Panasonic ideas for life

Compliance with RoHS Directive

High Sensitivity of nominal operating power 100 mW is achived. Compact Slim Body Saves space

FEATURES

1. Compact slim body saves space Thanks to the small surface area of 5.7 $\mathrm{mm} \times 10.6 \mathrm{~mm} .224$ inch $\times .417$ inch and low height of 9.0 mm .354 inch, the packaging density can be increased to allow for much smaller designs.
2. High sensitivity single side stable type (Nominal operating power: 100 mW) is available
3. Outstanding surge resistance.

Surge breakdown voltage between contacts and coil:
$2,500 \mathrm{~V} 2 \times 10 \mu \mathrm{~s}$ (Telcordia)
Surge breakdown voltage between open contacts:
$1,500 \vee 10 \times 160 \mu \mathrm{~s}$ (FCC part 68)
4. The use of twin crossbar contacts ensures high contact reliability.
AgPd contact is used because of its good sulfide resistance. Adopting lowgas molding material. Coil assembly molding technology which avoids generating volatile gas from coil.
5. Increased packaging density Due to highly efficient magnetic circuit design, leakage flux is reduced and changes in electrical characteristics from components being mounted
close-together are minimized. This all means a packaging density higher than ever before.
6. Nominal operating power: 140 mW
7. Outstanding vibration and shock resistance.
Functional shock resistance: $750 \mathrm{~m} / \mathrm{s}^{2}$
Destructive shock resistance:
$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Functional vibration resistance:
10 to 55 Hz (at double amplitude of 3.3 mm .130 inch)

Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch)
8. Sealed construction allows automatic washing.

TYPICAL APPLICATIONS

1. Telephone switchboard
2. Telecommunications equipment
3. Security
4. Measurement equipment
5. Consumer electronic and audio visual equipment

ORDERING INFORMATION

TYPES

1. Standard PC board terminal

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No.	Part No.	Part No.
1.5V DC	AGN2001H	AGN2101H	AGN2601H
3V DC	AGN20003	AGN21003	AGN26003
4.5 V DC	AGN2004H	AGN2104H	AGN2604H
6V DC	AGN20006	AGN21006	AGN26006
9V DC	AGN20009	AGN21009	AGN26009
12V DC	AGN20012	AGN21012	AGN26012
24V DC	AGN20024	AGN21024	AGN26024

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

2. Surface-mount terminal

1) Tube packing

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No.	Part No.	Part No.
1.5V DC	AGN200 $\square 1 \mathrm{H}$	AGN210 $\square 1 \mathrm{H}$	AGN260 $\square 1 \mathrm{H}$
3V DC	AGN200 $\square 03$	AGN210 $\square 03$	AGN260 $\square 03$
4.5 V DC	AGN200 $\square 4 \mathrm{H}$	AGN210 $\square 4 \mathrm{H}$	AGN260 $\square 4 \mathrm{H}$
6V DC	AGN200 $\square 06$	AGN210 $\square 06$	AGN260 $\square 06$
9V DC	AGN200 $\square 09$	AGN210 $\square 09$	AGN260 $\square 09$
12V DC	AGN200 $\square 12$	AGN210 $\square 12$	AGN260 $\square 12$
24V DC	AGN200 $\square 24$	AGN210 $\square 24$	AGN260 $\square 24$

\square : For each surface-mounted terminal identification, input the following letter. A type: \underline{A}, S type: \underline{S}
Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

2) Tape and reel packing

Nominal coil voltage	Single side stable	1 coil latching	High sensitivity single side stable
	Part No.	Part No.	Part No.
1.5 V DC	AGN200 $\square 1 \mathrm{HZ}$	AGN210 $\square 1 \mathrm{HZ}$	AGN260 $\square 1 \mathrm{HZ}$
3 V DC	AGN200 $\square 03 Z$	AGN210 $\square 03 Z$	AGN260 $\square 03 Z$
4.5 V DC	AGN200 $\square 4 \mathrm{HZ}$	AGN210 $\square 4 \mathrm{HZ}$	AGN260 $\square 4 \mathrm{HZ}$
6 V DC	AGN200 $\square 06 Z$	AGN210 $\square 06 Z$	AGN260 $\square 06 Z$
9 V DC	AGN200 $\square 09 Z$	AGN210 $\square 09 Z$	AGN260 $\square 09 Z$
12 V DC	AGN200 $\square 12 Z$	AGN210 $\square 12 Z$	AGN260 $\square 12 Z$
24 V DC	AGN200 $\square 24 Z$	AGN210 $\square 24 Z$	AGN260 $\square 24 Z$

\square : For each surface-mounted terminal identification, input the following letter. A type: \underline{A}, S type: \underline{S}
Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs.
Notes: 1. Tape and reel packing symbol " Z " is not marked on the relay. " X " type tape and reel packing (picked from $1 / 2 / 3 / 4$-pin side) is also available.
2. Please inquire if you require a relay, between 1.5 and 24 V DC, with a voltage not listed.

