


Packaging – Hermetic Ceramic

code# "F1"

Command User Interface

Compatible Status Register (CSR)

• 32 Block Status Registers (BSRs) per Die

Decoupling Capacitors and Multiple

Global Status Register (GSR)

**Grounds for Low Noise** 

"P1"

• 68 Lead, 1.56" x 1.56" x .140" Low Profile CQFP, Aeroflex

• 66 Pin, 1.38" x 1.38" x .245" PGA Type, Aeroflex code#

Automated Byte Write and Block Erase

■ MIL-H-38534 Compliant MCMs Available

Industrial and Military Temperature Ranges

### ■ 4 Low Power 2M x 8 FLASH Die in One MCM ■ Industry Standard Pinouts Package

- Organized as 2M x 32 • User Configurable to 4M x 16 or 8M x 8
- ■TTL and CMOS Compatible Inputs and Outputs
- Access Times of 80, 100 and 120nS
- +12V Only Programing, +5V ±10% Supply
- 100,000 Erase/Program Cycles
- Low Power Dissipation • 8 mA CMOS Standby Current Typical
- Sector Architecture (Each Die)
  - 32 Equal Sectors of 64K bytes per each 2M x 8 Chip
  - Two Step Sequence of Erase Ensures that Memory **Contents are not Accidently Erased**
- Pipeline Command Execution

# **General Description**

The ACT-F2M32 is a high speed, 64 megabit CMOS Flash multichip module (MCM) designed for full temperature range military, space, or high reliability applications.

The ACT-F2M32 consists of four high performance 16 Mbit (16,777,216 bit) memory die. Each die is organized as 2 Mbyte (2,097,152 bytes) by 8 bits with thirty-two, 64K byte (65,536 byte) blocks.

The products are designed for operation over the temperature range of -55°C to +125°C and under the full military environment. A DESC Standard Military Drawing (SMD) number is pending.

The ACT-S512K32 is Aeroflex's manufactured in 80.000 square foot MIL-PRF-38534 certified facility in Plainview, N.Y.

CE1 CE2 CE<sub>3</sub> CE4 WP RP WE OE A0 – A20 2Mx8 2Mx8 2Mx8 2Mx8 8 8 8 8 I/O0-7 I/O8-15 I/O16-23 I/O24-31

Block Diagram – PGA Type Package(P1) & CQFP(F1)

Pin Description

| <b>I/O</b> 0-31 | Data I/O       | WP  | Write Protect                                      |
|-----------------|----------------|-----|----------------------------------------------------|
| A0–20           | Address Inputs | Vcc | Power Supply                                       |
| WE              | Write Enable   | VPP | Program/Erase Supply                               |
| <b>CE</b> 1-4   | Chip Enables   | GND | Ground                                             |
| ŌĒ              | Output Enable  | NC  | Not Connected<br>Reserved for further<br>expansion |
| RP              | Reset/Pwrdown  |     |                                                    |

Write During Erase

#### **Absolute Maximum Ratings**

| Parameter                                                                                 | Range         | Units |
|-------------------------------------------------------------------------------------------|---------------|-------|
| Storage Temperature Range                                                                 | -65 to +150   | °C    |
| Voltage on Any Pin with Respect to Ground (except Vcc and Vpp) <sup>(2)</sup>             | -2.0 to +7.0  | V     |
| VPP Program Voltage with Respect to Ground during Block Erase/Byte Write <sup>(2,3)</sup> | -0.2 to +14.0 | V     |
| Vcc Supply Voltage with Respect to Ground <sup>(2)</sup>                                  | -0.2 to +7.0  | V     |

Notes:

1. Minimum DC input voltage is -0.5V. During Transitions, inputs may undershoot to -2.0V for periods less than 20nS. Maximum DC voltage on output pins is Vcc + 0.5V, which may overshoot to Vcc + 2.0V for periods less than 20nS.

2. Maximum DC voltage on Vpp may overshoot to +14.0V for periods less than 20nS.

3. Output shorted for no more than 1 second. No more than one output shorted at one time.

NOTICE: Stresses above those listed under "Absolute Maximums Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **Recommended Operating Conditions**

| Symbol | Parameter                        | Minimum | Maximum               | Units |
|--------|----------------------------------|---------|-----------------------|-------|
| Vcc    | Power Supply Voltage             | +4.5    | +5.5                  | V     |
| Vih    | Input High Voltage               | +2.0    | V <sub>cc</sub> + 0.5 | V     |
| VIL    | Input Low Voltage                | -0.5    | +0.8                  | V     |
| TA     | Operating Temperature (Military) | -55     | +125                  | °C    |

#### Capacitance

(VIN = 0V, f = 1MHz, TA =  $25^{\circ}C$ )

| Symbol | Parameter                | Maximum | Units |
|--------|--------------------------|---------|-------|
| CAD    | A0 – A20 Capacitance     | 50      | pF    |
| COE    | OE Capacitance           | 50      | pF    |
| CCE    | Chip Enable Capacitance  |         |       |
|        | CQFP(F1) Package         | 20      | pF    |
|        | PGA(P1) Package          | 20      | pF    |
| CWE    | Write Enable Capacitance | 50      | pF    |
| Cı/o   | I/O0 – I/O31 Capacitance | 20      | pF    |

Capacitance Guaranteed by design, but not tested.

#### **DC Characteristics – CMOS Compatible**

| Parameter                         | Sym   | Conditions                                                                  | Min       | Max  | Units |
|-----------------------------------|-------|-----------------------------------------------------------------------------|-----------|------|-------|
| Input Leakage Current             | ILI   | VCC = 5.5V, VIN = VCC to GND                                                |           | 10   | μΑ    |
| Output Leakage Current            | ILO   | VCC = 5.5V, VOUT = VCC to GND                                               |           | 10   | μΑ    |
| Vcc Standby Current               | lccs  | $Vcc = 5.5V, \overline{CE} = \overline{RP} = \overline{WP} = VIN, f = 5Mhz$ |           | 16   | mA    |
| Vcc Read Current                  | ICCR  | Vcc = 5.5V, $\overline{CE}$ = VIL, f = 5MHz, IOUT = 0 mA                    |           | 175  | mA    |
| Vcc Write Current                 | Iccw  | Write in Progress                                                           |           | 175  | mA    |
| Vcc Block Erase Current           | ICCE  | Block Erase in Progress                                                     |           | 60   | mA    |
| Vcc Powerdown Current             | ICCD  | RP = GND                                                                    |           | 8    | μA    |
| VPP Standby Current               | IPPS  | VPP < VCC                                                                   |           | 80   | μΑ    |
| VPP Powerdown Current             | IPPD  | RP = GND                                                                    |           | 80   | μΑ    |
| VPP Byte Write Current            | IPPW  | VPP = VPPH, Byte Write in Progress                                          |           | 60   | mA    |
| VPP Block Erase Current           | IPPE  | VPP = VPPH, Block Erase in Progress                                         |           | 60   | mA    |
| Output Low Voltage                | Vol   | VCC = 4.5V, IOL = 5.8 mA                                                    |           | 0.45 | V     |
| Output High Voltage               | Vон   | Vcc = 4.5V, Iон = -2.5 mA                                                   | 2.4<br>or |      | v     |
|                                   | 1/221 |                                                                             | 0.85Vcc   | 0.5  |       |
| VPPL DuringNormal Operations      | VPPL  |                                                                             | 0.0       | 6.5  |       |
| VPP During Erase/Write Operations | Vpph  |                                                                             | 11.4      | 12.6 | V     |
| Vcc Erase/Write Lock Voltage      | Vlko  |                                                                             | 2.0       |      | V     |

NOTES: 1) Block Erases/Byte Writes are inhibited when VPP ≤ VPPLK. 2) DC test conditions VIL = 0.3V, VIH = Vcc - 0.3V

