared to 00H.


	7	6	5	4	3	<2>	1	<0>	
DAM	0	0	0	0	DAMD1	DACE1	DAMD0	DACE0	
	DAMDn		Selection	of D/A co	nverter oper	ation mode	e (n = 0, 1)		
	0	Normal r	node						
	1	Real-time	e output mo	de ^{Note}					
		1							
	DACEn		D/A conver	ter operat	tion enable/d	isable cont	trol (n = 0, 1	1)	
	0	Disable of	operation						
	1	Enable o							
	Note Th	e output t		ne real-ti	com me output r	node (DA	MDn bit =	1) is as fo	ollows.
	• \	Nhon n -		H0 signs	al (Refer to	СНАРТЕ	R 10 8-R		H)

(2) D/A conversion value setting register n (DACSn)

This register sets the analog voltage value output to the ANOn pin.

This register can be read or written in 8-bit units.

After reset, DACSn is cleared to 00H.

et4U.com

443

15.4 Operation

15.4.1 Operation in normal mode

D/A conversion is performed using a write operation to the DACSn register as the trigger. The setting method is described below.

- <1> Clear the DAM.DAMDn bit to 0 (normal mode).
- <2> Set the analog voltage value to be output to the ANOn pin to the DACSn register. Steps <1> and <2> above constitute the initial settings.
- <3> Set the DAM.DACEn bit to 1 (D/A conversion enable).
 D/A converted analog voltage value is output from the ANOn pin when this setting is performed.
- <4> To change the analog voltage value, write to the DACSn register. The analog voltage value immediately before set is held until the next write operation is performed.
- Remarks 1. For the alternate-function pin settings, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.
 - **2.** n = 0, 1

15.4.2 Operation in real-time output mode

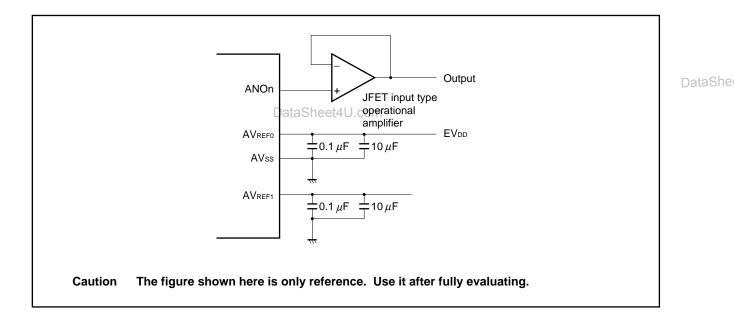
D/A conversion is performed using the interrupt request signal (INTTMHn) of 8-bit timer Hn as the trigger. The setting method is described below.

>> Set the DAM.DAMDn bit to 1 (real-time output mode).

DataShe

- <2> Set the analog voltage value to be output to the ANOn pin to the DACSn register.
- <3> Set the DAM.DACEn bit to 1 (D/A conversion enable). Steps <1> to <3> above constitute the initial settings.
- <4> Operate 8-bit timer Hn.
- <5> D/A converted analog voltage value is output from the ANOn pin when the INTTMHn signal is generated. Set the next output analog voltage value to the DACSn register, before the next INTTMHn signal is generated.
- <6> After that, the value set in the DACSn register is output from the ANOn pin every time the INTTMHn signal is generated.

Remarks 1. The output values of the ANOn pin up to <5> above are undefined.


2. For the output values of the ANOn pin in the HALT, IDLE, and STOP modes, refer to CHAPTER 23 STANDBY FUNCTION.

15.4.3 Cautions

Observe the following cautions when using the D/A converter.

- When using the D/A converter, set the port pins to the input mode (PM1.PM10, PM1.PM11 bits = 11)
- When using the D/A converter, reading of the port is prohibited.
- When using the D/A converter, use both P10 and P11 as D/A outputs. Using one of the port 1 for D/A output and the other as a port is prohibited.
- In the real-time output mode, do not change the set value of the DACSn register while the trigger signal is output.
- Make sure that AV_{REF1} ≤ V_{DD} and AV_{REF1} = 2.7 to 5.5 V. The operation is not guaranteed if ranges other than the above are used.
- Because the output impedance of the D/A converter is high, a current cannot be supplied from the ANOn pin.
 When connecting a resistor of 2 MΩ or lower, take appropriate measures such as inserting a JFET input type operational amplifier between the resistor and the ANOn pin.

Remark n = 0, 1

CHAPTER 16 ASYNCHRONOUS SERIAL INTERFACE (UART)

In the V850ES/KG1+, three channels of asynchronous serial interface (UART) are provided. Of these channels, UART0 supports LIN-bus.

16.1 Selecting UART2 or CSI00 Mode

UART2 and CSI00 of the V850ES/KG1+ share pins, and therefore these interfaces cannot be used at the same time. Select UART2 or CSI00 in advance by using the PMC4 and PFC4 registers (refer to **4.3.4 Port 4**).

Caution UART2 or CSI00 transmission/reception operations are not guaranteed if the mode is changed during transmission or reception. Be sure to disable the operation of the unit that is not used.

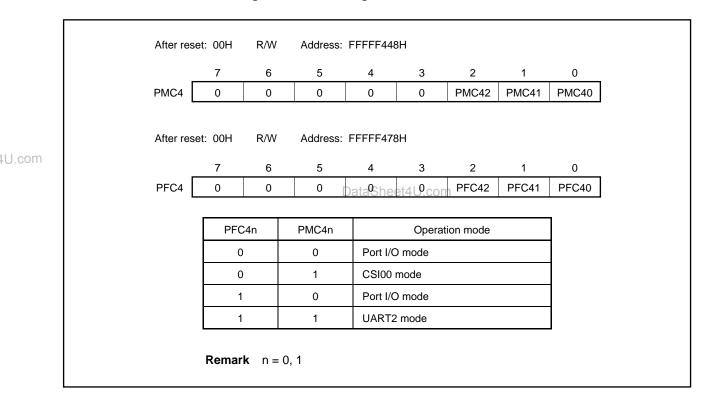


Figure 16-1. Selecting Mode of UART2 or CSI00

DataShe

DataSheet4U.com

16.2 Features

- Maximum transfer speed: 312.5 kbps
- Full-duplex communications On-chip RXBn register On-chip TXBn register

Two-pin configuration^{Note}

- TXDn: Transmit data output pin RXDn: Receive data input pin
- Reception error detection functions
 - Parity error
 - · Framing error
 - Overrun error
- Interrupt sources: 3 types
 - Reception error interrupt request signal (INTSREn):
 - Reception completion interrupt request signal (INTSRn):
 - Transmission completion interrupt request signal (INTSTn):

- Character length: 7 or 8 bits
- Parity functions: Odd, even, 0, or none
 DataSheet4U.com
- Transmission stop bits: 1 or 2 bits
- MSB-first or LSB-first transfer of data selectable (UART0 only)
- Transmit data output level inversion function (UART0 only)
- 13 to 20 bits selectable for Sync Break Field transmission (UART0 only)
- 11 bits or more identifiable for Sync Break Field reception (SBF reception flag (UART0 only)) ٠
- On-chip dedicated baud rate generator

Note The ASCK0 pin (external clock input) is available only for UART0.

Remark n = 0 to 2

Interrupt is generated according to the logical OR of the three types of reception errors Interrupt is generated when receive data is transferred from the receive shift register to the RXBn register after serial transfer is completed during a reception enabled state Interrupt is generated when the serial transmission of transmit data (8 or 7 bits) from the transmit shift register is completed

16.3 Configuration

Table 16-1. Configuration of UARTn

Item	Configuration
Registers	Receive buffer register n (RXBn) Transmit buffer register n (TXBn) Receive shift register Transmit shift register Asynchronous serial interface mode register n (ASIMn) Asynchronous serial interface status register n (ASISn) Asynchronous serial interface transmit status register n (ASIFn) LIN operation control register 0 (ASICL0)
Other	Reception control parity check Addition of transmission control parity

Remark n = 0 to 2

Figure 16-2 shows the configuration of UARTn.

(1) Asynchronous serial interface mode register n (ASIMn)

The ASIMn register is an 8-bit register for specifying the operation of UARTn.

(2) Asynchronous serial interface status register n (ASISn)

The ASISn register consists of a set of flags that indicate the error contents when a reception error occurs. The various reception error flags are set (1) when a reception error occurs and are cleared (0) when the ASISn register is read.

(3) Asynchronous serial interface transmit status register n (ASIFn)

The ASIFn register is an 8-bit register that indicates the status when a transmit operation is performed. This register consists of a transmit buffer data flag, which indicates the hold status of the TXBn register data, and the transmit shift register data flag, which indicates whether transmission is in progress.

(4) LIN operation control register 0 (ASICL0)

The ASICL0 register is an 8-bit register that controls the output format for SBF transmission/reception and transmission.

The ASICL0 register can be used only with UART0.

(5) Reception control parity check

The receive operation is controlled according to the contents set in the ASIMn register. A check for parity errors is also performed during a receive operation, and if an error is detected, a value corresponding to the error contents is set in the ASISn register.

(6) Receive shift register

This is a shift register that converts the serial data that was input to the RXDn pin to parallel data. One byte of data is received, and if a stop bit is detected, the receive data is transferred to the RXBn register. This register cannot be directly manipulated.

(7) Receive buffer register n (RXBn)

The RXBn register is an 8-bit buffer register for holding receive data. When 7 characters are received, 0 is stored in the MSB.

During a reception enabled state, receive data is transferred from the receive shift register to the RXBn register, synchronized with the end of the shift-in processing of one frame.

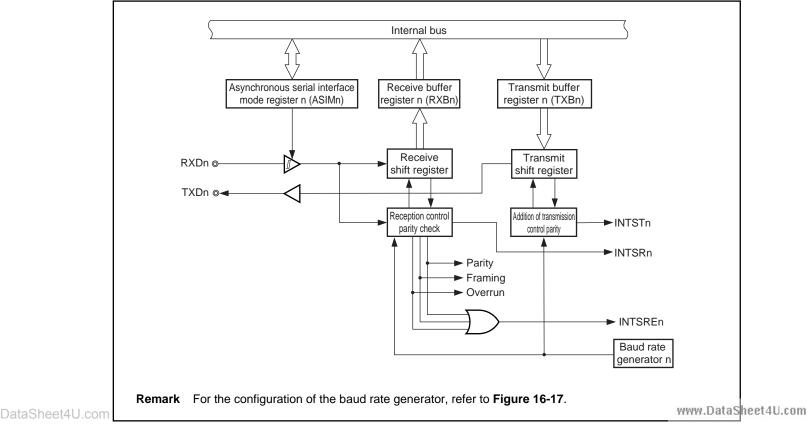
Also, the reception completion interrupt request signal (INTSRn) is generated by the transfer of data to the RXBn register.

(8) Transmit shift register

This is a shift register that converts the parallel data that was transferred from the TXBn register to serial data. When one byte of data is transferred from the TXBn register, the shift register data is output from the TXDn pin.

The transmission completion interrupt request signal (INTSTn) is generated synchronized with the completion of transmission of one frame.

This register cannot be directly manipulated.


(9) Transmit buffer register n (TXBn)

The TXBn register is an 8-bit buffer for transmit data. A transmit operation is started by writing transmit data to the TXBn register.

(10) Addition of transmission control parity

A transmit operation is controlled by adding a start bit, parity bit, or stop bit to the data that is written to the TXBn register, according to the contents that were set in the ASIMn register.

DataShe

Figure 16-2. Block Diagram of UARTn

16.4 Registers

(1) Asynchronous serial interface mode register n (ASIMn)

The ASIMn register is an 8-bit register that controls the UARTn transfer operation. This register can be read or written in 8-bit or 1-bit units. After reset, ASIMn is set to 01H.

- Cautions 1. When using UARTn, be sure to set the external pins related to UARTn functions to the control made before setting the CKSRn and BRGCn registers, and then set the UARTEn bit to 1. Then set the other bits.
 - 2. Set the UARTEn and RXEn bits to 1 while a high level is input to the RXDn pin. If these bits are set to 1 while a low level is input to the RXDn pin, reception will be started.

ASIMn UARTEN TXEN RXEN PSn1 PSn0 CLn SLn ISRMr (n = 0 to 2) UARTEN Control of operating clock	
· · ·	_
UARTEn Control of operating clock	
0 Stop clock supply to UARTn.	
1 Supply clock to UARTn.	
 If the UARTEn bit is cleared to 0, UARTn is asynchronously reset^{Non}. 	
• If the UARTEn bit = 0, UARTn is reset. To operate UARTn, first set the UARTEn bit to 1.	
• If the UARTEn bit is cleared from 1 to 0, all the registers of UARTn are initialized. To set the	UARTEn bit to 1
again, be sure to re-set the registers of UARTn.	
The output of the TXDn pin goes high when transmission is disabled, regardless of the setting of the	
The output of the TXDh pin goes high when transmission is disabled, regardless of the setting of the	9 OARTEN DIL
TXEn Transmission enable/disable	
TXEn Transmission enable/disable 0 Disable transmission	
0 Disable transmission	after clearing the
0 Disable transmission 1 Enable transmission	after clearing the
0 Disable transmission 1 Enable transmission • Set the TXEn bit to 1 after setting the UARTEn bit to 1 at startup. Clear the UARTEn bit to 0	, i i i i i i i i i i i i i i i i i i i

DataShe

www.DataSheet4U.com

et4U.com

(0/0)	
(///)	

DataShe

RXEn		Receptio	on enable/disable
0	Disable ı	reception ^{Note}	
1	Enable r	eception	
RXEn • To init set (1)	bit to 0 to s ialize the r the RXEn	stop. eception unit status, clear (0) the RXEr	at startup. Clear the UARTEn bit to 0 after cleari bit, and after letting 2 Clock cycles (base clock) e in, initialization may not be successful. (For details
PSn1	PSn0	Transmit operation	Receive operation
0	0	Don't output parity bit	Receive with no parity
0	1	Output 0 parity	Receive as 0 parity
1	0	Output odd parity	Judge as odd parity
1	1	Output even parity	Judge as even parity
 If "0 p becau CLn 	parity" is se	ISn.PEn bit is not set.	XEn and RXEn bits. : is performed. Therefore, no error interrupt is gen gth of 1 frame of transmit/receive data
 If "0 p becau 	parity" is se	elected for reception, no parity judgmen ISn.PEn bit is not set.	is performed. Therefore, no error interrupt is gen
 If "0 p becau CLn 	parity" is se	elected for reception, no parity judgmen ISn.PEn bit is not set.	is performed. Therefore, no error interrupt is gen
 If "0 p becau CLn 0 1 	7 bits 8 bits	elected for reception, no parity judgmen ISn.PEn bit is not set.	t is performed. Therefore, no error interrupt is gen
 If "0 p becau CLn 0 1 	7 bits 8 bits	ISR.PEn bit is not set. Specification of character len CLn bit, first clear (0) the TXEn and RX	t is performed. Therefore, no error interrupt is gen
 If "0 p becau CLn 0 1 To ov 	7 bits 8 bits	ISR.PEn bit is not set. Specification of character len CLn bit, first clear (0) the TXEn and RX	t is performed. Therefore, no error interrupt is gen gth of 1 frame of transmit/receive data
 If "0 p becau CLn 0 1 To ov SLn 	7 bits 8 bits erwrite the	ISR.PEn bit is not set. Specification of character len CLn bit, first clear (0) the TXEn and RX	t is performed. Therefore, no error interrupt is gen gth of 1 frame of transmit/receive data
 If "0 p becau CLn 0 1 To ov SLn 0 1 To ov 	7 bits 8 bits erwrite the 1 bit 2 bits erwrite the	Specification of stor Specification of character len CLn bit, first clear (0) the TXEN and RX Specification of stor SLn bit, first clear (0) the TXEN bit.	t is performed. Therefore, no error interrupt is gen gth of 1 frame of transmit/receive data
 If "0 p becau CLn 0 1 To ov SLn 0 1 To ov 	7 bits 8 bits erwrite the 1 bit 2 bits reception	Specification of stores of	t is performed. Therefore, no error interrupt is gen gth of 1 frame of transmit/receive data
 If "0 p becau CLn 0 1 To ov SLn 0 1 To ov Since 	7 bits 8 bits 8 bits erwrite the 1 bit 2 bits erwrite the reception Enab	Specification of character len CLn bit, first clear (0) the TXEn and RX Specification of sto Specification of sto Specification of sto le/disable of generation of reception cor	is performed. Therefore, no error interrupt is gen gth of 1 frame of transmit/receive data En bits. In bit length of transmit data

Note When reception is disabled, the receive shift register does not detect a start bit. No shift-in processing or transfer processing to the RXBn register is performed, and the contents of the RXBn register are retained.

When reception is enabled, the receive shift operation starts, synchronized with the detection of the start bit, and when the reception of one frame is completed, the contents of the receive shift register are transferred to the RXBn register. A reception completion interrupt request signal (INTSRn) is also generated in synchronization with the transfer to the RXBn register.

et4U.com

DataSheet4U.com

(2) Asynchronous serial interface status register n (ASISn)

The ASISn register, which consists of 3 error flag bits (PEn, FEn, and OVEn), indicates the error status when UARTn reception is complete.

The ASISn register is cleared to 00H by a read operation. When a reception error occurs, the RXBn register should be read and the error flag should be cleared after the ASISn register is read.

This register is read-only in 8-bit units.

After reset, ASISn is cleared to 00H.

- Cautions 1. When the ASIMn.UARTEn bit or ASIMn.RXEn bit is cleared to 0, or when the ASISn register is read, the PEn, FEn, and OVEn bits are cleared (0).
 - 2. Operation using a bit manipulation instruction is prohibited.
 - When the main clock is stopped and the CPU is operating on the subclock, do not access the ASISn register using an access method that causes a wait. For details, refer to 3.4.8 (2).

		7	6	5	4	3	2	1	0	
	ASISn	0	0	0	0	0	PEn	FEn	OVEn]
(n	= 0 to 2)									•
PEn				Sta	atus flag in	dicating a p	arity error			
0	When t	the UART	En or RXEr	n bit is clear	red to 0, or	after the A	SISn regis	ter has bee	en read	
1	When	reception v	was comple	eted, the re	ceive data	parity did r	ot match th	ne parity bi	t	
• The op	peration c	of the PEn	bit differs a	iccordina to) the setting				IN.P3NU DIU	S.
 The op 	peration c	of the PEn	bit differs a	iccording to	o the setting	gs of the A			IN.P5NU DIG	S.
The op FEn	peration c	of the PEn	bit differs a			dicating fra			In.PSh0 bit	S.
•					atus flag in	dicating fra	ming error			S.
FEn	When	the UARTI	En or RXEr	Sta	atus flag ind red to 0, or	dicating fra	ming error			S.
FEn 0 1	When the Whe	the UARTE	En or RXEr was comple	Sta n bit is clear	atus flag ind red to 0, or op bit was c	dicating fra after the A detected	ming error SISn regis	ter has bee		S.
FEn 0 1	When the Whe	the UARTE	En or RXEr was comple	Sta n bit is clear eted, no sto	atus flag ind red to 0, or op bit was c	dicating fra after the A detected	ming error SISn regis	ter has bee		S.
FEn 0 1	When the Whe	the UARTE	En or RXEr was comple	Sta bit is clear eted, no sto rst bit is che	atus flag ind red to 0, or p bit was c ecked rega	dicating fra after the A detected	ming error SISn regis ne stop bit l	ter has bee		S.
FEn 0 1 • For rec	When the wheel	the UARTE reception v	En or RXEr was comple , only the fi	Sta bit is clear eted, no sto rst bit is che	atus flag ind red to 0, or p bit was c ecked rega us flag indi	dicating fra after the A detected ardless of th cating an o	ming error SISn regis ne stop bit I verrun erro	ter has bee ength. r	en read	S.

www.DataSheet4U.com

(3) Asynchronous serial interface transmit status register n (ASIFn)

The ASIFn register, which consists of 2 status flag bits, indicates the status during transmission.

By writing the next data to the TXBn register after data is transferred from the TXBn register to the transmit shift register, transmit operations can be performed continuously without suspension even during an interrupt interval. When transmission is performed continuously, data should be written after referencing the TXBFn bit to prevent writing to the TXBn register by mistake.

This register is read-only in 8-bit or 1-bit units.

After reset, ASIFn is cleared to 00H.

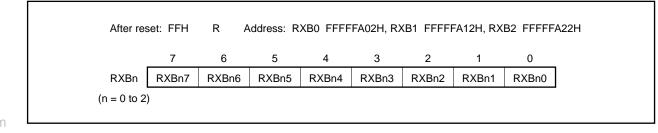
		7	6	5	4	3	2	<1>	<0>		
	ASIFn	0	0	0	0	0	0	TXBFn	TXSFn		
(n = 0 to 2)						•	•			
TXBFn	1			т	ransmissio	n buffer da	ta flag				
0	Data to b	e transfer	red next to				0	SIMn.UART	En or ASIMn.TXEr		
		Data to be transferred next to TXBn register does not exist (When the ASIMn.UARTEn or ASIMn.TXEn bit is cleared to 0, or when data has been transferred to the transmission shift register)									
1	Data to be transferred next exists in TXBn register (Data exists in TXBn register when the TXBn register has been written to)										
	has been	written to))								
	transmissio	n is perfo	rmed conti					0	fter confirming that guaranteed.		
	transmissio	n is perfo to TXBn	rmed conti register is	performed	when this	flag is 1, tra	insmit data	0	guaranteed.		
flag is	transmissio 0. If writing Initial stat	n is perfo to TXBn Trar tus or a w	rmed conti register is nsmit shift vaiting trar	performed register dat	when this ta flag (indi When the	flag is 1, tra cates the tr UARTEn or	nsmit data ansmissio TXEn bit	n status of l	guaranteed. JARTn) o 0, or when follow		
flag is TXSFn	transmissio 0. If writing Initial stat	n is perfo to TXBn Trar tus or a w sion comp	rmed conti register is nsmit shift vaiting tran letion, the	performed register dat ismission (next data tr	when this ta flag (indi When the ransfer fror	flag is 1, tra icates the ti UARTEn oi m the TXBn	ransmit data ransmissio TXEn bit register is	n status of l	guaranteed. JARTn) o 0, or when follow ned)		

DataShe

et4U.com

(4) Receive buffer register n (RXBn)

The RXBn register is an 8-bit buffer register for storing parallel data that had been converted by the receive shift register.


When reception is enabled (ASIMn.RXEn bit = 1), receive data is transferred from the receive shift register to the RXBn register, synchronized with the completion of the shift-in processing of one frame. Also, a reception completion interrupt request signal (INTSRn) is generated by the transfer to the RXBn register. For information about the timing for generating this interrupt request, refer to **16.6.4 Receive operation**.

If reception is disabled (ASIMn.RXEn bit = 0), the contents of the RXBn register are retained, and no processing is performed for transferring data to the RXBn register even when the shift-in processing of one frame is completed. Also, the INTSRn signal is not generated.

When 7 bits is specified for the data length, bits 6 to 0 of the RXBn register are transferred for the receive data and the MSB (bit 7) is always 0. However, if an overrun error (ASISn.OVEn bit = 1) occurs, the receive data at that time is not transferred to the RXBn register.

The RXBn register becomes FFH when a reset is input or ASIMn.UARTEn bit = 0.

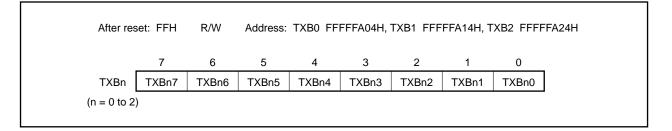
This register is read-only in 8-bit units.

4U cor

(5) Transmit buffer register n (TXBn) DataSheet4U.c

The TXBn register is an 8-bit buffer register for setting transmit data.

When transmission is enabled (ASIMn.TXEn bit = 1), the transmit operation is started by writing data to TXBn register.


When transmission is disabled (TXEn bit = 0), even if data is written to TXBn register, the value is ignored.

The TXBn register data is transferred to the transmit shift register, and a transmission completion interrupt request signal (INTSTn) is generated, synchronized with the completion of the transmission of one frame from the transmit shift register. For information about the timing for generating this interrupt request, refer to **16.6.2 Transmit operation**.

When ASIFn.TXBFn bit = 1, writing must not be performed to TXBn register.

This register can be read or written in 8-bit units.

After reset, TXBn is set to FFH.

(6) LIN operation control register 0 (ASICL0)

The ASICL0 register is an 8-bit register that controls the output format for SBF transmission/reception and transmission.

This register can be read or written in 8-bit or 1-bit units.

After reset, ASICL0 is set to 16H.

Caution The ASICL0 register is valid only for UART0. UART1 and UART2 do not support this register.

	<7>	<6>	5	4	3	2	<1>	0
ASICL0	SBRF0 ^{Note}	SBRT0	SBTT0	SBL02	SBL01	SBL00	UDIR0	TXDLV0
	SBRF0 ^{Note}					ture flee		
	0		JARTE0 bi		ception stat	-		antion has
	0		pleted corr		SIIVIU.KAE	0 01 = 0 01	II SDF IEU	epuon nas
	1	SBF recep	otion in pro	gress				
	SBRT0			SBF re	ception trig	ger		
	0				_			
	1	Reception	n trigger					
	SBTT0		DataShe	SBF tran	smission tr	igger		
	0				_			
	1	Transmiss	sion trigger					
	SBL02	SBL01	SBL00	SBI	F transmiss	sion output	width cont	rol
	1	0	1	SBF is o	utput with '	13-bit lengt	h (default)	
	1	1	0	SBF is o	utput with	14-bit lengt	h	
	1	1	1	SBF is o	utput with '	15-bit lengt	h	
	0	0	0	SBF is o	utput with '	16-bit lengt	h	
	0	0	1	SBF is o	utput with 7	17-bit lengt	h	
	0	1	0	SBF is o	utput with '	18-bit lengt	h	
	0	1	1		-	19-bit lengt		
	1	0	0	SBF is o	utput with 2	20-bit lengt	h	
	UDIR0			First-bi	t specificat	ion		
	0	MSB						
	1	LSB						
	TXDLV0		Enable	es/disables	inverting T	XD0 pin ou	utput	
	0	Normal ou	utput of TXI	D0 pin				
	1	Inverted o	utput of TX	D0 pin				

DataSheet4U.com

Preliminary User's Manual U16894EJ1V0UD

(7) Selector operation control register 0 (SELCNT0)

The SELCNT0 register is an 8-bit register that selects the TM01 capture trigger.

If SELCNT0.ISEL00 is set to 1 (RXD0 pin is selected) when LIN is used, the transfer rate for calculating the baud rate error can be checked using TM01.

This register can be read or written in 8-bit or 1-bit units.

After reset, SELCNT0 is cleared to 00H.

After res	set: 00H	R/W	Address:	FFFFF308	BH			
	7	6	5	4	3	2	1	0
SELCNT0	0	0	0	0	0	0	0	ISEL00
			•					
	ISEL00		Selecti	on of TM0′	capture tr	igger (TM0	10)	
	0	Select TI	010 (P35) p	oin				
	1	Select R	XD0 (P31) p	oin				

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

16.5 Interrupt Request Signals

The following three types of interrupt request signals are generated from UARTn.

- Reception error interrupt request signal (INTSREn)
- Reception completion interrupt request signal (INTSRn)
- Transmission completion interrupt request signal (INTSTn)

The default priorities among these three types of interrupt request signals are, from high to low, reception error interrupt, reception completion interrupt, and transmission completion interrupt.

Table 16-2. Generated Interrupt Request Signals and Default Priorities

Interrupt Request Signal	Priority
Reception error interrupt request signal (INTSREn)	1
Reception completion interrupt request signal (INTSRn)	2
Transmission completion interrupt request signal (INTSTn)	3

(1) Reception error interrupt request signal (INTSREn)

When reception is enabled, the INTSREn signal is generated according to the logical OR of the three types of reception errors explained for the ASISn register. Whether the INTSREn signal or the INTSRn signal is generated when an error occurs can be specified according to the ISRMn bit.

When reception is disabled, the INTSREn signal is not generated.

DataSheet4U.com

(2) Reception completion interrupt request signal (INTSRn)

When reception is enabled, the INTSRn signal is generated when data is shifted in to the receive shift register and transferred to the RXBn register.

The INTSRn signal can be generated in place of the INTSREn signal according to the ISRMn bit even when a reception error has occurred.

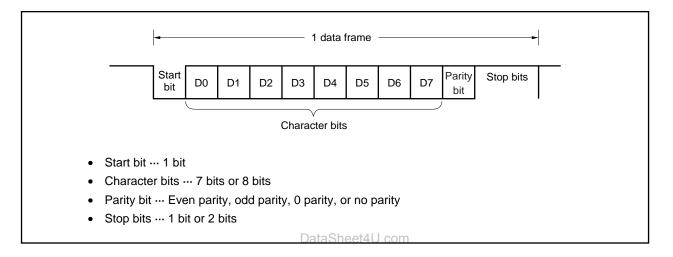
When reception is disabled, the INTSRn signal is not generated.

(3) Transmission completion interrupt request signal (INTSTn)

The INTSTn signal is generated when one frame of transmit data containing 7-bit or 8-bit characters is shifted out from the transmit shift register.

16.6 Operation

16.6.1 Data format


Full-duplex serial data transmission and reception can be performed.

The transmit/receive data format consists of one data frame containing a start bit, character bits, a parity bit, and stop bits as shown in Figure 16-3.

The character bit length within one data frame, the type of parity, and the stop bit length are specified according to the ASIMn register.

Also, data is transferred LSB first.

Figure 16-3. Format of UARTn Transmit/Receive Data

et4U.com

DataSheet4U.com

16.6.2 Transmit operation

When the ASIMn.UARTEn bit is set to 1, a high level is output from the TXDn pin.

Then, when the ASIMn.TXEn bit is set to 1, transmission is enabled, and the transmit operation is started by writing transmit data to the TXBn register.

(1) Transmission enabled state

This state is set by the TXEn bit.

- TXEn bit = 1: Transmission enabled state
- TXEn bit = 0: Transmission disabled state

Since UARTn does not have a CTS (transmission enabled signal) input pin, a port should be used to confirm whether the destination is in a reception enabled state.

(2) Starting a transmit operation

In the transmission enabled state, a transmit operation is started by writing transmit data to the TXBn register. When a transmit operation is started, the data in the TXBn register is transferred to the transmit shift register. Then, the transmit shift register outputs data to the TXDn pin (the transmit data is transferred sequentially starting with the start bit). The start bit, parity bit, and stop bits are added automatically.

(3) Transmission interrupt

When the transmit shift register becomes empty, a transmission completion interrupt request signal (INTSTn) is generated. The timing for generating the INTSTn signal differs according to the specification of the stop bit length. The INTSTn signal is generated at the same time that the last stop bit is output.

If the data to be transmitted next has not been written to the TXBn register, the transmit operation is suspended.

Caution Normally, when the transmit shift register becomes empty, the INTSTn signal is generated. However, the INTSTn signal is not generated if the transmit shift register becomes empty due to reset.

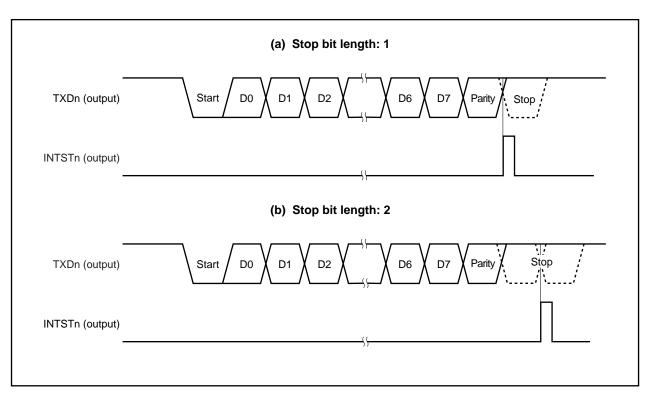


Figure 16-4. UARTn Transmission Completion Interrupt Timing

et4U.com

DataSheet4U.com

DataSheet4U.com

16.6.3 Continuous transmission operation

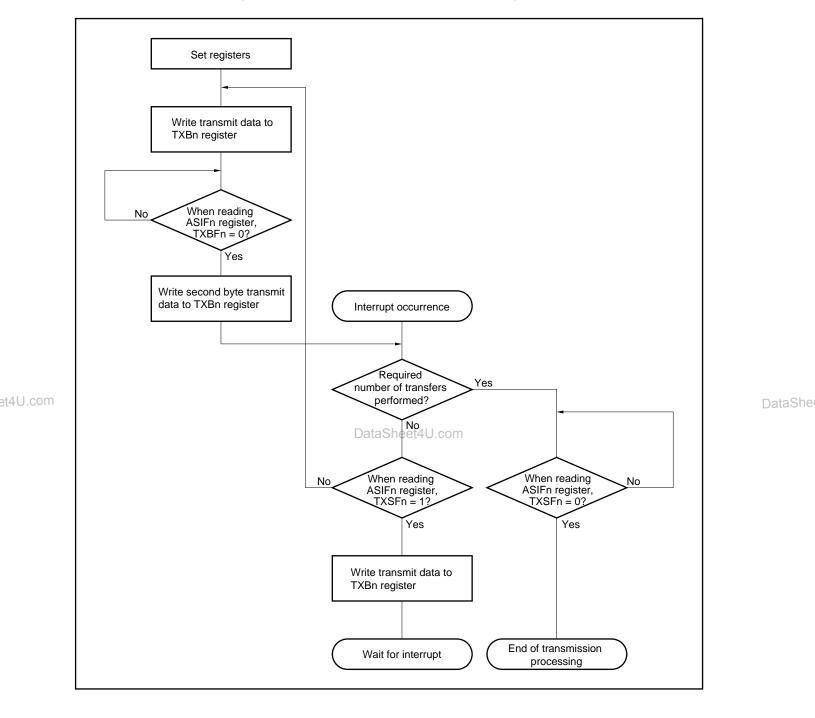
UARTn can write the next transmit data to the TXBn register at the timing that the transmit shift register starts the shift operation. This enables an efficient transmission rate to be realized by continuously transmitting data even during the transmission completion interrupt service after the transmission of one data frame. In addition, reading the ASIFn.TXSFn bit after the occurrence of a transmission completion interrupt request signal (INTSTn) enables the TXBn register to be efficiently written twice (2 bytes) without waiting for the transmission of 1 data frame.

When continuous transmission is performed, data should be written after referencing the ASIFn register to confirm the transmission status and whether or not data can be written to the TXBn register.

Caution The values of the ASIFn.TXBFn and ASIFn.TXSFn bits change $10 \rightarrow 11 \rightarrow 01$ in continuous transmission. Therefore, do not confirm the status based on the combination of the TXBFn and TXSFn bits.

Read only the TXBFn bit during continuous transmission.

TXBFn	Whether or Not Writing to TXBn Register Is Enabled	
0	Writing is enabled	
1	Writing is not enabled	

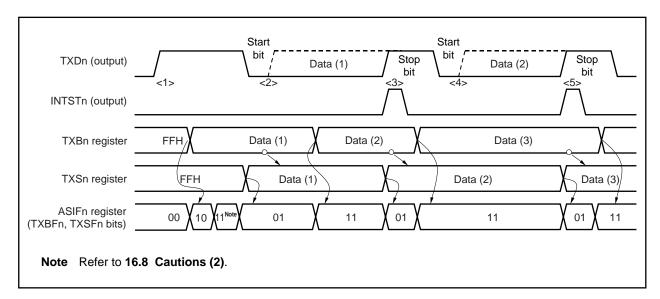

Caution When transmission is performed continuously, write the first transmit data (first byte) to the TXBn register and confirm that the TXBFn bit is 0, and then write the next transmit data (second byte) to TXBn register. If writing to the TXBn register is performed when the TXBFn bit is 1, transmit data cannot be guaranteed.

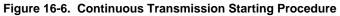
DataShe

The communication status can be confirmed by referring to the TXSFn bit.

TXSFn	Transmission Status	
0	Transmission is completed.	
1	Under transmission.	

- Cautions 1. When initializing the transmission unit when continuous transmission is completed, confirm that the TXSFn bit is 0 after the occurrence of the transmission completion interrupt, and then execute initialization. If initialization is performed when the TXSFn bit is 1, transmit data cannot be guaranteed.
 - 2. While transmission is being performed continuously, an overrun error may occur if the next transmission is completed before the INTSTn interrupt servicing following the transmission of 1 data frame is executed. An overrun error can be detected by embedding a program that can count the number of transmit data and referencing TXSFn bit.

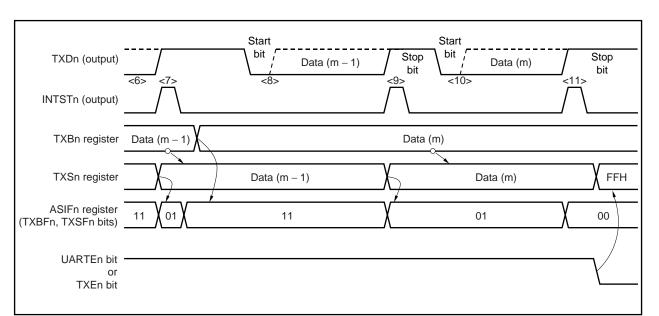




DataSheet4U.com

(1) Starting procedure

The procedure to start continuous transmission is shown below.


et4U.com

Transmission Starting Procedure	Internal Operation	ASIFn F	Register
		TXBFn	TXSFn
Set transmission mode DataS	<pre><1> Start transmission unit</pre>	0	0
Write data (1)		1	0
	<2> Generate start bit	1	1 ^{Note}
		0	1
	Start data (1) transmission	0	1
 Read ASIFn register (confirm that TXBFn bit = 0)		<u>0</u>	1
• Write data (2)	┝────	1	1
	< <transmission in="" progress="">></transmission>		
	<3> INTSTn interrupt occurs	0	1
• Read ASIFn register (confirm that TXBFn bit = 0) ←		<u>0</u>	1
Write data (3)	▶	1	1
	<4> Generate start bit		
	Start data (2) transmission		
	< <transmission in="" progress="">></transmission>		
	<5> INTSTn interrupt occurs	0	1
• Read ASIFn register (confirm that TXBFn bit = 0) ←		<u>0</u>	1
• Write data (4)	▶	1	1

Note Refer to 16.8 Cautions (2).

(2) Ending procedure

The procedure for ending continuous transmission is shown below.

Figure 16-7. Continuous Transmission End Procedure

et4U.com

Transmission End Procedure	Internal Operation	ASIFn F	Register
Da	taSheet4U.com	TXBFn	TXSFn
	<6> Transmission of data (m – 2) is in progress	1	1
	<7> INTSTn interrupt occurs	0	1
• Read ASIFn register (confirm that TXBFn bit = 0) +		<u>0</u>	1
Write data (m)	▶	1	1
	<8> Generate start bit		
	Start data (m – 1) transmission		
	< <transmission in="" progress="">></transmission>		
	<9> INTSTn interrupt occurs	0	1
• Read ASIFn register (confirm that TXSFn bit = 1) +		0	<u>1</u>
There is no write data			
	<10> Generate start bit		
	Start data (m) transmission		
	< <transmission in="" progress="">></transmission>		
	<11> Generate INTSTn interrupt	0	0
• Read ASIFn register (confirm that TXSFn bit = 0) •		0	<u>0</u>
Clear (0) the UARTEn bit or TXEn bit	Initialize internal circuits		

16.6.4 Receive operation

The awaiting reception state is set by setting the ASIMn.UARTEn bit to 1 and then setting the ASIMn.RXEn bit to 1. To start the receive operation, start sampling at the falling edge when the falling of the RXDn pin is detected. If the RXDn pin is low level at a start bit sampling point, the start bit is recognized. When the receive operation begins, serial data is stored sequentially in the receive shift register according to the baud rate that was set. A reception completion interrupt request signal (INTSRn) is generated each time the receive of one frame of data is completed. Normally, the receive data is transferred from the RXBn register to memory by this interrupt servicing.

(1) Reception enabled state

The receive operation is set to the reception enabled state by setting the RXEn bit to 1.

- RXEn bit = 1: Reception enabled state
- RXEn bit = 0: Reception disabled state

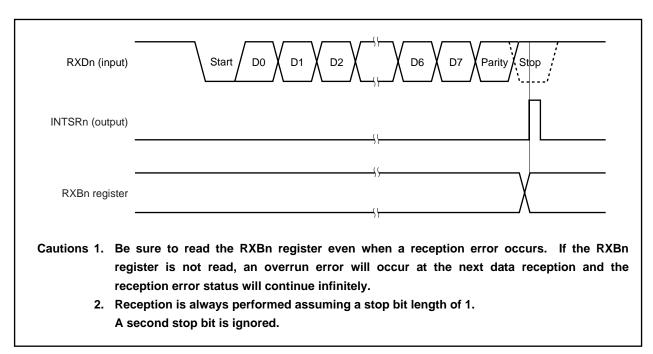
In receive disabled state, the reception hardware stands by in the initial state. At this time, the contents of the RXBn register are retained, and no reception completion interrupt or reception error interrupt is generated.

(2) Starting a receive operation

A receive operation is started by the detection of a start bit. The RXDn pin is sampled using the serial clock from baud rate generator n (BRGn).

(3) Reception completion interrupt

When the RXEn bit = 1 and the reception of one frame of data is completed (the stop bit is detected), the INTSRn signal is generated and the receive data within the receive shift register is transferred to the RXBn register at the same time.


DataShee

Also, if an overrun error (ASISn.OVEn bit = 1) occurs, the receive data at that time is not transferred to the RXBn register, and either the INTSRn signal or a reception error interrupt request signal (INTSREn) is generated according to the ASIMn.ISRMn bit setting.

Even if a parity error (ASISn.PEn bit = 1) or framing error (ASISn.FEn bit = 1) occurs during a reception operation, the receive operation continues until stop bit is received, and after reception is completed, either the INTSRn signal or the INTSREn signal is generated according to the ISRMn bit setting (the receive data within the receive shift register is transferred to the RXBn register).

If the RXEn bit is cleared (0) during a receive operation, the receive operation is immediately stopped. The contents of the RXBn register and the ASISn register at this time do not change, and the INTSRn signal or the INTSREn signal is not generated.

The INTSRn signal or the INTSREn signal is not generated when the RXEn bit = 0 (reception is disabled).

Figure 16-8. UARTn Reception Completion Interrupt Timing

t4U.com

16.6.5 Reception error

The three types of errors that can occur during a receive operation are a parity error, framing error, and overrun error. As a result of data reception, the various flags of the ASISh register are set (1), and a reception error interrupt request signal (INTSREn) or a reception completion interrupt request signal (INTSREn) is generated at the same time. The ASIMn.ISRMn bit specifies whether the INTSREn signal or the INTSRn signal is generated.

The type of error that occurred during reception can be detected by reading the contents of the ASISn register during the INTSREn or INTSRn interrupt servicing.

The contents of the ASISn register are cleared (0) by reading the ASISn register.

Table 16-3.	Reception	Error	Causes
-------------	-----------	-------	--------

Error Flag	Reception Error	Cause
PEn	Parity error	The parity specification during transmission did not match the parity of the reception data
FEn	Framing error	No stop bit was detected
OVEn	Overrun error	The reception of the next data was completed before data was read from the RXBn register

(1) Separation of reception error interrupt request signal

A reception error interrupt request signal can be separated from the INTSRn signal and generated as the INTSREn signal by clearing the ISRMn bit to 0.

Figure 16-9. When Reception Error Interrupt Request Signal Is Separated from INTSRn Signal (ISRMn Bit = 0)

(a) N	o error occurs during reception	(b) An error occurs during reception
INTSRn signal (Reception con interrupt)	npletion	INTSRn signal (Reception completion INTSRn interrupt) does not occur
INTSREn signa (Reception erro interrupt)		INTSREn signal (Reception error interrupt)

Figure 16-10. When Reception Error Interrupt Request Signal Is Included in INTSRn Signal (ISRMn Bit = 1)

(a) No error occurs during recep	tion (b) An error occurs during reception
INTSRn signal (Reception completion Dat interrupt)	INTSRn signal taSheet4U(Reception completion
INTSREn signal (Reception error interrupt)	INTSREn signal (Reception error interrupt) does not occu

DataShe

et4U.com

16.6.6 Parity types and corresponding operation

A parity bit is used to detect a bit error in communication data. Normally, the same type of parity bit is used on the transmission and reception sides.

(1) Even parity

(i) During transmission

The parity bit is controlled so that the number of bits with the value "1" within the transmit data including the parity bit is even. The parity bit value is as follows.

- If the number of bits with the value "1" within the transmit data is odd: 1
- If the number of bits with the value "1" within the transmit data is even: 0

(ii) During reception

The number of bits with the value "1" within the receive data including the parity bit is counted, and a parity error is generated if this number is odd.

(2) Odd parity

(i) During transmission

In contrast to even parity, the parity bit is controlled so that the number of bits with the value "1" within the transmit data including the parity bit is odd. The parity bit value is as follows.

et4U.com

DataShe

www.DataSheet4U.com

- If the number of bits with the value "1" within the transmit data is odd: 0
- If the number of bits with the value "1" within the transmit data is even: 1

(ii) During reception

The number of bits with the value "1" within the receive data including the parity bit is counted, and a parity error is generated if this number is even.

(3) 0 parity

During transmission the parity bit is set to "0" regardless of the transmit data.

During reception, no parity bit check is performed. Therefore, no parity error is generated regardless of whether the parity bit is "0" or "1".

(4) No parity

No parity bit is added to the transmit data.

During reception, the receive operation is performed as if there were no parity bit. Since there is no parity bit, no parity error is generated.

16.6.7 Receive data noise filter

The RXDn signal is sampled at the rising edge of the prescaler output base clock (fuclk). If the same sampling value is obtained twice, the match detector output changes, and this output is sampled as input data. Therefore, data not exceeding one clock width is judged to be noise and is not delivered to the internal circuit (refer to **Figure 16-12**). Refer to **16.7.1 (1) Base clock** regarding the base clock.

Also, since the circuit is configured as shown in Figure 16-11, internal processing during a receive operation is delayed by up to 2 clocks according to the external signal status.

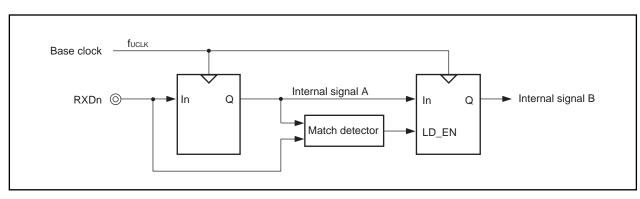


Figure 16-12. Timing of RXDn Signal Judged as Noise

Figure 16-11. Noise Filter Circuit

DataSher Base clock RXDn (input) Internal signal A Internal signal B Internal signal B Match Match Mismatch (judged as noise) Match
et4U.com

16.6.8 SBF transmission/reception (UART0 only)

The UART0 of the V850ES/KG1+ has an SBF (Sync Break Field) transmission/reception control function to enable use of the LIN function.

Remark LIN stands for Local Interconnect Network and is a low-speed (1 to 20 kbps) serial communication protocol intended to aid the cost reduction of an automotive network.

LIN communication is single-master communication, and up to 15 slaves can be connected to one master.

The LIN slaves are used to control the switches, actuators, and sensors, and these are connected to the LIN master via the LIN network.

Normally, the LIN master is connected to a network such as CAN (Controller Area Network).

In addition, the LIN bus uses a single-wire method and is connected to the nodes via a transceiver that complies with ISO9141.

In the LIN protocol, the master transmits a frame with baud rate information and the slave receives it and corrects the baud rate error. Therefore, communication is possible when the baud rate error in the slave is $\pm 15\%$ or less.

(1) SBF transmission/reception format

Figures 16-13 and 16-14 outline the transmission and reception manipulations of LIN.

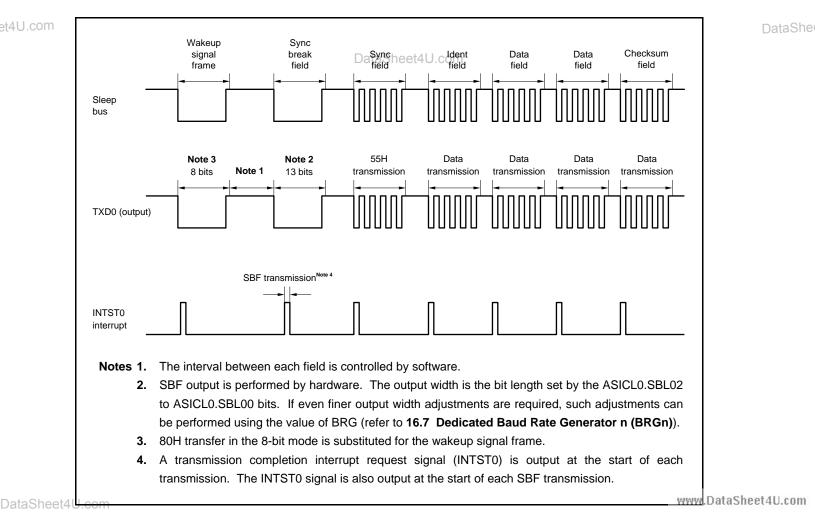
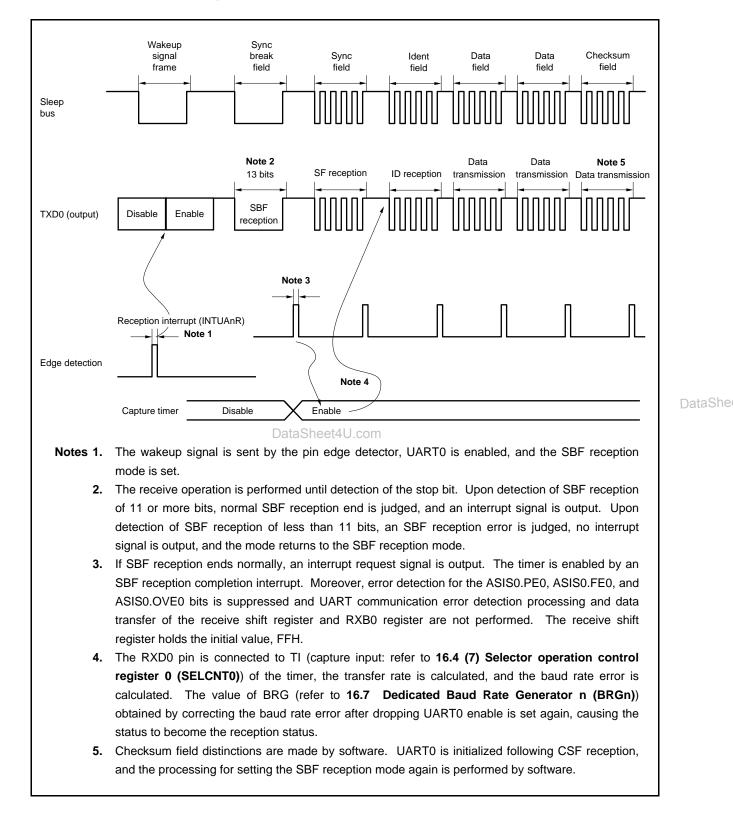
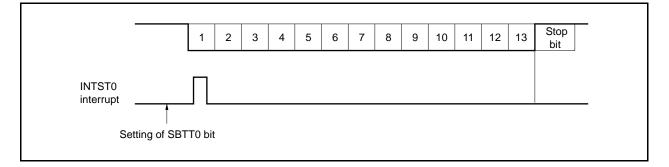



Figure 16-13. LIN Transmission Manipulation Outline

2(40.0011


(2) SBF transmission

When the ASIMO.UARTE0 bit = ASIMO.TXE0 bit = 1, the transmission enabled status is entered, and SBF transmission is started by setting the SBF transmission trigger (ASICL0.SBRT0 bit) to 1.

Thereafter, a low-level width of bits 13 to 20 specified by the ASICL0.SBL02 to ASICL0.SBL00 bits is output. A transmission completion interrupt request signal (INTST0) is generated upon SBF transmission start. Following the end of SBF transmission, the ASICL0.SBTT0 bit is automatically cleared to 0. Thereafter, the UART transmission mode is restored.

Transmission is suspended until the data to be transmitted next is written to the TXB0 register, or until the SBF transmission trigger (SBTT0 bit) is set to 1.

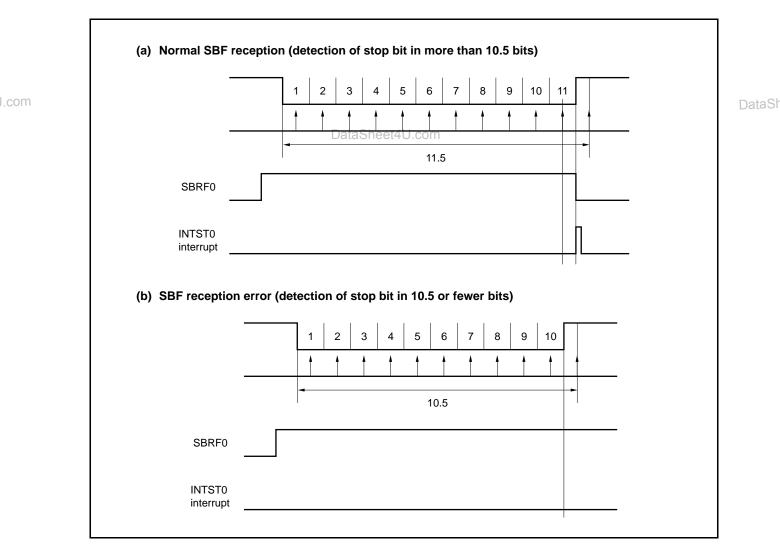
Figure 16-15. SBF Transmission

et4U.com

DataShe

DataSheet4U.com

(3) SBF reception


The reception enabled status is achieved by setting the ASIM0.UARTE0 bit to 1 and then setting the ASIM0.RXE0 bit to 1.

The SBF reception wait status is set by setting the SBF reception trigger (ASICL0.SBRT0 bit) to 1.

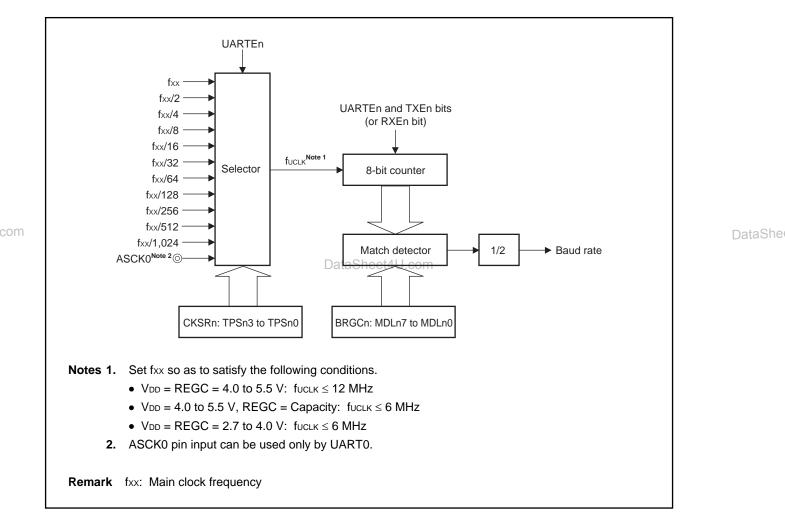
In the SBF reception wait status, similarly to the UART reception wait status, the RXD0 pin is monitored and start bit detection is performed.

Following detection of the start bit, reception is started and the internal counter counts up according to the set baud rate.

When a stop bit is received, if the SBF width is 11 or more bits, normal processing is judged and a reception completion interrupt request signal (INTSR0) is output. The ASICL0.SBRF0 bit is automatically cleared and SBF reception ends. Error detection for the ASIS0.PE0, ASIS0.FE0, and ASIS0.OVE0 bits is suppressed and UART communication error detection processing is not performed. Moreover, data transfer of the reception shift register and RXB0 register is not performed and FFH, the initial value, is held. If the SBF width is 10 or fewer bits, reception is terminated as error processing without outputting an interrupt, and the SBF reception mode is returned to. The ASICL0.SBRF0 bit is not cleared at this time.

Figure 16-16. SBF Reception

DataSheet4U.com


www.DataSheet4U.com

16.7 Dedicated Baud Rate Generator n (BRGn)

A dedicated baud rate generator, which consists of a source clock selector and an 8-bit programmable counter, generates serial clocks during transmission/reception by UARTn. The dedicated baud rate generator output can be selected as the serial clock for each channel.

Separate 8-bit counters exist for transmission and for reception.

16.7.1 Baud rate generator n (BRGn) configuration

(1) Base clock

When the ASIMn.UARTEn bit = 1, the clock selected according to the CKSRn.TPSn3 to CKSRn.TPSn0 bits is supplied to the transmission/reception unit. This clock is called the base clock (f_{UCLK}). When the UARTEn bit = 0, f_{UCLK} is fixed to low level.

16.7.2 Serial clock generation

A serial clock can be generated according to the settings of the CKSRn and BRGCn registers. The base clock to the 8-bit counter is selected by the CKSRn.TPSn3 to CKSRn.TPSn0 bits. The 8-bit counter divisor value can be set by the BRGCn.MDLn7 to BRGCn.MDLn0 bits.

(1) Clock select register n (CKSRn)

The CKSRn register is an 8-bit register for selecting the basic block using the TPSn3 to TPSn0 bits. The clock selected by the TPSn3 to TPSn0 bits becomes the base clock (f_{UCLK}) of the transmission/reception module.

This register can be read or written in 8-bit units.

After reset, CKSRn is cleared to 00H.

Caution Clear the ASIMn.UARTEn bit to 0 before rewriting the TPSn3 to TPSn0 bits.

	7	· 6	6 t	4	3	2	1	0	
CKS	Rn 0) () (0	TPSn3	TPSn2	TPSn1	TPSn0	
(n = 0	to 2)								
TPSn3	TPSn2	TPSn1	TPSn0			Base clo	ck (fuclk) ^{Note}	1	 7
0	0	0	0	fxx					
0	0	0	1	fxx/2					
0	0	1	0	DataShee	t4U.com				 1
0	0	1	1	fxx/8]
0	1	0	0	fxx/16]
0	1	0	1	fxx/32					
0	1	1	0	fxx/64					
0	1	1	1	fxx/128					
1	0	0	0	fxx/256					
1	0	0	1	fxx/512					
1	0	1	0	fxx/1,024					
1	0	1	1	External cloc	k ^{Note 2} (ASCK	0 pin)			
	Other th	an above		Setting prohil	oited				
Notes 1	Set fuclk	so as to s	atisfy the fo	llowing conditi	ons.				
			0 to 5.5 V:		≤ 12 MHz				
				Capacity: fuclk					
2			7 to 4.0 V:	tuclk used only by נ	≤6 MHz				
Ζ.				is prohibited.	JAKTU.				
	Setting C			is promoted.					

et4U.com

(2) Baud rate generator control register n (BRGCn)

The BRGCn register is an 8-bit register that controls the baud rate (serial transfer speed) of UARTn. This register can be read or written in 8-bit units. After reset, BRGCn is set to FFH.

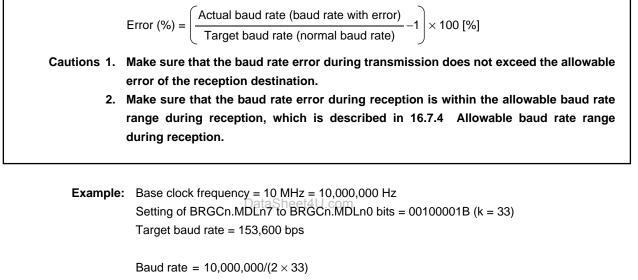
Caution If the MDLn7 to MDLn0 bits are to be overwritten, the ASIMn.TXEn and ASIMn.RXEn bits should be cleared to 0 first.

	7	6	5		4	3	2	1	0
BRGCn	MDLn7	MDLn6	MDL	.n5 M	DLn4	MDLn3	MDLn	2 MDLn1	MDLn0
(n = 0 to 2)			·	·				·	
MDL	n7 MDLn6	MDLn5	MDLn4	MDLn3	MDLn2	MDLn1	MDLn0	Set value (k)	Serial clock
0	0	0	0	0	×	×	×	Ι	Setting prohibited
0	0	0	0	1	0	0	0	8	fuclk/8
0	0	0	0	1	0	0	1	9	fuclk/9
0	0	0	0	1	0	1	0	10	fuclk/10
:	:	:	:	:	:	:	:	÷	:
1	1	1	1	1	0	1	0	250	fuclk/250
1	1	1	1	1	0 DataS	1 boot41	1	251	fuclk/251
1	1	1	1	1	1	0	0	252	fuclk/252
1	1	1	1	1	1	0	1	253	fuclk/253
1	1	1	1	1	1	1	0	254	fuclk/254
1	1	1	1	1	1	1	1	255	fuclк/255

DataShe

www.DataSheet4U.com

(3) Baud rate


The baud rate is the value obtained by the following formula.

Baud rate [bps] =
$$\frac{f_{UCLK}}{2 \times k}$$

 f_{UCLK} = Frequency [Hz] of base clock selected by CKSRn.TPSn3 to CKSRn.TPSn0 bits k = Value set by BRGCn.MDLn7 to BRGCn.MDLn0 bits (k = 8, 9, 10, ..., 255)

(4) Baud rate error

The baud rate error is obtained by the following formula.

= 151,515 [bps]

Error = (151,515/153,600 - 1) × 100 = -1.357 [%]

et4U.com

477

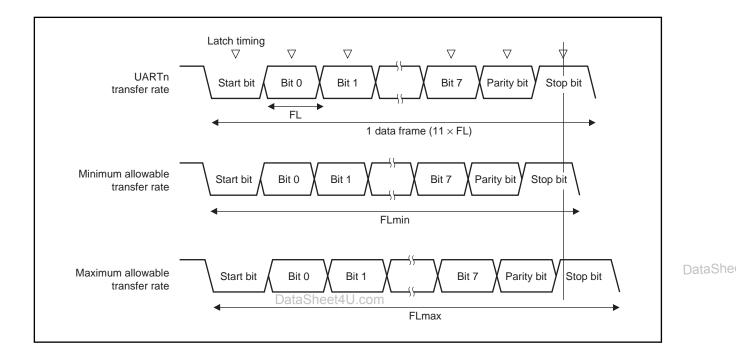
16.7.3 Baud rate setting example

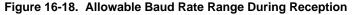
Baud Rate	1	fxx = 20 MHz	2	1	fxx = 16 MHz	2		fxx = 10 MHz	<u>.</u>
(bps)	fuclk	k	ERR	fuclk	k	ERR	fuclk	k	ERR
300	fxx/512	41H (65)	0.16	fxx/1024	1AH (26)	0.16	fxx/256	41H (65)	0.16
600	fxx/256	41H (65)	0.16	fxx/1024	0DH (13)	0.16	fxx/128	41H (65)	0.16
1200	fxx/128	41H (65)	0.16	fxx/512	0DH (13)	0.16	fxx/64	41H (65)	0.16
2400	fxx/64	41H (65)	0.16	fxx/256	0DH (13)	0.16	fxx/32	41H (65)	0.16
4800	fxx/32	41H (65)	0.16	fxx/128	0DH (13)	0.16	fxx/16	41H (65)	0.16
9600	fxx/16	41H (65)	0.16	fxx/64	0DH (13)	0.16	fxx/8	41H (65)	0.16
10400	fxx/64	0FH (15)	0.16	fxx/64	0CH (12)	0.16	fxx/32	0FH (15)	0.16
19200	fxx/8	41H (65)	0.16	fxx/32	0DH (13)	0.16	fxx/4	41H (65)	0.16
24000	fxx/32	0DH (13)	0.16	fxx/2	A7H (167)	-0.20	fxx/16	0DH (13)	0.16
31250	fxx/32	0AH (10)	0.00	fxx/32	08H (8)	0.00	fxx/16	0AH (10)	0
33600	fxx/2	95H (149)	-0.13	fxx/2	77H (119)	0.04	fxx	95H (149)	-0.13
38400	fxx/4	41H (65)	0.16	fxx/16	0DH (13)	0.16	fxx/2	41H (65)	0.16
48000	fxx/16	0DH (13)	0.16	fxx/2	53H (83)	0.40	fxx/8	0DH (13)	0.16
56000	fxx/2	59H (89)	0.32	fxx/2	47H (71)	0.60	fxx	59H (89)	0.32
62500	fxx/16	0AH (10)	0.00	fxx/16	08H (8)	0.00	fxx/8	0AH (10)	0.00
76800	fxx/2	41H (65)	0.16	fxx/8	0DH (13)	0.16	fxx	41H (65)	0.16
115200	fxx/2	2BH (43)	0.94	fxx/2	23H (35)	-0.79	fxx	2BH (43)	0.94
153600	fxx/2	21H (33)	-1.36	fxx/4	0DH (13)	0.16	fxx	21H (33)	-1.36
312500	fxx/4	08H (8)	0	fxx/2	0DH (13)	-1.54	fxx/2	08H (8)	0.00

Table 16-4. Baud Rate Generator Setting Data

et4U.com

Caution The allowable frequency of the base clock (fuclk) is as follows.


• VDD = REGC = 4.0 to 5.5 V:	fuclк ≤ 12 MHz
• VDD = 4.0 to 5.5 V, REGC = Capacity:	fuc∟к ≤ 6 MHz


- VDD = REGC = 2.7 to 4.0 V: fuc∟к **≤ 6 MHz**
- Remark fxx: Main clock frequency
 - fuclk: Base clock frequency
 - k: Set values of BRGCn.MDLn7 to BRGCn.MDLn0 bits
 - ERR: Baud rate error [%]
 - n = 0 to 2

16.7.4 Allowable baud rate range during reception

The degree to which a discrepancy from the transmission destination's baud rate is allowed during reception is shown below.

Caution The equations described below should be used to set the baud rate error during reception so that it always is within the allowable error range.

As shown in Figure 16-18, after the start bit is detected, the receive data latch timing is determined according to the counter that was set by the BRGCn register. If all data up to the final data (stop bit) is in time for this latch timing, the data can be received normally.

If this is applied to 11-bit reception, the following is theoretically true.

 $FL = (Brate)^{-1}$

Brate: UARTn baud rate

- k: BRGCn register set value
- FL: 1-bit data length

When the latch timing margin is 2 base clocks, the minimum allowable transfer rate (FLmin) is as follows.

$$FLmin = 11 \times FL - \frac{k-2}{2k} \times FL = \frac{21k+2}{2k} FL$$

DataSheet4U.com

et4U.com

www.DataSheet4U.com

Therefore, the transfer destination's maximum receivable baud rate (BRmax) is as follows.

BRmax =
$$(FLmin/11)^{-1} = \frac{22k}{21k+2}$$
 Brate

Similarly, the maximum allowable transfer rate (FLmax) can be obtained as follows.

$$\frac{10}{11} \times FLmax = 11 \times FL - \frac{k+2}{2 \times k} \times FL = \frac{21k-2}{2 \times k} FL$$
$$FLmax = \frac{21k-2}{20k} FL \times 11$$

Therefore, the transfer destination's minimum receivable baud rate (BRmin) is as follows.

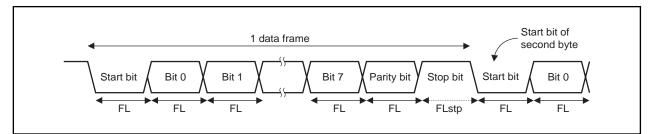
BRmin =
$$(FLmax/11)^{-1} = \frac{20k}{21k - 2}$$
 Brate

The allowable baud rate error of UARTn and the transfer destination can be obtained as follows from the expressions described above for computing the minimum and maximum baud rate values.

et4U.com

Table 16-5. Maximum and Minimum Allowable Baud Rate Error

Division Ratio (k)	Maximum Allowable U. Baud Rate Error	OMMinimum Allowable Baud Rate Error
8	+3.53%	-3.61%
20	+4.26%	-4.31%
50	+4.56%	-4.58%
100	+4.66%	-4.67%
255	+4.72%	-4.73%


- Remarks 1. The reception precision depends on the number of bits in one frame, the base clock frequency, and the division ratio (k). The higher the base clock frequency and the larger the division ratio (k), the higher the precision.
 - 2. k: BRGCn register set value

DataShe

16.7.5 Transfer rate during continuous transmission

During continuous transmission, the transfer rate from a stop bit to the next start bit is extended two clocks of the base clock longer than normal. However, on the reception side, the transfer result is not affected since the timing is initialized by the detection of the start bit.

Representing the 1-bit data length by FL, the stop bit length by FLstp, and the base clock frequency by fuclk yields the following equation.

FLstp = FL + 2/fuclk

Therefore, the transfer rate during continuous transmission is as follows (when the stop bit length = 1).

t4U.com

Transfer rate = $11 \times FL + (2/fUCLK)$

DataShe

16.8 Cautions

DataSheet4U.com

Cautions to be observed when using UARTn are shown below.

- (1) When the supply of clocks to UARTn is stopped (for example, in IDLE or STOP mode), operation stops with each register retaining the value it had immediately before the supply of clocks was stopped. The TXDn pin output also holds and outputs the value it had immediately before the supply of clocks was stopped. However, operation is not guaranteed after the supply of clocks is restarted. Therefore, after the supply of clocks is restarted, the circuits should be initialized by clearing the ASIMn.UARTEn, ASIMn.RXEn, and ASIMn.TXEn bits to 000.
- (2) UARTn has a 2-stage buffer configuration consisting of the TXBn register and the transmission shift register, and has status flags (ASIFn.TXBFn and ASIFn.TXSFn bits) that indicate the status of each buffer. If the TXBFn and TXSFn bits are read in continuous transmission, the value changes 10 → 11 → 01. For the timing to write the next data to the TXBn register, read only the TXBFn bit during continuous transmission.

CHAPTER 17 CLOCKED SERIAL INTERFACE 0 (CSI0)

In the V850ES/KG1+, two channels of clocked serial interface 0 (CSI0) are provided.

17.1 Features

- Maximum transfer speed: 5 Mbps
- Master mode/slave mode selectable
- Transmission data length: 8 bits or 16 bits can be set
- MSB/LSB-first selectable for transfer data
- Eight clock signals can be selected (7 master clocks and 1 slave clock)
- 3-wire type SOOn: Serial transmit data output
 - SIOn: Serial receive data input
 - SCK0n: Serial clock I/O
- Interrupt sources: 1 type

Remark n = 0, 1

- Transmission/reception completion interrupt request signal (INTCSI0n)
- Transmission/reception mode or reception-only mode selectable
- Two transmission buffer registers (SOTBFn/SOTBFLn, SOTBn/SOTBLn) and two reception buffer registers (SIRBn/SIRBLn, SIRBEn/SIRBELn) are provided on chip
- Single transfer mode/continuous transfer mode selectable

t4U.com

DataSheet4U.com

17.2 Configuration

CSI0n is controlled via the CSIM0n register.

(1) Clocked serial interface mode register 0n (CSIM0n)

The CSIM0n register is an 8-bit register that specifies the operation of CSI0n.

(2) Clocked serial interface clock selection register n (CSICn)

The CSICn register is an 8-bit register that controls the CSI0n serial transfer operation.

(3) Serial I/O shift register 0n (SIO0n)

The SIO0n register is a 16-bit shift register that converts parallel data into serial data. The SIO0n register is used for both transmission and reception. Data is shifted in (reception) and shifted out (transmission) from the MSB or LSB side. The actual transmission/reception operations are started up by accessing the buffer register.

(4) Serial I/O shift register 0nL (SIO0nL)

The SIO0nL register is an 8-bit shift register that converts parallel data into serial data. The SIO0nL register is used for both transmission and reception. Data is shifted in (reception) and shifted out (transmission) from the MSB or LSB side. The actual transmission/reception operations are started up by access of the buffer register .

(5) Clocked serial interface receive buffer register n (SIRBn)

The SIRBn register is a 16-bit buffer register that stores receive data.

(6) Clocked serial interface receive buffer register nL (SIRBnL) The SIRBnL register is an 8-bit buffer register that stores receive data.

(7) Clocked serial interface read-only receive buffer register n (SIRBEn)

The SIRBEn register is a 16-bit buffer register that stores receive data. The SIRBEn register is the same as the SIRBn register. It is used to read the contents of the SIRBn register.

(8) Clocked serial interface read-only receive buffer register nL (SIRBEnL)

The SIRBEnL register is an 8-bit buffer register that stores receive data. The SIRBEnL register is the same as the SIRBnL register. It is used to read the contents of the SIRBnL register.

(9) Clocked serial interface transmit buffer register n (SOTBn)

The SOTBn register is a 16-bit buffer register that stores transmit data.

(10) Clocked serial interface transmit buffer register nL (SOTBLnL)

The SOTBnL register is an 8-bit buffer register that stores transmit data.

(11) Clocked serial interface initial transmit buffer register n (SOTBFn)

The SOTBFn register is a 16-bit buffer register that stores the initial transmit data in the continuous transfer mode.

(12) Clocked serial interface initial transmit buffer register nL (SOTBFnL)

The SOTBFnL register is an 8-bit buffer register that stores initial transmit data in the continuous transfer mode.

(13) Selector

The selector selects the serial clock to be used.

(14) Serial clock controller

Controls the serial clock supply to the shift register. Also controls the clock output to the SCK0n pin when the internal clock is used.

(15) Serial clock counter

Counts the serial clock output or input during transmission/reception, and checks whether 8-bit or 16-bit data transmission/reception has been performed.

(16) Interrupt controller

Controls the interrupt request timing.

Remark n = 0, 1

et4U.com

DataSheet4U.com

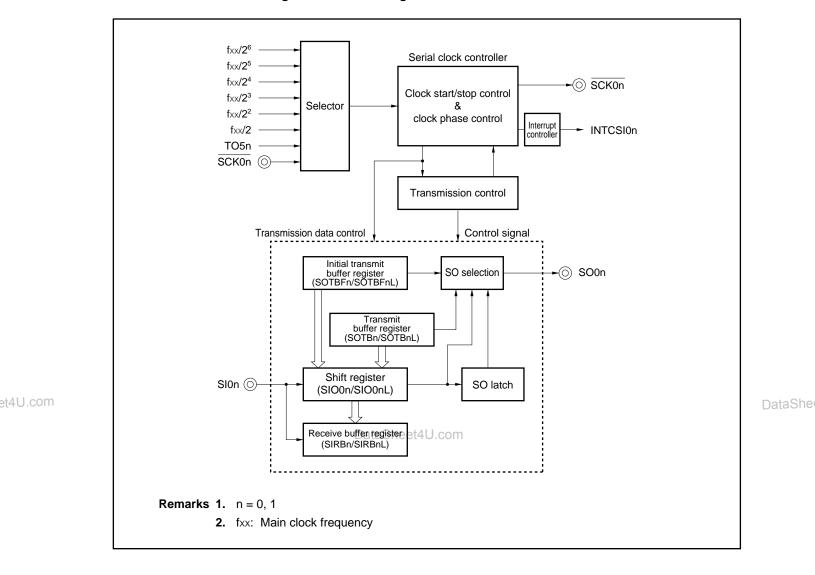


Figure 17-1. Block Diagram of Clocked Serial Interface

17.3 Registers

(1) Clocked serial interface mode register 0n (CSIM0n)

The CSIM0n register controls the CSI0n operation. This register can be read or written in 8-bit or 1-bit units (however, CSOTn bit is read-only). After reset, CSIM0n is cleared to 00H.

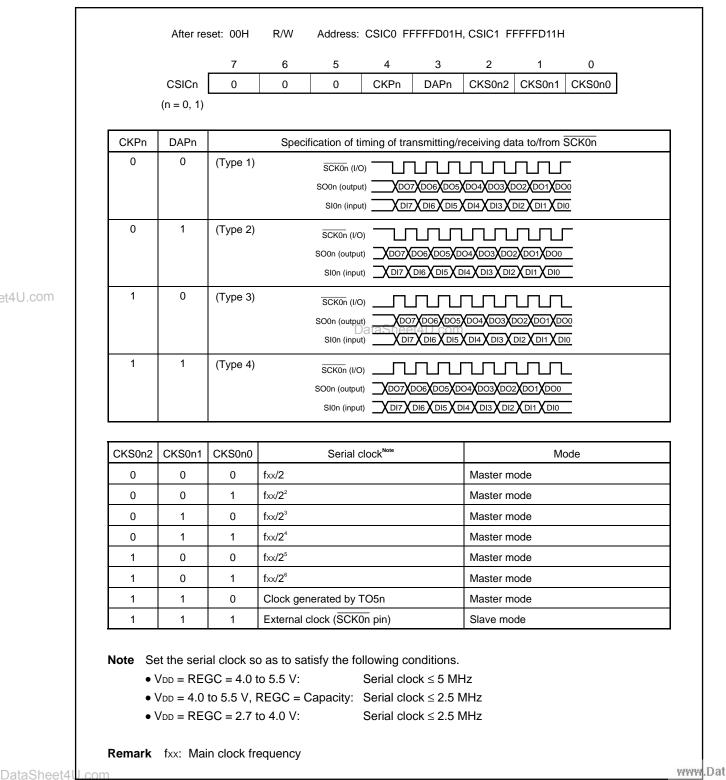
Caution Overwriting the TRMDn, CCLn, DIRn, CSITn, and AUTOn bits can be done only when the CSOTn bit = 0. If these bits are overwritten when the CSOTn bit = 1, the operation cannot be guaranteed.

et4U.com

DataSheet4U.com

www.DataSheet4U.com

DataShe


CHAPTER 17 CLOCKED SERIAL INTERFACE 0 (CSI0)

	<7> <6> 5 <4> 3 2 1 <0>
	CSIM0n CSI0En TRMDn CCLn DIRn CSITn AUTOn 0 CSOTn (n = 0, 1)
CSI0En	CSI0n operation enable/disable
0	Disable CSI0n operation.
1	Enable CSI0n operation.
	rnal CSI0n circuit can be reset ^{№ee} asynchronously by clearing the CSI0En bit to 0. For the SCK0n and SO0n ut status when the CSI0En bit = 0, refer to 17.5 Output Pins .
TRMDn	Specification of transmission/reception mode
0	Receive-only mode
1	Transmission/reception mode
reading	 a TRMDn bit = 0, reception is performed and the SO0n pin outputs a low level. Data reception is started by the SIRBn register. be TRMDn bit = 1, transmission/reception is started by writing data to the SOTBn register.
CCLn	Specification of data length
0	8 bits
1	16 bits
	DataSneet4U.com
DIRn	Specification of transfer direction mode (MSB/LSB)
0	First bit of transfer data is MSB
1	First bit of transfer data is LSB
CSITn	Control of delay of interrupt request signal
0	No delay
	Delay mode (interrupt request signal is delayed 1/2 cycle compared to the serial clock)
1	ay mode (CSITn bit = 1) is valid only in the master mode (CSICn.CKS0n2 to CSICn.CSK0n0 bits are not
The dela	In the slave mode (CKS0n2 to CKS0n0 bits are 111B), do not set the delay mode.
The dela	
The dela 111B).	In the slave mode (CKS0n2 to CKS0n0 bits are 111B), do not set the delay mode.
The dela 111B). AUTOn	In the slave mode (CKS0n2 to CKS0n0 bits are 111B), do not set the delay mode. Specification of single transfer mode or continuous transfer mode
The dela 111B). AUTOn 0	In the slave mode (CKS0n2 to CKS0n0 bits are 111B), do not set the delay mode. Specification of single transfer mode or continuous transfer mode Single transfer mode
The dela 111B). AUTOn 0 1	In the slave mode (CKS0n2 to CKS0n0 bits are 111B), do not set the delay mode. Specification of single transfer mode or continuous transfer mode Single transfer mode Continuous mode
The dela 111B). AUTOn 0 1 CSOTn	In the slave mode (CKS0n2 to CKS0n0 bits are 111B), do not set the delay mode. Specification of single transfer mode or continuous transfer mode Single transfer mode Continuous mode
The dela 111B). AUTOn 0 1 CSOTn 0 1	In the slave mode (CKS0n2 to CKS0n0 bits are 111B), do not set the delay mode. Specification of single transfer mode or continuous transfer mode Single transfer mode Continuous mode Communication status flag Communication stopped
The dela 111B). AUTOn 0 1 CSOTn 0 1 The CS	In the slave mode (CKS0n2 to CKS0n0 bits are 111B), do not set the delay mode. Specification of single transfer mode or continuous transfer mode Single transfer mode Continuous mode Communication status flag Communication stopped Communication in progress

DataSheet4U.com

(2) Clocked serial interface clock selection register n (CSICn)

The CSICn register is an 8-bit register that controls the CSI0n transfer operation. This register can be read or written in 8-bit or 1-bit units. After reset, CSICn is cleared to 00H.

et4U.com

488

www.DataSheet4U.com

(3) Clocked serial interface receive buffer registers n, nL (SIRBn, SIRBnL)

The SIRBn register is a 16-bit buffer register that stores receive data.

When the receive-only mode is set (CSIM0n.TRMDn bit = 0), the reception operation is started by reading data from the SIRBn register.

This register is read-only in 16-bit units. When the lower 8 bits are used as the SIRBnL register, this register is read-only in 8-bit units.

In addition to reset input, this register is also cleared to 0000H by clearing (0) the CSIM0n.CSI0En bit.

Cautions 1. Read the SIRBn register only when a 16-bit data length has been set (CSIM0n.CCLn bit = 1).

Read the SIRBnL register only when an 8-bit data length has been set (CCLn bit = 0).

2. When the single transfer mode has been set (CSIM0n.AUTOn bit = 0), perform a read operation only in the idle state (CSIM0n.CSOTn bit = 0). If the SIRBn or SIRBnL register is read during data transfer, the data cannot be guaranteed.

After re	set: 0	000H	ł	R	Addr	ress:	SIRB	0 FF	FFFD	02H,	SIRE	31 FF	FFFC	012H		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SIRBn	SIRBn	SIRBn	SIRBn	SIRBn	SIRBn	SIRBn	SIRBn	SIRBn	SIRBn	SIRBn	SIRBn	SIRBn	SIRBn	SIRBn	SIRBn	SIRBn
(4.5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
(n = 0, 1)	15 regist		13	12		-			com	0	5	-	0	2		0
n = 0, 1) SIRBnL ı After res	regist	er)H	R 6	Ac		ataS :: SIR	Sheet	4U.		2H, SI	-	_ FFF	-	12H	0	

et4U.com

(4) Clocked serial interface read-only receive buffer registers n, nL (SIRBEn, SIRBEnL)

The SIRBEn register is a 16-bit buffer register that stores receive data.

The SIRBEn register is the same as the SIRBn register. Even if the SIRBEn register is read, the next operation will not start. The SIRBEn register is used to read the contents of the SIRBn register when the serial reception is not continued.

This register is read-only in 16-bit units. However, when the lower 8 bits are used as the SIRBEnL register, the register is read-only in 8-bit units.

In addition to reset input, this register is also cleared to 0000H by clearing (0) the CSIM0n.CSI0En bit.

Cautions 1. The receive operation is not started even if data is read from the SIRBEn and SIRBEnL registers.

2. The SIRBEn register can be read only if a 16-bit data length has been set (CSIM0n.CCLn bit = 1).

The SIRBEnL register can be read only if an 8-bit data length has been set (CCLn bit = 0).

	After re	eset: 00	000H	R	A	ddress	: SIRI	BE0 F	FFFF	D06H,	SIRBE	E1 FF	FFFD	16H			
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBE
	(n = 0, 1)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
(b)	, · · ,				12					com		5	-	3	2	1	0
(b)	SIRBEnL After re	regis	ter	R			Dat	aShe	et4U						2		0
(b)	SIRBEnL	regis	ter DH				Dat	aShe	et4U		1				I		0

DataShe

www.DataSheet4U.com

(5) Clocked serial interface transmit buffer registers n, nL (SOTBn, SOTBnL)

The SOTBn register is a 16-bit buffer register that stores transmit data.

When the transmission/reception mode is set (CSIM0n.TRMDn bit = 1), the transmission operation is started by writing data to the SOTBn register.

This register can be read or written in 16-bit units. However, when the lower 8 bits are used as the SOTBnL register, the register can be read or written in 8-bit units.

After reset, this register is cleared to 0000H.

Cautions 1. Access the SOTBn register only when a 16-bit data length has been set (CSIM0n.CCLn bit = 1).

Access the SOTBnL register only when an 8-bit data length has been set (CCLn bit = 0).

 When the single transfer mode is set (CSIM0n.AUTOn bit = 0), perform access only in the idle state (CSIM0n.CSOTn bit = 0). If the SOTBn and SOTBnL registers are accessed during data transfer, the data cannot be guaranteed.

		egiste	r														
	After re	set: 00	000H	R/V	V .	Addres	s: SO	TB0 F	FFFF	D04H,	SOTB	1 FFF	FFD14	ιH			
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	C
	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBr	SOTBn	SOTBn	SOTBr	SOT
((n = 0, 1)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
(b) \$	SOTBnL I	•		R/W			heet4		om FFFFD	04H, \$	SOTB1	L FFF	FFD1	4H			
(b) \$		•	0H	R/W 6				30L F		04H, \$	SOTB1 2	L FFF 1		4H 0			
		eset: 0	0H ,		Ac	dress:	SOTE 4	30L F	FFFFD	-					0		

(6) Clocked serial interface initial transmit buffer registers n, nL (SOTBFn, SOTBFnL)

The SOTBFn register is a 16-bit buffer register that stores initial transmission data in the continuous transfer mode.

The transmission operation is not started even if data is written to the SOTBFn register.

This register can be read or written in 16-bit units. However, when the lower 8 bits are used as the SOTBFnL register, the register can be read or written in 8-bit units.

After reset, this register is cleared to 0000H.

Caution Access the SOTBFn register and SOTBFnL register only when a 16-bit data length has been set (CSIM0n.CCLn bit = 1), and only when an 8-bit data length has been set (CCLn bit = 0), respectively, and only in the idle state (CSIM0n.CSOTn bit = 0). If the SOTBFn and SOTBFnL registers are accessed during data transfer, the data cannot be guaranteed.

