

Model: FXO-HC33 SERIES

Freq: 0.75 MHz to 250MHz

Rev. 09/05/2008

Features

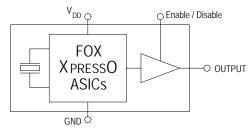
XPRESS Delivery

Frequency Resolution to six decimal places

HCMOS 3.2 x 2.5mm 3.3V Oscillator

Stabilities to ± 50 PPM

-20 to +70°C or -40 to +85°C operating temperatures


Tri-State Enable / Disable Feature

Industry Standard Package, Footprint & Pin-Out

Fully RoHS compliant

Gold over Nickel Termination Finish

Serial ID with Comprehensive Traceability

For more information -- Click on the drawing

Description

The Fox XPRESSO Crystal Oscillator is a breakthrough in configurable Frequency Control Solutions. XPRESSO utilizes a family of proprietary ASICs, designed and developed by Fox, with a key focus on noise reduction technologies.

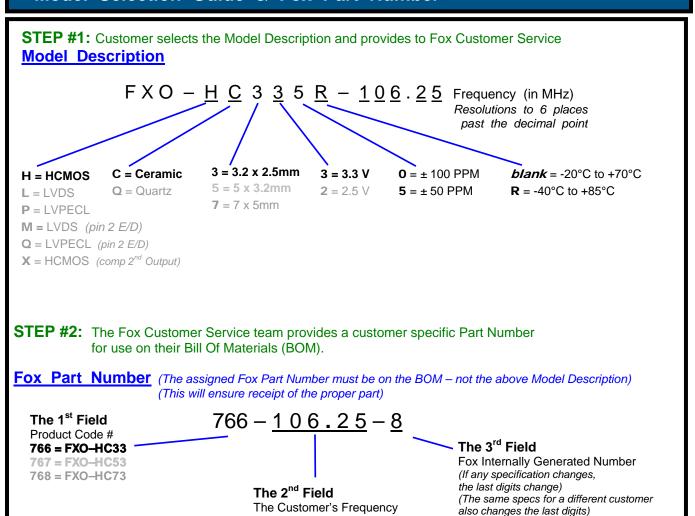
The 3rd order Delta Sigma Modulator reduces noise to the levels that are comparable to traditional Bulk Quartz and SAW oscillators. The ASICs family has ability to select the output type, input voltages, and temperature performance features.

With the XPRESS lead-time, low cost, low noise, wide frequency range, excellent ambient performance, XpressO is an excellent choice over the conventional technologies.

Finished XPRESSO parts are 100% final tested.

Applications

- · ANY application requiring an oscillator
- SONET
- Ethernet
- Storage Area Network
- Broadband Access
- Microprocessors / DSP / FPGA
- Industrial Controllers
- Test and Measurement Equipment
- Fiber Channel


Contents

	page
Model Selection & Part Number Guide	2
Electrical Characteristic	3
Absolute Maximums	4
Output Wave Characteristics	4
Phase Noise	5
Jitter	5
Pin Assignment	6
Recommended Circuit	6
Reflow	6
Mechanical Drawing and Pad Layout	7
Tape and Reel Specification	8
Label	8
Traceability - LOT Number & Serial Identificati	on 9
SGS Report	10~13
Mechanical Test	14
Burn-In Test	14
MTTF / FITS calculations	15
Fox Contact Information	16

FÖX

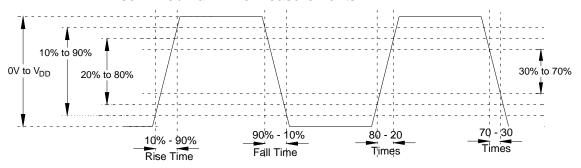
Model Selection Guide & Fox Part Number

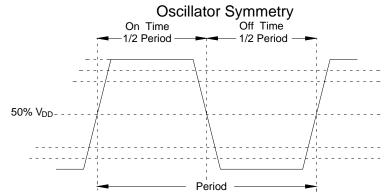
This example, FXO-HC335R-106.25 = HCMOS Output, Ceramic 3.2 x 2.5mm Package, 3.3V, ±50 PPM Stability, -40 to +85°C Temperature Range, at 106.25 MHz