### AC Characteristics – Write/Erase/Program Operations – WE Controlled

| Parameter                                 | Sy     | mbol     | -080    | -100    | -120    | Units |
|-------------------------------------------|--------|----------|---------|---------|---------|-------|
|                                           | JEDEC  | Standard | Min Max | Min Max | Min Max | Units |
| Write Cycle Time                          | tavav  | twc      | 80      | 100     | 120     | nS    |
| Chip Enable Setup Time                    | telwl  | tce      | 0       | 0       | 0       | nS    |
| Write Enable Pulse Width                  | tw∟wн  | twp      | 50      | 50      | 50      | nS    |
| Vpp Setup Time <sup>(1)</sup>             | tvpwн  | tvps     | 100     | 100     | 100     | nS    |
| Address Setup Time                        | tavwн  | tas      | 50      | 50      | 50      | nS    |
| Data Setup Time                           | tdvwн  | tos      | 60      | 60      | 60      | nS    |
| Data Hold Time                            | twhdx  | tdн      | 0       | 0       | 0       | nS    |
| Address Hold Time                         | twhax  | tан      | 10      | 10      | 10      | nS    |
| Chip Enable Hold Time                     | twнен  | tсн      | 10      | 10      | 10      | nS    |
| Write Enable Pulse Width High             | twhwL  | twpн     | 30      | 50      | 50      | nS    |
| Duration of Byte Write Operation (1,2,3)  | twнqv1 |          | 4.5     | 4.5     | 4.5     | μS    |
| Duration of Block Erase Operation (1,2,3) | twнqv2 |          | 0.3     | 0.3     | 0.3     | Sec   |
| Write Recovery before Read                | twнg∟  |          | 65      | 80      | 80      | nS    |
| RP High Recovery Time <sup>(1)</sup>      | t₽нw∟  | tes      | 1       | 1       | 1       | μS    |

(Vcc = 5.0V, Vss = 0V)

Notes:

1. Guaranteed by design, not tested.

2. The on-chip Write State Machine incorporates all byte write and block erase functions and overhead of the flash memory, this includes byte program and verity, block precondition and verify, erase and verity.

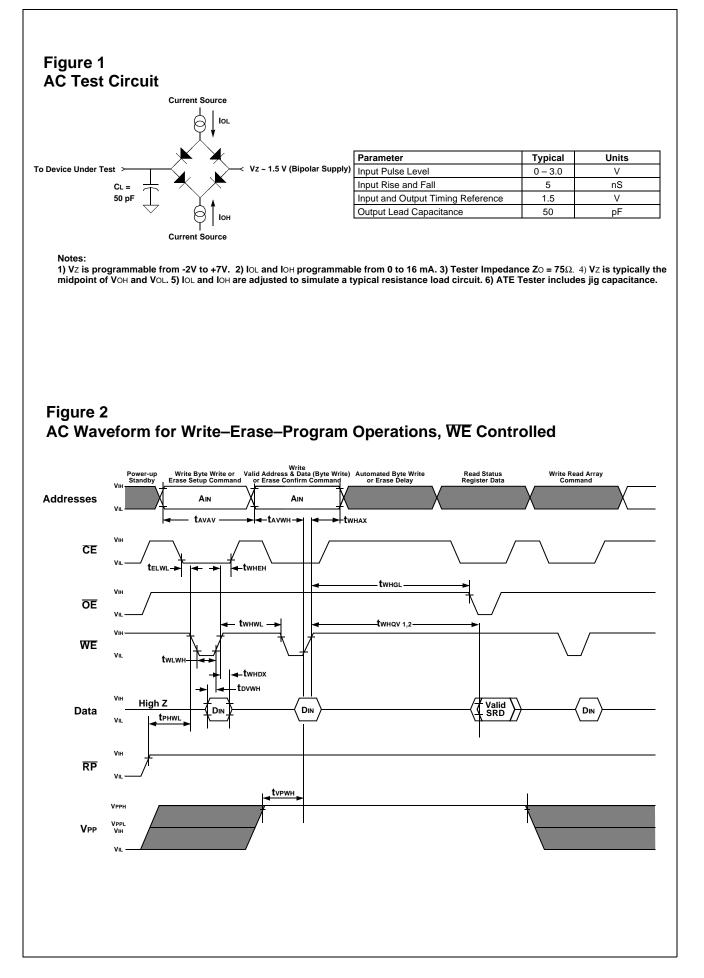
3. Byte write and block erase durations are measured to completion (CSR.7 = 1). VPP should be held at VPPH until determination of byte write/block erase success (CSR.3/4/5 = 0).

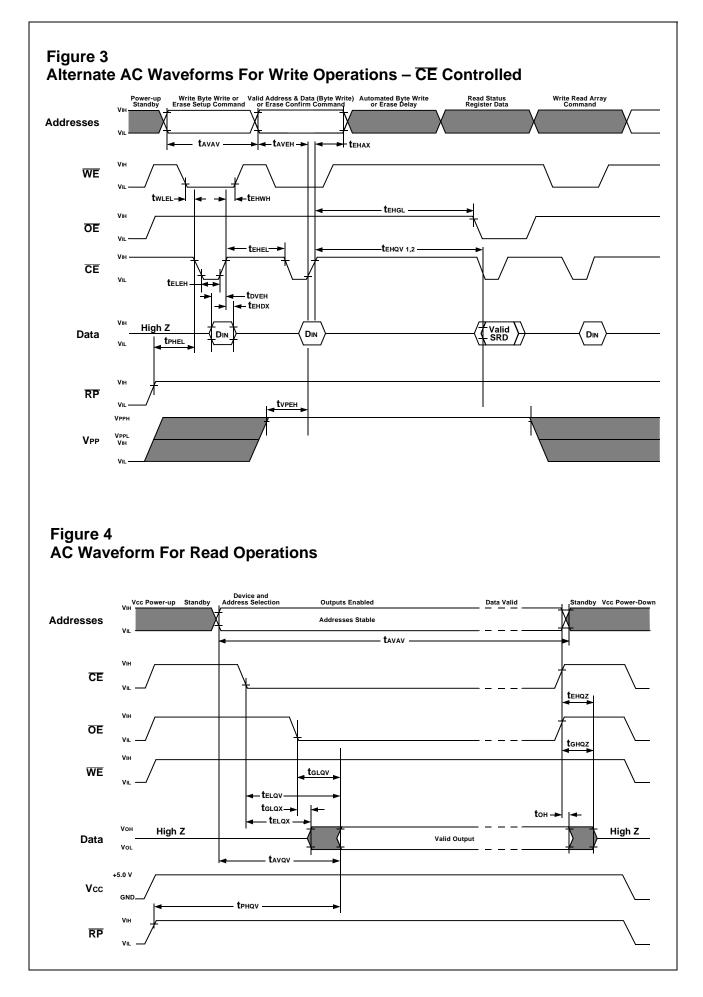
### AC Characteristics – Write Operations, CE Controlled (1)