After re	eset: 0	000H	R/	W	Addre	ess: S	OTBF	0 FFF	FFD08	BH, SC	DTBF1	FFFF	FD18	Н		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTB
			1													
(n = 0, 1)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
b) SOTBFn		ster	13 R/W		11 Addres	-	-	_	7 FD08 .com	-				<u> </u>	1	0
b) SOTBFn	L regis	ster				s: so	-	_	.com	-			FFD18	<u> </u>	1	0

DataShe

www.DataSheet4U.com

et4U.com

(7) Serial I/O shift registers n, nL (SIO0n, SIO0nL)

The SIO0n register is a 16-bit shift register that converts parallel data into serial data. The transfer operation is not started even if the SIO0n register is read. This register is read-only in 16-bit units. However, when the lower 8 bits are used as the SIO0nL register, the register is read-only in 8-bit units.

In addition to reset input, this register is also cleared to 0000H by clearing (0) the CSIM0n.CSI0En bit.

Caution Read the SIO0n register and SIO0nL register only when a 16-bit data length has been set (CSIM0n.CCLn bit = 1), and only when an 8-bit data length has been set (CCLn bit = 0), respectively, and only in the idle state (CSIM0n.CSOTn bit = 0). If the SIO0n and SIO0nL registers are read during data transfer, the data cannot be guaranteed.

Aft	er reset:	0000H		R	Addres	s: SIO	00 FF	FFFFD	0AH,	SIO01	FFFI	FFD1A	Η			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SIO0n	SIOn15	SIOn14	SIOn13	SIOn12	SIOn11	SIOn10	SIOn9			SIOn6	SIOn5	SIOn4	SIOn3	SIOn2	SIOn1	SIOn0
(n = 0, 1)																
) SIO0nL			R	Addre	ess: Sl	O00L	FFFF	FD0AH	I, SIO	001L F	FFFFI	D1AH				
) SIO0nL	registe	DН	R 6	Addre		O00∟ Shee t 4			I, SIO	001L F 2	FFFFI	D1AH 1	0			

et4U.com

\leq
_
<
2
<u> </u>
\Box
Q
<u></u>
Q
S
<u> </u>
_
Φ
Ð
<u>_</u>
4
<u> </u>
0
-
\sim
\supset

Table 17-1. Use of Each Buffer Register						
Register Name	R/W		Single Transfer		Continuous Transfer ^{Note 1}	
			Transmission/Reception Mode	Receive-Only Mode	Transmission/Reception Mode	Receive-Only Mode
SIRBn (SIRBnL)	Read	Function	Storing received data ^{Note 2}	Reading starts receptionStoring received data	Storing up to the $(N - 1)$ th received data (other than the last) ^{Note 2}	 Reading starts reception Storing up to the (N – 2)th data (other than the last two)
		Use method	When transmission and reception are complete, read the received data from this register.	 First, read dummy data and start transfer. To perform reception of the next data after reception is complete, read the received data from this register. 	When reception is complete, read the received data from this register. Repeat this operation until the (N – 1)th data has been received.	When reception is complete, read the received data from this register. Repeat this operation until the $(N - 2)$ th data has been received. (Supplement) Do not read the $(N - 1)$ th data from this register. If read, a reception operation starts and continuous transfer cannot be completed.
SIRBEn (SIRBEnL)	Read	Function	-	Storing the data received last ^{Note 2}	-	Storing the $(N - 1)$ th received data ^{Note 2}
		Use method	Not used.	If reception of the next data will not be performed after reception is complete, read the received data from this register.	Not used	Read the $(N - 1)$ th received data from this register when the $(N - 1)$ th or Nth (last) data has been received.
SIO0n (SIO0nL)	Read	Function	-		Storing the Nth (last) received data ^{Note 2}	Storing the Nth (last) received data ^{Note 2}
		Use method	Not used.	Not used	When the Nth (last) transmission/reception is complete, read the Nth (last) data.	When the Nth (last) data has been received, read the Nth (last) data.
SOTBn (SOTBnL)	Write	Function	 Starting transmission/reception when written Storing the data to be transmitted 	+ ↓.com	 Starting transmission/reception when written Storing the data to be transmitted second and subsequently 	_
		Use method	 First, write a dummy data (FFH) to start transmission/reception. When transmission/reception is complete, write the data to be transmitted next. 	Not used	When transmission/reception is complete, write the data to be transmitted next to this register to start the next transmission/reception.	Not used
SOTBFn (SOTBFnL)	Write	Function	-	-	Storing the data to be transmitted $first^{Note2}$	-
		Use method	Not used	Not used	Before starting transmission/reception (writing to SOTBn), write the data to be transmitted first.	Not used

et4U.com

Notes 1. It is assumed that the number of data to be transmitted is N.

2. Neither reading nor writing will start communication.

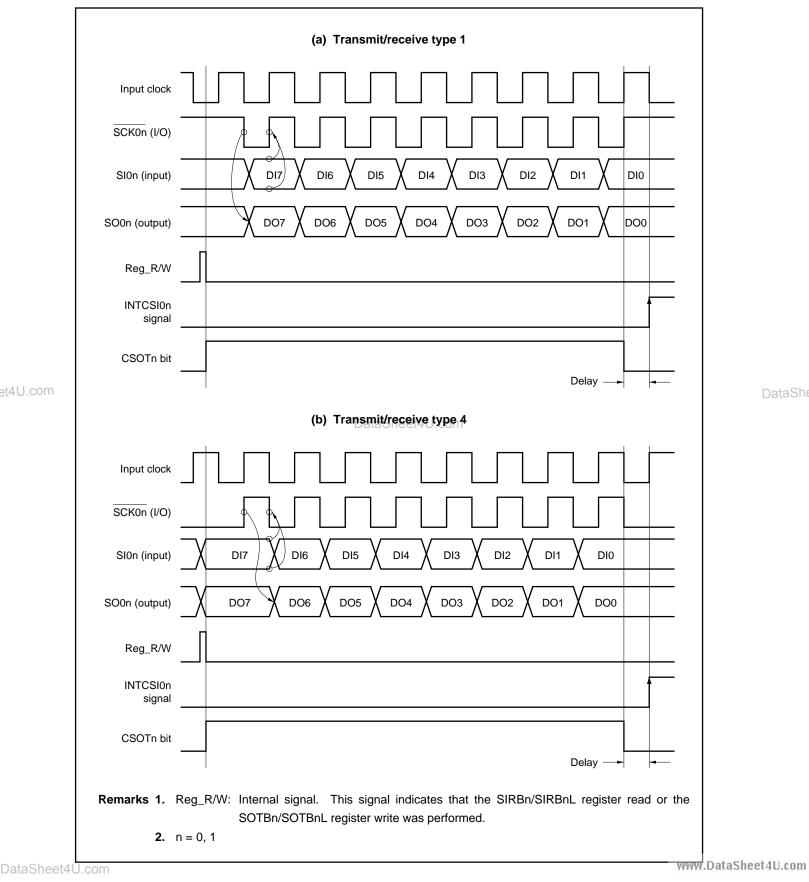
Remark In the 16-bit mode, the registers not enclosed in parentheses are used; in the 8-bit mode, the registers in parentheses are used.

DataSheet4U

17.4 Operation

17.4.1 Transmission/reception completion interrupt request signal (INTCSI0n)

The INTCSI0n signal is set (1) upon completion of data transmission/reception. Writing to the CSIM0n register clears (0) the INTCSI0n signal.


Caution The delay mode (CSIM0n.CSITn bit = 1) is valid only in the master mode (CSICn.CKS0n2 to CSICn.CKS0n0 bits are not 111B). The delay mode cannot be set when the slave mode is set (CKS0n2 to CKS0n0 bits = 111B).

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

DataShe

496

17.4.2 Single transfer mode

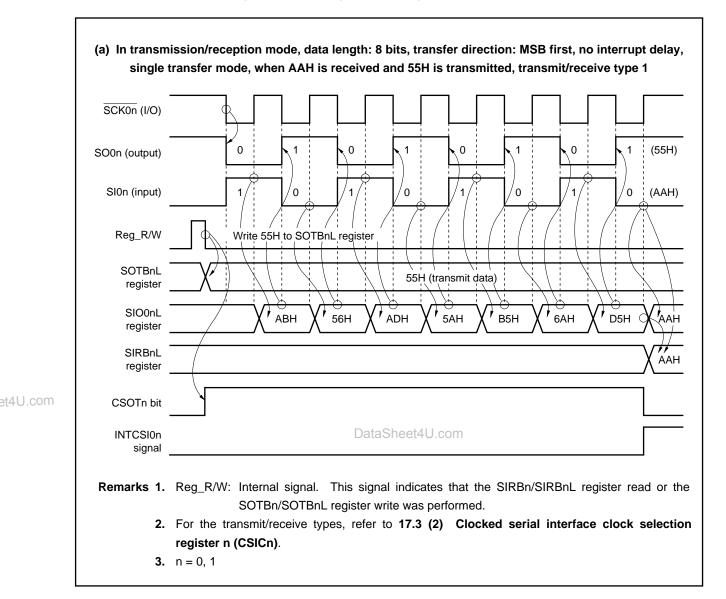
(1) Usage

In the receive-only mode (CSIM0n.TRMDn bit = 0), communication is started by reading the SIRBn/SIRBnL register.

In the transmission/reception mode (TRMDn bit = 1), communication is started by writing to the SOTBn/SOTBnL register.

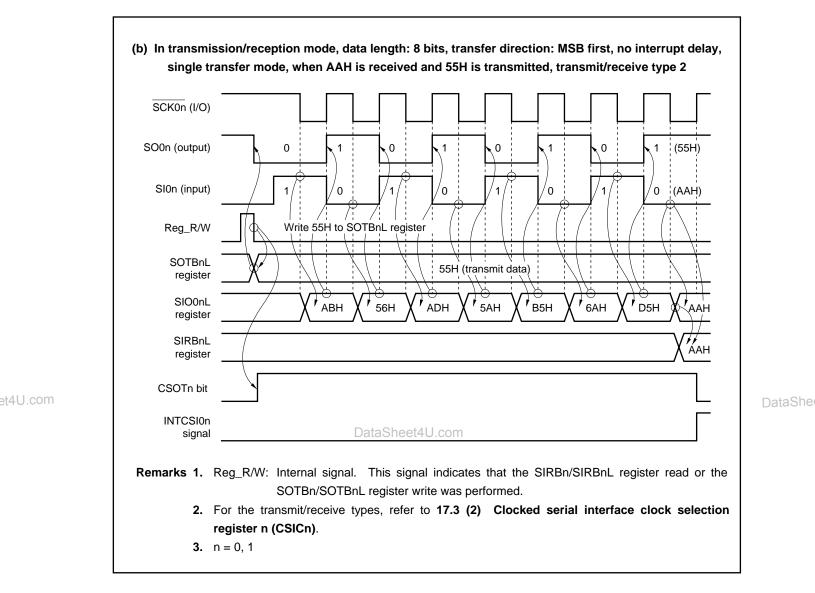
In the slave mode, the operation must be enabled beforehand (CSIM0n.CSI0En bit = 1).

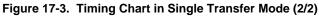
When communication is started, the value of the CSIM0n.CSOTn bit becomes 1 (transmission execution status).


Upon communication completion, the transmission/reception completion interrupt request signal (INTCSI0n) is generated, and the CSOTn bit is cleared (0). The next data communication request is then waited for.

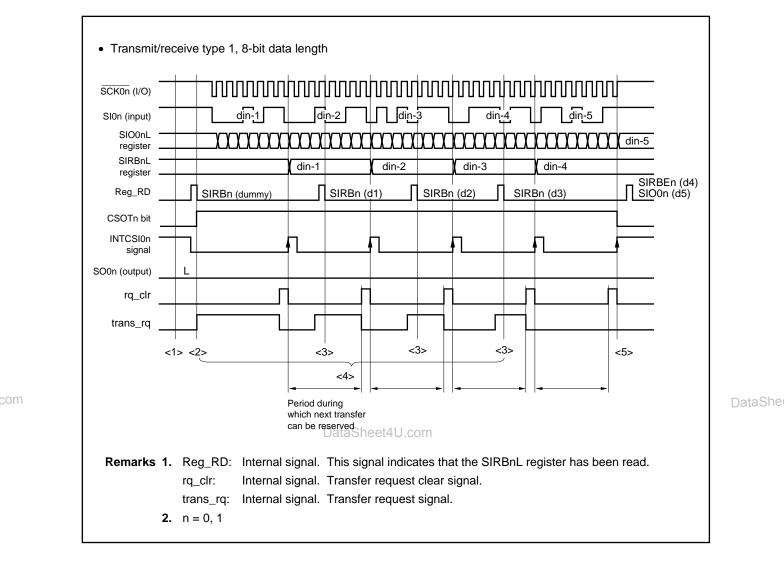
Caution When the CSOTn bit = 1, do not manipulate the CSI0n register.

Remark n = 0, 1


et4U.com


DataShe

DataShe


17.4.3 Continuous transfer mode

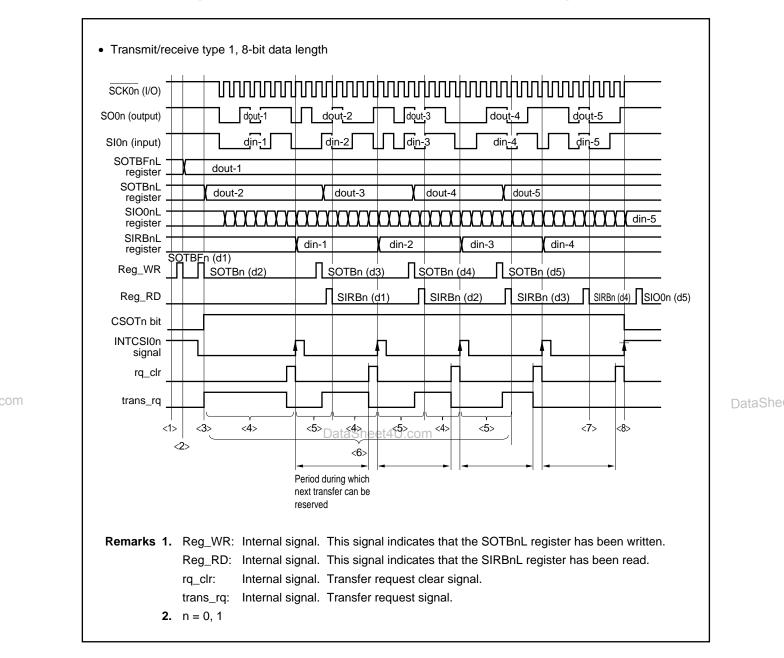
(1) Usage (receive-only: 8-bit data length)

- <1> Set the continuous transfer mode (CSIM0n.AUTOn bit = 1) and the receive-only mode (CSIM0n.TRMDn bit = 0).
- <2> Read the SIRBnL register (start transfer with dummy read).
- <3> When the transmission/reception completion interrupt request signal (INTCSI0n) has been generated, read the SIRBnL register^{Note} (reserve next transfer).
- <4> Repeat step <3> (N 2) times. (N: Number of transfer data) Ignore the interrupt triggered by reception of the (N – 1)th data (at this time, the SIRBEnL register can be read).
- <5> Following generation of the last INTCSI0n signal, read the SIRBEnL register and the SIO0nL register^{Note}.
- Note When transferring N number of data, receive data is loaded by reading the SIRBnL register from the first data to the (N 2)th data. The (N 1)th data is loaded by reading the SIRBEnL register, and the Nth (last) data is loaded by reading the SIO0nL register (refer to Table 17-1 Use of Each Buffer Register).

et4U.com

DataShe

In the case of the continuous transfer mode, two transfer requests are set at the start of the first transfer. Following the INTCSIOn signal, transfer is continued if the SIRBnL register can be read within the next transfer reservation period. If the SIRBnL register cannot be read, transfer ends and the SIRBnL register does not receive the new value of the SIO0nL register.

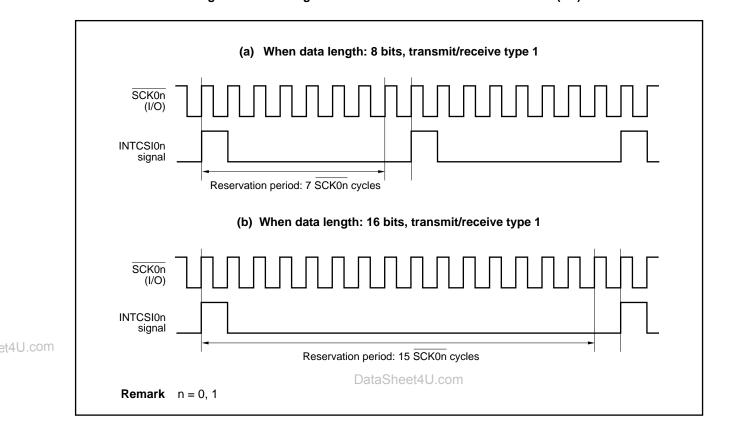

The last data can be obtained by reading the SIO0nL register following completion of the transfer.

(2) Usage (transmission/reception: 8-bit data length)

- <1> Set the continuous transfer mode (CSIM0n.AUTOn bit = 1) and the transmission/reception mode (CSIM0n.TRMDn bit = 1).
- <2> Write the first data to the SOTBFnL register.
- <3> Write the 2nd data to the SOTBnL register (start transfer).
- <4> When the transmission/reception completion interrupt request signal (INTCSI0n) has been generated, write the next data to the SOTBnL register (reserve next transfer). Read the SIRBnL register to load the receive data.
- <5> Repeat step <4> as long as data to be sent remains.
- <6> When the INTCSIOn signal is generated, read the SIRBnL register to load the (N 1)th receive data (N: Number of transfer data).
- <7> Following the last INTCSI0n signal, read the SIO0nL register to load the Nth (last) receive data.

et4U.com

DataSheet4U.com



In the case of the continuous transfer mode, two transfer requests are set at the start of the first transfer. Following the INTCSIOn signal, transfer is continued if the SOTBnL register can be written within the next transfer reservation period. If the SOTBnL register cannot be written, transfer ends and the SIRBnL register does not receive the new value of the SIO0nL register.

The last receive data can be obtained by reading the SIO0nL register following completion of the transfer.

(3) Next transfer reservation period

In the continuous transfer mode, the next transfer must be prepared with the period shown in Figure 17-6.

DataSheet4U.com

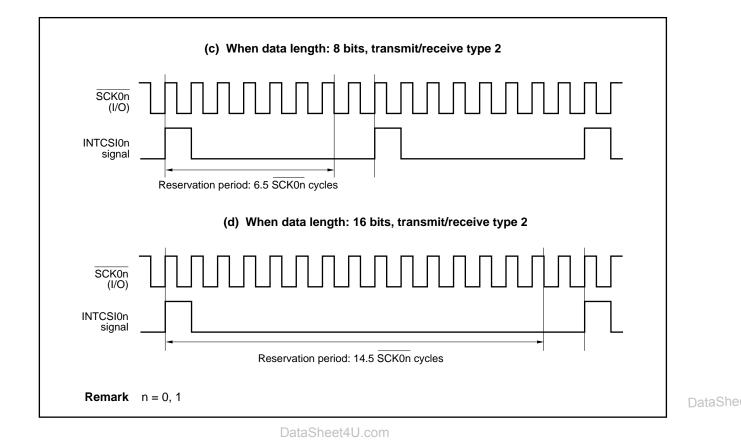
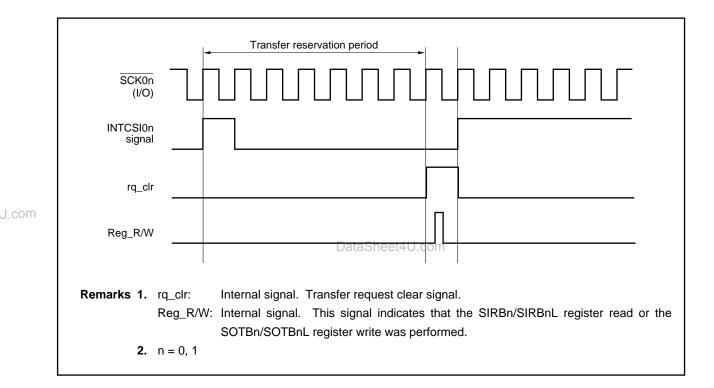


Figure 17-6. Timing Chart of Next Transfer Reservation Period (2/2)

DataSheet4U.com

et4U.com

www.DataSheet4U.com

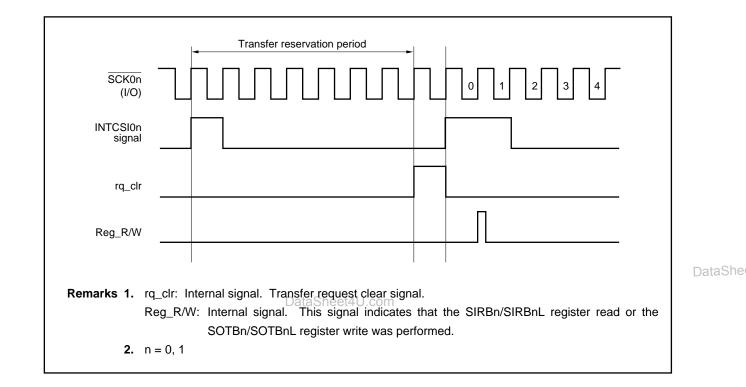

(4) Cautions

To continue continuous transfers, it is necessary to either read the SIRBn register or write to the SOTBn register during the transfer reservation period.

If access is performed to the SIRBn register or the SOTBn register when the transfer reservation period is over, the following occurs.

(i) In case of conflict between transfer request clear and register access

Since transfer request clear has higher priority, the next transfer request is ignored. Therefore, transfer is interrupted, and normal data transfer cannot be performed.


DataShe

(ii) In case of conflict between transmission/reception completion interrupt request signal (INTCSI0n) generation and register access

Since continuous transfer has stopped once, executed as a new continuous transfer.

In the slave mode, a bit phase error transfer error results (refer to Figure 17-8).

In the transmission/reception mode, the value of the SOTBFn register is retransmitted, and illegal data is sent.

17.5 Output Pins

The following describes the output pins. For the setting of each pin, refer to **Table 4-16 Settings When Port Pins Are Used for Alternate Functions**.

(1) SCK0n pin

When the CSI0n operation is disabled (CSIM0n.CSI0En bit = 0), the $\overline{SCK0n}$ pin output status is as follows.

CKPn	CKS0n2	CKS0n1	CKS0n0	SCK0n Pin Output		
0	Don't care	care Don't care Don't care		Fixed to high level		
1	1	1 1		High impedance		
	Other than abo	ove		Fixed to low level		

Table 17-2. SCK0n Pin Output Status

Remark n = 0, 1

(2) SO0n pin

When the CSI0n operation is disabled (CSI0En bit = 0), the SO0n pin output status is as follows.

et4U.com

Table 17-3. SOOn Pin Output Status

TRMDn	DAPn	AUTOn	CCLn	DIRn	SO0n Pin Output
0	Don't care	Don't care	DataShe Don't care	Don't care	Fixed to low level
1	0	Don't care	Don't care	Don't care	SO latch value (low level)
	1	0	0	0	SOTBn7 bit value
				1	SOTBn0 bit value
			1	0	SOTBn15 bit value
				1	SOTBn0 bit value
		1	0	0	SOTBFn7 bit value
				1	SOTBFn0 bit value
			1	0	SOTBFn15 bit value
				1	SOTBFn0 bit value

Remark n = 0, 1

DataShe

508

CHAPTER 18 CLOCKED SERIAL INTERFACE A (CSIA) WITH AUTOMATIC TRANSMIT/RECEIVE FUNCTION

In the V850ES/KG1+, two channels of CSIA are provided.

18.1 Functions

CSIAn has the following two modes.

- 3-wire serial I/O mode
- 3-wire serial I/O mode with automatic transmit/receive function

(1) 3-wire serial I/O mode

This mode is used to transfer 8-bit data using three lines: a serial clock pin (SCKAn) and two serial data pins (SIAn and SOAn).

In addition, whether 8-bit data is transferred MSB or LSB first can be specified, so this interface can be connected to any device.

(2) 3-wire serial I/O mode with automatic transmit/receive function

This mode is used to transfer 8-bit data using three lines: a serial clock pin (SCKAn) and two serial data pins (SIAn and SOAn).

In addition, whether 8-bit data is transferred MSB or LSB first can be specified, so this interface can be connected to any device.

Data can be transferred to/from a display driver etc. without using software since a 32-byte buffer RAM is incorporated for automatic transfer.

DataShe

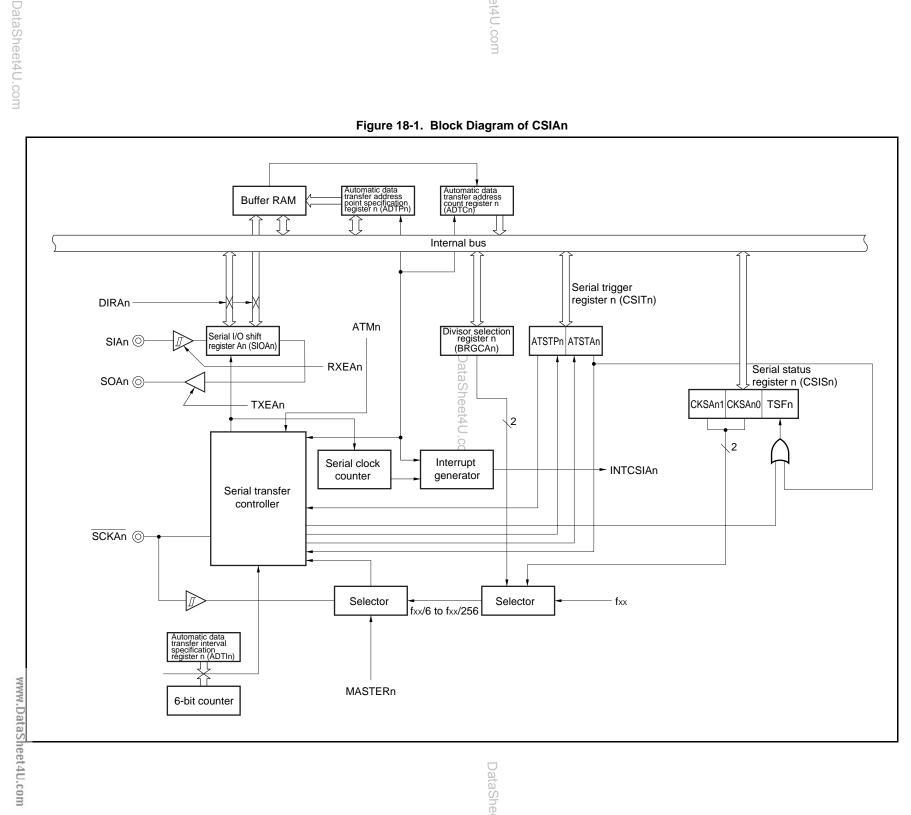
- Maximum transfer speed: 2 MHz (in master mode)
- Master mode/slave mode selectable
- Transfer data length: 8 bits
- MSB/LSB-first selectable for transfer data
- Automatic transmit/receive function: Number of transfer bytes can be specified between 1 and 32 Transfer interval can be specified (0 to 63 clocks) Single transfer/repeat transfer selectable
- On-chip dedicated baud rate generator (6/8/16/32 divisions)
- 3-wire SOAn: Serial data output
 - SIAn: Serial data input
 - SCKAn: Serial clock I/O
- Transmission/reception completion interrupt request signal: INTCSIAn
- Internal 32-byte buffer RAM

Remark n = 0, 1

CHAPTER 18 CLOCKED SERIAL INTERFACE A (CSIA) WITH AUTOMATIC TRANSMIT/RECEIVE FUNCTION

18.2 Configuration

CSIAn consists of the following hardware.


Table 18-1. Configuration of CSIAn

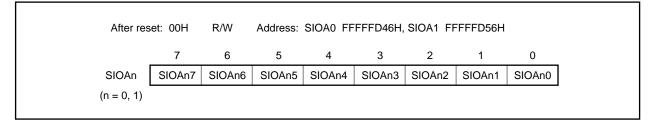
Item	Configuration
Registers	Serial I/O shift register An (SIOAn) Automatic data transfer address count register n (ADTCn) CSIAn buffer RAM (CSIAnBm, CSIAnBmL, CSIAnBmH) (m = 0 to F)
Control registers	Serial operation mode specification register n (CSIMAn) Serial status register n (CSISn) Serial trigger register n (CSITn) Divisor selection register n (BRGCAn) Automatic data transfer address point specification register n (ADTPn) Automatic data transfer interval specification register n (ADTIn)

Remark For the alternate-function pin settings, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.

et4U.com

DataShee

et4U.com


(1) Serial I/O shift register An (SIOAn)

This is an 8-bit register used to store transmit/receive data in 1-byte transfer mode (CSIMAn.ATEn bit = 0). Writing transmit data to the SIOAn register starts the transfer. In addition, after a transfer completion interrupt request signal (INTCSIAn) is generated (CSISn.TSFn bit = 0), data can be received by reading data from the SIOAn register.

This register can be read or written in 8-bit units. However, writing to the SIOAn register is prohibited when the TSFn bit = 1.

After reset, this register is cleared to 00H.

- Cautions 1. A transfer operation is started by writing to the SIOAn register. Consequently, when transmission is disabled (CSIMAn.TXEAn bit = 0), write dummy data to the SIOAn register to start the transfer operation, and then perform a receive operation.
 - 2. Do not write data to the SIOAn register while the automatic transmit/receive function is operating.

(2) Automatic data transfer address count register n (ADTCn)

This is a register used to indicate buffer RAM addresses during automatic transfer. When automatic transfer is stopped, the data position when transfer stopped can be ascertained by reading ADTCn register value. This register is read-only in 8-bit units. However, reading from the ADTCn register is prohibited when the CSISn.TSFn bit = 1.

After reset, this register is cleared to 00H.

18.3 Registers

Serial interface CSIAn is controlled by the following six registers.

- Serial operation mode specification register n (CSIMAn)
- Serial status register n (CSISn)
- Serial trigger register n (CSITn)
- Divisor selection register n (BRGCAn)
- Automatic data transfer address point specification register n (ADTPn)
- Automatic data transfer interval specification register n (ADTIn)

DataSheet4U.com

DataShe

(1) Serial operation mode specification register n (CSIMAn)

This is an 8-bit register used to control the serial transfer operation. This register can be read or written in 8-bit or 1-bit units. After reset, this register is cleared to 00H.

		<7>	6	5	4	<3>	<2>	<1>	0		
	CSIMAn	CSIAEn	ATEn	ATMn	MASTERn	TXEAn	RXEAn	DIRAn	0		
	(n = 0, 1)									7	
		CSIAEn	D 1 11 0		SIAn operati					-	
		0			ation (SOAr	: Low leve	I, SCKAn:	High level)		-	
.U.com		 When the When the When the CSI If the C initialized CSIAn If the C 	he CSIAE he CSIAE IAEn bit to SIAEn bit ed. Before unit. SIAEn bit hen the CS 1-byte tra Automati	bit = 0, th 1. s cleared f the CSIA s cleared f SIAEn bit = Automat nsfer mod c transfer r DataSI	ired to 0, the le CSIAn un from 1 to 0, a En bit is set from 1 to 0, t to 0, the buffe ic transfer o e	it is reset, s all the regis to 1 again, he buffer F r RAM car peration er f automatio	so to opera sters in the first re-set RAM value not be acc not be acc nable/disat	te CSIAn, t CSIAn uni the registe is not held essed. le control	first set t are ers of the		Data
		1 Repeat transfer mode (Following transfer completion, the ADTCn register is cleared to 00H and transmission starts again.) MASTERn Specification of CSIAn master/slave mode									
									4		
		0	Slave mo	de (synchi	onized with	SCKAn in	out clock)			-	
		1	Master m	ode (syncł	nronized with	n internal c	lock)				
		TXEAn		-	Fransmissio	n enable/di	isable cont	rol			
		0	Disable t	ansmissio	n (SOAn: Lo	w level)				4	
		1	Enable tr	ansmissior	า						
		RXEAn			Reception e	enable/disa	able contro				
		0	Disable r	eception							
		1	Enable re	ception							
		DIRAn		S	pecification	of transfer	data direct	ion]	
		0	MSB first							1	
										-	

(2) Serial status register n (CSISn)

This is an 8-bit register used to select the serial clock and to indicate the transfer status of CSIAn. This register can be read or written in 8-bit or 1-bit units.

After reset, this register is cleared to 00H. However, rewriting the CSISn register is prohibited when the TSFn bit is 1.

		7	6	5	4	3	2	1	0				
	CSISn	CKSAn1	CKSAn0	0	0	0	0	0	TSFn				
	(n = 0, 1)												
		CKSAn1	CKSAn0		Seria	al clock (fscкa) s	election ^{Note}						
					<u> </u>	20 MHz	16 MHz		10 MHz				
		0	0	fxx		Setting prohibited	Setting prohibite	d	100 ns				
		0	1	fxx/2		100 ns	125 ns	_	200 ns				
		1	0	fxx/4		200 ns	250 ns		400 ns				
		1	1	fxx/8		400 ns	500 ns		800 ns				
		Rewriting	Rewriting CSISn is prohibited when the CSIMAn.CSIAEn bit is 1.										
		TSFn				Transfer stat	tus						
com		0	At reset in At comple	SIAEn bit = 0 reset input completion of specified transfer nen transfer has been suspended by setting the CSITn.ATSTPn bit to 1							Dat		
		1	From tran	sfer start t	o comp	letion of specifi	ied transfer						
	Note Set fscka so as to satisfy the following conditions. • $V_{DD} = REGC = 4.0$ to 5.5 V: fscka ≤ 12 MHz • $V_{DD} = 4.0$ to 5.5 V, REGC = Capacity: fscka ≤ 6 MHz • $V_{DD} = REGC = 2.7$ to 4.0 V: fscka ≤ 6 MHz												
	Cautions 1. The TSFn bit is read-only.												
	2. When the TSFn bit = 1, rewriting the CSIMAn, CSISn, BRGCAn,												
	ADTPn, ADTIn, and SIOAn registers is prohibited.												
	However, the transfer buffer RAM can be rewritten. 3. Be sure to clear bits 1 to 5 to 0.												

(3) Serial trigger register n (CSITn)

The CSITn register between the buffer RAM and shift register is an 8-bit register used to control execution/stop of automatic data transfer.

This register can be read or written in 8-bit or 1-bit units. However, manipulate only when the CSIMAn.ATEn bit is 1 (manipulation prohibited when ATEn bit = 0).

After reset, this register is cleared to 00H.

	7	6	5	4	3	2	<1>	<0>
CSITn	0	0	0	0	0	0	ATSTPn	ATSTAr
(n = 0, 1)								
	ATSTPn		ŀ	Automatic d	ata transfe	r suspens	sion	
	0				-			
	1	Stop auto	matic data	transfer				
	transferred 1 is held u request si after that. After auto suspensio A functior interrupte	d. until immed gnal (INTC matic trans on is stored o to resume d by settin	diately befo CSIAn) is g sfer has be d in the AD e automatic	re the trans enerated, a en suspend TCn registe data trans Pn bit to 1	mission/re nd ATSTPr ded, the da r. fer is not pr set each r	ception contraction is auton ta addres rovided, s	til 1 byte has ompletion inf natically clea is at the poin so if transfer gain, and set	terrupt ired to 0 t of has been
	ATSTAn			Automat	c data tran	sfer start		
	0				_			
	1	Start aut	omatic data	transfer				
		n the ATS		et to 1, aut	omatic data	a transfer	does not sta	art until 1
	1 is held u	until immed			SIAn signa	al is gene	rated, and A	TSTAn is

et4U.com

CHAPTER 18 CLOCKED SERIAL INTERFACE A (CSIA) WITH AUTOMATIC TRANSMIT/RECEIVE FUNCTION

(4) Divisor selection register n (BRGCAn)

This is an 8-bit register used to control the serial transfer speed (divisor of CSIA clock).

This register can be read or written in 8-bit units. However, when the CSISn.TSFn bit is 1, rewriting the BRGCAn register is prohibited.

After reset, this register is set to 03H.

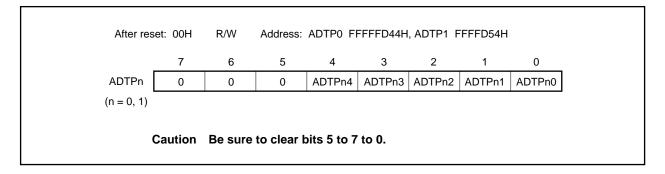
After res	set: 03H	R/W	Address: BRGCA0 FFFFFD43H, BRGCA1 FFFFD53H						
	7	6	5	4	3	2	1	0	
BRGCAn	0	0	0	0	0	0	BRGCn1	BRGCn0	
(n = 0, 1)									
	BRGCn1	BRGCn0	Selection of CSIAn serial clock (fscka division ratio)						
	0	0	6 (fscка/6)						
	0	1	8 (fscкa/8)						
	1	0	16 (fscка/1	6)					
	1	1	32 (fscка/3	2)					

(5) Automatic data transfer address point specification register n (ADTPn)

This is an 8-bit register used to specify the buffer RAM address that ends transfer during automatic data transfer (CSIMAn.ATEn bit = 1).

This register can be read or written in 8-bit units. However, when the CSISn.TSFn bit is 1, rewriting the Da ADTPn register is prohibited.

After reset, this register is cleared to 00H. DataSheet4U.com


In the V850ES/KG1+, 00H to 1FH can be specified because 32 bytes of buffer RAM are incorporated.

Example When the ADTP0 register is set to 07H

8 bytes of FFFFE00H to FFFFE07H are transferred.

In repeat transfer mode (CSIMAn.ATMn bit = 1), transfer is performed repeatedly up to the address value specified by the ADTPn register.

Example When the ADTP0 register is set to 07H (repeat transfer mode) Transfer is repeated as FFFFE00H to FFFFE07H,

The relationship between buffer RAM address values and the ADTPn register setting values is shown below.

Buffer RAM Address Value	ADTP0 Register Setting Value	Buffer RAM Address Value	ADTP0 Register Setting Value
FFFFE00H	00H	FFFFE10H	10H
FFFFE01H	01H	FFFFE11H	11H
FFFFE02H	02H	FFFFE12H	12H
FFFFE03H	03H	FFFFE13H	13H
FFFFE04H	04H	FFFFE14H	14H
FFFFE05H	05H	FFFFE15H	15H
FFFFE06H	06H	FFFFE16H	16H
FFFFE07H	07H	FFFFE17H	17H
FFFFE08H	08H	FFFFE18H	18H
FFFFE09H	09H	FFFFE19H	19H
FFFFE0AH	0AH	FFFFE1AH	1AH
FFFFE0BH	0BH	FFFFE1BH	1BH
FFFFE0CH	OCH	FFFFE1CH	1CH
FFFFE0DH	0DH	FFFFE1DH	1DH
FFFFE0EH	0EH	FFFFE1EH	1EH
FFFFE0FH	0FH	FFFFE1FH	1FH

Table 18-2	. Relationship Between	Buffer RAM Address Value	es and ADTP0 Register Setting Values
------------	------------------------	--------------------------	--------------------------------------

et4U.com

DataSheet4U.com

DataShe

Table 18-3. Relationship Between Buffer RAM Address Values and ADTP1 Register Setting Values

Buffer RAM Address Value	ADTP1 Register Setting Value	Buffer RAM Address Value	ADTP1 Register Setting Value
FFFFE20H	00H	FFFFE30H	10H
FFFFE21H	01H	FFFFE31H	11H
FFFFE22H	02H	FFFFE32H	12H
FFFFE23H	03H	FFFFE33H	13H
FFFFE24H	04H	FFFFE34H	14H
FFFFE25H	05H	FFFFE35H	15H
FFFFE26H	06H	FFFFE36H	16H
FFFFE27H	07H	FFFFE37H	17H
FFFFE28H	08H	FFFFE38H	18H
FFFFE29H	09H	FFFFE39H	19H
FFFFE2AH	0AH	FFFFE3AH	1AH
FFFFE2BH	0BH	FFFFE3BH	1BH
FFFFE2CH	0CH	FFFFE3CH	1CH
FFFFE2DH	0DH	FFFFE3DH	1DH
FFFFE2EH	0EH	FFFFE3EH	1EH
FFFFE2FH	0FH	FFFFE3FH	1FH www.Data

(6) Automatic data transfer interval specification register n (ADTIn)

This is an 8-bit register used to specify the interval period between 1-byte transfers during automatic data transfer (CSIMAn.ATEn bit = 1).

Set this register when in master mode (CSIMAn.MASTERn bit = 1) (setting is unnecessary in slave mode). Setting in 1-byte transfer mode (ATEn bit = 0) is also valid. When the interval time specified by the ADTIn register after the end of 1-byte transfer has elapsed, a transmission/reception completion interrupt request signal (INTCSIAn) is output. The number of clocks for the interval can be set to between 0 and 63 clocks. This register can be read or written in 8-bit units. However, when the CSISn.TSFn bit is 1, rewriting the ADTIn register is prohibited.

After reset, this register is cleared to 00H.

After res	et: 00H	R/W	Address:	ADTI0 FF	FFFD45H,	ADTI1 FF	FFD55H	
	7	6	5	4	3	2	1	0
ADTIn	0	0	ADTIn5	ADTIn4	ADTIn3	ADTIn2	ADTIn1	ADTIn0
(n = 0, 1)								

The specified interval time is the transfer clock (specified by the BRGCAn register) multiplied by an integer value.

(7) CSIAn buffer RAM (CSIAnBm)

This area holds transmit/receive data (up to 32 bytes) in automatic transfer mode in 1-byte units.

This register can be read or written in 16-bit units. However, when the higher 8 bits and the lower 8 bits of the CSIAnBm register are used as the CSIAnBmH register and CSIAnBmL register, respectively, these registers can be read or written in 8-bit units.

After automatic transfer is started, only data equal to one byte more than the number of bytes stored in the ADTPn register is transmitted/received in sequence from the CSIAnB0L register.

- Cautions 1. To read the value of the CSIAnBm register after data is written to the register, wait for the duration of more than six clocks of fscka (serial clock set by the CSISn.CKSAn1 and CSISn.CKSAn0 bits) or until data is written to the buffer RAM at another address.
 - 2. When the main clock stops and the CPU operates on the subclock, do not access the CSIAnBm register.

For details, refer to 3.4.8 (2).

Remark n = 0, 1 m = 0 to F

Table 18-4. CSIA0 Buffer RAM

	Address	Symbol	R/W	Manipula	table Bits	After Reset	
				8	16		
FF	FFFE00H	CSIA0B0	R/W			Undefined	
Γ	FFFFFE00H	CSIA0B0L	R/W			Undefined	
Ī	FFFFFE01H	CSIA0B0H	R/W			Undefined	1
FF	FFFFE02H	CSIA0B1	R/W			Undefined	1
Γ	FFFFFE02H	CSIA0B1L	R/W	V		Undefined	-
Ē	FFFFFE03H	CSIA0B1H	R/W	V		Undefined	-
FF	FFFFE04H	CSIA0B2	R/W		V	Undefined	-
Ī	FFFFE04H	CSIA0B2L	R/W	√		Undefined	-
Ē	FFFFFE05H	CSIA0B2H	R/W	1		Undefined	-
FF	FFFE06H	CSIA0B3	R/W	,	V	Undefined	-
Ī	FFFFE06H	CSIA0B3L	R/W			Undefined	-
-	FFFFE07H	CSIA0B3H	R/W	√		Undefined	-
=	FFFE08H	CSIA0B4	R/W	· ·		Undefined	-
ſ	FFFFE08H	CSIA0B4 CSIA0B4L	R/W	V	v	Undefined	-
-	FFFFE09H	CSIA0B4L CSIA0B4H	R/W	 √		Undefined	-
		CSIA0B4H CSIA0B5		N			-
FF [FFFE0AH		R/W	.1	N	Undefined	-
ŀ	FFFFE0AH	CSIA0B5L	R/W	<u></u>		Undefined	_
_	FFFFE0BH	CSIA0B5H	R/W		1	Undefined	_
11	FFFFE0CH	CSIA0B6	R/W		\checkmark	Undefined	_
-	FFFFE0CH	CSIA0B6L	R/W	√		Undefined	DataS
	FFFFE0DH	CSIA0B6H	R/W	V		Undefined	Datas
FF	FFFE0EH	CSIA0B7	R/W DataSheet4U.com			Undefined	_
-	FFFFFE0EH	CSIA0B7L	R/W			Undefined	_
	FFFFE0FH	CSIA0B7H	R/W			Undefined	_
FF	FFFFE10H	CSIA0B8	R/W			Undefined	_
_	FFFFE10H	CSIA0B8L	R/W	\checkmark		Undefined	_
	FFFFFE11H	CSIA0B8H	R/W	\checkmark		Undefined	
FF	FFFFE12H	CSIA0B9	R/W		\checkmark	Undefined	
	FFFFFE12H	CSIA0B9L	R/W	\checkmark		Undefined	
	FFFFFE13H	CSIA0B9H	R/W	\checkmark		Undefined	
FF	FFFFE14H	CSIA0BA	R/W		\checkmark	Undefined	
	FFFFFE14H	CSIA0BAL	R/W	\checkmark		Undefined	
	FFFFFE15H	CSIA0BAH	R/W	\checkmark		Undefined	
FF	FFFFE16H	CSIA0BB	R/W			Undefined	
ſ	FFFFFE16H	CSIA0BBL	R/W			Undefined	
Ī	FFFFFE17H	CSIA0BBH	R/W			Undefined	
FF	FFFFE18H	CSIA0BC	R/W			Undefined	
Γ	FFFFE18H	CSIA0BCL	R/W	√		Undefined	_
Ē	FFFFE19H	CSIA0BCH	R/W	V		Undefined	_
FF	FFFE1AH	CSIA0BD	R/W			Undefined	-
Ī	FFFFE1AH	CSIA0BDL	R/W			Undefined	-
ŀ	FFFFFE1BH	CSIA0BDH	R/W		1	Undefined	1
FF	FFFE1CH	CSIA0BE	R/W	Ť		Undefined	-
Ϊ	FFFFE1CH	CSIA0BE	R/W	V	, v	Undefined	-
╞	FFFFE1DH	CSIA0BEH	R/W	 √		Undefined	-
		CSIA0BEH		V			-
rr [FFFFE1EH		R/W		V	Undefined	-
ŀ	FFFFE1EH FFFFFE1FH	CSIA0BFL CSIA0BFH	R/W R/W	√		Undefined Undefined www.Data	-

et4U.com

Address		Symbol	R/W	Manipula	table Bits	After Reset
				8	16]
FFFFE20H		CSIA1B0	R/W		\checkmark	Undefined
F	FFFFE20H	CSIA1B0L	R/W	\checkmark		Undefined
F	FFFFE21H	CSIA1B0H	R/W	\checkmark		Undefined
FFFF	FE22H	CSIA1B1	R/W		\checkmark	Undefined
F	FFFFE22H	CSIA1B1L	R/W	\checkmark		Undefined
F	FFFFE23H	CSIA1B1H	R/W	\checkmark		Undefined
FFFF	FE24H	CSIA1B2	R/W		\checkmark	Undefined
F	FFFFE24H	CSIA1B2L	R/W	\checkmark		Undefined
F	FFFFE25H	CSIA1B2H	R/W	\checkmark		Undefined
FFFF	FE26H	CSIA1B3	R/W		\checkmark	Undefined
F	FFFFE26H	CSIA1B3L	R/W	\checkmark		Undefined
F	FFFFE27H	CSIA1B3H	R/W	\checkmark		Undefined
FFFF	FE28H	CSIA1B4	R/W		\checkmark	Undefined
F	FFFFE28H	CSIA1B4L	R/W	\checkmark		Undefined
F	FFFFE29H	CSIA1B4H	R/W	\checkmark		Undefined
FFFF	FE2AH	CSIA1B5	R/W		\checkmark	Undefined
F	FFFFE2AH	CSIA1B5L	R/W	\checkmark		Undefined
F	FFFFE2BH	CSIA1B5H	R/W	\checkmark		Undefined
	FE2CH	CSIA1B6	R/W			Undefined
F	FFFFE2CH	CSIA1B6L	R/W	\checkmark		Undefined
F	FFFFE2DH	CSIA1B6H	R/W			Undefined
FFFF	FE2EH	CSIA1B7	R/W			Undefined
	FFFFE2EH	CSIA1B7L	R/WDataSheet4U.com	V		Undefined
-	FFFFE2FH	CSIA1B7H	R/W	V		Undefined
	FE30H	CSIA1B8	R/W		V	Undefined
F	FFFFE30H	CSIA1B8L	R/W	\checkmark		Undefined
F	FFFFE31H	CSIA1B8H	R/W	V		Undefined
FFFF	FFFE32H CSIA1B9 R/W		R/W			Undefined
F	FFFFE32H	CSIA1B9L	R/W			Undefined
F	FFFFE33H	CSIA1B9H	R/W			Undefined
	FE34H	CSIA1BA	R/W			Undefined
	FFFFE34H	CSIA1BAL	R/W			Undefined
	FFFFE35H	CSIA1BAH	R/W	V		Undefined
	FE36H	CSIA1BB	R/W			Undefined
	FFFFE36H	CSIA1BBL	R/W			Undefined
	FFFFE37H	CSIA1BBH	R/W	V		Undefined
-	FE38H	CSIA1BC	R/W			Undefined
	FFFFE38H	CSIA1BCL	R/W			Undefined
	FFFFE39H	CSIA1BCH	R/W	V		Undefined
-	FE3AH	CSIA1BD	R/W			Undefined
	FFFFE3AH	CSIA1BDL	R/W			Undefined
	FFFFE3BH	CSIA1BDH	R/W	V		Undefined
	FE3CH	CSIA1BE	R/W			Undefined
	FFFFE3CH	CSIA1BEL	R/W	V		Undefined
	FFFFE3DH	CSIA1BEH	R/W	V		Undefined
	FE3EH	CSIA1BF	R/W	,	V	Undefined
	FFFFE3EH	CSIA1BFL	R/W	V	,	Undefined
	FFFFE3FH	CSIA1BFH	R/W	√		Undefined

Table 18-5. CSIA1 Buffer RAM

et4U.com

DataSheet4U.com

520

www.DataSheet4U.com

DataShe

18.4 Operation

CSIAn can be used in the following two modes.

- 3-wire serial I/O mode
- 3-wire serial I/O mode with automatic transmit/receive function

18.4.1 3-wire serial I/O mode

The one-byte data transmission/reception is executed in the mode in which the CSIMAn.ATEn bit is cleared to 0. In this mode, communication is executed by using three lines: serial clock (SCKAn), serial data output (SOAn), and serial data input (SIAn) pins.

The 3-wire serial I/O mode is controlled by the following three registers.

- Serial operation mode specification register n (CSIMAn)
- Serial status register n (CSISn)
- Divisor selection register n (BRGCAn)

Remarks 1. For the alternate-function pin settings, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.

2. n = 0, 1

et4U.com

DataShe

(1) 1-byte transmission/reception communication operation

(a) 1-byte transmission/reception

When the CSIMAn.CSIAEn bit and the CSIMAn.ATEn bit = 1, 0, respectively, if transfer data is written to the SIOAn register, the data is output via the SOA0 pin in synchronization with the \overline{SCKAn} pin falling edge, and then input via the SIAn pin in synchronization with the falling edge of the \overline{SCKAn} pin, and stored in the SIOAn register in synchronization with the rising edge 1 clock later.

Data transmission and data reception can be performed simultaneously.

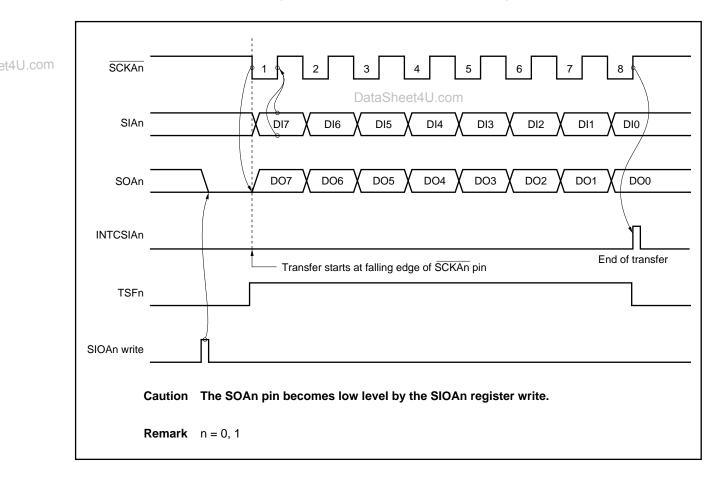
If only reception is to be performed, transfer can only be started by writing a dummy value to the SIOAn register.

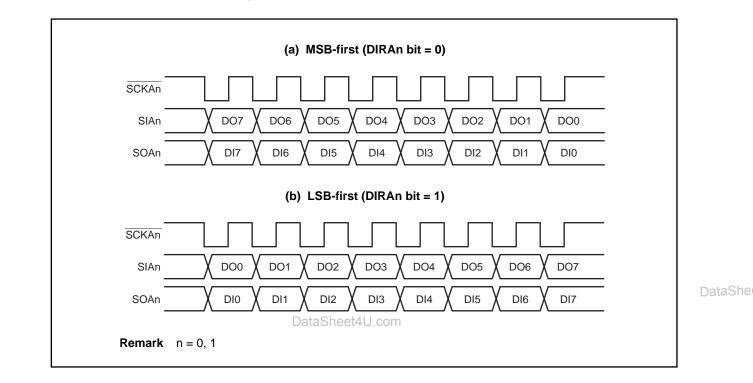
When transfer of 1 byte is complete, a transmission/reception completion interrupt request signal (INTCSIAn) is generated.

In 1-byte transmission/reception, the setting of the CSIMAn.ATMn bit is invalid.

Be sure to read data after confirming that the CSISn.TSFn bit = 0.

Caution Determine the setting procedure of alternate-function pins considering the relationship with the communication partner.




Figure 18-2. 3-Wire Serial I/O Mode Timing

DataShe

(b) Data format

In the data format, data is changed in synchronization with the \overline{SCKAn} pin falling edge as shown in Figure 18-3.

The data length is fixed to 8 bits and the data transfer direction can be switched by the specification of the CSIMAn.DIRAn bit.

et4U.com

(c) Switching MSB/LSB as start bit

Figure 18-4 shows the configuration of the SIOAn register and the internal bus. As shown in the figure, MSB/LSB can be read or written in reverse form.

Switching MSB/LSB as the start bit can be specified using the CSIMAn.DIRAn bit.

Start bit switching is realized by switching the bit order for data written to the SIOAn register. The SIOAn register shift order remains unchanged.

Thus, switching between MSB-first and LSB-first must be performed before writing data to the SIOAn register.

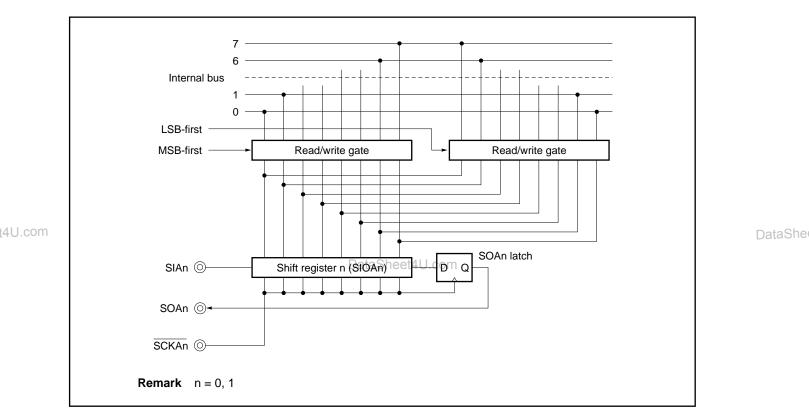


Figure 18-4. Transfer Bit Order Switching Circuit

(d) Transfer start

Serial transfer is started by setting transfer data to the SIOAn register when the following two conditions are satisfied.

- CSIAn operation control bit (CSIMAn.CSIAEn) = 1
- Other than during serial communication

Caution If the CSIAEn bit is set to 1 after data is written to the SIOAn register, communication does not start.

Upon termination of 8-bit communication, serial communication automatically stops and the transmission/reception completion interrupt request signal (INTCSIAn) is generated.

Remark n = 0, 1

DataSheet4U.com

524

18.4.2 3-wire serial I/O mode with automatic transmit/receive function

Up to 32 bytes of data can be transmitted/received without using software in the mode in which the CSIMAn.ATEn bit is set to 1. After communication is started, only data of the set number of bytes stored in RAM in advance can be transmitted, and only data of the set number of bytes can be received and stored in RAM.

The 3-wire serial I/O mode with automatic transmit/receive function is controlled by the following registers.

- Serial operation mode specification register n (CSIMAn)
- Serial status register n (CSISn)
- Serial trigger register n (CSITn)
- Divisor selection register n (BRGCAn)
- Automatic data transfer address point specification register n (ADTPn)
- Automatic data transfer interval specification register n (ADTIn)
- Remarks 1. For the alternate-function pin settings, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.
 - **2.** n = 0, 1

(1) Automatic transmit/receive data setting

(a) Transmit data setting

<1> Write transmit data from the least significant address FFFFE00H/FFFFE20H of buffer RAM (up to FFFFE1FH/FFFFE3FH at maximum). The transmit data should be in the order from lower address to higher address.

DataShe

<2> Set the ADTPn register to the value obtained by subtracting 1 from the number of transmit data bytes.

(b) Automatic transmission/reception mode setting

- <1> Set the CSIMAn.CSIAEn bit and the CSIMAn.ATEn bit to 11.
- <2> Set the CSIMAn.RXEAn bit and the CSIMAn.TXEAn bit to 11.
- <3> Set a data transfer interval in the ADTIn register.
- <4> Set the CSITn.ATSTAn bit to 1.

The following operations are automatically carried out when (a) and (b) are carried out.

- After the buffer RAM data indicated by the ADTCn register (initial value: 00H) is transferred to the SIOAn register, transmission is carried out (start of automatic transmission/reception).
- The received data is written to the buffer RAM address indicated by the ADTCn register.
- ADTCn register is incremented and the next data transmission/reception is carried out. Data transmission/reception continues until the ADTCn register incremental output matches the set value of the ADTPn register (end of automatic transmission/reception). However, if the CSIMAn.ATMn bit is set to 1 (continuous transfer mode), the ADTCn register is cleared after a match between the ADTPn and ADTCn registers, and then repeated transmission/reception is started.
- When automatic transmission/reception is terminated, the CSISn.TSFn bit is cleared to 0.

Caution Determine the setting procedure of alternate-function pins considering the relationship with the communication partner.

(2) Automatic transmission/reception communication operation

(a) Automatic transmission/reception mode

Automatic transmission/reception can be performed using buffer RAM.

The data stored in the buffer RAM is output from the SOAn pin via the SIOAn register in synchronization with the SCKAn pin falling edge by performing (a) and (b) in (1) Automatic transmit/receive data setting.

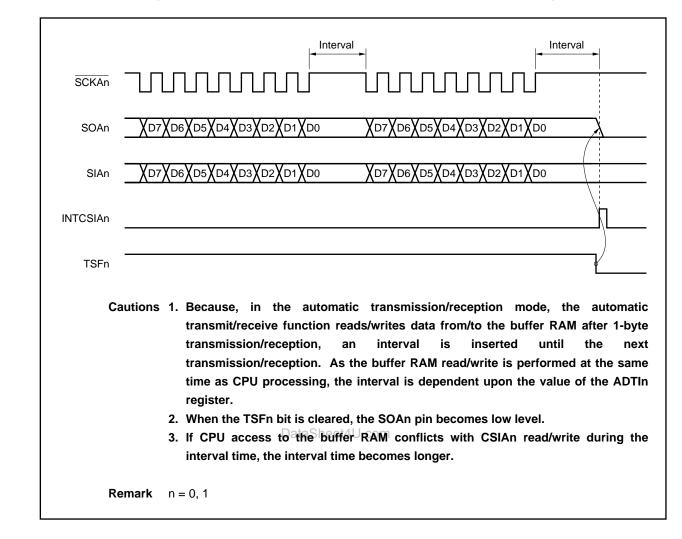
The data is then input from the SIAn pin via the SIOAn register in synchronization with the falling edge of the SCKAn pin and the receive data is stored in the buffer RAM in synchronization with the rising edge 1 clock later.

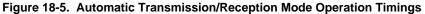
Data transfer ends if the CSISn.TSFn bit is cleared to 0 when any of the following conditions is met.

- Reset by clearing the CSIMAn.CSIAEn bit to 0
- Transfer of 1 byte is complete by setting the CSITn.ATSTPn bit to 1
- Transfer of the range specified by the ADTPn register is complete

At this time, a transmission/reception completion interrupt request signal (INTCSIAn) is generated except when the CSIAEn bit = 0.

If a transfer is terminated in the middle, transfer starting from the remaining data is not possible. Read the ADTCn register to confirm how much of the data has already been transferred, set the transfer data again, and perform (a) and (b) in **(1)** Automatic transmit/receive data setting.

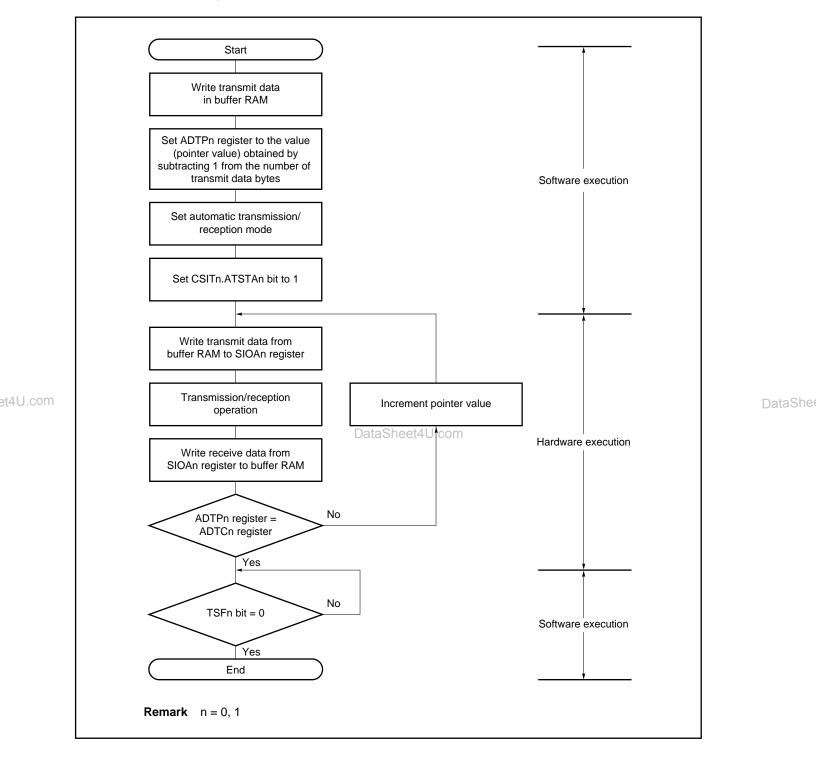

Figure 18-5 shows the operation timing in automatic transmission/reception mode and Figure 18-6 shows the operation flowchart. Figure 18-7 shows the operation of the buffer RAM when 6 bytes of data are transmitted/received.


DataSheet4U.com

Remark n = 0, 1

et4U.com

DataShee



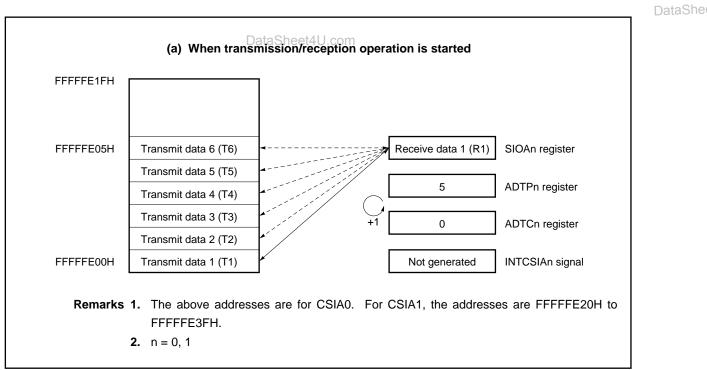
et4U.com

DataSheet4U.com

DataShe

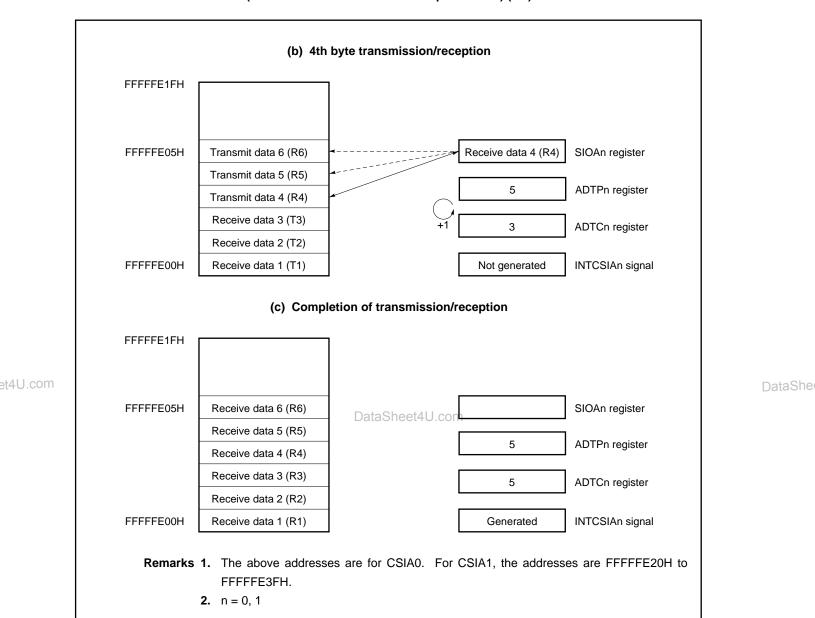
In 6-byte transmission/reception (CSIMAn.ATMn bit = 0, CSIMAn.RXEAn bit = 1, CSIMAn.TXEAn bit = 1) in automatic transmission/reception mode, buffer RAM operates as follows.

(i) When transmission/reception operation is started (refer to Figure 18-7 (a).)


When the CSITn.ATSTAn bit is set to 1, transmit data 1 (T1) is transferred from the buffer RAM to the SIOAn register. When transmission of the first byte is completed, receive data 1 (R1) is transferred from the SIOAn register to the buffer RAM, and the ADTCn register is incremented. Then transmit data 2 (T2) is transferred from the buffer RAM to the SIOAn register.

(ii) 4th byte transmission/reception point (refer to Figure 18-7 (b).)

Transmission/reception of the third byte is completed, and transmit data 4 (T4) is transferred from the buffer RAM to the SIOAn register. When transmission of the fourth byte is completed, the receive data 4 (R4) is transferred from the SIOAn register to the buffer RAM, and the value of the ADTCn register is incremented.


(iii) Completion of transmission/reception (refer to Figure 18-7 (c).)

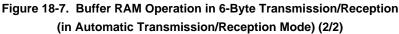

When transmission of the sixth byte is completed, receive data 6 (R6) is transferred from SIOAn register to the buffer RAM, and the transmission/reception completion interrupt request signal (INTCSIAn) is generated.

Figure 18-7. Buffer RAM Operation in 6-Byte Transmission/Reception (in Automatic Transmission/Reception Mode) (1/2)

www.DataSheet4U.com

(b) Automatic transmission mode

In this mode, the specified number of 8-bit unit data are transmitted.

Serial transfer is started when the CSITn.ATSTAn bit is set to 1 while the CSIMAn.CSIAEn, CSIMAn.ATEn, and CSIMAn.TXEAn bits are set to 1.

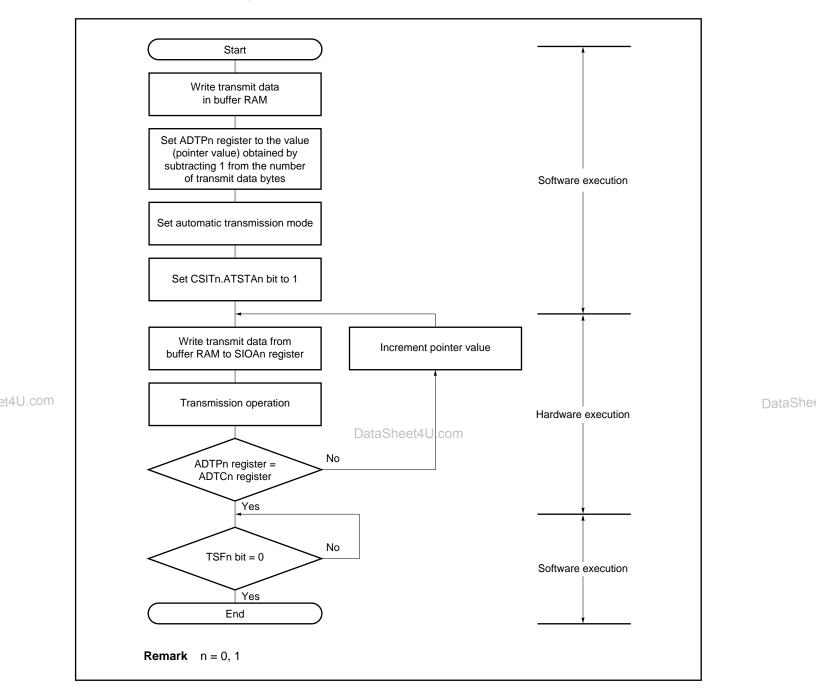

When the final byte has been transmitted, an interrupt request signal (INTCSIAn) is generated.

Figure 18-8 shows the automatic transmission mode operation timing, and Figure 18-9 shows the operation flowchart. Figure 18-10 shows the operation of the buffer RAM when 6 bytes of data are transmitted.

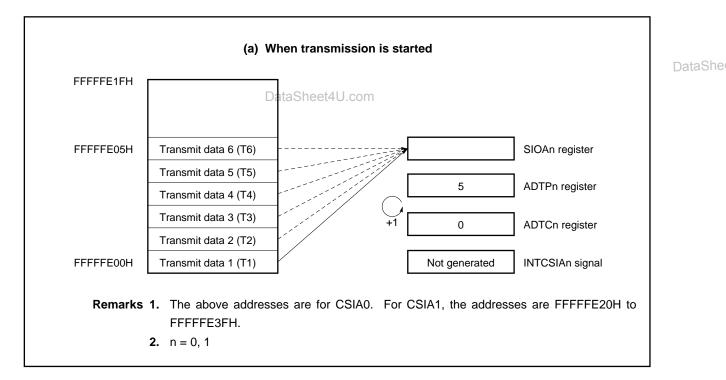
SCKAn		
SOAn		
INTCSIAn		
TSFn		
		D
Ca	 Because, in the automatic transmission mode, the automatic transmit/receive function reads data from the buffer RAM after 1-byte transmission, an interval is inserted until the next transmission. As the buffer RAM read is performed at the same time as CPU processing, the interval is dependent upon the value of the ADTIn register. When the TSFn bit is cleared, the SOAn pin becomes low level. If CPU access to the buffer RAM conflicts with CSIAn read/write during the interval time, the interval time becomes longer. 	D

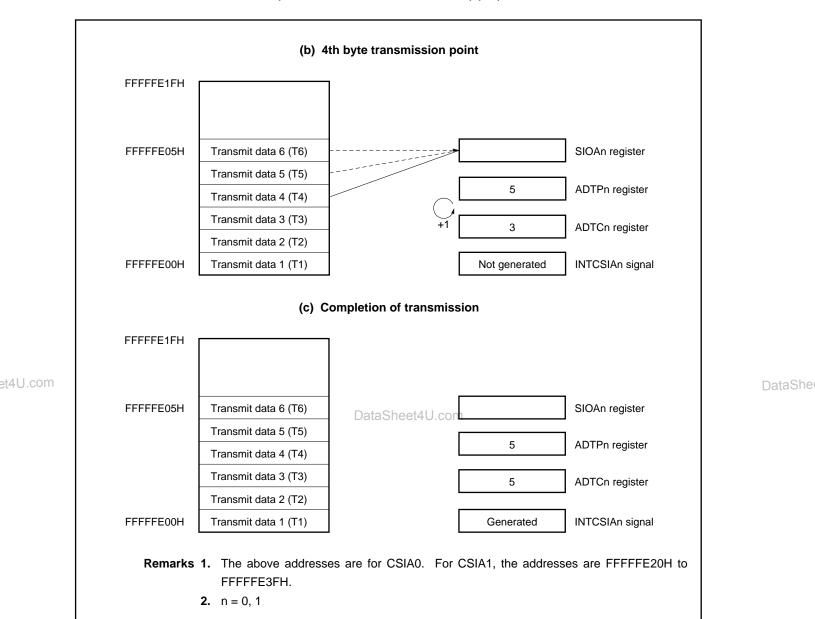
et4U.com

In 6-byte transmission (CSIMAn.ATMn bit = 0, CSIMAn.RXEAn bit = 0, CSIMAn.TXEAn bit = 1, CSIMAn.ATEn bit = 1) in automatic transmission mode, buffer RAM operates as follows.

(i) When transmission is started (refer to Figure 18-10 (a).)

When the CSITn.ATSTAn bit is set to 1, transmit data 1 (T1) is transferred from the buffer RAM to the SIOAn register. When transmission of the first byte is completed, the ADTCn register is incremented. Then transmit data 2 (T2) is transferred from the buffer RAM to the SIOAn register.


(ii) 4th byte transmission point (refer to Figure 18-10 (b).)


Transmission of the third byte is completed, and transmit data 4 (T4) is transferred from the buffer RAM to the SIOAn register. When transmission of the fourth byte is completed, the value of the ADTCn register is incremented.

(iii) Completion of transmission (refer to Figure 18-10 (c).)

When transmission of the sixth byte is completed, the interrupt request signal (INTCSIAn) is generated, and the TFSn flag is cleared to 0.

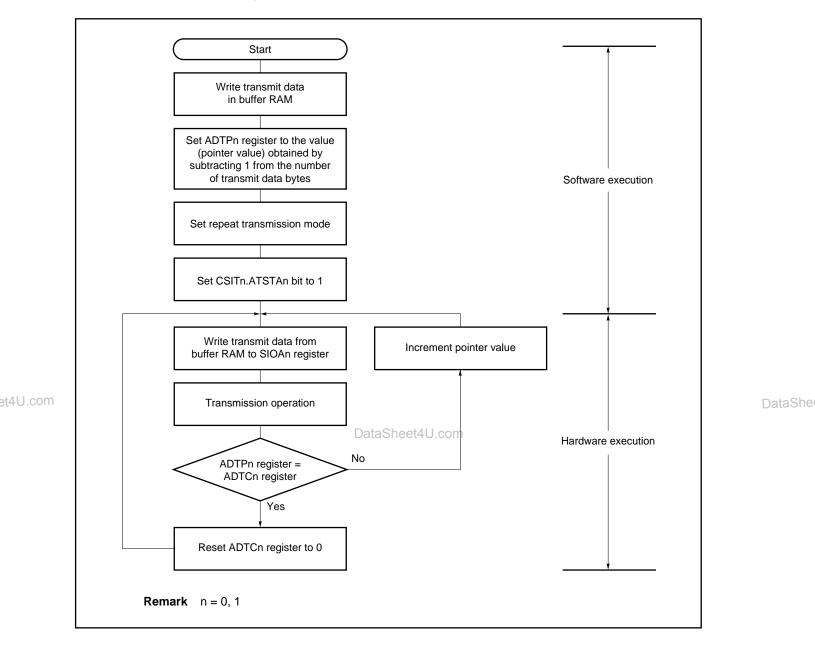
Figure 18-10. Buffer RAM Operation in 6-Byte Transmission (in Automatic Transmission Mode) (1/2)

(c) Repeat transmission mode

In this mode, data stored in the buffer RAM is transmitted repeatedly.

Serial transfer is started when the CSITn.ATSTAn bit is set to 1 while the CSIMAn.CSIAEn, CSIMAn.ATEn, CSIMAn.ATMn, and CSIMAn.TXEAn bits are set to 1.

Unlike the basic transmission mode, after the specified number of bytes has been transmitted, the transmission/reception completion interrupt request signal (INTCSIAn) is not generated, the ADTCn register is reset to 0, and the buffer RAM contents are transmitted again.


The repeat transmission mode operation timing is shown in Figure 18-11, and the operation flowchart in Figure 18-12. Figure 18-13 shows the operation of the buffer RAM when 6 bytes of data are transmitted in the repeat transmission mode.

	<mark>↓^{Interval}↓</mark> D1XD0 XD7XD6XD9	∫ <u>↓ Interv</u>	
to the next tra as CPU proc register. 2. If CPU acces	he repeat transmission r transmission of one byte insmission. As the buffer essing, the interval is d DataSheet4U.com s to the buffer RAM co the interval time becomes	e, the interval is included RAM read is performed lependent upon the valu nflicts with CSIAn read/	in the period up at the same time le of the ADTIn
Remark n = 0, 1			

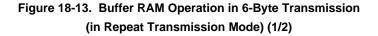
DataShee

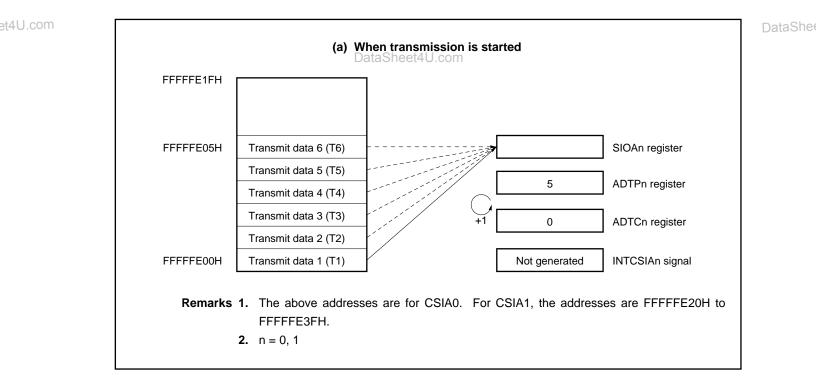
et4U.com

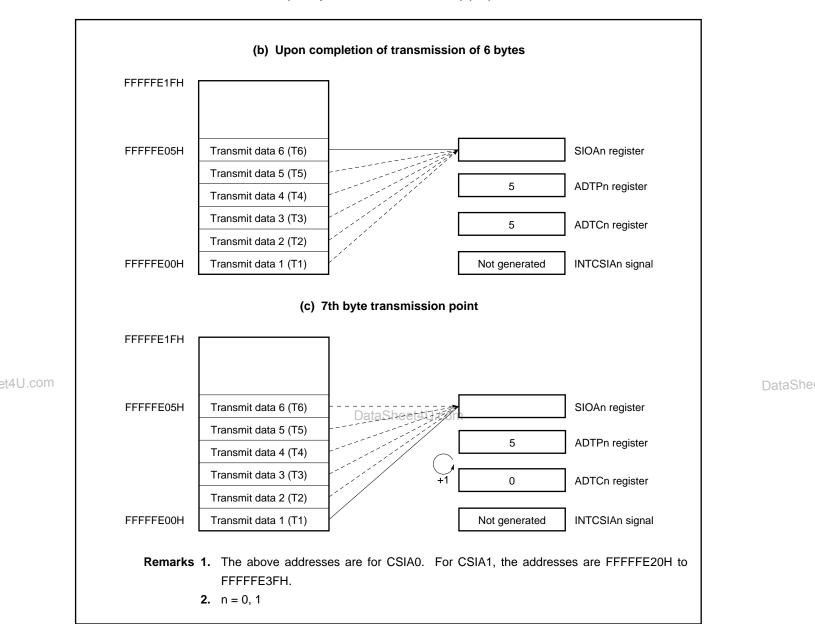
In 6-byte transmission (CSIMAn.ATMn bit = 1, CSIMAn.RXEAn bit = 0, CSIMAn.TXEAn bit = 1, CSIMAn.ATEn bit = 1) in repeat transmission mode, buffer RAM operates as follows.

(i) When transmission is started (refer to Figure 18-13 (a).)

When the CSITn.ATSTAn bit is set to 1, transmit data 1 (T1) is transferred from the buffer RAM to the SIOAn register. When transmission of the first byte is completed, the value of the ADTCn register is incremented. Then transmit data 2 (T2) is transferred from the buffer RAM to the SIOAn register.


(ii) Upon completion of transmission of 6 bytes (refer to Figure 18-13 (b).)


When transmission of the sixth byte is completed, the interrupt request signal (INTCSIAn) is not generated.


The ADTCn register is reset to 0.


(iii) 7th byte transmission point (refer to Figure 18-13 (c).)

Transmit data 1 (T1) is transferred from the buffer RAM to the SIOAn register again. When transmission of the first byte is completed, the value of the ADTCn register is incremented. Then transmit data 2 (T2) is transferred from the buffer RAM to the SIOAn register.



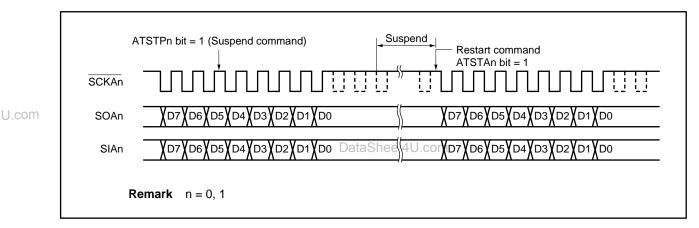
(d) Data format

In the data format, data is changed in synchronization with the \overline{SCKAn} pin falling edge as shown in Figure 18-14.

The data length is fixed to 8 bits and the data transfer direction can be switched by the specification of the CSIMAn.DIRAn bit.

et4U.com

(e) Automatic transmission/reception suspension and restart


Automatic transmission/reception can be temporarily suspended by setting the CSITn.ATSTPn bit to 1. During 8-bit data transfer, the transmission/reception is not suspended. It is suspended upon completion of 8-bit data transfer.

When suspended, the CSISn.TSFn bit is cleared to 0 after transfer of the 8th bit.

To restart automatic transmission/reception, set the CSITn.ATSTAn bit to 1. The remaining data can be transmitted in this way.

- Cautions 1. If the IDLE instruction is executed during automatic transmission/reception, transfer is suspended and the IDLE mode is set if during 8-bit data transfer. When the IDLE mode is cleared, automatic transmission/reception is restarted from the suspended point.
 - 2. When suspending automatic transmission/reception, do not change the operating mode to 3-wire serial I/O mode while the TSFn bit = 1.

DataShe

www.DataSheet4U.com

CHAPTER 19 I²C BUS

To use the I²C bus function, set the P38/SDA0 and P39/SCL0 pins to N-ch open drain output as the alternate function.

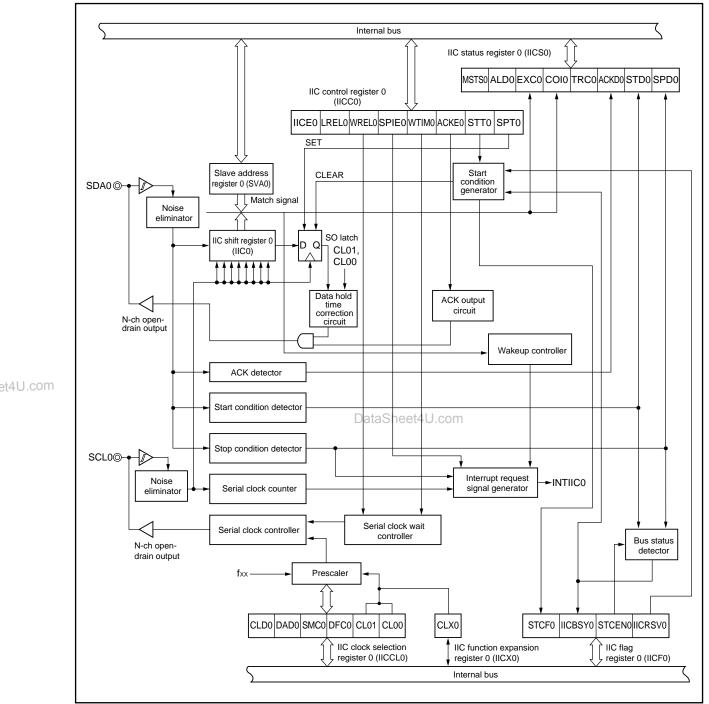
In the V850ES/KG1+, one channel of l^2C bus is provided. The products with an on-chip l^2C bus are shown below.

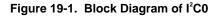
μPD703313Y, 70F3311Y, 70F3313Y

19.1 Features

The I²C0 has the following two modes.

- Operation stop mode
- I²C (Inter IC) bus mode (multimaster supported)

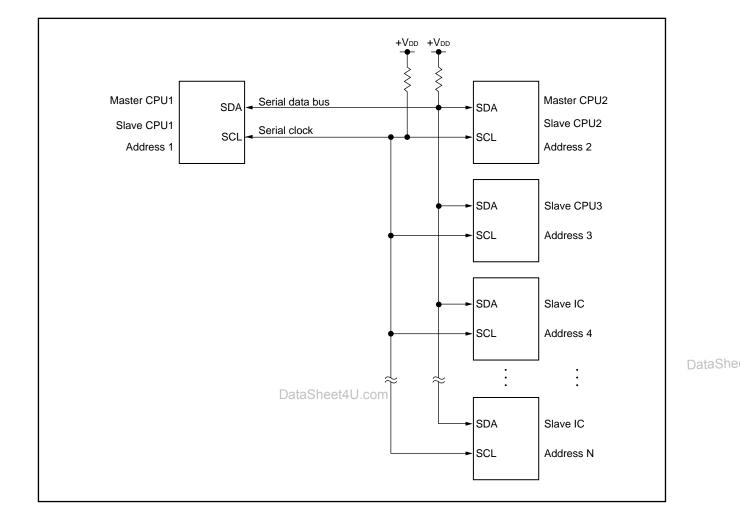

(1) Operation stop mode


This mode is used when serial transfers are not performed. It can therefore be used to reduce power consumption.

