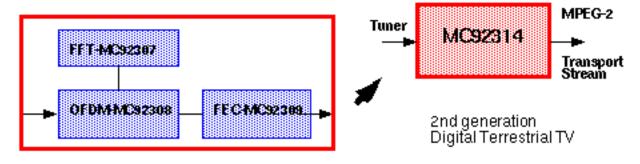
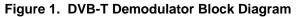

Advance Information **2K Integrated DVB-T Demodulator**


The MC92314 is a DVB-T compliant demodulator for 2K transmission mode according to the ETSI specification for digital terrestrial broadcasting (ETS 300744). The MC92314 contains all the functionality required to demodulate and decode DVB-T compliant broadcast signals.


Feature Summary

- Usable for 8MHz/7MHz/6MHz channels by adjusting the clock rate
- Digital I/Q separation on-chip
- Digital AFC on chip
- Supports QPSK, 16-QAM and 64-QAM (non-hierarchical)
- Supports all guard interval lengths (1/32, 1/16, 1/8, 1/4)
- · Automatic locking to any DVB-T guard interval
- Accepts 8-bit TTL-compatible twos-complement and offset-binary data input
- Provides control signals for AGC and ADC clock frequency control
- Viterbi Decoder for DVB convolutional code rates 1/2, 2/3, 3/4, 5/6 and 7/8
- Reed/Solomon Decoder for DVB Reed-Solomon code (204,188,8)
- I²C serial bus compatible interface (M-Bus) for external programming and control
- Operating voltage 3.3V
- Power requirement 1.7W
- Package 160PQFP

Ordering Information						
Device	Package					
MC92314DH	160PQFP					

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MC92314

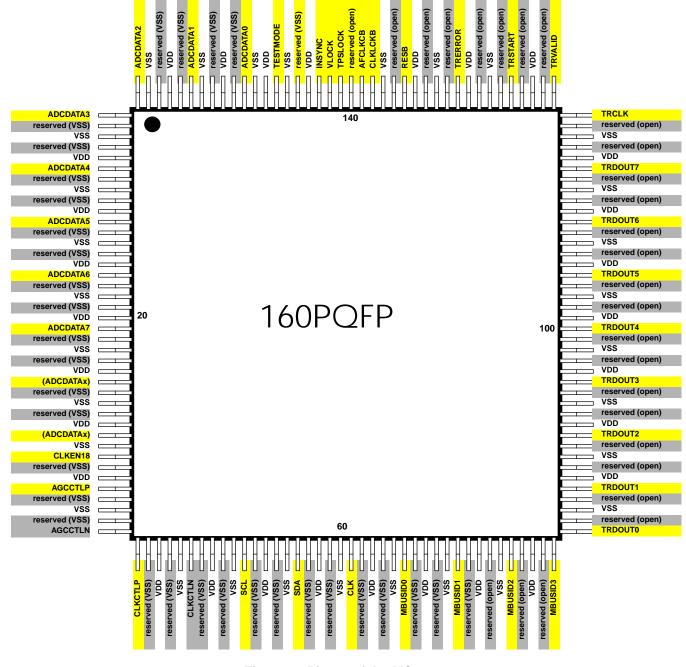


Figure 2. Pinout of the MC92314

SIGNAL	FUNCTIONALITY	TYPE	POLTY
CLK	Common clock input (36.57 MHz)	TTL - IN	high
RESB	Reset (asynchronous)	TTL - IN	low
CLKEN18	ADC data strobe	TTL - IN	high
ADCDATA[7:0]	Input for samples from ADC	TTL - IN	high
CLKCTLP	ADC clock synchronization loop (+)	TTL - OUT	high
CLKCTLN	ADC clock synchronization loop (-)	TTL - OUT	low
AGCCTLP	Analog AGC loop (+)	TTL - OUT	high
AGCCTLN	Analog AGC loop (-)	TTL - OUT	low
MSDA	I ² C compatible control bus, data pin	TTL - OD	-
MSCL	I ² C compatible control bus, clock pin	TTL - IN	high
MBUSID[3:0]]	I ² C compatible control bus, variable ID selector	TTL - IN	high
TRERROR	MPEG2 Frame Error Indicator	TTL - OUT	high
TRVALID	MPEG2 Byte Valid Indicator	TTL - OUT	high
TRSTART	MPEG2 Sync Byte Indicator	TTL - OUT	high
TRCLK	MPEG2 Byte Clock	TTL - OUT	high
TRDOUT[7:0]	MPEG2 Transport Stream Byte Output	TTL - OUT	high
INSYNC	FEC Frame Synchronization Status	TTL - OUT	high
VLOCK	Viterbi Decoder Synchronization Status	TTL - OUT	high
TPSLOCKB	TPS Data Valid indicator (inverted)	TTL - OUT	high
AFCLCK	AFC lock indicator	TTL - OUT	high
CLKLCK	Time Synchronization lock indicator	TTL - OUT	high

