TOSHIBA TC7SZ05F/FU

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC7SZ05F, TC7SZ05FU

INVERTER (OPEN DRAIN)

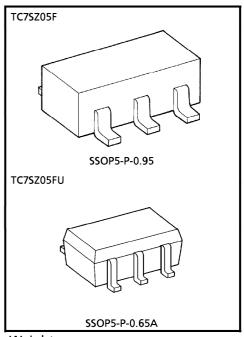
FEATURES

High Output Drive : ±24 mA (Typ.)

 $(V_{CC} = 3 V)$

Super High Speed Operation : tpD = 2.4 ns (Typ.)

 $(V_{CC} = 5 V, 50 pF)$


: $V_{CC (opr)} = 1.8 \sim 5.5 \text{ V}$ Operation Voltage Range

Supply Voltage Data Retention : $V_{CC} = 1.5 \sim 5.5 \text{ V}$

5 V Toleratnt Function

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	Vcc	-0.5~6	V
DC Input Voltage	VIN	-0.5~6	V
DC Output Voltage	VOUT	-0.5~6	V
Input Diode Current	ΙΚ	± 20	mA
Output Diode Current	^I ОК	± 20	mA
DC Output Current	lout	± 50	mA
DC V _{CC} /Ground Current	ICC	± 50	mA
Power Dissipation	PD	200	mW
Storage Temperature	T _{stg}	-65∼150	°C
Lead Temperature (10 s)	TL	260	°C

Weight SSOP5-P-0.95 : 0.016 g (Typ.) SSOP5-P-0.65A : 0.006 g (Typ.)

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

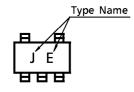
TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to the foreign exchange and foreign trade laws.

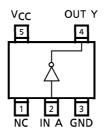
DC ELECTRICAL CHARACTERISTICS

CHADACTERISTIC	CVMADOL	TECT	T. CONDITION	Vac	Ta = 25°C		Ta = -40~85°C		UNIT	
CHARACTERISTIC	SYMBOL	1531	CONDITION	Vcc (V)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High-Level				1.8	0.88 × V _{CC}	_	_	0.88 × V _{CC}	_	.,
Input Voltage	V _{IH}			2.3~ 5.5	0.75 × V _{CC}	_	_	0.75 × V _{CC}	_	V
Low-Level			1.8	_	_	0.12 × V _{CC}		0.12 × V _{CC}	V	
Input Voltage	V _{IL}			2.3~ 5.5	_	_	0.25 × V _{CC}	_	0.25 × V _{CC}	, and the second
High Level Output Leakage	^I LKG	V _{IN} = V _{IL}		1.8~ 5.5	_	_	± 5	_	± 10	μΑ
			I _{OL} = 100 μA	1.8	_	0	0.1	_	0.1	V
Low-Level				2.3	_	0	0.1	_	0.1	
				3.0	_	0	0.1	_	0.1	
	VIN = VIH		4.5	_	0	0.1	_	0.1		
Output Voltage	VOL	VIN - VIH	I _{OL} = 8 mA	2.3	_	0.1	0.3	_	0.3	
			I _{OL} = 16 mA	3.0	_	0.15	0.4	_	0.4	V
			$I_{OL} = 24 \text{ mA}$	3.0	_	0.22	0.55	_	0.55	
			$I_{OL} = 32 \text{ mA}$	4.5	_	0.22	0.55	_	0.55	
Input Leakage Current	IN	V _{IN} = 5.5 \	or GND	0~ 5.5	_		± 1	_	± 10	μΑ
Power Off Leakage Current	lOFF	V _{IN} or V _O	UT = 5.5 V	0.0	_	_	1	_	10	μΑ
Quiescent Supply Current	lcc	V _{IN} = V _{CC}	or GND	5.5			2		20	μΑ

AC ELECTRICAL	CHARACTERISTICS	(Input t _r =	$= t_f = 3 \text{ ns}$
---------------	------------------------	-------------------------	------------------------