(Vcc = 5.0V, Vss = 0V)

| Person of an                                         | Syı          | mbol     | -(  | 080 | -100 |     | -120 |     | Units |
|------------------------------------------------------|--------------|----------|-----|-----|------|-----|------|-----|-------|
| Parameter                                            | JEDEC        | Standard | Min | Max | Min  | Max | Min  | Max | Units |
| Write Enable Cycle Time                              | tavav        | twc      | 80  |     | 100  |     | 120  |     | nS    |
| Write Enable Setup Time                              | twlel        | tws      | 0   |     | 0    |     | 0    |     | nS    |
| Chip Enable Pulse Width                              | <b>TELEH</b> | tCP      | 50  |     | 50   |     | 50   |     | nS    |
| VPP Setup Time <sup>(2)</sup>                        | tvрен        | tvps     | 100 |     | 100  |     | 100  |     | nS    |
| Address Setup to CE Going High                       | taveh        | tas      | 50  |     | 50   |     | 50   |     | nS    |
| Data Setup Time                                      | tdveh        | tos      | 60  |     | 60   |     | 60   |     | nS    |
| Data Hold Time                                       | tehdx        | tdн      | 0   |     | 0    |     | 0    |     | nS    |
| Address Hold Time                                    | tehax        | tан      | 10  |     | 10   |     | 10   |     | nS    |
| Write Enable Hold Time                               | tенwн        | twн      | 10  |     | 10   |     | 10   |     | nS    |
| Chip Enable Pulse Width High                         | TEHEL        | tерн     | 30  |     | 50   |     | 50   |     | nS    |
| Duration of Byte Write Programming <sup>(2,3)</sup>  | tehqv1       |          | 4.5 |     | 4.5  |     | 4.5  |     | μS    |
| Duration of Block Erase Programming <sup>(2,3)</sup> | tehqv2       |          | 0.3 |     | 0.3  |     | 0.3  |     | Sec   |
| Write Recovery Before Read                           | tehgl        |          | 65  |     | 80   |     | 80   |     | nS    |
| RP High Recovery to CE Low <sup>(2)</sup>            | TPHEL        | tes      | 1.0 |     | 1.0  |     | 1.0  |     | μS    |

NOTES:


1. Chip-Select Controlled Writes: Write operations are drive by the valid combination of CE and WE. In systems where CE defines the write pulse width (within a longer WE timing waveform), all setup, hold and inactive WE times should be measured relative to the CE waveform. 2. Guaranteed by design, not tested.


3. Byte write and block erase durations are measured to completion (CSR.7 = 1, RY/BY = 1, VOH). VPP should be held at VPPH until determination of byte write/block erase success (CSR.3/4/5 = 0).

# AC Characteristics – Read Only Operations (Vcc = 5.0V, Vss = 0V)

| Peremeter                                                                         | Sy           | mbol     | -(  | 080 | -100 |     | -120 |     | Units |
|-----------------------------------------------------------------------------------|--------------|----------|-----|-----|------|-----|------|-----|-------|
| Parameter                                                                         | JEDEC        | Standard | Min | Max | Min  | Max | Min  | Max | Units |
| Read Cycle Time                                                                   | tavav        | trc      | 80  |     | 100  |     | 120  |     | nS    |
| Address Access Time                                                               | tavqv        | tacc     |     | 80  |      | 100 |      | 120 | nS    |
| Chip Enable to Output Valid <sup>(1)</sup>                                        | telqv        | tce      |     | 80  |      | 100 |      | 120 | nS    |
| Output Enable to Output Valid <sup>(1)</sup>                                      | tg∟qv        | toe      |     | 35  |      | 40  |      | 45  | nS    |
| CHIP ENABLE TO OUTPUT LOW Z (2)                                                   | <b>telqx</b> | t∟z      | 0   |     | 0    |     | 0    |     | nS    |
| CHIP ENABLE HIGH TO OUTPUT HIGH Z <sup>(2)</sup>                                  | telqz        | tнz      |     | 30  |      | 35  |      | 40  | nS    |
| Output Enable to Output Low Z <sup>(2)</sup>                                      | tgнqx        | tq∟z     | 0   |     | 0    |     | 0    |     | nS    |
| Reset to Output Valid                                                             | tрнqv        | tрwн     |     | 480 |      | 550 |      | 620 | nS    |
| Output Enable High to Output High Z <sup>(2)</sup>                                | tgнqz        | tdf      |     | 30  |      | 35  |      | 40  | nS    |
| Output Hold from Addresses, CE or OE<br>Change, Whichever is First <sup>(2)</sup> |              | toн      | 0   |     | 0    |     | 0    |     | nS    |

Notes: 1. OE may be delayed up to tCE-tOE after the falling edge of CE without impact on tCE. 2. Guaranteed by design, but not tested.





# **Principles of Operation**

The ACT–2M32 MCM is composed of four (4), sixteen (16) megabit memory chips inside the MCM. Chip 1 is distinguished by CE1 and I/O1-7, Chip 2 by CE2 and I/O8-15, Chip 3 by CE3 and I/O16-23, Chip 4 by CE4 and I/O24-31. The ACT-F2M32 includes write automation to manage write and erase functions. The Write State Machine allows for 100% TTL–level control inputs; fixed power supplies during block erasure and byte write and minimal processor overhead with RAM like interface timings.

After initial device powerup the ACT–F2M32 functions as a read-only memory. Manipulation of external memory control pins allow array read, standby and output disable operations. The status register can also be accessed through the command user interface when VPP = VPPL.

This same subset of operations is also available when high voltage is applied to the VPP pin. In addition, high voltage on VPP enables successful block erasure and byte writing of the device. Functions associated with altering memory contents, byte write, block erase, are accessed via the command user interface and verified through the status register.

Commands are written using standard microprocessor write timings. Command user interface contents serve as input to the write status machine, which controls the block erase and byte write circuitry. Write cycles also internally latch addresses and data needed for byte write or block erase operations.

Interface software to initiate and poll progress of internal byte write and block erase can be stored in any of the blocks. This code is copied to, and executed from, system RAM during actual flash memory update. After successful completion of byte write and/or block erase, code/data reads from the device are again possible via the read array command. Erase suspend/resume capability allows system software to suspend block erase to read data and execute code from any other block.

# COMPARISON OF ACT-F1M32 TO ACT-F2M32

A Superset of commands have been added to the basic ACT-F1M32 command set to achieve higher write performance and provide additional capabilities. These new commands and features include:

- Command Queuing Capability
- Automatic Data Writes During Erase
- Software Locking of Memory Blocks
- Two-Byte Successive Writes in 8-bit Systems
- Erase all Unlocked Blocks

Writing of memory data is performed in either byte or word increments typically within 6  $\mu$ sec, a 33% improvement over the ACT-F1M32. A Block Erase operation erases one of the 32 blocks, which is about 65% improvement over the ACT-F1M32.

Each block can be written and erased a minimum of 100,000 cycles. Systems can achieve 1 million block erase cycles by providing wear leveling algorithms and block retirement.

Each chip in ACT-F2M32 incorporates two page buffers of 256 Bytes (128 Words) each to allow page data writes. This feature can improve a system write performance by up to 4.8 times over previous flash memory devices.

All operations are started by a sequence of write commands to the device. Three Status Registers (described in detail later) and a RY/BY output pin provide information on the progress of the requested operation.

While the ACT-F1M32 requires an operation to complete before the next operation can be requested, the ACT-F2M32 allows queueing of the next operation while memory executes the current operation. This eliminates system overhead when writing several bytes in a row to the array or erasing several blocks at the same time. The ACT-F2M32 can also perform write operations to one block of memory while performing erase of another block.

The ACT-F2M32 provides user selectable block locking to protect code or data. Each block has an associated nonvolatile lock-bit which determines the lock status of the block. In addition, the ACT-F2M32 has a master Write Protect pin (WP) which prevents any modifications to memory blocks whose lock-bits are set.

The ACT-F2M32 contains three types of Status Registers to accomplish various functions:

- A Compatible Status Register (CSR) which is 100% compatible with the ACT-F1M32 flash memory's Status Register. This register, when used alone. provides a straightforward upgrade capability to the ACT-F2M32 from a ACT-F1M32 based design.
- A Global Status Register (GSR) which informs the system of command queue status, page buffer status and overall Write State Machine (WSM) status.
- 32 Block Status Registers (BSRS) which provide block specific status information such as the block lock-bit status.