Electrical Characteristics				
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)	
Frequency Range	Fo		0.750 to 250.000 MHz	
Frequency Stability 1			100, 50 ppm	
Temperature Range	T _O	Standard operating Optional operating Storage	-20°C to +70°C -40°C to +85°C -55°C to +125°C	
Supply Voltage	V_{DD}	Standard	3.3 V ± 5%	
Input Current (@ 15pF LOAD)	I _{DD}	0.75 ~ 20 MHz 20+ ~ 50 MHz 50+ ~ 130 MHz 130+ ~ 200 MHz 200+ ~ 250 MHz	32 mA 35 mA 47 mA 55 mA 60 mA	
Output Load	HCMOS	Standard Operational To 125MHz	15 pF 30 pF	
Start-Up Time	Ts		10 mS	
Output Enable / Disable Time			100 nS	
Moisture Sensitivity Level	MSL	JEDEC J-STD-20	1	
Termination Finish			Au	

Note 1 – Stability is inclusive of 25°C tolerance, operating temperature range, input voltage change, load change, aging, shock and vibration.

Absolute Maximum Ra	atings (Use	ful life may be impaired. For	user guidelines only, not tested)
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Input Voltage	V_{DD}		-0.5V to +5.0V
Operating Temperature	T _{AMAX}		−55°C to +105°C
Storage Temperature	T _{STG}		–55°C to +125°C
Junction Temperature			150°C
ESD Sensitivity	HBM	Human Body Model	>1 kV

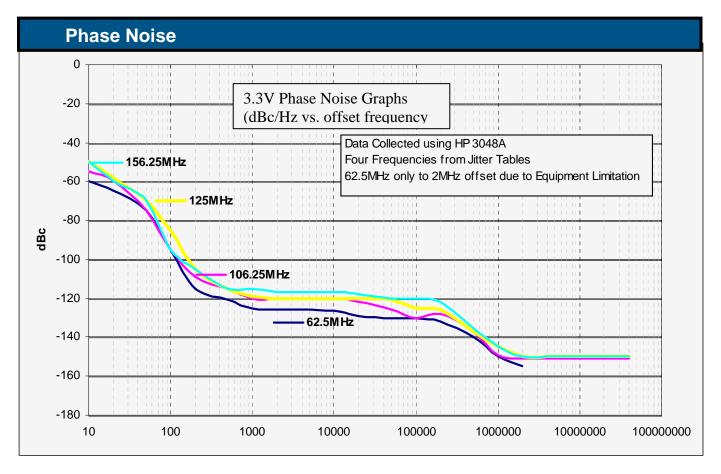




Output Wave Characteristics				
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)	
Output LOW Voltage	V _{OL}	0.75 to 150 MHz 150+ to 250 MHz	10% V _{DD} 20% V _{DD}	
Output HIGH Voltage	V _{OH}	0.75 to 150 MHz 150+ to 250 MHz	90% V _{DD} MIN 80% V _{DD} MIN	
Output Symmetry (See Drawing Below)		@ 50% V _{DD} Level	45% ~ 55%	
Output Enable (PIN # 1) Voltage	V _{IH}		≥70% V _{DD}	
Output Disable (PIN # 1) Voltage	V _{IL}		≤ 30% V _{DD}	
Cycle Rise Time (See Drawing Below)	T _R	0.75 to 150 MHz 150+ to 250 MHz	3 nS _(10%-90%) 3 nS _(20%-80%)	
Cycle Fall Time (See Drawing Below)	T _F	0.75 to 150 MHz 150+ to 250 MHz	3 nS _(90%~10%) 3 nS _(80%~20%)	

If 30% to 70% times are used, Rise and Fall times change to 1.5 nS from 0.75 to 250MHz If 20% to 80% times are used, Rise and Fall times change to 2 nS from 0.75 to 150MHz

Rise Time / Fall Time Measurements



Ideally, Symmetry should be 50/50 -- Other expressions are 45/55 or 55/45

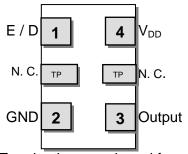
Jitter is frequency dependent. Below are typical values at select frequencies.