(2) I²C bus mode (multimaster supported)

This mode is used for 8-bit data transfers with several devices via two lines: a serial clock (SCL0) line and a serial data bus (SDA0) line.

This mode complies with the I²C bus format and the master device can output "start condition", "data", and "stop condition" data to the slave device, via the serial data bus. The slave device automatically detects these received data by hardware. This function can simplify the part of application program that controls the I²C bus. Since the SCL0 and SDA0 pins are used for N-ch open drain outputs, I²C0 requires pull-up resistors for the serial clock line and the serial data bus line.



DataShe

DataSheet4U.com

A serial bus configuration example is shown below.

DataSheet4U.com

et4U.com

19.2 Configuration

l²C0 includes the following hardware.

Table 19-1. Configuration of I²C0

Item	Configuration
Registers	IIC shift register 0 (IIC0) Slave address register 0 (SVA0)
Control registers	IIC control register 0 (IICC0) IIC status register 0 (IICS0) IIC flag register 0 (IICCF0) IIC clock selection register 0 (IICCL0) IIC function expansion register 0 (IICX0)

(1) IIC shift register 0 (IIC0)

The IIC0 register is used to convert 8-bit serial data to 8-bit parallel data and to convert 8-bit parallel data to 8-bit serial data. The IIC0 register can be used for both transmission and reception. Write and read operations to the IIC0 register are used to control the actual transmit and receive operations. The IIC0 register can be read or written in 8-bit units. After reset, IIC0 is cleared to 00H.

(2) Slave address register 0 (SVA0)

The SVA0 register sets local addresses when in slave mode. The SVA0 register can be read or written in 8-bit units. After reset, SVA0 is cleared to 00H.

(3) SO latch

The SO latch is used to retain the SDA0 pin's output level.

(4) Wakeup controller

This circuit generates an interrupt request signal (INTIIC0) when the address received by this register matches the address value set to the SVA0 register or when an extension code is received.

(5) Prescaler

This selects the sampling clock to be used.

(6) Serial clock counter

This counter counts the serial clocks that are output and the serial clocks that are input during transmit/receive operations and is used to verify that 8-bit data was sent or received.

(7) Interrupt request signal generator

This circuit controls the generation of interrupt request signals (INTIIC0). An I^2C interrupt is generated following either of two triggers.

- Falling of the eighth or ninth clock of the serial clock (set by IICC0.WTIM0 bit)
- Interrupt request generated when a stop condition is detected (set by IICC0.SPIE0 bit)

(8) Serial clock controller

In master mode, this circuit generates the clock output via the SCL0 pin from a sampling clock.

(9) Serial clock wait controller

This circuit controls the wait timing.

(10) ACK output circuit, stop condition detector, start condition detector, and ACK detector These circuits are used to output and detect various control signals.

(11) Data hold time correction circuit

This circuit generates the hold time for data corresponding to the falling edge of the serial clock.

(12) Start condition generator

This circuit generates a start condition when the IICC0.STT0 bit is set. However, in the communication reservation disabled status (IICF0.IICRSV0 bit = 1), when the bus is not released (IICF0.IICBSY0 bit = 1), start condition requests are ignored and the IICF0.STCF0 bit is set to 1.

(13) Bus status detector

This circuit detects whether or not the bus is released by detecting start conditions and stop conditions. However, as the bus status cannot be detected immediately following operation, the initial status is set by the IICF0.STCEN0 bit.

et4U.com

DataShe

19.3 Registers

l²C0 is controlled by the following registers.

- IIC control register 0 (IICC0)
- IIC status register 0 (IICS0)
- IIC flag register 0 (IICF0)
- IIC clock selection register 0 (IICCL0)
- IIC function expansion register 0 (IICX0)

The following registers are also used.

- IIC shift register 0 (IIC0)
- Slave address register 0 (SVA0)

Remark For the alternate-function pin settings, refer to Table 4-16 Settings When Port Pins Are Used for Alternate Functions.

(1) IIC control register 0 (IICC0)

The IICC0 register is used to enable/stop I²C0 operations, set wait timing, and set other I²C operations. The IICC0 register can be read or written in 8-bit or 1-bit units. After reset, IICC0 is cleared to 00H.

et4U.com

DataSheet4U.com

DataShe

CHAPTER 19 I²C BUS

ICC0			<5>	<4>	<3>	<2>	<1>	<0>	л I	
	IICE0	LREL0	WREL0	SPIE0	WTIM0	ACKE0	STT0	SPT0]	
IICE0				l ² C0 oper	otion on obla	/diachla anac	ification			
0	Stop op	oration P				/disable spec				
1		operation.		so register	. Stop inte		1.			
	or clearing (II	•			Conc	dition for setti	na (IICE0 bit	t = 1)		
	by instruction		<i></i>			by instructio		,		
LREL0				Exit	from commu	unications				
0 N	lormal operat	tion								
TI cl The standby are met.	leared to 0.	PT0, IICS0.	MSTS0, IICS	S0.EXC0, IIC nications rer DataShee	mains in effe				STD0 bits are	Da
	ss match or e			n occurs aft	er the start c	ondition.				
	or clearing (L					ition for settin		t = 1)		
 Automatic Reset 	cally cleared	after execu	ition		• Set	by instructior				
WREL0				W	ait cancellati	on control				
0	Do not cano	cel wait								
1	Cancel wait	t. This sett	ing is autom	atically clear	ed to 0 after	wait is cance	eled.			
	or clearing (W	VREL0 bit :	= 0) ^{Note 2}		Condi	ition for settin	g (WREL0 b	oit = 1)		
Condition fo		after execu			Set	by instructior				

et4U.com

SPIE0	Enable/disable generation of inte	errupt request when stop condition is detected		
0	Disable			
1	Enable			
Condition f	or clearing (SPIE0 bit = 0) ^{Note}	Condition for setting (SPIE0 bit = 1)		
Cleared bReset	by instruction	Set by instruction		
WTIMO	Control of wait ar	nd interrupt request generation		
0	Interrupt request is generated at the eighth clock's falling edge. Master mode: After output of eight clocks, clock output is set to low level and wait is set. Slave mode: After input of eight clocks, the clock is set to low level and wait is set for master device.			
1	Interrupt request is generated at the ninth clock Master mode: After output of nine clocks, clock Slave mode: After input of nine clocks, the clo			
bit. The set the falling of is inserted	etting of this bit is valid when the address transfe edge of the ninth clock during address transfers.	k during address transfer independently of the setting of this er is completed. When in master mode, a wait is inserted at For a slave device that has received a local address, a wait mowledge signal (\overrightarrow{ACK}) is issued. However, when the slave the falling edge of the eighth clock.		
Condition f	or clearing (WTIM0 bit = 0) ^{Note}	Condition for setting (WTIM0 bit = 1)		
Cleared bReset	by instruction DataS	• Set by instruction heet4U.com		
ACKE0	Ackno	owledgment control		
0	Disable acknowledgment.			
1	Enable acknowledgment. During the ninth cloc invalid during address transfers and other than	k period, the SDA0 line is set to low level. However, \overrightarrow{ACK} is in expansion mode.		
Condition f	or clearing (ACKE0 bit = 0) ^{Note}	Condition for setting (ACKE0 bit = 1)		
Cleared b Reset	by instruction	Set by instruction		

Note This flag's signal is invalid when the IICE0 bit = 0.

(3/4)	

DataShe

0	Start condition trigger		
0	Do not generate a start condition.		
1	and then the start condition is generated. Ne line is changed to low level.When a third party is communicatingWhen communication reservation function is	on flag. When set to 1, automatically generates a start s disabled (IICRSV0 bit = 1) ondition is generated.	
	concerning set timing r reception: Cannot be set to 1 during transfe	er. Can be set to 1 only when the ACKE0 bit has been	
	wait period.	otified of final reception. Ated normally during the ACK0 period. Set to 1 during the	
• Cannot	er transmission: A start condition cannot be genera wait period. be set to 1 at the same time as the SPT0 bit.		

(4/4)

	Stop condition trig	ger			
0	Stop condition is not generated.				
1	Stop condition is generated (termination of master device's transfer). After the SDA0 line goes to low level, either set the SCL0 line to high level or wait until the SCL0 pin goes to high level. Next, after the rated amount of time has elapsed, the SDA0 line is changed from low level to high level and a stop condition is generated.				
For maste		be set to 1 only when the ACKE0 bit has priod after slave has been notified of final hally during the \overline{ACK} signal period. Set to 1			
The SPT When th of eight When a	during the wait period. be set to 1 at the same time as the STT0 bit. T0 bit can be set to 1 only when in master mode ^{Note 1} . WTIM0 bit has been cleared to 0, if the SPT0 bit is set to clocks, note that a stop condition will be generated during the ninth clock must be output, the WTIM0 bit should be set for f eight clocks, and the SPT0 bit should be set to 1 during the	e high-level period of the ninth clock. rom 0 to 1 during the wait period following			
Condition	for clearing (SPT0 bit = 0) ^{Note 2}	Condition for setting (SPT0 bit = 1)			
AutomatWhen th	by loss in arbitration tically cleared after stop condition is detected the LREL0 bit = 1 (exit from communications) the IICE0 bit = 0 (operation stop) DataSheet4U.co	Set by instruction			
	Set the SPT0 bit to 1 only in master mode. However	er, the SPT0 bit must be set to 1 and a			

et4U.com

DataShe

(2) IIC status register 0 (IICS0)

register.

The IICS0 register indicates the status of the I^2C0 bus. The IICS0 register is read-only, in 8-bit or 1-bit units. After reset, IICS0 is cleared to 00H.

Caution When the main clock is stopped and the CPU is operating on the subclock, do not access the IICS0 register using an access method that causes a wait. For details, refer to 3.4.8 (2).

	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>		
IICS0	MSTS0	ALD0	EXC0	COI0	TRC0	ACKD0	STD0	SPD0		
MSTS0	<u> </u>			Mas	ster device sta	atus				
0	Slave devic	ce status or c	communicatio	on standby :	status					
1	Master devi	ice commun	ication status	3						
Condition	for clearing (N	/ISTS0 bit =	0)		Condition fo	or setting (MS	TS0 bit = 1)			
commun	by the IICC0.L nications) ne IICC0.IICE0			aSheet41 (operation	J.com					Da
commun • When th stop) • Reset	•					on loss				Da
commun • When th stop) • Reset ALD0	nications) ne IICC0.IICE0) bit changes	s from 1 to 0	Detection	on of arbitration		n result was	a "win".		Da
commun • When th stop) • Reset	This status) bit changes	s from 1 to 0 to	Detectio was no arbit		the arbitration				Da
commun • When th stop) • Reset ALD0 0 1	This status) bit changes means eithe indicates the	er that there v	Detectio was no arbit	on of arbitration tration or that "loss". The N	the arbitration	cleared to 0			Da

et4U.com

1	2	12	۱
(4	/0	,

EXC0	Detection of extension code reception		
0	Extension code was not received.		
1	Extension code was received.		
Condition	for clearing (EXC0 bit = 0)	Condition for setting (EXC0 bit = 1)	
When aCleared	start condition is detected stop condition is detected by the LREL0 bit = 1 (exit from communications) le IICE0 bit changes from 1 to 0 (operation stop)	• When the higher four bits of the received address data is either "0000" or "1111" (set at the rising edge of the eighth clock).	

COI0	Detection of matching addresses		
0	Addresses do not match.		
1	Addresses match.		
Condition	for clearing (COI0 bit = 0)	Condition for setting (COI0 bit = 1)	
When a Cleared	start condition is detected stop condition is detected by the LREL0 bit = 1 (exit from communications) e IICE0 bit changes from 1 to 0	• When the received address matches the local address (SVA0 register) (set at the rising edge of the eighth clock).	

TRC0	Detection of	f transmit/receive status		
0	Receive status (other than transmit status). The	SDA0 line is set for high impedance.		
1	Transmit status. The value in the SO latch is enabled for output to the SDA0 line (valid starting at the risinedge of the first byte's ninth clock). DataSheet4U.com			
Condition f	or clearing (TRC0 bit = 0)	Condition for setting (TRC0 bit = 1)		
Cleared b When the Cleared b When the Reset Master When "1 direction Slave When a second	top condition is detected by the LREL0 bit = 1 (exit from communications) e IICE0 bit changes from 1 to 0 (operation stop) by the IICC0.WREL0 bit = 1 ^{Note} (wait release) e ALD0 bit changes from 0 to 1 (arbitration loss) " is output to the first byte's LSB (transfer specification bit) start condition is detected used for communication	 Master When a start condition is generated Slave When "1" is input in the first byte's LSB (transfer direction specification bit) 		

Note The TRC0 bit is cleared to 0 and the SDA0 line becomes high impedance when the WREL0 bit is set to 1 and wait state is released at the ninth clock with the TRC0 bit = 1.

DataShe

www.DataSheet4U.com

DataSheet4U.com

ACKD0	Detection of acknowledge signal (ACK)				
0	ACK signal was not detected.				
1	ACK signal was detected.				
Condition	for clearing (ACKD0 bit = 0)	Condition for setting (ACKD0 bit = 1)			
At the risCleared	stop condition is detected sing edge of the next byte's first clock by the LREL0 bit = 1 (exit from communications) e IICE0 bit changes from 1 to 0 (operation stop)	 After the SDA0 pin is set to low level at the rising edge of the SCL0 pin's ninth clock 			
STD0	Detecti	ion of start condition			
0	Start condition was not detected.				

STD0	Detecti	on of start condition
0	Start condition was not detected.	
1	Start condition was detected. This indicates that	at the address transfer period is in effect.
Condition	for clearing (STD0 bit = 0)	Condition for setting (STD0 bit = 1)
 At the ris address Cleared I 	stop condition is detected sing edge of the next byte's first clock following transfer by the LREL0 bit = 1 (exit from communications) e IICE0 bit changes from 1 to 0 (operation stop)	When a start condition is detected

et4U.com

SPD0	DataSheeta Detecti	ion of stop condition
0	Stop condition was not detected.	
1	Stop condition was detected. The master devic	e's communication is terminated and the bus is released
Condition	for clearing (SPD0 bit = 0)	Condition for setting (SPD0 bit = 1)
clock fo conditio	rising edge of the address transfer byte's first llowing setting of this bit and detection of a start n ne IICE0 bit changes from 1 to 0 (operation stop)	When a stop condition is detected

DataShe

(3) IIC flag register 0 (IICF0)

IICF0 is a register that sets the operation mode of I²C0 and indicates the status of the I²C bus. This register can be read or written in 8-bit or 1-bit units. However, the STCF0 and IICBSY0 bits are read-only. The IICRSV0 bit can be used to enable/disable the communication reservation function (refer to **19.13 Communication Reservation**).

The STCEN0 bit can be used to set the initial value of the IICBSY0 bit (refer to 19.14 Cautions).

The IICRSV0 and STCEN0 bits can be written only when the operation of I^2C0 is disabled (IICC0.IICE0 bit = 0). When operation is enabled, the IICF0 register can be read.

After reset, IICF0 is cleared to 00H.

et4U.com

DataSheet4U.com

	<7>	<6>	5	4	3	2	<1>	<0>
IICF0	STCF0	IICBSY0	0	0	0	0	STCEN0	IICRSV0
	STCF0					STT0 clea	r flag	
	0	Generate s	tart cond	ition			nag	
	1	Start condit			uccessful:	clear STT() flag	
	Conditior	for clearing						g (STCF0 bit = 1)
	Cleared Reset	d by the STT	0 bit = 1			STT	0 bit cleared	condition unsuccessful and th to 0 when communication abled (IICRSV0 bit = 1).
	IICBSY0				12/			
		Bus release	a etatue		1-0	C0 bus stat	us nag	
		Bus comm		status				
		for clearing				Condit	on for settin	g (IICBSY0 bit = 1)
		on of stop co		<u> </u>		Dete	ction of start	
		1					0	
	STCEN0				Initia	I start enal	ole trigger	
	0	After opera		habled (IIC) Datas	E0 bit = 1) Sheet4U	, enable ge .com	eneration of a	a start condition upon detectio
	1	After opera		nabled (IIC	E0 bit = 1)	, enable ge	eneration of a	a start condition without detec
	Condition	for clearing	(STCE0	bit = 0)		Condit	ion for settin	g (STCE0 bit = 1)
	DetectionReset	on of start co	ondition			• Setti	ng by instruc	tion
	IICRSV0			Comr	nunication	rocorrictio	n function di	
		Enchlo con	omunicat			reservatio	n function di	
	0	Enable con Disable cor						
		for clearing				Conditi	on for setting	g (IICRSV0 bit = 1)
		by instruction		5 bit = 0)			ng by instruc	- · ·
	ions 1. V 2. A s	tatus whe	STCEN release n the ST	₩ bit onl status (CEN0 bi	IICBSY0 t = 1, wh	bit = 0) i en gener	s recogniz ating the fi	pped (IICE0 bit = 0). ed regardless of the act irst start condition (STT0 tions are in progress in a

DataSheet4U.com

et4U.com

(4) IIC clock selection register 0 (IICCL0)

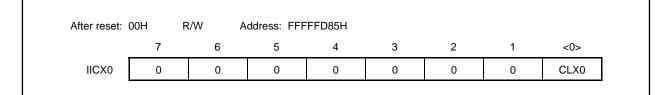
The IICCL0 register is used to set the transfer clock for l^2C0 .

The IICCL0 register can be read or written in 8-bit or 1-bit units. However, the CLD0 and DAD0 bits are readonly. The SMC0, CL01, and CL00 bits are set in combination with the IICX0.CLX0 bit (refer to **19.3 (6)** l^2 **C0 transfer clock setting method**).

After reset, IICCL0 is cleared to 00H.

	7	6	<5>	<4>	3	2	1	0
IICCL0	0	0	CLD0	DAD0	SMC0	DFC0	CL01	CL00
CLD0		C	etection of S	CL0 pin lev	el (valid only v	vhen IICC0.I	ICE0 bit = 1)	
0	The SCL0	pin was dete	ected at low le	evel.				
1	The SCL0	pin was dete	ected at high	level.				
Condition	for clearing (CLD0 bit = 0)		Condition fo	r setting (CL	D0 bit = 1)	
	•	s at low level 0 (operation	stop)		• When the	SCL0 pin is	at high level	
DAD0			Detection of	of SDA0 pin	level (valid on	ly when IICE	E0 bit = 1)	
0	The SDA0	pin was dete	ected at low I	evel.	h			
1	The SDA0	pin was dete	ected at high	level.	neet4U.cor	n		
Condition	for clearing (DAD0 bit = 0)		Condition fo	r setting (DA	D0 bit = 1)	
		s at low level 0 (operation			• When the	SDA0 pin is	at high level	
SMC0				Operat	ion mode swi	tching		
0	Operates i	in standard m	node.					
	Operates i	in high-speed	l mode.					
1				Digital fi	lter energian	oontrol		
				Digital II	Iter operation	CONTIN		
DFC0	Digital filte	er off		-				
	Digital filte Digital filte							

DataShe


www.DataSheet4U.com

DataSheet4U.com

(5) IIC function expansion register 0 (IICX0)

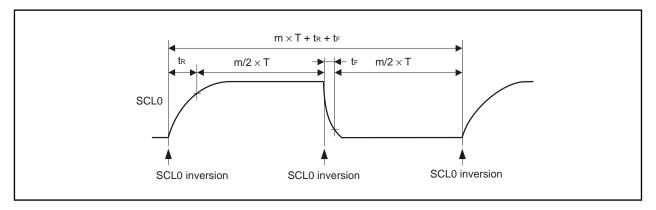
This register sets the function expansion of I²C0 (valid only in high-speed mode).

This register can be read or written in 8-bit or 1-bit units. The CLX0 bit is set in combination with the IICCL0.SMC0, IICCL0.CL01, and IICCL0.CL00 bits (refer to **19.3 (6) I**²**C0 transfer clock setting method**). After reset, IICX0 is cleared to 00H.

(6) I²C0 transfer clock setting method

The I²C0 transfer clock frequency (fscL) is calculated using the following expression.

 $f_{SCL} = 1/(m \times T + t_R + t_F)$


m = 12, 24, 48, 54, 86, 88, 172, 198 (refer to Table 19-2 Selection Clock Setting.)

- T: 1/fxx
- tR: SCL0 rise time
- tF: SCL0 fall time

et4U.com

For example, the I^2C0 transfer clock frequency (fscL) when fxx = 16 MHz, m = 172, tr = 200 ns, and tr = 50 ns is calculated using following expression. DataSheet4U.com

fscL = 1/(172 × 62.5 ns + 200 ns + 50 ns) ≅ 90.9 kHz

The selection clock is set using a combination of the IICCL0.SMC0, IICCL0.CL01, and IICCL0.CL00 bits and the IICX0.CLX0 bit.

IICX0		IICCL0		Selection Clock	Transfer Clock	Settable Internal System	Operation Mode
Bit 0	Bit 3	Bit 1	Bit 0		(f×x/m)	Clock Frequency (fxx)	
CLX0	SMC0	CL01	CL00			Range	
0	0	0	0	fxx/2	fxx/88	4.0 MHz to 8.38 MHz	Normal mode
0	0	0	1	fxx/2	fxx/172	8.38 MHz to 16.76 MHz	(SMC0 bit = 0)
0	0	1	0	fxx	fxx/86	4.19 MHz to 8.38 MHz	
0	0	1	1	fxx/3	fxx/198	16.0 MHz to 19.8 MHz	
0	1	0	х	fxx/2	fxx/48	8 MHz to 16.76 MHz	High-speed mode
0	1	1	0	fxx	fxx/24	4 MHz to 8.38 MHz	(SMC0 bit = 1)
0	1	1	1	fxx/3	fxx/54	16 MHz to 20 MHz	
1	0	х	х	Setting prohibited			
1	1	0	х	fxx/2	fxx/24	8.00 MHz to 8.38 MHz	High-speed mode
1	1	1	0	fxx	fxx/12	4.00 MHz to 4.19 MHz	(SMC0 bit = 1)
1	1	1	1	Setting prohibited			

Table 19-2. Selection Clock Setting

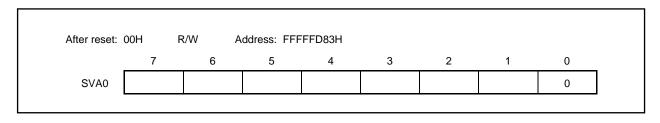
Remark x: don't care

et4U.com

(7) IIC shift register 0 (IIC0)

The IIC0 register is used for serial transmission/reception (shift operations) that is synchronized with the serial clock. DataSheet4U.com

The IIC0 register can be read or written in 8-bit units, but data should not be written to the IIC0 register during a data transfer.


When the IIC0 register is written during wait, the wait is cancelled and data transfer is started. After reset, IIC0 is cleared to 00H.

After reset:	00H	R/W	Address: FF	FFFD80H				
	7	6	5	4	3	2	1	0
IIC0								

(8) Slave address register 0 (SVA0)

The SVA0 register holds the I²C bus's slave addresses.

The SVA0 register can be read or written in 8-bit units, but bit 0 should be fixed as 0. After reset, SVA0 is cleared to 00H.

DataSheet4U.com

558

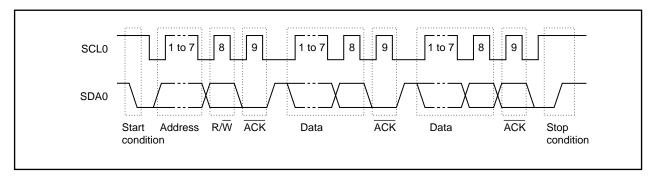
19.4 Functions

19.4.1 Pin configuration

The serial clock pin (SCL0) and serial data bus pin (SDA0) are configured as follows.

SCL0This pin is used for serial clock input and output. This pin is an N-ch open-drain output for both master and slave devices. Input is Schmitt input. SDA0This pin is used for serial data input and output. This pin is an N-ch open-drain output for both master and slave devices. Input is Schmitt input.

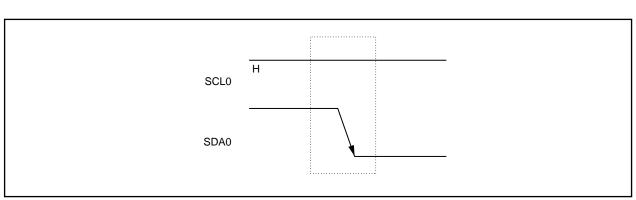
Since outputs from the serial clock line and the serial data bus line are N-ch open-drain outputs, an external pull-up resistor is required.



19.5 I²C Bus Definitions and Control Methods

The following section describes the I^2C bus's serial data communication format and the signals used by the I^2C bus. The transfer timing for the "start condition", "data", and "stop condition" output via the I^2C bus's serial data bus is shown below.

The master device outputs the start condition, slave address, and stop condition.


The acknowledge signal (ACK) can be output by either the master or slave device (normally, it is output by the device that receives 8-bit data).

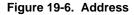
The serial clock (SCL0) is continuously output by the master device. However, in the slave device, the SCL0 pin's low-level period can be extended and a wait can be inserted.

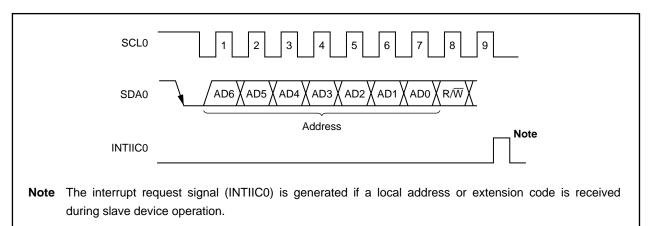
19.5.1 Start condition

DataSheet4U.com

A start condition is met when the SCL0 pin is at high level and the SDA0 pin changes from high level to low level. The start conditions for the SCL0 pin and SDA0 pin are signals that the master device outputs to the slave device when starting a serial transfer. Start conditions can be detected when the device is used as a slave.

Figure 19-5. Start Conditions


A start condition is output when the IICC0.STT0 bit is set to 1 after a stop condition has been detected (IICS0.SPD0 bit = 1). When a start condition is detected, the IICS0.STD0 bit is set to 1.

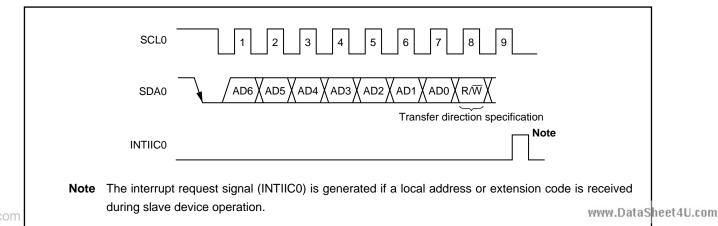

19.5.2 Addresses

The 7 bits of data that follow the start condition are defined as an address.

An address is a 7-bit data segment that is output in order to select one of the slave devices that are connected to the master device via bus lines. Therefore, each slave device connected via the bus lines must have a unique address.

The slave devices include hardware that detects the start condition and checks whether or not the 7-bit address data matches the data values stored in the SVA0 register. If the address data matches the SVA0 register values, the slave device is selected and communicates with the master device until the master device transmits a start condition or stop condition.

t4U.com


DataSheet4U.com

The slave address and the eighth bit, which specifies the transfer direction as described in **19.5.3** Transfer direction specification below, are together written to the IIC0 register and are then output. Received addresses are written to the IIC0 register.

The slave address is assigned to the higher 7 bits of the IIC0 register.

19.5.3 Transfer direction specification

In addition to the 7-bit address data, the master device sends 1 bit that specifies the transfer direction. When this transfer direction specification bit has a value of 0, it indicates that the master device is transmitting data to a slave device. When the transfer direction specification bit has a value of 1, it indicates that the master device is receiving data from a slave device.

561

19.5.4 Acknowledge signal (ACK)

The acknowledge signal (\overline{ACK}) is used by the transmitting and receiving devices to confirm serial data reception.

The receiving device returns one \overline{ACK} signal for each 8 bits of data it receives. The transmitting device normally receives an \overline{ACK} signal after transmitting 8 bits of data. However, when the master device is the receiving device, it does not output an \overline{ACK} signal after receiving the final data to be transmitted. The transmitting device detects whether or not an \overline{ACK} signal is returned after it transmits 8 bits of data. When an \overline{ACK} signal is returned, the reception is judged as normal and processing continues. If the slave device does not return an \overline{ACK} signal, the master device outputs either a stop condition or a restart condition and then stops the current transmission. Failure to return an \overline{ACK} signal may be caused by the following two factors.

<1> Reception was not performed normally.

<2> The final data was received.

When the receiving device sets the SDA0 line to low level during the ninth clock, the ACK signal becomes active (normal receive response).

When the IICC0.ACKE0 bit is set to 1, automatic ACK signal generation is enabled.

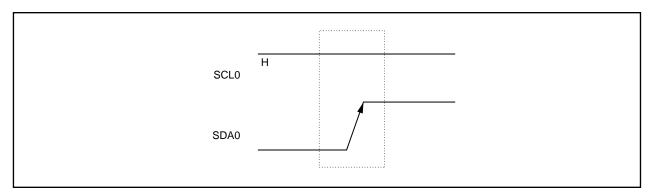
Transmission of the eighth bit following the 7 address data bits causes the IICS0.TRC0 bit to be set. When this TRC0 bit's value is 0, it indicates receive mode. Therefore, the ACKE0 bit should be set to 1.

When the slave device is receiving (when TRC0 bit = 0), if the slave device does not need to receive any more data after receiving several bytes, clearing the ACKE0 bit to 0 will prevent the master device from starting transmission of the subsequent data.

Similarly, when the master device is receiving (when TRC0 bit = 0) and the subsequent data is not needed and when either a restart condition or a stop condition should therefore be output, clearing the ACKE0 bit to 0 will prevent the \overline{ACK} signal from being returned. This prevents the MSB data from being output via the SDA0 line (i.e., stops transmission) during transmission from the slave device.

DataShe

When the local address is received, an ACK signal is automatically output in synchronization with the falling edge of the SCL0 pin's eighth clock regardless of the ACKE0 bit value. No ACK signal is output if the received address is not a local address.


The ACK signal output method during data reception is based on the wait timing setting, as described below.

- When 8-clock wait is selected: ACK signal is output at the falling edge of the SCL0 pin's eighth clock if the ACKE0 bit is set to 1 before wait cancellation.
- When 9-clock wait is selected: ACK signal is automatically output at the falling edge of the SCL0 pin's eighth (WTIM0 bit = 1)
 clock if the ACKE0 bit has already been set to 1.

19.5.5 Stop condition

When the SCL0 pin is at high level, changing the SDA0 pin from low level to high level generates a stop condition. A stop condition is a signal that the master device outputs to the slave device when serial transfer has been completed. Stop conditions can be detected when the device is used as a slave.

A stop condition is generated when the IICC0.SPT0 bit is set to 1. When the stop condition is detected, the IICS0.SPD0 bit is set to 1 and the interrupt request signal (INTIIC0) is generated when the IICC0.SPIE0 bit is set to 1.

et4U.com

DataSheet4U.com

DataSheet4U.com

19.5.6 Wait signal (WAIT)

The wait signal (WAIT) is used to notify the communication partner that a device (master or slave) is preparing to transmit or receive data (i.e., is in a wait state).

Setting the SCL0 pin to low level notifies the communication partner of the wait status. When wait status has been canceled for both the master and slave devices, the next data transfer can begin.

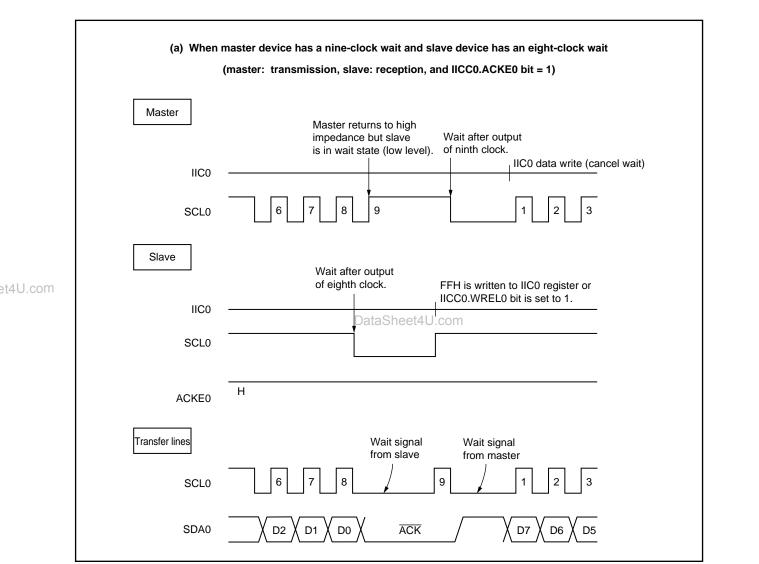
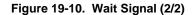
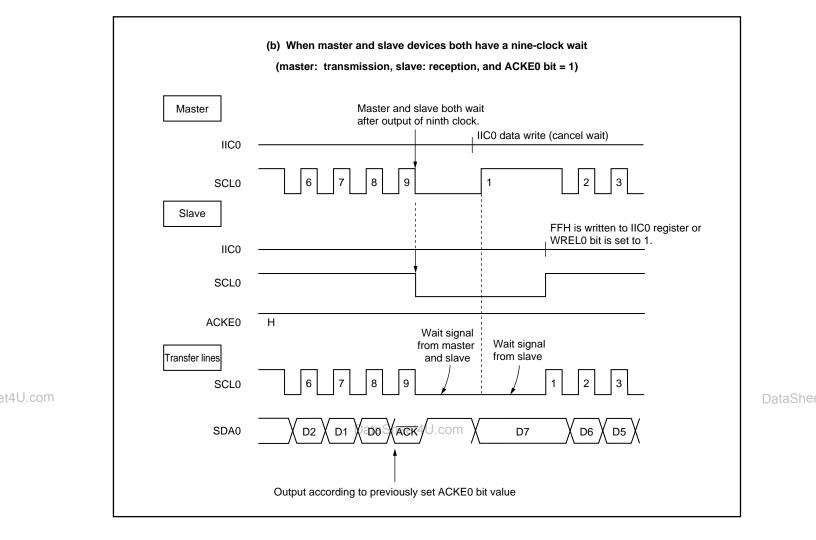
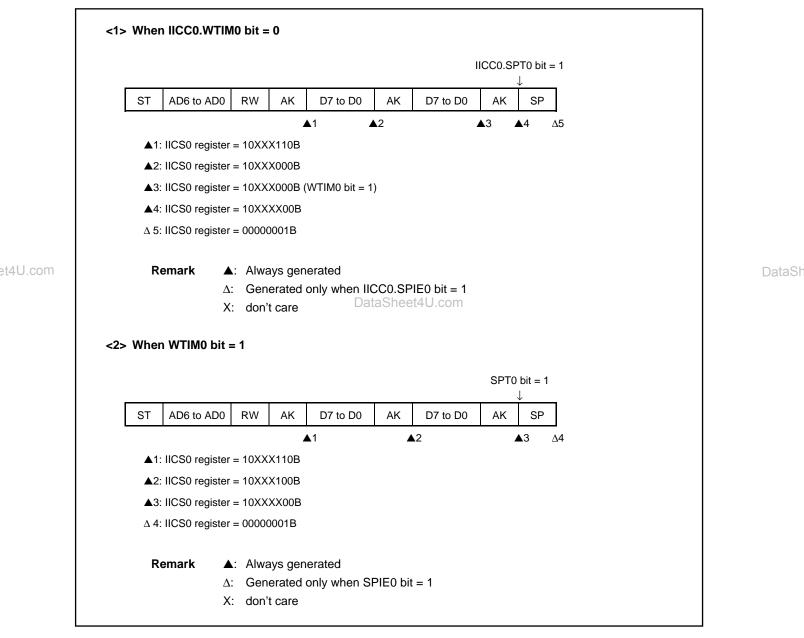




Figure 19-10. Wait Signal (1/2)

A wait may be automatically generated depending on the setting for the IICC0.WTIM0 bit.

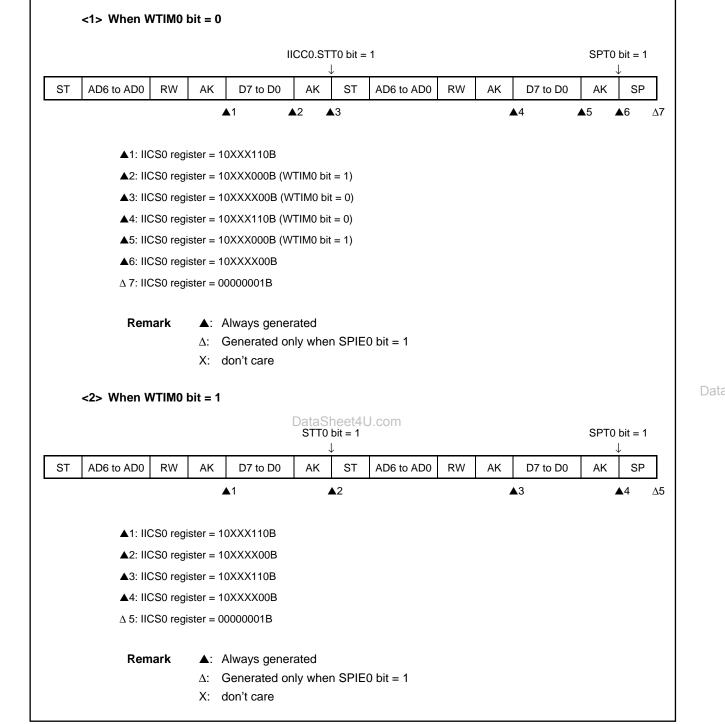
Normally, when the WREL0 bit is set to 1 or when FFH is written to the IIC0 register, the wait status is canceled and the transmitting side writes data to the IIC0 register to cancel the wait status.

The master device can also cancel the wait status via either of the following methods.

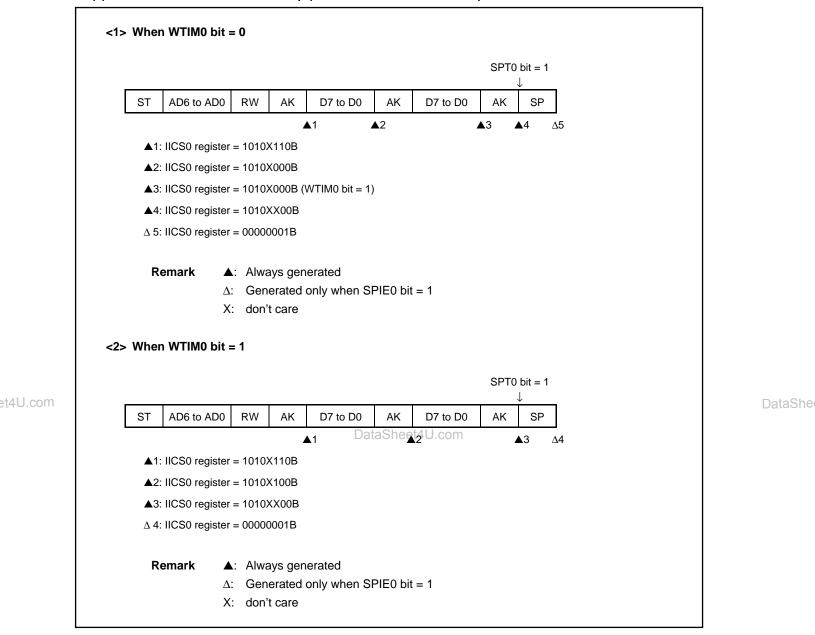

- By setting the IICC0.STT0 bit to 1
- By setting the IICC0.SPT0 bit to 1

19.6 I²C Interrupt Request Signals (INTIIC0)

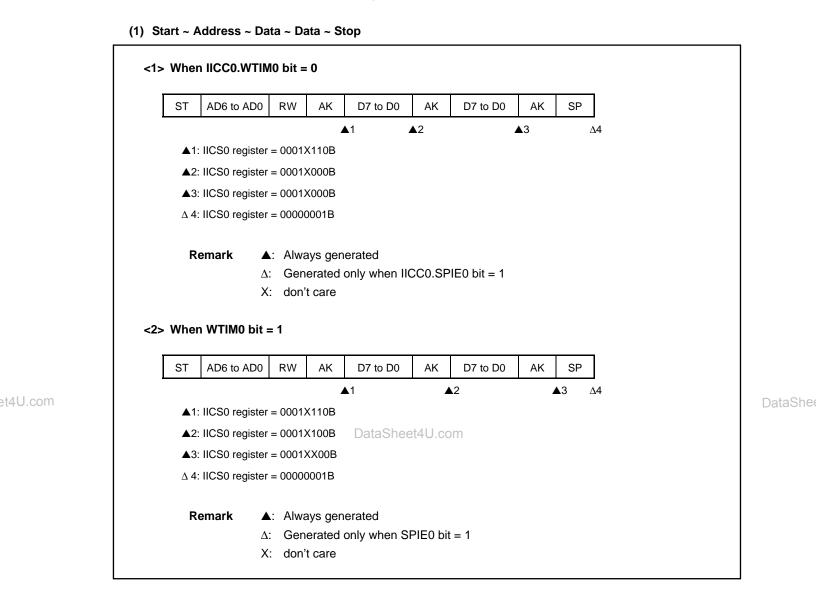
The following shows the value of the IICS0 register at the INTIIC0 interrupt request signal generation timing and at the INTIIC0 signal timing.


19.6.1 Master device operation

(1) Start ~ Address ~ Data ~ Data ~ Stop (normal transmission/reception)

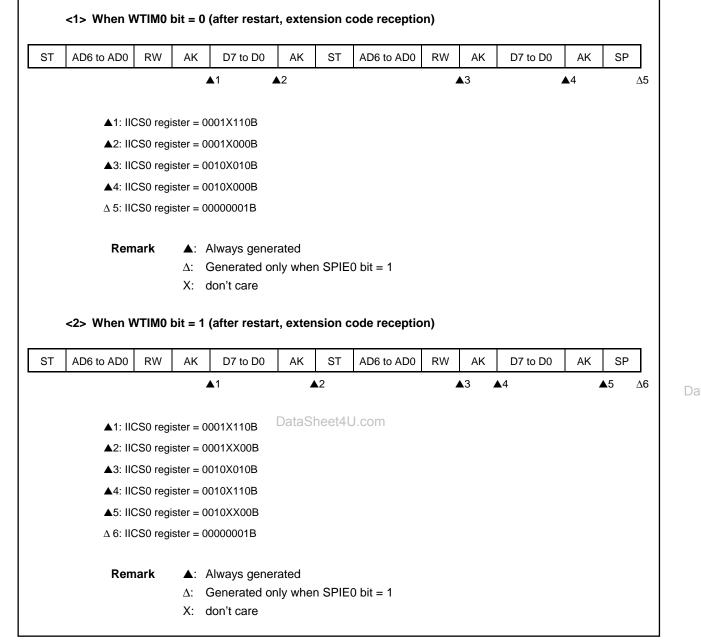


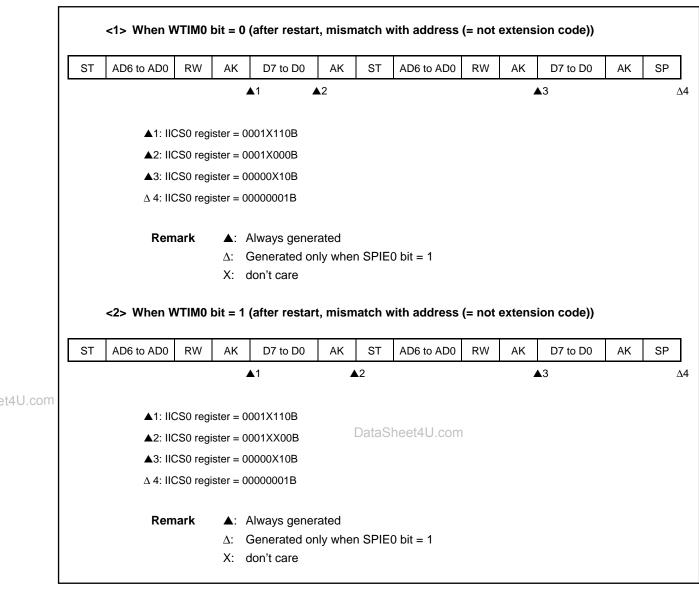
DataSheet4U.com


(2) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop (restart)

(3) Start ~ Code ~ Data ~ Data ~ Stop (extension code transmission)

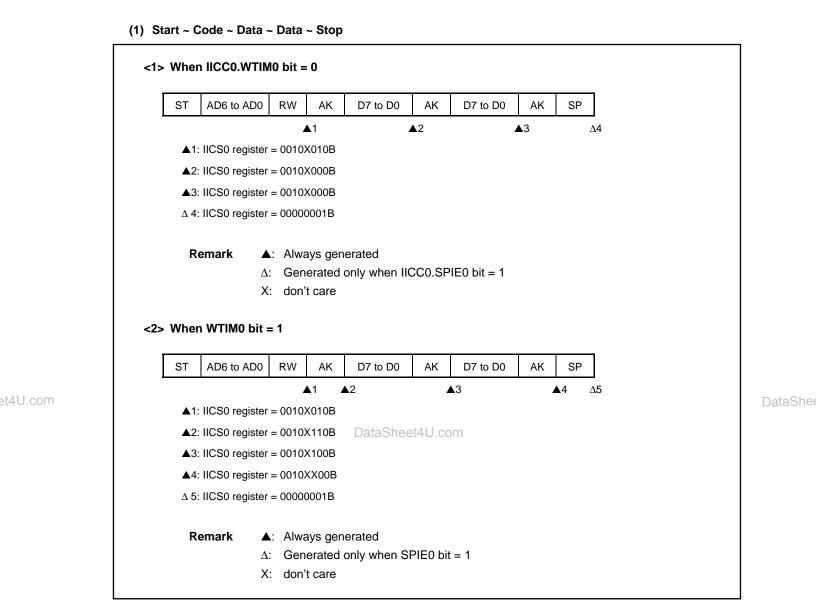
19.6.2 Slave device operation (when receiving slave address data (match with address))





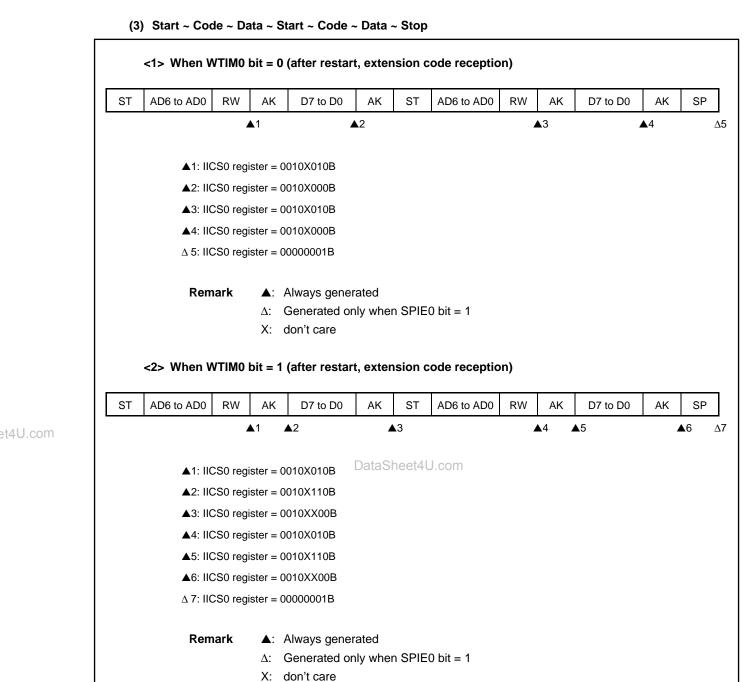
ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP
			4	1	2				4	3	▲4	
	▲1: IIC	CS0 regi	ster = 0	001X110B								
	▲ 2: II0	CS0 regi	ster = 0	001X000B								
	▲ 3: IIC	CS0 regi	ster = 0	001X110B								
	▲ 4: IIC	CS0 regi	ster = 0	001X000B								
	Δ 5: IIC	CS0 regi	ster = 0	0000001B								
	Rem	ark		Always gener								
				Generated or	nly wher	n SPIE	0 bit = 1					
				Generated or don't care	nly whei	n SPIE	0 bit = 1					
	<2> When V	VTIMO	X: 0	don't care	-							
ST	<2> When V AD6 to AD0	VTIMO I RW	X: 0	don't care	-			RW	AK	D7 to D0	AK	SP
			X: c bit = 1 AK	don't care (after restar	t, matc	h with	address)	RW		D7 to D0		SP ▲4
	AD6 to AD0	RW	X: c bit = 1 AK	don't care (after restar D7 to D0	t, matc	h with ST	address)					
	AD6 to AD0 ▲1: IIC	RW CS0 regi	X: c bit = 1 AK ster = 0	don't care (after restar D7 to D0 ▲1	t, matc	h with ST	address) AD6 to AD0					
	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC	RW CS0 regi CS0 regi CS0 regi	X: c bit = 1 AK ster = 0 ster = 0 ster = 0	don't care (after restar D7 to D0 ▲1 001X110B 001XX00B 001X110B	t, matc	h with ST	address) AD6 to AD0					
	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC ▲4: IIC	RW CS0 regi CS0 regi CS0 regi CS0 regi	X: 0 bit = 1 AK ster = 0 ster = 0 ster = 0 ster = 0	don't care (after restar D7 to D0 ▲1 001X110B 001XX00B 001X110B 001XX00B	t, matc	h with ST	address) AD6 to AD0					
	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC ▲4: IIC	RW CS0 regi CS0 regi CS0 regi CS0 regi	X: 0 bit = 1 AK ster = 0 ster = 0 ster = 0 ster = 0	don't care (after restar D7 to D0 ▲1 001X110B 001XX00B 001X110B	t, matc	h with ST	address) AD6 to AD0					
	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC ▲4: IIC	RW CS0 regi CS0 regi CS0 regi CS0 regi	X: c bit = 1 AK AK ster = 0 ster = 0 ster = 0 ster = 0 ster = 0 ster = 0	don't care (after restar D7 to D0 ▲1 001X110B 001XX00B 001X110B 001XX00B	t, matc	h with ST ▲2 DataS	address) AD6 to AD0 heet4U.com					

DataShe



(4) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop

19.6.3 Slave device operation (when receiving extension code)



www.DataSheet4U.com

(2) Start ~ Code ~ Data ~ Start ~ Address ~ Data ~ Stop

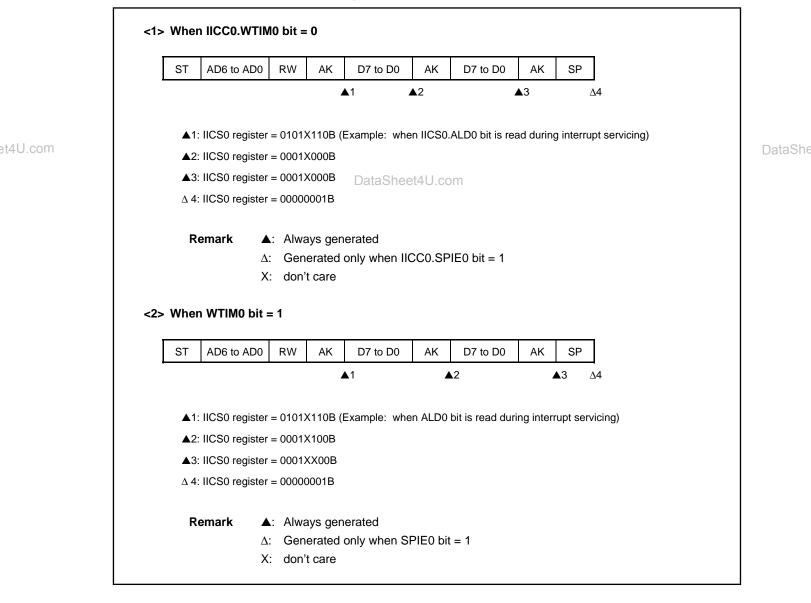
ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP
			1		2					▲3	▲4	
	▲ 1: IIC	CS0 regi	ster = 0	010X010B								
	▲ 2: IIC	CS0 regi	ster = 0	010X000B								
	▲ 3: IIC	CS0 regi	ster = 0	001X110B								
	▲ 4: IIC	CS0 regi	ster = 0	001X000B								
	Δ 5: IIC	CS0 regi	ster = 0	0000001B								
			Δ: 0	Always gener Generated or		n SPIE	0 bit = 1					
	<2> When V	ИТІМО І		don't care (after restar	t, matc	h with	address)					
ST	<2> When V AD6 to AD0	VTIMO I RW			t, matc	h with	address)	RW	AK	D7 to D0	AK	SI
ST	1	RW	bit = 1 AK	(after restar	AK	1	-	RW		D7 to D0 ▲4		SI ▲5
ST	AD6 to AD0	RW	bit = 1 AK	(after restar	AK	ST 3	-					
ST	AD6 to AD0 ▲1: IIC	RW CS0 regi	bit = 1 AK 1 4 ster = 0	(after restar D7 to D0 ▲2	AK	ST 3	AD6 to AD0					
ST	AD6 to AD0 ▲1: IIC ▲2: IIC	RW CS0 regi	bit = 1 <u>AK</u> 1 ster = 0 ster = 0	(after restar D7 to D0 ▲2 010X010B	AK	ST 3	AD6 to AD0					
ST	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC	RW CS0 regi CS0 regi CS0 regi	bit = 1 AK AK AT AK AT AK AT AK AK AK AK AK AK AK AK	(after restar D7 to D0 ▲2 010X010B 010X110B	AK	ST 3	AD6 to AD0					
ST	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC ▲4: IIC	RW CS0 regi CS0 regi CS0 regi CS0 regi	bit = 1 AK AK AK AK AK AK AK AK	(after restar D7 to D0 ▲2 010X010B 010X110B 010XX00B	AK	ST 3	AD6 to AD0					
ST	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC ▲4: IIC ▲5: IIC	RW CS0 regi CS0 regi CS0 regi CS0 regi CS0 regi	bit = 1 AK AK AT AC ACCORNENT	(after restar D7 to D0 ▲2 010X010B 010X110B 010XX00B 001X110B	AK	ST 3	AD6 to AD0					
ST	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC ▲4: IIC ▲5: IIC	RW CS0 regi CS0 regi CS0 regi CS0 regi CS0 regi	bit = 1 AK A ster = 0	(after restar D7 to D0 ▲2 010X010B 010X10B 010XX00B 001X10B 001XX00B	AK	ST 3	AD6 to AD0					SF ▲5

DataShe

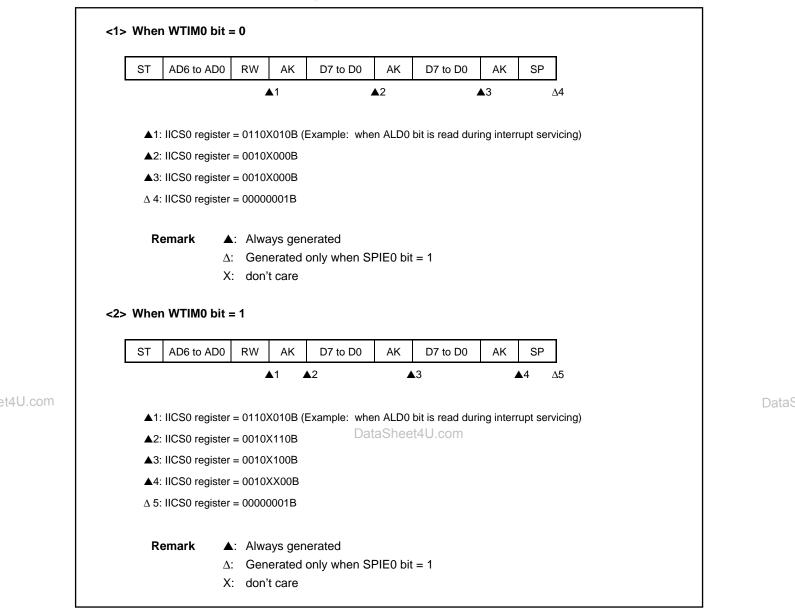
www.DataSheet4U.com

ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK
		4	▲1		2				4	▲3	
	▲ 1: II0	CS0 regi	ister = 0	010X010B							
	▲ 2: II0	CS0 regi	ister = 0	010X000B							
	▲ 3: II0	CS0 regi	ister = 0	0000X10B							
	Δ 4: IIC	CS0 regi	ister = 0	0000001B							
	Rem	nark	▲ : /	Always gener	rated						
				Generated or		n SPIE	0 bit = 1				
			X: (don't care							
0.7	<2> When V			1	1		1			1	
ST	<2> When V AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	(= not RW	AK	D7 to D0	AK
ST		RW	AK	1	AK		1		AK		Ak
ST	AD6 to AD0	RW	AK 1	D7 to D0	AK	ST 3	AD6 to AD0	RW	AK	D7 to D0	Ał
ST	AD6 to AD0	RW CS0 regi	AK 1 d	D7 to D0	AK	ST 3	1	RW	AK	D7 to D0	Ał
ST	AD6 to AD0 ▲1: IIC ▲2: IIC	RW CS0 regi CS0 regi	AK 1 ister = 0 ister = 0	D7 to D0 2 010X010B	AK	ST 3	AD6 to AD0	RW	AK	D7 to D0	Ał
ST	AD6 to AD0 ▲1: II0 ▲2: II0 ▲3: II0	RW CS0 regi CS0 regi CS0 regi	AK ister = 0 ister = 0 ister = 0	D7 to D0 2 010X010B 010X110B	AK	ST 3	AD6 to AD0	RW	AK	D7 to D0	Ar
ST	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC ▲4: IIC	RW CS0 regi CS0 regi CS0 regi CS0 regi	AK 1 ister = 0 ister = 0 ister = 0 ister = 0	D7 to D0 2 010X010B 010X110B 010XX00B	AK	ST 3	AD6 to AD0	RW	AK	D7 to D0	Ак
ST	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC ▲4: IIC	RW CS0 regi CS0 regi CS0 regi CS0 regi CS0 regi	AK ister = 0 ister = 0 ister = 0 ister = 0 ister = 0 ister = 0	D7 to D0 2 010X010B 010X110B 010XX00B 0000X10B	АК	ST 3	AD6 to AD0	RW	AK	D7 to D0	АК
ST	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC ▲4: IIC ▲ 5: IIC	RW CS0 regi CS0 regi CS0 regi CS0 regi CS0 regi	AK ister = 0 ister = 0 ister = 0 ister = 0 ister = 0 ister = 0	D7 to D0 2 010X010B 010X110B 010XX00B 0000X10B 0000001B	AK	ST A3 DataS	AD6 to AD0	RW	AK	D7 to D0	Ał

(4) Start ~ Code ~ Data ~ Start ~ Address ~ Data ~ Stop

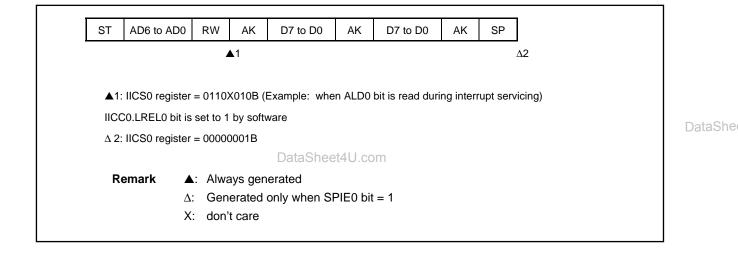

19.6.4 Operation without communication

(1) Start ~ Code ~ Data ~ Data ~ Stop


ST AE	D6 to AD0	RW	AK	D7 to D0	AK	D7 to D0	AK	SP	
4.4.110	· 00 ac sister	00000	004 B					4	
∆ 1: IICS0 register = 00000001B									
Remark Δ : Generated only when IICC0.SPIE0 bit = 1									

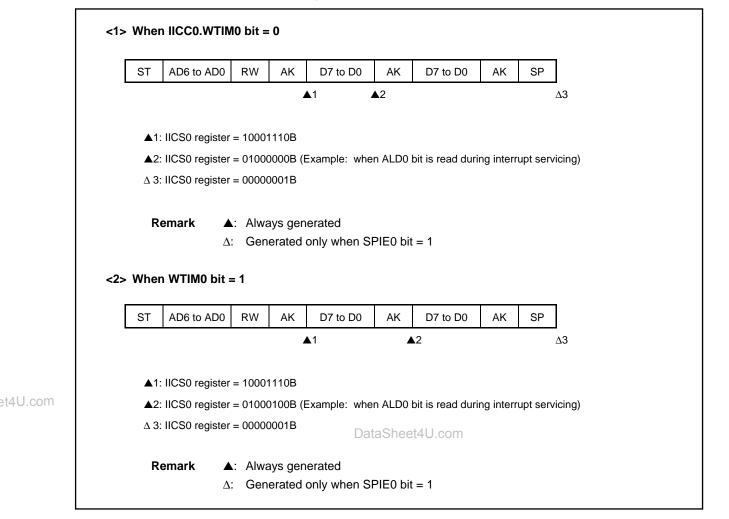
19.6.5 Arbitration loss operation (operation as slave after arbitration loss)

(1) When arbitration loss occurs during transmission of slave address data

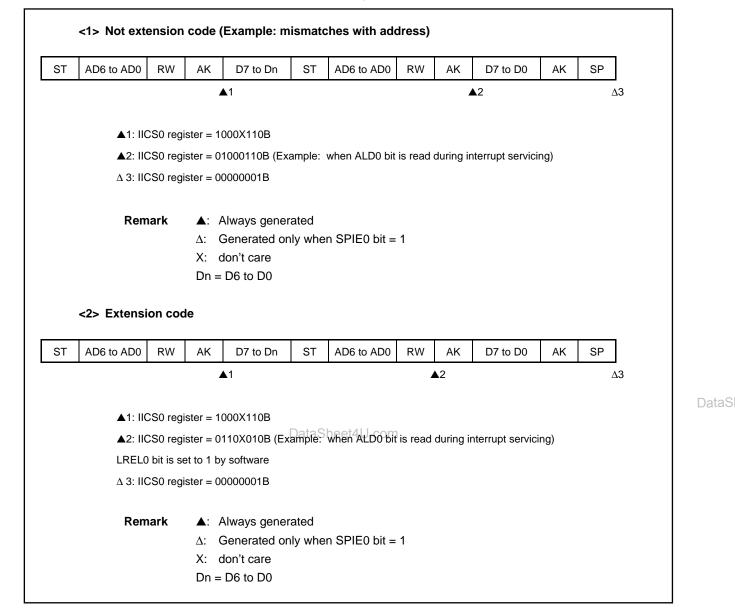

DataSheet4U.com

19.6.6 Operation when arbitration loss occurs (no communication after arbitration loss)

(1) When arbitration loss occurs during transmission of slave address data

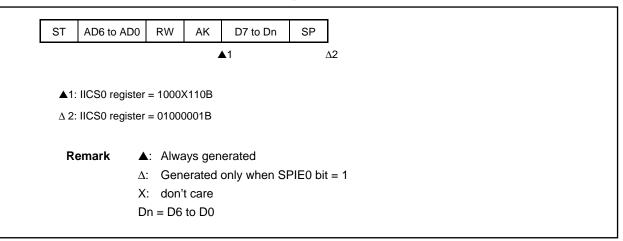

ST AD6 to A	D0 RW	AK	D7 to D0	AK	D7 to D0	AK	SP]
				Δ2				
▲1: IICS0 reg ∆ 2: IICS0 reg			Example: whe	n IICS0.	ALD0 bit is rea	ıd during	g interru	pt servicing)

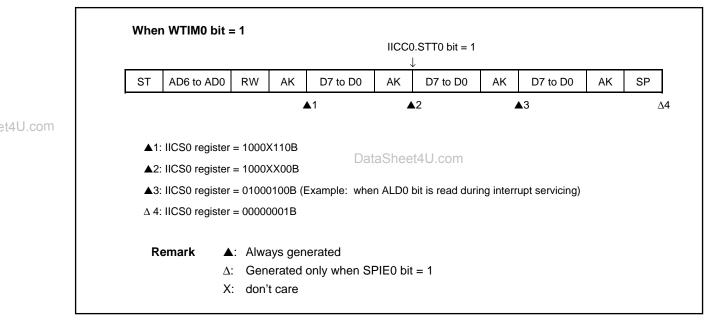
(2) When arbitration loss occurs during transmission of extension code



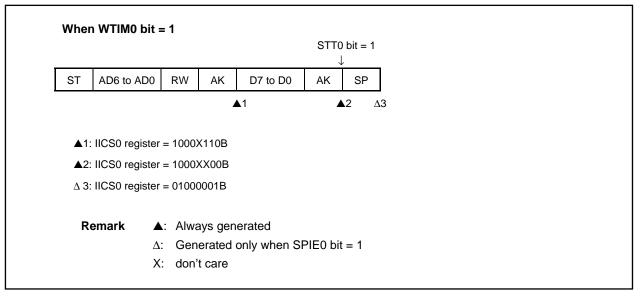
et4U.com

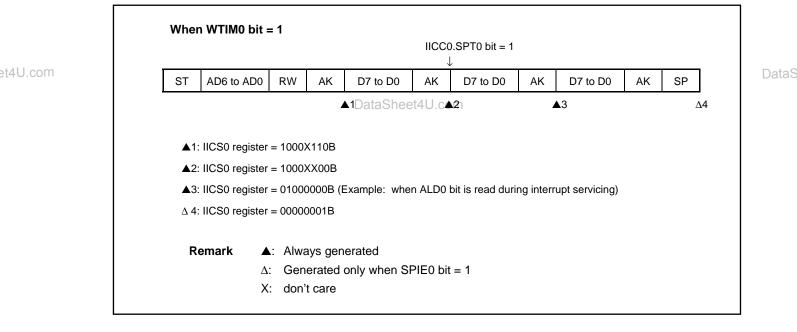
(3) When arbitration loss occurs during data transfer




DataSheet4U.com

et4U.com


(5) When loss occurs due to stop condition during data transfer


(6) When arbitration loss occurs due to low-level data when attempting to generate a restart condition

(7) When arbitration loss occurs due to a stop condition when attempting to generate a restart condition

(8) When arbitration loss occurs due to low-level data when attempting to generate a stop condition

19.7 Interrupt Request Signal (INTIIC0) Generation Timing and Wait Control

The setting of the IICC0.WTIM0 bit determines the timing by which the INTIIC0 signal is generated and the corresponding wait control, as shown below.

Table 19-3. INTIIC0 Signal Generation Timing and Wait Control

WTIM0 Bit	During	g Slave Device Ope	eration	During Master Device Operation					
	Address	Data Reception	ata Reception Data Transmission		Data Reception	Data Transmission			
0	9 ^{Notes 1, 2}	8 ^{Note 2}	8 ^{Note 2}	9	8	8			
1	9 ^{Notes 1, 2}	9 ^{Note 2}	9 ^{Note 2}	9	9	9			

Notes 1. The slave device's INTIIC0 signal and wait period occurs at the falling edge of the ninth clock only when there is a match with the address set to the SVA0 register.

At this point, an ACK signal is output regardless of the value set to the IICC0.ACKE0 bit. For a slave device that has received an extension code, the INTIIC0 signal occurs at the falling edge of the eighth clock.

When the address does not match after restart, the INTIICO signal is generated at the falling edge of the ninth clock, but no wait occurs.

2. If the received address does not match the contents of the SVA0 register and extension codes have not been received, neither the INTIICO signal nor a wait occurs.

Remark The numbers in the table indicate the number of the serial clock's clock signals. Interrupt requests and wait control are both synchronized with the falling edge of these clock signals.

DataSheet4U.com

(1) During address transmission/reception

• Slave device operation: Interrupt and wait timing are determined depending on the conditions in Notes 1 and 2 above regardless of the WTIM0 bit.

Master device operation: Interrupt and wait timing occur at the falling edge of the ninth clock regardless of the WTIM0 bit.

(2) During data reception

• Master/slave device operation: Interrupt and wait timing are determined according to the WTIM0 bit.

(3) During data transmission

• Master/slave device operation: Interrupt and wait timing are determined according to the WTIM0 bit.

(4) Wait cancellation method

The four wait cancellation methods are as follows.

- By setting the IICC0.WREL0 bit to 1
- By writing to the IIC0 register
- By start condition setting (IICC0.STT0 bit = 1)^{Note}
- By stop condition setting (IICC0.SPT0 bit = 1)^{Note}

Note Master only

When an 8-clock wait has been selected (WTIM0 bit = 0), the output level of the \overline{ACK} signal must be determined prior to wait cancellation.

(5) Stop condition detection

The INTIIC0 signal is generated when a stop condition is detected.

19.8 Address Match Detection Method

When in I²C bus mode, the master device can select a particular slave device by transmitting the corresponding slave address.

Address match detection is performed automatically by hardware. An INTIIC0 interrupt request signal occurs when a local address has been set to the SVA0 register and when the address set to the SVA0 register matches the slave address sent by the master device, or when an extension code has been received.

DataShe

19.9 Error Detection

DataSheet4U.com

In I²C bus mode, the status of the serial data bus (SDA0) during data transmission is captured by the IIC0 register of the transmitting device, so the IIC0 register data prior to transmission can be compared with the transmitted IIC0 register data to enable detection of transmission errors. A transmission error is judged as having occurred when the compared data values do not match.

19.10 Extension Code

- (1) When the higher 4 bits of the receive address are either 0000 or 1111, the extension code flag (EXC0) is set for extension code reception and an interrupt request signal (INTIIC0) is issued at the falling edge of the eighth clock. The local address stored in the SVA0 register is not affected.
- (2) If 11110xx0 is set to the SVA0 register by a 10-bit address transfer and 11110xx0 is transferred from the master device, the results are as follows. Note that the INTIIC0 signal occurs at the falling edge of the eighth clock.
 - Higher 4 bits of data match: IICS0.EXC0 bit = 1
 - 7 bits of data match: IICS0.COI0 bit = 1
- (3) Since the processing after the INTIIC0 signal occurs differs according to the data that follows the extension code, such processing is performed by software.

For example, when operation as a slave is not desired after the extension code is received, set the IICC0.LREL0 bit to 1 and the CPU will enter the next communication wait state.

Slave Address	R/W Bit	Description
0000 000	0	General call address
0000 000	1	Start byte
0000 001	Х	CBUS address
0000 010	Х	Address that is reserved for different bus format
1111 Oxx	Х	10-bit slave address specification

Table 19-4. Extension Code Bit Definitions

DataShe

et4U.com

19.11 Arbitration

When several master devices simultaneously output a start condition (when the IICC0.STT0 bit is set to 1 before the IICS0.STD0 bit is set to 1), communication among the master devices is performed as the number of clocks is adjusted until the data differs. This kind of operation is called arbitration.

When one of the master devices loses in arbitration, an arbitration loss flag (IICS0.ALD0 bit) is set (1) via the timing by which the arbitration loss occurred, and the SCL0 and SDA0 lines are both set for high impedance, which releases the bus.

The arbitration loss is detected based on the timing of the next interrupt request signal (INTIIC0) (the eighth or ninth clock, when a stop condition is detected, etc.) and the ALD0 bit = 1 setting that has been made by software.

For details of interrupt request timing, refer to 19.6 I²C Interrupt Request Signals (INTIICO).

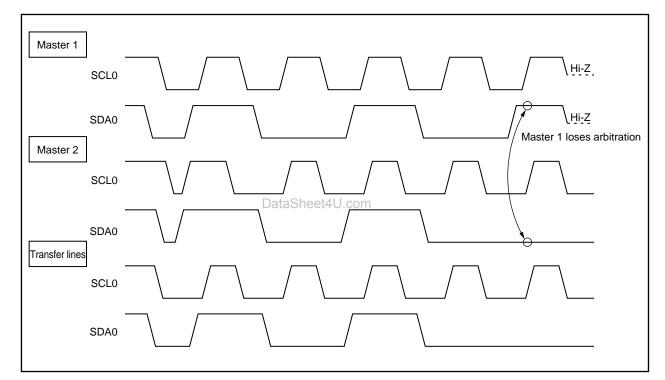


Figure 19-11. Arbitration Timing Example

DataShe

et4U.com

Status During Arbitration	Interrupt Request Generation Timing
During address transmission	At falling edge of eighth or ninth clock following byte transfer ^{Nete 1}
Read/write data after address transmission	
During extension code transmission	
Read/write data after extension code transmission	
During data transmission	
During ACK signal transfer period after data reception	
When restart condition is detected during data transfer	
When stop condition is detected during data transfer	When stop condition is output (when IICC0.SPIE0 bit = 1) ^{Note 2}
When the SDA0 pin is at low level while attempting to output a restart condition	At falling edge of eighth or ninth clock following byte transfer ^{Note 1}
When stop condition is detected while attempting to output a restart condition	When stop condition is output (when SPIE0 bit = 1) ^{Note 2}
When the SDA0 pin is at low level while attempting to output a stop condition	At falling edge of eighth or ninth clock following byte transfer ^{Note 1}
When the SCL0 pin is at low level while attempting to output a restart condition	

Table 19-5. Status During Arbitration and Interrupt Request Generation Timing

et4U.com

Notes 1. When the IICC0.WTIM0 bit = 1, an INTIIC0 signal occurs at the falling edge of the ninth clock. When the WTIM0 bit = 0 and the extension code's slave address is received, an INTIIC0 signal occurs at the falling edge of the eighth clock.

DataShe

2. When there is a possibility that arbitration will occur, set the SPIE0 bit = 1 for master device operation.

19.12 Wakeup Function

The I²C bus slave function is a function that generates an interrupt request signal (INTIIC0) when a local address or extension code has been received. This function makes processing more efficient by preventing the unnecessary INTIIC0 signal from occurring when addresses do not match.

When a start condition is detected, wakeup standby mode is set. This wakeup standby mode is in effect while addresses are transmitted due to the possibility that an arbitration loss may change the master device (which has output a start condition) to a slave device.

However, when a stop condition is detected, the IICC0.SPIE0 bit is set regardless of the wakeup function, and this determines whether the INTIIC0 signal is enabled or disabled.

19.13 Communication Reservation

19.13.1 When communication reservation function is enabled (IICF0.IICRSV0 bit = 0)

To start master device communications when not currently using a bus, a communication reservation can be made to enable transmission of a start condition when the bus is released. There are two modes under which the bus is not used.

- When arbitration results in neither master nor slave operation
- When an extension code is received and slave operation is disabled (ACK signal is not returned and the bus was released when the IICC0.LREL0 bit was set to 1).

If the IICC0.STT0 bit is set (1) while the bus is not used, a start condition is automatically generated and wait status is set after the bus is released (after a stop condition is detected).

When the bus release is detected (when a stop condition is detected), writing to the IIC0 register causes the master's address transfer to start. At this point, the IICC0.SPIE0 bit should be set (1).

When the STT0 bit has been set (1), the operation mode (as start condition or as communication reservation) is determined according to the bus status.

If the bus has been releaseda start condition is generated If the bus has not been released (standby mode)communication reservation

To detect which operation mode has been determined for the STT0 bit, set the STT0 bit (1), wait for the wait period, then check the IICS0.MSTS0 bit.

Wait periods, which should be set via software, are listed in Table 19-6. These wait periods can be set via the settings for the IICCL0.SMC0, IICCL0.CL01, and IICCL0.CL00 bits.

SMC0 CL01 **CL00** Wait Period 0 0 0 26 clocks 46 clocks 0 0 1 92 clocks 0 0 1 0 37 clocks 1 1 1 0 0 16 clocks 1 0 1 0 32 clocks 1 1 1 1 13 clocks 1

Table 19-6. Wait Periods

The communication reservation timing is shown below.

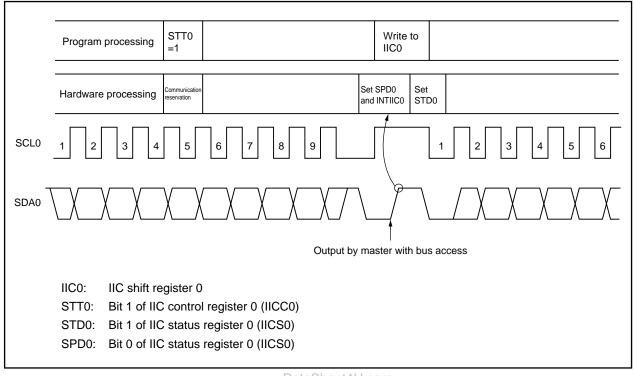


Figure 19-12. Communication Reservation Timing

DataShe

DataSheet4U.com

Communication reservations are accepted via the following timing. After the IICS0.STD0 bit is set to 1, a communication reservation can be made by setting the IICC0.STT0 bit to 1 before a stop condition is detected.

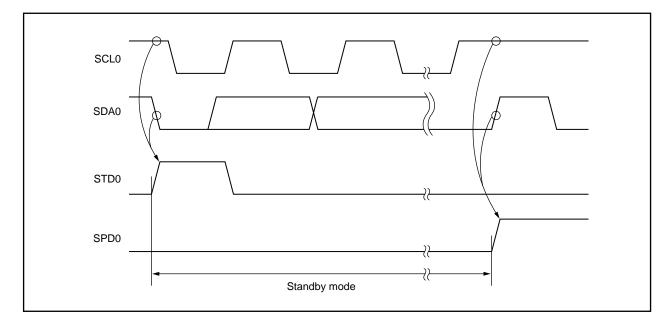


Figure 19-13. Timing for Accepting Communication Reservations

DataSheet4U.com

et4U.com

The communication reservation flowchart is illustrated below.

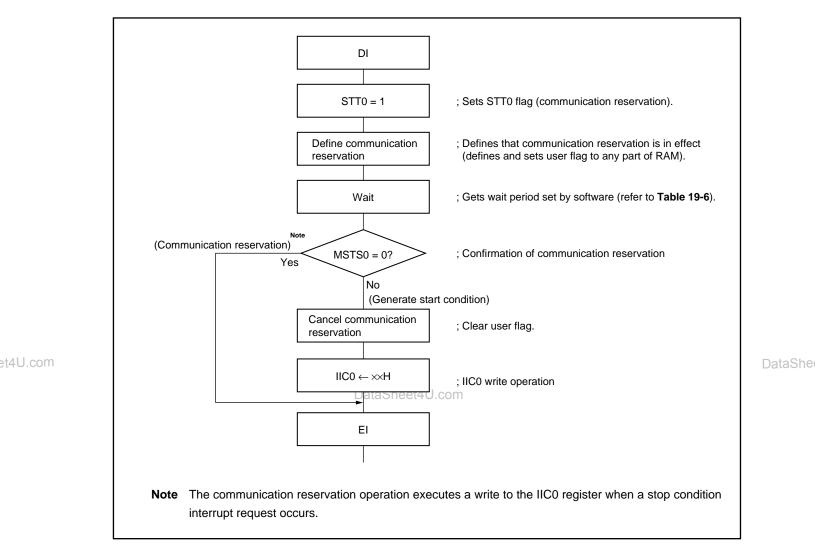


Figure 19-14. Communication Reservation Flowchart

19.13.2 When communication reservation function is disabled (IICF0.IICRSV0 bit = 1)

When the IICC0.STT0 bit is set when the bus is not used in a communication during bus communication, this request is rejected and a start condition is not generated. The following two statuses are included in the status where bus is not used.

- · When arbitration results in neither master nor slave operation
- When an extension code is received and slave operation is disabled (ACK signal is not returned and the bus was released when the IICC0.LREL0 bit was set to 1)

To confirm whether the start condition was generated or request was rejected, check the IICF0.STCF0 flag. The time shown in Table 19-7 is required until the STCF0 flag is set after setting the STT0 bit = 1. Therefore, secure the time by software.

CL01	CL00	Wait Period
0	0	6 clocks
0	1	6 clocks
1	0	3 clocks
1	1	9 clocks

et4U.com

Remark ×: don't care

DataSheet4U.com

DataSheet4U.com

19.14 Cautions

(1) When IICF0.STCEN0 bit = 0

Immediately after l^2C0 operation is enabled, the bus communication status (IICF0.IICBSY0 bit = 1) is recognized regardless of the actual bus status. To execute master communication in the status where a stop condition has not been detected, generate a stop condition and then release the bus before starting the master communication.

Use the following sequence for generating a stop condition.

<1> Set the IICCL0 register.

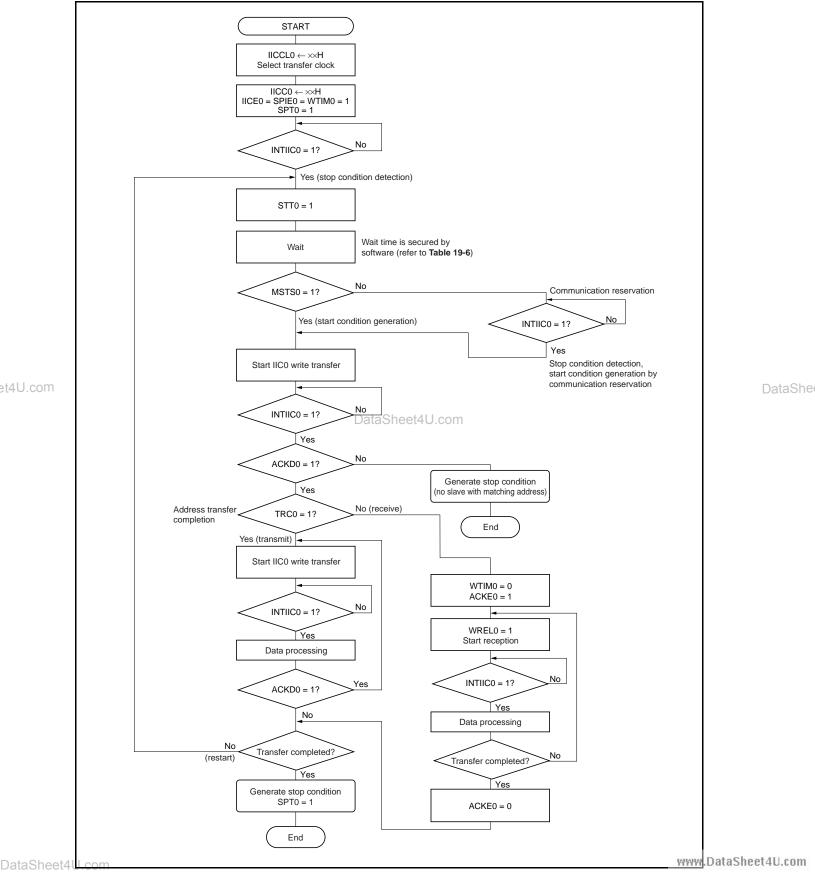
<2> Set the IICC0.IICE0 bit.

<3> Set the IICC0.SPT0 bit.

(2) When IICF0.STCEN0 bit = 1

Immediately after l^2C0 operation is enabled, the bus released status (IICBSY0 bit = 0) is recognized regardless of the actual bus status. To issue the first start condition (IICC0.STT0 bit = 1), it is necessary to confirm that the bus has been released, so as to not disturb other communications.

19.15 Communication Operations

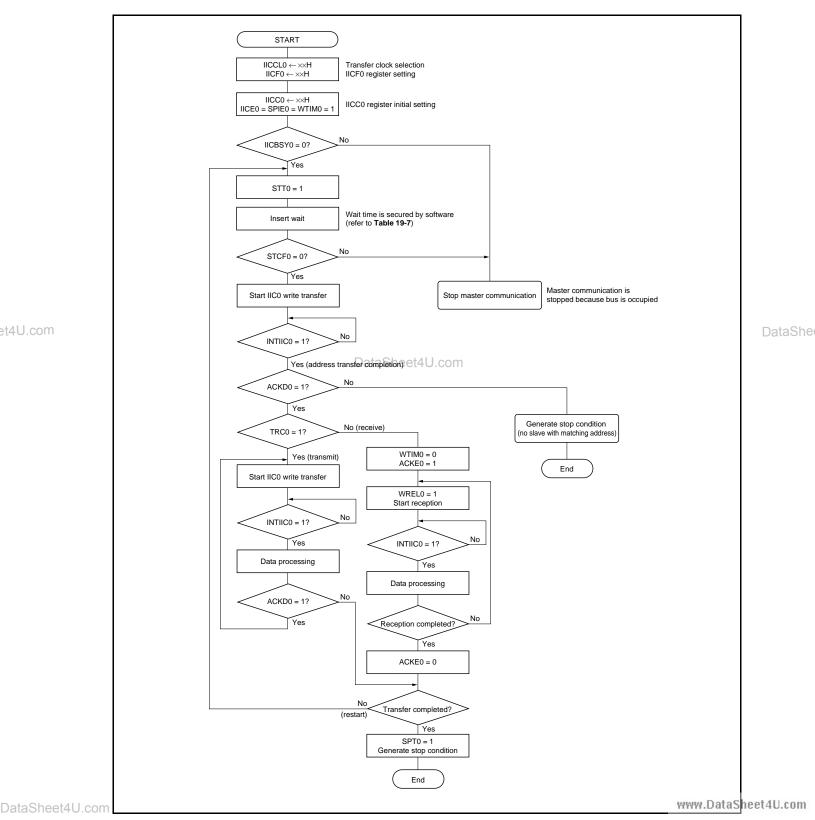

19.15.1 Master operation 1

The following shows the flowchart for master communication when the communication reservation function is enabled (IICF0.IICRSV0 bit = 0) and the master operation is started after a stop condition is detected (IICF0.STCEN0 bit = 0).

DataSheet4U.com

et4U.com

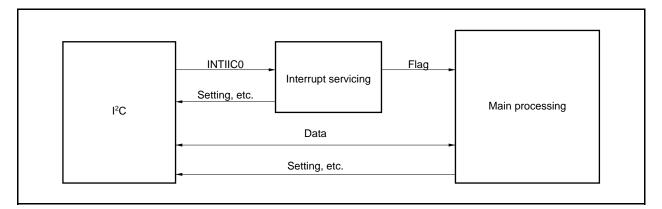
DataSheet4U.com



594

19.15.2 Master operation 2

The following shows the flowchart for master communication when the communication reservation function is disabled (IICRSV0 bit = 1) and the master operation is started without detecting a stop condition (STCEN0 bit = 1).


19.15.3 Slave operation

The following shows the processing procedure of the slave operation.