CHADACTERISTIS	CVMDQI	SYMBOL TEST CONDITION		Ta = 25°C		Ta = −40~85°C		LINUT	
CHARACTERISTIC SY	STIVIBOL		V _{CC} (V)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
			1.8	1.5	4.6	10.5	1.5	11.0	
	+	$C_L = 50 \text{ pF},$ $R_L = 500 \Omega$	2.5 ± 0.2	0.8	3.0	7.0	0.8	7.5	
	^t PZL	$R_L = 500 \Omega$	3.3 ± 0.3	0.8	2.4	5.0	0.8	5.2	
Propagation Delay Time			5.0 ± 0.5	0.5	1.9	4.3	0.5	4.5	ns
	t _{PLZ}	$C_L = 50 \text{ pF},$ $R_L = 500 \Omega$	1.8	1.5	4.1	10.5	1.5	11.0	
			2.5 ± 0.2	0.8	2.5	7.0	0.8	7.5	
			3.3 ± 0.3	0.8	2.1	5.0	0.8	5.2	
			5.0 ± 0.5	0.5	1.2	4.3	0.5	4.5	
Input Capacitance	CIN		0~5.5	_	4		_	_	pF
Power Dissipation Capacitance	C _{PD} (Note 1)	(Nato 1)	3.3	_	3.6	_	_	_	nE
		(Note 1)	5.5	_	6.5	_	_		pF

(Note 1) CpD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation.

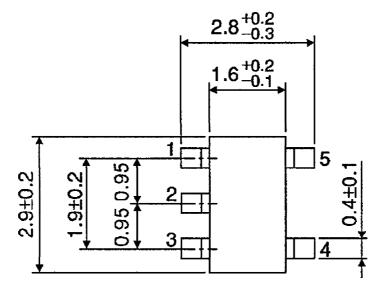
$$I_{CC \text{ (opr)}} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$$

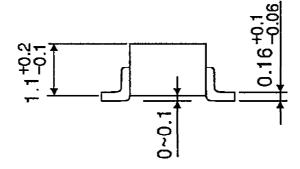
MARKING

PIN ASSIGNMENT (TOP VIEW)

TRUTH TABLE

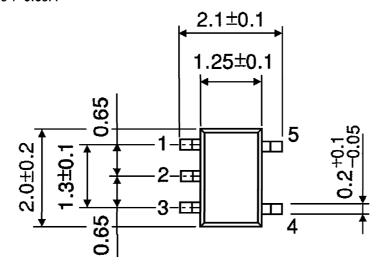
А	Y
L	* H
Н	L

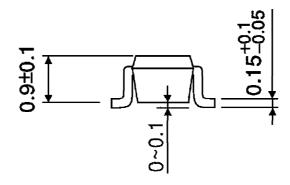

* : High Impedance


LOGIC DIAGRAM

OUTLINE DRAWING SSOP5-P-0.95

Unit: mm





Weight: 0.016 g (Typ.)

OUTLINE DRAWING SSOP5-P-0.65A

Unit: mm

Weight: 0.006 g (Typ.)

Tape Packing Specifications for 5-pin Ultra Super-Mini (USV) Package

Scope

This specification provides the packaging requirements for 5-pin Ultra Super Mini type transistors, FETs, diodes, L-MOS logics for use in automatic placement machines.

1. Product Naming System

Type of package for shipment is classified by a symbol suffixed to a product name. The method of classification is as below. (this method, however, does not apply to products of which electrical characteristics differ from the TOSHIBA standard specifications.)

[Example]

2. Tape Dimensions

- 2.1 Accumulated pitch tolerance is ±0.2 mm/10 pitch.
- 2.2 The tape material is plastic.
- 2.3 The tape dimensions are per Figure 1.