Phase Jitter & Time Interval Error (TIE)						
Frequency	Phase Jitter (12kHz to 20MHz)	T I E (Sigma of Jitter Distribution)	Units			
62.5 MHz	0.8	2.9	pS RMS			
106.25 MHz	0.8	3.2	pS RMS			
125 MHz	0.8	2.3	pS RMS			
156.25 MHz	1.0	3.0	pS RMS			

<u>Phase Jitter</u> is integrated from HP3048 Phase Noise Measurement System; measured directly into 50 ohm input; $V_{DD} = 3.3V$. <u>TIE</u> was measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software; $V_{DD} = 3.3V$. <u>Per MJSQ spec</u> (Methodologies for Jitter and Signal Quality specifications)

Random &	Random & Deterministic Jitter Composition					
Frequency	Random (Rj)	Deterministic (Dj)	Total Jitter (Tj) (14 x Rj) + Dj			
62.5 MHz	1.2	9.2	25.6 pS			
106.25 MHz	1.3	9.0	27.2 pS			
125 MHz	1.2	8.7	26.5 pS			
156.25 MHz	1.2	12.7	30.0 pS			

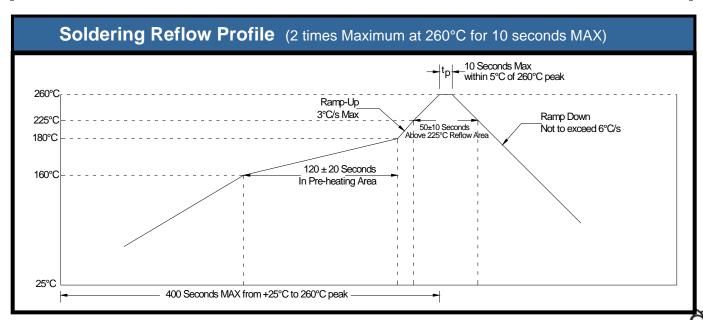
Rj and Dj, measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software. Per **MJSQ** spec (Methodologies for Jitter and Signal Quality specifications)



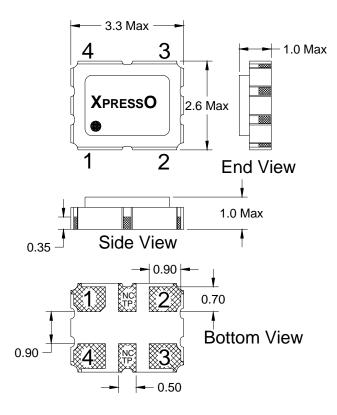
Pin	Pin Description and Recommended Circuit					
Pin#	Name	Туре	Function			
1	E/D ¹	Logic	Enable / Disable Control of Output (0 = Disabled)			
2	GND	Ground	Electrical Ground for V _{DD}			
3	Output	Output	HCMOS Oscillator Output			
4	V _{DD} ²	Power	Power Supply Source Voltage			
Test Points	N. C.	Hi Z	No Connection (Factory Use ONLY)			

NOTES:

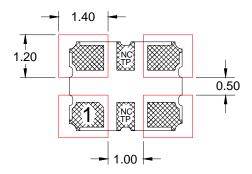
¹ Includes pull-up resistor to V_{DD} to provide output when the pin (1) is No Connect.


Installation should include a 0.01μF bypass capacitor placed between V_{DD} (Pin 4) and GND (Pin 2) to minimize power supply line noise.

Terminations as viewed from the Top NOTE: XPRESSO HCMOS XOs are designed to fit on Industry Standard, 4 pad layouts


E/D		# 1	# 4	$0.01\mu\text{F} \stackrel{=}{\longrightarrow} \text{V}_{\text{DD}}$
	N C			N C
GND		# 2	# 3	OUT HCMOS LOAD (15 pF)

Enable / Disable Control	
Pin # 1 (state)	Output (Pin # 3)
OPEN (No Connection)	ACTIVE Output
"1" Level V _{IH} ≥ 70% V _{DD}	ACTIVE Output
"0" Level V _{IL} ≤ 30% V _{DD}	High Impedance