RATING

1. Coil data

1) Single side stable type

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	16Ω	140mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	64.2Ω		
4.5 V DC			31 mA	145Ω		
6 V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12V DC			11.7 mA	1,028 Ω		
24V DC			9.6 mA	2,504 Ω	230 mW	$120 \% \mathrm{~V}$ of nominal voltage

2) 1 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance $[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	22.5Ω	100mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
6 V DC			16.7 mA	360Ω		
9 V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440 2		
24V DC			5.0 mA	4,800 Ω	120 mW	

*Pulse drive (JIS C 5442-1996)
3) High sensitivity single side stable type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance $[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	66.7 mA	22.5Ω	100 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			33.3 mA	90Ω		
4.5 V DC			22.2 mA	202.5Ω		
6 V DC			16.7 mA	360Ω		
9V DC			11.1 mA	810Ω		
12V DC			8.3 mA	1,440 Ω		
24V DC			5.0 mA	4,800 Ω	120 mW	$120 \% \mathrm{~V}$ of nominal voltage

*Pulse drive (JIS C 5442-1996)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Stationary contact: AgPd+Au clad Movable contact: AgPd
Rating	Nominal switching capacity		1 A 30 V DC, 0.3 A 125 V AC (resistive load)
	Max. switching power		30 W (DC), 37.5 V A (AC) (resistive load)
	Max. switching voltage		110 V DC, 125 V AC
	Max. switching current		1 A
	Min. switching capacity (Reference value)* ${ }^{\star 1}$		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	140 mW (1.5 to 12 V DC), 230 mW (24 V DC)
		High sensitivity single side stable type	100 mW (1.5 to 12 V DC), 120 mW (24 V DC)
		1 coil latching	
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	1,500 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	2,500 V ($2 \times 10 \mu \mathrm{~s}$) (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 5×10^{7} (at 180 cpm)
	Electrical		Min. 10^{5} (1 A 30 V DC resistive), 10^{5} (0.3 A $125 \mathrm{~V} \mathrm{AC} \mathrm{resistive)} \mathrm{(at} 20 \mathrm{cpm}$)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: (Single side stable, 1 coil latching type) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ (High sensitivity single side stable type) $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. $1 \mathrm{~g} \mathrm{}$.

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load
*2 Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT.

REFERENCE DATA

1. Max. switching capacity

2. Life curve

3. Mechanical life Tested sample: AGN2004H, 15 pcs. Operating speed: 180 cpm

4. Electrical life (1A 30V DC resistive load)

Tested sample: AGN2004H, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage

6-(1). Operate and release time (without diode)
Tested sample: AGN2004H, 6 pcs.

5. Coil temperature rise

Tested sample: AGN2004H, AGN20024, 6 pcs. Point measured: Inside the coil
Ambient temperature: Room temperature

7. Ambient temperature characteristics Tested sample: AGN2004H, 6 pcs.

6-(2). Operate and release time (with diode) Tested sample: AGN2004H, 6 pcs.
8. Malfunctional shock

Tested sample: AGN2004H

9-(2). Influence of adjacent mounting Tested sample: AGN20012, 6 pcs.

DIMENSIONS (mm inch)

1. PC board terminal

External dimensions Standard type

PC board pattern

Schematic (Bottom view)

Single side stable High sensitivity single side stable	1 coil latching
$\begin{array}{rl} 1 & 2 \end{array} \frac{3}{4} 4$	$\begin{array}{r} 1 \\ 1 \\ \hline \end{array}$
Deenergized condition)	(Reset condition)

2. Surface-mount terminal

CAD Data

Schematic (Top view)

Single side stable
1 coil latching
High sensitivity single side stable

(Deenergized condition)

(Reset condition)

NOTES

1. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing (A type)
(1)-1 Tape dimensions

(S type)
(1)-2 Tape dimensions

(2) Dimensions of plastic peel

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A: $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure in the direction B : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C: $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less

Please chuck the TسIIC portion. Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

For general cautions for use, please refer to the "Cautions for use of Signal Relays" or "General Application Guidelines".