# COMMAND USER INTERFACE AND WRITE AUTOMATION

An on-chip state machine controls block erase and byte write, freeing the system processor for other tasks. After receiving the Erase Setup and Erase Confirm commands, the state machine controls block preconditioning and erase, returning progress via the Status Register on each of the four memory chips in the MCM. QFP options with RY/BY also return progress via the Status Register for each of the four memory chips. Byte write is similarly controlled, after destination address and expected data are supplied.

#### DATA PROTECTION

Depending on the application, the system designer

may choose to make the VPP power supply switchable (available only when memory byte writes/block erases are required) or hardwired to VPPH. When VPP = VPPL, memory contents cannot be altered. Additionally, all functions are disabled whenever Vcc is below the write lockout voltage VLKO or when RP is at VIL. The two step byte write/block erase command user interface write sequence provides additional software write protection.

# **Bus Operation**

Flash memory reads, erase and writes in system via the local CPU. All bus cycles to or from the flash memory conform to standard microprocessor bus cycles.

### READ

The ACT–2M32 can be read from any of its blocks, and information can be read from the status register of each chip selected. VPP can be at either VPPL or VPPH.

The first task is to write the appropriate read mode command to the command user interface. The device automatically resets to read array mode upon initial device powerup or after exit from deep powerdown. Chip Enable  $\overline{CE}$  is the device selection control, and when active enables the selected memory device. Output Enable ( $\overline{OE}$ ) is the data input/output (I/O0-I/O31) direction control, and when active drives data from the select memory onto the I/O bus.  $\overline{RP}$  and  $\overline{WE}$  must also be at VIH. Figure 4 illustrates read bus cycle waveforms.

#### **OUTPUT DISABLE**

With  $\overline{OE}$  at a logic high level (VIH), the device outputs are disabled.Output pins (I/O0-31) are placed in a high impedance state.

#### STANDBY

CE at a logic high level (VIH) places the device in a standby mode. Standby operation disables much of the device's circuitry and substantially reduces device power consumption. The outputs (I/O0-31) are placed in a high impedance state independent of the status of M. If the device is deselected during block erase or byte write, it will continue functioning and consuming normal active power until the operation is completed.

#### WRITES

Writes to the command user interface enable reading of device data. They also control inspection and cleaning of the status register. Additionally, when  $V_{PP} = V_{PPH}$ , the command user interface controls block erasure and byte write. The contents of the interface register serve as input to the internal state machine.

The command user interface itself does not occupy an addressable memory location. The interface register is a latch used to store the command and address and data information needed to execute the command. Erase setup and erase confirm commands require both appropriate command data and an address within the block to be erased. The Byte Write Setup command requires both appropriate command data and the address of the location to be written, while the Byte Write command consists of the data to be written and the address of the location to be written.

The command user interface is written by bringing  $\overline{WE}$  to a logic low level (VIL) while  $\overline{CE}$  is low. Address and data are latched on the rising edge of  $\overline{WE}$ . Standard microprocessor write timings are used. Refer to AC Write Characteristics and the AC waveforms for Write Operation, Figures 2 and 3, for specific timing parameters.

# **Command Definitions**

When VPPL is applied to the VPP pin of the chip selected, read operations from the status register, or array blocks are enabled. Placing VPPH on VPP enables successful byte write and block erase operations as well.

Device operations are selected by writing specific commands into the command user interface of the chip selected. Table 2 defines the ACT-2M32 commands.

#### **READ ARRAY COMMAND**

Upon initial device powerup the device defaults to Read Array mode. This operation is also initiated by writing FFH into the command user interface. Microprocessor read cycles retrieve array data. The device remains enabled for reads until the command user interface contents are altered. Once the internal Write State Machine has started a block erase or byte write operation, the device will not recognize the Read Array command, until the WSM has completed its operation. The Read Array command is functional when VPP = VPPL or VPPH.

#### **READ STATUS REGISTER COMMAND**

Each chip of the ACT-2M32 contains a status register which may be read to determine when a byte write or block erase operation is complete, and whether that operation completed successfully. The status register may be read at any time by writing the read status register command (70H) to the command user interface. After writing this command, all subsequent read operations output data from the status register, until another valid command is written to the command user interface. The contents of the status register are latched on the falling edge of  $\overline{OE}$ or  $\overline{CE}$ , whichever occurs last in the read cycle.  $\overline{OE}$  or CE must be toggled to VIH before further reads to update the status register latch. The read status register command functions when VPP = VPPL or VPPH.

#### **CLEAR STATUS REGISTER COMMAND**

The erase status and byte write status bits are set to "1"s by the Write State Machine on each chip and can only be reset by the clear status register command.

These bits indicate various failure conditions (See Table 3). By allowing system software to control the resetting of these bits, several operations may be performed (such as cumulatively writing several bytes or erasing multiple blocks in sequence). The status register may then be polled to determine if an error occurred during that sequence. This adds flexibility to the way the device may be used.

Additionally, the VPP Status bit (CSR.3) of the chip selected MUST be reset by system software before further byte writes or block erases are attempted. To clear the status register, the clear status register command (50H) is written to the command user interface. The clear status register command is functional when VPP = VPPL or VPPH.

#### ERASE SETUP/ERASE CONFIRM COMMANDS

Erase is executed one block at a time, initiated by a two cycle command sequence. An erase setup command (20H) is first written to the command user interface, followed by the Erase Confirm command (D0H). These commands require both appropriate sequencing and address within the block to be erased to FFH. Block preconditioning, erase and verify are all handled internally by the Write State Machine, invisible to the system. After the two command erase sequence is written to it, the ACT–2M32 automatically outputs status register data when read (See Figure 6; Block Erase Algorithm). The CPU can detect the completion of the erase event by analyzing the output of the WSM Status bit of the status register.

When erase is completed, the Erase Status bit should be checked. If erase error is detected, the status register should be cleared. The command user interface remains in read status register mode until further commands are issued to it.

This two step sequence of set-up followed by execution ensures that memory contents are not accidentally erased. Also, reliable block ensure can only occur when VPP = VPPH. In the absence of this high voltage, memory contents are protected against erasure. If block erase is attempted while VPP = VPPL, the VPP status bit will be set to "1". Erase attempts while VPPL < VPP < VPPH produce spurious results and should not be attempted.

#### BYTE WRITE SETUP/WRITE COMMANDS

Byte write is executed by a two command sequence. The byte write setup command (40H) is written to the command user interface of the chip selected, followed by a second write specifying the address and data (latched on the rising edge of WE) to be written. The WSM then takes over, controlling the byte write and write verify algorithms internally. After the two command byte write sequence is written to it, the device automatically outputs status register data when read (See Figure 5; Byte Write Algorithm). The CPU can detect the completion of the byte write event by analyzing the output of the WSM Status bit of the status register. Only the read status register command is valid while byte write is active.

When byte write is complete, the byte write status bit should be checked. If byte write error is detected, the status register should be cleared. The internal WSM verify only detects errors for "1"s that do not successfully write to "0"s. The command user interface remains in read status register mode until further commands are issued to it. If byte write is attempted while VPP = VPPL, the VPP status bit will be set to "1". Byte write attempts while VPPL < VPP <VPPH produce sourious results and should not be attempted.

#### ERASE SUSPEND/ERASE RESUME COMMANDS

The erase suspend command allows block erase interruption in order to read data from another block of memory. Once the erase process starts, writing the erase suspend command (B0H) to the command user interface requests that the WSM suspend the erase sequence at a predetermined point in the erase algorithm. The ACT-F2M32 continues to output status register data when read, after the erase suspend command is written to it. Polling the WSM status and erase suspend status bits will determine when the erase operation has been suspended (both will be set to "1").