Mechanical Dimensional Drawing & Pad Layout

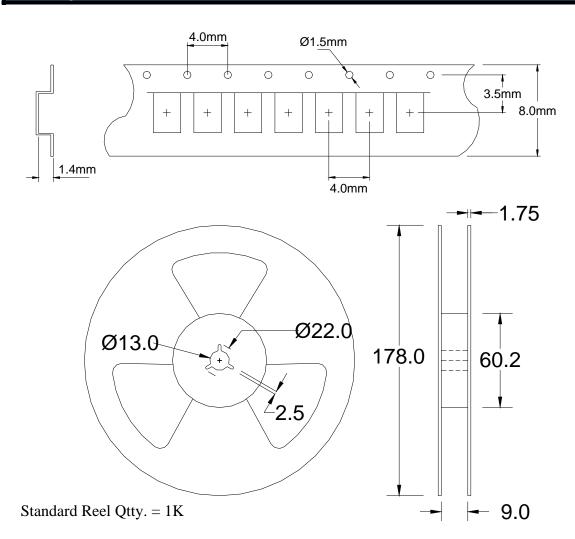
Actual part marking is depicted.

See **Traceability** (pg. 8) for more information

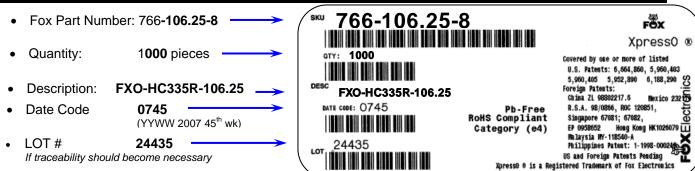
Recommended Solder Pad Layout

Note: XpressO HCMOS XO's are designed to fit on industry standard, 4 pad layouts.

Pin Connections


#1 E/D #3 V_{OUT} #2 GND #4 V_{DD}

Drawing is for reference to critical specifications defined by size measurements. Certain non-critical visual attributes, such as side castellations, reference pin shape, etc. may vary



Tape and Reel Dimensions

Labeling (Reels and smaller packaging are labeled with the below)

An additional identification code is contained internally if tracking should ever be necessary

Traceability - LOT Number & Serial Identification

LOT Number

The LOT Number has direct ties to the customer purchase order. The LOT Number is marked on the "Reel" label, and also stored internally on non-volatile memory inside the XPRESSO part. XPRESSO parts that are shipped Tape and Reel, are also placed in an Electro Static Discharge (ESD) bag and will have the LOT Number labeled on the exterior of the ESD bag.

It is recommended that the XPRESSO parts remain in this ESD bag during storage for protection and identification.

If the parts become separated from the label showing the LOT Number, it can be retrieved from inside one of the parts, and the information that can be obtained is listed below:

- Customer Purchase Order Number
- Internal Fox Sales Order Number
- Dates that the XPRESSO part was shipped from the factory
- The assigned customer part number
- The specification that the part was designed for

Serial Identification

The Serial ID is the individualized information about the configuration of that particular XPRESSO part. The Serial ID is unique for each and every XPRESSO part, and can be read by special Fox equipment.

With the Serial ID, the below information can be obtained about that individual, XPRESSO part:

- Equipment that the XPRESSO part was configured on
- Raw material used to configure the XPRESSO part
- Traceability of the raw material back to the foundries manufacturing lot
- Date and Time that the part was configured
- Any optimized electrical parameters based on customer specifications
- Electrical testing of the actual completed part
- Human resource that was monitoring the configuration of the part

Fox has equipment placed at key Fox locations World Wide to read the Lot Identification and Serial Number of any XPRESSO part produced and can then obtain the information from above within 24 hours

Party (SGS) Material Report

Test Report

FOX ELECTRONICS

5570 ENTERPRISE PARKWAY FT. MYERS, FL 33905, USA

The following sample(s) was/were submitted and identified by/on behalf of the client as :

: XPRESSO CERAMIC OSCILLATORS Sample Description Style/Item No. : SEAM SEAL CLOCK OSCILLATOR

Buyer/Order No. 47454 : 2008/06/12 Sample Receiving Date

Testing Period : 2008/06/12 TO 2008/06/19

Test Result(s) Please refer to next page(s).

Chenyu Kung / Operation Manager Signed for and on behalf of SGS TAIWAN LTD.