Unit: mm

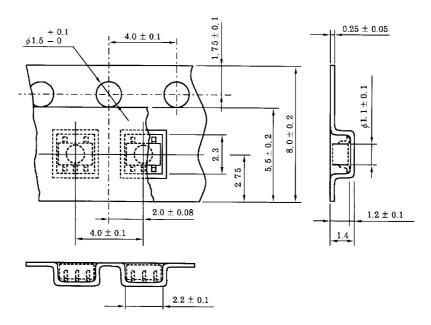


Figure 1

961001EAA1

[•] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others

The information contained herein is subject to change without notice.

2.4 Related Matters

2.4.1 Missing Devices

Except for the leader and trailer portions of the tape there shall be no consecutive missing parts. The maximum number of missing parts cannot exceed 0.2% per reel.

2.4.2 Electric Characteristics

Electric Characteristics of taping devices are shown in individual Technical Data.

3. Reel

3.1 The reel dimensions are per Figure 2.

Unit: mm

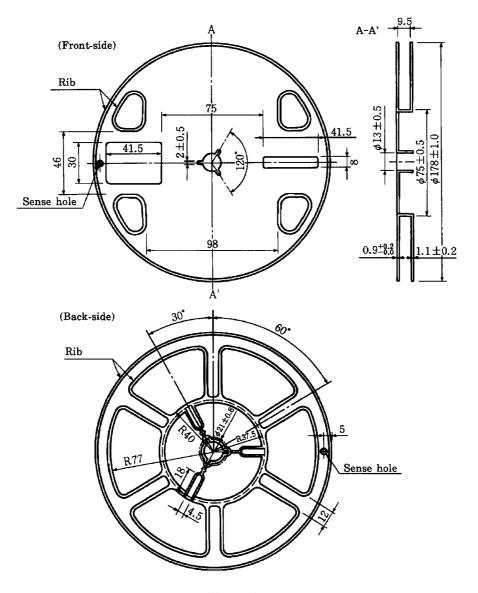
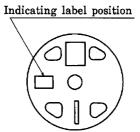


Figure 2

3.2 The reel material is plastic.

4. Packed System

4.1 Packed parts quantity


3000 pcs per reel.

4.2 Indication System

[Example] TC7S00FU (TE85L)

P/N:

TYPE	TC7S00FU		
ADDC	(TE85L)	Q'TY	3,000 pcs
NOTE			

On special occasion ADD CODE, PART No. etc. are often indicated in indicating label of the reel.

4.3 Part orientation in the carrier tape shall be as shown in Figure 3.

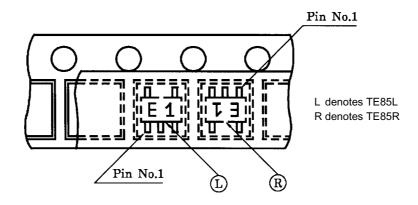
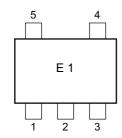



Figure 3

Pin 1 exists on the left below of the marking.

[Example] Top View

3

5. The leader and trailer portion of the tape shall be as shown in Figure 4.

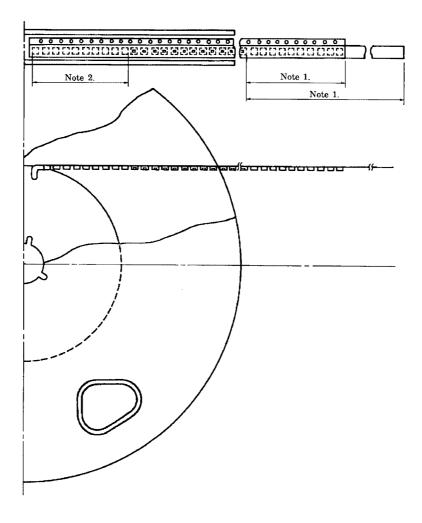


Figure 4

Note1: The leader portion shall consist of a piece of cover tape minimum length of 300 mm and a piece of carrier tape with empty portion of 100 mm minimum.

Note2: The trailer portion shall consist of an empty carrier of more than 10 cavities.