Basically, the operation of the slave device is event-driven. Therefore, processing by an INTIIC0 interrupt (processing requiring a significant change of the operation status, such as stop condition detection during communication) is necessary.

The following description assumes that data communication does not support extension codes. Also, it is assumed that the INTIIC0 interrupt servicing performs only status change processing and that the actual data communication is performed during the main processing.

Figure 19-17. Software Outline During Slave Operation

et4U.com

Therefore, the following three flags are prepared so that the data transfer processing can be performed by transmitting these flags to the main processing instead of the INTIICO signal.

DataShe

(1) Communication mode flag

This flag indicates the following communication statuses.Clear mode:Data communication not in progress

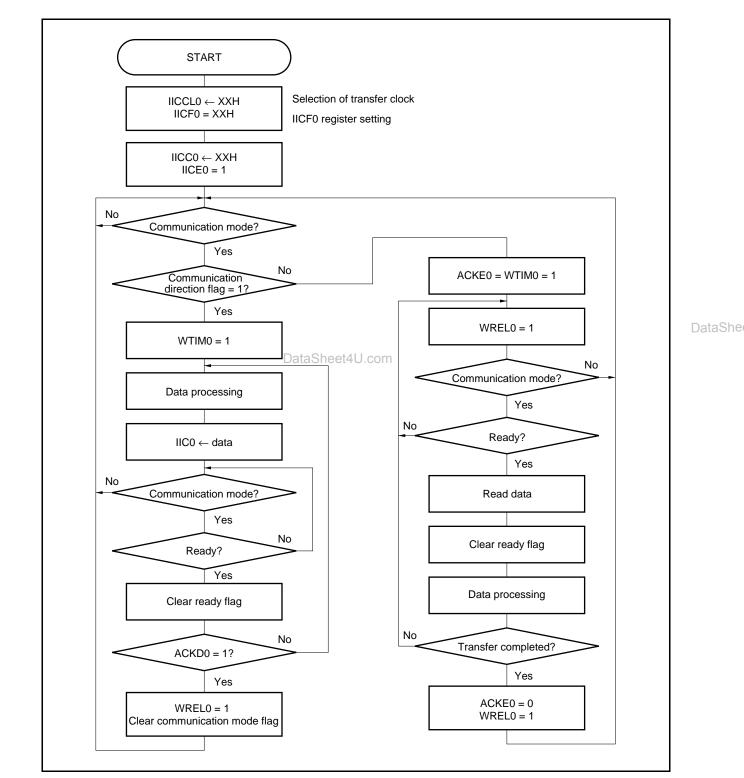
Communication mode: Data communication in progress (valid address detection stop condition detection, ACK signal from master not detected, address mismatch)

(2) Ready flag

This flag indicates that data communication is enabled. This is the same status as an INTIIC0 interrupt during normal data transfer. This flag is set in the interrupt servicing block and cleared in the main processing block. The ready flag for the first data for transmission is not set in the interrupt servicing block, so the first data is transmitted without clearance processing (the address match is regarded as a request for the next data).

(3) Communication direction flag

This flag indicates the direction of communication and is the same as the value of the IICS0.TRC0 bit.

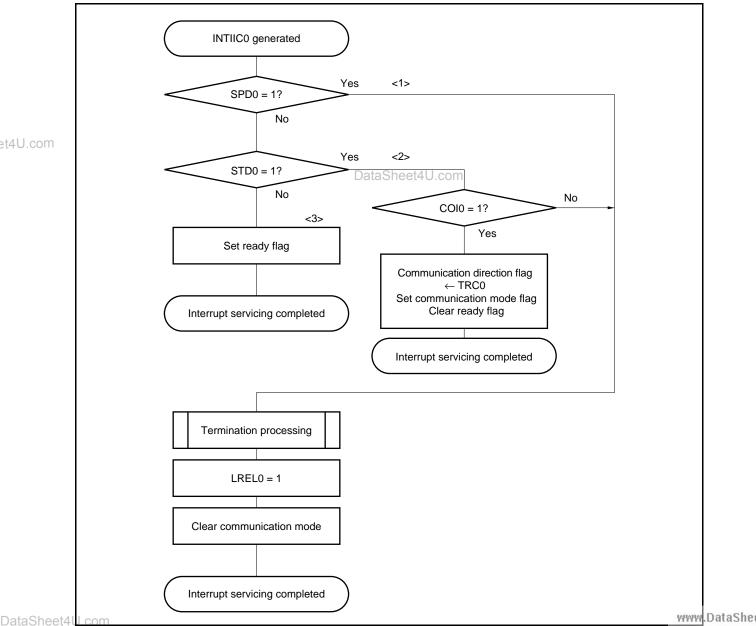

The following shows the operation of the main processing block during slave operation.

Start I²C0 and wait for the communication enabled status. When communication is enabled, perform transfer using the communication mode flag and ready flag (the processing of the stop condition and start condition is performed by interrupts, conditions are confirmed by flags).

For transmission, repeat the transmission operation until the master device stops returning \overline{ACK} signal. When the master device stops returning \overline{ACK} signal, transfer is complete.

ataSheet4U.com

For reception, receive the required number of data and do not return \overline{ACK} signal for the next data immediately after transfer is complete. After that, the master device generates the stop condition or restart condition. This causes exit from communications.


DataSheet4U.com

et4U.com

The following shows an example of the processing of the slave device by an INTIIC0 interrupt (it is assumed that no extension codes are used here). During an INTIICO interrupt, the status is confirmed and the following steps are executed.

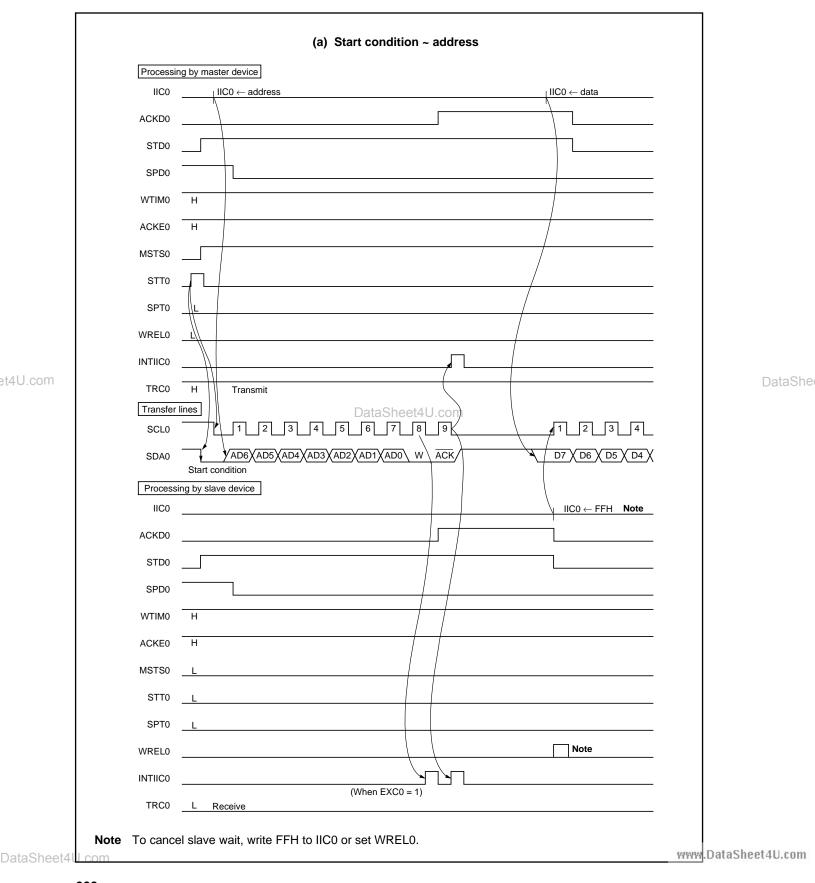
- <1> When a stop condition is detected, communication is terminated.
- <2> When a start condition is detected, the address is confirmed. If the address does not match, communication is terminated. If the address matches, the communication mode is set and wait is released, and operation returns from the interrupt (the ready flag is cleared).
- <3> For data transmission/reception, when the ready flag is set, operation returns from the interrupt while the l²C0 bus remains in the wait status.

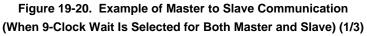
Remark <1> to <3> in the above correspond to <1> to <3> in Figure 19-19 Slave Operation Flowchart (2).

19.16 Timing of Data Communication

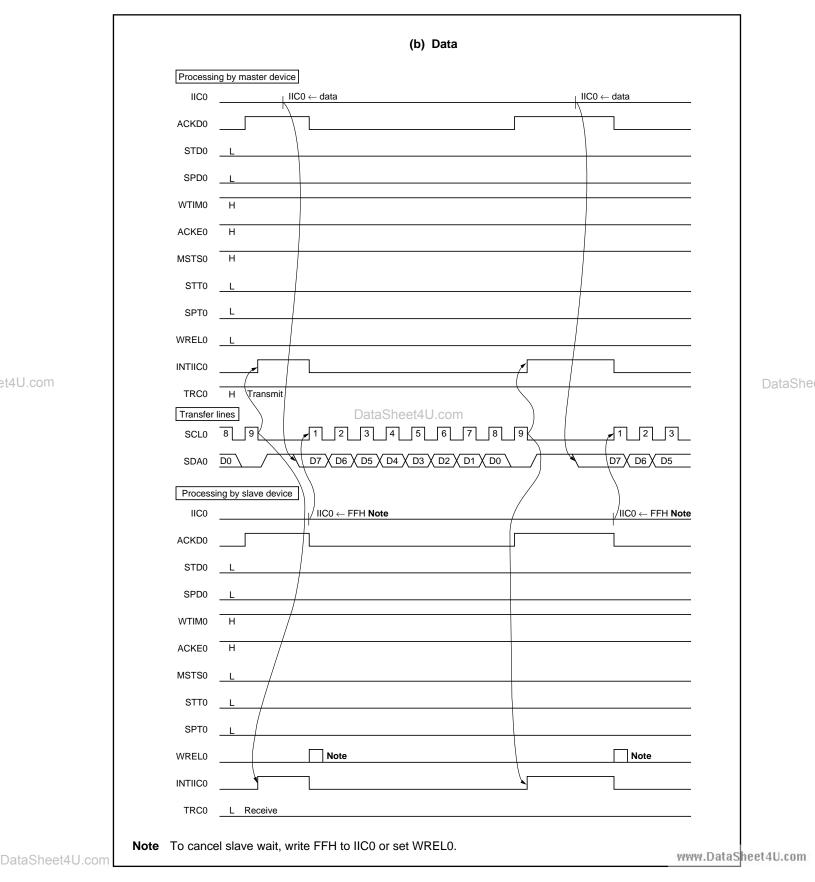
When using I²C bus mode, the master device outputs an address via the serial bus to select one of several slave devices as its communication partner.

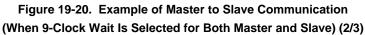
After outputting the slave address, the master device transmits the IICS0.TRC0 bit that specifies the data transfer direction and then starts serial communication with the slave device.


The IIC0 register's shift operation is synchronized with the falling edge of the serial clock (SCL0 pin). The transmit data is transferred to the SO latch and is output (MSB first) via the SDA0 pin.


Data input via the SDA0 pin is captured by the IIC0 register at the rising edge of the SCL0 pin.

The data communication timing is shown below.


Data


DataSheet4U.com

600

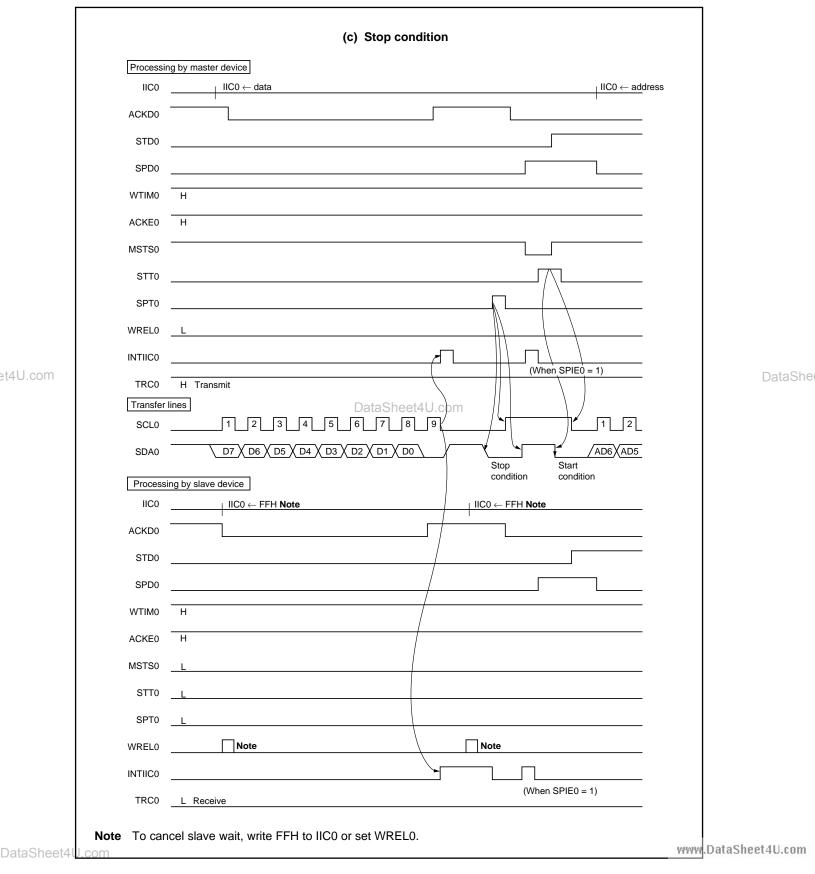
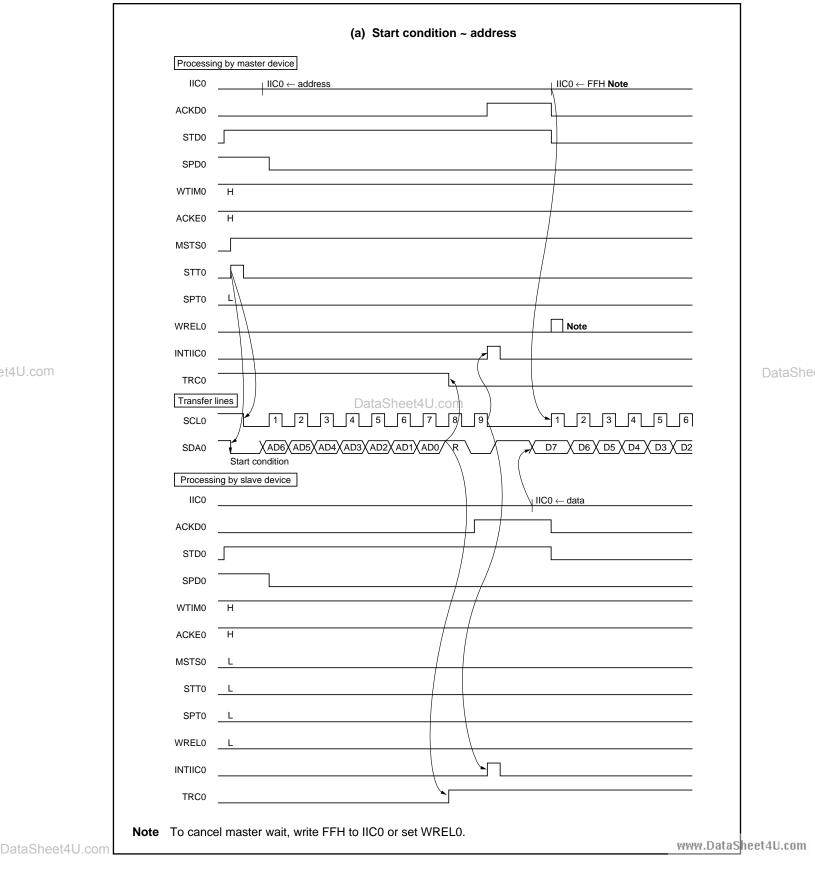
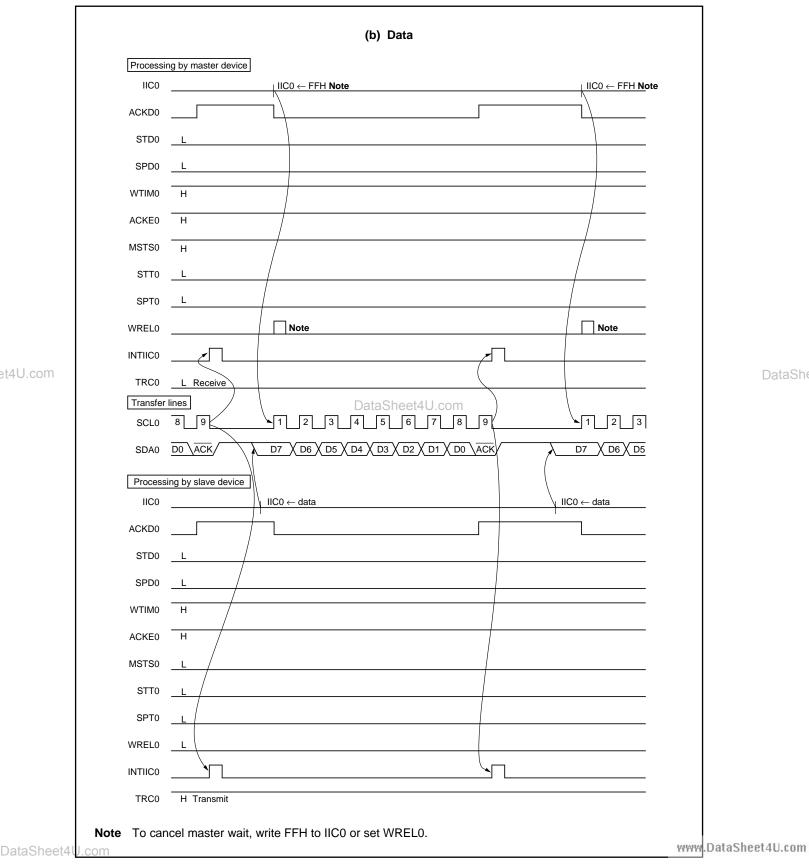
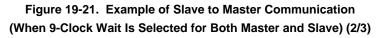





Figure 19-20. Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (3/3)

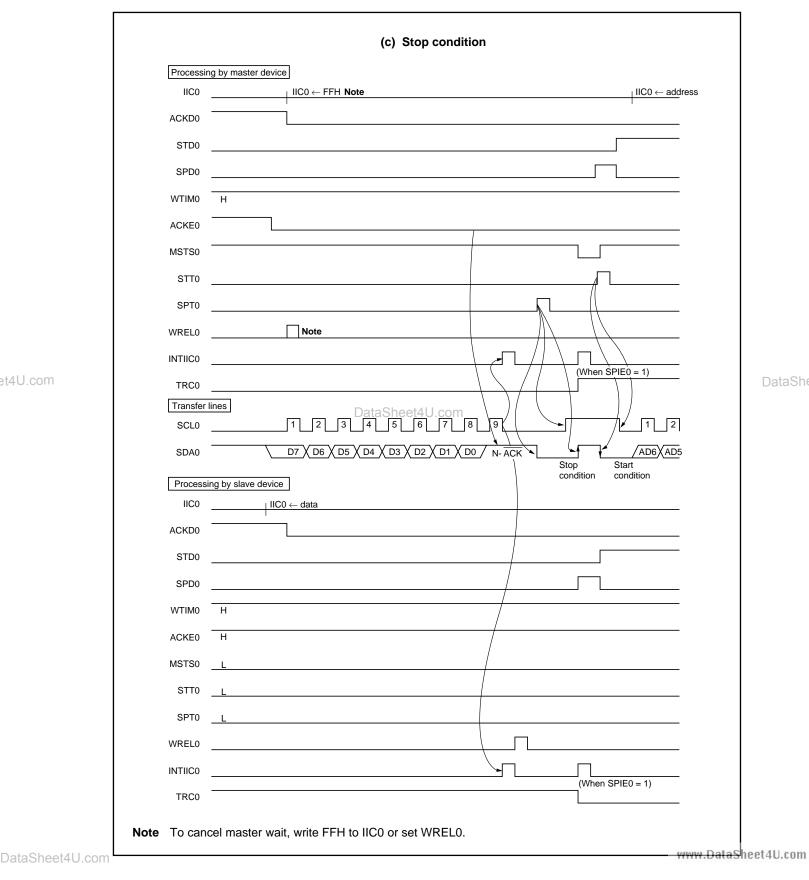


Figure 19-21. Example of Slave to Master Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (1/3)

DataShe

Figure 19-21. Example of Slave to Master Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (3/3)

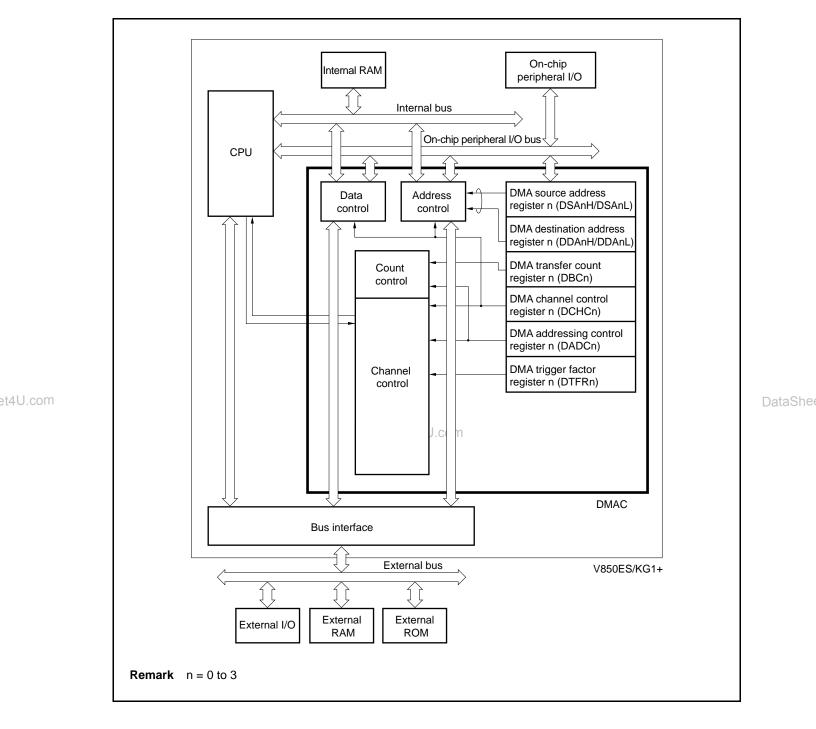
CHAPTER 20 DMA FUNCTION (DMA CONTROLLER)

The V850ES/KG1+ includes a direct memory access (DMA) controller (DMAC) that executes and controls DMA transfer.

The DMAC controls data transfer between memory and I/O, between memories, or between I/Os based on DMA requests issued by the on-chip peripheral I/O (serial interface, timer/counter, and A/D converter), interrupts from external input pins, or software triggers (memory refers to internal RAM or external memory).

20.1 Features

- 4 independent DMA channels
- Transfer unit: 8/16 bits
- Maximum transfer count: 65,536 (2¹⁶)
- Transfer type: Two-cycle transfer
- Transfer mode: Single transfer mode
- Transfer requests
 - Request by interrupts from on-chip peripheral I/O (serial interface, timer/counter, A/D converter) or interrupts from external input pin
 - Requests by software trigger
- Transfer targets


et4U.com

- Internal RAM \leftrightarrow Peripheral I/O
- Peripheral I/O \leftrightarrow Peripheral I/O
- Internal RAM \leftrightarrow External memory

DataSheet4U.com

- External memory ↔ Peripheral I/O
 External memory ↔ External memory

20.2 Configuration

20.3 Registers

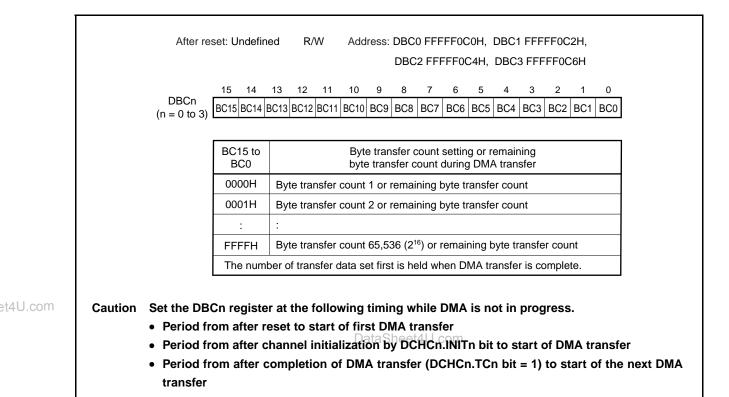
(1) DMA source address registers 0 to 3 (DSA0 to DSA3)

The DSA0 to DSA3 registers set the DMA source addresses (26 bits each) for DMA channel n (n = 0 to 3). These registers are divided into two 16-bit registers, DSAnH and DSAnL. These registers can be read or written in 16-bit units.

After re		
	eset: Undefir	ned R/W Address: DSA0H FFFF082H, DSA1H FFFF08AH, DSA2H FFFF092H, DSA3H FFFF09AH,
		DSA0L FFFF080H, DSA1L FFFF088H, DSA2L FFFF090H, DSA3L FFFF098H
		DSAZL FFFF0900, DSASL FFFFF0900
	15 14	13 12 11 10 9 8 7 6 5 4 3 2 1 0
DSAnH (n = 0 to 3)	IR 0	0 0 0 0 SA25 SA24 SA23 SA22 SA21 SA20 SA19 SA18 SA17 SA16
	15 14	13 12 11 10 9 8 7 6 5 4 3 2 1 0
DSAnL (n = 0 to 3)	SA15 SA14	4 SA13 SA12 SA11 SA10 SA9 SA8 SA7 SA6 SA5 SA4 SA3 SA2 SA1 SA0
(
	IR	Specification of DMA transfer source
	0	External memory or on-chip peripheral I/O
	1	Internal RAM
		(default value is undefined). During DMA transfer, the next DMA transfer source address is held. When DMA transfer is completed, the DMA address set first is held.
	SA15 to SA	 Set the address (A15 to A0) of the DMA transfer source (default value is undefined). During DMA transfer, the next DMA transfer source address is held. When DMA transfer is completed, the DMA address set first is held.
Cautions 1. Be sure		(default value is undefined). During DMA transfer, the next DMA transfer source address is held.
	e to clear t	(default value is undefined). During DMA transfer, the next DMA transfer source address is held. When DMA transfer is completed, the DMA address set first is held.
 Set the Period 	e to clear b DSAnH and od from af	(default value is undefined). During DMA transfer, the next DMA transfer source address is held. When DMA transfer is completed, the DMA address set first is held. bits 14 to 10 of the DSAnH register to 0. Ind DSAnL registers at the following timing while DMA is not in progress. ther reset to start of first DMA transfer
 Set the Period Period 	e to clear b DSAnH and od from af	(default value is undefined). During DMA transfer, the next DMA transfer source address is held. When DMA transfer is completed, the DMA address set first is held. bits 14 to 10 of the DSAnH register to 0. Ind DSAnL registers at the following timing while DMA is not in progress. Iter reset to start of first DMA transfer iter channel initialization by DCHCn.INITn bit to start of DMA transfer
 Set the Period Period Period 	e to clear b DSAnH and od from af od from af	(default value is undefined). During DMA transfer, the next DMA transfer source address is held. When DMA transfer is completed, the DMA address set first is held. bits 14 to 10 of the DSAnH register to 0. Ind DSAnL registers at the following timing while DMA is not in progress. ther reset to start of first DMA transfer
2. Set the • Perio • Perio • Perio DMA	e to clear b DSAnH at od from af od from af od from af od from af	(default value is undefined). During DMA transfer, the next DMA transfer source address is held. When DMA transfer is completed, the DMA address set first is held. bits 14 to 10 of the DSAnH register to 0. Ind DSAnL registers at the following timing while DMA is not in progress. Iter reset to start of first DMA transfer iter channel initialization by DCHCn.INITn bit to start of DMA transfer

(2) DMA destination address registers 0 to 3 (DDA0 to DDA3)

The DDA0 to DDA3 registers set the DMA destination address (26 bits each) for DMA channel n (n = 0 to 3). These registers are divided into two 16-bit registers, DDAnH and DDAnL. These registers can be read or written in 16-bit units.


	After reset: Undefined R/W Address: DDA0H FFFF086H, DDA1H FFFF08EH, DDA2H FFFF096H, DDA3H FFFF09EH, DDA0L FFFF084H, DDA1L FFFF08CH, DDA2L FFFF094H, DDA3L FFFF09CH	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(n = 0 to 3)	
U.com	1 Internal RAM DA25 to DA16 Set an address (A25 to A16) of DMA transfer destination (default value is undefined). During DMA transfer, the next DMA transfer destination address is held. When DMA transfer is completed, the DMA transfer source address set first is held.	
	DA15 to DA0 Set an address (A15 to A0) of DMA transfer destination (default value is undefined). During DMA transfer, the next DMA transfer destination address is held. When DMA transfer is completed, the DMA transfer source address set first is held.	
	 Cautions 1. Be sure to clear bits 14 to 10 of the DDAnH register to 0. 2. Set the DDAnH and DDAnL registers at the following timing while DMA is not in progress. Period from after reset to start of first DMA transfer Period from after channel initialization by DCHCn.INITn bit to start of DMA transfer Period from after completion of DMA transfer (DCHCn.TCn bit = 1) to start of the next DMA transfer 	
	 When the value of the DDAn register is read, two 16-bit registers, DDAnH and DDAnL, are read. If reading and updating conflict, a value being updated may be read (refer to 20.13 Cautions). 	

(3) DMA byte count registers 0 to 3 (DBC0 to DBC3)

The DBC0 to DBC3 registers are 16-bit registers that set the byte transfer count for DMA channel n (n = 0 to 3). These registers hold the remaining transfer count during DMA transfer.

These registers are decremented by 1 per one transfer regardless of the transfer data unit (8/16 bits), and the transfer is terminated if a borrow occurs.

These registers can be read or written in 16-bit units.

DataShe

(4) DMA addressing control registers 0 to 3 (DADC0 to DADC3)

The DADC0 to DADC3 registers are 16-bit registers that control the DMA transfer mode for DMA channel n (n = 0 to 3).

These registers can be read or written in 16-bit units.

Reset input clears these registers to 0000H.

After re	set: 0000H	R/W	Address: DADC0 FFFFF0D0H, DADC1 FFFFF0D2H, DADC2 FFFFF0D4H, DADC3 FFFFF0D6H									
	15	14	13	12	11	10	9	8				
DADCn	0	DS0	0	0	0	0	0	0				
(n = 0 to 3)												
	7 SAD1	6 SAD0	5 DAD1	4 DAD0	3	2	1	0				
	SADT	SADU	DADT	DADU	0	0	0	0				
	DS0			Setting of	of transfer	data size						
	0	8 bits										
	1	16 bits										
	SAD1	SAD0	Settin	ig of count c	lirection of	f the transf	er source a	ddress				
	0	0	Incremer	-								
	0	1	Decreme									
	1	0	Fixed	-								
	1	1										
	DAD1	DAD0	Sett	ting of count	direction	of the dest	ination add	lress				
	0	0		Increment								
	0	1	Decreme	ent								
	1	0	Fixed									
	1	1	Setting p	rohibited								
PeriodPeriod	DADCn re I from aft I from aft	egister at er reset to er channe	the follov o start of el initializ	ving timin first DMA ation by [g while I transfei)CHCn.II	DMA is no r NITn bit to	ot in prog o start of	ress. DMA transfer to start of the	next			
	-							ol bus sizing. If	8-bit			
-	-			he lower o			-					
odd add		ansfer is		-		-		t be started fro irst bit of the l				
	ransfer is	s execute	d on an c	on-chip pe	ripheral	I/O reais	ter (as th	e transfer sour	ce or			
					-	-	-	ize. For examp				

et4U.com

(5) DMA channel control registers 0 to 3 (DCHC0 to DCHC3)

The DCHC0 to DCHC3 registers are 8-bit registers that control the DMA transfer operating mode for DMA channel n.

These registers can be read or written in 8-bit or 1-bit units (however, bit 7 is read-only and bits 1 and 2 are write-only. If bit 1 or 2 is read, the read value is always 0).

Reset input clears these registers to 00H.

	After res	set: 00H	R/W				, DCHC1 FF , DCHC3 FF					
		<7>	6	5	4	3	<2>	<1>	<0>			
	DCHCn	TCn ^{Note 1}	0	0	0	0	INITn ^{Note 2}		Enn			
	(n = 0 to 3)											
		TCn ^{Note 1}			-		ther DMA tra					
		0	DMA tran	sfer had no	ot complete	d.						
		1	DMA tran	nsfer had co	ompleted.							
		It is set to	o 1 on the l	ast DMA tr	ansfer and	cleared to	0 when it is	read.				
et4U.com		INITn ^{Note 2} If the INITn bit is set to 1 with DMA transfer disabled (Enn bit = 0), the DMA transfer status can be initialized. When re-setting the DMA transfer status (re-setting the DDAnH, DDAnL, DSAnH, DSAnL, DBCn, and DADCn registers) before DMA transfer is completed (before the TCn bit is set to 1), be sure to initialize the DMA channel. When initializing the DMA controller, however, be sure to observe the										DataShe
		STGn ^{Note 2}	This is a	software st is set to 1 i	artup trigge n the DMA er is started	er of DMA transfer e	transfer. nable state (TCn bit = 0,	Enn			
		Enn			-		transfer thro nabled or dis	•				
		0	DMA tran	sfer disabl	ed							
		1	DMA tran	sfer enable	əd							
		DMA transfer is enabled when the Enn bit is set to 1. When DMA transfer is completed (when a terminal count is generated), this bit is automatically cleared to 0. To abort DMA transfer, clear the Enn bit to 0 by software. To resume, set the Enn bit to 1 again. When aborting or resuming DMA transfer, however, be sure to observe the procedure described in 20.13 Cautions .										
	Notes 1. The TCn bit is	•		•••••••								
	2. The INITn and	d SIGn bi	ts are wr	ite-only.								
	Cautions 1. Be sure to				-							
	2. When DN			-	-			-	-			
							-	-		e its bits are		
	• •			-	transfer r	ot com	oleted and	l transfer	is disab	led" (TCn bit		
DataSheet4	= 0 and E	nn bit = 0) may be	e read.						WY	vw.DataSl	heet4U.com

(6) DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)

The DTFR0 to DTFR3 registers are 8-bit registers that control the DMA transfer start trigger via interrupt request signals from on-chip peripheral I/O.

The interrupt request signals set by these registers serve as DMA transfer start factors.

These registers can be read or written in 8-bit units. However, only the DFn bit can be read or written in 1-bit units.

Reset input clears these registers to 00H.

			Γ	DTFR2 FFF	FF814H,	DTFR3 FF	FFF816H		
	7	0	-	4	2	0	4	0	
DTFRn	<7> DFn	6	5 IFCn5	4 IFCn4	3 IFCn3	2 IFCn2	1 IFCn1	0 IFCn0	1
	DFII	0	IFCIIS	IFCI14	IFCIIS	IFCIIZ	IFCIII	IFCIIU	J
(n = 0 to 3)									_
	DFn ^{Note}			DMA tr	ansfer requ	uest flag			
	0	No DMA	transfer req	uest					
	1	DMA tran	sfer reques	st					
Period	FCn5 to II I from aft I from aft	FCn0 bits er reset t er chann	at the fol o start of DataShee el initializ	llowing ti first DMA t40.com ation by l	ming whi A transfer DCHCn.IN	le DMA is NITn bit te	s not in p o start of	rogress. DMA trai	
nutions 1. Set the II • Period • Period • Period DMA t 2. An inter mode) do 3. If a DMA interrupt	FCn5 to II I from aft I from aft I from aft ransfer rupt requ bes not s start fac	FCn0 bits er reset t er chann ter comp uest that tart the D tor is sel from the	at the fol o start of el initializ letion of is gener MA trans ected by selected	llowing ti first DMA ation by I DMA trar rated in t fer cycle the IFCns on-chip p	ming whi A transfer DCHCn.IN nsfer (DC the stand (nor is th 5 to IFCn periphera	le DMA is NITn bit to HCn.TCn dby mod e DFn bit 0 bits, the I I/O, reg	s not in p o start of i bit = 1) e (IDLE, t set to 1) e DFn bit ardless o	DMA train to start STOP, o is set to of whethe	of the next r sub-IDLE

et4U.com

et4U.com

	IFCn4	IFCn3	IFCn2	IFCn1	IFCn0	Interrupt Source
IFCn5 0	0	0	0	0	0	DMA request by interrupt disabled
0	0	0	0	0	1	INTWDTM1
0	0	0	0	1	0	INTPO
0	0	0	0	1	1	INTP1
0	0	0	1	0	0	INTP2
0	0	0	1	0	1	INTP3
0	0	0	1	1	0	INTP4
0	0	0	1	1	1	INTP5
0	0	1	0	0	0	INTP6
0	0	1	0	0	1	INTTM000
0	0	1	0	1	0	INTTM001
0	0	1	0	1	1	INTTM010
0	0	1	1	0	0	INTTM010
0	0	1	1	0	1	INTTM50
0	0	1	1	1	0	INTTM51
0	0	1	1	1	1	INTCSI00
0	1	0	0	0	0	INTCSI01
0	1	0	0	0	1	INTSRE0
0	1	0	0	1	0	INTSRO
0	1	0	0	1	1	INTSTO
0	1	0	1	0	0	INTSRE1
0	1	0	1	0	1	INTSR1
0	1	0	1	1	0	INTST1
0	1	0	1	DataShee		INTTMHO
0	1	1	0	DataShee 0	t4U.com 0	INTTMH1
0	1	1	0	0	1	INTCSIA0
0	1	1	0	1	0	INTIICO ^{Note}
0	1	1	0	1	1	INTAD
0	1	1	1	0	0	INTKR
0	1	1	1	0	1	INTWTI
0	1	1	1	1	0	INTWT
0	1	1	1	1	1	INTBRG
1	0	0	0	0	0	INTTM020
1	0	0	0	0	1	INTTM021
1	0	0	0	1	0	INTTM030
1	0	0	0	1	1	INTTM031
1	0	0	1	0	0	INTCSIA1
1	0	1	0	1	0	INTSRE2
1	0	1	0	1	1	INTSR2
1	0	1	1	0	0	INTST2
1	0	1	1	1	0	INTLVI
1	0	1	1	1	1	INTP7
1	1	0	0	0	0	INTTPOOV
1	1	0	0	0	1	INTTPOCCO
1	1	0	0	1	0	INTTPOCC1
ř		Other that	-		-	Setting prohibited

Table 20-1. DMA Start Factors

Note Only in the μ PD703313Y, 70F3311Y, 70F3313Y

Remark n = 0 to 3 DataSheet4U.com

20.4 Transfer Targets

Table 20-2 shows the relationship between the transfer targets ($\sqrt{:}$ Transfer enabled, \times : Transfer disabled).

			Transfer D	estination	
		Internal ROM	On-Chip Peripheral I/O	Internal RAM	External Memory
	On-chip peripheral I/O	×	\checkmark	\checkmark	\checkmark
Irce	Internal RAM	×	\checkmark	×	\checkmark
Source	External memory	×	\checkmark	\checkmark	\checkmark
	Internal ROM	×	×	×	×

Table 20-2. Relationship Between Transfer Targets

Caution The operation is not guaranteed for combinations of transfer destination and source marked with " \times " in Table 20-2.

20.5 Transfer Modes

Single transfer is supported as the transfer mode.

In single transfer mode, the bus is released at each byte/halfword transfer. If there is a subsequent DMA transfer request, transfer is performed again once. This operation continues until a terminal count occurs.

When the DMAC has released the bus, if another higher priority DMA transfer request is issued, the higher priority DMA request always takes precedence. DataSheet4U.com

If a new transfer request of the same channel and a transfer request of another channel with a lower priority are generated in a transfer cycle, DMA transfer of the channel with the lower priority is executed after the bus is released to the CPU (the new transfer request of the same channel is ignored in the transfer cycle).

20.6 Transfer Types

As a transfer type, the 2-cycle transfer is supported.

In two-cycle transfer, data transfer is performed in two cycles, a read cycle and a write cycle.

In the read cycle, the transfer source address is output and reading is performed from the source to the DMAC. In the write cycle, the transfer destination address is output and writing is performed from the DMAC to the destination.

An idle cycle of one clock is always inserted between a read cycle and a write cycle. If the data bus width differs between the transfer source and destination for DMA transfer of two cycles, the operation is performed as follows.

<16-bit data transfer>

<1> Transfer from 32-bit bus \rightarrow 16-bit bus

A read cycle (the higher 16 bits are in a high-impedance state) is generated, followed by generation of a write cycle (16 bits).

<2> Transfer from 16-/32-bit bus to 8-bit bus

A 16-bit read cycle is generated once, and then an 8-bit write cycle is generated twice.

<3> Transfer from 8-bit bus to 16-/32-bit bus

An 8-bit read cycle is generated twice, and then a 16-bit write cycle is generated once.

<4> Transfer between 16-bit bus and 32-bit bus

A 16-bit read cycle is generated once, and then a 16-bit write cycle is generated once.

For DMA transfer executed to an on-chip peripheral I/O register (transfer source/destination), be sure to specify the same transfer size as the register size. For example, for DMA transfer to an 8-bit register, be sure to specify byte (8-bit) transfer.

DataShe

www.DataSheet4U.com

DataSheet4U.com

Remark The bus width of each transfer target (transfer source/destination) is as follows.

- On-chip peripheral I/O: 16-bit bus width
- Internal RAM: 32-bit bus width
- External memory: 8-bit or 16-bit bus width

20.7 DMA Channel Priorities

The DMA channel priorities are fixed as follows.

DMA channel 0 > DMA channel 1 > DMA channel 2 > DMA channel 3

The priorities are checked for every transfer cycle.

20.8 Time Related to DMA Transfer

The time required to respond to a DMA request, and the minimum number of clocks required for DMA transfer are shown below.

Single transfer: DMA response time (<1>) + Transfer source memory access (<2>) + 1^{Note 1} + Transfer destination memory access (<2>)

DN	IA Cycle	Minimum Number of Execution Clocks					
<1> DMA request response	e time	4 clocks (MIN.) + Noise elimination time ^{Note 2}					
<2> Memory access	External memory access	Depends on connected memory.					
	Internal RAM access	2 clocks ^{Note 3}					
	Peripheral I/O register access	3 clocks + Number of wait cycles specified by VSWC register ^{Note 4}					

Notes 1. One clock is always inserted between a read cycle and a write cycle in DMA transfer.

- 2. If an external interrupt (INTPn) is specified as the trigger to start DMA transfer, noise elimination time is added (n = 0 to 7).
- 3. Two clocks are required for a DMA cycle.
- 4. More wait cycles may be necessary for accessing a special register described in 3.4.8 (2).

et4U.com

DataShe

20.9 DMA Transfer Start Factors

There are two types of DMA transfer start factors, as shown below.

(1) Request by software

If the DCHCn.STGn bit is set to 1 while the DCHCn.TCn bit = 0 and DCHCn.Enn bit = 1 (DMA transfer enabled), DMA transfer is started.

To request the next DMA transfer cycle immediately after that, confirm, by using the DBCn register, that the preceding DMA transfer cycle has been completed, and set the STGn bit to 1 again (n = 0 to 3).

```
TCn bit = 0, Enn bit = 1

\downarrow

STGn bit = 1 ... Starts the first DMA transfer.

\downarrow

Confirm that the contents of the DBCn register have been updated.

STGn bit = 1 ... Starts the second DMA transfer.

\downarrow

:

\downarrow
```

Generation of terminal count ... Enn bit = 0, TCn bit = 1, and INTDMAn signal is generated.

(2) Request by on-chip peripheral I/O

If an interrupt request is generated from the on-chip peripheral I/O set by the DTFRn register when the TCn bit = 0 and Enn bit = 1 (DMA transfer enabled), DMA transfer is started.

- Cautions 1. Two start factors (software trigger and hardware trigger) cannot be used for one DMA channel. If two start factors are simultaneously generated for one DMA channel, only one of them is valid. The start factor that is valid cannot be identified.
 - 2. A new transfer request that is generated after the preceding DMA transfer request was generated or in the preceding DMA transfer cycle is ignored (cleared).
 - 3. The transfer request interval of the same DMA channel varies depending on the setting of bus wait in the DMA transfer cycle, the start status of the other channels, or the external bus hold request. In particular, as described in Caution 2, a new transfer request that is generated for the same channel before the DMA transfer cycle or during the DMA transfer cycle is ignored. Therefore, the transfer request intervals for the same DMA channel must be sufficiently secured by the system. When the software trigger is used, completion of the DMA transfer cycle that was generated before can be checked by updating the DBCn register.

20.10 DMA Abort Factors

DMA transfer is aborted if a bus hold occurs.

The same applies if transfer is executed between the internal memory/on-chip peripheral I/O and internal memory/on-chip peripheral I/O.

When the bus hold is cleared, DMA transfer is resumed.

20.11 End of DMA Transfer

When DMA transfer has been completed the number of times set to the DBCn register and when the DCHCn.Enn bit is cleared to 0 and TCn bit is set to 1, a DMA transfer end interrupt request signal (INTDMAn) is generated for the interrupt controller (INTC) (n = 0 to 3).

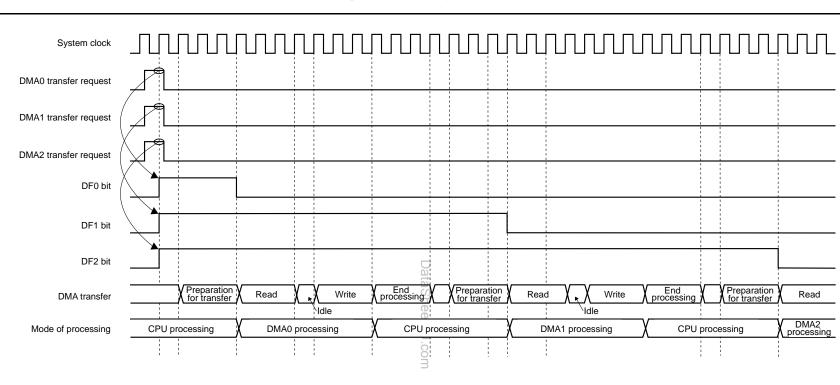
The V850ES/KG1+ does not output a terminal count signal to an external device. Therefore, confirm completion of DMA transfer by using the DMA transfer end interrupt or polling the TCn bit.

20.12 Operation Timing

The operation timing of DMA is as follows.

et4U.com

DataShe


DataSheet4U.com

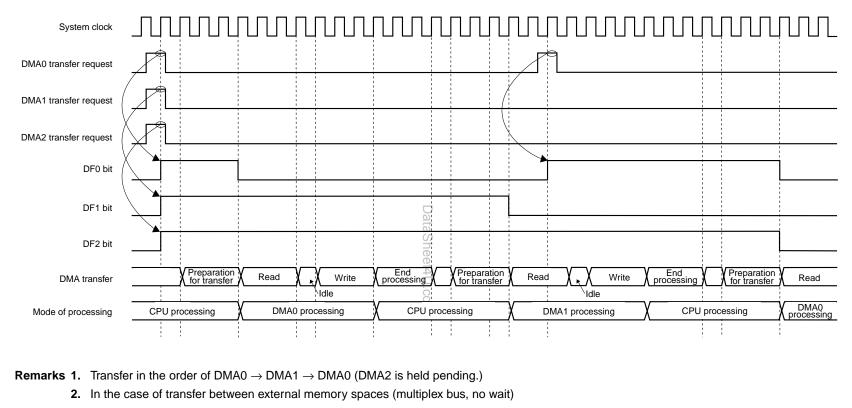
619

DataSheet4U.com

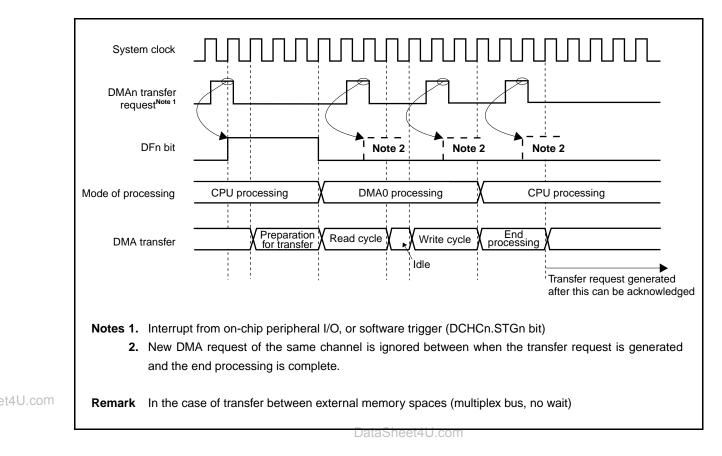
620

et4U.com

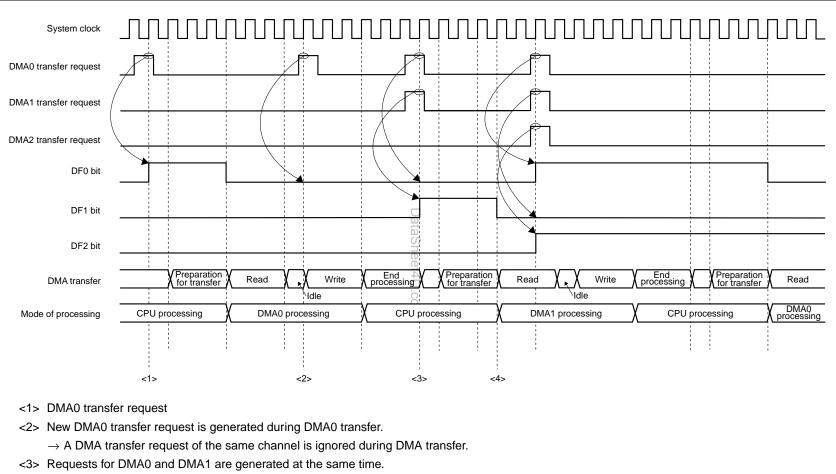
Figure 20-1. Priority of DMA (1)


Remarks 1. Transfer in the order of DMA0 \rightarrow DMA1 \rightarrow DMA2

2. In the case of transfer between external memory spaces (multiplex bus, no wait)


DataSheet4U.com

et4U.com



621

Figure 20-3. Period in Which DMA Transfer Request Is Ignored (1)

DataSheet4U.com

et4U.com

Figure 20-4. Period in Which DMA Transfer Request Is Ignored (2)

- \rightarrow DMA0 request is ignored (a DMA transfer request of the same channel during transfer is ignored).
- \rightarrow DMA1 request is acknowledged.
- <4> Requests for DMA0, DMA1, and DMA2 are generated at the same time.
 - \rightarrow DMA1 request is ignored (a DMA transfer request of the same channel during transfer is ignored).
 - \rightarrow DMA0 request is acknowledged according to priority. DMA2 request is held pending (transfer of DMA2 occurs next).

www.DataSheet4U.com

20.13 Cautions

(1) Caution for VSWC register

When using the DMAC, be sure to set an appropriate value, in accordance with the operating frequency, to the VSWC register.

When the default value (77H) of the VSWC register is used, or if an inappropriate value is set to the VSWC register, the operation is not correctly performed (for details of the VSWC register, refer to **3.4.8 (1) (a) System** wait control register (VSWC)).

(2) Caution for DMA transfer executed on internal RAM

When executing the following instructions located in the internal RAM, do not execute a DMA transfer that transfers data to/from the internal RAM (transfer source/destination), because the CPU may not operate correctly afterward.

- Bit manipulation instruction located in internal RAM (SET1, CLR1, or NOT1)
- Data access instruction to misaligned address located in internal RAM

Conversely, when executing a DMA transfer to transfer data to/from the internal RAM (transfer source/destination), do not execute the above two instructions.

(3) Caution for reading DCHCn.TCn bit (n = 0 to 3)

The TCn bit is cleared to 0 when it is read, but it is not automatically cleared to 0 even if it is read at a specific timing. To accurately clear the TCn bit, add the following processing.

DataShee

(a) When waiting for completion of DMA transfer by polling TCn bit

Confirm that the TCn bit has been set to 1 (after TCn bit = 1 is read), and then read the TCn bit three more times.

(b) When reading TCn bit in interrupt servicing routine Execute reading the TCn bit three times.

(4) DMA transfer initialization procedure (setting DCHCn.INITn bit to 1)

Even if the INITn bit is set to 1 when the channel executing DMA transfer is to be initialized, the channel may not be initialized. To accurately initialize the channel, execute either of the following two procedures.

(a) Temporarily stop transfer of all DMA channels

Initialize the channel executing DMA transfer using the procedure in <1> to <7> below. Note, however, that TCn bit is cleared to 0 when step <5> is executed. Make sure that the other processing programs do not expect that the TCn bit is 1.

- <1> Disable interrupts (DI).
- <2> Read the DCHCn.Enn bit of DMA channels other than the one to be forcibly terminated, and transfer the value to a general-purpose register.
- <3> Clear the Enn bit of the DMA channels used (including the channel to be forcibly terminated) to 0. To clear the Enn bit of the last DMA channel, execute the clear instruction twice. If the target of DMA transfer (transfer source/destination) is the internal RAM, execute the instruction three times.

Example: Execute instructions in the following order if channels 0, 1, and 2 are used (if the target of transfer is not the internal RAM).

- Clear DCHC0.E00 bit to 0.
- Clear DCHC1.E11 bit to 0.
- Clear DCHC2.E22 bit to 0.
- Clear DCHC2.E22 bit to 0 again.

DataShe

- <4> Set the INITn bit of the channel to be forcibly terminated to 1.
- <5> Read the TCn bit of each channel not to be forcibly terminated. If both the TCn bit and the Enn bit read in <2> are 1 (logical product (AND) is 1), clear the saved Enn bit to 0.
- <6> After the operation in <5>, write the Enn bit value to the DCHCn register.
- <7> Enable interrupts (EI).

Caution Be sure to execute step <5> above to prevent illegal setting of the Enn bit of the channels whose DMA transfer has been normally completed between <2> and <3>.

(b) Repeatedly execute setting INITn bit until transfer is forcibly terminated correctly

- <1> Suppress a request from the DMA request source of the channel to be forcibly terminated (stop operation of the on-chip peripheral I/O).
- <2> Check that the DMA transfer request of the channel to be forcibly terminated is not held pending, by using the DTFRn.DFn bit. If a DMA transfer request is held pending, wait until execution of the pending DMA transfer request is completed.
- <3> When it has been confirmed that the DMA request of the channel to be forcibly terminated is not held pending, clear the Enn bit to 0.
- <4> Again, clear the Enn bit of the channel to be forcibly terminated to 0. If the target of transfer for the channel to be forcibly terminated (transfer source/destination) is the internal RAM, execute this operation once more.
- <5> Copy the initial number of transfers of the channel to be forcibly terminated to a general-purpose register.
- <6> Set the INITn bit of the channel to be forcibly terminated to 1.
- <7> Read the value of the DBCn register of the channel to be forcibly terminated, and compare it with the value copied in <5>. If the two values do not match, repeat operations <6> and <7>.
- Remarks 1. When the value of the DBCn register is read in <7>, the initial number of transfers is read if forced termination has been correctly completed. If not, the remaining number of transfers is read.
 - **2.** Note that method (b) may take a long time if the application frequently uses DMA transfer for a channel other than the DMA channel to be forcibly terminated.

www.DataSheet4U.com

(5) Procedure of temporarily stopping DMA transfer (clearing Enn bit)

Stop and resume the DMA transfer under execution using the following procedure.

- <1> Suppress a transfer request from the DMA request source (stop the operation of the on-chip peripheral I/O).
- <2> Check the DMA transfer request is not held pending, by using the DFn bit (check if the DFn bit = 0). If a request is held pending, wait until execution of the pending DMA transfer request is completed.
- <3> If it has been confirmed that no DMA transfer request is held pending, clear the Enn bit to 0 (this operation stops DMA transfer).
- <4> Set the Enn bit to 1 to resume DMA transfer.
- <5> Resume the operation of the DMA request source that has been stopped (start the operation of the onchip peripheral I/O).

(6) Memory boundary

The operation is not guaranteed if the address of the transfer source or destination exceeds the area of the DMA target (external memory, internal RAM, or on-chip peripheral I/O) during DMA transfer.

(7) Transferring misaligned data

DMA transfer of misaligned data with a 16-bit bus width is not supported. If an odd address is specified as the transfer source or destination, the least significant bit of the address is forcibly assumed to be 0.

(8) Bus arbitration for CPU

Because the DMA controller has a higher priority bus mastership than the CPU, a CPU access that takes place during DMA transfer is held pending until the DMA transfer cycle is completed and the bus is released to the CPU.

However, the CPU can access the external memory, on-chip peripheral I/O, and internal RAM to/from which DMA transfer is not being executed.

- The CPU can access the internal RAM when DMA transfer is being executed between the external memory and on-chip peripheral I/O.
- The CPU can access the internal RAM and on-chip peripheral I/O when DMA transfer is being executed between the external memory and external memory.

(9) Registers/bits that must not be rewritten during DMA operation

Set the following registers at the following timing when a DMA operation is not under execution. [Registers]

- DSAnH, DSAnL, DDAnH, DDAnL, DBCn, and DADCn registers
- DTFRn.IFCn5 to DTFRn.IFCn0 bits

[Timing of setting]

- Period from after reset to start of the first DMA transfer
- Time after channel initialization to start of DMA transfer
- Period from after completion of DMA transfer (TCn bit = 1) to start of the next DMA transfer

(10) Be sure to set the following register bits to 0.

- Bits 14 to 10 of DSAnH register
- Bits 14 to 10 of DDAnH register
 DataSheet4U.com
- Bits 15, 13 to 8, and 3 to 0 of DADCn register
- Bits 6 to 3 of DCHCn register

(11) DMA start factor

Do not start two or more DMA channels with the same start factor. If two or more channels are started with the same factor, a DMA channel with a lower priority may be acknowledged earlier than a DMA channel with a higher priority.

(12) Read values of DSAn and DDAn registers

Values in the middle of updating may be read from the DSAn and DDAn registers during DMA transfer (n = 0 to 3).

For example, if the DSAnH register and then the DSAnL register are read when the DMA transfer source address (DSAn register) is 0000FFFFH and the count direction is incremental (DADCn.SAD1 and DADCn.SAD0 bits = 00), the value of the DSAnL register differs as follows, depending on whether DMA transfer is executed immediately after the DSAnH register is read.

(a) If DMA transfer does not occur while DSAn register is read

- <1> Read value of DSAnH register: DSAnH register = 0000H
- <2> Read value of DSAnL register: DSAnL register = FFFFH

(b) If DMA transfer occurs while DSAn register is read

- <1> Read value of DSAnH register: DSAnH register = 0000H
- <2> Occurrence of DMA transfer
- <3> Incrementing DSAn register: DSAn register = 00100000H
- <4> Read value of DSAnL register: DSAnL register = 0000H

et4U.com

DataShe

CHAPTER 21 INTERRUPT/EXCEPTION PROCESSING FUNCTION

21.1 Overview

The V850ES/KG1+ is provided with a dedicated interrupt controller (INTC) for interrupt servicing and realize an interrupt function that can service interrupt requests from a total of 50 or 51 sources.

An interrupt is an event that occurs independently of program execution, and an exception is an event whose occurrence is dependent on program execution.

The V850ES/KG1+ can process interrupt requests from the on-chip peripheral hardware and external sources. Moreover, exception processing can be started by the TRAP instruction (software exception) or by generation of an exception event (fetching of an illegal op code) (exception trap).

21.1.1 Features

	Interrupt Source			V850ES/KG1+					
Interrupt	Non-maskable	External		1 channel (NMI pin)					
function	interrupt	Internal		2 channels (WDT1, WDT2)					
	Maskable interrupt	External		8 channels (all edge detection interrupts)					
		Internal	WDT1	1 channel					
			TMP	3 channels					
			TM0	8 channels					
			тмн	2 channels					
			DataShe TM5	2 channels					
			WT	2 channels					
			BRG	1 channel					
			UART	9 channels					
			CSI0	2 channels					
			CSIA	2 channels					
			IIC	1 channel ^{Note}					
			KR	1 channel					
			AD	1 channel					
			DMA	4 channels					
			LVI	1 channel					
			Total	40 channels					
Exception	Software exception			16 channels (TRAP00H to TRAP0FH)					
function				16 channels (TRAP10H to TRAP1FH)					
	Exception trap			2 channels (ILGOP/DBG0)					

Note Only in the *μ*PD703313Y, 70F3311Y, 70F3313Y

Table 21-1 lists the interrupt/exception sources.

et4U.com

Туре	Classification	Default Priority	Name	Trigger	Interrupt Source	Exception Code	Handler Address	Restored PC	Interrupt Control Register
Reset	Interrupt	-	RESET	RESET pin input	Pin	0000H	00000000H	Undefined	-
				Internal reset input from WDT1, WDT2	WDT1 WDT2				
Non-	Interrupt	I	NMI	NMI pin valid edge input	Pin	0010H	00000010H	nextPC	-
maskable	– INTWDT1		INTWDT1	WDT1 overflow (when non- maskable interrupt selected)	WDT1	0020H	00000020H	Note 1	-
		-	INTWDT2	WDT2 overflow (when non- maskable interrupt selected)	WDT2	0030H	00000020H	Note 1	-
Software	Exception	-	TRAP0n ^{№0te 2}	TRAP instruction	-	004nH ^{‱ 2}	00000040H	nextPC	-
exception		-	TRAP1n ^{№ote 2}	TRAP instruction	-	005nH ^{№® 2}	00000050H	nextPC	-
Exception trap	Exception	-	ILGOP/ DBG0	Illegal op code/DBTRAP instruction	-	0060H	00000060H	nextPC	-
Maskable	Interrupt	0	INTWDTM1	WDT1 overflow (when interval timer selected)	WDT1	0080H	00000080H	nextPC	WDT1IC
		1	INTP0	INTP0 pin valid edge input	Pin	0090H	00000090H	nextPC	PIC0
		2	INTP1	INTP1 pin valid edge input	Pin	00A0H	000000A0H	nextPC	PIC1
		3	INTP2	INTP2 pin valid edge input	Pin	00B0H	000000B0H	nextPC	PIC2
		4	INTP3	INTP3 pin valid edge input	eðin n	00C0H	000000C0H	nextPC	PIC3
		5	INTP4	INTP4 pin valid edge input	Pin	00D0H	000000D0H	nextPC	PIC4
		6	INTP5	INTP5 pin valid edge input	Pin	00E0H	000000E0H	nextPC	PIC5
		7	INTP6	INTP6 pin valid edge input	Pin	00F0H	000000F0H	nextPC	PIC6
		8	INTTM000	TM00 and CR000 match	TM00	0100H	00000100H	nextPC	TM0IC00
		9	INTTM001	TM00 and CR001 match	TM00	0110H	00000110H	nextPC	TM0IC01
		10	INTTM010	TM01 and CR010 match	TM01	0120H	00000120H	nextPC	TM0IC10
		11	INTTM011	TM01 and CR011 match	TM01	0130H	00000130H	nextPC	TM0IC11
		12	INTTM50	TM50 and CR50 match	TM50	0140H	00000140H	nextPC	TM5IC0
		13	INTTM51	TM51 and CR51 match	TM51	0150H	00000150H	nextPC	TM5IC1
		14	INTCSI00	CSI00 transfer completion	CSI00	0160H	00000160H	nextPC	CSI0IC0
		15	INTCSI01	CSI01 transfer completion	CSI01	0170H	00000170H	nextPC	CSI0IC1
		16	INTSRE0	UART0 reception error occurrence	UART0	0180H	00000180H	nextPC	SREIC0
		17	INTSR0	UART0 reception completion	UART0	0190H	00000190H	nextPC	SRIC0
		18	INTST0	UART0 transmission completion	UART0	01A0H	000001AH	nextPC	STIC0

Table 21-1. Interrupt Source List (1/2)

Notes 1. For restoration in the case of INTWDT1 and INTWDT2, refer to **21.10 Cautions**.

2. n = 0 to FH

DataSheet4U.com

et4U.com

Туре	Classification	Default Priority	Name	Trigger	Interrupt Source	Exception Code	Handler Address	Restored PC	Interrupt Control Register
Maskable	Interrupt	19	INTSRE1	UART1 reception error occurrence	UART1	01B0H	000001B0H	nextPC	SREIC1
		20	INTSR1	UART1 reception completion	UART1	01C0H	000001C0H	nextPC	SRIC1
		21	INTST1	UART1 transmission completion	UART1	01D0H	000001D0H	nextPC	STIC1
		22	INTTMH0	TMH0 and CMP00/CMP01 match	тмно	01E0H	000001E0H	nextPC	TMHIC0
		23	INTTMH1	TMH1 and CMP10/CMP11 match	TMH1	01F0H	000001F0H	nextPC	TMHIC1
		24	INTCSIA0	CSIA0 transfer completion	CSIA0	0200H	00000200H	nextPC	CSIAIC0
		25	INTIIC0 ^{Note}	I ² C0 transfer completion	I ² C0	0210H	00000210H	nextPC	IICIC0
		26	INTAD	A/D conversion completion	A/D	0220H	00000220H	nextPC	ADIC
		27	INTKR	Key return interrupt	KR	0230H	00000230H	nextPC	KRIC
		28	INTWTI	Watch timer interval	WT	0240H	00000240H	nextPC	WTIIC
		29	INTWT	Watch timer reference time	WT	0250H	00000250H	nextPC	WTIC
		30	INTBRG	8-bit counter of prescaler 3 and PRSCM match	Prescaler 3	0260H	00000260H	nextPC	BRGIC
		31	INTTM020	TM02 and CR020 matchom	TM02	0270H	00000270H	nextPC	TM0IC20
		32	INTTM021	TM02 and CR021 match	TM02	0280H	00000280H	nextPC	TM0IC21
		33	INTTM030	TM03 and CR030 match	ТМ03	0290H	00000290H	nextPC	TM0IC30
		34	INTTM031	TM03 and CR031 match	TM03	02A0H	000002A0H	nextPC	TM0IC31
		35	INTCSIA1	CSIA1 transfer completion	CSIA1	02B0H	000002B0H	nextPC	CSIAIC1
		41	INTSRE2	UART2 reception error occurrence	UART2	0310H	00000310H	nextPC	SREIC2
		42	INTSR2	UART2 reception completion	UART2	0320H	00000320H	nextPC	SRIC2
		43	INTST2	UART2 transmission completion	UART2	0330H	00000330H	nextPC	STIC2
		45	INTLVI	Low-voltage detection	LVI	0380H	00000380H	nextPC	LVIIC
		46	INTP7	INTP7 pin valid edge input	Pin	0390H	00000390H	nextPC	PIC7
		47	INTTP0OV	TMP0 overflow	TMP	03A0H	000003A0H	nextPC	TPOVIC
		48	INTTP0CC0	TMP0 capture 0/ compare 0 match	TMP	03B0H	000003B0H	nextPC	TPCCIC0
		49	INTTP0CC1	TMP0 capture 1/ compare 1 match	TMP	03C0H	000003C0H	nextPC	TPCCIC1
		50	INTDMA0	DMA0 transfer completion	DMAC	03D0H	000003D0H	nextPC	DMAIC0
		51	INTDMA1	DMA1 transfer completion	DMAC	03E0H	000003E0H	nextPC	DMAIC1
		52	INTDMA2	DMA2 transfer completion	DMAC	03F0H	000003F0H	nextPC	DMAIC2
		53	INTDMA3	DMA3 transfer completion	DMAC	0400H	00000400H	nextPC	DMAIC3

Table 21-1. Interrupt Source List (2/2)

et4U.com

DataSheet4U.com

Note Only in the *µ*PD703313Y, 70F3311Y, 70F3313Y

www.DataSheet4U.com

Remarks 1. Default priority: The priority order when two or more maskable interrupt requests with the same priority level are generated at the same time. The highest priority is 0. The priority of non-maskable interrupt request is as follows.

INTWDT2 > INTWDT1 > NMI

Restored PC: The value of the program counter (PC) saved to EIPC, FEPC, or DBPC when interrupt/exception processing is started. The restored PC when a non-maskable or maskable interrupt is acknowledged while either of the following instructions is being executed does not become nextPC (when an interrupt is acknowledged during the execution of an instruction, the execution of that instruction is stopped and is resumed following completion of interrupt servicing).

- Load instructions (SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W)
- Divide instructions (DIV, DIVH, DIVU, DIVHU)
- PREPARE, DISPOSE instructions (only when an interrupt occurs before stack pointer update)

nextPC: The PC value at which processing is started following interrupt/exception processing.

 The execution address of the illegal op code when an illegal op code exception occurs is calculated with (Restored PC – 4).

et4U.com

DataShe

21.2 Non-Maskable Interrupts

Non-maskable interrupt request signals are acknowledged unconditionally, even when interrupts are disabled (DI state). Non-maskable interrupts (NMI) are not subject to priority control and take precedence over all other interrupt request signals.

The following three types of non-maskable interrupt request signals are available in the V850ES/KG1+.

- NMI pin input (NMI)
- Non-maskable interrupt request signal (INTWDT1) due to overflow of watchdog timer 1
- Non-maskable interrupt request signal (INTWDT2) due to overflow of watchdog timer 2

There are four choices for the valid edge of an NMI pin, namely: rising edge, falling edge, both edges, and no edge detection.

The non-maskable interrupt request signal (INTWDT1) due to overflow of watchdog timer 1 functions by setting the WDTM1.WDTM14 and WDTM1.WDTM13 bits to 10.

The non-maskable interrupt request signal (INTWDT2) due to overflow of watchdog timer 2 functions by setting the WDTM2.WDM21 and WDTM2.WDM20 bits to 01.

When two or more non-maskable interrupts occur simultaneously, they are processed in a sequence determined by the following priority order (the interrupt request signals with low priority level are ignored).

INTWDT2 > INTWDT1 > NMI

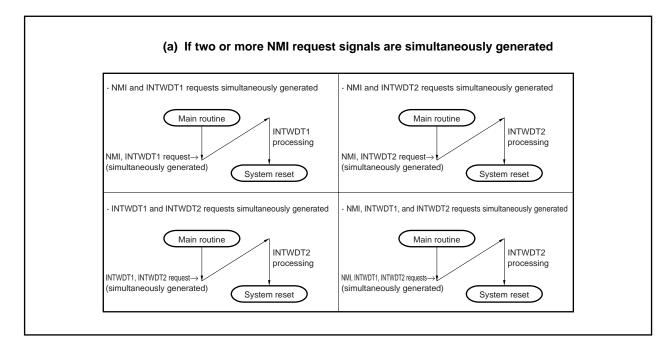
If during NMI processing, an NMI, INTWDT1, or INTWDT2 request signal newly occurs, processing is performed as follows.

DataSheet4U.com

(1) If an NMI request signal newly occurs during NMI processing

The new NMI request signal is held pending regardless of the value of the PSW.NP bit. The NMI request signal held pending is acknowledged upon completion of processing of the NMI currently being executed (following RETI instruction execution).

(2) If an INTWDT1 request signal newly occurs during NMI processing

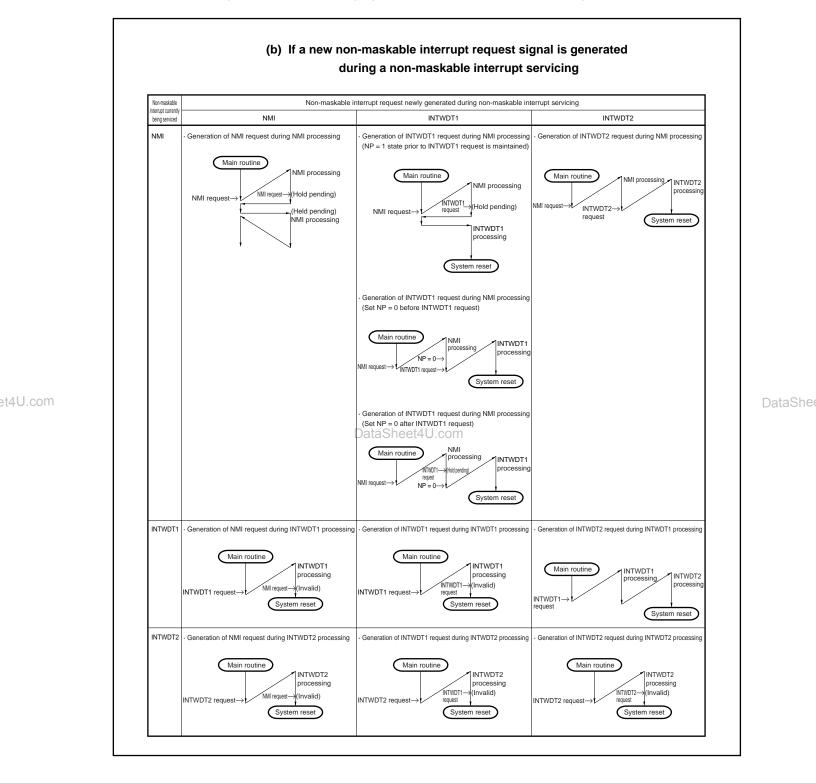

If the NP bit remains set (to 1) during NMI processing, the new INTWDT1 request signal is held pending. The INTWDT1 request signal held pending is acknowledged upon completion of processing of the NMI currently being executed (following RETI instruction execution).

If the NP bit is cleared (to 0) during NMI processing, a newly generated INTWDT1 request signal is executed (NMI processing is interrupted).

(3) If an INTWDT2 request signal newly occurs during NMI processing

A newly generated INTWDT2 request signal is executed regardless of the value of the NP bit (NMI processing is interrupted).

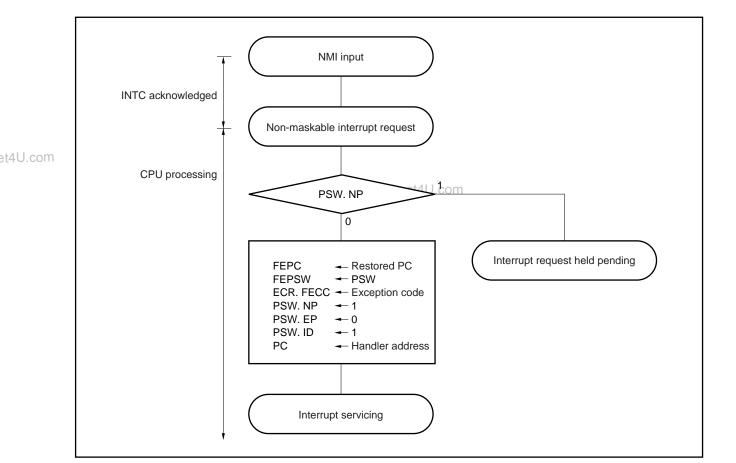
Caution For non-maskable interrupt servicing from non-maskable interrupt request signals (INTWDT1, INTWDT2), refer to 21.10 Cautions.

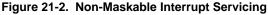


et4U.com

DataSheet4U.com

DataSheet4U.com


Figure 21-1. Acknowledging Non-Maskable Interrupt Request Signals (2/2)


21.2.1 Operation

Upon generation of a non-maskable interrupt request signal, the CPU performs the following processing and transfers control to a handler routine.

- <1> Saves the restored PC to FEPC.
- <2> Saves the current PSW to FEPSW.
- <3> Writes the exception code (0010H, 0020H, 0030H) to the higher halfword (FECC) of ECR.
- <4> Sets the PSW.NP and PSW.ID bits to 1 and clears the PSW.EP bit to 0.
- <5> Loads the handler address (00000010H, 00000020H, 00000030H) of the non-maskable interrupt to the PC and transfers control.

Figure 21-2 shows the servicing flow for non-maskable interrupts.

21.2.2 Restore

Execution is restored from non-maskable interrupt servicing by the RETI instruction.

(1) In case of NMI

Restore from NMI processing is done with the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing and transfers control to the address of the restored PC.

- (i) Loads the values of the restored PC and PSW from FEPC and FEPSW, respectively, because the PSW.EP bit and the PSW.NP bit are 0 and 1, respectively.
- (ii) Transfers control back to the loaded address of the restored PC and PSW.

Figure 21-3 shows the processing flow of the RETI instruction.

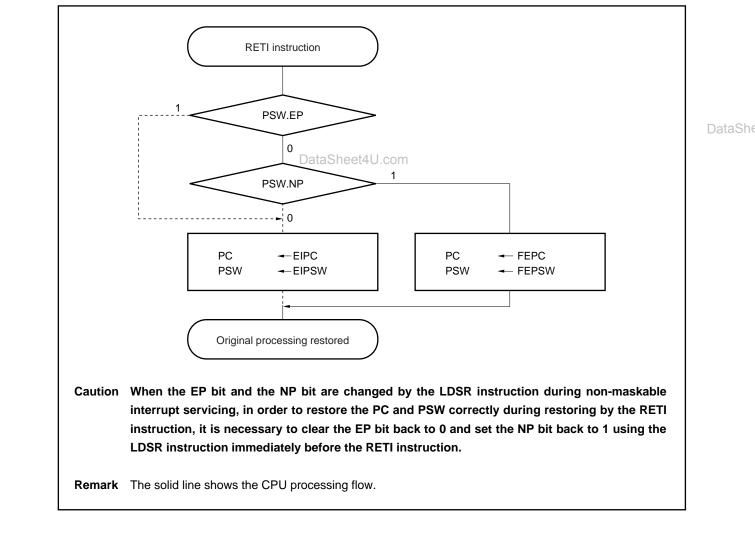


Figure 21-3. RETI Instruction Processing

(2) In case of INTWDT1 and INTWDT2 signals

For non-maskable interrupt servicing by the non-maskable interrupt request signals (INTWDT1, INTWDT2), refer to **21.10 Cautions**.

21.2.3 NP flag

The NP flag is a status flag that indicates that non-maskable interrupt servicing is in progress.

This flag is set when a non-maskable interrupt request has been acknowledged, and masks all non-maskable requests to prevent multiple interrupts.

After reset:	00000020	H										
31		8	7	6	5	4	3	2	1	0		
PSW		0	NP	ΕP	ID	SAT	CY	٥٧	S	Z		
	NP	NMI servicin	g stat	us								
	0	No non-maskable interrupt servicing										
	0 No non-maskable interrupt servicing 1 Non-maskable interrupt serving in progress											

et4U.com

DataShee

21.3 Maskable Interrupts

Maskable interrupt request signals can be masked by interrupt control registers. The V850ES/KG1+ has 48 maskable interrupt sources (refer to **21.1.1 Features**).

If two or more maskable interrupt request signals are generated at the same time, they are acknowledged according to the default priority. In addition to the default priority, eight levels of interrupt priorities can be specified by using the interrupt control registers, allowing programmable priority control.

When an interrupt request signal has been acknowledged, the interrupt disabled (DI) status is set and the acknowledgment of other maskable interrupt request signals is disabled.

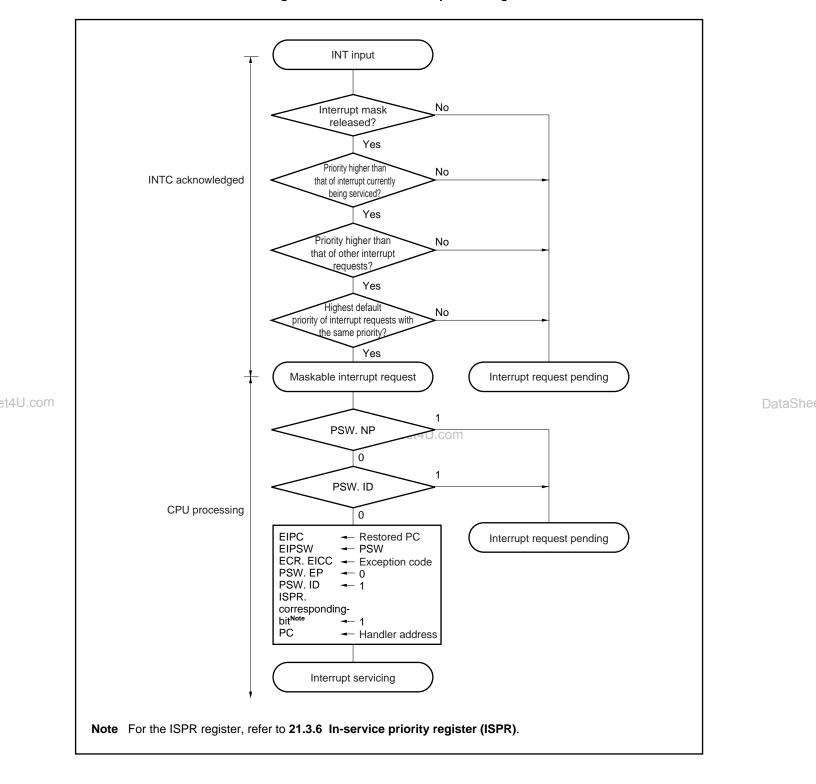
When the EI instruction is executed in an interrupt servicing routine, the interrupt enabled (EI) status is set, which enables acknowledgment of interrupt request signals having a priority higher than that of the interrupt request signal currently in progress. Note that only interrupt request signals with a higher priority have this capability; interrupt request signals with the same priority level cannot be nested.

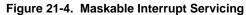
To use multiple interrupts, it is necessary to save EIPC and EIPSW to memory or a register before executing the EI instruction, and restore EIPC and EIPSW to the original values by executing the DI instruction before the RETI instruction.

When the WDTM1.WDTM14 bit is cleared to 0, the watchdog timer 1 overflow interrupt functions as a maskable interrupt (INTWDTM1).

21.3.1 Operation

If a maskable interrupt request signal is generated, the CPU performs the following processing and transfers control to a handler routine.


et4U.com


<1> Saves the restored PC to EIPC.

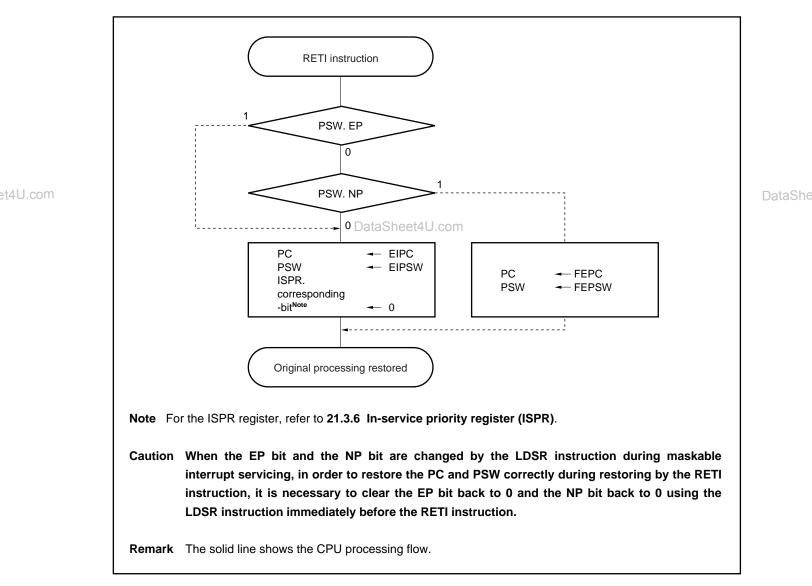
- <2> Saves the current PSW to EIPSW.
 DataSheet4U.com
- <3> Writes an exception code to the lower halfword of ECR (EICC).
- <4> Sets the PSW.ID bit to 1 and clears the PSW.EP bit to 0.
- <5> Loads the corresponding handler address to the PC and transfers control.

The maskable interrupt request signal masked by INTC and the maskable interrupt request signal that occurs while another interrupt is being serviced (when PSW.NP bit = 1 or ID bit = 1) are held pending internally. When the interrupts are unmasked, or when the NP bit = 0 and the ID bit = 0 by using the RETI and LDSR instructions, a new maskable interrupt servicing is started in accordance with the priority of the pending maskable interrupt request signal. Figure 21-4 shows the servicing flow for maskable interrupts.

639

DataSheet4U.com

www.DataSheet4U.com


21.3.2 Restore

Execution is restored from maskable interrupt servicing by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing and transfers control to the address of the restored PC.

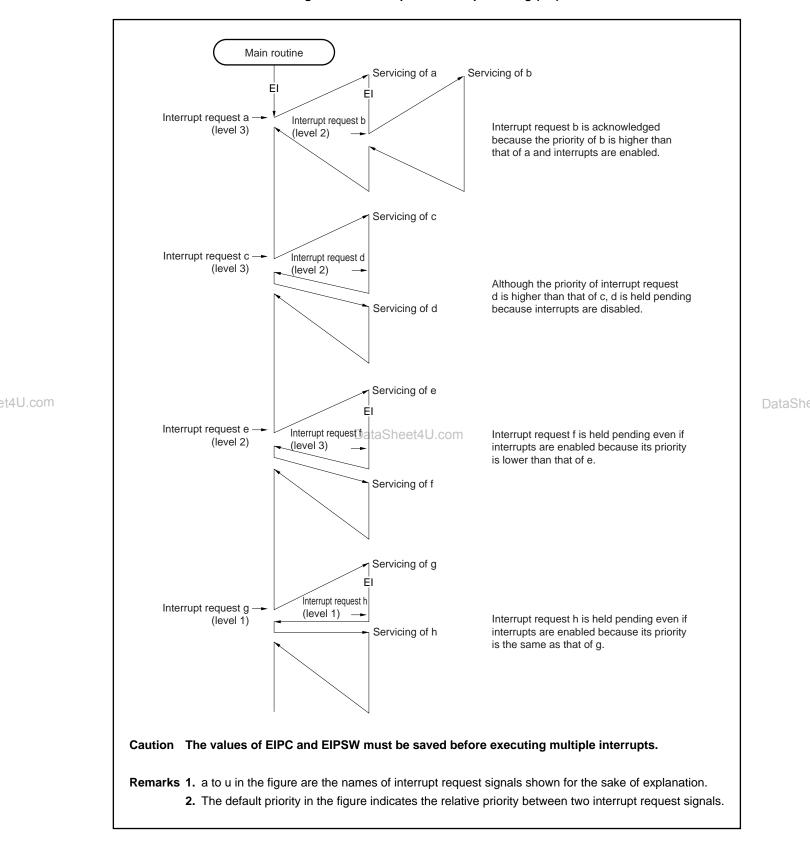
- (1) Loads the values of the restored PC and PSW from EIPC and EIPSW because the PSW.EP bit and the PSW.NP bit are both 0.
- (2) Transfers control to the loaded address of the restored PC and PSW.

