

Product Description

Sirenza Microdevices' SZA-6044 is a high linearity Class A GaAs Heterojunction Bipolar Transistor (HBT) amplifier housed in a low-cost surface-mountable plastic package. These HBT amplifiers are fabricated using molecular beam epitaxial growth technology which produces reliable and consistent performance from wafer to wafer and lot to lot.

This product is specifically designed as a driver or final stage amplifier for equipment in the 5.1 - 5.9 GHz band. It can run from a 3V to 5V supply. Load line optimization for target band is possible outside the package. Its high linearity makes it an ideal choice for multicarrier and digital applications.

Functional Block Diagram

SZA-6044

5.1 – 5.9 GHz ¼ Watt Power Amplifier with Active Bias

4mm x 4mm QFN Package

Product Features

- Single 3V to 5V operation
- High Linearity Class A OIP3 = 39dBm @ 5V
- 802.11a 54Mb/s Pout = 17dBm @ 3% EVM
- P1dB 24dBm @ 5V, 21dBm @ 3.3V
- Surface Mount Plastic Package
- Power up/down control < 1μs

Applications

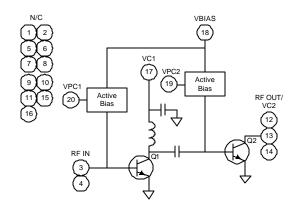
- OFDM
- Multicarrier applications
- 802.11a WLAN Driver Stage
- Fixed Wireless, UNII

Key Specifications

Symbol	Parameters: Test Conditions, With App Circuit $Z_0 = 50 \Omega$, $V_{CC} = 5.0V$, $I = 165 mA$, $T_{BP} = 30 °C$)	Unit	Min.	Тур.	Max.
f _O	Frequency of Operation	MHz	5100		5900
	Output Power at 1dB Compression – 5.1 GHz			24.9	
P _{1dB}	Output Power at 1dB Compression – 5.5 GHz	dBm		24.6	
	Output Power at 1dB Compression – 5.9 GHz	•	22.5	24.0	26.0
	Small Signal Gain – 5.1 GHz	dB	17.0	18.5	20.0
S ₂₁	Small Signal Gain – 5.5 GHz			17.3	
	Small Signal Gain – 5.9 GHz	1	14.9	16.4	17.9
IRL	Worst Case Input Return Loss 5.1-5.9GHz	dB	8	11	
ORL	Worst Case Output Return Loss 5.1-5.9GHZ	dB	12	17	
OIP ₃	Output IP3, Pout per tone = +8dBm @ 5.9 GHz	dBm	37	39	
Pout	802.11a 54Mb/s Pout @ 3% EVM @ 5.9GHz, I = 165mA	dBm		17	
NF	Noise Figure @ 5.9 GHz	dB		7.8	9.8
I _{SUPPLY}	Total Device Current, I _{VBIAS} + I _{CTOTAL} = 150mA I _{VPC12} = 15mA	mA	145	165	185
R _{th, j-l} Thermal Resistance (junction - lead)		°C/W		56	

Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems.

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for ina ccuracies or ommisions.



Pin Out Description

Pin #	Function	Description
1,2,5,6, 7,8,9,10, 11,15,16	N/C	Pins are not used. May be grounded, left open or connected to adjacent pin.
19	VPC2	VPC2 is the bias control pin for the stage 2 active bias circuit. An external series resistor is required for proper setting of bias levels. Refer to the evaluation board schematic for resistor value.
20	VPC1	VPC1 is the control pin for the stage 1 active bias circuits. An external series resistor is required for proper setting of bias levels. Refer to the evaluation board schematic for resistor value.
18	VBIAS	VBIAS is the active bias circuit supply voltage. Can be operated from 3V to 5V.
3,4	RFIN	RF input pin. This is DC grounded internal to the IC. Do not apply voltage to this pin. Both pins 3 and 4 must be used for proper operation.
12,13,14	RFOUT/ VC2	RF output and second stage collector supply voltage pin. VC2 in the range of 3V to 5V voltage should be supplied to this pin through an external RF choke. Because DC biasing is present on this pin, a DC blocking capacitor should be used in most applications (see evaluation board schematic). The supply side of the bias network should be well bypassed. The output network and board layout specified in the app circuit is recommended for optimum performance. All pins 12-14 are required to be wired together at lead foot for proper operation.
17	VC1	VC1 is the first stage collector supply voltage. Can be operated over the range of 3V to 5V.
EPAD	Gnd	Exposed area on the bottom side of the package needs to be soldered to the ground plane of the board for optimum thermal and RF performance. Several vias should be located under the EPAD as shown in the recommended land pattern (page 5).