Chemical Laboratory - Taipei

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This test report cannot be reproduced, except in full, without prior written permission of the Company. 能非另有证明。此能告结果是判婚之权法负责,本能任法规本公司者能许可,不可能份规制。
This Test Report is issued by the Company under its General Conditions of Service printed overleaf or available on request and accessible at http://www.sgc.com/lems_and_conditions.trm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this Test Report is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from executing all their rigings and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

台灣檢驗科技股份有限公司

SGS Taiwan Ltd.
No. 33 Wu Chyuan Road, Wuku industrial Zone, Taipel County, Taiwan / 台北解五数工業高五種路 33 號 t (885-2) 2299-3939 f (885-2) 2299-3237 www.thw.sgs.com

www.tw.sgs.com

3rd Party (SGS) Material Report (continued)

Test Report No.: CE/2008/63138 Date: 2008/06/19 Page: 2 of 4

FOX ELECTRONICS

5570 ENTERPRISE PARKWAY FT. MYERS, FL 33905, USA

Test Result(s)

PART NAME NO.1 : MIXED ALL PARTS

Test Item (s):	Unit	Method	MDL	Result
rest item (s).	Unit	Metrod	WIDL	No.1
Cadmium (Cd)	mg/kg	With reference to IEC 62321/2nd CDV (111/95/CDV). Determination of Cadmium by ICP-AES.	2	n.d.
Lead (Pb)	mg/kg	With reference to IEC 62321/2nd CDV (111/95/CDV). Determination of Lead by ICP-AES.	2	n.d.
Mercury (Hg)	mg/kg	With reference to IEC 62321/2nd CDV (111/95/CDV). Determination of Mercury by ICP-AES.	2	n.d.
Hexavalent Chromium Cr(VI) by alkaline extraction	mg/kg	With reference to IEC 62321/2nd CDV (111/95/CDV). Determination of Hexavalent Chromium for nonmetallic samples by UV/Vis Spectrometry.	2	n.d.
Halogen	444	With reference to BS EN 14582:2007. Analysis was performed by IC method for F; CI, Br, I content.	1202	
Halogen-Fluorine (F) (CAS No.: 007782-41-4)	mg/kg	With reference to BS EN 14582:2007. Analysis was performed by IC method for Fluorine content.	50	n.d.
Halogen-Chlorine (CI) (CAS No.: 007782-50-5)	mg/kg	With reference to BS EN 14582:2007. Analysis was performed by IC method for Chlorine content.	50	n.d.
Halogen-Bromine (Br) (CAS No.: 007726-95-6)	mg/kg	With reference to BS EN 14582:2007. Analysis was performed by IC method for Bromine content.	50	n.d.
Halogen-lodine (I) (CAS No.: 007553-56-2)	mg/kg	With reference to BS EN 14582:2007. Analysis was performed by IC method for lodine content.	50	n.d.

Unless otherwise stated the results shown in this test report refer only to the sample(is) tested. This test report cannot be reproduced, except in full, without prior written permission of the Company. 除非异有规则。此样后档果保到模式之楼品负责、本物色来核本公司善配件可,不可定的模型。
This Test Report is lasted by the Company under its General Conditions of Secret printed overleaf or available on request and accessible at https://www.saps.com/lems_and_conditions.htm. Attention is drawn to the limitation of liability, indemrification and jurisdiction issues defined therein. Any holder of this Test Report is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's forting at the time of its intervention only and within the limits of client's instructions, if any. The Company's forting at the time of its intervention only and within the limits of client's instructions, if any. The Company's forting at the time of its intervention at the limits of client's instructions, if any. The Company's forting at the time of its intervention of the limits of client's instructions, if any. The Company's forting at the time of its intervention only and within the limits of client's instructions, if any. unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

 SGS Taiwan Ltd.
 No. 33
 Wu Chyuan Road, Wuku Industrial Zone, Taipel County, Taiwan / 台北解五股工業富五權路 33 號 1(886-2) 2299-3237
 www.tws.gs.com

Ζ

Party (SGS) Material Report (continued)