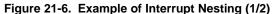
Figure 21-5 shows the processing flow of the RETI instruction.

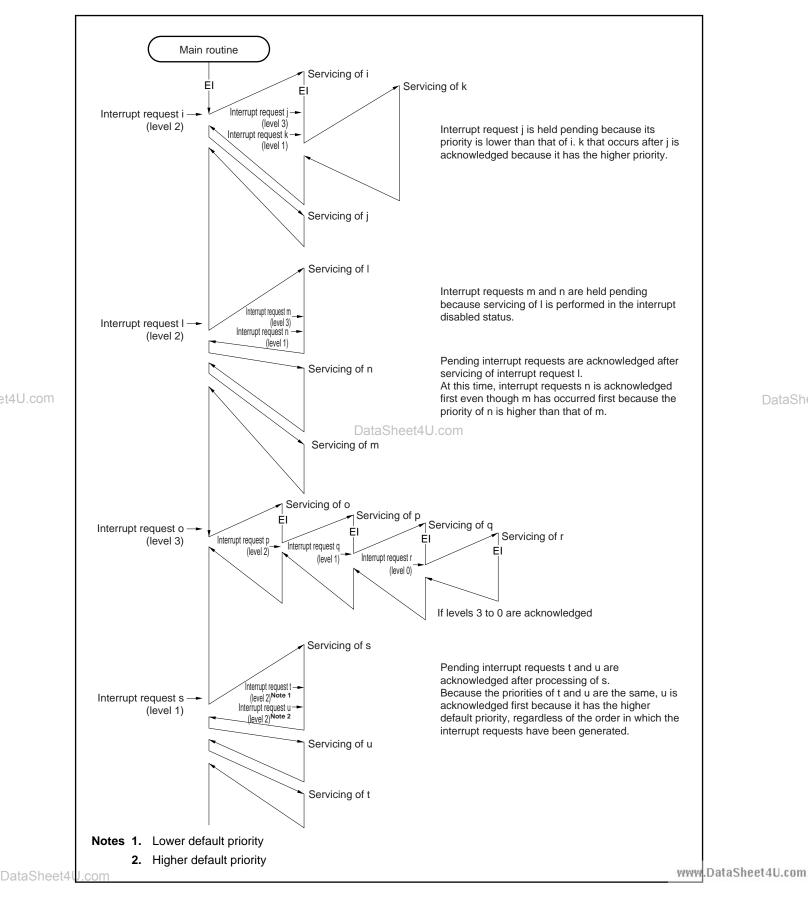
Figure 21-5. RETI Instruction Processing

21.3.3 Priorities of maskable interrupts

INTC provides a multiple interrupt servicing in which an interrupt can be acknowledged while another interrupt is being serviced. Multiple interrupts can be controlled by priority levels.

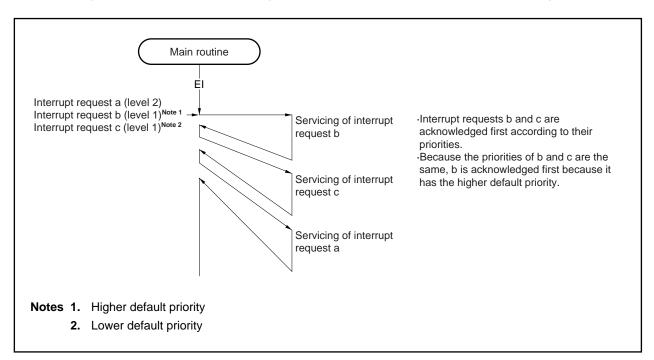

There are two types of priority level control: control based on the default priority levels, and control based on the programmable priority levels specified by the interrupt priority level specification bit (xxICn.xxPRn bit). When two or more interrupts having the same priority level specified by xxPRn are generated at the same time, interrupts are serviced in order depending on the priority level allocated to each interrupt request (default priority level) beforehand. For more information, refer to **Table 21-1 Interrupt Source List**. Programmable priority control divides interrupt requests into eight levels by setting the priority level specification flag.

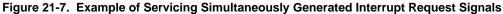

Note that when an interrupt request signal is acknowledged, the PSW.ID flag is automatically set (1). Therefore, when multiple interrupts are to be used, clear (0) the ID flag beforehand (for example, by placing the EI instruction into the interrupt service program) to enable interrupts.


- Remark xx: Identifying name of each peripheral unit (refer to Table 21-2 Interrupt Control Registers (xxICn))
 - n: Peripheral unit number (refer to Table 21-2 Interrupt Control Registers (xxICn))


et4U.com

DataShe





et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

21.3.4 Interrupt control register (xxlCn)

An interrupt control register is assigned to each maskable interrupt and sets the control conditions for each maskable interrupt request.

The interrupt control registers can be read or written in 8-bit or 1-bit units. After reset, xxICn is set to 47H.

Caution Be sure to read the xxICn.xxIFn bit while interrupts are disabled (DI). If the xxIFn bit is read while interrupts are enabled (EI), an incorrect value may be read if there is a conflict between acknowledgment of the interrupt and reading of the bit.

	<7>	<6>	5	4	3	2	1	0	
xxICn	xxlFn	xxMKn	0	0	0	xxPRn2	xxPRn1	xxPRn0	
	xxIFn			Interr	upt reques	t flag ^{Note}			
	0	Interrupt	request no	ot generate					
	1		request ge	-	-				
	L		1.1.1.1						
	xxMKn			Int	errupt mas	k flag			
	0	Enables i	nterrupt s	ervicing					
	1	Disables	interrupt s	ervicing (p	ending)				
	xxPRn2	xxPRn1	xxPRn0	DataShe	Interrupt	priority spec	ification bi	t	
	0	0	0	Specifie	s level 0 (h	ighest)			
	0	0	1	Specifie	s level 1				
	0	1	0	Specifie	s level 2				
	0	1	1	Specifie	s level 3				
	1	0	0	Specifie	s level 4				
	1	0	1	Specifie	s level 5				
	1	1	0	Specifie	s level 6				
	1	1	1	Specifie	s level 7 (lo	owest)			
Note Automatically Remark xx: Identif	-					-		int Control Regi	isters

Following tables list the addresses and bits of the interrupt control registers.

Address	Register	Bits								
		<7>	<6>	5	4	3	2	1	0	
FFFFF110H	WDT1IC	WDT1IF	WDT1MK	0	0	0	WDT1PR2	WDT1PR1	WDT1PR0	
FFFFF112H	PIC0	PIF0	PMK0	0	0	0	PPR02	PPR01	PPR00	
FFFFF114H	PIC1	PIF1	PMK1	0	0	0	PPR12	PPR11	PPR10	
FFFFF116H	PIC2	PIF2	PMK2	0	0	0	PPR22	PPR21	PPR20	
FFFFF118H	PIC3	PIF3	PMK3	0	0	0	PPR32	PPR31	PPR30	
FFFFF11AH	PIC4	PIF4	PMK4	0	0	0	PPR42	PPR41	PPR40	
FFFFF11CH	PIC5	PIF5	PMK5	0	0	0	PPR52	PPR51	PPR50	
FFFFF11EH	PIC6	PIF6	PMK6	0	0	0	PPR62	PPR61	PPR60	
FFFFF120H	TM0IC00	TM0IF00	TM0MK00	0	0	0	TM0PR002	TM0PR001	TM0PR000	
FFFFF122H	TM0IC01	TM0IF01	TM0MK01	0	0	0	TM0PR012	TM0PR011	TM0PR010	
FFFFF124H	TM0IC10	TM0IF10	TM0MK10	0	0	0	TM0PR102	TM0PR101	TM0PR100	
FFFFF126H	TM0IC11	TM0IF11	TM0MK11	0	0	0	TM0PR112	TM0PR111	TM0PR110	
FFFFF128H	TM5IC0	TM5IF0	TM5MK0	0	0	0	TM5PR02	TM5PR01	TM5PR00	
FFFFF12AH	TM5IC1	TM5IF1	TM5MK1	0	0	0	TM5PR12	TM5PR11	TM5PR10	
FFFFF12CH	CSI0IC0	CSI0IF0	CSI0MK0	0	0	0	CSI0PR02	CSI0PR01	CSI0PR00	
FFFFF12EH	CSI0IC1	CSI0IF1	CSI0MK1	0	0	0	CSI0PR12	CSI0PR11	CSI0PR10	
FFFFF130H	SREIC0	SREIF0	SREMK0	0	0	0	SREPR02	SREPR01	SREPR00	
FFFFF132H FFFFF134H	SRIC0 STIC0	SRIF0 STIF0	SRMK0 STMK0	0	0	0	SRPR02 STPR02	SRPR01 STPR01	SRPR00	
FFFFF136H	SREIC1	SREIF1	SREMK1	0	0	0	SREPR12	SREPR11	STPR00 SREPR10	
FFFFF138H	SRIC1	SRIF1	SRMK1	0	0	0	SRPR12	SRPR11	SRPR10	
FFFFF13AH	STIC1	STIF1	STMK1 Da	taSheet4t	t.com	0	STPR12	STPR11	STPR10	
FFFFF13CH	TMHICO	TMHIF0	ТМНМК0	0	0	0	TMHPR02	TMHPR01	TMHPR00	
FFFFF13EH	TMHIC1	TMHIF1	TMHMK1	0	0	0	TMHPR12	TMHPR11	TMHPR10	
FFFFF140H	CSIAIC0	CSIAIF0	CSIAMK0	0	0	0	CSIAPR02	CSIAPR01	CSIAPR00	
FFFFF142H	IICIC0 ^{Note}	IICIF0	IICMK0	0	0	0	IICPR02	IICPR01	IICPR00	
FFFFF144H	ADIC	ADIF	ADMK	0	0	0	ADPR2	ADPR1	ADPR0	
FFFFF146H	KRIC	KRIF	KRMK	0	0	0	KRPR2	KRPR1	KRPR0	
FFFFF148H	WTIIC	WTIIF	WTIMK	0	0	0	WTIPR2	WTIPR1	WTIPR0	
FFFFF14AH	WTIC	WTIF	WTMK	0	0	0	WTPR2	WTPR1	WTPR0	
FFFFF14CH	BRGIC	BRGIF	BRGMK	0	0	0	BRGPR2	BRGPR1	BRGPR0	
FFFFF14EH	TM0IC20	TM0IF20	TM0MK20	0	0	0	TM0PR202	TM0PR201	TM0PR200	
FFFFF150H	TM0IC21	TM0IF21	TM0MK21	0	0	0	TM0PR212	TM0PR211	TM0PR210	
FFFFF152H	TM0IC30	TM0IF30	TM0MK30	0	0	0	TM0PR302	TM0PR301	TM0PR300	
FFFFF154H	TM0IC31	TM0IF31	TM0MK31	0	0	0	TM0PR312	TM0PR311	TM0PR310	
FFFFF156H	CSIAIC1	CSIAIF1	CSIAMK1	0	0	0	CSIAPR12	CSIAPR11	CSIAPR10	
FFFFF162H	SREIC2	SREIF2	SREMK2	0	0	0	SREPR22	SREPR21	SREPR20	
FFFFF164H	SRIC2	SRIF2	SRMK2	0	0	0	SRPR22	SRPR21	SRPR20	
FFFFF166H	STIC2	STIF2	STMK2	0	0	0	STPR22	STPR21	STPR20	
FFFFF170H	LVIIC			0	0	0	LVIPR2	LVIPR1	LVIPR0	
FFFFF172H	PIC7	PIF7	PMK7	0	0	0	PPR72	PPR71	PPR70	
FFFFF174H	TPOOVIC	TP0OVIF	TP0OVMK	0	0	0	TP00VPR2	TP0OVPR1	TP0OVPR0	
FFFFF176H	TP0CCIC0	TP0CCIF0	TP0CCMK0	0	0	0	TP0CCPR02	TP0CCPR01	TP0CCPR00	
FFFFF178H	TP0CCIC1	TP0CCIF1	TP0CCMK1	0	0	0	TP0CCPR12	TP0CCPR11	TP0CCPR10	
FFFFF17AH	DMAIC0	DMAIF0	DMAMK0	0	0	0	DMAPR02	DMAPR01	DMAPR00	

Table 21-2. Interrupt Control Registers (xxICn) (1/2)

et4U.com

DataShe

647

Address	Register		Bits										
		<7>	<6>	5	4	3	2	1	0				
FFFFF17CH	DMAIC1	DMAIF1	DMAMK1	0	0	0	DMAPR12	DMAPR11	DMAPR10				
FFFFF17EH	DMAIC2	DMAIF2	DMAMK2	0	0	0	DMAPR22	DMAPR21	DMAPR20				
FFFFF180H	DMAIC3	DMAIF3	DMAMK3	0	0	0	DMAPR32	DMAPR31	DMAPR30				

Table 21-2. Interrupt Control Registers (xxICn) (2/2)

21.3.5 Interrupt mask registers 0 to 3 (IMR0 to IMR3)

These registers set the interrupt mask status for maskable interrupts. The xxMKn bit of the IMR0 to IMR3 registers and the xxMKn bit of the xxICn register are respectively linked.

The IMRm register can be read or written in 16-bit units.

When the higher 8 bits of the IMRm register are used as the IMRmH register and the lower 8 bits of the IMRm register as the IMRmL register, they can be read or written in 8-bit or 1-bit units (m = 0 to 3).

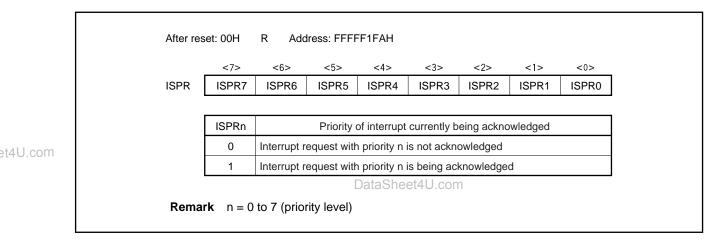
Caution In the device file, the xxMKn bit of the xxICn register is defined as a reserved word. Therefore, if bit manipulation is performed using the name xxMKn, the xxICn register, not the IMRm register, is rewritten (as a result, the IMRm register is also rewritten).

et4U.com

DataShe

IMR0 (IMR0H ^{Note}) (IMR0L) After re	CSI0MK1 7 PMK6	CSI0MK0 6				10	9	8
(IMROL)	7		TM5MK1	TM5MK0	TM0MK11			тмомкоо
	PMK6	0	5	4	3	2	1	0
After r		PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	WDT1MK
	eset: FFFFI	H R/W	Addres		FFFF102H			
1	15	14	13	11VIRTL	FFFFF102 11	H, IMR 1H	9	8 8
IMR1 (IMR1H ^{Note})	тмомк20	BRGMK	WTMK	WTIMK	KRMK	ADMK	IICMK0	CSIAMK0
	7	6	5	4	3	2	1	0
(IMR1L)	TMHMK1	ТМНМК0	STMK1	SRMK1	SREMK1	STMK0	SRMK0	SREMK0
After r	eset: FFFFI	H R/W	Addres		FFFF104H FFFFF104	-	FFFFF105	н
	15	14	13	12	11	10	9	8
IMR2 (IMR2H ^{Note})	1	1	1	1	STMK2	SRMK2	SREMK2	1
	7	6	5	4	3	2	1	0
(IMR2L)	1	1	1	1	CSIAMK1	TM0MK31	ТМ0МК30	TM0MK21
After r	eset: FFFFI	H R/W	Addres		FFFF106H			
	15	14 Da	taSheet4	IMR3L F 4U.com	FFFF106H 11	I, IMR3H I 10	9	8
After ru IMR3 (IMR3H ^{Note})	15 1	14 Da	taSheet4 1	IMR3L F 4U.com 12	FFFF106H 11 1	I, IMR3H I 10 1	9 1	8 DMAMK3
IMR3 (IMR3H ^{Note})	15 1 7	14 Da 1 6	taSheet4 1 5	IMR3L I 4U.com 1 4	FFFF106F 11 1 3	I, IMR3H I 10 1 2	9 1 1	8 DMAMK3 0
	15 1 7	14 Da 1 6	taSheet4 1 5	IMR3L I 4U.com 1 4	FFFF106H 11 1	I, IMR3H I 10 1 2	9 1	8 DMAMK3
IMR3 (IMR3H ^{Note})	15 1 7	14 Da 1 6	taSheet4 1 5	IMR3L F 4U. com 1 4 TPOCCMK1	FFFF106F 11 1 3	I, IMR3H I 10 1 2 TP0OVFMK	9 1 1	8 DMAMK3 0
IMR3 (IMR3H ^{Note})	15 1 7 DMAMK2	14 Da 1 6 DMAMK1	taSheet4 1 5	IMR3L I 1 4 TPOCCMK1	FFFF106H 11 1 3 TP0CCMK2	I, IMR3H I 10 1 2 TP0OVFMK	9 1 1	8 DMAMK3 0

21.3.6 In-service priority register (ISPR)


This register holds the priority level of the maskable interrupt currently being acknowledged. When the interrupt request signal is acknowledged, the bit of this register corresponding to the priority level of that interrupt request signal is set (1) and remains set while the interrupt is being serviced.

When the RETI instruction is executed, the bit among those that are set (1) in the ISPR register that corresponds to the interrupt request signal having the highest priority is automatically cleared (0) by hardware. However, it is not cleared (0) when execution is returned from non-maskable interrupt servicing or exception processing.

This register is read-only in 8-bit or 1-bit units.

After reset, ISPR is cleared to 00H.

Caution If an interrupt is acknowledged while the ISPR register is being read in the interrupt enabled (EI) status, the value of the ISPR register after the bits of the register have been set to 1 by acknowledging the interrupt may be read. To accurately read the value of the ISPR register before an interrupt is acknowledged, read the register while interrupts are disabled (DI status).

21.3.7 ID flag

The interrupt disable flag (ID) is allocated to the PSW and controls the maskable interrupt's operating state, and stores control information regarding enabling/disabling reception of interrupt request signals.

After reset, this flag is set to 00000020H.

	31			8	7	6	5	4	3	2	1	0
PSW			0		NP	EP	ID	SAT	CY	OV	S	Z
		1	Maskable	interrupt servio	cing s	pecifi	catior	ງ ^{Note}				
	0		Maskable interrupt request signa	al acknowledgr	nent e	enable	ed					
	1		Maskable interrupt request signa	al acknowledgr	nent o	disabl	ed					
	Note	ID is	rupt disable flag (ID) function s set (1) by the DI instruction a ified by the RETI instruction or		.,,,							ie is
	Note	ID is modi Non- this t autor An in	set (1) by the DI instruction a	LDSR instruct gnals and ex errupt reques ed during the	ction ception t sign e acki	wher ons a nal is	n refe are a s ac edgm	erenc ackno know nent o	cing t owlec rledg disab	he Pa Iged ed, t oled p	SW. rega he II perioo	rdle D fl d (I[

et4U.com

21.3.8 Watchdog timer mode register 1 (WDTM1)

This register is a special register that can be written to only in a special sequence. To generate a maskable interrupt (INTWDT1), clear the WDTM14 bit to 0.

This register can be read or written in 8-bit or 1-bit units (for details, refer to **CHAPTER 12 WATCHDOG TIMER FUNCTIONS**).

7> 6 5 4 3 2 1 0 WDTM1 RUN1 0 0 WDTM14 WDTM13 0 0 0 RUN1 0 0 WDTM14 WDTM13 0 0 0 0 RUN1 Watchdog timer operation mode selection ^{Note 1} 0 0 0 0 0 Stop count operation 1 Clear counter and start count operation 0 0 0 1 Clear counter and start count operation 0 Interval timer mode 0 Interval timer mode 0 Interval timer mode 0 Interval timer mode									
RUN1 Watchdog timer operation mode selection 0 Stop count operation 1 Clear counter and start count operation WDTM14 WDTM13 WDTM14 WDTM13 Watchdog timer operation mode selection Note 2 0 0 Interval timer mode 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 Watchdog timer mode 1 1 1 1 1 1 1		<7>	6	5	4	3	2	1	0
0 Stop count operation 1 Clear counter and start count operation WDTM14 WDTM13 Watchdog timer operation mode selection ^{Note 2} 0 0 Interval timer mode 0 1 Clear counter and start count operation mode selection 0 0 Interval timer mode 0 1 Clear counter and start count operation mode selection 0 0 Interval timer mode 0 1 Vatchdog timer mode 1 1 0 Watchdog timer mode 1 1 1 Watchdog timer mode 2	WDTM1	RUN1	0	0	WDTM14	WDTM13	0	0	0
0 Stop count operation 1 Clear counter and start count operation WDTM14 WDTM13 Watchdog timer operation mode selection ^{Note 2} 0 0 Interval timer mode 0 1 Clear counter and start count operation mode selection 0 0 Interval timer mode 0 1 Clear counter and start count operation mode selection 0 0 Interval timer mode 0 1 Vatchdog timer mode 1 1 0 Watchdog timer mode 1 1 1 Watchdog timer mode 2									
Image: Note of the second start count operation		RUN1		Watch	idog timer o	peration mo	de select	ion ^{Note 1}	
WDTM14 WDTM13 Watchdog timer operation mode selection ^{Note 2} 0 0 Interval timer mode (Generate maskable interrupt INTWDTM1 when overflow occurs) 1 0 Watchdog timer mode 1 ^{Note 3} (Generate non-maskable interrupt INTWDT1 when overflow occurs) 1 1 Watchdog timer mode 2		0	Stop coun	t operatior	ı				
0 0 Interval timer mode 0 1 (Generate maskable interrupt INTWDTM1 when overflow occurs) 1 0 Watchdog timer mode 1 ^{Note 3} (Generate non-maskable interrupt INTWDT1 when overflow occurs) 1 1 Watchdog timer mode 2		1	Clear cou	nter and st	art count op	peration			
0 0 Interval timer mode 0 1 (Generate maskable interrupt INTWDTM1 when overflow occurs) 1 0 Watchdog timer mode 1 ^{Note 3} (Generate non-maskable interrupt INTWDT1 when overflow occurs) 1 1 Watchdog timer mode 2									
0 1 (Generate maskable interrupt INTWDTM1 when overflow occurs) 1 0 Watchdog timer mode 1 ^{Note 3} (Generate non-maskable interrupt INTWDT1 when overflow occurs) 1 1 Watchdog timer mode 2		WDTM14	WDTM13	Watch	dog timer o	peration mo	de select	ion ^{Note 2}	
0 1 1 0 Watchdog timer mode 1 ^{Note 3} (Generate non-maskable interrupt INTWDT1 when overflow occurs) 1 1 Watchdog timer mode 2		0	0	Interval ti	mer mode				
(Generate non-maskable interrupt INTWDT1 when overflow occurs) 1 1 Watchdog timer mode 2		0	1	(Generate	maskable i	nterrupt INT	VDTM1 w	hen overflo	w occurs)
(Generate non-maskable interrupt INTWDT1 when overflow occurs) 1 1 Watchdog timer mode 2		1	0	Watchdog	g timer mod	e 1 ^{Note 3}			
							NTWDT1	when overfl	low occurs)
(Start WDTRES2 reset operation when overflow occurs)		1	1					4	```
				(Start WD	TRES2 res	et operation	when ov	erflow occu	urs)
	notes				-				
Notes 1. Once the RUN1 bit has been set (1), it cannot be cleared (0) by software.								•	
Therefore, once counting starts, it cannot be stopped except reset.									cannot be
Therefore, once counting starts, it cannot be stopped except reset.2. Once the WDTM14 and WDTM13 bits have been set (1), they cannot be compared as a start of the start o		•							atorrupt roc
Therefore, once counting starts, it cannot be stopped except reset.		3. For no	on-maska	Die Interru	upt servicii	ng due to	a non-ma	askable ir	nterrupt req

www.DataSheet4U.com

21.4 External Interrupt Request Input Pins (NMI, INTP0 to INTP7)

21.4.1 Noise elimination

(1) Noise elimination for NMI pin

The NMI pin includes a noise eliminator that operates using analog delay. Therefore, a signal input to the NMI pin is not detected as an edge unless it maintains its input level for a certain period. The edge is detected only after a certain period has elapsed.

The NMI pin is used for releasing the STOP mode. In the STOP mode, noise elimination using the system clock is not performed because the internal system clock is stopped.

(2) Noise elimination for INTP0 to INTP2 and INTP4 to INTP7 pins

The INTP0 to INTP2 and INTP4 to INTP7 pins include a noise eliminator that operates using analog delay. Therefore, a signal input to each pin is not detected as an edge unless it maintains its input level for a certain period. The edge is detected only after a certain period has elapsed.

(3) Noise elimination for INTP3 pin

The INTP3 pin has a digital/analog noise eliminator that can be selected by the NFC.NFEN bit. The number of times the digital noise eliminator samples signals can be selected by the NFC.NFSTS bit from three or two. The sampling clock can be selected by the NFC.NFC2 to NFC.NFC0 bits from fxx/64, fxx/128, fxx/256, fxx/512, fxx/1024, and fxr. If the sampling clock is set to fxx/64, fxx/128, fxx/256, fxx/512, or fxx/1024, the sampling clock stops in the IDLE/STOP mode. It cannot therefore be used to release the standby mode. To release the standby mode, select fxr as the sampling clock or select the analog noise eliminator.

DataShe

DataSheet4U.com

et4U.com

(a) Digital noise elimination control register (NFC)

The NFC register controls elimination of noise on the INTP3 pin. If fxT is used as the noise elimination clock, the external interrupt function of the INTP3 pin can be used even in the IDLE/STOP mode. This register can be read or written in 8-bit or 1-bit units.

After reset, NFC is cleared to 00H.

	7	6	5	4	3	2	1	0
NFC	NFEN	NFSTS	0	0	0	NFC2	NFC1	NFC0
	NFEN		Se	ting of INT	P3 pin nois	e eliminatio	on	
	0	Analog no	oise elimina	ation				
	1	Digital noi	se elimina	tion				
	NFSTS	Se	tting of pu	mber of sar	mplings of	digital noise	eliminatio	n
	0		-	s = 3 times				
	1			s = 2 times				
	NFC2	NFC1	NFC0		Selection	n of samplii	ng clock	
	NFC2 0	NFC1 0	NFC0 0	fxx/64	Selection	n of samplii	ng clock	
				fxx/64 fxx/128	Selection	n of samplii	ng clock	
	0	0	0	fxx/128		· · ·	ng clock	
	0	0	0 1	fxx/128	Selection	· · ·	ng clock	
	0 0 0	0 0 1	0 1 0	fxx/128 fxx/256		· · ·	ng clock	
	0 0 0 0	0 0 1 1	0 1 0 1	fxx/128 fxx/256 fxx/512		· · ·	ng clock	

www.DataSheet4U.com

<Noise elimination width>

The digital noise elimination width (twit) is as follows, where T is the sampling clock period and M is the number of samplings.

- twitt < (M 1)T: Accurately eliminated as noise
- $(M 1)T \le twits < MT$: May be eliminated as noise or detected as valid edge
- twit3 ≥ MT: Accurately detected as valid edge

To detect the valid edge input to the INTP3 pin accurately, therefore, a pulse wider than MT must be input.

NFSTS	NFC2	NFC1	NFC0	Sampling Clock	Minin	num Elimination Noise	e Width
					fxx = 20 MHz	fxx = 10 MHz	fxx = 8 MHz
0	0	0	0	fxx/64	6.4 <i>μ</i> s	12.8 <i>μ</i> s	16 <i>μ</i> s
0	0	0	1	fxx/128	12.8 <i>µ</i> s	25.6 μs	32 <i>µ</i> s
0	0	1	0	fxx/256	25.6 <i>µ</i> s	51.2 μs	64 <i>µ</i> s
0	0	1	1	fxx/512	51.2 <i>μ</i> s	102.4 <i>μ</i> s	128 <i>µ</i> s
0	1	0	0	fxx/1024	102.4 <i>μ</i> s	204.8 <i>µ</i> s	256 <i>μ</i> s
0	1	0	1	fxt (32.768 kHz)	61.04 <i>μ</i> s		
1	0	0	0	fxx/64	3.2 μs	6.4 <i>μ</i> s	8 <i>µ</i> s
1	0	0	1	fxx/128	6.4 <i>μ</i> s	12.8 μs	16 <i>μ</i> s
1	0	1	0	fxx/256	12.8 <i>µ</i> s	25.6 μs	32 <i>µ</i> s
1	0	1	1	fxx/512	25.6 <i>µ</i> s	51.2 μs	64 <i>µ</i> s
1	1	0	0	fxx/1024	51.2 <i>μ</i> s	102.4 <i>μ</i> s	128 <i>µ</i> s
1	1	0	1	fxт (32.768 kHz)	30.52 <i>μ</i> s		
	Other the	an above		Setting prohibited			

21.4.2 Edge detection

The valid edges of the NMI and INTP0 to INTP7 pins can be selected from the following four types for each pin.

- Rising edge
- Falling edge
- Both edges
- No edge detection

After reset, the edge detection for the NMI pin is set to "no edge detection". Therefore, interrupt requests cannot be acknowledged (the NMI pin functions as a normal port) unless a valid edge is specified by the INTR0 and INTF0 registers.

When using the P02 pin as an output port, set the NMI pin valid edge to "no edge detection".

(1) External interrupt rising and falling edge specification registers 0 (INTR0, INTF0)

These are 8-bit registers that specify detection of the rising and falling edges of the NMI and INTP0 to INTP3 pins.

These registers can be read or written in 8-bit or 1-bit units. After reset, these registers are cleared to 00H.

Caution When switching to the port function from the external interrupt function (alternate function), edge detection may be performed. Therefore, set the port mode after setting the INTF0n and INTR0n bits = 00.

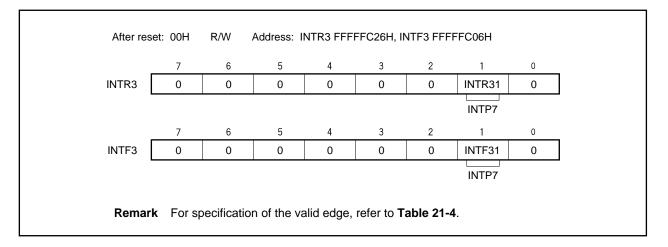
	7	6	5	4	3	2	1	0
INTR0	0	INTR06	INTR05	INTR04	INTR03	INTR02	0	0
		INTP3	INTP2	INTP1	INTP0	NMI		
	7	6	5	4	3	2	1	0
INTF0	0	INTF06	INTF05	INTF04	INTF03	INTF02	0	0
		INTP3	INTP2	INTP1	INTP0	NMI		

et4U.com

Table 21-3. NMI and INTP0 to INTP3 Pins Valid Edge Specification

INTF0n	INTR0n	Valid edge specification (n = 2 to 6)
0	0	No edge detection
0	1	Rising edge
1	0	Falling edge
1	1	Both edges

Remark n = 2: Control of NMI pin


n = 3 to 6: Control of INTP0 to INTP3 pins

www.DataSheet4U.com

(2) External interrupt rising and falling edge specification registers 3 (INTR3, INTF3) These are 8-bit registers that specify detection of the rising and falling edges of the INTP7 pin. These registers can be read or written in 8-bit or 1-bit units.

After reset, these registers are cleared to 00H.

Caution When switching to the port function from the external interrupt function (alternate function), edge detection may be performed. Therefore, set the port mode after setting the INTF31 and INTR31 bits = 00.

et4U.com

Table 21-4. INTP7 Pin Valid Edge Specification

		DataSheet4U.com
INTF31	INTR31	Valid edge specification
0	0	No edge detection
0	1	Rising edge
1	0	Falling edge
1	1	Both edges

- (3) External interrupt rising and falling edge specification registers 9H (INTR9H, INTF9H) These are 8-bit registers that specify detection of the rising edge of the INTP4 to INTP6 pins. These registers can be read or written in 8-bit or 1-bit units. After reset, these registers are cleared to 00H.
 - Caution When switching to the port function from the external interrupt function (alternate function), edge detection may be performed. Therefore, set the port mode after setting the INTF9n and INTR9n bits = 00.

	et: 00H	6	Address: IN	4	3	2	1	0
INTR9H	INTR915	INTR914	INTR913	0	0	0	0	0
	INTP6	INTP5	INTP4					
	7	6	5	4	3	2	1	0
INTF9H	INTF915	INTF914	INTF913	0	0	0	0	0
	INTP6	INTP5	INTP4					
Remarl	K For sp	ecification	of the val	id edge, I	efer to Ta	ble 21-5.		

et4U.com

Table 21-5. INTP4 to INTP6 Pins Valid Edge Specification

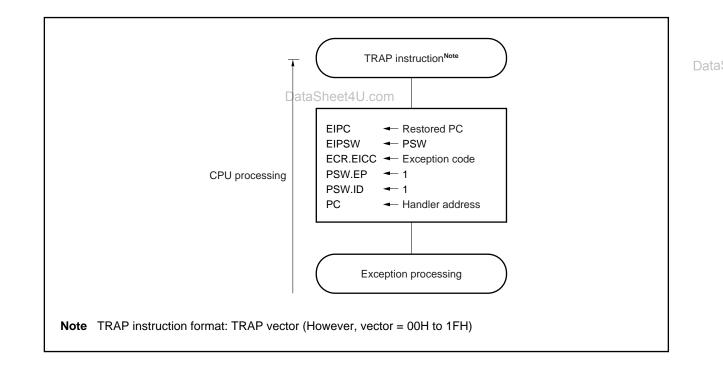
DataShe

www.DataSheet4U.com

		DataSheet4U com
INTF9n	INTR9n	Valid edge specification (n = 13 to 15)
0	0	No edge detection
0	1	Rising edge
1	0	Falling edge
1	1	Both edges

Remark n = 13 to 15: Control of INTP4 to INTP6 pins

21.5 Software Exceptions


A software exception is generated when the CPU executes the TRAP instruction. Software exceptions can always be acknowledged.

21.5.1 Operation

If a software exception occurs, the CPU performs the following processing and transfers control to a handler routine.

- <1> Saves the restored PC to EIPC.
- <2> Saves the current PSW to EIPSW.
- <3> Writes an exception code to the lower 16 bits (EICC) of ECR (interrupt source).
- <4> Sets the PSW.EP and PSW.ID bits to 1.
- <5> Loads the handler address (00000040H or 00000050H) for the software exception routine to the PC and transfers control.

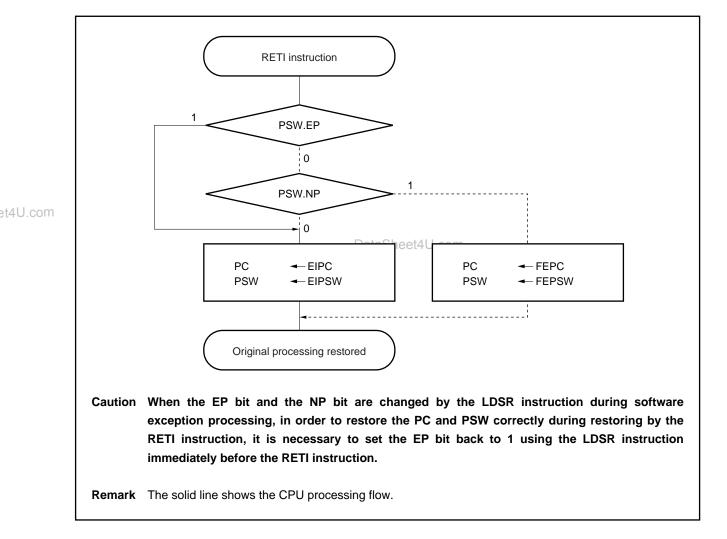
Figure 21-8 shows the software exception processing flow.

Figure 21-8. Software Exception Processing

The handler address is determined by the operand (vector) of the TRAP instruction. If the vector is 00H to 1FH, the handler address is 00000040H, and if the vector is 10H to 1FH, the handler address is 00000050H.

et4U.com

21.5.2 Restore


Execution is restored from software exception processing by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing and transfers control to the address of the restored PC.

<1> Loads the restored PC and PSW from EIPC and EIPSW because the PSW.EP bit is 1.

<2> Transfers control to the address of the restored PC and PSW.

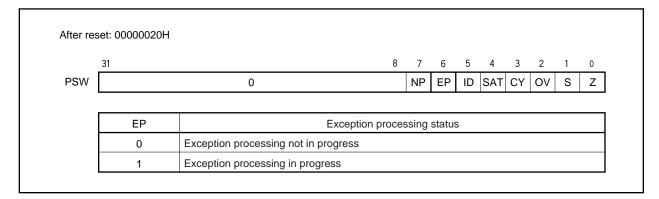
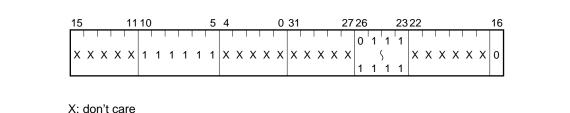

Figure 21-9 shows the processing flow of the RETI instruction.

Figure 21-9. RETI Instruction Processing

21.5.3 EP flag

The EP flag is a status flag that indicates that exception processing is in progress. It is set when an exception occurs.

et4U.com


DataShe

21.6 Exception Trap

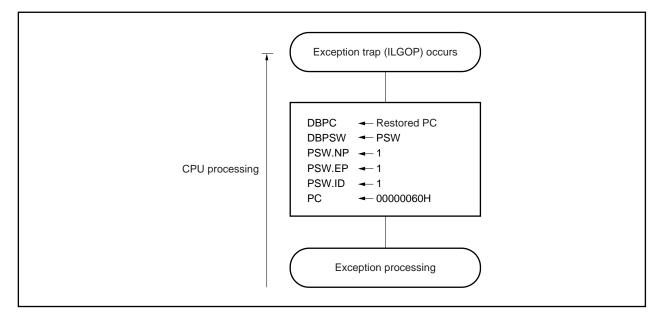
The exception trap is an interrupt that is requested when the illegal execution of an instruction takes place. In the V850ES/KG1+, an illegal op code trap (ILGOP: illegal OP code trap) is considered as an exception trap.

21.6.1 Illegal op code

An illegal op code is defined as an instruction with instruction op code (bits 10 to 5) = 111111B, sub-op code (bits 26 to 23) = 0111B to 1111B, and sub-op code (bit 16) = 0B. When such an instruction is executed, an exception trap is generated.

.

Caution It is recommended not to use illegal op code because instructions may newly be assigned in the future.


(1) Operation

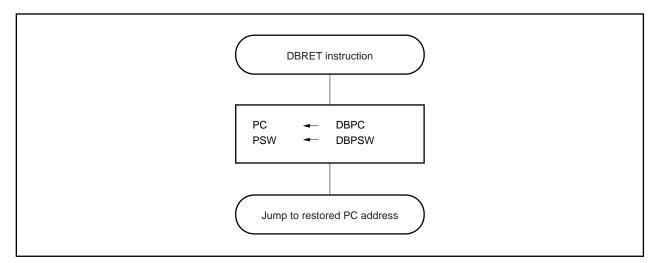
Upon generation of an exception trap, the CPU performs the following processing and transfers control to a handler routine. DataSheet4U.com

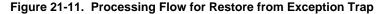
DataShee

- <1> Saves the restored PC to DBPC.
- <2> Saves the current PSW to DBPSW.
- <3> Sets the PSW.NP, PSW.EP, and PSW.ID bits.
- <4> Loads the handler address (0000060H) for the exception trap routine to the PC and transfers control.

Figure 21-10 shows the exception trap processing flow.

Figure 21-10. Exception Trap Processing


(2) Restore


Execution is restored from exception trap processing by the DBRET instruction. When the DBRET instruction is executed, the CPU performs the following processing and transfers control to the address of the restored PC.

DataShe

- <1> Loads the restored PC and PSW from DBPC and DBPSW.
 - <2> Transfers control to the loaded address of the restored PC and PSW.

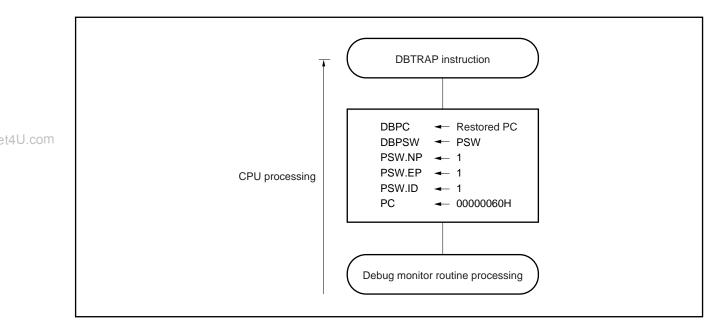
Figure 21-11 shows the processing flow for restore from exception trap processing.

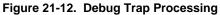
DataSheet4U.com

et4U.com

www.DataSheet4U.com

21.6.2 Debug trap


A debug trap is an exception that occurs upon execution of the DBTRAP instruction and that can be acknowledged at all times.

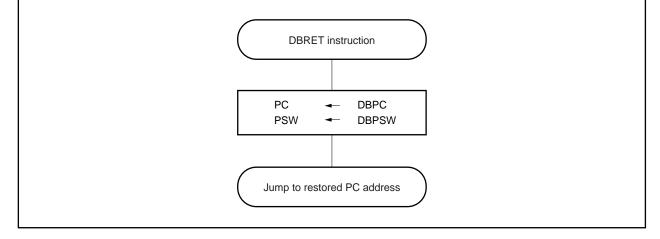

When a debug trap occurs, the CPU performs the following processing.

(1) Operation

- <1> Saves the restored PC to DBPC.
- <2> Saves the current PSW to DBPSW.
- <3> Sets the PSW.NP, PSW.EP, and PSW.ID bits to 1.
- <4> Sets the handler address (00000060H) for the debug trap routine to the PC and transfers control.

Figure 21-12 shows the debug trap processing flow.

(2) Restore


Execution is restored from debug trap processing by the DBRET instruction. When the DBRET instruction is executed, the CPU performs the following processing and transfers control to the address of the restored PC.

<1> Loads the restored PC and PSW from DBPC and DBPSW.

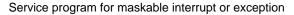
<2> Transfers control to the loaded address of the restored PC and PSW.

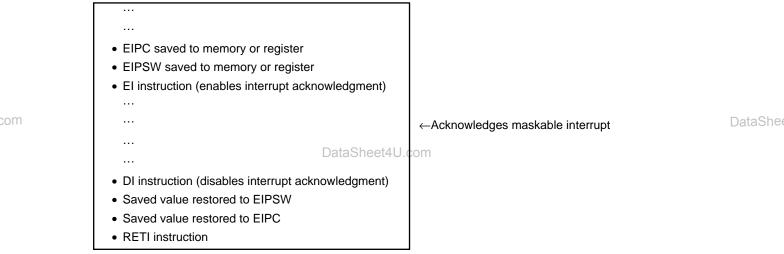
Figure 21-13 shows the processing flow for restore from debug trap processing.

et4U.com

DataSheet4U.com

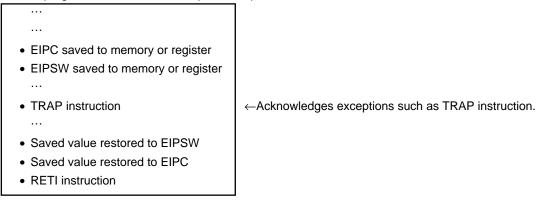
21.7 Multiple Interrupt Servicing Control


Multiple interrupt servicing control is a function that stops an interrupt service routine currently in progress if a higher priority interrupt request signal is generated, and processes the acknowledgment operation of the higher priority interrupt request signal.


If an interrupt request signal with a lower or equal priority is generated and a service routine is currently in progress, the later interrupt request signal will be held pending.

Multiple interrupt servicing control is performed when interrupts are enabled (PSW.ID bit = 0). Even in an interrupt servicing routine, multiple interrupt control must be performed while interrupts are enabled (ID bit = 0). If a maskable interrupt or software exception is generated in a maskable interrupt or software exception service program, EIPC and EIPSW must be saved.

The following example illustrates the procedure.


(1) To acknowledge maskable interrupt request signals in service program

(2) To generate exception in service program

Service program for maskable interrupt or exception

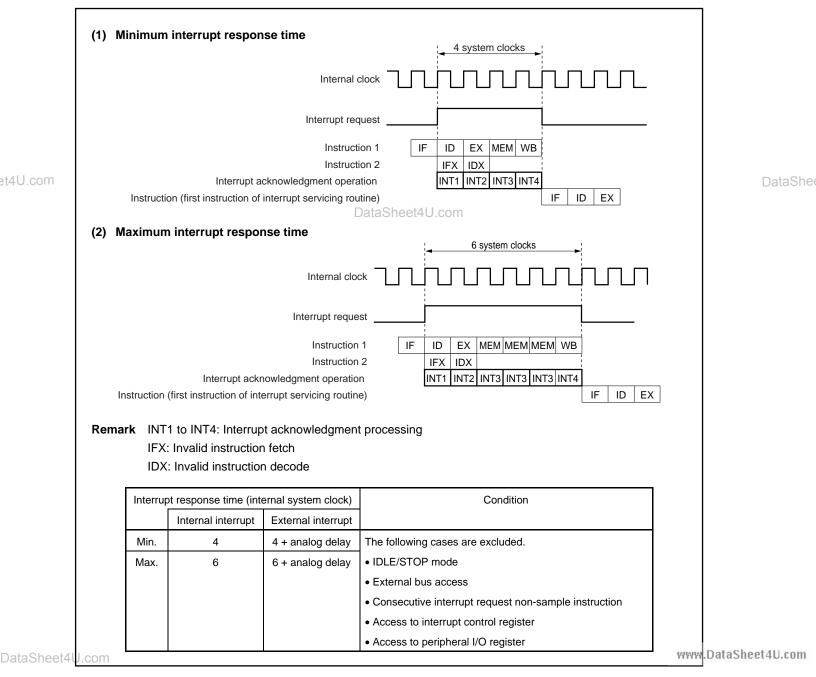
Priorities 0 to 7 (0 is the highest) can be set for each maskable interrupt request in multiple interrupt servicing control by software. To set a priority level, write values to the xxICn.xxPRn0 to xxICn.xxPRn2 bits corresponding to each maskable interrupt request. After reset, interrupt requests are masked by the xxICn.xxMKn bit, and the priority is set to level 7 by the xxPRn0 to xxPRn2 bits.

Priorities of maskable interrupts are as follows.

(High) Level 0 > Level 1 > Level 2 > Level 3 > Level 4 > Level 5 > Level 6 > Level 7 (Low)

DataShe

Interrupt servicing that has been suspended as a result of multiple interrupt servicing control is resumed after the interrupt servicing of the higher priority has been completed and the RETI instruction has been executed. A pending interrupt request signal is acknowledged after the current interrupt servicing has been completed and the RETI instruction has been executed.


Caution In a non-maskable interrupt servicing routine (in the time until the RETI instruction is executed), maskable interrupts are not acknowledged and held pending.

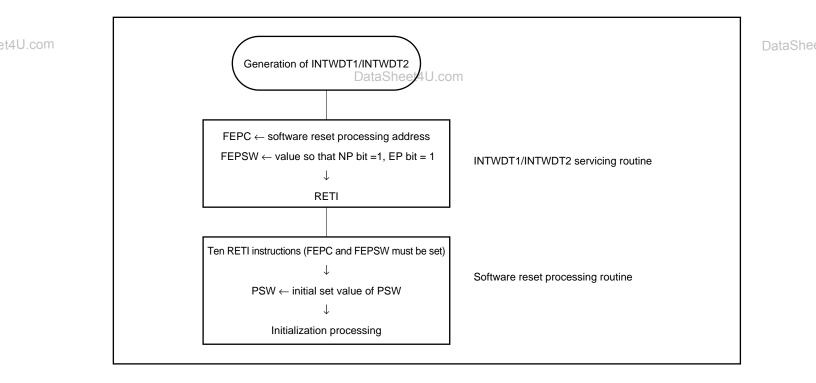
21.8 Interrupt Response Time

Except in the following cases, the CPU interrupt response time is a minimum of 4 clocks. If inputting consecutive interrupt request signals, at least 4 clocks must be placed between each interrupt request signal.

- IDLE/STOP mode
- · External bus access
- Consecutive interrupt request non-sample instruction (refer to 21.9 Periods in Which Interrupts Are Not Acknowledged by CPU)
- Access to interrupt control register
- Access to peripheral I/O register

Figure 21-14. Pipeline Operation During Interrupt Request Signal Acknowledgment (Outline)

21.9 Periods in Which Interrupts Are Not Acknowledged by CPU


Interrupts are acknowledged by the CPU while an instruction is being executed. However, no interrupt is acknowledged between an interrupt request non-sample instruction and the next instruction.

The following instructions are interrupt request non-sample instructions.

- El instruction
- DI instruction
- LDSR reg2, 0x5 instructions (vs. PSW)
- Store instruction for the PRCMD register
- Store instruction and bit manipulation instruction for the following registers
 - Interrupt-related registers:
 - Interrupt control register (xxICn), interrupt mask registers 0 to 3 (IMR0 to IMR3)

21.10 Cautions

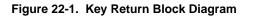
Design the system so that restoring by the RETI instruction is as follows after a non-maskable interrupt triggered by a non-maskable interrupt request signal (INTWDT1/INTWDT2) is serviced.

Figure 21-15. Restoring by RETI Instruction

CHAPTER 22 KEY INTERRUPT FUNCTION

22.1 Function

A key interrupt request signal (INTKR) can be generated by inputting a falling edge to the eight key input pins (KR0 to KR7) by setting the KRM register.


Caution If any of the KR0 to KR7 pins is at low level, the INTKR signal is not generated even if a falling edge is input to another pin.

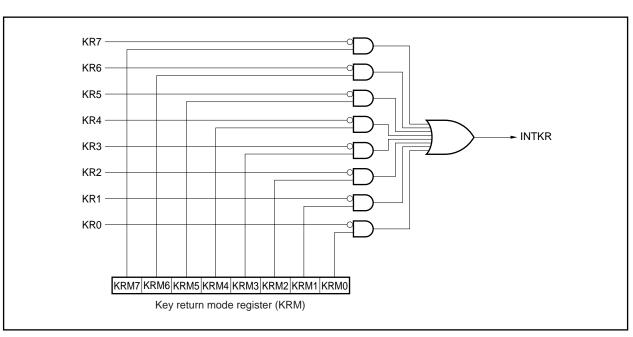

Flag	Pin Description
KRM0	Controls KR0 signal in 1-bit units
KRM1	Controls KR1 signal in 1-bit units
KRM2	Controls KR2 signal in 1-bit units
KRM3	Controls KR3 signal in 1-bit units
KRM4	Controls KR4 signal in 1-bit units
KRM5	Controls KR5 signal in 1-bit units
KRM6	Controls KR6 signal in 1-bit units
KRM7	Controls KR7 signal in 1-bit units

Table 22-1. Assignment of Key Return Detection Pins

et4U.com

DataSheet4U.com

DataSheet4U.com

22.2 Register

(1) Key return mode register (KRM)

The KRM register controls the KRM0 to KRM7 bits using the KR0 to KR7 signals. This register can be read or written in 8-bit or 1-bit units. After reset, KRM is cleared to 00H.

	7	6	5	4	3	2	1	0	_	
KRM	KRM7	KRM6	KRM5	KRM4	KRM3	KRM2	KRM1	KRM0		
									_	
	KRMn			Key re	turn mode	control				
	0	Does not	detect key	return sign	al					
	1		ey return si]	
Cautic	n If the gene (DI),	E KRM re rated. To and ther C.KRIF bi	egister is o prevent n enable	change t this, ch	ange the	KRM reg	gister aft	er disabl	ling inter	rrupts
Cautic Remai	n If the gene (DI), (KRI0	e KRM re rated. Te and ther	egister is o prevent n enable t) to 0.	change t this, ch interrup	ange the s (EI) af	KRM reg fter clear	gister after ing the	er disabl	ling inter t reques	rrupts t flag

CHAPTER 23 STANDBY FUNCTION

23.1 Overview

The power consumption of the system can be effectively reduced by using the standby modes in combination and selecting the appropriate mode for the application.

The available standby modes are listed in Table 23-1.

Mode	Functional Outline
HALT mode	Mode to stop only the operating clock of the CPU
IDLE mode	Mode to stop all the operations of the internal circuits except the oscillator ^{Note 1}
STOP mode	Mode to stop all the operations of the internal circuits except the subclock oscillator ^{Note 2}
Subclock operation mode	Mode to use the subclock as the internal system clock
Sub-IDLE mode	Mode to stop all the operations of the internal circuits, except the oscillator, in the subclock operation mode
Ring clock operation mode ^{Note 3}	Mode in which the internal system clock (fcLK) operates on the ring clock by using the clock monitor function
Ring HALT mode ^{№te 3}	Mode in which only the operating clock of the CPU (fcPu) is stopped in the ring clock operation mode

Table 23-1.	Standby Modes
-------------	---------------

et4U.com

Notes 1. The PLL does not stop. To realize low power consumption, stop the PLL and then shift to the IDLE mode.

2. Change to the clock-through mode, stop the PLL, then shift to the STOP mode. For details, refer to CHAPTER 6 CLOCK GENERATION FUNCTION.

 For details of the ring clock operation mode and ring HALT mode, refer to CHAPTER 25 CLOCK MONITOR. DataShe

www.DataSheet4U.com

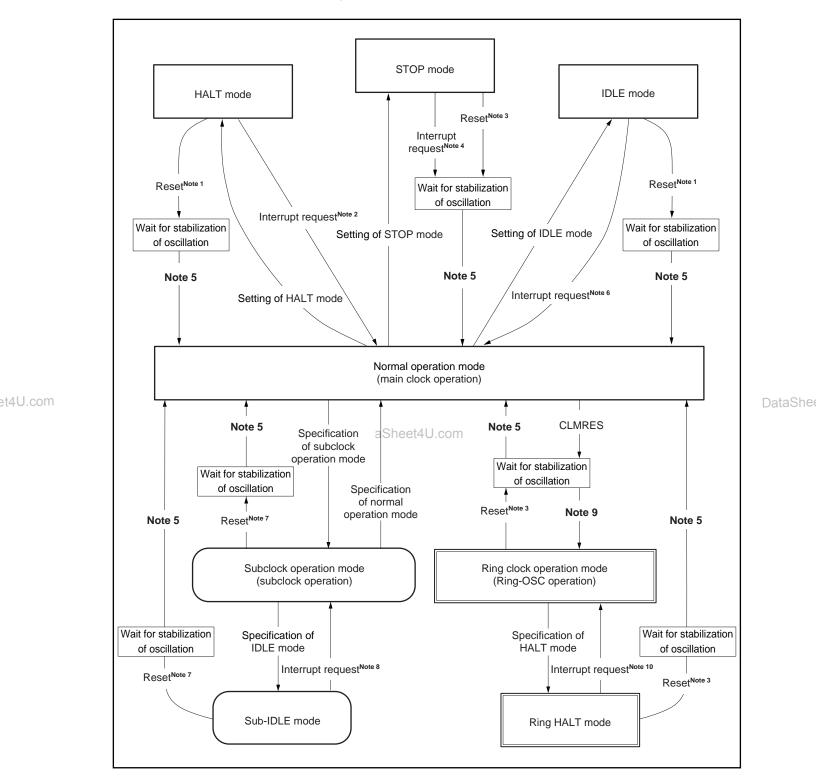


Figure 23-1. Status Transition (1/2)

Г

et4U.com

Figure 23-1. Status Transition (2/2)

Notes	1. RESET pin input, WDTRES2, POCRES, LVIRES, or CLMRES signal.
	In the case of the WDTRES1 signal, the oscillation stabilization time is not secured.
	2. Non-maskable interrupt request signal or unmasked maskable interrupt request signal.
	3. RESET pin input, WDTRES2, POCRES, or LVIRES signal.
	4. Non-maskable interrupt request signal (NMI pin input, INTWDT2 signal) or unmasked interna interrupt request signal from peripheral functions operable in STOP mode.
	5. The main clock (fx) starts oscillating. After the oscillation stabilization time, the normal operation
	mode is set.
	If watchdog timer 2 overflows while the oscillation stabilization time is being secured because of a abnormality (stoppage) of the main clock oscillation (fx), the ring clock operation mode is set.
	 Non-maskable interrupt request signal (NMI pin input, INTWDT2 signal) or unmasked interna interrupt request signal from peripheral functions operable in IDLE mode.
	 RESET pin input, WDTRES2, POCRES, or LVIRES signal. While the main clock (fx) is oscillating, the standby mode can be released by the CLMRES signal
	(refer to Note 9).
	8. Non-maskable interrupt request signal (NMI pin input, INTWDT2 signal) or unmasked interna interrupt request signal from peripheral functions operable in sub-IDLE mode.
	 If the main clock oscillation (fx) is abnormal (stops), watchdog timer 1 does not count the oscillation stabilization time. When watchdog timer 2 counts the ring clock and overflows, the ring clock operation mode is set.
	 Non-maskable interrupt request signal (NMI pin input, INTWDT2 signal) or unmasked interna interrupt request signal from peripheral functions operable in ring HALT mode.
Remar	ks 1. WDTRES1 signal: Reset signal by watchdog timer 1 overflow
	2. WDTRES2 signal: Reset signal by watchdog timer 2 overflow
	3. POCRES signal: Reset signal by power-on-clear circuit
	4. LVIRES signal: Reset signal by low-voltage detector

www.DataSheet4U.com

٦

23.2 Registers

(1) Power save control register (PSC)

This is an 8-bit register that controls the standby function. The STP bit of this register is used to specify the standby mode. The PSC register is a special register that can be written to only in a special sequence (refer to **3.4.7 Special registers**).

This register can be read or written in 8-bit or 1-bit units. After reset, PSC is cleared to 00H.

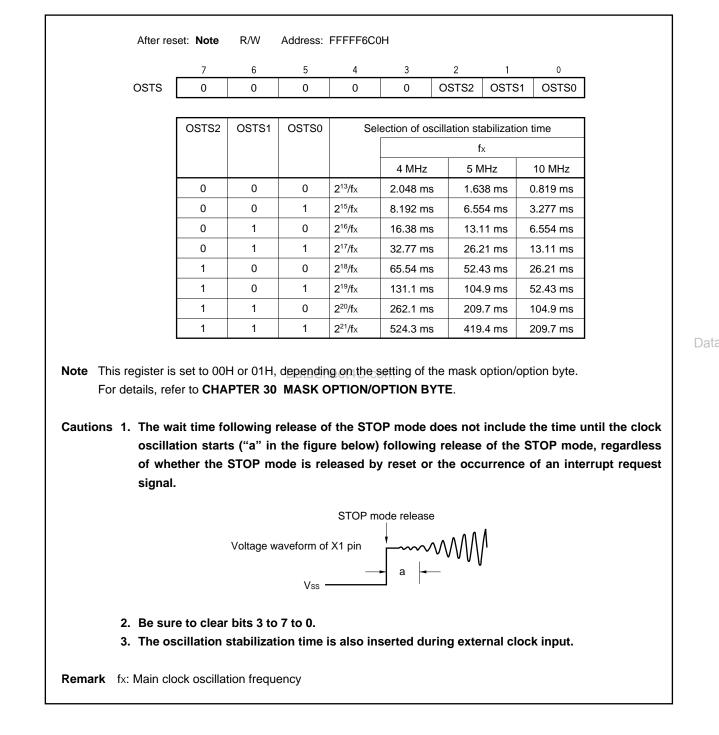
	<7>	6	<5>	<4>	3	2	<1>	0	
PSC	NMI2M	0	NMIOM	INTM	0	0	STP	0	
	r	1							
	NMI2M		Control of rel	-	-	-	-	nal	
	0		g standby m						
	1	Releasing	g standby m	ode ^{Note} by	NTWDT2	signal disa	abled		
	NMIOM		Control of r	eleasing st	andby mo	de ^{Note} by N	MI pin inpu	ıt	
	0	Releasing	g standby m	-	•			-	
	1		g standby m						
		1							
	INTM	Control o	f releasing s	tandby mod	le ^{Note} by m	askable in	errupt requ	est signals	
	0	Releasing	g standby m	ode ^{Note} by r	naskable i	nterrupt re	quest signa	ls enabled	
	1	Releasing	g standby m	ode ^{Note} by r	naskable i	nterrupt re	quest signa	ls disabled	
	STP			Standb	y mode ^{Note}	setting			
	0	Normal m	node						
	1	Standby	mode ^{Note}						
Note In this case, s Cautions 1. If the setting	NMI2M, N	NMIOM, a	and INTM	bits, and	the STI	P bit are	set to 1	at the sa	
interro corres	upt reque	st signal to the in	l being he nterrupt re	ld pendiı quest siç	ng when Inal (NM	the IDLI I2M, NMI	E/STOP n	node is se TM) to 1,	t, set the land then s

(2) Power save mode register (PSMR)

This is an 8-bit register that controls the operation status in the power save mode and the clock operation. This register can be read or written in 8-bit or 1-bit units. After reset, PSMR is cleared to 00H.

After reset: 00H R/W Address: FFFFF820H 7 6 5 4 3 2 1 <0> PSMR XTSTP 0 0 0 0 0 PSM 0 XTSTP Specification of subclock oscillator use 0 Subclock oscillator used 1 Subclock oscillator not used PSM Specification of operation in standby mode 0 IDLE mode STOP mode 1 Cautions 1. Be sure to clear the XTSTP bit to 0 during subclock resonator connection. 2. Be sure to clear bits 1 to 6 of the PSMR register to 0. 3. The PSM bit is valid only when the PSC.STP bit is 1.

et4U.com


DataSheet4U.com

DataSheet4U.com

(3) Oscillation stabilization time selection register (OSTS)

The wait time until the oscillation stabilizes after the STOP mode is released is controlled by the OSTS register. The OSTS register can be read or written in 8-bit units.

After reset, OSTS is set to 01H.

DataSheet4U.com

et4U.com

23.3 HALT Mode

23.3.1 Setting and operation status

The HALT mode is set when a dedicated instruction (HALT) is executed in the normal operation mode.

In the HALT mode, the clock oscillator continues operating. Only clock supply to the CPU is stopped; clock supply to the other on-chip peripheral functions continues.

As a result, program execution is stopped, and the internal RAM retains the contents before the HALT mode was set. The on-chip peripheral functions that are independent of instruction processing by the CPU continue operating. Table 23-3 shows the operation status in the HALT mode.

The average power consumption of the system can be reduced by using the HALT mode in combination with the normal operation mode for intermittent operation.

Cautions 1. Insert five or more NOP instructions after the HALT instruction.

2. If the HALT instruction is executed with an unmasked interrupt request signal held pending, the system shifts to the HALT mode, but the HALT mode is immediately released by the pending interrupt request signal.

23.3.2 Releasing HALT mode

The HALT mode is released by a non-maskable interrupt request signal (NMI pin input, INTWDT1, INTWDT2 signal), an unmasked maskable interrupt request signal, and reset signal (RESET pin input, WDTRES1, WDTRES2, POCRES, LVIRES, CLMRES signal).

After the HALT mode has been released, the normal operation mode is restored.

t4U.com

(1) Releasing HALT mode by non-maskable interrupt request signal or unmasked maskable interrupt DataSheet4U.com

The HALT mode is released by a non-maskable interrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request. If the HALT mode is set in an interrupt servicing routine, however, an interrupt request that is issued later is serviced as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, only the HALT mode is released, and that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the HALT mode is released and that interrupt request signal is acknowledged.

Release Source	Interrupt Enabled (EI) Status	Interrupt Disabled (DI) Status		
Non-maskable interrupt request signal	Execution branches to the handler address			
Maskable interrupt request signal	Execution branches to the handler address or the next instruction is executed	The next instruction is executed		

Table 23-2. Operation After Releasing HALT Mode by Interrupt Request Signal

(2) Releasing HALT mode by reset

The same operation as the normal reset operation is performed.

Se	etting of HALT Mode	When CPU Is Opera	ating with Main Clock			
Item		When Subclock Is Not Used	When Subclock Is Used			
CPU		Stops operation	Stops operation			
ROM correction		Stops operation				
Main clock oscillat	or	Oscillation enabled				
Subclock oscillato	r	_	Oscillation enabled			
Ring-OSC (f _R)		Operable				
Interrupt controller		Operable				
16-bit timer (TMPC))	Operable				
16-bit timers (TM0	0 to TM03)	Operable				
8-bit timers (TM50	, TM51)	Operable				
Timer H (TMH0, T	MH1)	Operable				
Watch timer		Operable when main clock is selected as count clock	Operable			
Watchdog timer 1		Operable				
Watchdog timer 2		Operable when Ring-OSC (f_R) is selected as count clock	Operable			
Serial interface	CSI00, CSI01	Operable				
	CSIA0, CSIA1	Operable				
I ² C0 ^{Note}		Operable				
	UART0 to UART2	Operable DataSheet4U.com				
Key interrupt funct	tion	Operable				
A/D converter		Operable				
D/A converter		Operable when real-time output mode is selected				
Real-time output		Operable				
DMA		Operable				
Clock monitor (CL	M)	Operable				
Power-on-clear (P	OC)	Operable				
Low-voltage detection (LVI)		Operable				
Regulator		Operable				
Port function		Retains status before HALT mode was set.				
External bus interf	ace	Refer to 2.2 Pin Status.				
Internal data		The CPU registers, statuses, data, and all other internal data such as the contents of the internal RAM are retained as they were before the HALT mode was set.				

Table 23-3. Operation Status in HALT Mode

Note Only in the μ PD703313Y, 70F3311Y, 70F3313Y

23.4 IDLE Mode

23.4.1 Setting and operation status

The IDLE mode is set by clearing the PSMR.PSM bit to 0 and setting the PSC.STP bit to 1 in the normal operation mode.

In the IDLE mode, the clock oscillator continues operation but clock supply to the CPU and other on-chip peripheral functions stops.

As a result, program execution stops and the contents of the internal RAM before the IDLE mode was set are retained. The CPU and other on-chip peripheral functions stop operating. However, the on-chip peripheral functions that can operate with the subclock, Ring-OSC clock, or an external clock continue operating.

Table 23-5 shows the operation status in the IDLE mode.

The IDLE mode can reduce the power consumption more than the HALT mode because it stops the operation of the on-chip peripheral functions. The main clock oscillator does not stop, so the normal operation mode can be restored without waiting for the oscillation stabilization time after the IDLE mode has been released, in the same manner as when the HALT mode is released.

Caution Insert five or more NOP instructions after the instruction that stores data in the PSC register to set the IDLE mode.

23.4.2 Releasing IDLE mode

The IDLE mode is released by a non-maskable interrupt request signal (NMI pin input, INTWDT2 signal), unmasked external interrupt request signal (INTP0 to INTP7 pin input), unmasked internal interrupt request signal from the peripheral functions operable in the IDLE mode, or reset (except WDTRES1 signal).

DataShe

After the IDLE mode has been released, the normal operation mode is restored.

DataSheet4U.com

(1) Releasing IDLE mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

The IDLE mode is released by a non-maskable interrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request. If the IDLE mode is set in an interrupt servicing routine, however, an interrupt request that is issued later is serviced as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, only the IDLE mode is released, and that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the IDLE mode is released and that interrupt request signal is acknowledged.

Table 23-4. Operation After Releasing IDLE Mode by Interrupt Request Signa	Table 23-4.	Operation A	fter Releasing IDL	E Mode by Interrup	t Request Signa
--	-------------	-------------	--------------------	--------------------	-----------------

Release Source	Interrupt Enabled (EI) Status	Interrupt Disabled (DI) Status		
Non-maskable interrupt request signal	Execution branches to the handler address			
Maskable interrupt request signal	Execution branches to the handler address or the next instruction is executed	The next instruction is executed		

Caution The interrupt request signal that is disabled by setting the PSC.NMI2M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and IDLE mode is not released.

DataSheet4U.com

680

(2) Releasing IDLE mode by reset

The same operation as the normal reset operation is performed.

	Setting of IDLE Mode	When CPU Is Opera	ating with Main Clock			
Item		When Subclock Is Not Used	When Subclock Is Used			
CPU		Stops operation				
ROM correction		Stops operation				
Main clock oscilla	tor	Oscillation enabled				
Subclock oscillato	or	_	Oscillation enabled			
Ring-OSC (fR)		Operable				
Interrupt controlle	r	Stops operation				
16-bit timer (TMP	0)	Stops operation				
16-bit timers (TM	00 to TM03)	TM00, TM02, TM03: Stop operation TM01: Operable when INTWT is selected as count clock and fBRG is selected as count clock of WT	TM00, TM02, TM03: Stop operation TM01: Operable when INTWT is selected as count clock			
8-bit timers (TM50, TM51)		 Operable when TI5m is selected as count clock Operable when INTTM010 is selected as count clock and TM01 is enabled in IDLE mode 				
Timer H (TMH0)		Stops operation				
Timer H (TMH1)		Stops operation	Operable when f_{XT} is selected as count clock			
Watch timer		Operable when main clock is selected as count clock	Operable			
Watchdog timer 1		Stops operation				
Watchdog timer 2	2	Stops operation	Operable when f_{XT} is selected as count clock			
Serial interface	CSI00, CSI01	Operable when SCK0m input clock is selected	ed as operation clock			
	CSIA0, CSIA1	Stops operation				
	I ² C0 ^{Note 1}	Stops operation				
	UART0	Operable when ASCK0 is selected as count clock				
	UART1, UART2	Stops operation				
Key interrupt fund	tion	Operable				
A/D converter		Stops operation				
D/A converter		Stops operation (retains output) ^{Note 2}	ch0: Stops operation (retains output) ^{Note 2} ch1: (For other conditions than following, refer to Note 2 .) Operable when real-time output mode is selected and f_{XT} is selected as count clock of TMH1			
Real-time output		Operable when INTTM5m is selected as real IDLE mode	I-time output trigger and TM5m is enabled in			

Table 23-5.	Operation	Status in	IDLE	Mode	(1/2)
	oporation	etatae m		meae	···-/

Notes 1. Only in the *µ*PD703313Y, 70F3311Y, 70F3313Y

2. If the IDLE mode is set immediately after D/A conversion has started (during conversion), the D/A converter continues operating until D/A conversion is complete and retains the output at the end of D/A conversion.

Remark m = 0, 1

DataSheet4U.com

et4U.com

Table 23-5. Operation Status in IDLE Mode (2/2)

Setting of IDLE Mode	When CPU Is Operating with Main Clock			
Item	When Subclock Is Not Used	When Subclock Is Used		
DMA	Stops operation			
Clock monitor (CLM)	Operable			
Power-on-clear (POC)	Operable			
Low-voltage detection (LVI)	Operable			
Regulator	Continues operation			
Port function	Retains status before IDLE mode was set.			
External bus interface	Refer to 2.2 Pin Status.			
Internal data	The CPU registers, statuses, data, and all other internal data such as the contents of the internal RAM are retained as they were before the IDLE mode was set.			

et4U.com

DataShee

DataSheet4U.com

23.5 STOP Mode

23.5.1 Setting and operation status

The STOP mode is set when the PSMR.PSM bit is set to 1 and the PSC.STP bit is set to 1 in the normal operation mode.

In the STOP mode, the subclock oscillator continues operating but the main clock oscillator stops. Clock supply to the CPU and the on-chip peripheral functions is stopped.

As a result, program execution is stopped, and the contents of the internal RAM before the STOP mode was set are retained. The on-chip peripheral functions that operate with the subclock oscillator, Ring-OSC clock, or an external clock continue operating.

Table 23-7 shows the operation status in the STOP mode.

Because the STOP mode stops operation of the main clock oscillator, it reduces the power consumption to a level lower than the IDLE mode. If the subclock oscillator, Ring-OSC clock, and external clock are not used, the power consumption can be minimized with only leakage current flowing.

Caution Insert five or more NOP instructions after the instruction that stores data in the PSC register to set the STOP mode.

23.5.2 Releasing STOP mode

The STOP mode is released by a non-maskable interrupt request signal (NMI pin input, INTWDT2 signal), unmasked external interrupt request signal (INTP0 to INTP7 pin input), unmasked internal interrupt request signal from the peripheral functions operable in the STOP mode, or reset (except WDTRES1 signal).

After the STOP mode has been released, the normal operation mode is restored after the oscillation stabilization time has been secured.

DataShe

DataSheet4U.com

(1) Releasing STOP mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

The STOP mode is released by a non-maskable interrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request. If the STOP mode is set in an interrupt servicing routine, however, an interrupt request that is issued later is serviced as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, only the STOP mode is released, and that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the STOP mode is released and that interrupt request signal is acknowledged.

Table 23-6. Operation After Releasing STOP Mode by Interrupt	ot Request Signal
--	-------------------

Release Source	Interrupt Enabled (EI) Status	Interrupt Disabled (DI) Status
Non-maskable interrupt request signal	Execution branches to the handler address	
Maskable interrupt request signal	Execution branches to the handler address or the next instruction is executed	The next instruction is executed

Caution The interrupt request signal that is disabled by setting the PSC.NMI2M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and STOP mode is not released.

(2) Releasing STOP mode by reset

The same operation as the normal reset operation is performed.

Se	etting of STOP Mode	When CPU Is Operating with Main Clock		
Item		When Subclock Is Not Used	When Subclock Is Used	
CPU		Stops operation		
ROM correction		Stops operation		
Main clock oscillator		Oscillation stops		
Subclock oscillator		-	Oscillation enabled	
Ring-OSC (fR)		Operable		
Interrupt controller		Stops operation		
16-bit timer (TMP0)		Stops operation		
16-bit timers (TM00 to TM03)		Stops operation	TM00, TM02, TM03: Stop operation TM01: Operable when INTWT is selected as count clock and fxT is selected as count clock of WT	
8-bit timers (TM50), TM51)	Operable when TI5m is selected as count clock	Operable when TI5m is selected as count clock or when INTTM010 is selected as count clock and TM01 is enabled in STOP mode	
Timer H (TMH0)		Stops operation		
Timer H (TMH1)		Stops operation	Operable when fxT is selected as count clock	
Watch timer		Stops operation DataSheet4U.com	Operable when f_{XT} is selected as count clock	
Watchdog timer 1		Stops operation		
Watchdog timer 2		Stops operation	Operable when f_{XT} is selected as count clock	
Serial interface	CSI00, CSI01	Operable when SCK0m input clock is selected as operation clock		
	CSIA0, CSIA1	Stops operation		
	I ² CO ^{Note 1}	Stops operation		
	UART0	Operable when ASCK0 is selected as count clock		
	UART1, UART2	Stops operation		
Key interrupt funct	tion	Operable		
A/D converter		Stops operation		
D/A converter		Stops operation (retains output) ^{Note 2}	ch0: Stops operation (retains output) ^{Note 2} ch1: (For conditions other than the following, refer to Note 2 .) Operable when real-time output mode is selected and f_{XT} is selected as count clock of TMH1	
		Operable when INTTM5m is selected as real-time output trigger and TM5m is enabled in STOP mode		

Table 23-7. Operation Status in STOP Mode (1/2)

Notes 1. Only in the μ PD703313Y, 70F3311Y, 70F3313Y

2. If the STOP mode is set immediately after D/A conversion has started (during conversion), the D/A converter continues operating until D/A conversion is complete, and retains the output at the end of D/A conversion.

Remark m = 0, 1

DataSheet4U.com

et4U.com

684

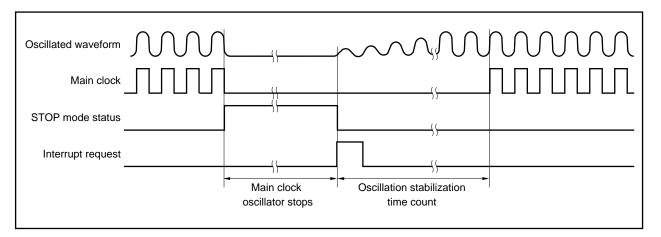
www.DataSheet4U.com

Table 23-7. Operation Status in STOP Mode (2/2)	Table 23-7.	Operation	Status	in STOP	Mode	(2/2)
---	-------------	-----------	--------	---------	------	-------

Setting of STOP Mode	When CPU Is Operating with Main Clock					
Item	When Subclock Is Not Used	When Subclock Is Used				
DMA	Stops operation					
Clock monitor (CLM)	Stops operation					
Power-on-clear (POC)	Operable					
Low-voltage detection (LVI)	Operable					
Regulator	Stops operation					
Port function	Retains status before STOP mode was set.					
External bus interface	Refer to 2.2 Pin Status.					
Internal data	The CPU registers, statuses, data, and all other internal data such as the contents of the internal RAM are retained as they were before the STOP mode was set.					

et4U.com

DataShee


DataSheet4U.com

23.5.3 Securing oscillation stabilization time when STOP mode is released

When the STOP mode is released, only the oscillation stabilization time set by the OSTS register elapses. If the STOP mode has been released by reset, however, the reset value of the OSTS register^{Note} elapses.

The operation performed when the STOP mode is released by an interrupt request signal is shown below.

Note The reset value of the OSTS register differs depending on the setting of the mask option/option byte. For details, refer to **CHAPTER 30 MASK OPTION/OPTION BYTE**.

et4U.com

Caution For details of the OSTS register, refer to 23.2 (3) Oscillation stabilization time selection register (OSTS). DataSheet4U.com

DataShe

23.6 Subclock Operation Mode

23.6.1 Setting and operation status

The subclock operation mode is set when the PCC.CK3 bit is set to 1 in the normal operation mode.

When the subclock operation mode is set, the internal system clock is changed from the main clock to the subclock. When the PCC.MCK bit is set to 1, the operation of the main clock oscillator is stopped. As a result, the system operates only with the subclock.

Table 23-8 shows the operation status in subclock operation mode.

In the subclock operation mode, the power consumption can be reduced to a level lower than in the normal operation mode because the subclock is used as the internal system clock. In addition, the power consumption can be further reduced to the level of the STOP mode by stopping the operation of the main clock oscillator.

- Cautions 1. When manipulating the CK3 bit, do not change the set values of the PCC.CK2 to PCC.CK0 bits (using a bit manipulation instruction to manipulate the bit is recommended). For details, refer to 6.3 (1) Processor clock control register (PCC).
 - 2. If the following conditions are not satisfied, change the CK2 to CK0 bits so that the conditions are satisfied and set the subclock operation mode.

Main clock (fxx) > Subclock (fxr: 32.768 kHz) × 4

23.6.2 Releasing subclock operation mode

The subclock operation mode is released when the CK3 bit is cleared to 0 or by reset. If the main clock is stopped (MCK bit = 1), set the MCK bit to 1, secure the oscillation stabilization time of the main clock by software, and clear the CK3 bit to 0.

DataShe

The normal operation mode is restored when the subclock operation mode is released.

Caution When manipulating the CK3 bit, do not change the set values of the CK2 to CK0 bits (using a bit manipulation instruction to manipulate the bit is recommended). For details, refer to 6.3 (1) Processor clock control register (PCC).

www.DataSheet4U.com

	Setting of Subclock	Operat	tion Status		
	Operation Mode	When Main Clock Is Oscillating	When Main Clock Is Stopped		
Item					
CPU		Operable			
ROM correction		Operable			
Subclock oscillator	ſ	Oscillation enabled			
Ring-OSC (f _R)		Operable			
Interrupt controller		Operable			
16-bit timer (TMPC))	Operable	Stops operation		
16-bit timers (TM0	0 to TM03)	Operable	TM00, TM02, TM03: Stop operation TM01: Operable when INTWT is selected as count clock and f_{XT} is selected as count clock of WT		
8-bit timers (TM50	, TM51)	Operable	 Operable when TI5m is selected as count clock Operable when INTTM010 is selected as count clock and when TM01 is enabled in subclock operation mode 		
Timer H (TMH0)		Operable	Stops operation		
Гimer H (ТМН1)		Operable	Operable when fxT is selected as count clock		
Watch timer		Operable Operable when fxT is selected as			
Watchdog timer 1		Operable Stops operation			
Watchdog timer 2		Operable DataSheet4U.com	Operable when fxT is selected as count clock		
Serial interface	CSI00, CSI01	Operable	Operable when SCK0m input clock is selected as operation clock		
	CSIA0, CSIA1	Operable	Stops operation		
	I ² C0 ^{Note}	Operable	Stops operation		
	UART0	Operable	Operable when ASCK0 is selected as count clock		
	UART1, UART2	Operable	Stops operation		
Key interrupt funct	ion	Operable			
A/D converter		Operable	Stops operation		
D/A converter		Operable	 ch0: Operable when normal mode is selected ch1: Operable under the following conditions When normal mode is selected When real-time output mode is selected and fxT is selected as count clock of TMH1 		
Real-time output		Operable	Operable when INTTM5m is selected as real-time output trigger and TM5m is enabled in subclock operation mode		

Table 23-8. Operation Status in Subclock Operation Mode (1/2)

Note Only in the μ PD703313Y, 70F3311Y, 70F3313Y

Remark m = 0, 1

DataSheet4U.com

et4U.com

688

DataShe

www.DataSheet4U.com

Setting of Subclock	Operatio	on Status		
Operation Mode	When Main Clock Is Oscillating	When Main Clock Is Stopped		
Item				
DMA	Operable			
Clock monitor (CLM)	Operable	Stops operation		
Power-on-clear (POC)	Operable			
Low-voltage detection (LVI)	Operable			
Regulator	Continues operation			
Port function	Settable			
External bus interface	Operable			
Internal data	Settable			

Table 23-8. Operation Status in Subclock Operation Mode (2/2)

et4U.com

DataShee

DataSheet4U.com

23.7 Sub-IDLE Mode

23.7.1 Setting and operation status

The sub-IDLE mode is set when the PSMR.PSM bit is cleared to 0 and the PSC.STP bit is set to 1 in the subclock operation mode.

In this mode, the clock oscillator continues operation but clock supply to the CPU and the other on-chip peripheral functions is stopped.

As a result, program execution is stopped and the contents of the internal RAM before the sub-IDLE mode was set are retained. The CPU and the other on-chip peripheral functions are stopped. However, the on-chip peripheral functions that can operate with the subclock, Ring-OSC clock, or an external clock continue operating.

Table 23-10 shows the operation status in the sub-IDLE mode.

Because the sub-IDLE mode stops operation of the CPU and other on-chip peripheral functions, it can reduce the power consumption more than the subclock operation mode. If the sub-IDLE mode is set after the main clock has been stopped, the power consumption can be reduced to a level as low as that in the STOP mode.

23.7.2 Releasing sub-IDLE mode

The sub-IDLE mode is released by a non-maskable interrupt request signal (NMI pin input, INTWDT2 signal), unmasked external interrupt request signal (INTP0 to INTP7 pin input), unmasked internal interrupt request signal from the peripheral functions operable in the sub-IDLE mode, or reset (except WDTRES1 signal).

When the sub-IDLE mode is released by an interrupt request signal, the subclock operation mode is set. If it is released by reset, the normal operation mode is restored.

(1) Releasing sub-IDLE mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

The sub-IDLE mode is released by a non-maskable tinterrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request. If the sub-IDLE mode is set in an interrupt servicing routine, however, an interrupt request signal that is issued later is serviced as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, only the sub-IDLE mode is released, and that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the sub-IDLE mode is released and that interrupt request signal is acknowledged.

Release Source	Interrupt Enabled (EI) Status	Interrupt Disabled (DI) Status			
Non-maskable interrupt request signal	Execution branches to the handler address				
Maskable interrupt request signal	Execution branches to the handler address or the next instruction is executed	The next instruction is executed			

Table 23-9. Operation After Releasing Sub-IDLE Mode by Interrupt Request Signal

Caution The interrupt request signal that is disabled by setting the PSC.NMI2M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and sub-IDLE mode is not released.

(2) Releasing sub-IDLE mode by reset

The same operation as the normal reset operation is performed.

	Setting of Sub-IDLE	Operatic	on Status				
	Mode	When Main Clock Is Oscillating	When Main Clock Is Stopped				
Item							
CPU		Stops operation					
ROM correction		Stops operation					
Subclock oscillator	r	Oscillation enabled					
Ring-OSC (f _R)		Operable					
Interrupt controller		Stops operation					
16-bit timer (TMPC))	Stops operation					
16-bit timers (TM0	0 to TM03)	TM00, TM02, TM03: Stop operation TM01: Operable when INTWT is selected as count clock	TM00, TM02, TM03: Stop operation TM01: Operable when INTWT is selected as count clock and f_{XT} is selected as count clock of WT				
8-bit timers (TM50	, TM51)	 Operable when TI5m is selected as count clock Operable when INTTM010 is selected as count clock and INTWT is selected as count clock of TM01 Operable when INTTM010 is selected as count clock and when TM01 is enable in sub-IDLE mode 					
Timer H (TMH0)		Stops operation					
Timer H (TMH1)		Operable when f_{XT} is selected as count clock	rable when fxT is selected as count clock				
Watch timer		Stops operation Operable when fxT is selected as count					
Watchdog timer 1		Operable	Stops operation				
Watchdog timer 2		Operable when fxr is selected as count clock					
Serial interface	CSI00, CSI01	Stops operation	Operable when SCK0m input clock is selected as operation clock				
	CSIA0, CSIA1	Stops operation					
	I ² C0 ^{Note 1}	Stops operation					
	UART0	Operable when ASCK0 is selected as count clock					
	UART1, UART2	Stops operation					
Key interrupt funct	ion	Operable					
A/D converter		Stops operation					
D/A converter		ch0: Stops operation (retains output) ^{Note 2} ch1: (For other than the following conditions, Operable when real-time output mode is sele TMH1	,				
Real-time output		Operable when INTTM5m is selected as real sub-IDLE mode	-time output trigger and TM5m is enabled in				

Table 23-10. Operation Status in Sub-IDLE Mode (1/2)

Notes 1. Only in the μ PD703313Y, 70F3311Y, 70F3313Y

2. If the sub-IDLE mode is set immediately after D/A conversion has started (during conversion), the D/A converter continues operating until D/A conversion is complete and retains the output at the end of D/A conversion.