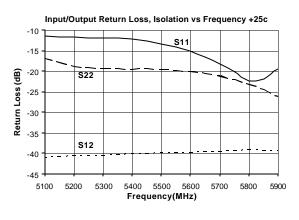
Simplified Device Schematic

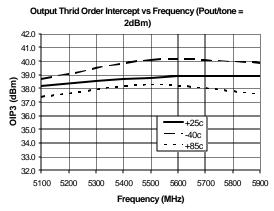
Absolute Maximum Ratings

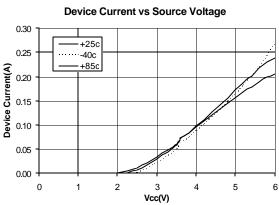
Parameters	Value	Unit
1st Stage Collector Bias Current (I _{VC1})	100	mA
2nd Stage Collector Bias Current (I _{VC2})	190	mA
Device Voltage (V _D)	6.0	V
Power Dissipation	1.5	W
Operating Lead Temperature (T _L)	-40 to +85	∘C
RF Input Power	20	dBm
Storage Temperature Range	-40 to +150	℃
Operating Junction Temperature (T _J)	+150	∘C
ESD Human Body Model - Class 1B	500	V

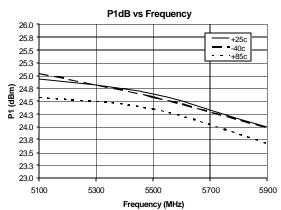
Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation the device voltage and current must not exceed the maximum operating values specified in the table on page one.

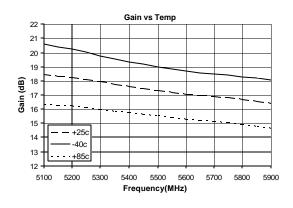
Bias conditions should also satisfy the following expression: $I_DV_D < (T_J - T_L) / R_{TH'}$ j-I

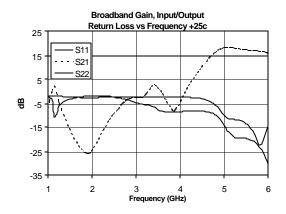


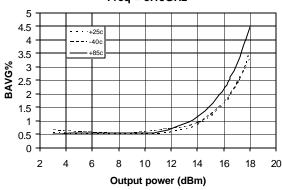

Caution: ESD Sensitive - Class 1B

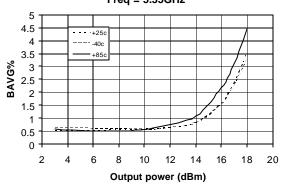

Appropriate precaution in handling, packaging and testing devices must be observed.