Table 1. MC92314 Pin List

Addr	Name	Туре	Def	b7	b6	b5	b4	b3	b2	b1	b0	
0	CONFIG_VIT	R/W		DAP	DLT	DDEC	DTHR	IFS	l V	/SYNC[2:0)]	
1	THRESHOLD	R/W				1		THRES[4:0]				
2	DECREMENT	R/W						DEC[4:0]				
3	TIMEOUT	R/W					I	TIM[3:0]				
4	AVG_PERIOD	R/W						PERIOD[3:0]				
8	QVALLSB	R		QVAL[7:0]								
9	QVALMSB	R		QVAL[14:8]								
\$A	SYNC_VIT	R		VLCK								
\$В	SELECTEDRATE	R		SR[2:0]								
\$C	FIFO_STATE	R		VFF VEF					VEF			
\$11	AQ_THRESH	R/W		SYNC[2:0] REF[4:0]								
\$12	TR_THRESH	R/W		SYNC[2:0] REF[4:0]								
\$13	TIME_COUNT	R/W		TC[7:0]								
\$18	BER_COUNT	R		BER[7:0]								
\$19	BAD_COUNT	R		BAD[3:0]								
\$1A	SYNC_RS	R		0	0	0	0	0	RERRU	DEINT	INSYNC	
\$1F	SOFT_RESET	R/W		GP3	GP2	GP1	GP0		FFT	RS	VIT	

Table 2. FEC I²C Register Map:

Table 3. OFDM I²C Registers

Addr	Name	Туре	Def	b7	b6	b5	b4	b3	b2	b1	b0
0	TPS R0	R	-		S[7:0]						
1	TPS R1	R	-				S[15	:8]			
2	TPS R2	R	-				S[23	16]			
3	TPS R3	R	-		S[31:24]						
4	TPS R4	R	-		S[39:32]						
5	TPS R5	R	-		S[47:40]						
6	TPS R 6	R	-		S[55:48]						
7	TPS R7	R	-		S[63:56]						
8	TPS R 8	R	-	AFCL CLKL TPSV TPSL S[67:64]							
9	TPS Idx	W	-	IDX[7:0]							
\$A	Reset	W	-	SRES						SRES	
\$В	OFDM R0	W	-	CODERATE GUARD CONST						ST	
\$C	OFDM R1	W	\$1F	C	00	0	FROT	ASYN	ATPS	AFC	TSM
\$D	OFDM R2	W	\$B4	1 AFCS AGCS 10 UHFI ADCM					CLKS		

I²C Programming:

The MC92314 2K Integrated DVB-T Demodulator can be programmed serially over an I²C bus protocol. It contains two independent I²C controllers (one for the FEC and one for the OFDM), each with a distinct slave address in the I²C address space. The primary pins MBUSID[3:0] can be used to resolve potential slave address conflicts in an I²C based system. The addressing convention is such that an I²C slave address is given by

Module selected	ADR[6:4]	ADR[3:0]
FEC	001	MBUSID[3:0]
OFDM	010	MBUSID[3:0]

The Register Address space under each I^2C slave address is defined for the FEC in Table 2 and for the OFDM in Table 3. Please note that to access any register, the procedure requires that this register number has to be written into a symbolic address \$0 in the first slave access; a second slave access can then proceed with the read or write of the desired register(s).

Please note, that for the FEC a soft reset is only possible in normal operation of the OFDM, i.e. with the TPSLOCKB signal active.

Operation:

The MC92314 2K Integrated DVB-T Demodulator is preconfigured such that only minimal setup programming is required. The rate selection of the FEC is automatic. If an ADC with 'offset-binary' coding is used, OFDM register 2 (\$D) must be set accordingly. No further programming is necessary.

The locking process of the MC92314 2K Integrated DVB-T Demodulator during startup can be observed externally by monitoring the pins TPSLOCKB, VLOCK and INSYNC. For error free operation TPSLOCKB should be low, VLOCK should be high and INSYNC should be high. Note: For the most current information regarding this product, contact Motorola on the World Wide Web at http://www.motorola.com/ADC

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and a registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447 or 303-675-2140

MFaxTM: RMFAX0@email.sps.mot.com -TOUCHTONE (602) 244-6609 HOME PAGE:http://motorola.com/sps/ MFax is a trademark of Motorola, Inc.

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shagawa-ku, Tokyo, Japan. 81-3-5487-8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