At this point, a read array command can be written to the command user interface to read data from blocks other than that which is suspended. The only other valid commands at this time are read status register (70H) and erase resume (D0H), at which time the WSM will continue with the erase process. The erase suspend status and WSM status bits of the status register will be automatically cleared. After the erase resume command is written to it, the device automatically outputs status register data when read (See Figure 7). VPP must remain at VPPH while in erase suspend.

# Vcc, Vpp, RP TRANSITIONS AND THE COMMAND/STATUS REGISTERS

Byte write and block erase completion are not guaranteed if VPP drops below VPPH. If the VPP Status bit of the Status Register (CSR.3) is set to "1", a Clear Status Register command must be issued before further byte write/block erase attempts are allowed by the WSM. Otherwise, the Byte Write (CSR.4) or Erase (CSR.5) Status bits of the Status Register will be set to "1"s if error is detected. RP transitions to VIL during byte write and block erase also abort the operations. Data is partially altered in either case and the command sequence must be repeated after normal operation is restored. Device poweroff, or RP transitions to VIL, clear the Status Register to initial value 10000 for the upper 5 bits.

The Command User Interface latches commands as issued by system software and is not altered by VPP or CE transitions or WSM actions. Its state upon powerup, after exit from deep powerdown or after Vcc transitions below VLKO, is Read Array Mode.

After byte write or block erase is complete, even after

VPP transitions down to VPPL, the Command User interface must be reset to Read Array mode via the Read Array command if access to the memory array is desired.

#### **POWER UP/DOWN PROTECTION**

The ACT-F2M32 is designed to offer protection against accidental block erasure or byte writing during power transitions. Upon power-up, the device is indifferent as to which power supply, VPP or Vcc, powers up first. Power supply sequencing is not required. Internal circuitry in the device ensures that the Command User interface is reset to the Read Array mode on power up.

#### **POWERDOWN AND RESET**

The ACT-F2M32 offers a deep Powerdown feature, entered when  $\overline{RP}$  is a VIL. Current draw through Vcc is 0.8  $\mu$ A typical in deep Powerdown mode, with current draw through VPP typically 0.4 $\mu$ A. During read modes.  $\overline{RP}$ -low deselects the memory, places output drivers in a high-impedance state and turns off all internal circuits. The device requires time tPWH (See AC Characteristics-Read-Only Operations) after return from powerdown until initial memory access outputs are valid. After this wake up interval, normal operation is restored. The Command User Interface is reset to Read Array, and the upper 5 bits of the Status Register are cleared to value 10000, upon return to normal operation.

During block erase or byte write modes.  $\overline{RP}$  low will abort either operation. Memory contents of the block being altered are no longer valid as the data will be partially written or erased. Time tPs after  $\overline{RP}$  goes to logic high (VIH) is required before another command can be written.

This use of  $\overline{RP}$  during system reset is important with automated write/erase devices. When the system comes out of reset it expects to read from the flash memory. Automated flash memories provide status information when accessed during write/erase modes. If a CPU reset occurs with no flash memory reset, proper CPU initialization would not occur because the flash memory would be providing the status information instead of array data. These flash memories allow proper CPU initialization following a system reset through the use of the  $\overline{RP}$  input. In this application  $\overline{RP}$  is controlled by the same RESET signal that resets the system CPU.

#### Table 1 – Bus Operations

| Command        | Notes | RP  | CE  | OE  | WE  | I/O0-7 |
|----------------|-------|-----|-----|-----|-----|--------|
| Read           |       | Vih | VIL | Vi∟ | Viн | Dout   |
| Output Disable |       | Viн | VIL | Viн | Viн | High Z |
| Standby        | 1     | Viн | VIL | Х   | Х   | High Z |
|                |       |     | Viн |     |     |        |
|                |       |     | Viн |     |     |        |
| Deep Powerdown | 1,2   | VIL | Х   | Х   | Х   | High Z |
| Write          |       | Viн | VIL | Viн | VIL | DIN    |

Notes:

AA = Array Address BA = Block Address IA = Identifier Address WA = Write Address X = Don't care

X can be VIL or VIH for control and address pins.
 RP at GND ±0.2V ensures the lowest deep power-down current.

3. Commands for different Erase operations. Data write operations or Lock-Block operations can only be successfully completed when VPP = VPPH.

#### Table 2 – Commands Definitions – Compatible Mode

| Command                         | Notes | Fire      | st Bus Cycle |      | Second Bus Cycle |         |      |  |
|---------------------------------|-------|-----------|--------------|------|------------------|---------|------|--|
| Command                         | Notes | Operation | Address      | Data | Operation        | Address | Data |  |
| Read Array                      |       | Write     | Х            | FFH  | Read             | AA      | AD   |  |
| Read Compatible Status Register | 1     | Write     | х            | 70H  | Read             | х       | CSRD |  |
| Clear Status Register           | 2     | Write     | Х            | 50H  |                  |         |      |  |
| Word/Byte Write                 |       | Write     | Х            | 40H  | Write            | WA      | WD   |  |
| Alternate Word/Byte Write       |       | Write     | Х            | 10H  | Write            | WA      | WD   |  |
| Block Erase/Confirm             |       | Write     | Х            | 20H  | Write            | BA      | DOH  |  |
| Erase Suspend/Resume            |       | Write     | Х            | 80H  | Write            | Х       | DOH  |  |
| Address                         | Data  | • •       |              |      | •                |         | -    |  |

AD= Array Data CSRD = CSR Data ID = Identifier Data WD = Write Data

#### NOTES

The CSR is Automatically available after device enters Data Write, Erase or Suspend operations.
 Clears CSR 3. CSR 4. CSR 5. Also Clears GSR 5 and BSR 5 and BSR 2 bits. See status register definitions

#### Table 3 – Commands Definitions – Enhanced Mode

| Common d                                 | Natas | First     | Bus Cycle | e    | Seco      | nd Bus C | ycle    | Thir      | d Bus Cy | cle     |
|------------------------------------------|-------|-----------|-----------|------|-----------|----------|---------|-----------|----------|---------|
| Command                                  | Notes | Operation | Address   | Data | Operation | Address  | Data    | Operation | Address  | Data    |
| Deed Futend Status Deviator              |       | 14/1:10   | v         | 7411 | Dead      |          | GSRD    |           |          |         |
| Read Extend Status Register              | 1     | Write     | x         | 71H  | Read      | RA       | BSRD    |           |          |         |
| Page Buffer Swap                         | 5     | Write     | Х         | 72H  | Read      |          |         |           |          |         |
| Read Page Buffer                         |       | Write     | Х         | 75H  | Write     | PA       | PD      |           |          |         |
| Single load to Page Buffer               |       | Write     | Х         | 74H  | Write     | PA       | PD      |           |          |         |
| Sequential Single load to Page<br>Buffer | 3,4,6 | Write     | х         | E0H  | Write     | х        | BCL     | Write     | х        | всн     |
| Page Buffer Write to Flash               | 3,6   | Write     | Х         | 0CH  | Write     | A0       | BC(L,H) | Write     | WA       | BC(H,L) |
|                                          | 3,6   | Write     | Х         | 0CH  | Write     | Х        | WCL     | Write     | WA       | WCH     |
| Two Byte Write                           |       | Write     | Х         | FBH  | Write     | A0       | WD(L,H) | Write     | WA       | WD(H,L) |
| Lock Block/Confirm                       |       | Write     | Х         | 77H  | Write     | BA       | D0H     |           |          |         |
| Upload Status Bits/Confirm               | 2     | Write     | Х         | 97H  | Write     | Х        | D0H     |           |          |         |
| Upload Device Information                |       | Write     | Х         | 99H  | Write     | Х        | D0H     |           |          |         |
| Erase all Unlocked Blocks/Confirm        |       | Write     | Х         | A7H  | Write     | Х        | D0H     |           |          |         |
| Sleep                                    |       | Write     | Х         | F0H  |           |          |         |           |          |         |
| Abort                                    |       | Write     | Х         | 80H  |           |          |         |           |          |         |
| Address                                  | Data  |           |           |      |           |          |         | •         |          |         |

BA = Block Address PA = Page Buffer Address RA = Extended Register Address WA = Write Address X = Don't Care

AD= Arrav Data

PD = Page Buffer Data BSRD = BSR Data GSRD = GSR Data

WC(L,H) = Word Count (Low, High) BC(L,H) = Byte Count (Low, High) WD(L,H) = Write Data (Low, High)

#### NOTES:

 RA can be the GSR address or any BSR address.
 Upon device power-up, all BSR lock-bits come up locked The Upload Status Bits command must be written to reflect the actual lock-bit status.
 BCH/WCH must be at 00H for this produce because of the 256-Byle (128 Word) Page Buffer size and to avoid writing the Page Buffer contents into more than one 256Byte segment within an array block. They are simply shown for future Page Buffer expandability. 4. PA and PD (whose count is given in cycles 2 and 3) are supplied starting in the 4th cycle which is not shown.