Remark m = 0, 1

et4U.com

DataShe

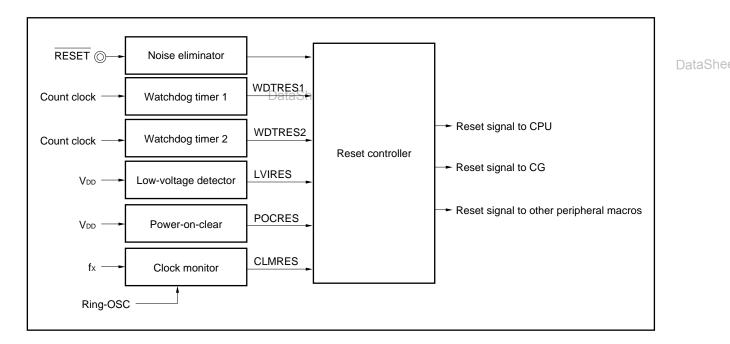
Table 23-10. Operation Status in Sub-IDLE Mode (2/2)

Setting of Sub-IDLE	Operation Status					
Item	When Main Clock Is Oscillating	When Main Clock Is Stopped				
DMA	Stops operation					
Clock monitor (CLM)	Operable	Stops operation				
Power-on-clear (POC)	Operable					
Low-voltage detection (LVI)	Operable					
Regulator	Stops operation					
Port function	Retains status before sub-IDLE mode was set.					
External bus interface	Refer to 2.2 Pin Status.					
Internal data	The CPU registers, statuses, data, and all other internal data such as the contents of the internal RAM are retained as they were before the sub-IDLE mode was set.					

et4U.com

DataShe

DataSheet4U.com


CHAPTER 24 RESET FUNCTION

24.1 Overview

The following reset functions are available.

- Reset by RESET pin input
- Reset by watchdog timer 1 overflow (WDTRES1)
- Reset by watchdog timer 2 overflow (WDTRES2)
- System reset by low-voltage detector (LVI) (LVIRES)
- System reset by clock monitor (CLM) (CLMRES)
- System reset by power-on-clear (POC) (POCRES)
- Analog/digital + analog noise eliminator of RESET pin selectable
- Reset output function (P00/TOH0 pin)

24.2 Configuration

Figure 24-1. Reset Block Diagram

24.3 Register to Check Reset Source

(1) Reset source flag register (RESF)

The RESF register is a special register that can be written only by a combination of specific sequences (refer to **3.4.7 Special registers**).

The RESF register indicates the source from which a reset signal is generated.

This register can be read or written in 8-bit or 1-bit units (however, only "0" can be written to this register). $\overline{\text{RESET}}$ pin input or reset by the POC circuit (POCRES) clears this register to 00H. The default value differs if reset is effected from a source other than the $\overline{\text{RESET}}$ pin.

	7	6	5	4	3	2	1	0	
RESF	WDT1RF	0	0 0 WDT2RF 0 0 CLMRF LVIRF						
	WDT1RF		Reset signal from watchdog timer 1 (WDTRES1)						
	0	Not gene							
	1	Generate	enerated						
	WDT2RF		Reset	signal from wa	atchdog ti	mer 2 (W	DTRES2)		
	0	Not gene	erated						
	1	Generate	ed						
	CLMRF		Res	et signal from	elock mo	nitor (CLN	MRES)		
	0	Not gene	Not generated						
	1	Generate	ed						
	LVIRF		Depet signal from low values data star (1) (DEC)						
	0	Not gene	Reset signal from low-voltage detector (LVIRES)						
	1	Generate							
		Generale	Ju						
	et is execut (CLM), the	ed by the	e WDTF	RES1 signal,	WDTR	ES2 sigr	nal, low-vol	C circuit. tage detector (I F, and LVIRF b	

et4U.

24.4 Reset Sources

The following six reset sources are available.

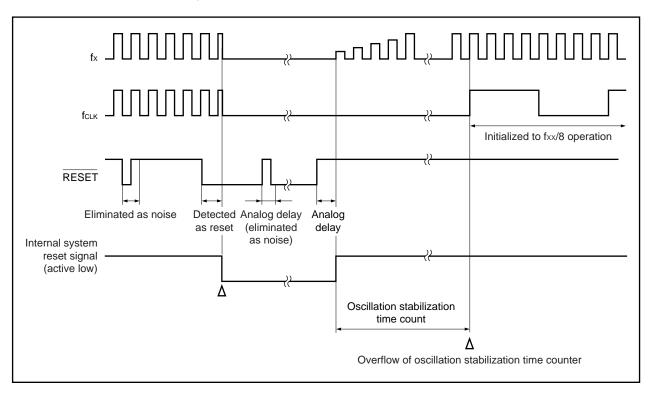
- Reset by RESET pin input
- Reset by watchdog timer 1 overflow (WDTRES1)
- Reset by watchdog timer 2 overflow (WDTRES2)
- System reset by low-voltage detector (LVI) (LVIRES)
- System reset by clock monitor (CLM) (CLMRES)
- System reset by power-on-clear (POC) (POCRES)

24.4.1 Reset operation via RESET pin

When a low level is input to the RESET pin, the system is reset, and each hardware unit is initialized.

The $\overline{\text{RESET}}$ pin has a noise eliminator that can eliminate analog noise or digital + analog noise, depending on the setting of the RNZC register.

While a low level is being input to the RESET pin, the main clock oscillator stops. Therefore, the overall power consumption of the system can be reduced.


When the level of the RESET pin is changed from low to high, the reset status is released.

If the reset status is released by RESET pin input, the oscillation stabilization time elapses and then the CPU starts program execution (for the oscillation stabilization time, refer to 23.2 (3) Oscillation stabilization time selection register (OSTS) and CHAPTER 30 MASK OPTION/OPTION BYTE).

Table 24-1. Hardware Status on RESET Pin Input

DataShe

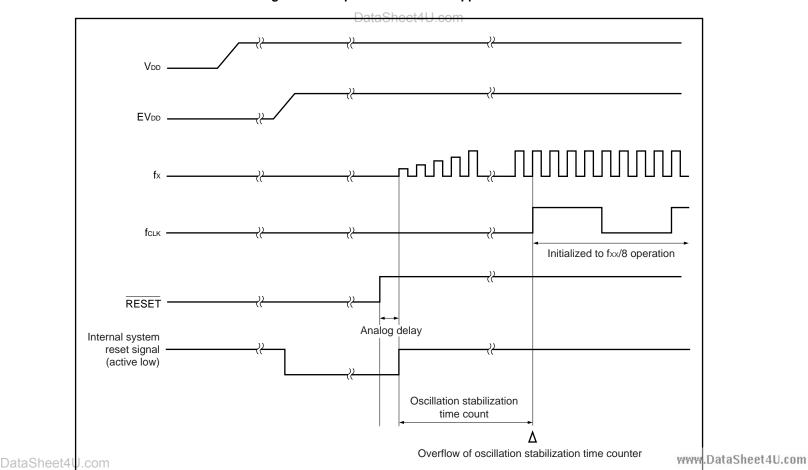

Item	DataSheet4U.com During Reset	After Reset	
Main clock oscillator (fx)	Oscillation stops	Oscillation starts	
Subclock oscillator (fxt)	Oscillation continues		
Ring-OSC (f _R)	Oscillation stops	Oscillation starts	
Peripheral clock (fxx to fxx/1024)	Operation stops	Operation starts after securing oscillation stabilization time	
Internal system clock (fcLK)	Operation stops	Operation starts after securing oscillation stabilization time (initialized to fxx/8)	
CPU clock (fcpu)	Operation stops Operation starts after securing os stabilization time (initialized to fxx		
Watchdog timer 1 clock (fxw)	Operation stops	Operation starts	
CPU	Initialized	Program execution starts after securing oscillation stabilization time	
Internal RAM	Undefined if power-on reset or writing c conflict (data is damaged). Otherwise value immediately before res	data to RAM (by CPU or DMA) and reset input set input is retained.	
I/O lines (P00)	Low-level output		
I/O lines (ports other than P00)	High impedance		
On-chip peripheral I/O registers	Initialized to specified status		
Watchdog timer 2	Operation stops	Operation starts (f _R)	
Other on-chip peripheral functions	Operation stops	Operation can be started after securing oscillation stabilization time	

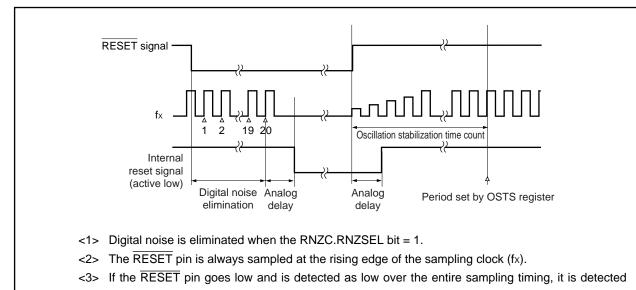
Figure 24-2. Hardware Status on RESET Pin Input

et4U.com

Figure 24-3. Operation on Power Application

DataShe

(1) Elimination of digital noise on RESET pin


For the \overrightarrow{RESET} pin of the V850ES/KG1+, an analog/digital + analog noise eliminator can be selected. The digital noise eliminator is selected when the RNZC.RNZSEL bit = 1. The digital noise is sampled using the main clock (fx), and the number of samplings can be selected from 10 or 20 by the RNZC.SMPSEL bit.

(a) Reset noise elimination control register (RNZC)

The RNZC register can be read or written in 8-bit units. After reset, RNZC is cleared to 00H.

RNZC		6	5	4	3	2		
	0	0	0	0	0	0	SMPSEL	RNZSEL [№]
	SMPSEL		Select	on of num	ber of san	plings		
	0	20 times	;					
	1	10 times	;					
	RNZSEL ^{Note}		Selection o	f noise elii	minator of	RESET p	in	
	0	Analog r	noise elimin	ation only				
	1	Digital +	analog nois	e eliminat	ion			

et4U.com

Figure 24-4. Sampling Operation Timing (20 Times)

- <3> If the RESET pin goes low and is detected as low over the entire sampling timing, it is detected as an internal reset signal. Because the analog noise eliminator is activated after digital noise has been eliminated, the internal reset signal is detected after analog delay.
- <4> When the internal reset signal is detected, the RNZC register is initialized, so only the analog noise eliminator can be selected.

(b) Operation when sampling clock is stopped

If the sampling clock (fx) stops when the digital + analog noise eliminator is selected, input to the RESET signal is not received. Therefore, only the analog noise eliminator is automatically selected. Only the analog noise eliminator is automatically selected during the following periods.

• In STOP mode:

Setting of STOP mode \rightarrow Period to time set by the OSTS register that elapses after the STOP mode is released (by a source other than reset)

In subclock operation mode:
 Setting of subclock operation mode (PCC.CLS bit = 0 → 1) → Period until the main clock operation mode (CLS bit = 1 → 0) is restored

(c) Digital noise elimination width

The digital noise elimination width (twRSL) is as follows where T is the sampling clock period and N is the number of samplings.

Digita	al Noise Elimination Width	Operation	
	T = 10 MHz, N = 20	T = 5 MHz, N = 10	
$t_{WRSL} < (N-1)T$	twrsl < 1.9 μs	twrsL < 1.8 μs	Eliminated as noise
$(N-1)T < t_{WRSL} < NT$	1.9 μ s \leq twrsl $<$ 2.0 μ s	1.8 μ s \leq twrsl $<$ 2.0 μ s	May be eliminated as noise or detected as reset
NT ≤ twrsL	2.0 μ s \leq twrsl	2.0 μ s \leq twrsl	Detected as reset

Table 24-2. Digital Noise Elimination Width of RESET Pin

 Remark
 The noise on the RESET pin is eliminated by a value that takes the value shown in this table and the

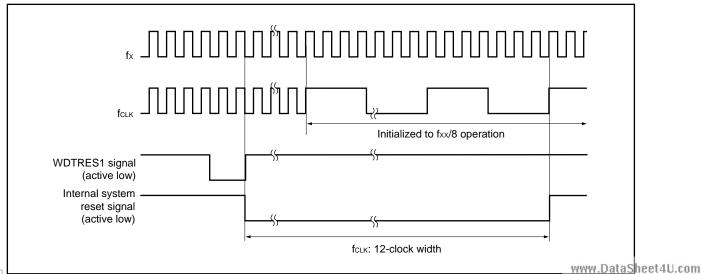
 DataSheet4U.com
 analog delay value into consideration.

DataShe

24.4.2 Reset operation by WDTRES1 signal

If a reset operation mode in which reset is effected when watchdog timer 1 overflows is set, the system is reset when watchdog timer 1 overflows (when the WDTRES1 signal is generated), and each hardware unit is initialized to a specific status.

After watchdog timer 1 has overflowed, the system is reset for a specific duration of time (fcLK: 12 clocks) and then automatically released from the reset status. After release of the reset status, the CPU starts program execution.


Note that, because the main clock oscillator continues operating even during the reset period, the oscillation stabilization time is not secured.

The following table shows the status of each hardware unit during the period of reset that is effected by the WDTRES1 signal and after release of the reset status.

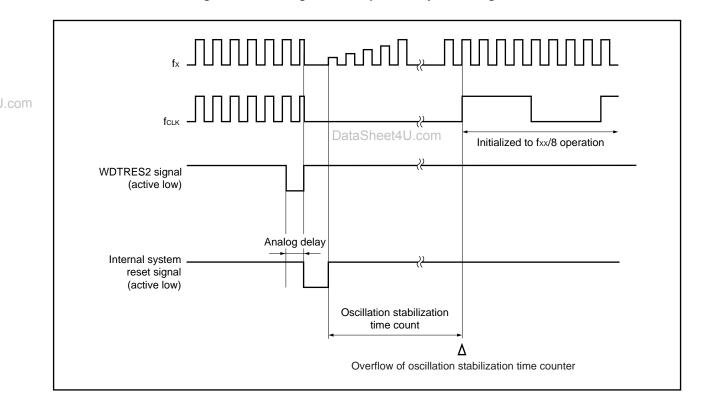
Item	During Reset	After Reset				
Main clock oscillator (fx)	Oscillation continues					
Subclock oscillator (fxT)	Oscillation continues					
Ring-OSC (fR)	Oscillation continues					
Peripheral clock (fxx to fxx/1024)	Operation stops Operation starts					
Internal system clock (fcLK)	Oscillation continues (initialized to fxx/8)					
CPU clock (fcpu)	Oscillation continues (initialized to fxx/8)					
Watchdog timer 1 clock (fxw)	Operation continues					
Internal RAM	Undefined if writing data to RAM (by CPU or DMA) and reset input conflict (data is damaged). Otherwise value immediately before reset input is retained.					
I/O lines (P00)	Low-level output					
I/O lines (ports other than P00)	High impedance					
On-chip peripheral I/O registers	Initialized to specified status					
Watchdog timer 2	Operation stops	Operation starts (fR)				
Other on-chip peripheral functions	Operation stops	Operation can be started				

Table 24-3. Hardware Status on Occurrence of WDTRES1 Signal

Figure 24-5. Timing of Reset Operation by Watchdog Timer 1

24.4.3 Reset operation by WDTRES2 signal

If a reset operation mode in which reset is effected when watchdog timer 2 overflows is set, the system is reset when watchdog timer 2 overflows (when the WDTRES2 signal is generated), and each hardware unit is initialized to a specific status.


After watchdog timer 2 has overflowed, the system is reset for a specific duration of time (equivalent to analog delay) and then automatically released from the reset status. After release of the reset status, the oscillation stabilization time of the main clock oscillator is secured, and then the CPU starts program execution.

Note that, because the main clock oscillator stops during the reset period, the oscillation stabilization time must be secured. The oscillation stabilization time is determined by the default value of the OSTS register (for the oscillation stabilization time, refer to 23.2 (3) Oscillation stabilization time selection register (OSTS) and CHAPTER 30 MASK OPTION/OPTION BYTE).

The status of each hardware unit during the period of reset effected by the WDTRES2 signal and after release of the reset status is the same as when reset is effected by the $\overline{\text{RESET}}$ pin input.

For details, refer to Table 24-1 Hardware Status on RESET Pin Input.

The following figure shows the timing of the reset operation by the WDTRES2 signal.

Figure 24-6. Timing of Reset Operation by Watchdog Timer 2

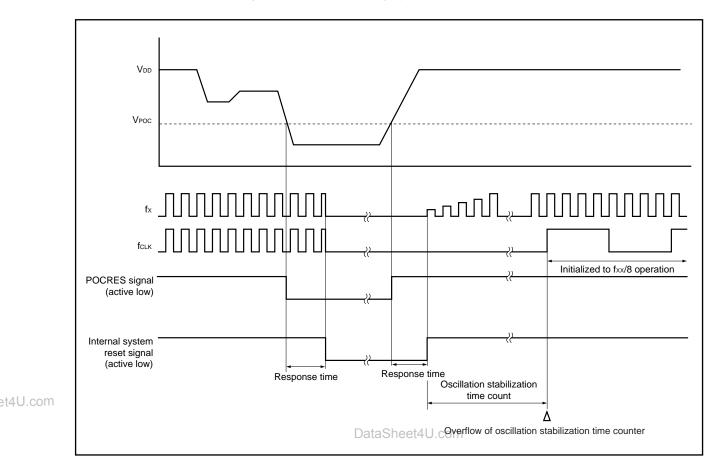
www.DataSheet4U.com

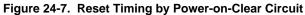
24.4.4 Power-on-clear reset operation

The supply voltage (V_{DD}) and detection voltage (V_{POC}) are compared. When $V_{DD} < V_{POC}$, the system is reset and each hardware unit is initialized to a specific status.

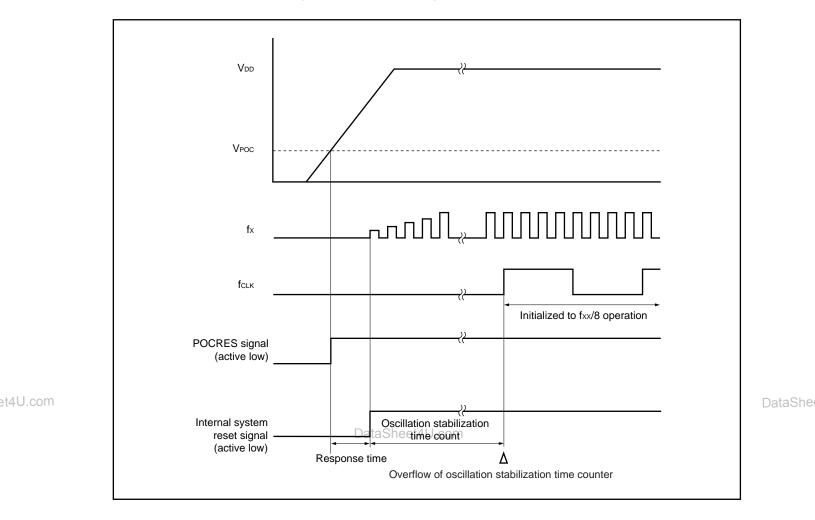
The detection voltage (VPOC) is 2.6 V ±0.1 V.

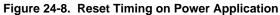
While $V_{DD} < V_{POC}$, the system is reset. Reset is released when $V_{DD} \ge V_{POC}$. After release of the reset status, the oscillation stabilization time of the main clock oscillator is secured, and then the CPU starts program execution.


Note that, because the main clock oscillator stops during the reset period, the oscillation stabilization time must be secured. The oscillation stabilization time is determined by the default value of the OSTS register (for the oscillation stabilization time, refer to 23.2 (3) Oscillation stabilization time selection register (OSTS) and CHAPTER 30 MASK OPTION/OPTION BYTE).


The following table shows the status of each hardware unit during the period of reset effected by the POCRES signal and after release of reset.

Item	During Reset	After Reset
Main clock oscillator (fx)	Oscillation stops	Oscillation starts
Subclock oscillator (fxt)	Oscillation continues	
Ring-OSC (f _R)	Oscillation stops	Oscillation starts
Peripheral clock (fxx to fxx/1024)	Operation stops	Operation starts after securing oscillation stabilization time
Internal system clock (fclk)	Operation stops	Operation starts after securing oscillation stabilization time (initialized to fxx/8)
CPU clock (fcpu)	Operation stops:et4U.com	Operation starts after securing oscillation stabilization time (initialized to fxx/8)
Watchdog timer 1 clock (fxw)	Operation stops	Operation starts
CPU	Initialized	Program execution starts after securing oscillation stabilization time
Internal RAM	Undefined if power-on reset or writing data conflict (data is damaged). Otherwise value immediately before reset i	() /
I/O lines (P00)	Low-level output	
I/O lines (ports other than P00)	High impedance	
On-chip peripheral I/O registers	Initialized to specified status	
Watchdog timer 2	Operation stops	Operation starts (f _R)
Other on-chip peripheral functions	Operation stops	Operation can be started after securing oscillation stabilization time


Table 24-4. Hardware Status During Reset Operation by Power-on-Clear


DataShe

DataShe

24.4.5 Reset operation by low-voltage detector

If a mode in which the internal reset signal (LVIRES) is to be generated by the low-voltage detector is set, the supply voltage (V_{DD}) and detection voltage (V_{LVI}) are compared. When $V_{DD} < V_{LVI}$, the system is reset and each hardware unit is initialized to a specific status.

While $V_{DD} < V_{LVI}$, the system is reset. Reset is released when $V_{DD} \ge V_{LVI}$. After release of the reset status, the oscillation stabilization time of the main clock oscillator is secured, and then the CPU starts program execution.

Note that, because the main clock oscillator stops during the reset period, the oscillation stabilization time must be secured. The oscillation stabilization time is determined by the default value of the OSTS register (for the oscillation stabilization time, refer to 23.2 (3) Oscillation stabilization time selection register (OSTS) and CHAPTER 30 MASK OPTION/OPTION BYTE).

The status of each hardware unit during the period of reset effected by the LVIRES signal and after release of reset is the same as when reset is effected by the POCRES signal.

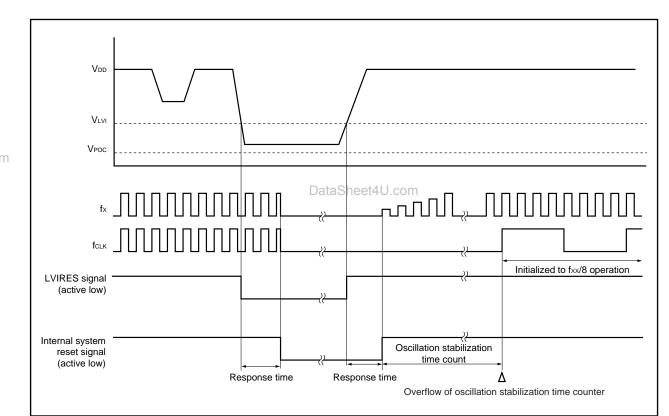


Figure 24-9. Reset Timing by Low-Voltage Detector

24.4.6 Reset operation by clock monitor

If the main clock is monitored using the sampling clock (Ring-OSC: fR) and if it is detected that the main clock has stopped when the clock monitor operation is enabled, the system is reset and each hardware unit is initialized to a specific status.

After it is detected that the main clock stops, the system is reset for the duration of a specific time (equivalent to analog delay), and then the reset status is automatically released. After release of the reset status, the timer for oscillation stabilization does not perform its counting operation because the main clock is stopped. If watchdog timer 2, which starts by default, overflows, the CPU starts program execution with Ring-OSC (fr.).

The status of each hardware unit during the period of reset effected by the CLMRES signal and after release of the reset status is shown below.

For the timing of reset by the clock monitor, refer to Figure 25-4.

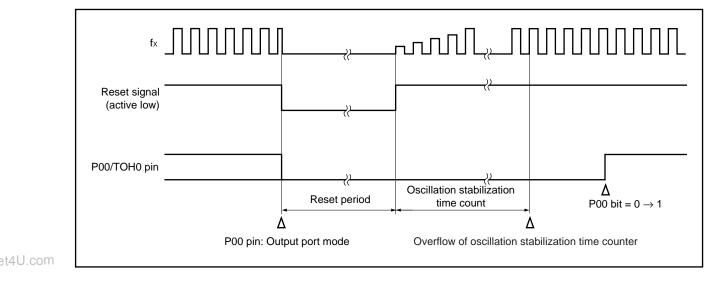

Item	During Reset	After Reset
Main clock oscillator (fx)	Oscillation stops	Oscillation remains stopped
Subclock oscillator (fxt)	Oscillation continues	
Ring-OSC (f _R)	Oscillation stops	Oscillation starts
Peripheral clock (fxx to fxx/1024)	Operation stops	Operation remains stopped because fx is stopped
Internal system clock (fcLk)	Operation stops	Operation starts (fR) after overflow of watchdog timer 2
CPU clock (fcpu)	Operation stops DataSheet4U.com	Operation starts (fR) after overflow of watchdog timer 2
Watchdog timer 1 clock (fxw)	Operation stops	Operation remains stopped because fx is stopped
CPU	Initialized	Program execution starts after overflow of watchdog timer 2
Internal RAM	Undefined if writing data to RAM (by Cl damaged). Otherwise value immediately before rea	PU or DMA) and reset input conflict (data is set input is retained.
I/O lines (P00)	Low-level output	
I/O lines (ports other than P00)	High impedance	
On-chip peripheral I/O registers	Initialized to specified status	
Watchdog timer 2	Operation stops	Operation starts (fR only). However, WDTRES2 is not generated if watchdog timer 2 overflows before CPU execution.
Other on-chip peripheral functions	Operation stops	Operation cannot be started because fx is stopped. However, the peripheral functions that operate on fx_T , f_R , or external clock can operate (for details, refer to Table 25-2).

Table 24-5. Hardware Status During Reset Operation by Clock Monitor

24.5 Reset Output Function

The P00/TOH0 pin of the V850ES/KG1+ can be used as a dummy reset output pin.

The P00 pin is set in the output port mode (PM0.PM00 bit = 0) and outputs a low level (P0.P00 bit = 0) when the reset signal is generated. To release the reset output (low-level output \rightarrow high-level output), set the P00 bit to 1 by software.

DataSheet4U.com

CHAPTER 25 CLOCK MONITOR

25.1 Function

The clock monitor samples the main clock by using the on-chip Ring-OSC clock and generates a reset signal (CLMRES) when oscillation of the main clock is stopped.

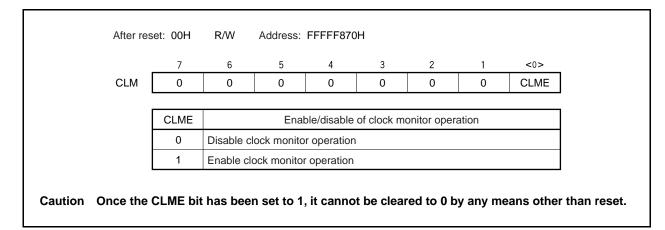
After reset is released, the CPU operates on Ring-OSC.

Once the operation of the clock monitor has been enabled by the CLM.CLME bit, it can be stopped only by reset. The clock monitor automatically stops under the following conditions.

- When the oscillation stabilization time is counted after the STOP mode has been released
- When the main clock is stopped (PCC.MCK bit = 1 when subclock operates and PCC.CLS bit = 0 when main clock operates)
- When the sampling clock (Ring-OSC) is stopped
- When the CPU operates on Ring-OSC

25.2 Registers

(1) Clock monitor mode register (CLM)


The CLM register is a special register that can be written only by a combination of specific sequences (refer to **3.4.7 Special registers**).

The CLM register is used to select the operation mode of the clock monitor.

DataShe

This register can be read or written in 8-bit or 1-bit units.

After reset, CLM is cleared to 00H. DataSheet4U.com

(2) Ring-OSC mode register (RCM)

The RCM register is an 8-bit register that sets the operation mode of Ring-OSC. This register can be read or written in 8-bit or 1-bit units.

After reset, RCM is cleared to 00H.

	7	6	5	4	3	2	1	<0>	
RCM	0	0	0	0	0	0	0	RSTOP	
	RSTOP			Oscillatio	on/stop of F	Ring-OSC			
	0	Ring-OSC	coscillating						
	1	Ring-OSC	stopped						
aution The settin	ig of the	RCM reg	ister is va	alid when	stopping r details	-	ion of Ri	ng-OSC b	y software

et4U.com

DataShe

25.3 Operation

The clock monitor start and stop conditions are as follows.

<Monitor start condition>

Set the CLM.CLME bit to 1

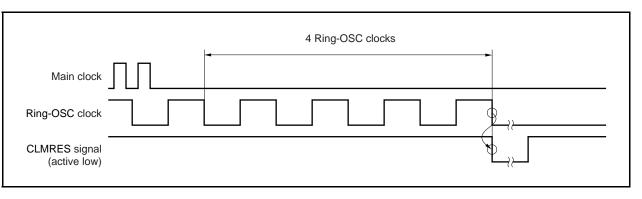
<Monitor stop conditions>

- When the oscillation stabilization time is counted after the STOP mode has been released
- When the main clock is stopped (PCC.MCK bit = 1 when subclock operates and PCC.CLS bit = 0 when main clock operates)
- When the sampling clock (Ring-OSC) is stopped
- When the CPU operates on Ring-OSC

Operation Moc	le	Status of Main Clock	Status of Ring-OSC Clock	Status of Clock Monitor
Normal operation mode		Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
HALT mode		Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
IDLE mode		Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
STOP mode		Stops	Oscillates ^{Note 1}	Stops
Subclock operation mode	MCK bit = 0	Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
Sub-IDLE mode		Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
Subclock operation mode	MCK bit = 1	StopsDataSheet4U.com	Oscillates ^{Note 1}	Stops
Sub-IDLE mode		Stops	Oscillates ^{Note 1}	Stops
Ring clock operation mode		Stops	Oscillates ^{Note 1}	Stops
During reset		Stops	Stops	Stops

DataShe

Notes 1. Ring-OSC can be stopped by setting the RCM.RSTOP bit to 1.


(Valid only when specified by mask option/option byte. For details, refer to CHAPTER 30 MASK OPTION/OPTION BYTE).

2. The clock monitor is stopped while Ring-OSC is stopped.

DataSheet4U.com

(a) Operation when main clock oscillation is stopped

If oscillation of the main clock is stopped when the CLME bit = 1, the CLMRES signal is generated as shown in Figure 25-1.

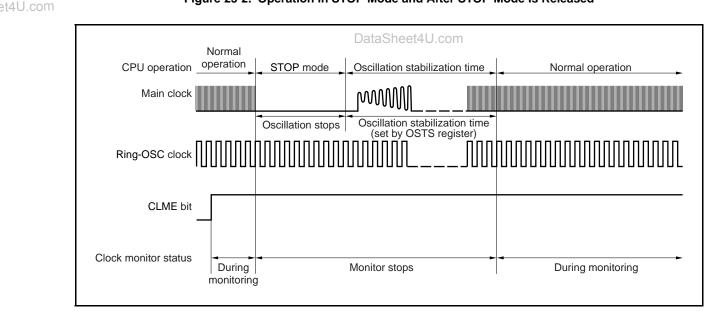
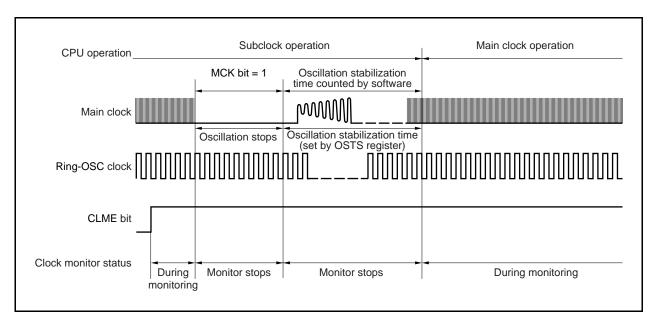


Figure 25-1. When Oscillation of Main Clock Is Stopped

(b) Operation in STOP mode and after STOP mode is released

If the STOP mode is set when the CLME bit = 1, the monitor operation is stopped in the STOP mode and while the oscillation stabilization time is being counted. The monitor operation is automatically started after the oscillation stabilization time has elapsed.


Figure 25-2. Operation in STOP Mode and After STOP Mode Is Released

www.DataSheet4U.com

(c) Operation when main clock is stopped (arbitrary)

If the main clock is stopped by setting the PCC.MCK bit to 1 while the subclock is operating (PCC.CLS bit = 1), the monitor operation is stopped until the main clock operates (CLS bit = 0). The monitor operation is automatically started when the main clock starts operating.

et4U.com

(d) Operation when CPU operates on Ring-OSC clock (CCLS.CCLSF bit = 1)

The monitor operation is not started even if the CLME bit is set to 1 when the CCLSF bit is 1.

25.4 Ring Clock Operation Mode

25.4.1 Setting and operation status

The ring clock operation mode is set by the clock monitor function when the main clock oscillation frequency (fx) is abnormal (stopped).

In the ring clock operation mode, Ring-OSC (fR) is supplied as the internal system clock (fcLK) and CPU clock (fcPu).

Because the operating clock is Ring-OSC (fR), it is recommended to reset the system once to set it in the normal operation mode.

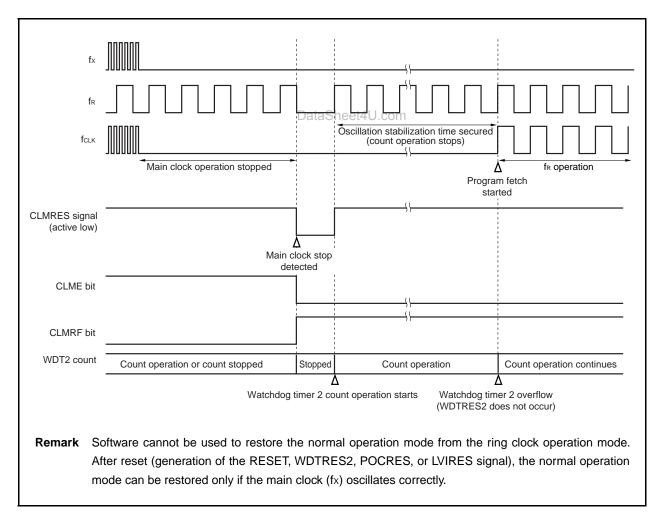

Because the main clock oscillator (fx) is stopped, only the internal peripheral functions that can operate on the subclock, ring clock, or external clock can continue operating.

Table 25-2 shows the operation status in the ring clock operation mode.

25.4.2 Releasing ring clock operation mode

The ring clock operation mode is replaced by the normal operation mode in which the main clock (fx) oscillates when the system is reset.

The ring clock operation mode cannot be released by software.

Figure 25-4. Reset Timing of Clock Monitor

	Setting of Ring Clock	Operatio	on Status
	Operation Mode	When Subclock Is Not Used	When Subclock Is Used
Item			
ROM correction		Operable	
Interrupt controller		Operable	
16-bit timer (TMPC))	Stops operation	
16-bit timers (TM0	0 to TM03)	Stops operation	TM00, TM02, TM03: Stop operation TM01: Operable when INTWT is selected as count clock and f_{xT} is selected as count clock of WT
8-bit timers (TM50	, TM51)	Operable when TI5m is selected as count clock	Operable when TI5m is selected as count clock or when INTTM010 is selected as count clock and TM01 is enabled in ring clock operation mode
Timer H (TMH0)		Stops operation	
Timer H (TMH1)		Operable when $f_R/2048$ is selected as count of	lock
Watch timer		Stops operation	Operable when $f_{\boldsymbol{X}\boldsymbol{T}}$ is selected as count clock
Watchdog timer 1		Stops operation	
Watchdog timer 2		Operable when $f_{\ensuremath{R}}$ is selected as count clock	Operable
Serial interface	CSI00, CSI01	Operable when SCK0m input clock is select	ed as operation clock
	CSIA0, CSIA1	Stops operation	
	I ² C0 ^{Note}	Stops operation	
	UART0	Operable when ASCK0 is selected as count	clock
	UART1, UART2	Stops operation	
Key interrupt funct	ion	Operable	
A/D converter		Stops operation	
D/A converter		Operable	
Real-time output		Operable when INTTM5m is selected as rea ring clock operation mode	I-time output trigger and TM5m is enabled in
DMA function		Operable	
Clock monitor		Stops operation	
Power-on-clear		Operable	
Low-voltage detec	tor	Operable	
Regulator		Operable	
Port function		Operable	
External bus interf	ace	Operable	

Table 25-2. Operation Status in Ring Clock Operation Mode

Note Only in the μ PD703313Y, 70F3311Y, 70F3313Y

Remark m = 0, 1

DataShe

25.5 Ring HALT Mode

25.5.1 Setting and operation status

The ring HALT mode is set when a dedicated instruction (HALT instruction) is executed in the ring clock operation mode.

In the ring HALT mode, the Ring-OSC oscillator continues operating. Only clock supply to the CPU is stopped; clock supply to the other on-chip peripheral functions continues.

As a result, program execution is stopped, and the internal RAM retains the contents before the ring HALT mode was set. The on-chip peripheral functions that are independent of instruction processing by the CPU continue operating. The main clock oscillator (fx) stops but the on-chip peripheral functions that can operate on the subclock (fxt), Ring-OSC clock (fR), or external clock continue operating.

Table 25-4 shows the operation status in the ring HALT mode.

Cautions 1. Insert five or more NOP instructions after the HALT instruction.

2. If the HALT instruction is executed with an unmasked interrupt request signal held pending, the system shifts to the ring HALT mode, but the ring HALT mode is immediately released by the pending interrupt request signal.

25.5.2 Releasing ring HALT mode

When the ring HALT mode is released by an interrupt request signal, the ring clock operation mode is set. When the ring HALT mode is released by reset, the normal operation mode is restored if the main clock (fx) oscillates correctly.

(1) Releasing ring HALT mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

The ring HALT mode is released by a non-maskable interrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request. If the ring HALT mode is set in an interrupt servicing routine, however, an interrupt request that is issued later is serviced as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, the ring HALT mode is released, but that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the ring HALT mode is released and that interrupt request signal is acknowledged.

Release Source	Interrupt Enabled (EI) Status	Interrupt Disabled (DI) Status
Non-maskable interrupt request signal	Execution branches to the handler address	
Maskable interrupt request signal	Execution branches to the handler address or the next instruction is executed	The next instruction is executed

Table 25-3 C	Operation After	Releasing	Ring HALT	Mode by Int	terrunt Rea	uest Signal
	peration Alter	Neleasing			ten upt neg	uest Signal

(2) Releasing ring HALT mode by reset

The same operation as the normal reset operation is performed.

	Setting of Ring	Operatio	on Status
	HALT Mode	When Subclock Is Not Used	When Subclock Is Used
Item			
CPU		Stops operation	
ROM correction		Stops operation	
Main clock oscillat	tor	Stops operation	
Subclock oscillato	r	_	Continues operation
Interrupt controlle	r	Operable	
16-bit timer (TMP))	Stops operation	
16-bit timers (TMC	00 to TM03)	Stops operation	TM00, TM02, TM03: Stop operation TM01: Operable when INTWT is selected as count clock and f_{XT} is selected as count clock of WT
8-bit timers (TM50), TM51)	Operable when TI5m is selected as count clock	Operable when TI5m is selected as count clock or when INTTM010 is selected as count clock and TM01 is enabled in ring HALT mode
Timer H (TMH0)		Stops operation	
Timer H (TMH1)		Operable when $f_R/2048$ is selected as count c	clock
Watch timer		Operable when main clock is selected as count clock	Operable
Watchdog timer 1		count clock DataSheet4U.com Stops operation	
Watchdog timer 2		Operable when main clock is selected as count clock	Operable when f_{XT} is selected as count clock
Serial interface	CSI00, CSI01	Operable when SCK0m input clock is select	ed as operation clock
	CSIA0, CSIA1	Stops operation	
	I ² C0 ^{Note}	Stops operation	
	UART0	Operable when ASCK0 is selected as count	clock
	UART1, UART2	Stops operation	
Key interrupt func	tion	Operable	
A/D converter		Stops operation	
D/A converter		Operable. However, DACSm register canno	t be updated because the CPU is stopped.
Real-time output		Operable when INTTM5m is selected as rea ring HALT mode	I-time output trigger and TM5m is enabled in
DMA function		Operable	
Clock monitor		Stops operation	
Power-on-clear		Operable	
Low-voltage detect	ctor	Operable	
Regulator		Continues operation	
Port function		Retains status before ring HALT mode was	set.
External bus inter	face	Refer to 2.2 Pin Status.	

Table 25-4. Operation Status in Ring HALT Mode

Note Only in the *µ*PD703313Y, 70F3311Y, 70F3313Y

Remark m = 0, 1

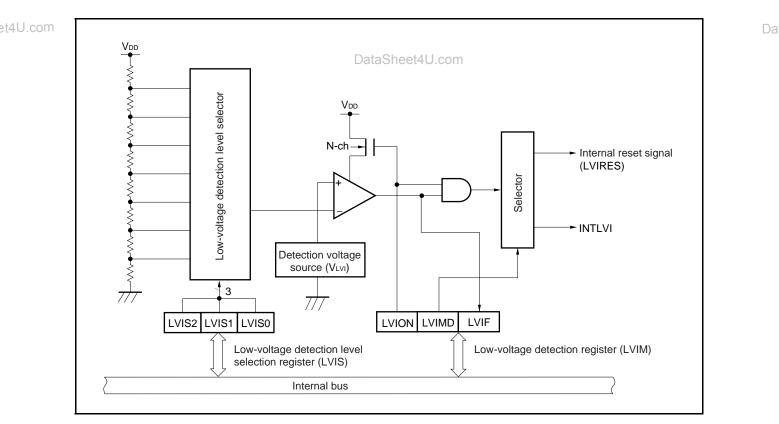
www.DataSheet4U.com

DataShe

DataSheet4U.com

CHAPTER 26 LOW-VOLTAGE DETECTOR

26.1 Function


The low-voltage detector (LVI) has the following functions.

- Compares the supply voltage (V_{DD}) and detection voltage (V_{LVI}), and generates an interrupt request signal (INTLVI) or reset signal (LVIRES) when V_{DD} < V_{LVI}.
- Detection levels (seven levels) of supply voltage can be changed by software.
- Interrupt or reset function can be selected by software.
- Operable in STOP mode.

When the low-voltage detector is used to reset, the RESF.LVIRF bit is set to 1 if the LVIRES signal is generated. For details of the RESF register, refer to 24.3 (1) Reset source flag register (RESF).

26.2 Configuration

A block diagram of the low-voltage detector is shown below.

Figure 26-1. Block Diagram of Low-Voltage Detector

26.3 Registers

The low-voltage detector is controlled by the following two registers.

- Low-voltage detection register (LVIM)
- Low-voltage detection level selection register (LVIS)

(1) Low-voltage detection register (LVIM)

The LVIM register is an 8-bit register that sets the operation mode of the low-voltage detector.

The LVIM register is a special register that can be written only by a combination of specific sequences (refer to **3.4.7 Special registers**).

This register can be read or written in 8-bit or 1-bit units. If the LVION and LVIMD bits = 11, however, the LVIM register cannot be rewritten until the reset signal (LVIRES) is generated.

The LVIM register is reset to 00H by a reset source other than the low-voltage detector. The LVIM register holds its value when reset is effected by the low-voltage detector.

		<7>	6	5	4	3	2	<1>	<0>	
	LVIM	LVION	0	0	0	0	0	LVIMD	LVIF ^{Note 2}	
		LVION	Er	nable/disat	ole low-volt	age detect	ion opera	tion		
		0	Disable of	operation		0.100				
		1	Enable o	peration	neet4U.c	om				
		LVIMD	Lo	w-voltage	detection c	peration m	ode selec	ction		
		0	Generate detection		request sig	ınal (INTL∖	'l) when s	upply voltag	je (V _{DD}) <	
		1	Generate detectior		eset signal	(LVIRES)	when sup	ply voltage	(Vdd) <	
		LVIF ^{Note 2}		Lo	ow-voltage	detection f	ag			
		0	Supply v disabled	oltage (Vot	o) > detecti	on voltage	(Vlvi), or	when opera	tion is	
		1	Supply v	oltage (Vot	b) < detecti	on voltage	(Vlvi)			
	The LVIM The LVIF	-		ue when	reset is e	ffected by	the low-	voltage de	tector.	
Caution	Be sure t	o clear bit	s 6 to 2 to	o 0.						
									en the LVION bit = ⁻	

DataSheet4U.com

(2) Low-voltage detection level selection register (LVIS)

The LVIS register is an 8-bit register that selects the low-voltage detection level.

The LVIS register can be read or written in 8-bit units. If the LVIM.LVION and LVIM.LVIMD bits = 11, however, the LVIS register cannot be rewritten until the reset signal (LVIRES) is generated.

The LVIS register is reset to 00H by a reset source other than the low-voltage detector. The LVIS register holds its value when reset is effected by the low-voltage detector.

	set: 00H ^{Not}	e R/W	Addres	ss: FFFFF	891H					
	7	6	5	4	3	2	1	0		
LVIS	0	0	0	0	0	LVIS2	LVIS1	LVIS0		
	LVIS2	LVIS1	LVIS0			Detection I	evel			
	0	0	0	4.3 V ±0	.2 V	/				
	0	0	1	1 4.1 ∨ ±0.2 ∨ 0 3.9 ∨ ±0.2 ∨						
	0	1	0							
	0	1	1	3.7 V ±0	3.7 V ±0.2 V					
	1	0	0	3.5 V ±0	.2 V					
	1 0 1 3.3 V ±0.15 V									
	1	1	0	3.1 V ±0	.15 V					
	Oth	ner than ab	ove	Setting prohibited						

et4U.com

Note The LVIS register holds its value when reset is effected by the low-voltage detector.

Caution Be sure to clear bits 7 to 3 to 0.

26.4 Operation

The low-voltage detector can be used in the following two modes.

- Reset operation (LVIRES): Compares the supply voltage (VDD) and detection voltage (VLVI), and generates a reset signal (LVIRES) when VDD < VLVI.
- Interrupt operation (INTLVI): Compares the supply voltage (V_{DD}) and detection voltage (V_{LVI}), and generates an interrupt request signal (INTLVI) when V_{DD} < V_{LVI}.

(1) Reset operation (LVIRES)

<When starting operation>

- <1> Mask the INTLVI interrupt (LVIMK bit = 1).
- <2> Set the detection voltage (VLVI) using the LVIS.LVIS2 to LVIS.LVIS0 bits.
- <3> Set the LVIM.LVION bit to 1 (enables low-voltage detector operation).
- <4> Use software to instigate a wait of at least 0.2 ms.
- <5> Confirm that the LVIM.LVIF bit is cleared to 0 (supply voltage (VDD) > detection voltage (VLVI)). When the LVIF bit is set to 1, use software to instigate a wait until the LVIF bit is cleared to 0.
- <6> Set the LVIM.LVIMD bit to 1 (generates internal reset signal (LVIRES) when supply voltage (VDD) < detection voltage (VLVI)).</p>

Caution <1> must always be executed. When the LVIMK bit = 0, an interrupt (INTLVI) may occur immediately after the processing in <3>.

DataShe

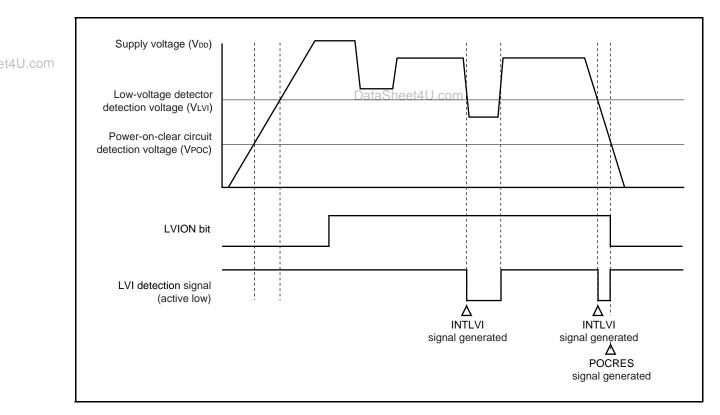
<When stopping operation>

DataSheet4U.com

The low-voltage detection operation cannot be stopped until a reset signal other than LVIRES is generated.

(2) Interrupt operation (INTLVI)

<When starting operation>


- <1> Mask the INTLVI interrupt (LVIMK bit = 1).
- <2> Set the detection voltage (VLVI) using the LVIS.LVIS2 to LVIS.LVIS0 bits.
- <3> Set the LVIM.LVION bit to 1 (enables low-voltage detector operation).
- <4> Use software to instigate a wait of at least 0.2 ms.
- <5> Confirm that the LVIM.LVIF bit is cleared to 0 (supply voltage (VDD) > detection voltage (VLVI)). When the LVIF bit is set to 1, use software to instigate a wait until the LVIF bit is cleared to 0.
- <6> Clear the INTLVI interrupt request flag (LVIIF bit) to 0.
- <7> Release the INTLVI interrupt mask status (LVIMK bit = 0).

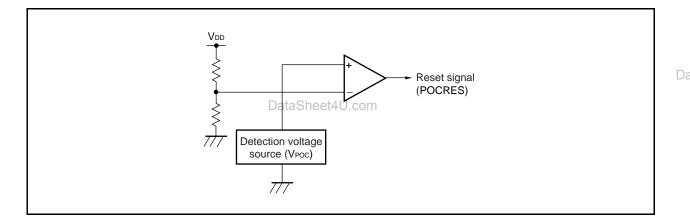
Caution <1> must always be executed. When the LVIMK bit = 0, an interrupt (INTLVI) may occur immediately after the processing in <3>.

<When stopping operation>

Clear the LVION bit to 0.

CHAPTER 27 POWER-ON-CLEAR CIRCUIT

27.1 Function


The power-on-clear (POC) circuit has the following functions.

- Generates a reset signal (POCRES) upon power application.
- Compares the supply voltage (V_{DD}) and detection voltage (V_{POC}), and generates a reset signal (POCRES) when V_{DD} < V_{POC} (detection voltage: V_{POC} = 2.6 V ±0.1 V).

Caution If the POCRES signal is generated by the POC circuit, the RESF register is cleared (to 00H).

27.2 Configuration

A block diagram of the power-on-clear circuit is shown below.

27.3 Operation

The power-on-clear circuit compares the supply voltage (V_{DD}) and detection voltage (V_{POC}), and generates a reset signal (POCRES) when $V_{DD} < V_{POC}$.

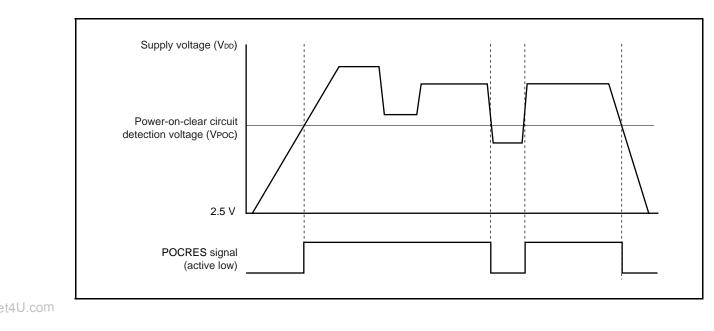
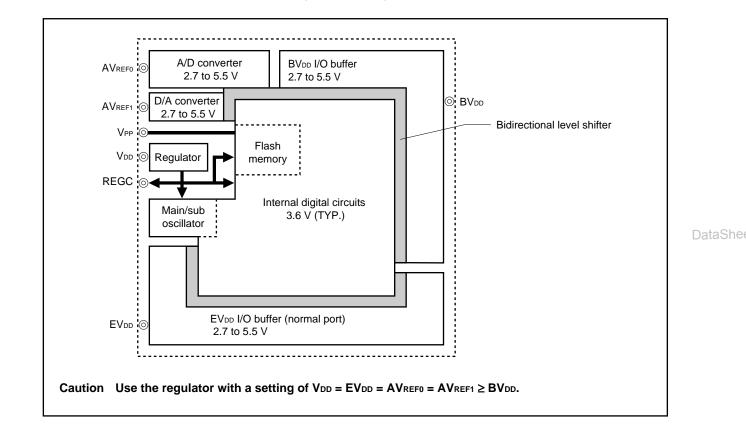
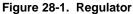


Figure 27-2. Operation of Power-on-Clear Circuit

DataSheet4U.com

DataSheet4U.com

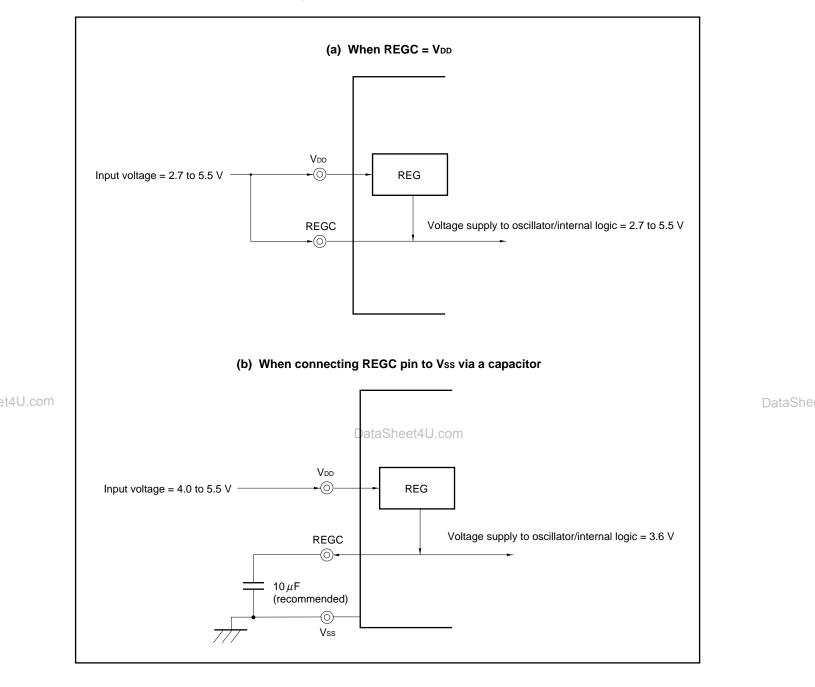

DataShe


CHAPTER 28 REGULATOR

28.1 Overview

The V850ES/KG1+ includes a regulator to reduce the power consumption and noise.

This regulator supplies a stepped-down V_{DD} power supply voltage to the oscillator block and internal logic circuits (except the A/D converter, D/A converter, and output buffer). The regulator output voltage is set to 3.6 V (TYP.).


28.2 Operation

The regulator stops operating in the following modes (but only when REGC = VDD).

- At reset (except WDTRES1 and during oscillation stabilization time)
- In STOP mode
- In sub-IDLE mode

When using the regulator, be sure to connect a capacitor (10 μ F) to the REGC pin to stabilize the regulator output. A diagram of the regulator pin connections is shown below.

www.DataSheet4U.com

CHAPTER 29 ROM CORRECTION FUNCTION

29.1 Overview

The ROM correction function is used to replace part of the program in the internal ROM with the program of an external memory or the internal RAM.

By using this function, program bugs found in the internal ROM can be corrected.

Up to four addresses can be specified for correction.

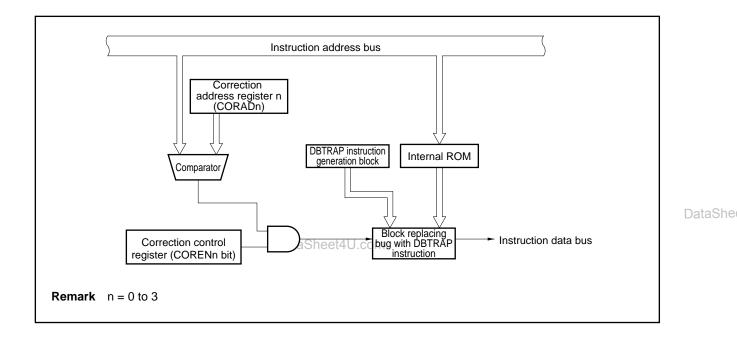
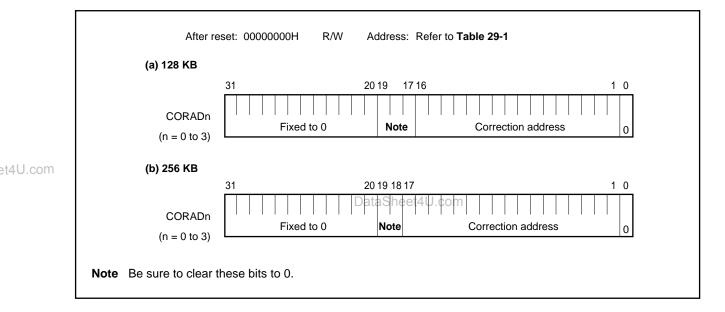


Figure 29-1. Block Diagram of ROM Correction

29.2 Control Registers

29.2.1 Correction address registers 0 to 3 (CORAD0 to CORAD3)

These registers are used to set the first address of the program to be corrected.


The program can be corrected at up to four places because four CORADn registers are provided.

The CORADn register can be read or written in 32-bit units. If the higher 16 bits of the CORADn register are used as the CORADnH register, and the lower 16 bits as the CORADnL register, these registers can be read or written in 16-bit units.

After reset, CORADn is cleared to 0000000H.

Set correction addresses in the following ranges.

μPD70F3311, 70F3311Y (128 KB): 0000000H to 001FFFEH μPD703313, 703313Y, 70F3313, 70F3313Y (256 KB): 000000H to 003FFFEH

Table 29-1. CORADn Address

	Address	Register Name		Address	Register Name
FF	FFF840H	CORAD0	FFFF848H		CORAD2
	FFFFF840H	CORADOL		FFFF848H	CORAD2L
	FFFFF842H	CORADOH	1 [FFFF84AH	CORAD2H
FF	FFF844H	CORAD1	FFFFF84CH		CORAD3
	FFFFF844H	CORAD1L		FFFFF84CH	CORAD3L
	FFFF846H	CORAD1H		FFFFF84EH	CORAD3H

726

29.2.2 Correction control register (CORCN)

This register disables or enables the correction operation at the address specified by the CORADn register.

Each channel can be enabled or disabled by this register.

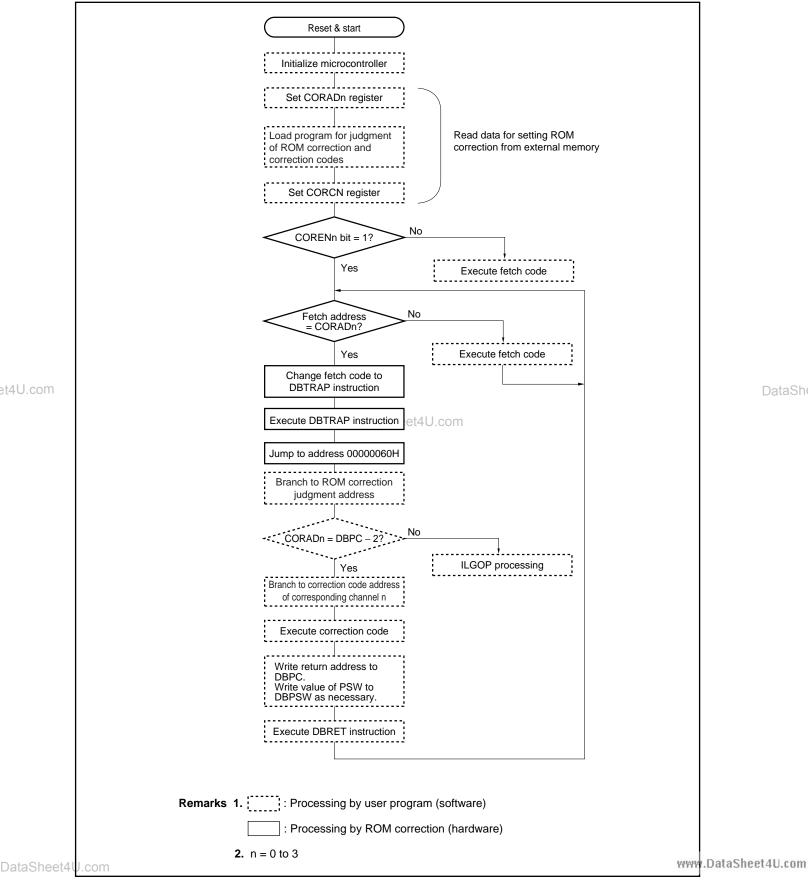
This register can be read or written in 8-bit or 1-bit units.

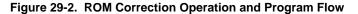
After reset, CORCN is cleared to 00H.

After res	et: 00H	R/W	Address:	FFFF880	Н			
	7	6	5	4	<3>	<2>	<1>	<0>
CORCN	0	0	0	0	COREN3	COREN2	COREN1	COREN0
	CORENn		(Correction	operation er	nable/disab	le	
	0	Disabled						
	1	Enabled						
	Remark	n = 0 to 3	3					

Table 29-2. Correspondence Between CORCN Register Bits and CORADn Registers

et4U.com


CORCN Register Bit	Corresponding CORADn Register		
COREN3	CORAD3		
COREN2	CORAD2		
COREN1	CORAD1		
COREN0	CORAD0		


29.3 ROM Correction Operation and Program Flow

- <1> If the address to be corrected and the fetch address of the internal ROM match, the fetch code is replaced by the DBTRAP instruction.
- <2> When the DBTRAP instruction is executed, execution branches to address 0000060H.
- <3> Software processing after branching causes the result of ROM correction to be judged (the fetch address and ROM correction operation are confirmed) and execution to branch to the correction software.
- <4> After the correction software has been executed, the return address is set, and return processing is started by the DBRET instruction.

Cautions 1. The software that performs <3> and <4> must be executed in the internal RAM.

- 2. When setting an address to be corrected to the CORADn register, clear the higher bits to 0 in accordance with the capacity of the internal ROM.
- 3. The ROM correction function cannot be used to correct the data of the internal ROM. It can only be used to correct instruction codes. If ROM correction is used to correct data, that data is replaced with the DBTRAP instruction code.

CHAPTER 30 MASK OPTION/OPTION BYTE

30.1 Mask Option (Mask ROM Versions)

The mask ROM versions (μ PD703313 and 703313Y) have the following mask options.

- Connection of pull-up resistor to P36 to P39 pins
- Enabling/disabling stopping Ring-OSC by software
- Shortening oscillation stabilization time of main clock oscillation after release of reset

(1) Connection of pull-up resistor to P36 to P39 pins

PUmn	Connection of Pull-up Resistor to Port mn
0	Not connected
1	Connected

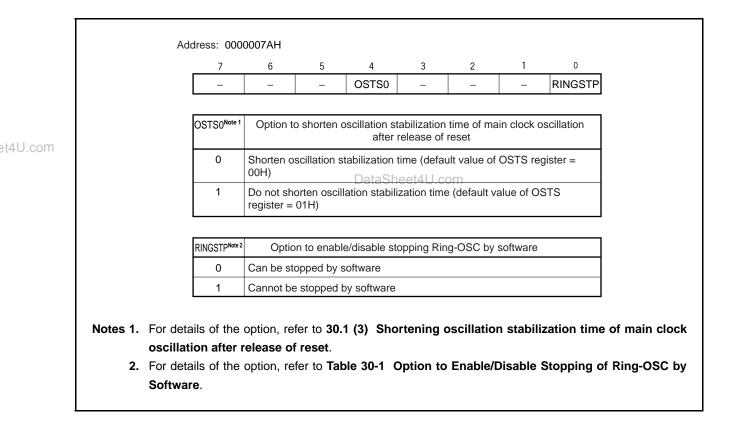
Remark mn = 36 to 39

(2) Enabling/disabling stopping Ring-OSC by software

RINGSTP	Control of Stopping Ring-OSC by Software	Data
0	Can be stopped by software	
1	Setting invalid by software	

Depending on whether the option to enable/disable stopping of Ring-OSC by software is set or not, the operation differs as follows.

		RINGSTP = 0 (Can Be Stopped)	RINGSTP = 1 (Setting Invalid)
	Ring-OSC	Ring-OSC: Can be stopped. RCM.RSTOP bit can be set.	Ring-OSC: Cannot be stopped. Setting of RSTOP bit is invalid.
WDT2	Count operation	Operation can be stopped by WDTM2.WDCS24 bit.	Operation cannot be stopped.
	Input clock	The following clock can be selected by the WDTM2 register. • Ring-OSC: fr/8 • Subclock: fxT	Fixed to Ring-OSC (fr/8)
	Operation mode	The following mode can be selected by the WDTM2 register. • NMI interrupt mode (INTWDT2) • Reset mode (WDTRES2)	Fixed to reset mode (WDTRES2)


OSTS0	Option to Shorten Oscillation Stabilization Time of Main Clock Oscillation After Release of Reset				
	(Default Value of OSTS Register)		Oscillation Stabilization Time		
0	Shorten oscillation stabilization time.	00H	2 ¹³ /fx		
1	Do not shorten oscillation stabilization time.	01H	2 ¹⁵ /fx		

(3) Shortening oscillation stabilization time of main clock oscillation after release of reset

30.2 Option Byte (Flash Memory Versions)

The flash memory versions (μ PD70F3311, 70F3311Y, 70F3313, and 70F3313Y) can realize the mask options of the mask ROM version by using an option byte (except the pull-up resistor option).

The option byte is stored in address 000007AH of the internal flash memory (internal ROM area) as 8-bit data.

www.DataSheet4U.com

CHAPTER 31 FLASH MEMORY

The following products are the flash memory versions of the V850ES/KG1+.

- Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing and application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluation for the commercial samples (not engineering samples) of the mask ROM version. For the electrical specifications related to the flash memory rewriting, refer to CHAPTER 32 ELECTRICAL SPECIFICATIONS (TARGET).
- μPD70F3311, 70F3311Y: On-chip 128 KB flash memory
- *μ*PD70F3313, 70F3313Y: On-chip 256 KB flash memory

Flash memory versions are commonly used in the following development environments and mass production applications.

- O For altering software after the V850ES/KG1+ is soldered onto the target system.
- O For data adjustment when starting mass production.
- O For differentiating software according to the specification in small scale production of various models.
- O For facilitating inventory management.
- O For updating software after shipment.

31.1 Features

DataSheet4U.com

- O 4-byte/1-clock access (when instruction is fetched)
- O Capacity: 128/256 KB
- O Write voltage: Erase/write with a single power supply
- O Rewriting method
 - Rewriting by communication with dedicated flash programmer via serial interface (on-board/off-board programming)
 - Rewriting flash memory by user program (self programming)
- O Flash memory write prohibit function supported (security function)
- O Safe rewriting of entire flash memory area by self programming using boot swap function
- O Interrupts can be acknowledged during self programming.

31.2 Memory Configuration

The 128/256 KB internal flash memory area is divided into 64/128 blocks and can be programmed/erased in block units. All the blocks can also be erased at once.

When the boot swap function is used, the physical memory (blocks 0 to 3) located at the addresses of boot area 0 is replaced by the physical memory (blocks 4 to 7) located at the addresses of boot area 1. For details of the boot swap function, refer to 31.5 Rewriting by Self Programming.

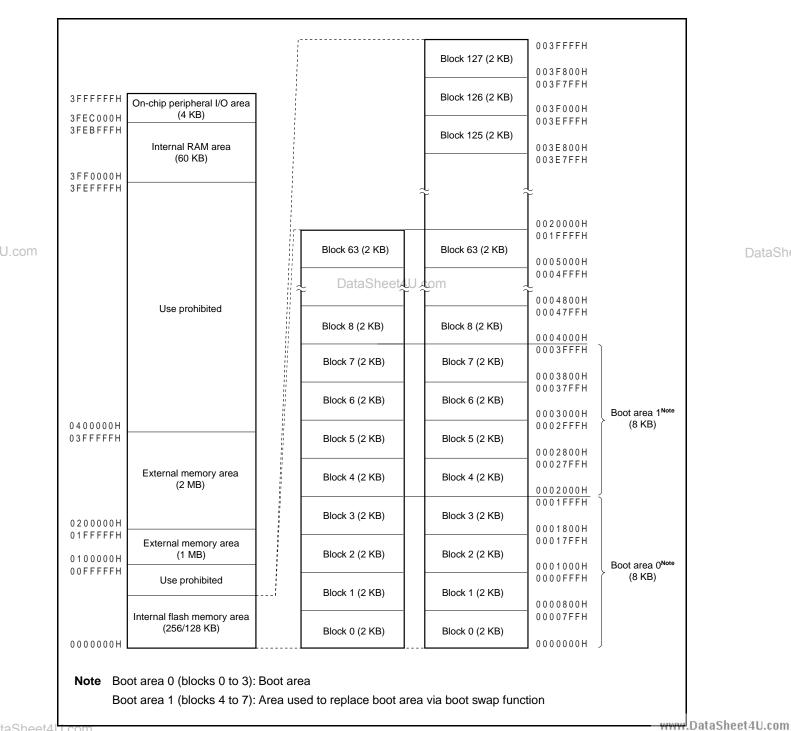


Figure 31-1. Flash Memory Mapping

DataSheet4U.com

31.3 Functional Outline

The internal flash memory of the V850ES/KG1+ can be rewritten by using the rewrite function of the dedicated flash programmer, regardless of whether the V850ES/KG1+ has already been mounted on the target system or not (on-board/off-board programming).

In addition, a security function that prohibits rewriting the user program written to the internal flash memory is also supported, so that the program cannot be changed by an unauthorized person.

The rewrite function using the user program (self programming) is ideal for an application where it is assumed that the program is changed after production/shipment of the target system. A boot swap function that rewrites the entire flash memory area safely is also supported. In addition, interrupt servicing is supported during self programming, so that the flash memory can be rewritten under various conditions, such as while communicating with an external device.

Rewrite Method	Rewrite Method Functional Outline	
On-board programming	On-board programming Flash memory can be rewritten after the device is mounted on the target system, by using a dedicated flash programmer.	
Off-board programming		
Self programming	Flash memory can be rewritten by executing a user program that has been written to the flash memory in advance by means of on-board/off- board programming. (During self-programming, instructions cannot be fetched from or data access cannot be made to the internal flash memory area. Therefore, the rewrite program must be transferred to the internal RAM or external memory in advance).	Normal operation mode

Table 31-1. Rewrite Method

Remark The FA series is a product of Naito Densei Machida Mfg. Co., Ltd.

et4U.com

DataShee

Function	Functional Outline	Support (O: Support	ed, ×: Not supported)
		On-Board/Off-Board Programming	Self Programming
Block erasure	The contents of specified memory blocks are erased.	0	0
Chip erasure	The contents of the entire memory area are erased all at once.	0	×
Write	Writing to specified addresses, and a verify check to see if write level is secured are performed.	0	0
Verify/checksum	Data read from the flash memory is compared with data transferred from the flash programmer.	0	× (Can be read by user program)
Blank check	The erasure status of the entire memory is checked.	0	0
Security setting	Use of the block erase command, chip erase command, and program command can be prohibited.	0	× (Only values set by on- board/off-board programming can be retained)

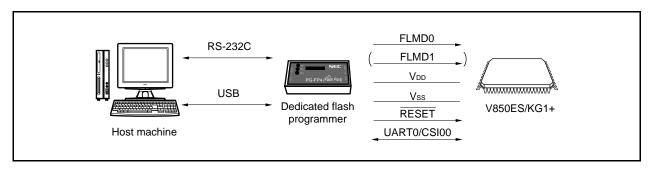
Table 31-2. Basic Functions

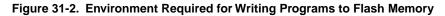
et4U.com

The following table lists the security functions. The block erase command prohibit, chip erase command prohibit, and program command prohibit functions are enabled by default after shipment, and security can be set by rewriting via on-board/off-board programming. Each security function can be used in combination with the others at the same time.

DataShe

Function	Function Outline	Rewriting Operation When Prohibited (O: Executable, ×: Not Executable)				
		On-Board/Off-Board Programming	Self Programming			
Block erase command prohibit	Execution of a block erase command on all blocks is prohibited. Setting of prohibition can be initialized by execution of a chip erase command.	Block erase command: × Chip erase command: O Program command: O	Can always be rewritten regardless of setting of prohibition			
Chip erase command prohibit	Execution of block erase and chip erase commands on all the blocks is prohibited. Once prohibition is set, setting of prohibition cannot be initialized because the chip erase command cannot be executed.	Block erase command: × Chip erase command: × Program command: O				
Program command prohibit	Write and block erase commands on all the blocks are prohibited. Setting of prohibition can be initialized by execution of the chip erase command.	Block erase command: × Chip erase command: O Program command: ×				


Table 31-3. Security Functions


31.4 Rewriting by Dedicated Flash Programmer

The flash memory can be rewritten by using a dedicated flash programmer after the V850ES/KG1+ is mounted on the target system (on-board programming). The flash memory can also be rewritten before the device is mounted on the target system (off-board programming) by using a dedicated program adapter (FA series).

31.4.1 Programming environment

The following shows the environment required for writing programs to the flash memory of the V850ES/KG1+.

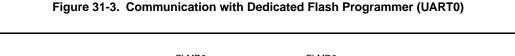
A host machine is required for controlling the dedicated flash programmer.

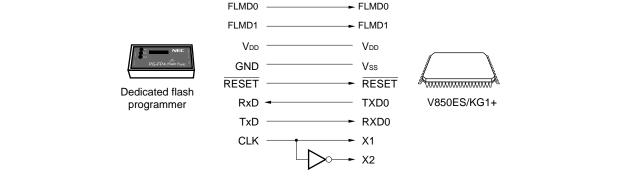
UART0 or CSI00 is used for the interface between the dedicated flash programmer and the V850ES/KG1+ to perform writing, erasing, etc. A dedicated program adapter (FA series) is required for off-board writing.

Remark The FA series is a product of Naito Densei Machida Mfg. Co., Ltd.

DataSheet4U.com

et4U.com


www.DataSheet4U.com


31.4.2 Communication mode

Communication between the dedicated flash programmer and the V850ES/KG1+ is performed by serial communication using the UART0 or CSI00 interfaces of the V850ES/KG1+.

(1) UART0

Transfer rate: 9,600 to 153,600 bps

(2) CSI00

et4U.com

Serial clock: 2.4 kHz to 2.5 MHz (MSB first)

DataShe

(3) CSI00 + HS

Serial clock: 2.4 kHz to 2.5 MHz (MSB first)

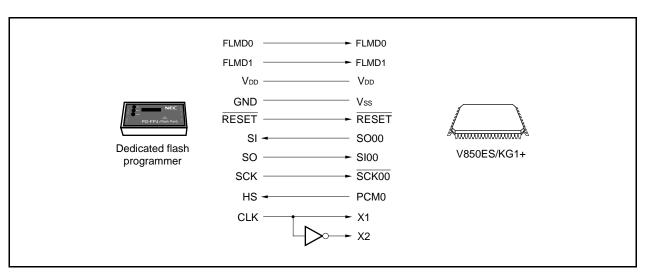


Figure 31-5. Communication with Dedicated Flash Programmer (CSI00 + HS)

The dedicated flash programmer outputs the transfer clock, and the V850ES/KG1+ operates as a slave.

When the PG-FP4 is used as the dedicated flash programmer, it generates the following signals to the V850ES/KG1+. For details, refer to the **PG-FP4 User's Manual (U15260E)**.

DataShee

	PG-FP4			Processing for Connection		
Signal Name	gnal Name I/O Pin Function		Pin Name	UART0	CSI00	CSI00 + HS
FLMD0	Output	Write enable/disable	FLMD0	0	0	0
FLMD1	Output	Write enable/disable	FLMD1	ONote 1	ONote 1	ONote 1
VDD	-	VDD voltage generation/voltage monitor	Vdd	0	0	0
GND	-	Ground	Vss	0	O	O
CLK	Output	Clock output to V850ES/KG1+	X1, X2	× ^{Note 2}	× ^{Note 2}	× ^{Note 2}
RESET	Output	Reset signal	RESET	0	0	0
SI/RxD	Input	Receive signal	SO00, TXD0	0	O	O
SO/TxD	Output	Transmit signal	SI00, RXD0	0	0	0
SCK	Output	Transfer clock	SCK00	×	0	0
HS	Input	Handshake signal for CSI00 + HS communication	PCM0	×	×	0

Table 31-4. Signal Connections of Dedicated Flash Programmer (PG-FP4)

- Notes 1. Wire the pin as shown in Figures 31-6 and 31-7, or connect it to GND on board via a pull-down resistor.
 - **2.** Connect these pins to supply a clock from the PG-FP4 (wire as shown in Figures 31-6 and 31-7, or create an oscillator on board and supply the clock).

Remark O: Must be connected.

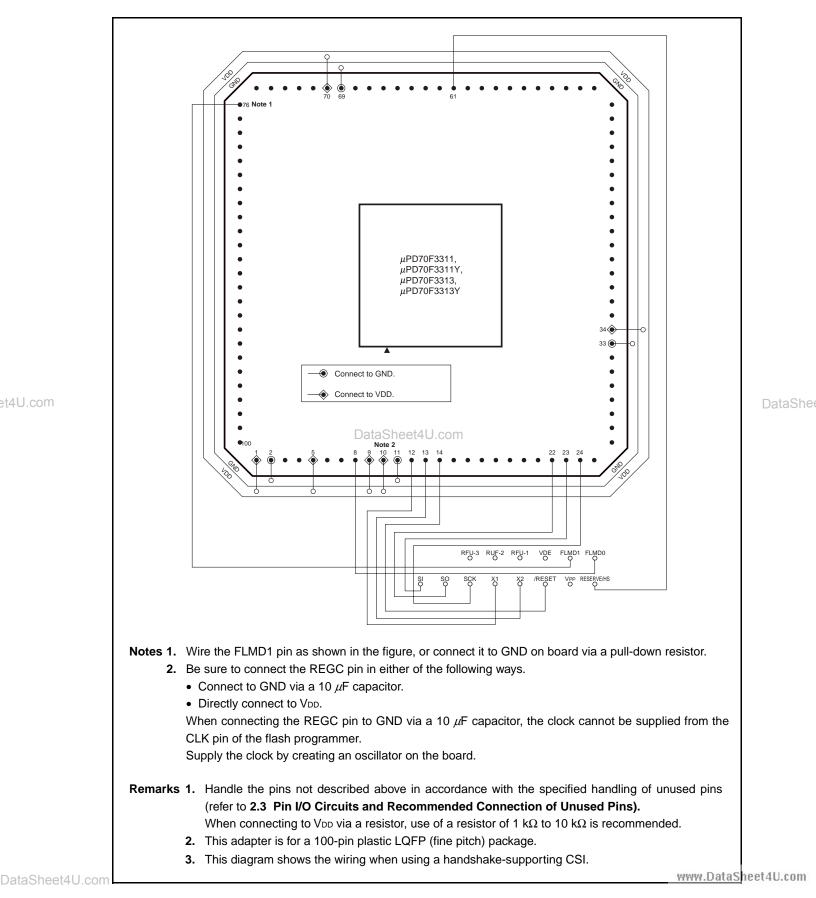
×: Does not have to be connected.

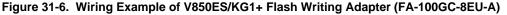
DataSheet4U.com

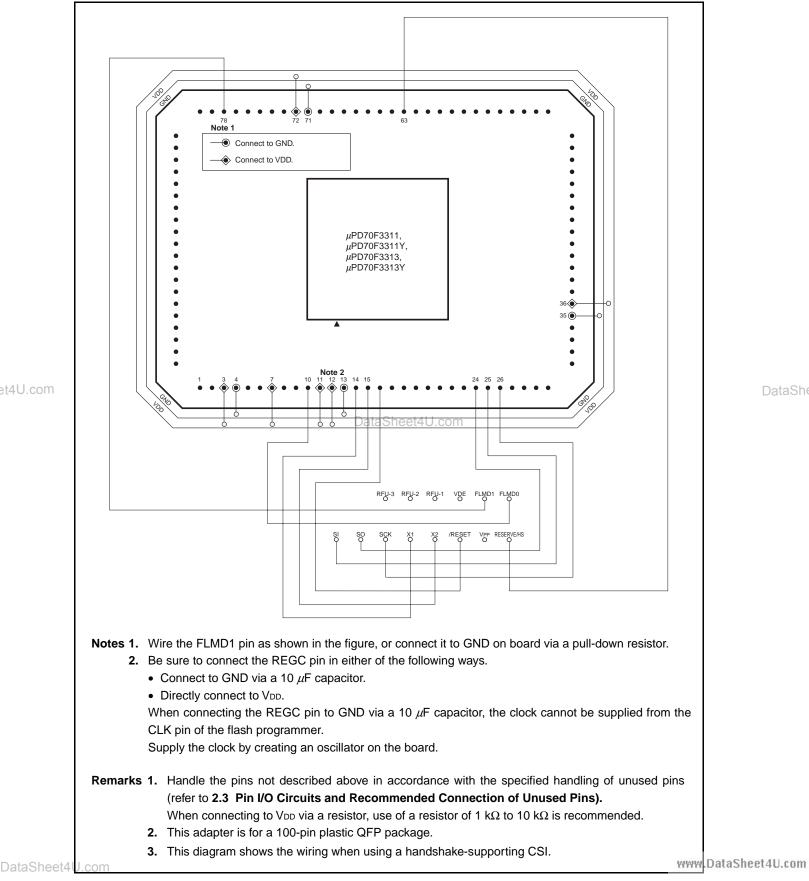
Pin Configu	ration of F	lash Programmer (PG-FP4)	Pin Name on	With CSI00-HS		With CSI00			With UART0				
Signal Name	I/O	Pin Function	FA Board	Pin Name	Pin	No.	Pin Name	Pin No.		Pin Name	Pin	No.	
					GC	GF	-	GC	GF		GC	GF	
SI/R×D	Input	Receive signal	SI	P41/SO00/ TXD2	23	25	P41/SO00/ TXD2	23	25	P30/TXD0/ TO02	25	27	
SO/TxD	Output	Transmit signal	SO	P40/SI00/ RXD2	22	24	P40/SI00/ RXD2	22	24	P31/RXD0/ INTP7/TO03	26	28	
SCK	Output	Transfer clock	SCK	P42/SCK00	24	26	P42/SCK00	24	26	Not needed	Not n	eeded	
CLK	Output	Clock to V850ES/KG1+	X1	X1	12	14	X1	12	14	X1	12	14	
			X2	X2 ^{Note}	13	15	X2 ^{Note}	13	15	X2 ^{Note}	13	15	
/RESET	Output	Reset signal	/RESET	RESET	14	16	RESET	14	16	RESET	14	16	
FLMD0	Input	Write voltage	FLMD0	FLMD0	8	10	FLMD0	8	10	FLMD0	8	10	
FLMD1	Input	Write voltage	FLMD1	PDL5/AD5/ FLMD1	76	78	PDL5/AD5/ FLMD1	76	78	PDL5/AD5/ FLMD1	76	78	
HS	Input	Handshake signal for CSI00 + HS communication	RESERVE/HS	PCM0/ WAIT	61	63	Not needed	Not n	eeded	d Not needed N		Not needed	
VDD	-	VDD voltage generation/	VDD	Vdd	9	11	Vdd	9	11	Vdd	9	11	
		voltage monitor		BVDD	70	72	BVDD	70	72	BVDD	70	72	
				EVDD	34	36	EVDD	34	36	EVDD	34	36	
				AV _{REF0}	1	3	AV _{REF0}	1	3	AV _{REF0}	1	3	
				AV _{REF1}	5	7	AV _{REF1}	5	7	AV _{REF1}	5	7	
GND	-	Ground	GND Dat	I∂Sheet4l	J ₁ çor	n 13	Vss	11	13	Vss	11	13	
				AVss	2	4	AVss	2	4	AVss	2	4	
				BVss	69	71	BVss	69	71	BVss	69	71	
				EVss	33	35	EVss	33	35	EVss	33	35	

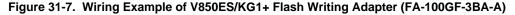
Table 31-5. Wiring Between µPD70F3311, 70F3311Y, 70F3313, and 70F3313Y, and PG-FP4

Note When using the clock out of the flash programmer, connect CLK of the programmer to X1, and connect its inverse signal to X2.

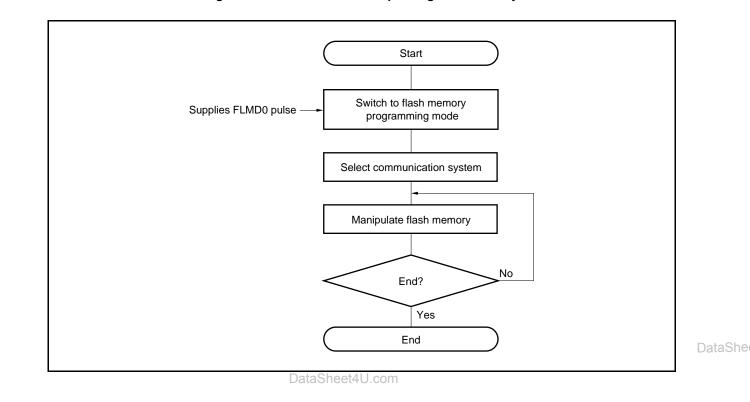

Cautions 1. Be sure to connect the REGC pin in either of the following ways.


- Connect to GND via a 10 μ F capacitor
- Directly connect to VDD
- 2. When connecting the REGC pin to GND via a 10 μ F capacitor, the clock cannot be supplied from the CLK pin of the flash programmer.


Supply the clock by creating an oscillator on the board.

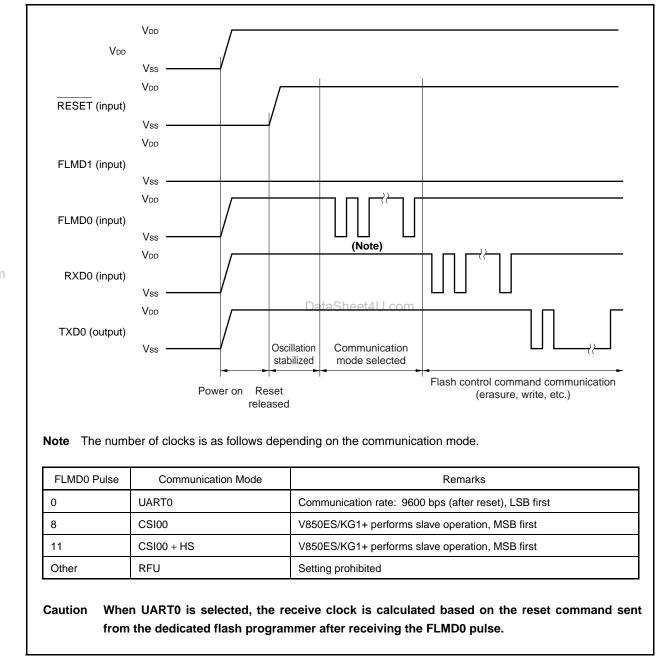

- **Remark** GC: 100-pin plastic LQFP (fine pitch) (14×14)
 - GF: 100-pin plastic QFP (14 × 20)

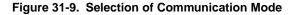
DataSheet4U.com



31.4.3 Flash memory control

The following shows the procedure for manipulating the flash memory.