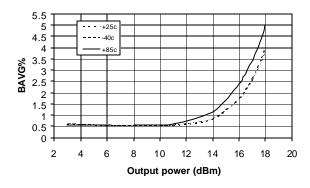

5.1 - 5.9 GHz Evaluation Board Data ($V_{BIAS} = 5.0V$, $I_{BIAS} = 165$ mA)

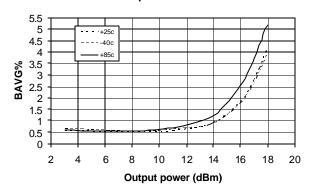




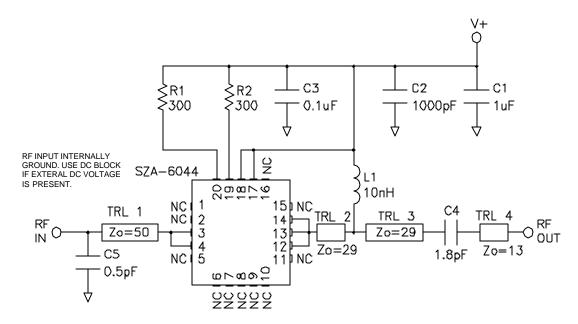


802.11a 64QAM 54Mb/s Error Vector Magnitude Data ($V_{BIAS} = 5.0V$, $I_{BIAS} = 165mA$)

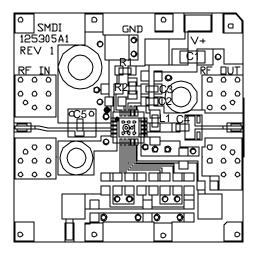

EVM Burst Average% vs Output Power (dBM)
Freq = 5.15GHz


EVM Burst Average% vs Output Power (dBM)
Freq = 5.35GHz

EVM Burst Average% vs Output Power (dBM) Freq = 5.725GHz



EVM Burst Average% vs Output Power (dBM) Freq = 5.875GHz



5.1 - 5.9 GHz Evaluation Board Schematic For 5V Supply

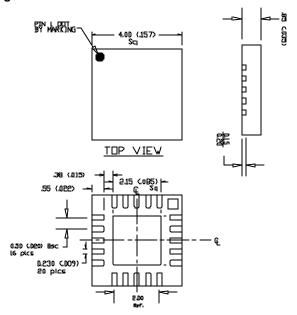
5.1 - 5.9 GHz Evaluation Board Layout For 5V - Board material GETEK, 31mil thick, Dk=3.9, 2 oz. copper

DESG	DESCRIPTION	
Q1	SZA-6044	
R1,2	300 OHM, 0603	
C1	1uF CERAMIC CAP	
C2	1000pF CAP, 0603	
C3	O 1⊔F CAP, 06Ω3	
C4	1.BpF CAP, 06Ω3	
C5	0.5pF CAP, 0603	
L1	10nH INDUCTOR, 0603 Toko LL1608—FS10NJ	
TRL 1	Zo=50 Ω ,54.2° @ 5.5GHz	
TRL 2	Zo=29 Ω ,22.3° @ 5.5GHz	
TRL 3	Zo=29 Ω ,38.4° @ 5.5GHz	
TRL 4	Zo=13 Ω ,16° @ 5.5GHz	

Note: For 3.3V 140mA operation, lower V+ to 3.3V and change R1 and R2 to 50 ohm.
RF Performance at 3.3V, 140mA: Gain increases 0.5dB, IP3 drops ~ 3dB and P1dB drops ~3dB relative to 5V data.
Return loss is essentially unchanged relative to 5V data. Contact factory for more details.

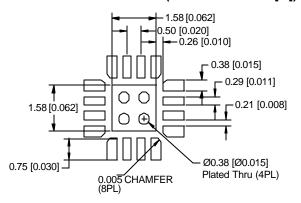
Preliminary

SZA-6044 5.1-5.9 GHz 1/4 W Amplifier

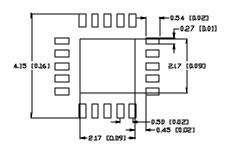

Part Number Ordering Information

-			
	Part Number	Reel Size	Devices/Reel
	SZA-6044	13"	3000

Part Symbolization


The part will be symbolized with an "SZA-6044" marking designator on the top surface of the package.

Package Outline Drawing



BOTTOM VIEW

Recommended Land Pattern (dimensions in mm[in]):

Recommended PCB Soldermask (SMBOC) for Land Pattern (dimensions in mm[in]):

