

MOS INTEGRATED CIRCUIT $\mu PD29F032202AL-Y$

32M-BIT CMOS LOW-VOLTAGE DUAL OPERATION FLASH MEMORY 4M-WORD BY 8-BIT (BYTE MODE) / 2M-WORD BY 16-BIT (WORD MODE)

Description

The μ PD29F032202AL-Y is a flash memory organized of 33,554,432 bits and 71 sectors. Sectors of this memory can be erased at a low voltage (2.7 to 3.3 V, 3.0 to 3.6 V) supplied from a single power source, or the contents of the entire chip can be erased. Two modes of memory organization, BYTE mode (4,194,304 words \times 8 bits) and WORD mode (2,097,152 words \times 16 bits), are selectable so that the memory can be programmed in byte or word units.

The μ PD29F032202AL-Y can be read while its contents are being erased or programmed. The memory cell is divided into two banks. While sectors in one bank are being erased or programmed, data can be read from the other bank thanks to the simultaneous execution architecture. The banks are 4M bits and 28M bits.

This flash memory comes in two types. The T type has a boot sector located at the highest address (sector) and the B type has a boot sector at the lowest address (sector).

Because the μ PD29F032202AL-Y enables the boot sector to be erased, it is ideal for storing a boot program. In addition, program code that controls the flash memory can be also stored, and the program code can be programmed or erased without the need to load it into RAM. Eight small sectors for storing parameters are provided, each of which can be erased in 8K bytes units.

Once a program or erase command sequence has been executed, an automatic program or automatic erase function internally executes program or erase and verification automatically.

Because the μ PD29F032202AL-Y can be electrically erased or programmed by writing an instruction, data can be reprogrammed on-board after the flash memory has been installed in a system, making it suitable for a wide range of applications.

This flash memory is packed in a 48-pin PLASTIC TSOP (I) and 63-pin TAPE FBGA.

Features

- Two bank organization enabling simultaneous execution of program / erase and read
- Bank organization: 2 banks (4M bits + 28M bits)
- Memory organization : 4,194,304 words × 8 bits (BYTE mode)

2,097,152 words × 16 bits (WORD mode)

- Sector organization : 71 sectors (8K bytes / 4K words × 8 sectors, 64K bytes / 32K words × 63 sectors)
- 2 types of sector organization
 - T type: Boot sector allocated to the highest address (sector)
 - B type : Boot sector allocated to the lowest address (sector)
- 3-state output
- Automatic program
 - Program suspend / resume

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

- Unlock bypass program
- Automatic erase
 - Chip erase
 - Sector erase (sectors can be combined freely)
 - Erase suspend / resume
- Program / Erase completion detection
 - Detection through data polling and toggle bits
 - Detection through RY (/BY) pin
- Sector group protection
 - Any sector group can be protected
 - Any protected sector group can be temporary unprotected
- Sectors can be used for boot application
- Hardware reset and standby using /RESET pin
- Automatic sleep mode
- Boot block sector protect by /WP (ACC) pin
- Conforms to common flash memory interface (CFI)
- Extra One Time Protect Sector provided

μPD29F032202AL	Access time ns (MAX.)	Operating supply voltage V	(Activ	pply current e mode) (MAX.)	Standby current μA (MAX.)
			Read	Program / Erase	
-A85TY, -A85BY	85	3.0 to 3.6	16	30	5
-B85TY, -B85BY		2.7 to 3.3			

- Operating ambient temperature: -40 to +85°C
- Program / erase time
 - Program: 9.0 μ s / byte (TYP.)

11.0 μ s / word (TYP.)