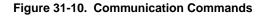


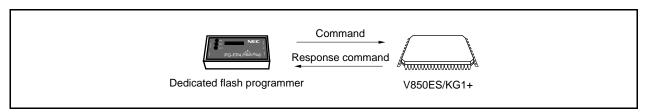


31.4.4 Selection of communication mode

In the V850ES/KG1+, the communication mode is selected by inputting pulses (12 pulses max.) to the FLMD0 pin after switching to the flash memory programming mode. The FLMD0 pulse is generated by the dedicated flash programmer.

The following shows the relationship between the number of pulses and the communication mode.




et4U.com

DataSheet4U.com

31.4.5 Communication commands

The V850ES/KG1+ communicates with the dedicated flash programmer by means of commands. The signals sent from the dedicated flash programmer to the V850ES/KG1+ are called "commands". The response signals sent from the V850ES/KG1+ to the dedicated flash programmer are called "response commands".

The following shows the commands for flash memory control in the V850ES/KG1+. All of these commands are issued from the dedicated flash programmer, and the V850ES/KG1+ performs the processing corresponding to the commands.

Classification	Command Name		Support		Function
		CSI00	CSI00 + HS	UART0	
Blank check	Block blank check command	0	0	0	Checks if the contents of the memory in the specified block have been correctly erased.
Erase	Chip erase command	0	0	0	Erases the contents of the entire memory.
	Block erase command	©ata\$	Sheet o U.co	m O	Erases the contents of the memory of the specified block.
Write	Write command	0	0	0	Writes the specified address range, and executes a contents verify check.
Verify	Verify command	0	0	0	Compares the contents of memory in the specified address range with data transferred from the flash programmer.
	Checksum command	0	0	0	Reads the checksum in the specified address range.
System setting, control	Silicon signature command	0	0	0	Reads silicon signature information.
	Security setting command	0	0	0	Disables the chip erase command, enables the block erase command, and disables the write command.

Table 31-6. Flash Memory Control Commands

31.4.6 Pin connection

When performing on-board writing, mount a connector on the target system to connect to the dedicated flash programmer. Also, incorporate a function on-board to switch from the normal operation mode to the flash memory programming mode.

In the flash memory programming mode, all the pins not used for flash memory programming become the same status as that immediately after reset. Therefore, pin handling is required when the external device does not acknowledge the status immediately after a reset.

(1) FLMD0 pin

In the normal operation mode, input a voltage of Vss level to the FLMD0 pin. In the flash memory programming mode, supply a write voltage of Vbb level to the FLMD0 pin.

Because the FLMD0 pin serves as a write protection pin in the self programming mode, a voltage of V_{DD} level must be supplied to the FLMD0 pin via port control, etc., before writing to the flash memory. For details, refer to **31.5.5 (1)** FLMD0 pin.

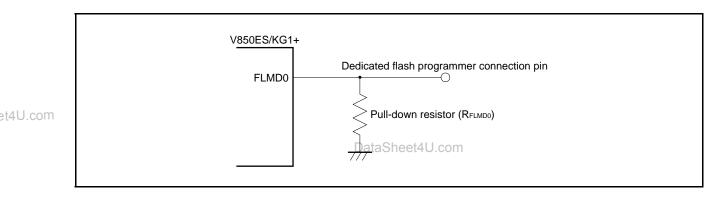
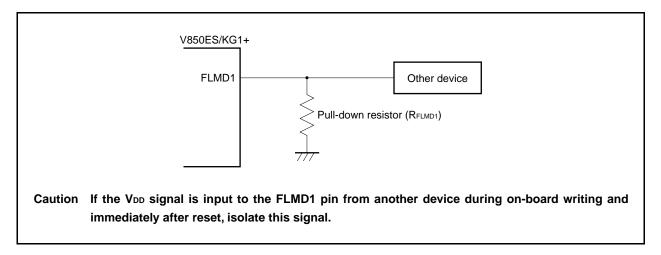



Figure 31-11. FLMD0 Pin Connection Example

(2) FLMD1 pin

When 0 V is input to the FLMD0 pin, the FLMD1 pin does not function. When V_{DD} is supplied to the FLMD0 pin, the flash memory programming mode is entered, so 0 V must be input to the FLMD1 pin. The following shows an example of the connection of the FLMD1 pin.

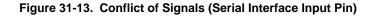
Table 31-7. Relationship Between FLMD0 and FLMD1 Pins and Operation Mode When Reset Is Released

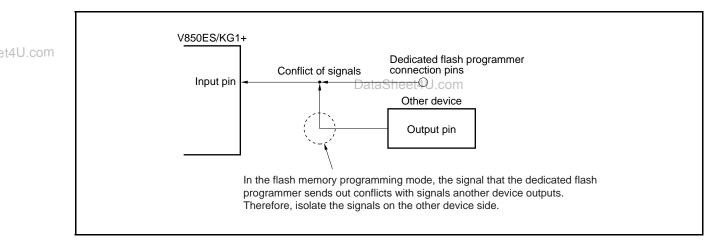
FLMD0	FLMD1	Operation Mode
0	don't care	Normal operation mode
Vdd	0	Flash memory programming mode
Vdd	Vdd	Setting prohibited

DataShe

(3) Serial interface pin

The following shows the pins used by each serial interface.

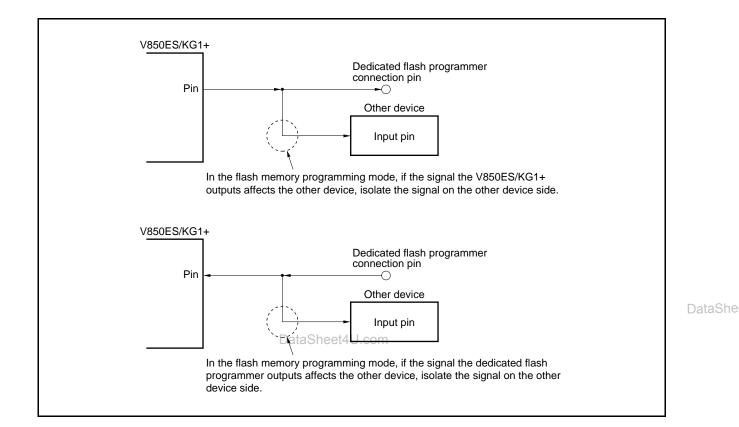

Serial Interface	Pins Used
UART0	TXD0, RXD0
CSI00	SO00, SI00, SCK00
CSI00 + HS	SO00, SI00, SCK00, PCM0

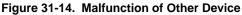

Table 31-8. Pins Used by Serial Interfaces

When connecting a dedicated flash programmer to a serial interface pin that is connected to another device on-board, care should be taken to avoid conflict of signals and malfunction of the other device.

(a) Conflict of signals

When the dedicated flash programmer (output) is connected to a serial interface pin (input) that is connected to another device (output), a conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the other device or set the other device to the output high-impedance status.

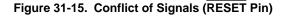


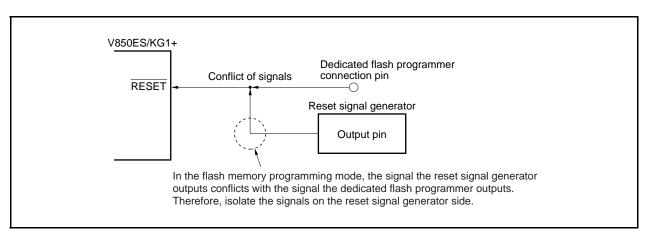

DataShe

www.DataSheet4U.com

(b) Malfunction of other device

When the dedicated flash programmer (output or input) is connected to a serial interface pin (input or output) that is connected to another device (input), the signal is output to the other device, causing the device to malfunction. To avoid this, isolate the connection to the other device.





(4) RESET pin

When the reset signals of the dedicated flash programmer are connected to the RESET pin that is connected to the reset signal generator on-board, a conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the reset signal generator.

When a reset signal is input from the user system in the flash memory programming mode, the programming operation will not be performed correctly. Therefore, do not input signals other than the reset signals from the dedicated flash programmer.

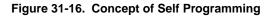
et4U.com

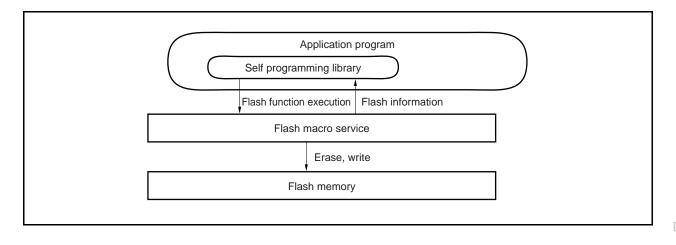
(5) Port pins (including NMI)

When the system shifts to the flash memory programming mode, all the pins that are not used for flash memory programming are in the same status as that immediately after reset. If the external device connected to each port does not recognize the status of the port immediately after reset, pins require appropriate processing, such as connecting to V_{DD} via a resistor or connecting to V_{SS} via a resistor.

(6) Other signal pins

Connect X1, X2, XT1, XT2, and REGC in the same status as that in the normal operation mode.

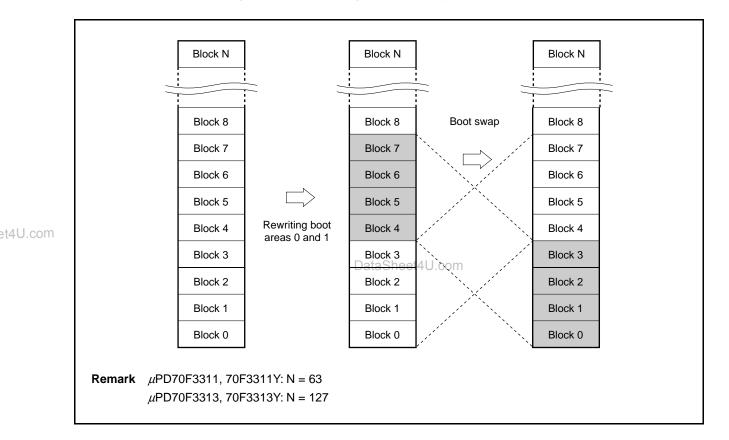

(7) Power supply


Supply the same power (VDD, Vss, EVDD, EVss, AVss, BVDD, BVss, AVREF0, AVREF1) as in normal operation mode.

31.5 Rewriting by Self Programming

31.5.1 Overview

The V850ES/KG1+ supports a flash macro service that allows the user program to rewrite the internal flash memory by itself. By using this interface and a self programming library that is used to rewrite the flash memory with a user application program, the flash memory can be rewritten by a user application transferred in advance to the internal RAM or external memory. Consequently, the user program can be upgraded and constant data can be rewritten in the field.


et4U.com

DataSheet4U.com

31.5.2 Features

(1) Secure self programming (boot swap function)

The V850ES/KG1+ supports a boot swap function that can exchange the physical memory (blocks 0 to 3) of boot area 0 with the physical memory (blocks 4 to 7) of boot area 1. By writing the start program to be rewritten to boot area 1 in advance and then swapping the physical memory, the entire area can be safely rewritten even if a power failure occurs during rewriting because the correct user program always exists in boot area 0.

(2) Interrupt support

Instructions cannot be fetched from the flash memory during self programming. Conventionally, therefore, a user handler written to the flash memory could not be used even if an interrupt occurred. With the V850ES/KG1+, a user handler can be registered to an entry RAM area by using a library function, so that interrupt servicing can be performed by internal RAM or external memory execution.

DataSheet4U.com

31.5.3 Standard self programming flow

The entire processing to rewrite the flash memory by flash self programming is illustrated below.

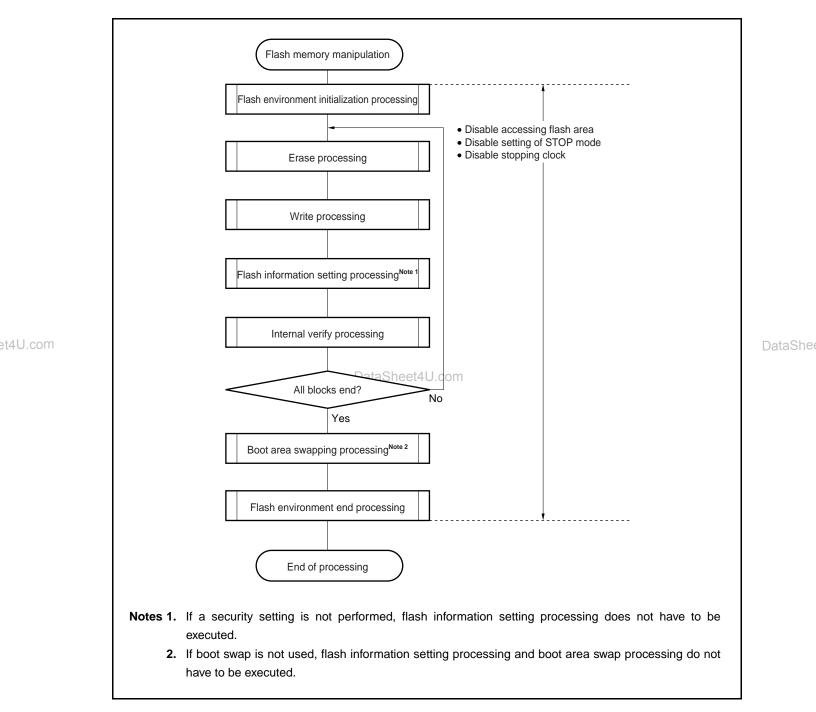
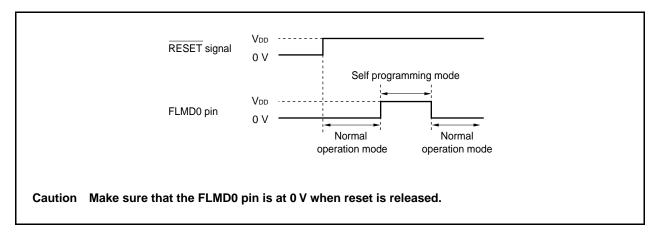


Figure 31-18. Standard Self Programming Flow

31.5.4 Flash functions

Function Name	Outline	Support
FlashEnv	Initialization of flash control macro	\checkmark
FlashBlockErase	Erasure of only specified one block	\checkmark
FlashWordRead	Reading data from specified address	\checkmark
FlashWordWrite	Writing from specified address	\checkmark
FlashBlockIVerify	Internal verification of specified block	\checkmark
FlashBlockBlankCheck	Blank check of specified block	\checkmark
FlashFLMDCheck	Check of FLMD pin	
FlashGetInfo	Reading of flash information	\checkmark
FlashSetInfo	Setting of flash information	\checkmark
FlashBootSwap	Swapping of boot area	

Table 31-9. Flash Function List


31.5.5 Pin processing

(1) FLMD0 pin

et4U.com

The FLMD0 pin is used to set the operation mode when reset is released and to protect the flash memory from being written during self rewriting. It is therefore necessary to keep the voltage applied to the FLMD0 pin at 0 V when reset is released and a normal operation is executed. It is also necessary to apply a voltage of VDD level to the FLMD0 pin during the self programming mode period via port control before the memory is rewritten.

When self programming has been completed, the voltage on the FLMD0 pin must be returned to 0 V.

Figure 31-19. Mode Change Timing

31.5.6 Internal resources used

The following table lists the internal resources used for self programming. These internal resources can also be used freely for purposes other than self programming.

Resource Name	Description
Entry RAM area (internal RAM/external RAM size ^{Note})	Routines and parameters used for the flash macro service are located in this area. The entry program and default parameters are copied by calling a library initialization function.
Stack area (stack size ^{Note})	An extension of the stack used by the user is used by the library (can be used in both the internal RAM and external RAM).
Library code (code size ^{Note})	Program entity of library (can be used anywhere other than the flash memory block to be manipulated).
Application program	Executed as user application. Calls flash functions.
Maskable interrupt	Can be used in user application execution status or self programming status. To use this interrupt in the self programming status, the interrupt servicing start address must be registered in advance by a registration function.
NMI interrupt	Can be used in user application execution status or self programming status. To use this interrupt in the self programming status the interrupt servicing start address must be registered in advance by a registration function.

et4U.com

Note For the capacity to be used, refer to the V850 Series Flash Memory Self Programming (Single Power Supply Flash Memory) User's Manual (under preparation).

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

DataShe

CHAPTER 32 ELECTRICAL SPECIFICATIONS (TARGET)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdd	VDD = EVDD = AVREF0	-0.3 to +6.5	V
	AV _{REF0}	VDD = EVDD = AVREF0	-0.3 to +6.5	V
	AV _{REF1}	AV _{REF1} ≤ V _{DD} (D/A output mode) AV _{REF1} = AV _{REF0} = V _{DD} (port mode)	-0.3 to V _{DD} + 0.3 ^{Note 1}	V
	BVdd	$BV_{DD} \leq V_{DD}$	-0.3 to Vdd + 0.3 ^{Note 1}	V
	EVDD	VDD = EVDD = AVREF0	-0.3 to +6.5	V
	Vss	Vss = EVss = BVss = AVss	-0.3 to +0.3	V
	AVss	Vss = EVss = BVss = AVss	-0.3 to +0.3	V
	BVss	Vss = EVss = BVss = AVss	-0.3 to +0.3	V
	EVss	Vss = EVss = BVss = AVss	-0.3 to +0.3	V
Input voltage	VI1	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90 to P915, RESET, FLMD0	-0.3 to EV _{DD} + 0.3 ^{Note 1}	V
	Vı2	PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL15, PDH0 to PDH5	-0.3 to BV _{DD} + 0.3 ^{Note 1}	V
	Vı3	P10, P11	-0.3 to AVREF1 + 0.3Note 1	V
	VI4	P36, P37	-0.3 to +13 ^{Note 2}	V
	Vis	X1, X2, XT1, XT2	-0.3 to V _{DD} + 0.3 ^{Note 1}	V
Analog input voltage	VIAN	P70 to P77 DataSheet4U.com	-0.3 to AVREF0 + 0.3 ^{Note 1}	V

Absolute Maximum Ratings (T_A = 25°C) (1/2)

DataShe

Notes 1. Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

2. When an on-chip pull-up resistor is not specified by a mask option. The same as V₁₁ when a pull-up resistor is specified.

DataSheet4U.com

Parameter	Symbol	Conditions		Ratings	Unit
Output current, low	lol	Io⊾ P00 to P06, P10, P11, P30 to P35, P40 to P42, P50 to P55, P90 to P915, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL15, PDH0 to PDH5		20	mA
		P36 to P39		30	mA
		P00 to P06, P30 to P39, P40 to P42	Total of all	35	mA
		P50 to P55, P90 to P915	pins: 70 mA	35	
		PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6	Total of all pins:	35	mA
		PDL0 to PDL15, PDH0 to PDH5	70 mA	35	mA
Output current, high	Іон	Per pin		-10	mA
		P00 to P06, P30 to P35, P40 to P42	Total of all	-30	
		P50 to P55, P90 to P915	pins: –60 mA	-30	mA
		PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6	Total of all pins:	-30	mA
		PDL0 to PDL15, PDH0 to PDH5	–60 mA	-30	mA
		P10, P11	Per pin	-10	
Operating ambient	TA	T _A Normal operation mode		-40 to +85	°C
temperature		Flash memory programming mode		T.B.D.	°C
Storage temperature	Tstg	μPD703313, 703313Y		-65 to +150	°C
		μPD70F3311,70F33114,70F3313,70F33		-40 to +125	°C

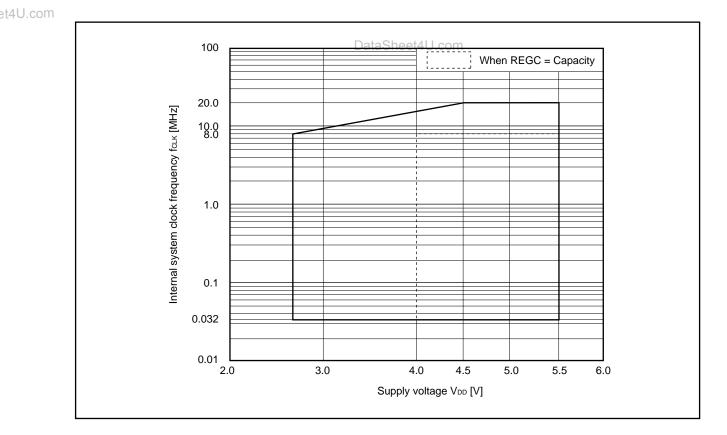
Absolute Maximum Ratings (T_A = 25°C) (2/2)

- Cautions 1. Do not directly connect the output (or I/O) pins of IC products to each other, or to V_{DD}, V_{CC}, and GND. Open-drain pins or open-collector pins, however, can be directly connected to each other. Direct connection of the output pins between an IC product and an external circuit is possible, if the output pins can be set to the high-impedance state and the output timing of the external circuit is designed to avoid output conflict.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Capacitance (TA = 25°C, VDD = EVDD = AVREF0 = BVDD = AVREF1 = VSS = EVSS = BVSS = AVSS = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	С	fx = 1 MHz	P70 to P77			15	pF
I/O capacitance	Сю	Unmeasured pins	Note			15	pF
		returned to 0 V	P36 to P39			20	pF

Note P00 to P06, P10, P11, P30 to P35, P40 to P42, P50 to P55, P90 to P915, PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL15, PDH0 to PDH5


Remark fx: Main clock oscillation frequency

Operating Conditions (TA = -40 to +85°C, VDD = EVDD = AVREF0 = 2.7 to 5.5 V, 2.7 V \leq BVDD \leq VDD, 2.7 V \leq AVREF1 \leq VDD, VSS = EVSS = BVSS = AVSS = 0 V, CL = 50 pF)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Internal system clock	fclк	In PLL mode	REGC = V _{DD} = 4.5 to 5.5 V	0.25		20	MHz
frequency			REGC = V _{DD} = 4.0 to 5.5 V	0.25		16	MHz
			REGC = Capacity, $V_{DD} = 4.0$ to 5.5 V	0.25		8 ^{Note}	MHz
			REGC = V _{DD} = 2.7 to 5.5 V	0.25		8 ^{Note}	MHz
		In clock-through mode	$REGC = V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$	0.0625		10	MHz
			REGC = Capacity, $V_{DD} = 4.0$ to 5.5 V	0.0625		8 ^{Note}	MHz
			REGC = V _{DD} = 2.7 to 5.5 V	0.0625		8 ^{Note}	MHz
		Operating with subclock	REGC = V _{DD} = 2.7 to 5.5 V		32.768		kHz
		Operating with on-chip ring clock	REGC = V _{DD} = 2.7 to 5.5 V	120	240	480	kHz

Note These values may change after evaluation.

Internal System Clock Frequency vs. Supply Voltage

DataShe

Main Clock Oscillator Characteristics

(1) (Crystal resonator, ceramic resonator (T _A = -40 to +85°C, V _{DD} = 2.7 to 5.5 V, V _{SS} = 0 V)
-------	---

Recommended Circuit	Parameter	C	conditions	MIN.	TYP.	MAX.	Unit
	Oscillation	PLL mode	REGC = V _{DD} = 4.5 to 5.5 V	2		5	MHz
	frequency (fx) ^{Note 1}		REGC = V _{DD} = 4.0 to 5.5 V	2		4	MHz
X1 X2			REGC = Capacity, V _{DD} = 4.0 to 5.5 V	2		2 ^{Note 2}	MHz
│ <u></u> <u> </u>			REGC = V _{DD} = 2.7 to 5.5 V	2		2.5	MHz
		Clock-through mode	VDD = 2.7 to 5.5 V	2		10	MHz
·! 777	Oscillation	After reset is	When $OSTS0^{Note 4} = 0$		2 ¹³ /fx		s
	stabilization	released	When OSTS0 ^{Note 4} = 1		215/fx		s
	time ^{Note 3}	After STOP mode is	released		Note 5		S

Notes 1. Indicates only oscillator characteristics.

- 2. This value may change after evaluation.
- 3. Time required to stabilize the resonator after reset or STOP mode is released.
- 4. Set by mask option/option byte (refer to CHAPTER 30).
- 5. The value differs depending on the OSTS register settings.

(2) External clock (TA = -40 to $+85^{\circ}$ C, VDD = 2.7 to 5.5 V, Vss = 0 V)

Recommended Circuit	Parameter	C	conditions	MIN.	TYP.	MAX.	Unit
	Input frequency	PLL mode ^{Note}	$REGC = V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	2		5	MHz
	(fx)	DataSheet4	REGC = V _{DD} = 4.0 to 5.5 V	2		4	MHz
			REGC = V _{DD} = 2.7 to 5.5 V	2		2.5	MHz
External clock		Clock-through mode ^{∾∞}	V _{DD} = 2.7 to 5.5 V	2		10	MHz

DataShee

Note Make sure that the duty ratio of the input waveform is within $50\% \pm 5\%$.

Cautions 1. When using the main clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- \bullet Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. When the main clock is stopped and the device is operating on the subclock, wait until the oscillation stabilization time has been secured by the program before switching back to the main clock.

Subclock Oscillator Characteristics

Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
XT1 XT2	Oscillation frequency (fxt) ^{Note 1}		32	32.768	35	kHz
	Oscillation stabilization time ^{Note 2}			10		S

(1) Crystal resonator (TA = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V, V_{SS} = 0 V)

Notes 1. Indicates only oscillator characteristics.

2. Time required from when V_{DD} reaches oscillation voltage range (2.7 V (MIN.)) to when the crystal resonator stabilizes.

(2) External clock (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V, V_{SS} = 0 V)

Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
XT1 XT2	Input frequency (fxT)	REGC = V _{DD}	32		35	kHz

t4U.com Cautions 1. When using the subclock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

DataSheet4U.com

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. The subclock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the main clock oscillator. Particular care is therefore required with the wiring method when the subclock is used.
- 3. Make sure that the duty ratio of the input waveform is within 50% \pm 5%.

Ring-OSC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 2.7 to 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Ring-OSC frequency	fR		120	240	480	kHz

PLL Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input frequency	fx		2		5	MHz
Output frequency	fxx		8		20	MHz
Lock time	t PLL	After VDD reaches 2.7 V (MIN.)			200	μS

DataSheet4U.com

758

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}) (1/6)$

Parameter	Symbol	Conditio	ons	MAX.	Unit
Output current, high	Іон1	Per pin for P00 to P06, P10, P P42, P50 to P55, P90 to P915		-5.0	mA
		Total of P00 to P06, P30 to	EV _{DD} = 4.0 to 5.5 V	-30	mA
		P35, P40 to P42	EV _{DD} = 2.7 to 5.5 V	–15	mA
		Total of P50 to P55, P90 to	EV _{DD} = 4.0 to 5.5 V	-30	mA
		P915	EV _{DD} = 2.7 to 5.5 V	-15	mA
	Іон2	Per pin for PCM0 to PCM3, PC PCT4, PCT6, PDH0 to PDH5,		-5.0	mA
		Total of PCM0 to PCM3,	BV _{DD} = 4.0 to 5.5 V	-30	mA
		PCS0, PCS1, PCT0, PCT1, PCT4, PCT6	BV _{DD} = 2.7 to 5.5 V	-15	mA
		Total of PDL0 to PDL15,	BV _{DD} = 4.0 to 5.5 V	-30	mA
		PDH0 to PDH5	BV _{DD} = 2.7 to 5.5 V	–15	mA
Output current, low	IOL1	Per pin for P00 to P06, P10, P P42, P50 to P55, P90 to P915	10	mA	
		Per pin for P36 to P39	EV _{DD} = 4.0 to 5.5 V	15	mA
			EV _{DD} = 2.7 to 5.5 V	8	mA
		Total of P00 to P06, P30 to P3	7, P40 to P42	30	mA
		Total of P38, P39, P50 to P55,	P90 to P915	30	mA
	IOL2	DataSheet4U.com Per pin for PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDH0 to PDH5, PDL0 to PDL15		10	mA
		Total of PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6		30	mA
		Total of PDL0 to PDL15, PDH0) to PDH5	30	mA

DataShe

et4U.com

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vd} = \text{EV}\text{d} = \text{AV}\text{ReF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}\text{d} \le \text{V}\text{d}, 2.7 \text{ V} \le \text{AV}\text{ReF1} \le \text{V}\text{d}, \text{V}\text{ss} = \text{EV}\text{ss} = \text{BV}\text{ss} = 10^{\circ}\text{C}, \text{V}\text{d} = 10^{\circ$ AVss = 0 V) (2/6)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	Note 1	0.7EVDD		EVDD	V
	VIH2	Note 2	0.8EV _{DD}		EVDD	V
	Vінз	Note 3	0.7BVdd		BVDD	V
	VIH4	P70 to P77	0.7AVREF0		AV _{REF0}	V
	VIH5	P10, P11 ^{Note 4}	0.7AVREF1		AV _{REF1}	V
	VIH6	P36, P37	0.7EV _{DD}		12 ^{Note 5}	V
	Vih7	X1, X2, XT1, XT2	Vdd - 0.5		Vdd	V
Input voltage, low	VIL1	Note 1	EVss		0.3EV _{DD}	V
	VIL2	Note 2	EVss		0.2EVDD	V
	VIL3	Note 3	BVss		0.3BVdd	V
	VIL4	P70 to P77	AVss		0.3AVREF0	V
	VIL5	P10, P11 ^{Note 4}	AVss		0.3AV _{REF1}	V
	VIL6	P36, P37	EVss		0.3EVDD	V
	VIL7	X1, X2, XT1, XT2	Vss		0.4	V

Notes 1. P00, P01, P30, P41, P98, P911 and their alternate-function pins.

2. RESET, P02 to P06, P31 to P35, P38, P39, P40, P42, P50 to P55, P90 to P97, P99, P910, P912 to P915 and their alternate-function pins.

3. PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6, PDL0 to PDL15, PDH0 to PDH5 and their DataSheet4U.com alternate-function pins.

4. When used as port pins, set AVREF1 = AVREF0 = VDD.

5. When an on-chip pull-up resistor is not specified by a mask option. EVDD when a pull-up resistor is specified.

et4U.com

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$ (3/6)

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	Note 1	$I_{OH} = -2.0 \text{ mA},$ EV_DD = 4.0 to 5.5 V	EV _{DD} - 1.0		EVdd	V
		Note 2	Iон = -0.1 mA, EV _{DD} = 2.7 to 5.5 V	EV _{DD} - 0.5		EVdd	V
	Voh2	Note 3	$I_{OH} = -2.0 \text{ mA},$ BV _{DD} = 4.0 to 5.5 V	BV _{DD} - 1.0		BVdd	V
		Note 4	Iон = -0.1 mA, BVpp = 2.7 to 5.5 V	BV _{DD} - 0.5		BVdd	V
	Vонз	P10, P11 ^{Note 5}	Iон = -2.0 mA	AVref1 – 1.0		AV _{REF1}	V
			Іон = -0.1 mA	AVREF1 - 0.5		AV _{REF1}	V
Output voltage, low	Vol1	Note 6	IOL = 2.0 mA ^{Note 7}	0		0.8	V
	Vol2	Note 8	IOL = 2.0 mA ^{Note 7}	0		0.8	V
	Vol3	P10, P11 ^{Note 5}	loL = 2 mA	0		0.8	V
	Vol4	P36 to P39	Io∟ = 15 mA, EV _{DD} = 4.0 to 5.5 V	0		2.0	V
			IoL = 8 mA, EVDD = 3.0 to 5.5 V	0		1.0	V
			Io∟ = 5 mA, EV _{DD} = 2.7 to 5.5 V	0		1.0	V
Input leakage current, high	Іцн	VIN = VDD Data	aSheet4U.com			3.0	μA
Input leakage current, low	Ilil	Vin = 0 V				-3.0	μA
Output leakage current, high	Ігон	Vo = Vdd				3.0	μA
Output leakage current, low	Ilol	Vo = 0 V				-3.0	μA
Pull-up resistor	R∟	$V_{IN} = 0 V$		10	30	100	kΩ

DataShe

Notes 1. Total of P00 to P06, P30 to P35, P40 to P42 and their alternate-function pins: $I_{OH} = -30$ mA, total of P50 to P55, P90 to P915 and their alternate-function pins: $I_{OH} = -30$ mA.

- **2.** Total of P00 to P06, P30 to P35, P40 to P42 and their alternate-function pins: $I_{OH} = -15$ mA, total of P50 to P55, P90 to P915 and their alternate-function pins: $I_{OH} = -15$ mA.
- **3.** Total of PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6: $I_{OH} = -30$ mA, total of PDH0 to PDH5, PDL0 to PDL15 and their alternate-function pins: $I_{OH} = -30$ mA.
- **4.** Total of PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6: $I_{OH} = -15$ mA, total of PDH0 to PDH5, PDL0 to PDL15 and their alternate-function pins: $I_{OH} = -15$ mA.
- **5.** When used as port pins, set $AV_{REF1} = AV_{REF0} = V_{DD}$.
- **6.** Total of P00 to P06, P30 to P37, P40 to P42 and their alternate-function pins: $I_{OL} = 30$ mA, total of P38, P39, P50 to P55, P90 to P915 and their alternate-function pins: $I_{OL} = 30$ mA.
- 7. Refer to IoL1 for IoL of P36 to P39.
- **8.** Total of PCM0 to PCM3, PCS0, PCS1, PCT0, PCT1, PCT4, PCT6 and their alternate-function pins: Io_L = 30 mA, total of PDH0 to PDH5, PDL0 to PDL15 and their alternate-function pins: Io_L = 30 mA.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}) (4/6)$

	Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
	Supply current ^{Note 1} (µPD70F3313, 70F3313Y)	Idd1	Normal operation mode	fxx = 20 MHz (fx = 5 MHz) (in PLL mode) REGC = V _{DD} = 5 V ±10%		55	75	mA
			All peripheral functions operating	fxx = T.B.D. (in clock-through mode) REGC = V _{DD} = 3 V ±10%		T.B.D.	T.B.D.	mA
		Idd2	HALT mode All peripheral functions	fxx = 20 MHz (fx = 5 MHz) (in PLL mode) REGC = V _{DD} = 5 V ±10%		29	43	mA
			operating	fxx = T.B.D. (in clock-through mode) REGC = V_{DD} = 3 V ±10%		T.B.D.	T.B.D.	mA
		Іддз	IDLE mode Watch timer operating, ring	fxx = 5 MHz (when PLL mode off) REGC = V _{DD} = 5 V ±10%		2.1	3.3	mA
			oscillation stopped	fx = 8 MHz (in clock-through mode) REGC = V_{DD} = 3 V ±10%		T.B.D.	T.B.D.	mA
		Idd4	Subclock opera Main oscillation ring oscillation s			250	420	μA
4U.com		Idd5	Sub-IDLE mode (fxr = 32.768 kHz) Main oscillation stopped, ring oscillation stopped Sheet4U.com			20	75	μA
		IDD6	STOP mode	Sub-oscillation operating, ring oscillation operating		34	103	μA
				Sub-oscillation stopped (XT1 = Vss), ring oscillation operating		17.5	63.5	μA
				Sub-oscillation stopped (XT1 = Vss), ring oscillation stopped		3.5	35.5	μA
		DD7 ^{Note 2}	Ring clock opera Main oscillation sub-oscillation s			4	11	mA
	I _{DD8} ^{Note 2} Rin Mai	Ring HALT mod Main oscillation sub-oscillation s			T.B.D.	T.B.D.	mA	
		IDD9	Flash memory erase/write	fxx = 20 MHz (fx = 5 MHz) (in PLL mode) REGC = V _{DD} = 5 V ±10%		65	90	mA
				fxx = T.B.D. (in clock-through mode) REGC = V _{DD} = 3 V ±10%		T.B.D.	T.B.D.	mA

DataShe

www.DataSheet4U.com

Notes 1. Total current of VDD, EVDD, and BVDD (all ports stopped). AVREFO is not included.

- 2. The supply current of the main clock oscillator is not included since the main clock oscillator is stopped because of an abnormality.
- Remark fxx: Main clock frequency
 - fx: Main clock oscillation frequency
- DataSheet4U.com fxr: Subclock frequency

et4U.com

DC Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}) (5/6)$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Supply current ^{Note 1} (µPD70F3311, 70F3311Y)	Idd1	Normal operation mode	fxx = 20 MHz (fx = 5 MHz) (in PLL mode) REGC = V _{DD} = 5 V ±10%		51	70	mA
		All peripheral functions operating	$f_{XX} = T.B.D.$ (in clock-through mode) REGC = V _{DD} = 3 V ±10%		T.B.D.	T.B.D.	mA
	Idd2	HALT mode All peripheral functions	fxx = 20 MHz (fx = 5 MHz) (in PLL mode) REGC = V_{DD} = 5 V ±10%		25	38	mA
		operating	$f_{XX} = T.B.D.$ (in clock-through mode) REGC = V _{DD} = 3 V ±10%		T.B.D.	T.B.D.	mA
	Іддз	IDLE mode Watch timer operating, ring	$f_{XX} = 5 \text{ MHz}$ (when PLL mode off) REGC = V _{DD} = 5 V ±10%		1.8	2.9	mA
	Idd4	stopped	$f_{XX} = T.B.D.$ (in clock-through mode) REGC = V _{DD} = 3 V ±10%		T.B.D.	T.B.D.	mA
	Idd4	Subclock operation mode (fxT = 32.768 kHz) Main oscillation stopped, ring oscillation stopped			240	400	μA
	IDD5	Sub-IDLE mode Main oscillation ring oscillation		20	75	μA	
	IDD6	STOP mode	Sub-oscillation operating, ring oscillation operating		34	103	μA
			Sub-oscillation stopped (XT1 = Vss), ring oscillation operating		17.5	63.5	μA
			Sub-oscillation stopped (XT1 = Vss), ring oscillation stopped		3.5	35.5	μA
	IDD7 ^{Note 2}	Ring clock oper Main oscillation sub-oscillation s			3.5	10.5	mA
	IDD8 ^{Note 2}		le (fxx = 240 kHz) stopped,		T.B.D.	T.B.D.	mA
	IDD9	Flash memory erase/write	fxx = 20 MHz (fx = 5 MHz) (in PLL mode) REGC = V _{DD} = 5 V ±10%		61	85	mA
			$f_{XX} = T.B.D.$ (in clock-through mode) REGC = V _{DD} = 3 V ±10%		T.B.D.	T.B.D.	mA

DataShe

Notes 1. Total current of VDD, EVDD, and BVDD (all ports stopped). AVREFO is not included.

- 2. The supply current of the main clock oscillator is not included since the main clock oscillator is stopped because of an abnormality.
- Remark fxx: Main clock frequency
 - fx: Main clock oscillation frequency
 - fxT: Subclock frequency

DataSheet4U.com

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{Vss} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}) (6/6)$

	Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
	Supply current ^{Note 1} (μPD703313, 703313Y)	Idd1	Normal operation mode	fxx = 20 MHz (fx = 5 MHz) (in PLL mode) REGC = V _{DD} = 5 V ±10%		42	60	mA
			All peripheral functions operating	$f_{XX} = T.B.D.$ (in clock-through mode) REGC = V _{DD} = 3 V ±10%		T.B.D.	T.B.D.	mA
		Idd2	HALT mode All peripheral functions	fxx = 20 MHz (fx = 5 MHz) (in PLL mode) REGC = V _{DD} = 5 V ±10%		29	40	mA
			operating	fxx = T.B.D. (in clock-through mode) REGC = V_{DD} = 3 V ±10%		T.B.D.	T.B.D.	mA
	lоdз	IDLE mode Watch timer operating, ring	$f_x = 5 \text{ MHz}$ (when PLL mode off) REGC = V _{DD} = 5 V ±10%		1.7	2.7	mA	
		stopped	oscillation stopped	fx = T.B.D. (in clock-through mode) REGC = V_{DD} = 3 V ±10%		T.B.D.	T.B.D.	mA
U.com		Idd4	Subclock operation mode (fxt = 32.768 kHz) Main oscillation stopped, ring oscillation stopped			100	220	μA
		Idd5	Sub-IDLE mode Main oscillation ring oscillation s	e (fxr = 32.768 kHz) stopped,		20	75	μA
		IDD6	STOP mode	Sub-oscillation operating, ring oscillation operating		34	103	μA
				Sub-oscillation stopped (XT1 = Vss), ring oscillation operating		17.5	63.5	μA
				Sub-oscillation stopped (XT1 = Vss), ring oscillation stopped		3.5	35.5	μA
		DD7 ^{Note 2}	Ring clock oper Main oscillation sub-oscillation s	11 ?		3	9.5	mA
		DD8 ^{Note 2}	Ring HALT mod Main oscillation sub-oscillation s			T.B.D.	T.B.D.	μA

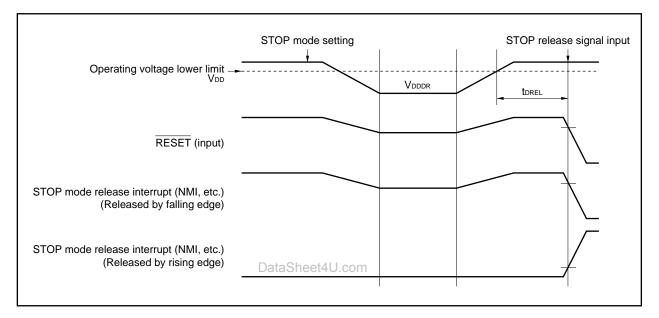
DataShe

Notes 1. Total current of VDD, EVDD, and BVDD (all ports stopped). AVREF0 is not included.

2. The supply current of the main clock oscillator is not included since the main clock oscillator is stopped because of an abnormality.

Remark fxx: Main clock frequency

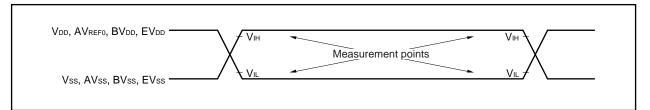
- fx: Main clock oscillation frequency
- fxT: Subclock frequency

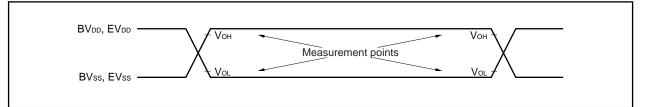

DataSheet4U.com

Data Retention Characteristics

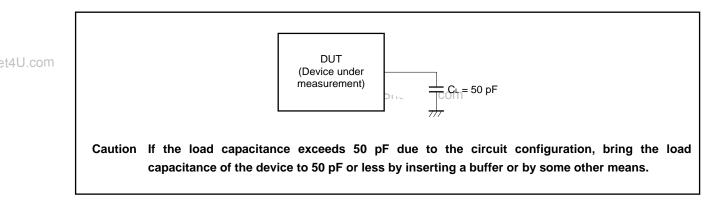
STOP Mode ($T_A = -40$ to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR	STOP mode	2.0		5.5	V
STOP release signal input time	t drel		0			μs

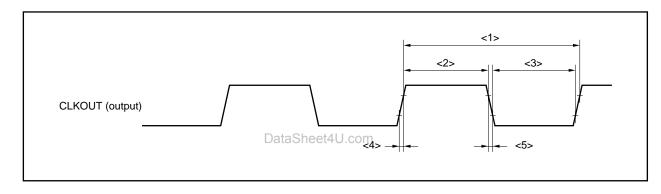

Caution Shifting to STOP mode and restoring from STOP mode must be performed within the rated operating range.


DataShee

et4U.com


AC Test Input Measurement Points

AC Test Output Measurement Points


Load Conditions

$\label{eq:clkout} \begin{array}{l} \text{CLKOUT Output Timing} \\ (\text{T}_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{\text{DD}} = \text{EV}_{\text{DD}} = \text{AV}_{\text{REF0}} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \leq \text{BV}_{\text{DD}} \leq \text{V}_{\text{DD}}, 2.7 \text{ V} \leq \text{AV}_{\text{REF1}} \leq \text{V}_{\text{DD}}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = \text{BV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, \text{C}_{\text{L}} = 50 \text{ pF} \end{array}$

Parameter	Symb	ol	Conditions	MIN.	MAX.	Unit
Output cycle	tсүк	<1>		50 ns	30.6 <i>µ</i> s	
High-level width	twкн	<2>	V _{DD} = 4.0 to 5.5 V	tсүк/2 – 17		ns
			VDD = 2.7 to 5.5 V	tсүк/2 – 26		ns
Low-level width	t wĸL	<3>	V _{DD} = 4.0 to 5.5 V	tсүк/2 – 17		ns
			VDD = 2.7 to 5.5 V	tсүк/2 – 26		ns
Rise time	t kr	<4>	V _{DD} = 4.0 to 5.5 V		17	ns
			VDD = 2.7 to 5.5 V		26	ns
Fall time	t kf	<5>	V _{DD} = 4.0 to 5.5 V		17	ns
			VDD = 2.7 to 5.5 V		26	ns

Clock Timing

DataShee

et4U.com

Bus Timing

(1) In multiplex bus mode

(a) Read/write cycle (CLKOUT asynchronous)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 4.0 \text{ to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 4.0 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}) (1/2)$

Parameter	Symbo	d	Conditions	MIN.	MAX.	Unit
Address setup time (to ASTB \downarrow)	t sast	<6>		(0.5 + tasw)T - 23		ns
Address hold time (from ASTB \downarrow)	t HSTA	<7>		(0.5 + tasw)T – 15		ns
Delay time from $\overline{\mathrm{RD}}\downarrow$ to address float	t frda	<8>			16	ns
Data input setup time from address	tsaid	<9>			(2 + n + tasw + tahw)T - 40	ns
Data input setup time from $\overline{RD}\downarrow$	tsrid	<10>			(1 + n + tasw + taнw)T – 25	ns
Delay time from ASTB \downarrow to \overline{RD} , $\overline{WRm}\downarrow$	t dstrdwr	<11>		(0.5 + tанw)T – 20		ns
Data input hold time (from \overline{RD})	thrdid	<12>		0		ns
Address output time from $\overline{RD}\uparrow$	t drda	<13>		(1 + i)T – 16		ns
Delay time from RD, WRm↑ to ASTB↑	t DRDWRST	<14>		0.5T – 10		ns
Delay time from \overline{RD} to $ASTB\downarrow$	t DRDST	<15>		(1.5 + i + tasw)T – 10		ns
RD, WRm low-level width	twrdwrl	<16>		(1 + n)T – 10		ns
ASTB high-level width	twsтн	<17>		(1 + tasw)T – 25		ns
Data output time from $\overline{WRm} \downarrow$	towrod	<18>			20	ns
Data output setup time (to $\overline{\text{WRm}}$)	tsodwr	Q193	Sheet4U.com	(1 + n)T – 25		ns
Data output hold time (from WRm↑)	thwrod	<20>		T – 15		ns
WAIT setup time (to address)	tsawt1	<21>	n ≥ 1		(1.5 + tasw + tahw)T - 45	ns
	tsawt2	<22>			(1.5 + n + tasw + tahw)T – 45	ns
WAIT hold time (from address)	thawt1	<23>	n ≥ 1	(0.5 + n + tasw + taнw)Т		ns
	thawt2	<24>		(1.5 + n + tasw + taнw)Т		ns
WAIT setup time (to ASTB↓)	tsstwt1	<25>	n ≥ 1		(1 + tанw)T – 32	ns
	tsstwt2	<26>			(1 + n + tанw)T – 32	ns
WAIT hold time (from ASTB↓)	tHSTWT1	<27>	n ≥ 1	(n + tанw)Т		ns
	tHSTWT2	<28>		(1 + n + tанw)Т		ns

DataShe

Remarks 1. tASW: Number of address setup wait clocks

tahw: Number of address hold wait clocks

- 2. T = 1/fcpu (fcpu: CPU operating clock frequency)
- n: Number of wait clocks inserted in the bus cycle The sampling timing changes when a programmable wait is inserted.
- **4.** m = 0, 1
- 5. i: Number of idle states inserted after a read cycle (0 or 1)
- 6. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

DataSheet4U.com

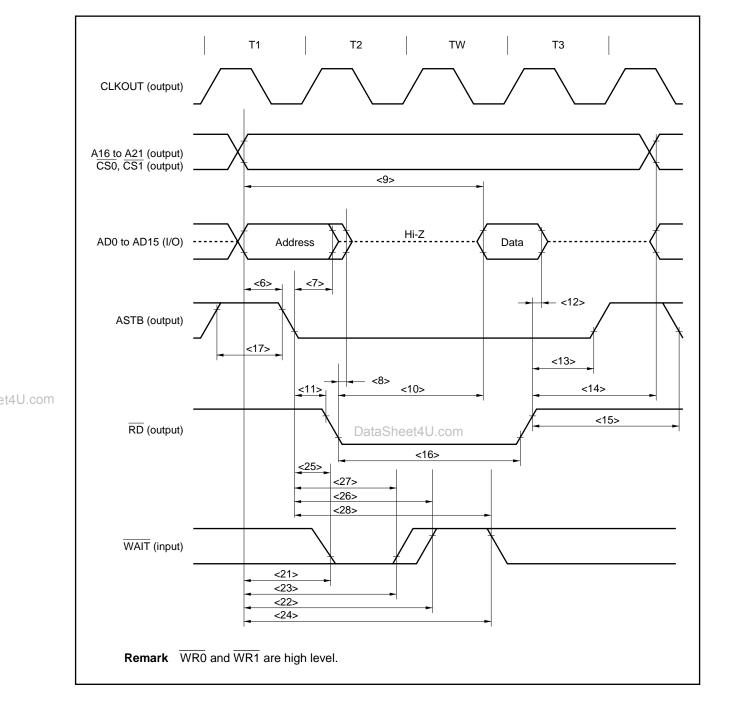
et4U.com

www.DataSheet4U.com

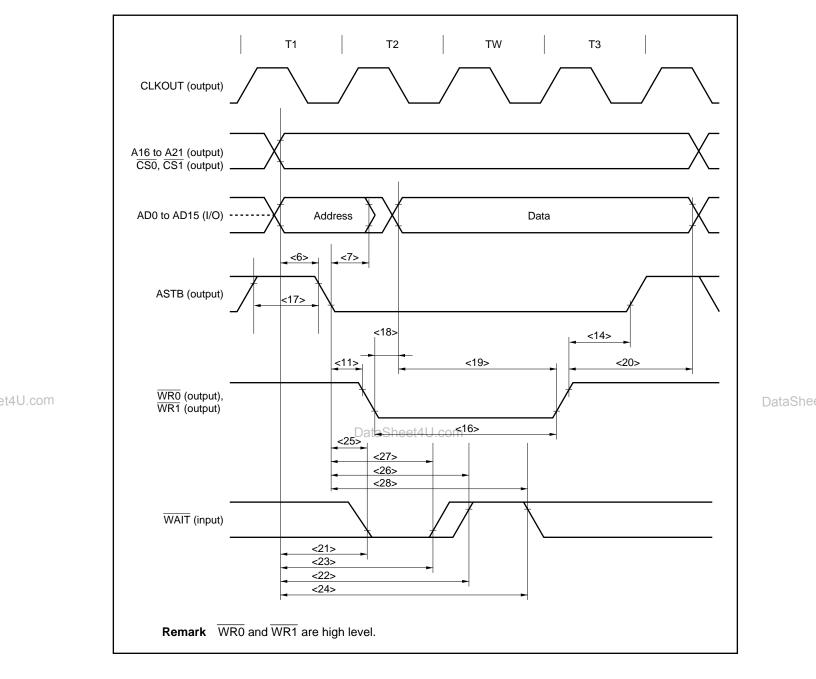
Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Address setup time (to ASTB \downarrow)	t sast	<6>		(0.5 + tasw)T - 42		ns
Address hold time (from ASTB \downarrow)	t hsta	<7>		(0.5 + tasw)T - 30		ns
Delay time from $\overline{RD}\downarrow$ to address float	t frda	<8>			32	ns
Data input setup time from address	t SAID	<9>			(2 + n + tasw + taнw)T - 72	ns
Data input setup time from $\overline{RD}\downarrow$	tsrid	<10>			(1 + n + tasw + tahw)T - 40	ns
Delay time from ASTB \downarrow to $\overline{RD}, \overline{WRm}\downarrow$	t dstrdwr	<11>		(0.5 + tанw)T – 35		ns
Data input hold time (from \overline{RD})		<12>		0		ns
Address output time from $\overline{RD} \uparrow$	t drda	<13>		(1 + i)T – 32		ns
Delay time from RD, WRm↑ to ASTB↑	t DRDWRST	<14>		0.5T – 20		ns
Delay time from \overline{RD} to $ASTB\downarrow$	t drdst	<15>		(1.5 + i + tasw)T – 20		ns
RD, WRm low-level width	twrdwrl	<16>		(1 + n)T – 20		ns
ASTB high-level width	twsтн	<17>		(1 + tasw)T – 50		ns
Data output time from $\overline{WRm} \downarrow$	towrod	<18>			35	ns
Data output setup time (to \overline{WRm})	tsodwr	<19>		(1 + n)T – 40		ns
Data output hold time (from $\overline{\text{WRm}}^\uparrow$)	thwrod	<20>		T – 30		ns
WAIT setup time (to address)	tsawt1	<21>	n ≥ 1		(1.5 + tasw + tahw)T - 80	ns
	tsawt2	<22>			(1.5 + n + tasw + tahw)T - 80	ns
WAIT hold time (from address)	thawt1	<23>	n ≥ 1	(0.5 + n + tasw + taнw)Т		ns
	thawt2 Data	s<24>	4U.com	(1.5 + n + tasw + taнw)Т		ns
$\overline{\text{WAIT}}$ setup time (to ASTB \downarrow)	tsstwt1	<25>	n ≥ 1		(1 + tанw)T – 60	ns
	tsstwt2	<26>			(1 + n + tанw)T – 60	ns
WAIT hold time (from ASTB↓)	tHSTWT1	<27>	n ≥ 1	(n + tанw)Т		ns
	tHSTWT2	<28>		(1 + n + tанw)Т		ns

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vdd} = \text{EVdd} = \text{AV}_{\text{REF0}} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BVdd} \le \text{Vdd}, 2.7 \text{ V} \le \text{AV}_{\text{REF1}} \le \text{Vdd}, \text{Vss} = \text{EVss} = 1000 \text{ s}^{-1}\text{C}$	
BVss = AVss = 0 V, C∟ = 50 pF) (2/2)	

Caution Set the following in accordance with the usage conditions of the CPU operating clock frequency (k = 0, 1).


• 70 ns < 1/fcpu < 84 ns

Set an address setup wait (AWC.ASWk bit = 1).


- 62.5 ns < 1/fcpu < 70 ns
 Set an address setup wait (ASWk bit = 1) and address hold wait (AWC.AHWk bit = 1).
- Remarks 1. tasw: Number of address setup wait clocks
 - tanw: Number of address hold wait clocks
 - 2. T = 1/fcpu (fcpu: CPU operating clock frequency)
 - n: Number of wait clocks inserted in the bus cycle The sampling timing changes when a programmable wait is inserted.
 - **4.** m = 0, 1
 - 5. i: Number of idle states inserted after a read cycle (0 or 1)
 - 6. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

et4U.com

769

Write Cycle (CLKOUT Asynchronous): In Multiplex Bus Mode

(b) Read/write cycle (CLKOUT synchronous): In multiplex bus mode

Parameter	Sym	bol	Conditions	MIN.	MAX.	Unit
Delay time from CLKOUT↑ to address	t dka	<29>		0	19	ns
Delay time from CLKOUT↑ to address float	t fka	<30>		0	14	ns
Delay time from CLKOUT \downarrow to ASTB	t DKST	<31>		0	23	ns
Delay time from CLKOUT↑ to RD, WRm	t dkrdwr	<32>		-22	0	ns
Data input setup time (to CLKOUT \uparrow)	t sidk	<33>		15		ns
Data input hold time (from CLKOUT \uparrow)	tнкір	<34>		0		ns
Data output delay time from CLKOUT↑	tdкор	<35>			19	ns
$\overline{\text{WAIT}}$ setup time (to CLKOUT \downarrow)	tswтк	<36>		15		ns
WAIT hold time (from CLKOUT↓)	tнкwт	<37>		0		ns

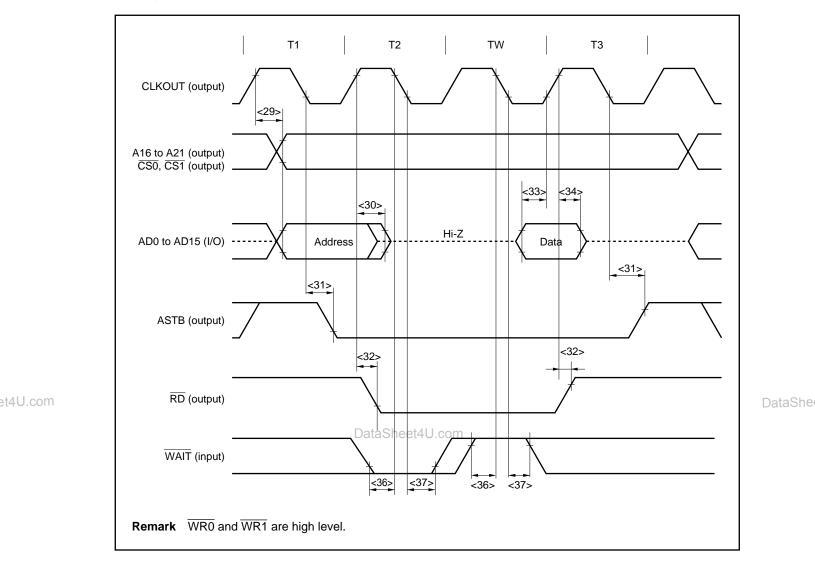
$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{\text{REF0}} = 4.0 \text{ to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 4.0 \text{ V} \le \text{AV}_{\text{REF1}} \le \text{V}_{DD}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 10^{\circ}\text{C}, \text{V}_{\text{SS}} =$ $BV_{SS} = AV_{SS} = 0 V, C_{L} = 50 pF$) (1/2)

Remarks 1. m = 0, 1

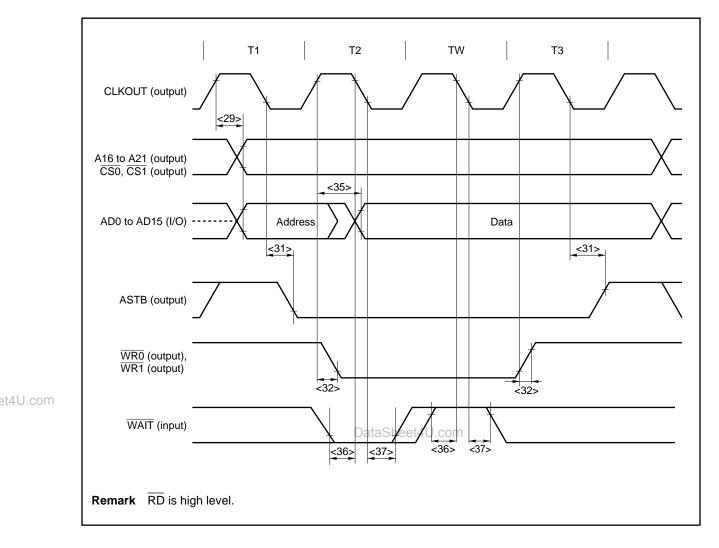
et4U.com

2. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

(T_A = -40 to +85°C, V_D = EV_D = AV_{REF0} = 2.7 to 5.5 V, 2.7 V ≤ BV_D ≤ V_D, 2.7 V ≤ AV_{REF1} ≤ V_D, V_S = EV_S = BVss = AVss = 0 V, CL = 50 pF) (2/2)


Parameter	Sym	bol	Conditions	MIN.	MAX.	Unit
Delay time from CLKOUT↑ to address	t dka	<29>		0	19	ns
Delay time from CLKOUT↑ to address	t fka	DataShe	et4U.com	0	18	ns
float						
Delay time from CLKOUT \downarrow to ASTB	t dkst	<31>		0	55	ns
Delay time from CLKOUT↑ to RD, WRm	t dkrdwr	<32>		-22	0	ns
Data input setup time (to CLKOUT [↑])	t sidk	<33>		30		ns
Data input hold time (from CLKOUT [↑])	t hkid	<34>		0		ns
Data output delay time from CLKOUT↑	t dkod	<35>			19	ns
$\overline{\text{WAIT}}$ setup time (to CLKOUT \downarrow)	tswтк	<36>		25		ns
WAIT hold time (from CLKOUT↓)	tнкwт	<37>		0		ns

DataShe


www.DataSheet4U.com

Remarks 1. m = 0, 1

2. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

Read Cycle (CLKOUT Synchronous): In Multiplex Bus Mode

Write Cycle (CLKOUT Synchronous): In Multiplex Bus Mode

(2) In separate bus mode

(a) Read cycle (CLKOUT asynchronous): In separate bus mode

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 4.0 \text{ to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 4.0 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{C}_{L} = 50 \text{ pF}) (1/2)$

Parameter	Symb	ol	Conditions	MIN.	MAX.	Unit
Address setup time (to $\overline{RD}\downarrow$)	t sard	<38>		(0.5 + tasw)T – 50		ns
Address hold time (from $\overline{RD}\uparrow$)	thard	<39>		iT – 13		ns
RD low-level width	twrdl	<40>		(1.5 + n + tанw)T – 15		ns
Data setup time (to $\overline{RD}\uparrow$)	tsisp	<41>		30		ns
Data hold time (from $\overline{RD}\uparrow$)	thisd	<42>		0		ns
Data setup time (to address)	tsaid	<43>			(2 + n + tasw + taнw)T – 65	ns
$\overline{\text{WAIT}}$ setup time (to $\overline{\text{RD}}\downarrow$)	tsrdwt1	<44>			(0.5 + tанw)T – 32	ns
	tsrdwt2	<45>			(0.5 + n + tанw)T – 32	ns
$\overline{\text{WAIT}}$ hold time (from $\overline{\text{RD}}\downarrow$)	thrdwt1	<46>		(n – 0.5 + tанw)Т		ns
	thrdwt2	<47>		(n + 0.5 + tанw)Т		ns
WAIT setup time (to address)	tsawt1	<48>			(1 + tasw + taнw)T – 65	ns
	tsawt2	<49>			(1 + n + tasw + tahw)T - 65	ns
WAIT hold time (from address)	thawt1	<50>		(n + tasw + taнw)T		ns
	thawt2	<51>		(1 + n + tasw + taнw)Т		ns

DataShee

et4U.com

Caution Set the following in accordance with the usage conditions of the CPU operating clock frequency (k DataSheet4U.com

• 1/fcpu < 100 ns

Set an address setup wait (ASWk bit = 1).

Remarks 1. tasw: Number of address setup wait clocks

tanw: Number of address hold wait clocks

- 2. T = 1/fcpu (fcpu: CPU operating clock frequency)
- $\ensuremath{\textbf{3.}}$ n: Number of wait clocks inserted in the bus cycle
 - The sampling timing changes when a programmable wait is inserted
- 4. i: Number of idle states inserted after a read cycle (0 or 1)
- 5. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

Parameter	Symb	ol	Conditions	MIN.	MAX.	Unit
Address setup time (to $\overline{RD}\downarrow$)	tsard	<38>		(0.5 + tasw)T – 100		ns
Address hold time (from $\overline{RD}\uparrow$)	thard	<39>		iT – 26		ns
RD low-level width	twrdl	<40>		(1.5 + n + tанw)T – 30		ns
Data setup time (to \overline{RD})	tsisd	<41>		60		ns
Data hold time (from $\overline{RD}\uparrow$)	thisd	<42>		0		ns
Data setup time (to address)	t SAID	<43>			(2 + n + tasw + taнw)T – 120	ns
$\overline{\text{WAIT}}$ setup time (to $\overline{\text{RD}}\downarrow$)	tsrdwt1	<44>			(0.5 + tанw)T – 50	ns
	tsrdwt2	<45>			(0.5 + n + tанw)T – 50	ns
$\overline{\text{WAIT}}$ hold time (from $\overline{\text{RD}}\downarrow$)	thrdwt1	<46>		(n – 0.5 + tанw)Т		ns
	thrdwt2	<47>		(n + 0.5 + tанw)Т		ns
WAIT setup time (to address)	tsawt1	<48>			(1 + tasw + tahw)T – 130	ns
	tsawt2	<49>			(1 + n + tasw + taнw)T – 130	ns
WAIT hold time (from address)	thawt1	<50>		(n + tasw + taнw)T		ns
	thawt2	<51>		(1 + n + tasw + taнw)Т		ns

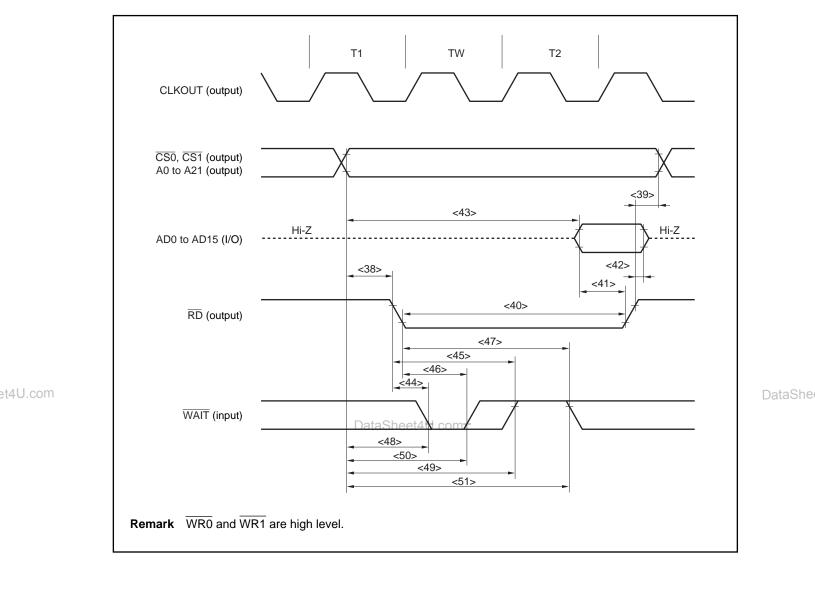
$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{\text{REF0}} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \leq \text{BV}_{DD} \leq \text{V}_{DD}, 2.7 \text{ V} \leq \text{AV}_{\text{REF1}} \leq \text{V}_{DD}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 10^{\circ}\text{C}, \text{V}_{\text{SS}} =$	
BVss = AVss = 0 V, CL = 50 pF) (2/2)	

Caution Set the following in accordance with the usage conditions of the CPU operating clock frequency (k = 0, 1).

et4U.com

• 1/fcpu < 200 ns

Set an address setup wait (ASWk bit = 1). DataSheet4U.com


Remarks 1. tasw: Number of address setup wait clocks

tanw: Number of address hold wait clocks

- 2. T = 1/fcpu (fcpu: CPU operating clock frequency)
- 3. n: Number of wait clocks inserted in the bus cycle

The sampling timing changes when a programmable wait is inserted.

- 4. i: Number of idle states inserted after a read cycle (0 or 1)
- 5. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

Read Cycle (CLKOUT Asynchronous): In Separate Bus Mode

(b) Write cycle (CLKOUT asynchronous): In separate bus mode

$DV_{33} = AV_{33} = 0$ V, $CL = 30$ pr) (1	·-,					
Parameter	Symb	ol	Conditions	MIN.	MAX.	Unit
Address setup time (to $\overline{WRm}\downarrow$)	t sawr	<52>		(1 + tasw + taнw)T – 60		ns
Address hold time (from \overline{WRm})	t HAWR	<53>		0.5T – 10		ns
WRm low-level width	twwrl	<54>		(0.5 + n)T – 10		ns
Data output start time from $\overline{\text{WRm}} \downarrow$	toosow	<55>		-5		ns
Data setup time (to \overline{WRm})	tsosdw	<56>		(0.5 + n)T – 20		ns
Data hold time (from $\overline{\text{WRm}}$)	thosdw	<57>		0.5T – 20		ns
Data setup time (to address)	t saod	<58>		(1 + tasw + tahw)T – 30		ns
$\overline{\text{WAIT}}$ setup time (to $\overline{\text{WRm}}\downarrow$)	tswrwt1	<59>		30		ns
	tswrwt2	<60>			nT – 30	ns
$\overline{\text{WAIT}}$ hold time (from $\overline{\text{WRm}}\downarrow$)	thwrwt1	<61>		0		ns
	thwrwt2	<62>		nT		ns
$\overline{\text{WAIT}}$ setup time (to address)	tsawt1	<63>			(1 + tasw + taнw)T – 45	ns
	tsawt2	<64>			(1 + n + tasw + taнw)T – 45	ns
$\overline{\text{WAIT}}$ hold time (from address)	thawt1	<65>		(n + tasw + taнw)T		ns
	thawt2	<66>		(1 + n + tasw + taнw)Т		ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 4.0 \text{ to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 4.0 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF} (1/2)$

et4U.com

Caution Set the following in accordance with the usage conditions of the CPU operating clock frequency (k = 0, 1).

DataShee

= 0, 1).

DataSheet4U.com

1/fcpu < 60 ns
 Set an address setup wait (ASWk bit = 1).

Remarks 1. m = 0, 1

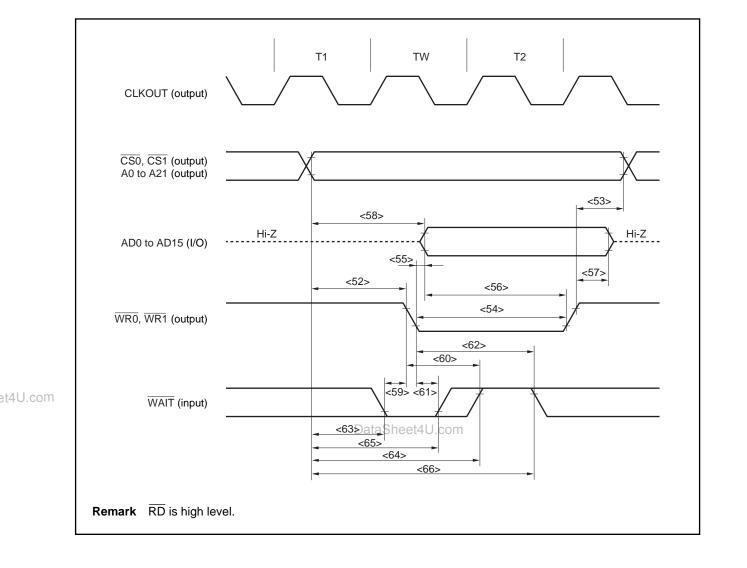
- 2. tasw: Number of address setup wait clocks
 - tahw: Number of address hold wait clocks
- **3.** T = 1/fcpu (fcpu: CPU operating clock frequency)
- 4. n: Number of wait clocks inserted in the bus cycle
 - The sampling timing changes when a programmable wait is inserted.
- 5. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

Parameter	Symb	ol	Conditions	MIN.	MAX.	Unit
Address setup time (to $\overline{\text{WRm}}\downarrow$)	t sawr	<52>		(1 + tasw + tанw)T – 100		ns
Address hold time (from WRm↑)	t hawr	<53>		0.5T – 10		ns
WRm low-level width	twwrl	<54>		(0.5 + n)T – 10		ns
Data output time from $\overline{\text{WRm}}\downarrow$	toosdw	<55>		-5		ns
Data setup time (to $\overline{\text{WRm}}^\uparrow$)	tsosdw	<56>		(0.5 + n)T – 35		ns
Data hold time (from \overline{WRm})	t HOSDW	<57>		0.5T – 35		ns
Data setup time (to address)	t saod	<58>		(1 + tasw + tahw)T – 55		ns
$\overline{\text{WAIT}}$ setup time (to $\overline{\text{WRm}}\downarrow$)	tswrwt1	<59>		50		ns
	tswrwt2	<60>			nT – 50	ns
$\overline{\text{WAIT}}$ hold time (from $\overline{\text{WRm}}\downarrow$)	t HWRWT1	<61>		0		ns
	thwrwt2	<62>		nT		ns
WAIT setup time (to address)	tsawt1	<63>			(1 + tasw + tahw)T – 100	ns
	tsawt2	<64>			(1 + n + tasw + taнw)T – 100	ns
WAIT hold time (from address)	thawt1	<65>		(n + tasw + tahw)Т		ns
	thawt2	<66>		(1 + n + tasw + tahw)T		ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}$ (2/2)

Caution Set the following in accordance with the usage conditions of the CPU operating clock frequency (k

et4U.com


= 0, 1).

DataShe

• 1/fcpu < 100 ns Set an address setup wait (ASWk bit = 1).

Remarks 1. m = 0, 1

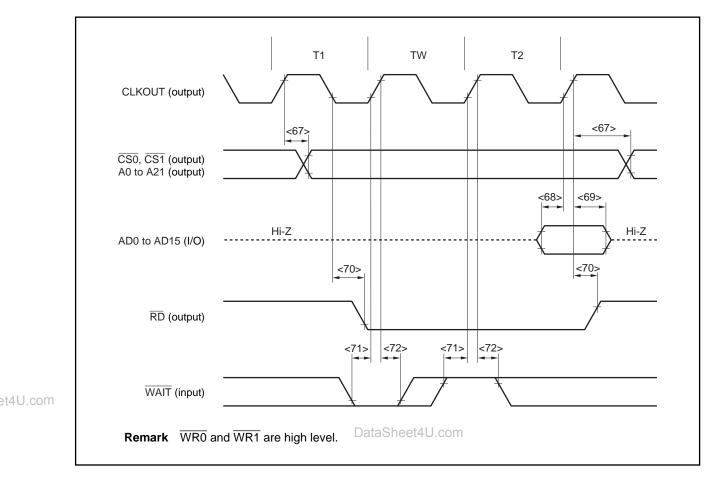
- 2. tasw: Number of address setup wait clocks tahw: Number of address hold wait clocks
- **3.** T = 1/fcpu (fcpu: CPU operating clock frequency)
- n: Number of wait clocks inserted in the bus cycle The sampling timing changes when a programmable wait is inserted.
- 5. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

Write Cycle (CLKOUT Asynchronous): In Separate Bus Mode

(c) Read cycle (CLKOUT synchronous): In separate bus mode

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 4.0 \text{ to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 4.0 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}) (1/2)$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Delay time from CLKOUT↑ to address, CS	t dksa	<67>		0	35	ns
Data input setup time (to CLKOUT↑)	t sisdk	<68>		15		ns
Data input hold time (from CLKOUT [↑])	t hkisd	<69>		0		ns
Delay time from CLKOUT↓↑ to RD	t dksr	<70>		0	6	ns
WAIT setup time (to CLKOUT [↑])	tswтк	<71>		20		ns
WAIT hold time (from CLKOUT [↑])	tнкwт	<72>		0		ns


Remark The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{C}_{L} = 50 \text{ pF}$ (2/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Delay time from CLKOUT↑ to address, CS	t dksa	<67>		0	65	ns
Data input setup time (to CLKOUT↑)	t sisdk	<68>		30		ns
Data input hold time (from CLKOUT [↑])	t hkisd	<69>		0		ns
Delay time from CLKOUT $\downarrow\uparrow$ to \overline{RD}	t dksr	<70>		0	10	ns
WAIT setup time (to CLKOUT [↑])	tswтк D	a ≵71 Shi	eet4U.com	40		ns
WAIT hold time (from CLKOUT↑)	tнкwт	<72>		0		ns

DataShee

Remark The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

Read Cycle (CLKOUT Synchronous, 1 Wait): In Separate Bus Mode

(d) Write cycle (CLKOUT synchronous): In separate bus mode

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 4.0 \text{ to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 4.0 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}) (1/2)$

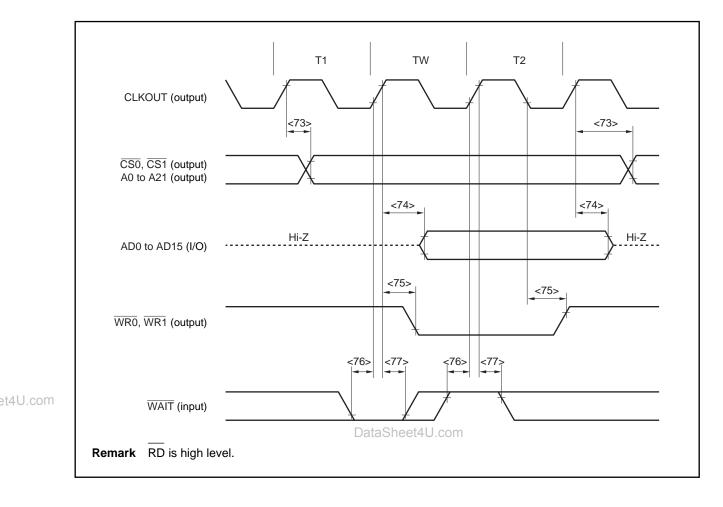
Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Delay time from CLKOUT↑ to address, CS	t dksa	<73>		0	35	ns
Data output delay time from CLKOUT↑	t dksd	<74>		0	10	ns
Delay time from CLKOUT $\uparrow \downarrow$ to WRm	t oksw	<75>		0	10	ns
WAIT setup time (to CLKOUT [↑])	t swtĸ	<76>		20		ns
WAIT hold time (from CLKOUT [↑])	t hkwt	<77>		0		ns

Remarks 1. m = 0, 1

2. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF} (2/2)$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Delay time from CLKOUT↑ to address, CS	t dksa	<73>		0	65	ns
Data output delay time from CLKOUT↑	t dksd	<74>		0	15	ns
Delay time from CLKOUT $\uparrow \downarrow$ to \overline{WRm}	toksw	<75>		0	15	ns
WAIT setup time (to CLKOUT [↑])	tswтк	<76>	ee(40.0011	40		ns
WAIT hold time (from CLKOUT↑)	tнкwт	<77>		0		ns


DataShe

Remarks 1. m = 0, 1

2. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

DataSheet4U.com

et4U.com

Write Cycle (CLKOUT Synchronous): In Separate Bus Mode

(3) Bus hold

(a) CLKOUT asynchronous

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 4.0 \text{ to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 4.0 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}) (1/2)$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
HLDRQ high-level width	twнqн	<78>		T + 10		ns
HLDAK low-level width	t whal	<79>		T – 15		ns
Delay time from HLDAK↑ to bus output	t DHAC	<80>		-40		ns
Delay time from $\overline{\text{HLDRQ}}\downarrow$ to $\overline{\text{HLDAK}}\downarrow$	tdhqha1	<81>			(2n + 7.5)T + 40	ns
Delay time from HLDRQ↑ to HLDAK↑	tdhqha2	<82>		0.5T	1.5T + 40	ns

Remarks 1. T = 1/fcpu (fcpu: CPU operating clock frequency)

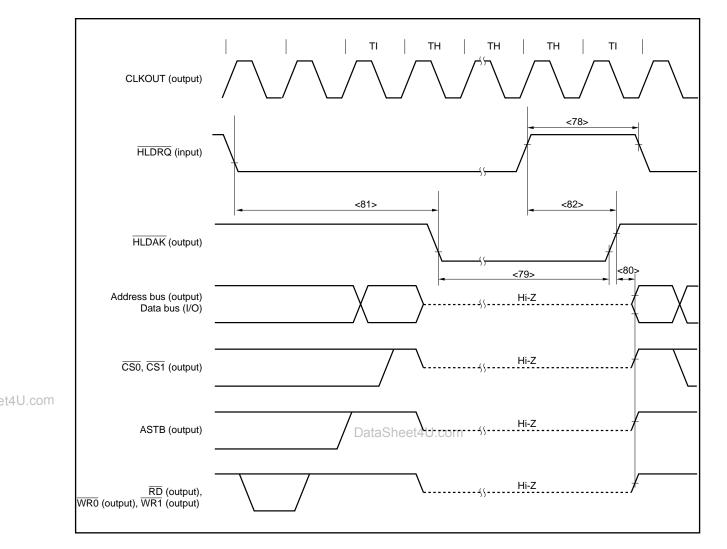
2. n: Number of wait clocks inserted in the bus cycle

The sampling timing changes when a programmable wait is inserted.

3. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}) (2/2)$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
HLDRQ high-level width	twнqн	<78>		T + 10		ns
HLDAK low-level width	t whal	<79>		T – 15		ns
Delay time from $\overline{\text{HLDAK}}$ to bus output	tohac Data	S ≮80> t∠	4U.com	-80		ns
Delay time from $\overline{\text{HLDRQ}}\downarrow$ to $\overline{\text{HLDAK}}\downarrow$	t dhqha1	<81>			(2n + 7.5)T + 70	ns
Delay time from $\overline{\text{HLDRQ}}\uparrow$ to $\overline{\text{HLDAK}}\uparrow$	tdhqha2	<82>		0.5T	1.5T + 70	ns


Remarks 1. T = 1/fcpu (fcpu: CPU operating clock frequency)

2. n: Number of wait clocks inserted in the bus cycle

The sampling timing changes when a programmable wait is inserted.

3. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

Bus Hold (CLKOUT Asynchronous)

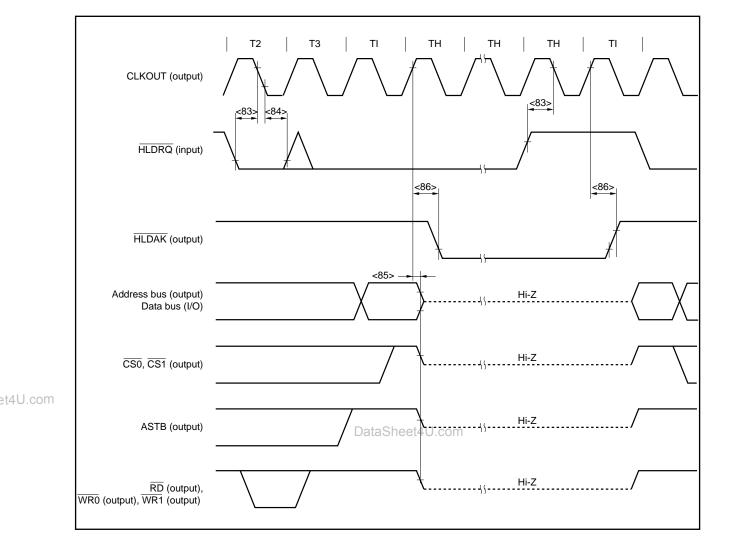
(b) CLKOUT synchronous

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 4.0 \text{ to } 5.5 \text{ V}, 4.0 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 4.0 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}) (1/2)$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
\overline{HLDRQ} setup time (to CLKOUT \downarrow)	tsнак	<83>		15		ns
HLDRQ hold time (from CLKOUT↓)	tнкнq	<84>		0		ns
Delay time from CLKOUT↑ to bus float	t dkf	<85>			20	ns
Delay time from CLKOUT↑ to HLDAK	t dkha	<86>			20	ns

Remark The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{C}_{L} = 50 \text{ pF}) (2/2)$


Parameter	Symbol		Conditions	MIN.	MAX.	Unit
\overline{HLDRQ} setup time (to CLKOUT \downarrow)	tsнак	<83>		25		ns
HLDRQ hold time (from CLKOUT↓)	tнкнq	<84>		0		ns
Delay time from CLKOUT↑ to bus float	t dkf	<85>			40	ns
Delay time from CLKOUT↑ to HLDAK	t dkha	<86>			40	ns

Remark The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1.

et4U.com

DataShe

DataSheet4U.com

Bus Hold (CLKOUT Synchronous)

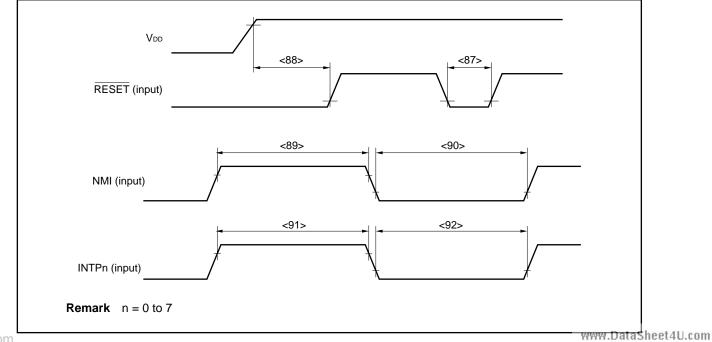
Basic Operation

(1) Reset/external interrupt timing

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF})$

Parameter	Sym	bol		Conditions	MIN.	MAX.	Unit
RESET low-level width ^{Note}	twrsl1	<87>	Reset in power-on	When digital noise elimination not selected	2		μS
			e	When digital noise elimination selected	$Nr imes t_{RSMP} + 2$		μs
	twrsl2	<88>	Power-on reset		3		ms
NMI high-level width	twniн	<89>	Analog noise el	imination	1		μs
NMI low-level width	twnil	<90>	Analog noise el	imination	1		μs
INTPn high-level width	twiтн	<91>	n = 0 to 7 (anal	og noise elimination)	600		ns
			n = 3 (when dig	ital noise elimination selected)	Ni × tismp + 200		ns
INTPn low-level width	t witl	<92>	n = 0 to 7 (anal	og noise elimination)	600		ns
			n = 3 (when dig	ital noise elimination selected)	Ni × tismp + 200		ns

Note The RESET low-level width is when the RESET pin input is valid (when POCRES is invalid).


Remarks 1. Nr: Number of samplings

 $\ensuremath{\mathsf{tRSMP}}$: Digital noise elimination sampling clock cycle of $\overline{\ensuremath{\mathsf{RESET}}}$ pin

DataShe

- Ni: Number of samplings
- tismp: Digital noise elimination sampling clock cycle of INTP3 pin
- **2.** The above specification shows the pulse width that is accurately detected as a valid edge. If a pulse narrower than the above specification is input, therefore, it may also be detected as a valid edge.