5. This command allows the user to swap between available Page Butters (0 or 1). 6. BCL = 00H corresponds to a Byte count of 1. Similarly, WCL = 00H corresponds to a Word count of 1.

| WSMS                                                                                       | ESS                                                                              | ES         | DWS                                                                                                                                                                                                | VPPS                                          | R | R                            | R |  |  |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---|------------------------------|---|--|--|
| 7                                                                                          | 6                                                                                | 5          | 4                                                                                                                                                                                                  | 3                                             | 2 | 1                            | 0 |  |  |
| 1 = Re<br>0 = Bu<br>CSR.6 = ERASI<br>1 = Era                                               | •                                                                                | STATUS     |                                                                                                                                                                                                    | must first be checke<br>fore the Byte Write o |   |                              |   |  |  |
| 0 = Su<br>CSR.4 = DATA                                                                     | or in Block Eras<br>ccessful Block E<br>WRITE STATU                              | Erase<br>S | <ol> <li>If the DWS and Erase Status bits are set to "1"s during a block erase attempt, an<br/>improper command sequence was entered. Clear the CSR and attempt the<br/>sequence again.</li> </ol> |                                               |   |                              |   |  |  |
| 0 = Su<br>CSR.3 = VPP S<br>1 = VP<br>0 = VP<br>CSR.2-CSR.0 =<br>ENHANCEMEN<br>These bits a | se bits are reserved for future use and<br>be masked out when polling the status |            |                                                                                                                                                                                                    |                                               |   | after the byte d informs the |   |  |  |

### Table 4 — Compatible Status Register

#### Table 5 — Global Status Register

| WSMS | OSS | DOS | DSS QS |       | PBAS | PBS | PBSS |
|------|-----|-----|--------|-------|------|-----|------|
| 7    | 6   | 5   | 4      | 3     | 2    | 1   | 0    |
|      |     |     |        |       |      |     |      |
|      |     |     |        |       |      |     |      |
|      |     |     |        | NOTES |      |     |      |

| GSR.7 = WRITE STATE MACHINE STATUS             | NOTES:                                                                                                             |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1 = Ready                                      | 1. The WSMS bit must first be checked to determine                                                                 |
| 0 = Busy                                       | completion of a operation (Block Lock, Suspend, Upload<br>Status Bit, Erase or Data Write), before the appropriate |
| GSR.6 = OPERATION SUSPEND STATUS               | Status bit (OSS or DOS) is checked for success.                                                                    |
| 1 = Operation Suspended                        |                                                                                                                    |
| 0 = Operation in Progress/Completed            |                                                                                                                    |
| GGR.5 = DEVICE OPERATION STATUS                |                                                                                                                    |
| 1 = Operation Unsuccessful                     |                                                                                                                    |
| 0 = Operation Successful or Currently Running  |                                                                                                                    |
| GSR.4 = DEVICE SLEEP STATUS (2,3)              |                                                                                                                    |
| 1 = Device in Sleep                            |                                                                                                                    |
| 0 = Device not in Sleep                        |                                                                                                                    |
| MATRIX <u>5/4</u>                              |                                                                                                                    |
| 00 = Operation Successful or Currently Running | 2. If the operation currently running, then GSR.7 = 0                                                              |
| 01 = Device in Sleep Mode or Pending Sleep     | 3. If device pending sleep, then $GSR.7 = 0$                                                                       |
| 10 = Operation Unsuccessful                    |                                                                                                                    |
| 11 = Operation Aborted                         | 4. Operation aborted. Unsuccessful due to Abort Command                                                            |
| GSR.3 = QUEUE STATUS                           |                                                                                                                    |
| 1 = Queue Full                                 |                                                                                                                    |
| 0 = Queue Available                            |                                                                                                                    |
| GSR.2 = PAGE BUFFER AVAILABLE STATUS           |                                                                                                                    |
| 1 = One or Two Pages Available                 | 5. The Device contains two Page Buffers.                                                                           |
| 0 = No Page Buffer Available                   |                                                                                                                    |
| GSR.1 = PAGE BUFFER STATUS                     |                                                                                                                    |
| 1 = Selected Page Buffer Ready                 | 6 Calested Daga Buffer is surroutly busy with WCM                                                                  |
| 0 = Selected Page Buffer Available             | <ol><li>Selected Page Buffer is currently busy with WSM<br/>operation.</li></ol>                                   |
| GSR.0 = PAGE BUFFER SELECT STATUS              | operation.                                                                                                         |
| 1 = Page Buffer 1 Selected                     |                                                                                                                    |
| 0 = Page Buffer 0 Selected                     |                                                                                                                    |

Note: 1. When multiple operations are queued, checking BSR 7 only provides indication of completion for that particular block. GSR 7 provides indication when all queued operations are completed.

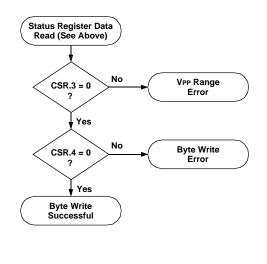
# Table 6 — Block Status Register

| BS                                                                                  | BLS                                                                                                                                                                          | BOS                                                                | BOAS          |    | QS                                                         | VPPS                                                   | R                               | R                                |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------|----|------------------------------------------------------------|--------------------------------------------------------|---------------------------------|----------------------------------|
| 7                                                                                   | 6                                                                                                                                                                            | 5                                                                  | 4             |    | 3                                                          | 2                                                      | 1                               | 0                                |
| 1 =<br>0 =<br>BSR.6 = BLC<br>1 =<br>0 =<br>BGR.5 = BLC<br>1 =<br>0 =<br>BSR.4 = BLC | OCK STATUS<br>Ready<br>Busy<br>DCK-LOCP STATUS<br>Block Unlocked for<br>Block locked for Wr<br>DCK OPERATION 5<br>Operation Unsucces<br>Operation Success<br>OCK OPERATION 6 | Write/Erase<br>ite/Erase<br>STATUS<br>ssful<br>ful or Currently Ru | inning        |    | BS must be c<br>operation (Bl<br>before the ap<br>success. | hecked to deter<br>ock Lock, Suspe<br>propriate Status | end, Erase or l<br>bit (BOS,BLS | Data Write)<br>3) is checked for |
| 0 =<br>MATRIX <u>5/4</u><br>00 =<br>01 =<br>10 =<br>11 =<br>BSR.3 = QUE<br>1 =      | Operation Aborted<br>Operation not Abor<br>Operation Succes<br>Not a Valid Combi<br>Operation Unsucc<br>Operation Abortec<br>EUE STATUS<br>Queue Full<br>Queue Available     | sful or Currently R<br>nation<br>essful                            | unning        | 3. | Operation ha                                               | ted via Abort Co                                       | ommand.                         |                                  |
| 1 = 1<br>0 = 1                                                                      | VPP Low Detect, O<br>Vpp OK<br>0 = RESERVED FC                                                                                                                               |                                                                    | ANCEMENTS (4) | 4. | These bits are polling the B                               |                                                        | ture use, mask                  | them out when                    |

Note: 1. When multiple operations are queued, checking BSR 7 only provides indication of completion for that particular block. GSR 7 provides indication when all queued operations are completed.