• Sector erase :

Program / erase cycle: 100,000 cycles

0.3 s (TYP.) (4K words sector), 0.5 s (TYP.) (32K words sector)

Program / erase cycle: 300,000 cycles

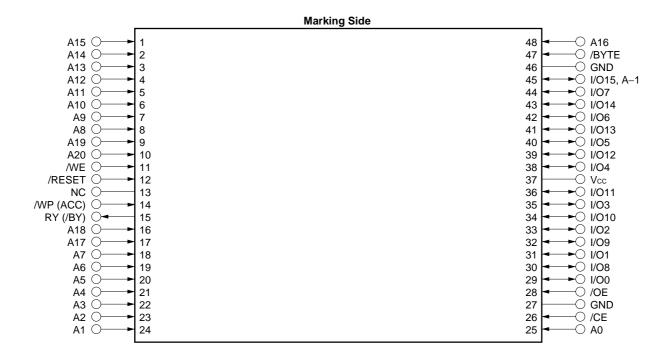
0.5 s (TYP.) (4K words sector), 0.7 s (TYP.) (32K words sector)

• Program / erase cycle : 300,000 cycles (MIN.)

Ordering Information

Part number	Access time	Operating	Boot sector	Package
	ns (MAX.)	supply voltage V		
μPD29F032202ALGZ-A85TY-MJH	85	3.0 to 3.6	Top address (sector)	48-pin PLASTIC TSOP (I) (12 × 20)
			(T type)	(Normal bent)
μ PD29F032202ALGZ-A85BY-MJH			Bottom address (sector)	
			(B type)	
μPD29F032202ALF9-A85TY-BS2			Top address (sector)	63-pin TAPE FBGA (11 × 7)
			(T type)	
μPD29F032202ALF9-A85BY-BS2			Bottom address (sector)	
			(B type)	
μ PD29F032202ALGZ-B85TY-MJH		2.7 to 3.3	Top address (sector)	48-pin PLASTIC TSOP (I) (12 \times 20)
			(T type)	(Normal bent)
μ PD29F032202ALGZ-B85BY-MJH			Bottom address (sector)	
			(B type)	
μPD29F032202ALF9-B85TY-BS2			Top address (sector)	63-pin TAPE FBGA (11 × 7)
			(T type)	
μPD29F032202ALF9-B85BY-BS2			Bottom address (sector)	
			(B type)	

Remark For address organization of sectors, see section **Sector Organization / Sector Address Table**.


3

Pin Configurations

/xxx indicates active low signal.

48-pin PLASTIC TSOP (I) (12 × 20) (Normal bent)

[μPD29F032202ALGZ-A85TY-MJH] [μPD29F032202ALGZ-A85BY-MJH] [μPD29F032202ALGZ-B85TY-MJH] [μPD29F032202ALGZ-B85BY-MJH]

A0 to A20 : Address inputs

I/O0 to I/O14 : Data Inputs / Outputs

I/O15, A-1 : Data 15 Input / output (WORD mode)

LSB address input (BYTE mode)

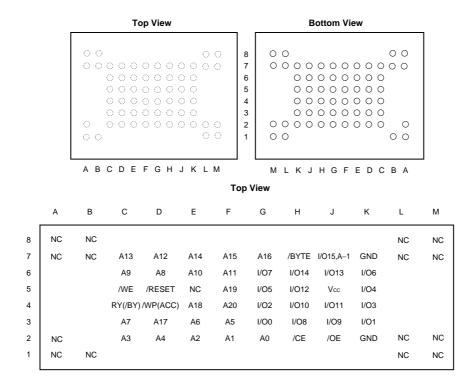
/CE : Chip Enable
/WE : Write Enable
/OE : Output Enable
/BYTE : Mode select

/RESET : Hardware reset input RY (/BY) : Ready (Busy) output

/WP (ACC) : Write Protect (Accelerated) input

Vcc : Supply Voltage

GND : Ground


NC Note : No Connection

Note Some signals can be applied because this pin is not connected to the inside of the chip.

Remark Refer to Package Drawings for the 1-pin index mark.