Reset/Interrupt

DataSheet4U.com

et4U.com

Timer Timing

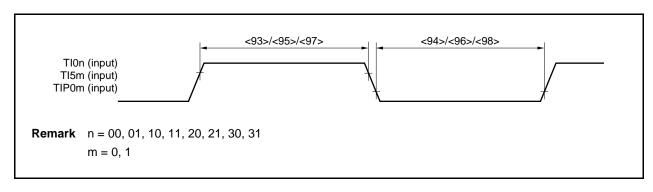
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{ C}_{L} = 50 \text{ pF}$

Parameter	Syr	nbol	Conditions	MIN.	MAX.	Unit
TI0n high-level width	tтюн	<93>	$REGC = V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$	2T _{smp0} + 100 ^{Note 1}		ns
			$\begin{aligned} \text{REGC} &= \text{Capacity}, \text{V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{aligned}$	2T _{smp0} + 200 ^{Note 1}		ns
TI0n low-level width	t⊤ıo∟	<94>	$REGC = V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$	2T _{smp0} + 100 ^{Note 1}		ns
			$\begin{aligned} \text{REGC} &= \text{Capacity, V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{aligned}$	2T _{smp0} + 200 ^{Note 1}		ns
TI5m high-level width	t ⊤i5H	<95>	REGC = V _{DD} = 4.0 to 5.5 V	50		ns
			$\begin{aligned} \text{REGC} &= \text{Capacity, V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{aligned}$	100		ns
TI5m low-level width	tti5L	<96>	REGC = V _{DD} = 4.0 to 5.5 V	50		ns
			$\begin{aligned} REGC &= Capacity, V_{DD} = 4.0 \text{ to } 5.5 \text{ V}, \\ REGC &= V_{DD} = 2.7 \text{ to } 5.5 \text{ V} \end{aligned}$	100		ns
TIP0m high-level width	tтірн	<97>	REGC = V _{DD} = 4.0 to 5.5 V	$np \times T_{smpp} + 100^{\text{Note 2}}$		ns
			$\begin{aligned} \text{REGC} &= \text{Capacity}, \text{V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{aligned}$	$np \times T_{smpp} + 200^{\text{Note 2}}$		ns
TIP0m low-level width	t TIPL	<98>	REGC = V _{DD} = 4.0 to 5.5 V	$np \times T_{\text{smpp}} + 100^{\text{Note 2}}$		ns
			$\begin{aligned} \text{REGC} &= \text{Capacity, V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{aligned}$	$np \times T_{\text{smpp}} + 200^{\text{Note 2}}$		ns

DataShe

Notes 1. T_{smp0}: Timer 0 count clock cycle

However, $T_{smp0} = 4/fxx$ when TI0n is used as an external clock.


 T_{smpp}: Digital noise elimination sampling clock cycle of TIP0m pin If TIP00 is used as an external event count input or an external trigger input, however, T_{smpp} = 0 (digital noise is not eliminated).

Remarks 1. n = 00, 01, 10, 11, 20, 21, 30, 31

m = 0, 1

2. The above specification shows the pulse width that is accurately detected as a valid edge. If a pulse narrower than the above specification is input, therefore, it may also be detected as a valid edge.

Timer Input Timing

DataSheet4U.com

et4U.com

UART Timing (TA = -40 to +85°C, VDD = EVDD = AVREF0 = 2.7 to 5.5 V, 2.7 V \leq BVDD \leq VDD, 2.7 V \leq AVREF1 \leq VDD, VSS = EVSS = BVSS = AVSS = 0 V, CL = 50 pF)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transmit rate				312.5	kbps
ASCK0 frequency		REGC = V _{DD} = 4.0 to 5.5 V		12	MHz
		$\begin{aligned} \text{REGC} &= \text{Capacity}, \text{V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{aligned}$		6	MHz

et4U.com

DataShe

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

CSI0 Timing

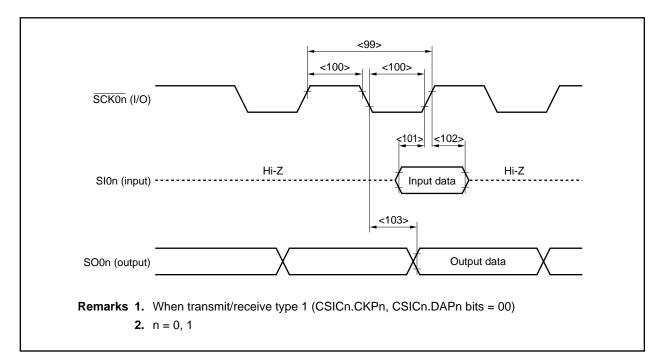
(1) Master mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
SCK0n cycle time	tkCY1	<99>	$REGC = V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$	200		ns
			$\begin{aligned} REGC &= Capacity, V_{DD} = 4.0 \text{ to } 5.5 \text{ V}, \\ REGC &= V_{DD} = 2.7 \text{ to } 5.5 \text{ V} \end{aligned}$	400		ns
SCK0n high-/low-level width	t кн1, t к∟1	<100>		tkcy1/2-30		ns
SI0n setup time (to SCK0n)	tsik1	<101>	$REGC = V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$	30		ns
			$\begin{aligned} REGC &= Capacity, V_{DD} = 4.0 \text{ to } 5.5 \text{ V}, \\ REGC &= V_{DD} = 2.7 \text{ to } 5.5 \text{ V} \end{aligned}$	50		ns
SI0n hold time (from SCK0n)	tksi1	<102>	REGC = V _{DD} = 5 V ±10%	30		ns
			$\begin{aligned} \text{REGC} &= \text{Capacity}, \text{V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{aligned}$	50		ns
Delay time from SCK0n to SO0n output	tkso1	<103>	REGC = V _{DD} = 4.0 to 5.5 V		30	ns
			$\begin{aligned} \text{REGC} &= \text{Capacity}, \text{V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{aligned}$		60	ns

Remark n = 0, 1

(2) Slave mode


et4U.com

 $(T_A = -40 \text{ to } +85^\circ\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{\text{REF0}} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \leq \text{BV}_{DD} \leq \text{V}_{DD}, 2.7 \text{ V} \leq \text{AV}_{\text{REF1}} \leq \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{C}_{L} = 50 \text{ pF}$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
SCK0n cycle time	t ксү2	<99>	REGC = V _{DD} = 4.0 to 5.5 V	200		ns
			$\label{eq:REGC} \begin{split} \text{REGC} &= \text{Capacity}, \text{V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{split}$	400		ns
SCK0n high-/low-level width	tкн2, tкL2	<100>	$REGC = V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$	45		ns
			$\label{eq:REGC} \begin{split} \text{REGC} &= \text{Capacity}, \text{V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{split}$	90		ns
SI0n setup time (to SCK0n)	tsik2	<101>	$REGC = V_{DD} = 4.0$ to 5.5 V	30		ns
			$\label{eq:REGC} \begin{split} \text{REGC} &= \text{Capacity}, \text{V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{split}$	60		ns
SI0n hold time (from SCK0n)	tksı2	<102>	REGC = V _{DD} = 4.0 to 5.5 V	30		ns
			$\label{eq:REGC} \begin{split} REGC &= Capacity, V_{DD} = 4.0 \text{ to } 5.5 \text{ V}, \\ REGC &= V_{DD} = 2.7 \text{ to } 5.5 \text{ V} \end{split}$	60		ns
Delay time from SCK0n to SO0n output	tĸso2	<103>	$REGC = V_{DD} = 4.0$ to 5.5 V		50	ns
			$\label{eq:REGC} \begin{split} \text{REGC} &= \text{Capacity}, \text{V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{split}$		100	ns

Remark n = 0, 1

CSI0 Timing

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

CSIA Timing

(1) Master mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF}$

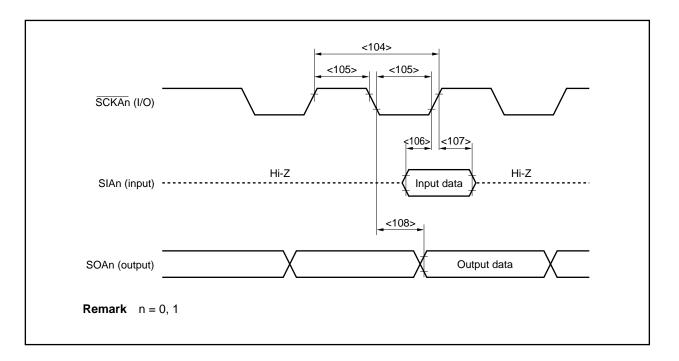
Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
SCKAn cycle time	tксүз	<104>	REGC = V_{DD} = 4.0 to 5.5 V	500		ns
			$\label{eq:REGC} \begin{split} REGC &= Capacity, V_{DD} = 4.0 \text{ to } 5.5 \text{ V}, \\ REGC &= V_{DD} = 2.7 \text{ to } 5.5 \text{ V} \end{split}$	1000		ns
SCKAn high-/low-level width	tкнз, tк∟з	<105>		tксүз/2 – 30		ns
SIAn setup time (to SCKAn↑)	tsiкз	<106>	$REGC = V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$	30		ns
			$\label{eq:REGC} \begin{split} \text{REGC} &= \text{Capacity}, \text{V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{split}$	60		ns
SIAn hold time (from $\overline{\text{SCKAn}}^\uparrow$)	tкsıз	<107>	REGC = V_{DD} = 4.0 to 5.5 V	30		ns
			$\label{eq:REGC} \begin{split} REGC &= Capacity, V_{DD} = 4.0 \text{ to } 5.5 \text{ V}, \\ REGC &= V_{DD} = 2.7 \text{ to } 5.5 \text{ V} \end{split}$	60		ns
Delay time from $\overline{\text{SCKAn}}\downarrow$ to SOAn	tкsoз	<108>	REGC = V _{DD} = 4.0 to 5.5 V		30	ns
output			$\label{eq:REGC} \begin{split} \text{REGC} &= \text{Capacity}, \text{V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{split}$		60	ns

Remark n = 0, 1

DataShee

(2) Slave mode

et4U.com


$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5^{\circ}\text{V}, 2.7^{\circ}\text{V} \leq \text{BV}_{DD} \leq \text{V}_{DD}, 2.7^{\circ}\text{V} \leq \text{AV}_{REF1} \leq \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0^{\circ}\text{V}, \text{CL} = 50 \text{ pF}$

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
SCKAn cycle time	tkCY4	<104>	REGC = V _{DD} = 4.0 to 5.5 V	840		ns
			$\label{eq:REGC} \begin{array}{l} REGC = Capacity, \ V_{DD} = 4.0 \ \text{to} \ 5.5 \ V, \\ REGC = V_{DD} = 2.7 \ \text{to} \ 5.5 \ V \end{array}$	1700		ns
SCKAn high-/low-level width	tкн4, tкL4	<105>		tксү₄/2 – 30		ns
SIAn setup time (to SCKAn↑)	tsik4	<106>	REGC = V _{DD} = 4.0 to 5.5 V	50		ns
			$\begin{aligned} \text{REGC} &= \text{Capacity}, \text{V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{aligned}$	100		ns
SIAn hold time (from SCKAn↑)	tksi4	<107>	$REGC = V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$	$t_{\text{CY}} imes 2 + 15^{\text{Note}}$		ns
			$\begin{aligned} \text{REGC} &= \text{Capacity}, \text{V}_{\text{DD}} = 4.0 \text{ to } 5.5 \text{ V}, \\ \text{REGC} &= \text{V}_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V} \end{aligned}$	$t_{CY} \times 2 + 30^{Note}$		ns
Delay time from $\overline{\text{SCKAn}}\downarrow$ to SOAn	tks04	<108>	REGC = V _{DD} = 4.0 to 5.5 V		$t_{\text{CY}} imes 2 + 30^{\text{Note}}$	ns
output			$\label{eq:REGC} \begin{array}{l} REGC = Capacity, \ V_{DD} = 4.0 \ \text{to} \ 5.5 \ V, \\ REGC = V_{DD} = 2.7 \ \text{to} \ 5.5 \ V \end{array}$		$t_{CY} \times 2 + 60^{Note}$	ns

Note tcy: Internal clock output cycle

fxx (CSISn.CKSAn1, CSISn.CKSAn0 bits = 00), fxx/2 (CKSAn1, CKSAn0 bits = 01) fxx/2² (CKSAn1, CKSAn0 bits = 10), fxx/2³ (CKSAn1, CKSAn0 bits = 11)

Remark n = 0, 1

DataSheet4U.com

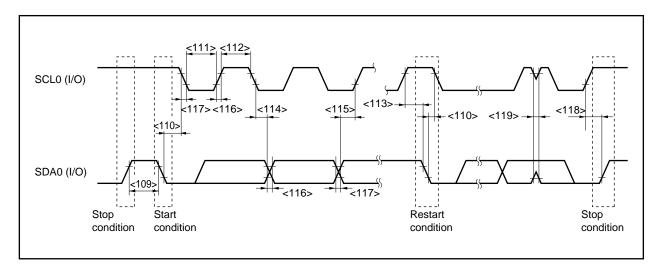
DataSheet4U.com

DataShe

795

I²C Bus Mode (µPD703313Y, 70F3311Y, 70F3313Y Only)

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{EV}_{DD} = \text{AV}_{\text{REF0}} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \leq \text{BV}_{DD} \leq \text{V}_{DD}, 2.7 \text{ V} \leq \text{AV}_{\text{REF1}} \leq \text{V}_{DD}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 10^{\circ}\text{C}, \text{V}_{\text{SS}} =$	
BVss = AVss = 0 V, CL = 50 pF)	


Pa	rameter	Sym	bol	Norma	l Mode	High-Spe	ed Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCL0 clock free	quency	fськ		0	100	0	400	kHz
Bus free time		t BUF	<109>	4.7	_	1.3	_	μs
(Between start	and stop conditions)							
Hold time ^{Note 1}		t hd:sta	<110>	4.0	-	0.6	_	μs
SCL0 clock low	-level width	t LOW	<111>	4.7	_	1.3	-	μs
SCL0 clock hig	h-level width	tніgн	<112>	4.0	_	0.6	-	μs
Setup time for s conditions	start/restart	tsu:sta	<113>	4.7	-	0.6	-	μs
Data hold time	CBUS compatible master	thd:dat	<114>	5.0	_	-	_	μs
	l ² C mode			0 ^{Note 2}	-	0 ^{Note 2}	0.9 ^{Note 3}	μs
Data setup time	9	tsu:dat	<115>	250	-	100 ^{Note 4}	_	ns
SDA0 and SCL	0 signal rise time	tr	<116>	-	1000	20 + 0.1Cb ^{Note 5}	300	ns
SDA0 and SCL	0 signal fall time	t⊧	<117>	-	300	20 + 0.1Cb ^{Note 5}	300	ns
Stop condition	setup time	tsu:sto	<118>	4.0	-	0.6	_	μs
Pulse width of s input filter	spike suppressed by	tsp	<119>	-	-	0	50	ns
Capacitance loa	ad of each bus line	Cb	[DataSheet4L	J.con400	-	400	pF

www.DataSheet4U.com

Notes 1. At the start condition, the first clock pulse is generated after the hold time.

- **2.** The system requires a minimum of 300 ns hold time internally for the SDA0 signal (at V_{IHmin.} of SCL0 signal) in order to occupy the undefined area at the falling edge of SCL0.
- **3.** If the system does not extend the SCL0 signal low hold time (tLow), only the maximum data hold time (tHD:DAT) needs to be satisfied.
- **4.** The high-speed mode l²C bus can be used in the normal-mode l²C bus system. In this case, set the high-speed mode l²C bus so that it meets the following conditions.
 - If the system does not extend the SCL0 signal's low state hold time: tsu:DAT $\geq 250~\text{ns}$
 - If the system extends the SCL0 signal's low state hold time: Transmit the following data bit to the SDA0 line prior to the SCL0 line release (tRmax. + tsu:DAT = 1000 + 250 = 1250 ns: Normal mode l²C bus specification).
- 5. Cb: Total capacitance of one bus line (unit: pF)

I²C Bus Mode (*µ*PD703313Y, 70F3311Y, 70F3313Y Only)

et4U.com

DataSheet4U.com

DataSheet4U.com

A/D Converter

 $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Condi	MIN.	TYP.	MAX.	Unit	
Resolution				10	10	10	bit
Overall error ^{Note 1}	AINL	$4.0 \leq AV_{\text{REF0}} \leq 5.5 \text{ V}$			±0.2	±0.4	%FSR
		$2.7 \leq AV_{\text{REF0}} \leq 4.0 \text{ V}$			±0.3	±0.6	%FSR
Conversion time	t CONV	$4.5 \leq AV_{\text{REF0}} \leq 5.5 \text{ V}$	High-speed mode	3.0		100	μs
			Normal mode	14.0		100	μs
		$4.0 \leq AV_{\text{REF0}} \leq 4.5 \text{ V}$	High-speed mode	4.8		100	μs
			Normal mode	14.0		100	μs
		$2.85 \leq AV_{\text{REF0}} \leq 4.0 \text{ V}$	High-speed mode	6.0		100	μs
			Normal mode	17.0		100	μs
		$2.7 \leq AV_{\text{REF0}} \leq 2.85 \text{ V}$	High-speed mode	14.0		100	μs
			Normal mode	17.0		100	μs
Zero-scale error ^{Note 1}	Ezs	$4.0 \leq AV_{\text{REF0}} \leq 5.5 \text{ V}$				±0.4	%FSR
		$2.7 \leq AV_{\text{REF0}} \leq 4.0 \text{ V}$				±0.6	%FSR
Full-scale error ^{Note 1}	Efs	$4.0 \leq AV_{\text{REF0}} \leq 5.5 \text{ V}$				±0.4	%FSR
		$2.7 \leq AV_{\text{REF0}} \leq 4.0 \text{ V}$			±0.6	%FSR	
Non-linearity error ^{Note 2}	ILE	$4.0 \leq AV_{\text{REF0}} \leq 5.5 \text{ V}$				±2.5	LSB
		$2.7 \leq AV_{\text{REF0}} \leq 4.0 \text{ V}$				±4.5	LSB
Differential linearity error ^{Note 2}	DLE	$4.0 \le AV_{REF0} \le 5.5 V_{CS}$	heet411.com			±1.5	LSB
		$2.7 \le AV_{REF0} \le 4.0 V$				±2.0	LSB
Analog input voltage	VIAN			0		AV _{REF0}	V
AVREFO current	IA _{REF0}	When using A/D conve	erter		1.3	2.5	mA
		When not using A/D co	onverter		1.0	T.B.D.	μA

DataShe

Notes 1. Excluding quantization error (± 0.05 %FSR).

2. Excluding quantization error (±0.5 LSB).

Remark LSB: Least Significant Bit FSR: Full Scale Range

D/A Converter

 $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution						8	bit
Overall error ^{Notes 1, 2}		Load condition	Load condition = 2 M Ω			1.2	%FSR
		Load condition	_oad condition = 4 MΩ			0.8	%FSR
		Load condition	$_{-}$ oad condition = 10 M Ω			0.6	%FSR
Settling time ^{Note 2}		C = 30 pF	V _{DD} = 4.5 to 5.5 V			10	μs
			V _{DD} = 2.7 to 4.5 V			15	μs
Output resistance ^{Note 3}	Ro	Output data:	Output data: DACSn register = 55H		8		kΩ
AVREF1 currentNote 4	IAV _{REF1}	During D/A conversion			1.5	3.0	mA
		When D/A co	onversion stopped		1.0	10	μA

Notes 1. Excluding quantization error (±0.2 %FSR).

2. R is the D/A converter output pin load resistance, and C is the D/A converter output pin load capacitance.

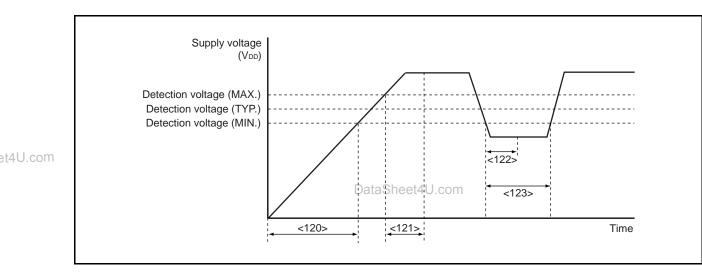
- 3. Value of 1 channel of D/A converter
- 4. Value of 2 channels of D/A converter

Remark n = 0, 1

et4U.com

DataSheet4U.com

Power-on-Clear Circuit Characteristics


 $(T_A = -40 \text{ to } +85^\circ \text{C})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC			2.5	2.6	2.7	V
Power supply rise time	tртн	<120>	$V_{\text{DD}} = 0 \rightarrow 2.5 \text{ V}$	3			μs
Response time 1 ^{Note 1}	t PTHD	<121>	After voltage reaches detection voltage (MAX.) on power application			3.0	ms
Response time 2 ^{Note 2}	t PD	<122>	When power supply drops			1.0	ms
Minimum pulse width	t PW	<123>		0.2			ms

Notes 1. Time from when the detection voltage (VPoc) is detected until the reset signal (POCRES) is released

2. Time from when the detection voltage (VPOC) is detected until the reset signal (POCRES) is generated

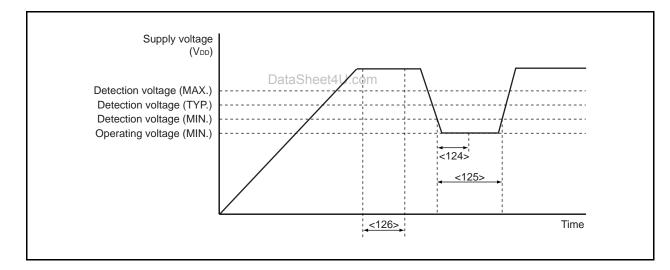
Power-on-Clear Circuit Timing

DataShe

www.DataSheet4U.com

Low-Voltage Detector Characteristics

(T_A = -40 to +85°C)


Parameter	Sy	mbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVI			4.1	4.3	4.5	V
				3.9	4.1	4.3	V
				3.7	3.9	4.1	V
				3.5	3.7	3.9	V
				3.3	3.5	3.7	V
				3.15	3.3	3.45	V
				2.95	3.1	3.25	V
Response time ^{Note 1}	tld	<124>			0.2	2.0	ms
Minimum pulse width	t∟w	<125>		0.2			ms
Operation stabilization wait time ^{Note 2}	twait1	<126>			0.1	0.2	ms

Notes 1. Time from when the detection voltage (VLVI) is detected until an interrupt request signal (INTLVI) or reset signal (LVIRES) is generated

2. Time from when the LVIM.LVION bit = 1 until operation is stabilized

Low-Voltage Detector Timing

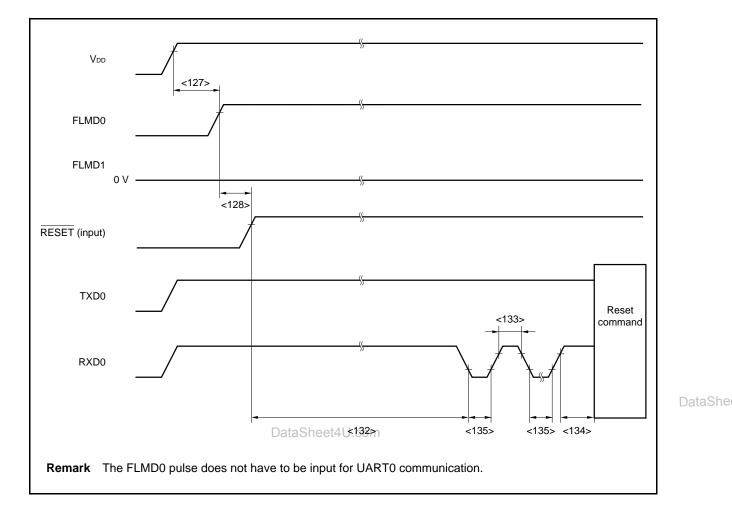
Flash Memory Programming Characteristics

 $(T_A = -10 \text{ to } +65^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, 2.7 \text{ V} \le \text{BV}_{DD} \le \text{V}_{DD}, 2.7 \text{ V} \le \text{AV}_{REF1} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{BV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

(1) Basic characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Programming operation	fсри	REGC = V _{DD} = 4.5 to 5.5 V	2		20	MHz
frequency		REGC = V _{DD} = 4.0 to 5.5 V	2		16	MHz
		REGC = Capacity, V _{DD} = 4.0 to 5.5 V	2		8 ^{Note 1}	MHz
		REGC = V _{DD} = 2.7 to 5.5 V	2		8 ^{Note 1}	MHz
Supply voltage	Vdd		2.7		5.5	V
Overall erase time	t era			T.B.D.		S
Write time	twнв			T.B.D.		S
Number of rewrites	Cerwr	Note 2		100		Times

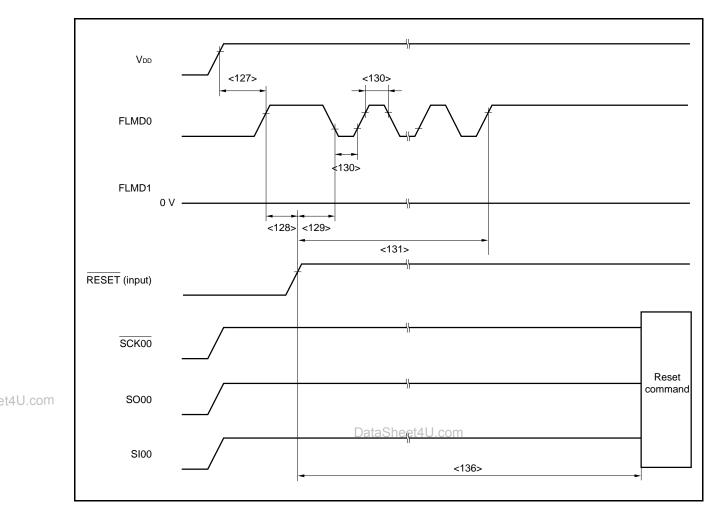
Notes 1. These values may change after evaluation.

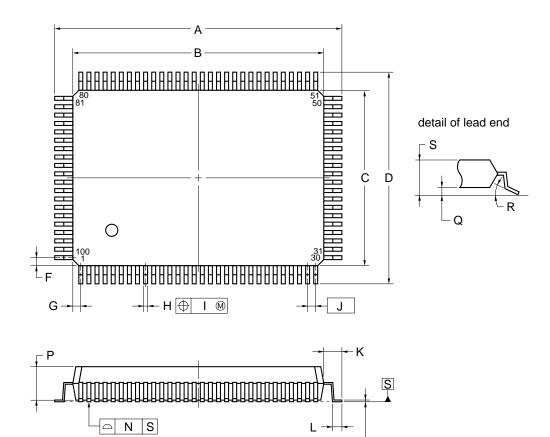

2. When writing initially to shipped products, it is also counted as one rewrite for "write only".

Example (P: Write, E: Erase) Shipped product $\longrightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites Shipped product $\rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites

(2) Serial write operation characteristics

ataShconditionsm Parameter TYP. MAX. Symbol MIN. Unit Setup time from $V_{DD}\uparrow$ to FLMD0 \uparrow <127> T.B.D. t_{DP} μs Release time from FLMD0↑ to RESET↑ <128> **t**PR T.B.D. ms FLMD0 pulse input start time from **t**RP <129> T.B.D. ms RESET↑ (after securing oscillation stabilization time) FLMD0 pulse high-/low-level width t₽W <130> T.B.D. T.B.D. μs <131> FLMD0 pulse input end time from **t**RPE T.B.D. ms RESET↑ (after securing oscillation stabilization time) 1st low data input time from RESET↑ <132> When UART T.B.D. t_{R1} s (after securing oscillation stabilization communication is selected time) T.B.D. Time from 1st low data input to 2nd low **t**12 <133> When UART s communication is selected data input When UART Time from 2nd low data input to reset <134> T.B.D. t₂C s command input communication is selected <135> When UART 9600 Low data input width **t**L1/**t**L2 bps communication is selected Time from RESET↑ (after securing **t**RC <136> When CSI or CSI-HS T.B.D. s oscillation stabilization time) to reset communication is selected command input


Serial Write Operation Timing (UART)


et4U.com

www.DataSheet4U.com

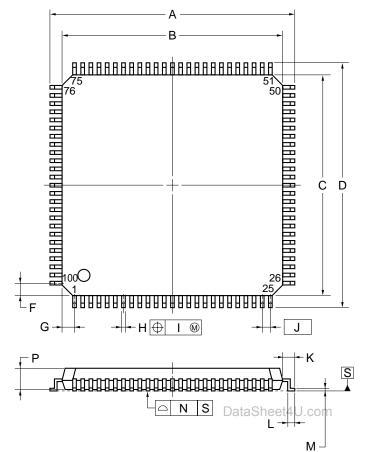
Serial Write Operation Timing (CSI or CSI-HS)

100-PIN PLASTIC QFP (14x20)

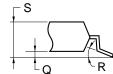
Μ

DataShe

et4U.com


NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS
A	23.2±0.2
В	20.0±0.2
С	14.0±0.2
D	17.2±0.2
F	0.825
G	0.575
Н	$0.32\substack{+0.08\\-0.07}$
I	0.13
J	0.65 (T.P.)
К	1.6±0.2
L	0.8±0.2
М	$0.17\substack{+0.06\\-0.05}$
Ν	0.10
Р	2.7±0.1
Q	0.125±0.075
R	$3^{\circ+7^{\circ}}_{-3^{\circ}}$
S	3.0 MAX.
	S100GF-65-JBT-2

www.DataSheet4U.com

100-PIN PLASTIC LQFP (FINE PITCH) (14x14)

detail of lead end

et4U.com

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS		
А	16.00±0.20		
В	14.00±0.20		
С	14.00±0.20		
D	16.00±0.20		
F	1.00		
G	1.00		
н	$0.22\substack{+0.05\\-0.04}$		
I	0.08		
J	0.50 (T.P.)		
К	1.00±0.20		
L	0.50±0.20		
М	$0.17\substack{+0.03 \\ -0.07}$		
N	0.08		
Р	1.40±0.05		
Q	0.10±0.05		
R	$3^{\circ + 7^{\circ}}_{-3^{\circ}}$		
S	1.60 MAX.		
S100GC-50-8EU, 8EA-2			

DataShe

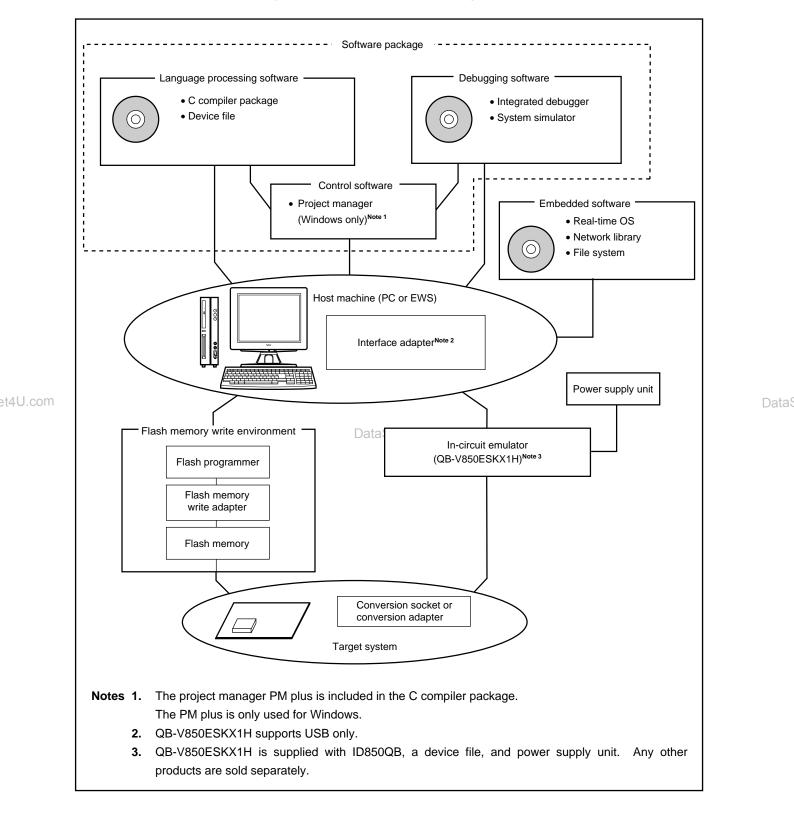
www.DataSheet4U.com

APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for the development of systems that employ the V850ES/KG1+. Figure A-1 shows the development tool configuration.

• Support for PC98-NX series

Unless otherwise specified, products supported by IBM PC/AT[™] compatibles are compatible with PC98-NX series computers. When using PC98-NX series computers, refer to the explanation for IBM PC/AT compatibles.


Windows[™]

Unless otherwise specified, "Windows" means the following OSs.

- Windows 98, 2000
- Windows Me
- Windows XP
- Windows NT[™] Ver. 4.0

et4U.com

DataSheet4U.com

A.1 Software Package

SP850	Development tools (software) common to the V850 Series are combined in this package.
V850 Series software package	Part number: µS××××SP850

Remark ×××× in the part number differs depending on the host machine and OS used.

$\mu S_{\underline{\times \times \times \times}}SP850$

××××	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	

A.2 Language Processing Software

CA850This compiler converts programs written in C language into object codes e a microcontroller. This compiler is started from project manager PM plus.		
	Part number: µS××××CA703000	
DF703313	This file contains information peculiar to the device.	
Device file	This device file should be used in combination with a tool (CA850, SM850, and ID850QB).	
	The corresponding OS and host machine differ depending on the tool to be used.	

et4U.com

Remark ×××× in the part number differs depending on the host machine and OS used.

DataShe

μ<u>S××××</u>CA703000

DataSheet4U.com

××××	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	
3K17	SPARCstation [™]	SunOS [™] (Rel. 4.1.4), Solaris [™] (Rel. 2.5.1)	

A.3 Control Software

PM plus	This is control software designed to enable efficient user program development in the
Project manager	Windows environment. All operations used in development of a user program, such as
	starting the editor, building, and starting the debugger, can be performed from the PM
	plus.
	<caution></caution>
	The PM plus is included in the C compiler package CA850.
	It can only be used in Windows.

A.4 Debugging Tools (Hardware)

A.4.1 When using in-circuit emulator QB-V850ESKX1H

QB-V850ESKX1H ^{Notes 1, 2} In-circuit emulator	The in-circuit emulator serves to debug hardware and software when developing application systems using a V850ES/KG1+ product. It corresponds to the integrated debugger ID850QB. This emulator should be used in combination with a power supply unit and emulation probe. Use USB to connect this emulator to the host machine.
Emulation probe for GC package ^{Note 2} (part number pending)	This probe is used to connect the in-circuit emulator and target system, and is designed for a 100-pin plastic LQFP (GC-8EU type).
Emulation probe for GF package ^{Note 2} (part number pending)	This probe is used to connect the in-circuit emulator and target system, and is designed for a 100-pin plastic QFP (GF-JBT type).

- **Notes 1.** QB-V850ESKX1H is supplied with a power supply unit. It is also supplied with integrated debugger ID850QB and a device file as control software.
 - 2. Under development

A.5 Debugging Tools (Software)

SM plus ^{Note} System simulator	 This is a system simulator for the V850 Series. The SM plus is Windows-based software. It is used to perform debugging at the C source level or assembler level while simulating the operation of the target system on a host machine. Use of the SM plus allows the execution of application logical testing and performance testing on an independent basis from hardware development, thereby providing higher development efficiency and software quality. The SM plus should be used in combination with the device file (sold separately).
ID850QB Integrated debugger (supporting in-circuit emulator QB-V850ESKX1H)	Part number: μS××××SM703100 This debugger supports the in-circuit emulators for the V850 Series. The ID850QB is Windows-based software. It has improved C-compatible debugging functions and can display the results of tracing with the source program using an integrating window function that associates the source program, disassemble display, and memory display with the trace result. It should be used in combination with the device file (sold separately).

Note Under development

Remark ×××× in the part number differs depending on the host machine and OS used.

$\mu S \times \times \times SM703100$

××××	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	

et4U.com

A.6 Embedded Software

RX850, RX850 Pro Real-time OS	The RX850 and RX850 Pro are real-time OSs conforming to μ ITRON 3.0 specifications. A tool (configurator) for generating multiple information tables is supplied. RX850 Pro has more functions than RX850.
	Part number: μSxxxxRX703000-ΔΔΔΔ (RX850) μSxxxxRX703100-ΔΔΔΔ (RX850 Pro)
V850mini-NET ^{Note} (provisional name) (Network library)	This is a network library conforming to RFC. It is a lightweight TCP/IP of compact design, requiring only a small memory. In addition to the TCP/IP standard set, an HTTP server, SMTP client, and POP client are also supported.
RX-FS850 (File system)	This is a FAT file system function. It is a file system that supports the CD-ROM file system function. This file system is used with the real-time OS RX850 Pro.

Note Under development

Caution To purchase the RX850 or RX850 Pro, first fill in the purchase application form and sign the user agreement.

Remark xxxx and $\Delta\Delta\Delta\Delta$ in the part number differ depending on the host machine and OS used.

μ\$××××RX703000-ΔΔΔΔ μ\$××××RX703100-<u>ΔΔΔΔ</u>

et4U.com

ΔΔΔΔ	Product Outline	Maximum Number for Use in Mass Production
001	Evaluation object	Do not use for mass-produced product.
100K	Mass-production object	0.1 million units
001M		1 million units
010M		10 million units
S01	Source program	Object source program for mass production

××××	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	
3K17	SPARCstation	Solaris (Rel. 2.5.1)	

A.7 Flash Memory Writing Tools

Flashpro IV (part number: PG-FP4) Flash programmer	Flash programmer dedicated to microcontrollers with on-chip flash memory.
FA-100GC-8EU-A Flash memory writing adapter	Flash memory writing adapter used connected to the Flashpro IV. • FA-100GC-8EU-A: For 100-pin plastic LQFP (GC-8EU type)
FA-100GF-3BA-A Flash memory writing adapter	Flash memory writing adapter used connected to the Flashpro IV.FA-100GF-3BA-A: For 100-pin plastic QFP (GF-JBT type)

Remark FA-100GC-8EU-A and FA-100GF-3BA-A are products of Naito Densei Machida Mfg. Co., Ltd.

TEL: +81-45-475-4191 Naito Densei Machida Mfg. Co., Ltd.

DataSheet4U.com

www.DataSheet4U.com

B.1 Conventions

(1) Register symbols used to describe operands

Register Symbol	Explanation	
reg1	General-purpose registers: Used as source registers.	
reg2	General-purpose registers: Used mainly as destination registers. Also used as source register in some instructions.	
reg3	General-purpose registers: Used mainly to store the remainders of division results and the higher 32 bits of multiplication results.	
bit#3	3-bit data for specifying the bit number	
immX	X bit immediate data	
dispX	X bit displacement data	
regID	System register number	
vector	5-bit data that specifies the trap vector (00H to 1FH)	
сссс	4-bit data that shows the condition codes	
sp	Stack pointer (r3)	
ер	Element pointer (r30)	
listX	X item register list	

et4U.com

(2) Register symbols used to describe opcodestaSheet4U.com

Register Symbol	Explanation
R	1-bit data of a code that specifies reg1 or regID
r	1-bit data of the code that specifies reg2
w	1-bit data of the code that specifies reg3
d	1-bit displacement data
I	1-bit immediate data (indicates the higher bits of immediate data)
i	1-bit immediate data
сссс	4-bit data that shows the condition codes
CCCC	4-bit data that shows the condition codes of Bcond instruction
bbb	3-bit data for specifying the bit number
L	1-bit data that specifies a program register in the register list

(3) Register symbols used in operations

Register Symbol	Explanation	
\leftarrow	Input for	
GR []	General-purpose register	
SR []	System register	
zero-extend (n)	Expand n with zeros until word length.	
sign-extend (n)	Expand n with signs until word length.	
load-memory (a, b)	Read size b data from address a.	
store-memory (a, b, c)	Write data b into address a in size c.	
load-memory-bit (a, b)	Read bit b of address a.	
store-memory-bit (a, b, c)	Write c to bit b of address a.	
saturated (n)	Execute saturated processing of n (n is a 2's complement). If, as a result of calculations, $n \ge 7FFFFFFH$, let it be 7FFFFFFH. $n \le 80000000H$, let it be 80000000H.	
result	Reflects the results in a flag.	
Byte	Byte (8 bits)	
Halfword	Halfword (16 bits)	
Word	Word (32 bits)	
+	Addition	
_	Subtraction	DataShe
II	Bit concatenationneet4U.com	
×	Multiplication	
÷	Division	
%	Remainder from division results	
AND	Logical product	
OR	Logical sum	
XOR	Exclusive OR	
NOT	Logical negation	
logically shift left by	Logical shift left	
logically shift right by	Logical shift right	
arithmetically shift right by	Arithmetic shift right	

(4) Register symbols used in execution clock

Register Symbol	Explanation
i	If executing another instruction immediately after executing the first instruction (issue).
r	If repeating execution of the same instruction immediately after executing the first instruction (repeat).
1	If using the results of instruction execution in the instruction immediately after the execution (latency).

et4U.com

(5) Register symbols used in flag operations

Identifier	Explanation
(Blank)	No change
0	Clear to 0
х	Set or cleared in accordance with the results.
R	Previously saved values are restored.

(6) Condition codes

Condition Name (cond)	Condition Code (cccc)	Condition Formula	Explanation
V	0000	OV = 1	Overflow
NV	1000	OV = 0	No overflow
C/L	0001	CY = 1	Carry Lower (Less than)
NC/NL	1001	CY = 0	No carry Not lower (Greater than or equal)
Z	0010	Z = 1	Zero
NZ	1010	Z = 0	Not zero
NH	0011	(CY or Z) = 1	Not higher (Less than or equal)
Н	1011	(CY or Z) = 0	Higher (Greater than)
S/N	0100	S=1 DataSheet/LLco	Negative
NS/P	1 1 0 0	S = 0	Positive
Т	0101	_	Always (Unconditional)
SA	1 1 0 1	SAT = 1	Saturated
LT	0 1 1 0	(S xor OV) = 1	Less than signed
GE	1 1 1 0	(S xor OV) = 0	Greater than or equal signed
LE	0111	((S xor OV) or Z) = 1	Less than or equal signed
GT	1 1 1 1	((S xor OV) or Z) = 0	Greater than signed

DataShe

B.2 Instruction Set (in Alphabetical Order)

Mnemonic	Operand	Opcode	Operation			ecut Clocl			I	Flags	3	
					i	r	Ι	CY	OV	s	Z	SA
ADD	reg1,reg2	rrrr001110RRRRR	GR[reg2]←GR[reg2]+GR[reg1]		1	1	1	×	×	×	×	
	imm5,reg2	rrrrr010010iiiii	GR[reg2]←GR[reg2]+sign-extend(ii	mm5)	1	1	1	×	×	×	×	
ADDI	imm16,reg1,reg2	rrrr110000RRRRR	GR[reg2]←GR[reg1]+sign-extend(ii	mm16)	1	1	1	×	×	×	×	
AND	reg1,reg2	rrrr001010RRRRR	GR[reg2]←GR[reg2]AND GR[reg1]		1	1	1		0	×	×	-
ANDI	imm16,reg1,reg2	rrrr110110RRRRR	GR[reg2]←GR[reg1]AND zero-exte	nd(imm16)	1	1	1		0	×	×	
Bcond	disp9	ddddd1011dddcccc Note 1	if conditions are satisfied then PC←PC+sign-extend(disp9)	When conditions are satisfied	2 Note 2	2 Note 2	2 Note 2					
				When conditions are not satisfied	1	1	1					
BSH	reg2,reg3	rrrr11111100000 wwwww01101000010	GR[reg3]←GR[reg2] (23 : 16)	[reg2] (31 : 24) II	1	1	1	×	0	×	×	
BSW	reg2,reg3	rrrr11111100000 wwwww01101000000	GR[reg3]←GR[reg2] (7 : 0) II GR[re [reg2] (23 : 16) II GR[reg2] (31 : 24)		1	1	1	×	0	×	×	
CALLT	imm6	000000100011111	CTPC←PC+2(return PC) CTPSW←PSW adr←CTBP+zero-extend(imm6 logic PC←CTBP+zero-extend(Load-mem		4	4	4					
CLR1	bit#3,disp16[reg1]	10bbb111110RRRRR ddddddddddddddd	adr←GR[reg1]+sign-extend(disp16 Z flag←Not(Load-memory-bit(adr,b Store-memory-bit(adr,bit#3,0)		3 Note 3	3 Note 3	3 Note 3				×	
	reg2,[reg1]	rrrr111111RRRRR 0000000011100100	adr←GR[reg1] Z flag←Not(Load-memory-bit(adr,re Store-memory-bit(adr,reg2,0)	eg2))	3 Note 3	3 Note 3	3 Note 3				×	
CMOV	cccc,imm5,reg2,reg3	rrrr111111iiii wwwww011000cccc0	if conditions are satisfied then GR[reg3]←sign-extended(imm else GR[reg3]←GR[reg2]	15)	1	1	1					
	cccc,reg1,reg2,reg3	rrrrr111111RRRR wwwww011001cccc0	if conditions are satisfied then GR[reg3]←GR[reg1] else GR[reg3]←GR[reg2]		1	1	1					
CMP	reg1,reg2	rrrr001111RRRRR	result←GR[reg2]–GR[reg1]		1	1	1	×	×	×	×	
	imm5,reg2	rrrr010011iiiii	result←GR[reg2]–sign-extend(imm	5)	1	1	1	×	×	×	×	
CTRET		0000011111100000 0000000101000100	PC←CTPC PSW←CTPSW		3	3	3	R	R	R	R	R
DBRET		0000011111100000 0000000101000110	PC←DBPC PSW←DBPSW		3	3	3	R	R	R	R	R

DataSheet4U.com

										(2	2/6)
Mnemonic	Operand	Opcode	Operation		ecut Clocl			F	lags	6	
				i	r	I	CY	٥٧	s	Z	SAT
DBTRAP		1111100001000000	DBPC←PC+2 (restored PC) DBPSW←PSW PSW.NP←1 PSW.EP←1 PSW.ID←1 PC←00000060H	3	3	3					
DI		0000011111100000 0000000101100000	PSW.ID←1	1	1	1					
DISPOSE	imm5,list12	0000011001iiiiiL LLLLLLLLL00000	sp←sp+zero-extend(imm5 logically shift left by 2) GR[reg in list12]←Load-memory(sp,Word) sp←sp+4 repeat 2 steps above until all regs in list12 is loaded	n+1 Note4	n+1 Note4						
	imm5,list12,[reg1]	0000011001iiiiiL LLLLLLLRRRRR Note 5	sp←sp+zero-extend(imm5 logically shift left by 2) GR[reg in list12]←Load-memory(sp,Word) sp←sp+4 repeat 2 steps above until all regs in list12 is loaded PC←GR[reg1]	n+3 Note4		n+3 Note4					
DIV	reg1,reg2,reg3	rrrr111111RRRRR wwwww01011000000	GR[reg2]←GR[reg2]÷GR[reg1] GR[reg3]←GR[reg2]%GR[reg1]	35	35	35		×	×	×	
DIVH	reg1,reg2	rrrr000010RRRRR	GR[reg2]←GR[reg2]÷GR[reg1] ^{№006 6}	35	35	35		×	×	×	
	reg1,reg2,reg3	rrrrr111111RRRRR wwwww01010000000	GR[reg2]←GR[reg2]÷GR[reg1] ^{№de 6} GR[reg3]←GR[reg2]%GR[reg1]	35	35	35		×	×	×	
DIVHU	reg1,reg2,reg3	rrrrr111111RRRRR wwwww01010000010	GR[reg2]←GR[reg2]÷GR[reg1] ^{Web 6} GR[reg3]←GR[reg2]%GR[reg1]	34	34	34		×	×	×	
DIVU	reg1,reg2,reg3	rrrrr111111RRRRR wwwww01011000010	GR[reg2]←GR[reg2]÷GR[reg1] GR[reg3]←GR[reg2]%GR[reg1]	34	34	34		×	×	×	
EI		1000011111100000 0000000101100000	PSW.ID←0	1	1	1					
HALT		0000011111100000 0000000100100000	Stop	1	1	1					
HSW	reg2,reg3	rrrr11111100000 wwwww01101000100	GR[reg3]←GR[reg2](15 : 0) II GR[reg2] (31 : 16)	1	1	1	×	0	×	×	
JARL	disp22,reg2	rrrrr11110dddddd dddddddddddddd Note 7	GR[reg2]←PC+4 PC←PC+sign-extend(disp22)	2	2	2					
JMP	[reg1]	00000000011RRRRR	PC←GR[reg1]	3	3	3					
JR	disp22	0000011110ddddd dddddddddddddddd Note 7	PC←PC+sign-extend(disp22)	2	2	2					
LD.B	disp16[reg1],reg2	rrrrr111000RRRRR ddddddddddddddd	adr←GR[reg1]+sign-extend(disp16) GR[reg2]←sign-extend(Load-memory(adr,Byte))	1	1	Note 11					
LD.BU	disp16[reg1],reg2	rrrrr11110bRRRRR dddddddddddddd	adr←GR[reg1]+sign-extend(disp16) GR[reg2]←zero-extend(Load-memory(adr,Byte))	1	1	Note 11					
		Notes 8, 10			l					1	

DataShe

et4U.com

Mnemonic	Operand	Opcode	Оре	ration		ecut Cloci			I	Flags	``	3/6
					i	r	` 	CY	ov	s	7	SAT
LD.H	disp16[reg1],reg2	rrrrr111001RRRRR dddddddddddddddd Note 8	adr←GR[reg1]+sign-exten GR[reg2]←sign-extend(Lo	d(disp16) ad-memory(adr,Halfword))	1	1	Note					
LDSR	reg2,regID	rrrr111111RRRRR	SR[regID]←GR[reg2]	Other than regID = PSW	1	1	1					
		0000000000100000 Note 12		regID = PSW	1	1	1	×	×	×	×	×
LD.HU	disp16[reg1],reg2	rrrrr111111RRRRR ddddddddddddddd	adr←GR[reg1]+sign-exend GR[reg2]←zero-extend(Lo	L d(disp16) bad-memory(adr,Halfword)	1	1	Note 11					
		Note 8										
LD.W	disp16[reg1],reg2	rrrrr111001RRRRR dddddddddddddddd	adr←GR[reg1]+sign-exend GR[reg2]←Load-memory((1)	1	1	Note 11					
MOV	reg1,reg2	rrrr000000RRRRR	GR[reg2]←GR[reg1]		1	1	1					-
	imm5,reg2	rrrr010000iiiii	GR[reg2]←Sign-extend(im	m5)	1	1	1					\vdash
	imm32,reg1	00000110001RRRR	GR[reg1]←imm32		2	2	2					
MOVEA	imm16,reg1,reg2	rrrr110001RRRRR	GR[reg2]←GR[reg1]+sign	-extend(imm16)	1	1	1					
MOVHI	imm16,reg1,reg2	rrrr110010RRRRR	GR[reg2]←GR[reg1]+(imn)ataSheet4U.com	n16 ll 0 ¹⁶)	1	1	1					
MUL	reg1,reg2,reg3	rrrr111111RRRRR wwww01000100000	GR[reg3] II GR[reg2]←GR Note 14	[reg2]xGR[reg1]	1	4	5					
	imm9,reg2,reg3	rrrr1111111iiii wwww01001IIII00 Note 13	GR[reg3] ∥ GR[reg2]←GR	[reg2]xsign-extend(imm9)	1	4	5					
MULH	reg1,reg2	rrrr000111RRRRR	GR[reg2]←GR[reg2] ^{№œ 6} xG	GR[reg1] ^{№™ 6}	1	1	2					
	imm5,reg2	rrrrr010111iiiii	GR[reg2]←GR[reg2] ^{№te 6} xs	ign-extend(imm5)	1	1	2					
MULHI	imm16,reg1,reg2	rrrr110111RRRRR	GR[reg2]←GR[reg1] ^{№te 6} xir	mm16	1	1	2					
MULU	reg1,reg2,reg3	rrrr111111RRRRR wwwww01000100010	GR[reg3] II GR[reg2]←GR Note 14	[reg2]xGR[reg1]	1	4	5					
	imm9,reg2,reg3	rrrr1111111iiii wwww01001IIII10 Note 13	GR[reg3] ∥ GR[reg2]←GR	[reg2]xzero-extend(imm9)	1	4	5					
NOP		000000000000000000000000000000000000000	Pass at least one clock cy	cle doing nothing.	1	1	1					
NOT	reg1,reg2	rrrr000001RRRRR	GR[reg2]←NOT(GR[reg1])	1	1	1		0	×	×	
NOT1	bit#3,disp16[reg1]	01bbb111110RRRRR dddddddddddddddd	adr←GR[reg1]+sign-exten Z flag←Not(Load-memory Store-memory-bit(adr,bit#3	-bit(adr,bit#3))	3 Note 3	3 Note 3	3 Note 3				×	
	reg2,[reg1]	rrrr111111RRRRR 0000000011100010	adr←GR[reg1] Z flag←Not(Load-memory		3 Note 3	3 Note 3	3 Note 3				×	

DataSheet4U.com

www.DataSheet4U.com

										(•	4/6)
Mnemonic	Operand	Opcode	Operation		kecut Cloc			F	lags	5	
				i	r	Ι	СҮ	٥v	s	Ζ	SAT
OR	reg1,reg2	rrrr001000RRRRR	GR[reg2]←GR[reg2]OR GR[reg1]	1	1	1		0	×	×	
ORI	imm16,reg1,reg2	rrrr110100RRRRR	GR[reg2]←GR[reg1]OR zero-extend(imm16)	1	1	1		0	×	×	
PREPARE	list12,imm5	0000011110iiiiiL LLLLLLLLL00001	Store-memory(sp–4,GR[reg in list12],Word) sp←sp–4 repeat 1 step above until all regs in list12 is stored sp←sp-zero-extend(imm5)		n+1 Note4						
	list12,imm5, sp/imm ^{Note 15}	0000011110iiiiiL LLLLLLLLff011 imm16/imm32 Note 16	Store-memory(sp-4,GR[reg in list12],Word) $sp \leftarrow sp+4$ repeat 1 step above until all regs in list12 is stored $sp \leftarrow sp$ -zero-extend (imm5) $ep \leftarrow sp/imm$	Note 4	! n+2 Note4 7 Note17	Note 4					
RETI		0000011111100000	if PSW.EP=1 then PC \leftarrow EIPC PSW \leftarrow EIPSW else if PSW.NP=1 then PC \leftarrow FEPC PSW \leftarrow FEPSW else PC \leftarrow EIPC PSW \leftarrow EIPSW	3	3	3	R	R	R	R	R
SAR	reg1,reg2	rrrr111111RRRRR 0000000010100000	GR[reg2]←GR[reg2]arithmetically shift right by GR[reg1]	1	1	1	×	0	×	×	
	imm5,reg2	rrrr010101iiiii	GR[reg2] ← GR[reg2]arithmetically shift right by zero-extend (imm5)	1	1	1	×	0	х	×	
SASF	cccc,reg2	rrrr111110cccc 0000001000000000	if conditions are satisfied then GR[reg2]←(GR[reg2]Logically shift left by 1) OR 0000001H else GR[reg2]←(GR[reg2]Logically shift left by 1) OR 00000000H	1	1	1					
SATADD	reg1,reg2	rrrr000110RRRRR	GR[reg2]←saturated(GR[reg2]+GR[reg1])	1	1	1	×	×	×	×	×
	imm5,reg2	rrrr010001iiiii	GR[reg2]←saturated(GR[reg2]+sign-extend(imm5))	1	1	1	×	×	×	×	×
SATSUB	reg1,reg2	rrrr000101RRRRR	GR[reg2]←saturated(GR[reg2]–GR[reg1])	1	1	1	×	×	×	×	\times
SATSUBI	imm16,reg1,reg2	rrrr110011RRRRR	GR[reg2]←saturated(GR[reg1]–sign-extend(imm16))	1	1	1	×	×	×	×	×
SATSUBR	reg1,reg2	rrrr000100RRRRR	GR[reg2]←saturated(GR[reg1]–GR[reg2])	1	1	1	×	×	×	×	×
SETF	cccc,reg2	rrrr1111110cccc 0000000000000000000	If conditions are satisfied then GR[reg2]←00000001H else GR[reg2]←00000000H	1	1	1					

DataShe

Mnemonic	Operand	Opcode	Operation		cecut Cloc				Flags	5	
				i	r	Ι	CY	٥V	s	Z	SAT
SET1	bit#3,disp16[reg1]	00bbb111110RRRRR dddddddddddddddd	adr←GR[reg1]+sign-extend(disp16) Z flag←Not (Load-memory-bit(adr,bit#3)) Store-memory-bit(adr,bit#3,1)	3 Note 3	3 Note 3	3 Note 3				×	
	reg2,[reg1]	rrrr111111RRRRR 0000000011100000	adr←GR[reg1] Z flag←Not(Load-memory-bit(adr,reg2)) Store-memory-bit(adr,reg2,1)	3 Note 3	3 Note 3	3 Note 3				×	
SHL	reg1,reg2	rrrr111111RRRRR 0000000011000000	GR[reg2]←GR[reg2] logically shift left by GR[reg1]	1	1	1	×	0	×	×	
	imm5,reg2	rrrr010110iiiii	GR[reg2]←GR[reg2] logically shift left by zero-extend(imm5)	1	1	1	×	0	×	×	
SHR	reg1,reg2	rrrr111111RRRRR 0000000010000000	$GR[reg2] \leftarrow GR[reg2]$ logically shift right by $GR[reg1]$	1	1	1	×	0	×	×	
	imm5,reg2	rrrr010100iiiii	GR[reg2]←GR[reg2] logically shift right by zero-extend(imm5)	1	1	1	×	0	×	×	
SLD.B	disp7[ep],reg2	rrrr0110dddddd	adr←ep+zero-extend(disp7) GR[reg2]←sign-extend(Load-memory(adr,Byte))	1	1	Note 9					
SLD.BU	disp4[ep],reg2	rrrrr0000110dddd Note 18	adr←ep+zero-extend(disp4) GR[reg2]←zero-extend(Load-memory(adr,Byte))	1	1	Note 9					
SLD.H	disp8[ep],reg2	rrrrr1000dddddd Note 19	adr←ep+zero-extend(disp8) GR[reg2]←sign-extend(Load-memory(adr,Halfword))	1	1	Note 9					
SLD.HU	disp5[ep],reg2	rrrr0000111dddd Notes 18, 20	adr←ep+zero-extend(disp5) GR[reg2] ←zero-extend(Load-memory(adr,Halfword))	1	1	Note 9					
SLD.W	disp8[ep],reg2	rrrrr1010ddddd0 Note 21	adr←ep+zero-extend(disp8) GR[reg2]←Load-memory(adr,Word)	1	1	Note 9					
SST.B	reg2,disp7[ep]	rrrr0111dddddd	adr←ep+zero-extend(disp7) Store-memory(adr,GR[reg2],Byte)	1	1	1					
SST.H	reg2,disp8[ep]	rrrrr1001dddddd Note 19	adr←ep+zero-extend(disp8) Store-memory(adr,GR[reg2],Halfword)	1	1	1					
SST.W	reg2,disp8[ep]	rrrrr1010ddddd1 Note 21	adr←ep+zero-extend(disp8) Store-memory(adr,GR[reg2],Word)	1	1	1					
ST.B	reg2,disp16[reg1]	rrrrr111010RRRRR dddddddddddddddd	adr←GR[reg1]+sign-extend(disp16) Store-memory(adr,GR[reg2],Byte)	1	1	1					
ST.H	reg2,disp16[reg1]	rrrr111011RRRRR ddddddddddddddd Note 8	adr←GR[reg1]+sign-extend(disp16) Store-memory (adr,GR[reg2], Halfword)	1	1	1					
ST.W	reg2,disp16[reg1]	rrrrr111011RRRRR ddddddddddddddd Note 8	adr←GR[reg1]+sign-extend(disp16) Store-memory (adr,GR[reg2], Word)	1	1	1					
STSR	regID,reg2	rrrr111111RRRRR 0000000001000000	GR[reg2]←SR[regID]	1	1	1					

DataShe

DataSheet4U.com

										(6/6)
Mnemonic	Operand	Opcode	Operation		ecuti Clocł			F	Flage	;	
				i	r	Ι	CY	٥V	S	Ζ	SAT
SUB	reg1,reg2	rrrr001101RRRRR	GR[reg2]←GR[reg2]–GR[reg1]	1	1	1	×	×	×	×	
SUBR	reg1,reg2	rrrr001100RRRRR	GR[reg2]←GR[reg1]–GR[reg2]	1	1	1	×	×	×	×	
SWITCH	reg1	00000000010RRRR	adr←(PC+2) + (GR [reg1] logically shift left by 1) PC←(PC+2) + (sign-extend (Load-memory (adr,Halfword)) logically shift left by 1	5	5	5					
SXB	reg1	00000000101RRRRR	GR[reg1]←sign-extend (GR[reg1] (7 : 0))	1	1	1					
SXH	reg1	00000000111RRRRR	GR[reg1]←sign-extend (GR[reg1] (15 : 0))	1	1	1					
TRAP	vector	00000111111iiii	EIPC ←PC+4 (Restored PC) EIPSW ←PSW ECR.EICC ←Interrupt code PSW.EP ←1 PSW.ID ←1 PC ←00000040H (when vector is 00H to 0FH) 00000050H (when vector is 10H to 1FH)	3	3	3					
TST	reg1,reg2	rrrr001011RRRRR	result←GR[reg2] AND GR[reg1]	1	1	1		0	×	×	
TST1	bit#3,disp16[reg1]	11bbb111110RRRRR ddddddddddddddd	adr←GR[reg1]+sign-extend(disp16) Z flag←Not (Load-memory-bit (adr,bit#3))	3 Note 3	3 Note 3	3 Note 3				×	
	reg2, [reg1]	rrrr111111RRRRR 0000000011100110	adr←GR[reg1] Z flag←Not (Load-memory-bit (adr,reg2))	3 Note 3	3 Note 3	3 Note 3				×	
XOR	reg1,reg2	rrrr001001RRRRR	GR[reg2]←GR[reg2] XOR GR[reg1]	1	1	1		0	×	×	
XORI	imm16,reg1,reg2	rrrr110101RRRRR	GR[reg2]←GR[reg1] XOR zero-extend (imm16)	1	1	1		0	×	×	
ZXB	reg1	00000000100RRRR	GR[reg1]←zero-extend (GR[reg1] (7 : 0))	1	1	1					
ZXH	reg1	00000000110RRRR	GR[reg1]←zero-extend (GR[reg1] (15 : 0))	1	1	1					

DataShe

Notes 1. dddddddd: Higher 8 bits of disp9.

- 2. 3 if there is an instruction that rewrites the contents of the PSW immediately before.
- **3.** If there is no wait state (3 + the number of read access wait states).
- **4.** n is the total number of list12 load registers. (According to the number of wait states. Also, if there are no wait states, n is the total number of list12 registers. If n = 0, same operation as when n = 1)
- 5. RRRRR: other than 00000.
- 6. The lower halfword data only are valid.
- 7. ddddddddddddddddd: The higher 21 bits of disp22.
- 8. dddddddddddd: The higher 15 bits of disp16.
- 9. According to the number of wait states (1 if there are no wait states).
- **10.** b: bit 0 of disp16.
- 11. According to the number of wait states (2 if there are no wait states).

DataSheet4U.com

Notes 12. In this instruction, for convenience of mnemonic description, the source register is made reg2, but the reg1 field is used in the opcode. Therefore, the meaning of register specification in the mnemonic description and in the opcode differs from other instructions.

rrrr = regID specification

- RRRRR = reg2 specification
- **13.** iiiii: Lower 5 bits of imm9.
 - IIII: Higher 4 bits of imm9.
- 14. Do not specify the same register for general-purpose registers reg1 and reg3.
- **15.** sp/imm: specified by bits 19 and 20 of the sub-opcode.
- **16.** ff = 00: Load sp in ep.
 - 01: Load sign expanded 16-bit immediate data (bits 47 to 32) in ep.
 - 10: Load 16-bit logically left shifted 16-bit immediate data (bits 47 to 32) in ep.
 - 11: Load 32-bit immediate data (bits 63 to 32) in ep.
- **17.** If imm = imm32, n + 3 clocks.
- 18. rrrrr: Other than 00000.
- 19. ddddddd: Higher 7 bits of disp8.
- 20. dddd: Higher 4 bits of disp5.
- 21. dddddd: Higher 6 bits of disp8.

et4U.com

DataShe

Symbol	Name	Unit	Page
ADCR	A/D conversion result register	ADC	421
ADCRH	A/D conversion result register H	ADC	421
ADIC	Interrupt control register	INTC	647
ADM	A/D converter mode register	ADC	417
ADS	Analog input channel specification register	ADC	420
ADTC0	Automatic data transfer address count register 0	CSIA	512
ADTC1	Automatic data transfer address count register 1	CSIA	512
ADTI0	Automatic data transfer interval specification register 0	CSIA	518
ADTI1	Automatic data transfer interval specification register 1	CSIA	518
ADTP0	Automatic data transfer address point specification register 0	CSIA	516
ADTP1	Automatic data transfer address point specification register 1	CSIA	516
ASICL0	LIN operation control register 0	UART	455
ASIF0	Asynchronous serial interface transmit status register 0	UART	453
ASIF1	Asynchronous serial interface transmit status register 1	UART	453
ASIF2	Asynchronous serial interface transmit status register 2	UART	453
ASIMO	Asynchronous serial interface mode register 0	UART	450
ASIM1	Asynchronous serial interface mode register 1	UART	450
ASIM2	Asynchronous serial interface mode register 2	UART	450
ASIS0	Asynchronous serial interface status register 0 heet4U.com	UART	452
ASIS1	Asynchronous serial interface status register 1	UART	452
ASIS2	Asynchronous serial interface status register 2	UART	452
AWC	Address wait control register	BCU	182
BCC	Bus cycle control register	BCU	183
BRGC0	Baud rate generator control register 0	UART	476
BRGC1	Baud rate generator control register 1	UART	476
BRGC2	Baud rate generator control register 2	UART	476
BRGCA0	Divisor selection register 0	CSIA	516
BRGCA1	Divisor selection register 1	CSIA	516
BRGIC	Interrupt control register	INTC	647
BSC	Bus size configuration register	BCU	171
CCLS	CPU operation clock status register	CG	201
CKSR0	Clock select register 0	UART	475
CKSR1	Clock select register 1	UART	475
CKSR2	Clock select register 2	UART	475
CLM	Clock monitor mode register	CLM	707
CMP00	8-bit timer H compare register 00	ТМН	363
CMP01	8-bit timer H compare register 01	ТМН	363
CMP10	8-bit timer H compare register 10	ТМН	363
CMP11	8-bit timer H compare register 11	ТМН	363
CORAD0	Correction address register 0	ROMC	726
CORAD0H	Correction address register 0H	ROMC	726
CORADOL	Correction address register 0L	ROMC	726 ww

APPENDIX C REGISTER INDEX

822

Symbol	Name	Unit	(2 Page
,			Page
CORAD1	Correction address register 1	ROMC	726
CORAD1H	Correction address register 1H	ROMC	726
CORAD1L	Correction address register 1L	ROMC	726
CORAD2	Correction address register 2	ROMC	726
CORAD2H	Correction address register 2H	ROMC	726
CORAD2L	Correction address register 2L	ROMC	726
CORAD3	Correction address register 3	ROMC	726
CORAD3H	Correction address register 3H	ROMC	726
CORAD3L	Correction address register 3L	ROMC	726
CORCN	Correction control register	ROMC	727
CR000	16-bit timer capture/compare register 000	TM0	295
CR001	16-bit timer capture/compare register 001	TMO	297
CR010	16-bit timer capture/compare register 010	TMO	295
CR011	16-bit timer capture/compare register 011	TM0	297
CR020	16-bit timer capture/compare register 020	TM0	295
CR021	16-bit timer capture/compare register 021	TM0	297
CR030	16-bit timer capture/compare register 030	TM0	295
CR031	16-bit timer capture/compare register 031	ТМО	297
CR5	16-bit timer compare register 5	TM5	344
CR50	8-bit timer compare register 50	TM5	344
CR51	8-bit timer compare register 51	TM5	344
CRC00	Capture/compare control register 00 Sheet4U.com	TMO	300
CRC01	Capture/compare control register 01	ТМО	300
CRC02	Capture/compare control register 02	TMO	300
CRC03	Capture/compare control register 03	TM0	300
CSI0IC0	Interrupt control register	INTC	647
CSI0IC1	Interrupt control register	INTC	647
CSIA0B0	CSIA0 buffer RAMn (n = 0 to F)	CSIA	518
CSIA0B0H	CSIA0 buffer RAMnH (n = 0 to F)	CSIA	518
CSIA0B0L	CSIA0 buffer RAMnL (n = 0 to F)	CSIA	518
CSIA1B0	CSIA1 buffer RAMn (n = 0 to F)	CSIA	518
CSIA1B0H	CSIA1 buffer RAMnH (n = 0 to F)	CSIA	518
CSIA1B0L	CSIA1 buffer RAMnL (n = 0 to F)	CSIA	518
CSIAIC0	Interrupt control register	INTC	647
CSIAIC1	Interrupt control register	INTC	647
CSIC0	Clocked serial interface clock selection register 0	CSI0	488
CSIC1	Clocked serial interface clock selection register 1	CSI0	488
CSIM00	Clocked serial interface mode register 00	CSI0	486
CSIM01	Clocked serial interface mode register 01	CSI0	486
CSIMA0	Serial operation mode specification register 0	CSIA	513
CSIMA1	Serial operation mode specification register 1	CSIA	513
CSIS0	Serial status register 0	CSIA	514
CSIS1	Serial status register 1	CSIA	514
CSIT0	Serial trigger register 0	CSIA	515

DataSheet4U.com

Symbol	Name	Unit	Page
CSIT1	Serial trigger register 1	CSIA	515
СТВР	CALLT base pointer	CPU	57
CTPC	CALLT execution status saving register	CPU	56
CTPSW	CALLT execution status saving register	CPU	56
DACS0	D/A conversion value setting register 0	DAC	443
DACS1	D/A conversion value setting register 1	DAC	443
DADC0	DMA addressing control register 0	DMA	611
DADC1	DMA addressing control register 1	DMA	611
DADC2	DMA addressing control register 2	DMA	611
DADC3	DMA addressing control register 3	DMA	611
DAM	D/A converter mode register	DAC	443
DBC0	DMA byte count register 0	DMA	610
DBC1	DMA byte count register 1	DMA	610
DBC2	DMA byte count register 2	DMA	610
DBC3	DMA byte count register 3	DMA	610
DBPC	Exception/debug trap status saving register	CPU	57
DBPSW	Exception/debug trap status saving register	CPU	57
DCHC0	DMA channel control register 0	DMA	612
DCHC1	DMA channel control register 1	DMA	612
DCHC2	DMA channel control register 2	DMA	612
DCHC3	DMA channel control register 3	DMA	612
DDA0H	DMA destination address register 0H DataSheet4U.com	DMA	609
DDA0L	DMA destination address register 0L	DMA	609
DDA1H	DMA destination address register 1H	DMA	609
DDA1L	DMA destination address register 1L	DMA	609
DDA2H	DMA destination address register 2H	DMA	609
DDA2L	DMA destination address register 2L	DMA	609
DDA3H	DMA destination address register 3H	DMA	609
DDA3L	DMA destination address register 3L	DMA	609
DMAIC0	Interrupt control register	INTC	647
DMAIC1	Interrupt control register	INTC	648
DMAIC2	Interrupt control register	INTC	648
DMAIC3	Interrupt control register	INTC	648
DSA0H	DMA source address register 0H	DMA	608
DSA0L	DMA source address register 0L	DMA	608
DSA1H	DMA source address register 1H	DMA	608
DSA1L	DMA source address register 1L	DMA	608
DSA2H	DMA source address register 2H	DMA	608
DSA2L	DMA source address register 2L	DMA	608
DSA3H	DMA source address register 3H	DMA	608
DSA3L	DMA source address register 3L	DMA	608
DTFR0	DMA trigger factor register 0	DMA	613
DTFR1	DMA trigger factor register 1	DMA	613
DTFR2	DMA trigger factor register 2	DMA	613

DataSheet4U.com

et4U.com

www.DataSheet4U.com

Symbol	Name	Unit	(4/9) Page	
DTFR3	DMA trigger factor register 3	DMA	613	
DWC0	Data wait control register 0	BCU	179	
ECR	Interrupt source register	CPU	54	
EIPC	Interrupt status saving register	CPU	53	
EIPSW	Interrupt status saving register	CPU	53	
EXIMC	External bus interface mode control register	BCU	170	
FEPC	NMI status saving register	CPU	54	
FEPSW	NMI status saving register	CPU	54	
IIC0	IIC shift register 0	l ² C	558	
IICC0	IIC control register 0	l ² C	546	
IICCL0	IIC clock selection register 0	I ² C	556	
IICF0	IIC flag register 0	I ² C	554	
IICIC0	Interrupt control register	INTC	647	
IICS0	IIC status register 0	I ² C	551	
IICX0	IIC function expansion register 0	I ² C	557	
IMR0	Interrupt mask register 0	INTC	648	
IMR0H	Interrupt mask register 0H	INTC	648	
IMR0L	Interrupt mask register 0L	INTC	648	
IMR1	Interrupt mask register 1	INTC	648	
IMR1H	Interrupt mask register 1H	INTC	648	DataSh
IMR1L	Interrupt mask register 1L	INTC	648	Dataon
IMR2	Interrupt mask register 2 DataSheet4U.com	INTC	648	
IMR2H	Interrupt mask register 2H	INTC	648	
IMR2L	Interrupt mask register 2L	INTC	648	
IMR3	Interrupt mask register 3	INTC	648	
IMR3H	Interrupt mask register 3H	INTC	648	
IMR3L	Interrupt mask register 3L	INTC	648	
INTF0	External interrupt falling edge specification register 0	INTC	656	
INTF3	External interrupt falling edge specification register 3	INTC	657	
INTF9H	External interrupt falling edge specification register 9H	INTC	658	
INTR0	External interrupt rising edge specification register 0	INTC	656	
INTR3	External interrupt rising edge specification register 3	INTC	657	
INTR9H	External interrupt rising edge specification register 9H	INTC	658	
ISPR	In-service priority register	INTC	650	
KRIC	Interrupt control register	INTC	647	
KRM	Key return mode register	KR	671	
LVIIC	Interrupt control register	INTC	647	1
LVIM	Low-voltage detection register	LVI	717	
LVIS	Low-voltage detection level selection register	LVI	718	
NFC	Digital noise elimination control register	INTC	654	
OSTS	Oscillation stabilization time selection register	Standby	677	1
P0	Port 0 register	Port	96	
P0NFC	TIP00 noise elimination control register	TMP	290	
P1	Port 1 register	Port	98	

Symbol	Name	Unit	Page
P1NFC	TIP01 noise elimination control register	TMP	290
P3	Port 3 register	Port	101
P3H	Port 3 register H	Port	101
P3L	Port 3 register L	Port	101
P4	Port 4 register	Port	106
P5	Port 5 register	Port	109
P7	Port 7 register	Port	112
P9	Port 9 register	Port	114
P9H	Port 9 register H	Port	114
P9L	Port 9 register L	Port	114
PC	Program counter	CPU	51
PCC	Processor clock control register	CG	197
PCM	Port CM register	Port	121
PCS	Port CS register	Port	123
РСТ	Port CT register	Port	125
PDH	Port DH register	Port	127
PDL	Port DL register	Port	130
PDLH	Port DL register H	Port	130
PDLL	Port DL register L	Port	130
PF3H	Port 3 function register H	Port	103
PF4	Port 4 function register	Port	108
PF5	Port 5 function register DataSheet4U.com	Port	110
PF9H	Port 9 function register H	Port	117
PFC3	Port 3 function control register	Port	103
PFC4	Port 4 function control register	Port	107
PFC5	Port 5 function control register	Port	111
PFC9	Port 9 function control register	Port	117
PFC9H	Port 9 function control register H	Port	118
PFC9L	Port 9 function control register L	Port	118
PFCE3	Port 3 function control expansion register	Port	103
PFM	Power fail comparison mode register	ADC	423
PFT	Power fail comparison threshold register	ADC	423
PIC0	Interrupt control register	INTC	647
PIC1	Interrupt control register	INTC	647
PIC2	Interrupt control register	INTC	647
PIC3	Interrupt control register	INTC	647
PIC4	Interrupt control register	INTC	647
PIC5	Interrupt control register	INTC	647
PIC6	Interrupt control register	INTC	647
PIC7	Interrupt control register	INTC	647
PLLCTL	PLL control register	CG	203, 412
PM0	Port 0 mode register	Port	96
PM1	Port 1 mode register	Port	98
PM3	Port 3 mode register	Port	101

DataShe

www.DataSheet4U.com

Symbol	Name	Unit	Page
РМЗН	Port 3 mode register H	Port	101
PM3L	Port 3 mode register L	Port	101
PM4	Port 4 mode register	Port	106
PM5	Port 5 mode register	Port	109
PM9	Port 9 mode register	Port	114
PM9H	Port 9 mode register H	Port	114
PM9L	Port 9 mode register L	Port	114
PMC0	Port 0 mode control register	Port	97
PMC3	Port 3 mode control register	Port	102
РМСЗН	Port 3 mode control register H	Port	102
PMC3L	Port 3 mode control register L	Port	102
PMC4	Port 4 mode control register	Port	107
PMC5	Port 5 mode control register	Port	110
PMC9	Port 9 mode control register	Port	114
PMC9H	Port 9 mode control register H	Port	115
PMC9L	Port 9 mode control register L	Port	115
РМССМ	Port CM mode control register	Port	122
PMCCS	Port CS mode control register	Port	124
PMCCT	Port CT mode control register	Port	126
PMCDH	Port DH mode control register	Port	128
PMCDL	Port DL mode control register	Port	131
PMCDLH	Port DL mode control register HDataSheet4U.com	Port	131
PMCDLL	Port DL mode control register L	Port	131
PMCM	Port CM mode register	Port	121
PMCS	Port CS mode register	Port	123
РМСТ	Port CT mode register	Port	125
PMDH	Port DH mode register	Port	127
PMDL	Port DL mode register	Port	130
PMDLH	Port DL mode register H	Port	130
PMDLL	Port DL mode register L	Port	130
PRCMD	Command register	CPU	83
PRM00	Prescaler mode register 00	ТМО	303
PRM01	Prescaler mode register 01	TMO	303
PRM02	Prescaler mode register 02	TM0	303
PRM03	Prescaler mode register 03	TMO	303
PRSCM	Interval timer BRG compare register	CG	387
PRSM	Interval timer BRG mode register	CG	386
PSC	Power save control register	Standby	675
PSMR	Power save mode register	Standby	676
PSW	Program status word	CPU	55
PU0	Pull-up resistor option register 0	Port	97
PU1	Pull-up resistor option register 1	Port	99
PU3	Pull-up resistor option register 3	Port	105
PU4	Pull-up resistor option register 4	Port	108

DataSheet4U.com

www.DataSheet4U.com

Symbol	Name	Unit	Page
PU5	Pull-up resistor option register 5	Port	111
PU9	Pull-up resistor option register 9	Port	120
PU9H	Pull-up resistor option register 9H	Port	120
PU9L	Pull-up resistor option register 9L	Port	120
PUCM	Pull-up resistor option register CM	Port	122
PUCS	Pull-up resistor option register CS	Port	124
PUCT	Pull-up resistor option register CT	Port	126
PUDH	Pull-up resistor option register DH	Port	128
PUDL	Pull-up resistor option register DL	Port	131
PUDLL	Pull-up resistor option register DLL	Port	131
PUDLH	Pull-up resistor option register DLH	Port	131
RCM	Ring-OSC mode register	CG	201, 708
r0 to r31	General-purpose registers	CPU	51
RESF	Reset source flag register	Reset	694
RNZC	Reset noise elimination control register	Reset	697
RTBH0	Real-time output buffer register H0	RTP	406
RTBL0	Real-time output buffer register L0	RTP	406
RTPC0	Real-time output port control register 0	RTP	408
RTPM0	Real-time output port mode register 0	RTP	407
RXB0	Receive buffer register 0	UART	454
RXB1	Receive buffer register 1	UART	454
RXB2	Receive buffer register 2 DataSheet4U.com	UART	454
SELCNT0	Selector operation control register 0	UART	456
SELCNT1	Selector operation control register 1	TMO	304
SIO00	Serial I/O shift register 0	CSI0	493
SIO00L	Serial I/O shift register 0L	CSI0	493
SIO01	Serial I/O shift register 1	CSI0	493
SIO01L	Serial I/O shift register 1L	CSI0	493
SIOA0	Serial I/O shift register A0	CSIA	512
SIOA1	Serial I/O shift register A1	CSIA	512
SIRB0	Clocked serial interface receive buffer register 0	CSI0	489
SIRB0L	Clocked serial interface receive buffer register 0L	CSI0	489
SIRB1	Clocked serial interface receive buffer register 1	CSI0	489
SIRB1L	Clocked serial interface receive buffer register 1L	CSI0	489
SIRBE0	Clocked serial interface read-only receive buffer register 0	CSI0	490
SIRBE0L	Clocked serial interface read-only receive buffer register 0L	CSI0	490
SIRBE1	Clocked serial interface read-only receive buffer register 1	CSI0	490
SIRBE1L	Clocked serial interface read-only receive buffer register 1L	CSI0	490
SOTB0	Clocked serial interface transmit buffer register 0	CSI0	491
SOTB0L	Clocked serial interface transmit buffer register 0L	CSI0	491
SOTB1	Clocked serial interface transmit buffer register 1	CSI0	491
SOTB1L	Clocked serial interface transmit buffer register 1L	CSI0	491
SOTBF0	Clocked serial interface initial transmit buffer register 0	CSI0	492
SOTBF0L	Clocked serial interface initial transmit buffer register 0L	CSI0	492

DataShe

www.DataSheet4U.com

Symbol	Name	Unit	Page
SOTBF1	Clocked serial interface initial transmit buffer register 1	CSI0	492
SOTBF1L	Clocked serial interface initial transmit buffer register 1L	CSI0	492
SREIC0	Interrupt control register	INTC	647
SREIC1	Interrupt control register	INTC	647
SREIC2	Interrupt control register	INTC	647
SRIC0	Interrupt control register	INTC	647
SRIC1	Interrupt control register	INTC	647
SRIC2	Interrupt control register	INTC	647
STIC0	Interrupt control register	INTC	647
STIC1	Interrupt control register	INTC	647
STIC2	Interrupt control register	INTC	647
SVA0	Slave address register 0	I ² C	558
SYS	System status register	CPU	84
TCL50	Timer clock selection register 50	TM5	345
TCL51	Timer clock selection register 51	TM5	345
TM00	16-bit timer counter 00	ТМО	295
TM01	16-bit timer counter 01	ТМО	295
TM02	16-bit timer counter 02	ТМО	295
TM03	16-bit timer counter 03	TMO	295
TM0IC00	Interrupt control register	INTC	647
TM0IC01	Interrupt control register	INTC	647
TM0IC10	Interrupt control register DataSheet4U.com	INTC	647
TM0IC11	Interrupt control register	INTC	647
TM0IC20	Interrupt control register	INTC	647
TM0IC21	Interrupt control register	INTC	647
TM0IC30	Interrupt control register	INTC	647
TM0IC31	Interrupt control register	INTC	647
TM5	16-bit timer counter 5	TM5	358
TM50	8-bit timer counter 50	TM5	343
TM51	8-bit timer counter 51	TM5	343
TM5IC0	Interrupt control register	INTC	647
TM5IC1	Interrupt control register	INTC	647
TMC00	16-bit timer mode control register 00	TM0	298
TMC01	16-bit timer mode control register 01	TM0	298
TMC02	16-bit timer mode control register 02	TMO	298
TMC03	16-bit timer mode control register 03	TMO	298
TMC50	8-bit timer mode control register 50	TM5	346
TMC51	8-bit timer mode control register 51	TM5	346
TMCYC0	8-bit timer H carrier control register 0	ТМН	367
TMCYC1	8-bit timer H carrier control register 1	ТМН	367
TMHIC0	Interrupt control register	INTC	647
TMHIC1	Interrupt control register	INTC	647
TMHMD0	8-bit timer H mode register 0	ТМН	364
TMHMD1	8-bit timer H mode register 1	ТМН	364

DataSheet4U.com

			(9/9)
Symbol	Name	Unit	Page
TOC00	16-bit timer output control register 00	ТМО	301
TOC01	16-bit timer output control register 01	ТМО	301
TOC02	16-bit timer output control register 02	ТМО	301
TOC03	16-bit timer output control register 03	ТМО	301
TP0CCIC0	Interrupt control register	INTC	647
TP0CCIC1	Interrupt control register	INTC	647
TP0CCR0	TMP0 capture/compare register 0	TMP	214
TP0CCR1	TMP0 capture/compare register 1	TMP	216
TP0CNT	TMP0 counter read buffer register	TMP	218
TP0CTL0	TMP0 control register 0	TMP	208
TP0CTL1	TMP0 control register 1	TMP	209
TP0IOC0	TMP0 I/O control register 0	TMP	210
TP0IOC1	TMP0 I/O control register 1	TMP	211
TP0IOC2	TMP0 I/O control register 2	TMP	212
TP0OPT0	TMP0 option register 0	TMP	213
TP0OVIC	Interrupt control register	INTC	647
TXB0	Transmit buffer register 0	UART	454
TXB1	Transmit buffer register 1	UART	454
TXB2	Transmit buffer register 2	UART	454
VSWC	System wait control register	CPU	85
WDCS	Watchdog timer clock selection register	WDT	397
WDT1IC	Interrupt control register DataSheet4U.com	INTC	647
WDTE	Watchdog timer enable register	WDT	403
WDTM1	Watchdog timer mode register 1	WDT	398, 652
WDTM2	Watchdog timer mode register 2	WDT	402
WTIC	Interrupt control register	INTC	647
WTIIC	Interrupt control register	INTC	647
WTM	Watch timer operation mode register	WT	390