Test Report No.: CE/2008/63138 Date: 2008/06/19 Page: 3 of 4

FOX ELECTRONICS

5570 ENTERPRISE PARKWAY FT. MYERS, FL 33905, USA

Test Item (s):	Unit	Method	MDL	Result
10.59	Oint	Mediod	MIDL	No.1
Sum of PBBs			276	n.d.
Monobromobiphenyl	1	I	5	n.d.
Dibromobiphenyl	1	l	5	n.d.
Tribromobiphenyl	1	l E	5	n.d.
Tetrabromobiphenyl	1	I I	5	n.d.
Pentabromobiphenyl	1	l T	5	n.d.
Hexabromobiphenyl	1	I I	5	n.d.
Heptabromobiphenyl	1	Γ	5	n.d.
Octabromobiphenyl	1	Г	5	n.d.
Nonabromobiphenyl	1	With reference to IEC 62321/2nd CDV (111/95/CDV). Determination of PBB and PBDE by GC/MS.	5	n.d.
Decabromobiphenyl	1		5	n.d.
Sum of PBDEs (Mono to Nona)	mg/kg		-	n.d.
Monobromodiphenyl ether			5	n.d.
Dibromodiphenyl ether			5	n.d.
Tribromodiphenyl ether	1		5	n.d.
Tetrabromodiphenyl ether	1	l F	5	n.d.
Pentabromodiphenyl ether	1	I T	5	n.d.
Hexabromodiphenyl ether	1	l f	5	n.d.
Heptabromodiphenyl ether			5	n.d.
Octabromodiphenyl ether		l T	5	n.d.
Nonabromodiphenyl ether		l F	5	n.d.
Decabromodiphenyl ether	1	l t	5	n.d.
Sum of PBDEs (Mono to Deca)	1	l t	0 11 01	n.d.

Note: 1. mg/kg = ppm

2. n.d. = Not Detected

3. MDL = Method Detection Limit

4. "---" = Not Conducted

5. " - " = Not Regulated

6. The sample(s) was/were analyzed on behalf of the applicant as mixing sample in one testing. The above result(s) was/were only given as the informality value.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This test report cannot be reproduced, except in full, without prior written permission of the Company. 除非牙有限可,此非合结理使对概法之权违言者,本格色来根本公司書面持可。不可证的规则。
This Test Report is seved by the Company under its General Conditions of Service printed overleaf or available on request and accessible at http://www.sgs.com/tems_and_conditions.itm. Attention is drawn to the limitation of liability, indemrification and jurisdiction issues defined therein. Any holder of this Test Report is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Clent and this document does not exonerate parties to a transaction from exentising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Taiwan Ltd. No. 33 Wu Chyuan Road, Wuku industrial Zone, Taipel County, Taiwan / 台北縣五股工業富五槽路 33 變 t (886-2) 2299-3939 f (886-2) 2299-3237 www.tw.sgs.com

台灣檢驗科技股份有限公司

Party (SGS) Material Report (continued)

Test Report No.: CE/2008/63138 Date: 2008/06/19 Page: 4 of 4

FOX ELECTRONICS 5570 ENTERPRISE PARKWAY FT. MYERS, FL 33905, USA

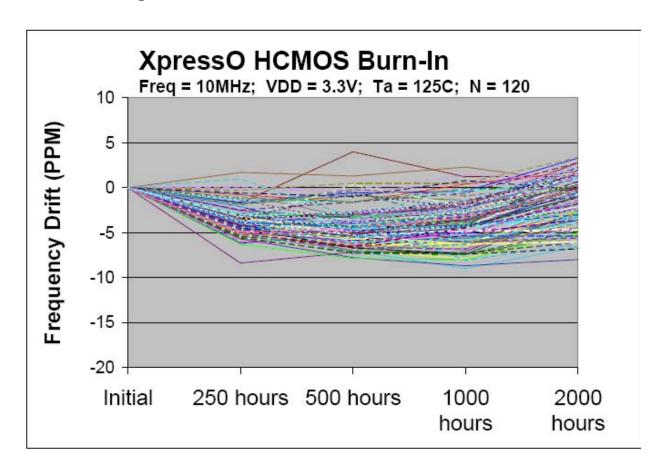
** End of Report **

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This test report cannot be reproduced, except in full, without prior written permission of the Company. 除非另有原则,比解色结果像封线就之缘品食者,本格色来统本公司者服护可,不可原价规则。
This Test Report is issued by the Company under its General Conditions of Service printed overleaf or available on request and accessible at http://www.sgs.nom/terms_ann_nom/finns.tim. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this Test Report is advised that Information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Clent and this document does not excensive parties to a transaction from exentising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Taiwan Ltd.