63-pin TAPE FBGA (11 × 7)

[μ PD29F032202ALF9-A85TY-BS2] [μ PD29F032202ALF9-A85BY-BS2] [μ PD29F032202ALF9-B85TY-BS2] [μ PD29F032202ALF9-B85BY-BS2]

A0 to A20 : Address inputs I/O0 to I/O14 : Data Inputs / Outputs

I/O15, A-1 : Data 15 Input / output (WORD mode)

LSB address input (BYTE mode)

/CE : Chip Enable
/WE : Write Enable
/OE : Output Enable
/BYTE : Mode select

/RESET : Hardware reset input RY (/BY) : Ready (Busy) output

/WP (ACC) : Write Protect (Accelerated) input

Vcc : Supply Voltage

GND : Ground

NC Note : No Connection

Note Some signals can be applied because this pin is not connected to the inside of the chip.

Remark Refer to **Package Drawings** for the index mark.

INPUT / OUTPUT PIN FUNCTION

Refer to DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information (M14914E).

Block Diagram

Sector Organization / Sector Address Table

[-A85TY, -B85TY] (1/2)

Bank	Sector	Add	Iress	Sectors		Da		ector /		s Tab	e		
	Organization K bytes / K words	BYTE mode	WORD mode	Address	A20	A19	A18	ress Ta	A16	A15	A14	A13	A1:
Bank 1	8/4	3FFFFFH	1FFFFFH	FSA70	1	1	1	1	1	1	1	1	1
	8/4	3FE000H 3FDFFFH	1FF000H 1FEFFFH	FSA69	1	1	1	1	1	1	1	1	0
	8/4	3FC000H	1FE000H	FSA68	1	4	1	1	4	1	1	0	1
		3FBFFFH 3FA000H	1FDFFFH 1FD000H			1	'	'	1	1	1	0	'
	8/4	3F9FFFH 3F8000H	1FCFFFH 1FC000H	FSA67	1	1	1	1	1	1	1	0	0
	8/4	3F7FFFH 3F6000H	1FBFFFH 1FB000H	FSA66	1	1	1	1	1	1	0	1	1
	8/4	3F5FFFH	1FAFFFH	FSA65	1	1	1	1	1	1	0	1	0
	8/4	3F4000H 3F3FFFH	1FA000H 1F9FFFH	FSA64	1	1	1	1	1	1	0	0	1
	8/4	3F2000H 3F1FFFH	1F9000H 1F8FFFH	FSA63	1	1	1	1	1	1	0	0	
		3F0000H	1F8000H										
	64/32	3EFFFFH 3E0000H	1F7FFFH 1F0000H	FSA62	1	1	1	1	1	0	Х	х	Х
	64/32	3DFFFFH 3D0000H	1EFFFFH 1E8000H	FSA61	1	1	1	1	0	1	х	Х	х