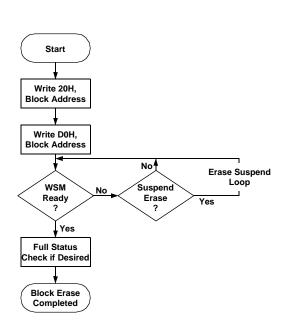



| Command<br>Sequence | Comments                                                                                                                                                       |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Byte Write<br>Setup | Data = 40H (10H)<br>Address = Byte to be<br>Written                                                                                                            |  |  |  |  |
| Byte Write          | Data to be written<br>Address = Byte to be written                                                                                                             |  |  |  |  |
|                     | Check WSMS bit<br>VOH = Ready, VOL = Busy<br>or<br>Ready Status Register<br>Check CSR.7<br>1 = Ready, 0 = Busy<br>Toggle OE or CE to update<br>Status Register |  |  |  |  |
|                     | Sequence<br>Byte Write<br>Setup                                                                                                                                |  |  |  |  |

Repeat for subsequent bytes

Full status check can be done after each byte or after a sequence of bytes

Write FFH after the last byte write operation to reset the device to Ready Array Mode

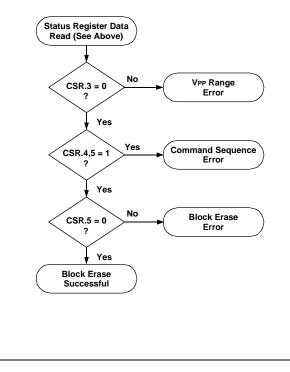

#### **Full Status Check Procedure**



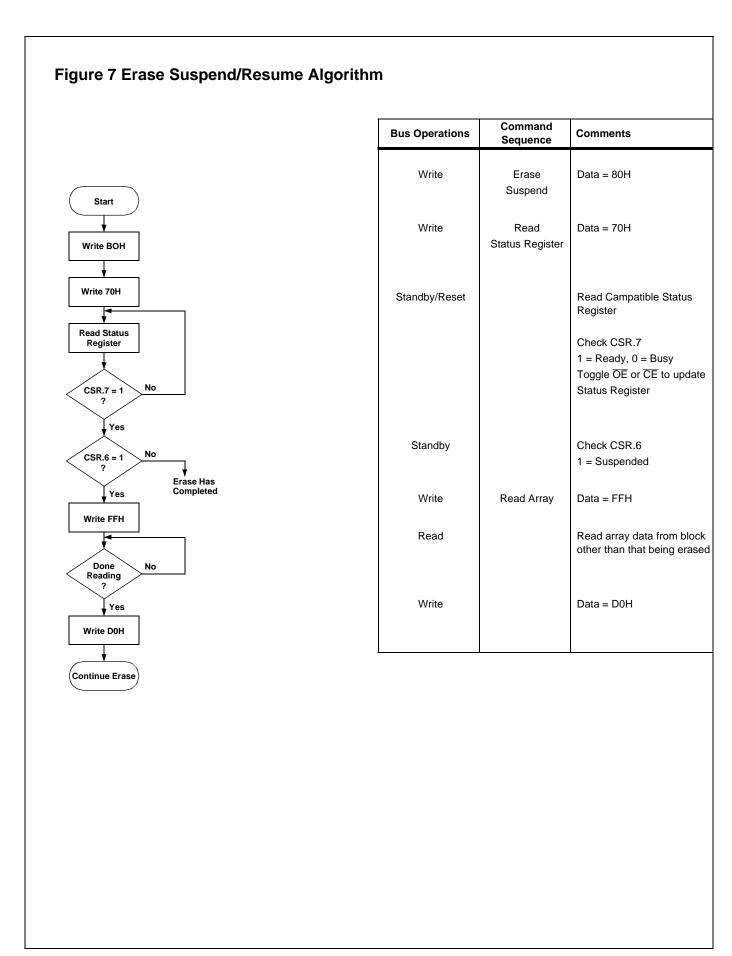
| Bus Operations                                                                                                                                                                                         | Command<br>Sequence | Comments                                                                        |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|
| Optional Read                                                                                                                                                                                          |                     | CPU may already have read<br>Status Register data in<br>WSM Ready polling above |  |  |  |  |  |  |
| Standby                                                                                                                                                                                                |                     | Check CSR.3<br>1 = Vpp Low Detect                                               |  |  |  |  |  |  |
| Standby                                                                                                                                                                                                |                     | Check CSR.4<br>1 = Byte Write Error                                             |  |  |  |  |  |  |
| CSR.3 Must be cleared, if set during a block erase attempt, before<br>further attempts are allowed by the Write State Machine.<br>CSR.4 is only cleared by the clear status register command, in cases |                     |                                                                                 |  |  |  |  |  |  |

where multiple bytes are written before full status is checked. If error is detected, clear the status register before attempting retry on other error recovery.



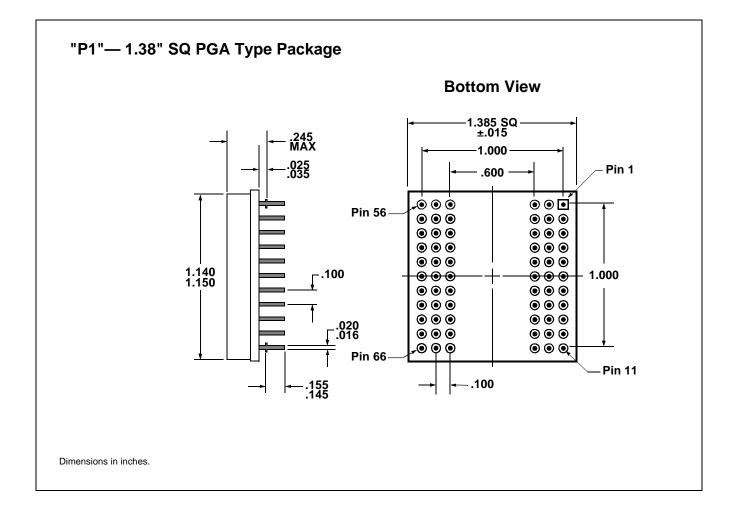



| Bus Operations      | Command<br>Sequence | Comments                                                                                                                                                                             |
|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Write               | Erase<br>Setup      | Data = 20H<br>Address = Within block to<br>be erased                                                                                                                                 |
| Write               | Erase               | Data = D0H<br>Address = Within block to<br>be erased                                                                                                                                 |
| Standby/Reset       |                     | Check WSMS bit<br>VOH = Ready, VOL = Busy<br>or<br>Ready Compatible Status<br>Register Check CSR.7<br>1 = Ready, 0 = Busy<br>Toggle OE or CE to update<br>Compatible Status Register |
| Repeat for subseque | nt bytes            |                                                                                                                                                                                      |