No. 33 Wu Chyuan Road, Wuku industrial Zone, Taipei County, Taiwan / 台北縣五股工業高五權路 33 號 t (886-2) 2299-3939 f (886-2) 2299-3237 www.tw.sgs.com

台灣檢驗科技股份有限公司_



Mechanical Testing

Parameter	Test Method
Mechanical Shock	Drop from 75cm to hardwood surface – 3 times
Mechanical Vibration	10~55Hz, 1.5mm amplitude, 1 Minute Sweep 2 Hours each in 3 Directions (X, Y, Z)
High Temperature Burn-in	Under Power @ 125°C for 2000 Hours (results below)
Hermetic Seal	He pressure: 4 ±1 kgf / cm ² 2 Hour soak

2,000 Hour Burn-In

Burn-In Testing – under power 2000 Hours, 125°C

MTTF / FITS Calculations

Products are grouped together by process for MTTF calculations. (All XpressO output and package types are manufactured with the same process)

Number of Parts Tested: 360 (120 of each output type: HCMOS, LVDS, LVPECL)

Number of Failures: 0 Test Temperature: 125°C Number of Hours: 2000

MTTF was calculated using the following formulas:

[1.] Device Hours (devhrs) = (number of devices) x (hours at elevated temperature in °K)

[2.]
$$MTTF = \frac{devhrs \times af \times 2}{\chi^2}$$

[3.] FITS =
$$\frac{1}{MTTF}$$
 * 10⁹

Where:

wilere.		
Label	Name	Formula/Value
af	Acceleration Factor	$oldsymbol{e}^{(rac{eV}{k}) imes(rac{1}{t_1}-rac{1}{t_2})}$
eV	Activation Energy	0.40 V
k	Bolzman's Constant	8.62 X 10 ⁻⁵ eV/°K
t ₁		Operating Temperature (°K)
t ₂		Accelerated Temperature (°K)
Θ	Theta	Confidence Level (60% industry standard)
r	Failures	Number of failed devices
χ ²	Chi-Square	statistical significance for bivariate tabular analysis [table look-up] based on assumed Θ (Theta – confidence) and number of failures (r) For zero failures (60% Confidence): $\chi^2 = 1.830$

DEVICE-HOURS = 360 x 2000 HOURS = 720,000

ACCELERATION FACTOR =
$$e^{(\frac{0.40}{8.625})\times(\frac{1}{298}-\frac{1}{398})}$$
 = 49.91009

MTTF =
$$\frac{720,000 \times 49.91009 \times 2}{1.833}$$
 = 39,209,238 Hours

Failure Rate =
$$\frac{1.833}{720,000 \times 49.91009 \times 2}$$
 = 2.55E-8

FITS = Failure Rate *1E9 = 26

Notes:

Patent Numbers:

US 6,664,860, US 5,960,403, US 5,952,890; US 5,960,405; US 6,188,290;
Foreign Patents: R.S.A. 98/0866, R.O.C. 120851; Singapore 67081, 67082; EP 0958652
China ZL 98802217.6, Malaysia MY-118540-A, Philippines 1-1998-000245, Hong Kong #HK1026079, Mexico #232179
US and Foreign Patents Pending

XpressO® Fox Electronics

The above specifications, having been carefully prepared and checked, is believed to be accurate at the time of publication; however, no responsibility is assumed by Fox Electronics for inaccuracies.

Contact Information

(USA)-Worldwide Headquarters

Tel: 888-GET-2-FOX

Outside US: +1.239.693.0099,

Fax: +1.239.693.1554

Fox Japan

Tel: +81.3.3374.2079, Fax: +81.3.3377.5221 Fox Hong Kong

Tel: +852.2854.4285, Fax: +852.2854.4282

Fox EMEA

Tel/Fax: +44.1767.312632