	64/32	3CFFFFH	1E7FFFH	FSA60	1	1	1	1	0	0	х	Х	х
	64/32	3C0000H 3BFFFFH	1E0000H 1DFFFFH	FSA59	1	1	1	0	1	1	х	х	×
	64/32	3B0000H 3AFFFFH	1D8000H 1D7FFFH	FSA58	1	1	1	0	1	0	٧,		×
		3A0000H	1D0000H								Х	Х	_ ^
	64/32	39FFFFH 390000H	1CFFFFH 1C8000H	FSA57	1	1	1	0	0	1	х	х	Х
	64/32	38FFFFH 380000H	1C7FFFH 1C0000H	FSA56	1	1	1	0	0	0	х	х	Х
Bank 2	64/32	37FFFFH	1BFFFFH	FSA55	1	1	0	1	1	1	Х	х	Х
	64/32	370000H 36FFFFH	1B8000H 1B7FFFH	FSA54	1	1	0	1	1	0	х	х	>
	64/32	360000H 35FFFFH	1B0000H 1AFFFFH	FSA53	1	1	0	1	0	1	х	х	Х
		350000H	1A8000H										
	64/32	34FFFFH 340000H	1A7FFFH 1A0000H	FSA52	1	1	0	1	0	0	Х	Х	>
	64/32	33FFFFH 330000H	19FFFFH 198000H	FSA51	1	1	0	0	1	1	х	х	×
	64/32	32FFFFH 320000H	197FFFH 190000H	FSA50	1	1	0	0	1	0	х	Х	х
	64/32	31FFFFH	18FFFFH	FSA49	1	1	0	0	0	1	Х	х	>
	64/32	310000H 30FFFFH	188000H 187FFFH	FSA48	1	1	0	0	0	0	Х	х	X
	64/32	300000H 2FFFFFH	180000H 17FFFFH	FSA47	1	0	1	1	1	1	٧,		
		2F0000H	178000H								Х	Х)
	64/32	2EFFFFH 2E0000H	177FFFH 170000H	FSA46	1	0	1	1	1	0	Х	х	Х
	64/32	2DFFFFH 2D0000H	16FFFFH 168000H	FSA45	1	0	1	1	0	1	х	х	×
	64/32	2CFFFFH	167FFFH	FSA44	1	0	1	1	0	0	х	х	>
	64/32	2C0000H 2BFFFFH	160000H 15FFFFH	FSA43	1	0	1	0	1	1	Х	Х	>
	64/32	2B0000H 2AFFFFH	158000H 157FFFH	FSA42	1	0	1	0	1	0	х	х	>
		2A0000H	150000H										
	64/32	29FFFFH 290000H	14FFFFH 148000H	FSA41	1	0	1	0	0	1	Х	Х	>
	64/32	28FFFFH 280000H	147FFFH 140000H	FSA40	1	0	1	0	0	0	х	Х	>
	64/32 27FFFFH	13FFFFH 138000H	FSA39	1	0	0	1	1	1	х	х	>	
	64/32	270000H 26FFFFH	137FFFH	FSA38	1	0	0	1	1	0	х	Х	>
	260000H 64/32 25FFFFH	130000H 12FFFFH	FSA37	1	0	0	1	0	1	Х	Х)	
		250000H	128000H										
	64/32	24FFFFH 240000H	127FFFH 120000H	FSA36	1	0	0	1	0	0	Х	Х	,
	64/32	23FFFFH 230000H	11FFFFH 118000H	FSA35	1	0	0	0	1	1	х	Х	х