Full status check can be done after each byte or after a sequence of bytes

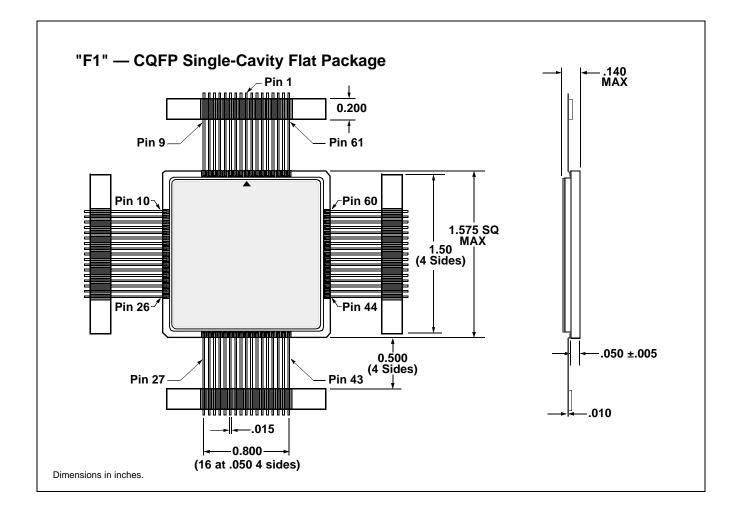
Write FFH after the last byte write operation to reset the device to Ready Array Mode

## **Full Status Check Procedure**




| Bus Operations | Command<br>Sequence | Comments                                                                                      |
|----------------|---------------------|-----------------------------------------------------------------------------------------------|
| Optional Read  |                     | CPU may already have read<br>Compatible Status Register<br>data in WSM Ready polling<br>above |
| Standby        |                     | Check CSR.3<br>1 = Vpp Low Detect                                                             |
| Standby        |                     | Check CSR.4, 5<br>Both 1 = Command<br>Sequence Error                                          |
| Standby        |                     | Check CSR.5<br>1 = Block Erase Error                                                          |



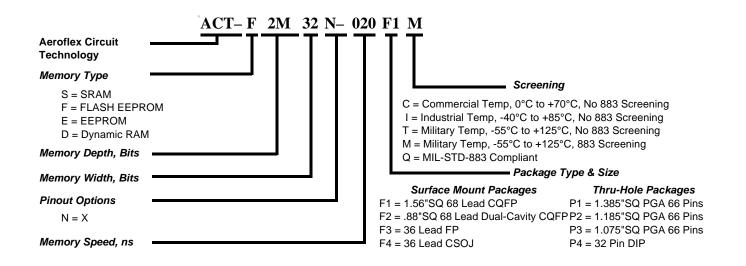

|       | 66 Pins — PGA-Type |       |          |       |          |       |             |  |  |
|-------|--------------------|-------|----------|-------|----------|-------|-------------|--|--|
| Pin # | Function           | Pin # | Function | Pin # | Function | Pin # | Function    |  |  |
| 1     | I/O8               | 18    | A15      | 35    | I/O25    | 52    | A20         |  |  |
| 2     | I/O9               | 19    | Vcc      | 36    | I/O26    | 53    | <u>CE</u> 3 |  |  |
| 3     | I/O10              | 20    | CE1      | 37    | A7       | 54    | GND         |  |  |
| 4     | A14                | 21    | A19      | 38    | A12      | 55    | I/O19       |  |  |
| 5     | A16                | 22    | I/O3     | 39    | Vpp      | 56    | I/O31       |  |  |
| 6     | A11                | 23    | I/O15    | 40    | A13      | 57    | I/O30       |  |  |
| 7     | Ao                 | 24    | I/O14    | 41    | A8       | 58    | I/O29       |  |  |
| 8     | A18                | 25    | I/O13    | 42    | I/O16    | 59    | I/O28       |  |  |
| 9     | I/Oo               | 26    | I/O12    | 43    | I/O17    | 60    | A1          |  |  |
| 10    | I/O1               | 27    | OE       | 44    | I/O18    | 61    | A2          |  |  |
| 11    | I/O2               | 28    | A17      | 45    | Vcc      | 62    | Аз          |  |  |
| 12    | RP                 | 29    | WE       | 46    | CE4      | 63    | I/O23       |  |  |
| 13    | CE2                | 30    | I/O7     | 47    | WP       | 64    | I/O22       |  |  |
| 14    | GND                | 31    | I/O6     | 48    | I/O27    | 65    | I/O21       |  |  |
| 15    | I/O11              | 32    | I/O5     | 49    | A4       | 66    | I/O20       |  |  |
| 16    | A10                | 33    | I/O4     | 50    | A5       |       |             |  |  |
| 17    | A9                 | 34    | I/O24    | 51    | A6       |       |             |  |  |

# **Pin Numbers & Functions**



|       |          |       | 68 Pins  | — CQFP |          |       |          |
|-------|----------|-------|----------|--------|----------|-------|----------|
| Pin # | Function | Pin # | Function | Pin #  | Function | Pin # | Function |
| 1     | GND      | 18    | GND      | 35     | OE       | 52    | GND      |
| 2     | CE1      | 19    | I/O8     | 36     | CE4      | 53    | I/O23    |
| 3     | A5       | 20    | I/O9     | 37     | A17      | 54    | I/O22    |
| 4     | A4       | 21    | I/O10    | 38     | A18      | 55    | I/O21    |
| 5     | Аз       | 22    | I/O11    | 39     | A19      | 56    | I/O20    |
| 6     | A2       | 23    | I/O12    | 40     | A20      | 57    | I/O19    |
| 7     | A1       | 24    | I/O13    | 41     | NC       | 58    | I/O18    |
| 8     | Ao       | 25    | I/O14    | 42     | RP       | 59    | I/O17    |
| 9     | WP       | 26    | I/O15    | 43     | Vpp      | 60    | I/O16    |
| 10    | I/Oo     | 27    | Vcc      | 44     | I/O31    | 61    | Vcc      |
| 11    | I/O1     | 28    | A11      | 45     | I/O30    | 62    | A10      |
| 12    | I/O2     | 29    | A12      | 46     | I/O29    | 63    | A9       |
| 13    | I/O3     | 30    | A13      | 47     | I/O28    | 64    | A8       |
| 14    | I/O4     | 31    | A14      | 48     | I/O27    | 65    | A7       |
| 15    | I/O5     | 32    | A15      | 49     | I/O26    | 66    | A6       |
| 16    | I/O6     | 33    | A16      | 50     | I/O25    | 67    | WE       |
| 17    | I/O7     | 34    | CE2      | 51     | I/O24    | 68    | CE3      |






|  |  |  |  |   |     |   | Ĺ |   | (   |                  |   |        |   |   |   |  |  |  |  |
|--|--|--|--|---|-----|---|---|---|-----|------------------|---|--------|---|---|---|--|--|--|--|
|  |  |  |  |   |     |   | ľ | 2 |     |                  |   |        |   |   | X |  |  |  |  |
|  |  |  |  |   |     |   |   |   |     |                  |   |        |   |   |   |  |  |  |  |
|  |  |  |  | C | I R | C | Т | Т | F ( | ) H              | Ν | $\cap$ | ( | G | γ |  |  |  |  |
|  |  |  |  | 0 |     |   |   |   |     | <del>,    </del> |   |        |   |   |   |  |  |  |  |

# **Ordering Information**

| Model Number      | DESC Part Number | Speed | Package |
|-------------------|------------------|-------|---------|
| ACT-F2M32N-080P1M | 5962–TBD         | 80nS  | Plug-in |
| ACT-F2M32N-100P1M | 5962–TBD         | 100nS | Plug-in |
| ACT-F2M32N-120P1M | 5962–TBD         | 120nS | Plug-in |
| ACT-F2M32N-080F1M | 5962–TBD         | 80nS  | CQFP    |
| ACT-F2M32N-100F1M | 5962–TBD         | 100nS | CQFP    |
| ACT-F2M32N-120F1M | 5962–TBD         | 120nS | CQFP    |

# Part Number Breakdown



#### Aeroflex Circuit Technology 35 South Service Road Plainview New York 11830

# Telephone: (516) 694-6700 FAX: (516) 694-6715 Toll Free Inquiries: 1-(800) 843-1553