[-A85TY, -B85TY] (2/2)

Bank	Sector	Ado	Iress	Sectors	1		S	ector /	Addres	s Tabl	е		
	Organization	DVTE made	WODD made	Address	A 20			ress Ta		A45	A 4 4	A42	140
Bank 2	K bytes / K words 64/32	BYTE mode 22FFFFH	WORD mode 117FFFH	FSA34	A20	A19 0	A18 0	A17 0	A16 1	A15 0	A14 x	A13	A12
	64/32	220000H 21FFFFH	110000H 10FFFFH	FSA33	1	0	0	0	0	1	, , ,	· ·	
	04/32	210000H	108000H	FSA33	'	U	O	U	U		х	х	Х
	64/32	20FFFFH 200000H	107FFFH 100000H	FSA32	1	0	0	0	0	0	Х	Х	х
	64/32	1FFFFFH	0FFFFFH	FSA31	0	1	1	1	1	1	Х	х	х
	64/32	1F0000H 1EFFFFH	0F8000H 0F7FFFH	FSA30	0	1	1	1	1	0	х	х	Х
		1E0000H	0F0000H										
	64/32	1DFFFFH 1D0000H	0EFFFFH 0E8000H	FSA29	0	1	1	1	0	1	Х	Х	х
	64/32	1CFFFFH 1C0000H	0E7FFFH 0E0000H	FSA28	0	1	1	1	0	0	х	Х	х
	64/32	1BFFFFH	0DFFFFH	FSA27	0	1	1	0	1	1	Х	х	х
	64/32	1B0000H 1AFFFFH	0D8000H 0D7FFFH	FSA26	0	1	1	0	1	0	Х	х	Х
		1A0000H	0D0000H								^	^	^
	64/32	19FFFFH 190000H	0CFFFFH 0C8000H	FSA25	0	1	1	0	0	1	Х	Х	х
	64/32	18FFFFH	0C7FFFH	FSA24	0	1	1	0	0	0	х	х	х
	64/32	180000H 17FFFFH	0C0000H 0BFFFFH	FSA23	0	1	0	1	1	1	Х	х	х
	64/22	170000H 16FFFFH	0B8000H 0B7FFFH	ECA22	0	1	_	4	4	0	,,	.,	.,
	64/32	160000H	0B0000H	FSA22	U	1	0	1	1	0	Х	х	Х
	64/32	15FFFFH 150000H	0AFFFFH 0A8000H	FSA21	0	1	0	1	0	1	х	Х	х
	64/32	14FFFFH	0A7FFFH	FSA20	0	1	0	1	0	0	х	х	х
	64/32	140000H 13FFFFH	0A0000H 09FFFFH	FSA19	0	1	0	0	1	1	х	х	Х
		130000H	098000H										
	64/32	12FFFFH 120000H	097FFFH 090000H	FSA18	0	1	0	0	1	0	х	х	Х
	64/32	11FFFFH 110000H	08FFFFH 088000H	FSA17	0	1	0	0	0	1	х	х	х
	64/32	10FFFFH	087FFFH	FSA16	0	1	0	0	0	0	х	Х	х
	64/32	100000H 0FFFFH	080000H 07FFFFH	FSA15	0	0	1	1	1	1	х	х	Х
		0F0000H	078000H										
	64/32	0EFFFFH 0E0000H	077FFFH 070000H	FSA14	0	0	1	1	1	0	х	Х	Х
	64/32	0DFFFFH 0D0000H	06FFFFH 068000H	FSA13	0	0	1	1	0	1	х	Х	х
	64/32	0CFFFFH	067FFFH	FSA12	0	0	1	1	0	0	Х	х	Х
	64/32	0C0000H 0BFFFFH	060000H 05FFFFH	FSA11	0	0	1	0	1	1	х	х	х
		0B0000H	058000H						-				
	64/32	0AFFFFH 0A0000H	057FFFH 050000H	FSA10	0	0	1	0	1	0	Х	Х	Х
	64/32	09FFFFH 090000H	04FFFFH 048000H	FSA9	0	0	1	0	0	1	Х	х	х
	64/32	08FFFFH	047FFFH	FSA8	0	0	1	0	0	0	х	Х	х
	64/32	080000H 07FFFFH	040000H 03FFFFH	FSA7	0	0	0	1	1	1	х	х	Х
		070000H	038000H						-		^	^	^
	64/32	06FFFFH 060000H	037FFFH 030000H	FSA6	0	0	0	1	1	0	Х	Х	Х
	64/32	05FFFFH 050000H	02FFFFH 028000H	FSA5	0	0	0	1	0	1	х	х	Х
	64/32	04FFFFH	027FFFH	FSA4	0	0	0	1	0	0	х	х	Х
	64/32	040000H 03FFFFH	020000H 01FFFFH	FSA3	0	0	0	0	1	1	х	х	Х
		030000H	018000H										
	64/32	02FFFFH 020000H	017FFFH 010000H	FSA2	0	0	0	0	1	0	х	Х	Х
	64/32	01FFFFH	00FFFFH	FSA1	0	0	0	0	0	1	х	х	Х
	64/32	010000H 00FFFFH	008000H 007FFFH	FSA0	0	0	0	0	0	0	х	х	Х
		000000H	000000H										

[-A85BY, -B85BY] (1/2)

Bank	Sector	Add	ress	Sectors						ss Tabl	e		
	Organization K bytes / K words	BYTE mode	WORD mode	Address	A20	Bar A19	k Add A18	ress Ta	able A16	A15	A14	A13	A12
Bank 2	64/32	3FFFFFH 3F0000H	1FFFFFH 1F8000H	FSA70	1	1	1	1	1	1	х	Х	X
	64/32	3EFFFFH	1F7FFFH	FSA69	1	1	1	1	1	0	х	х	Х
	64/32	3E0000H 3DFFFFH	1F0000H 1EFFFFH	FSA68	1	1	1	1	0	1	х	х	Х
	64/32	3D0000H 3CFFFFH	1E8000H 1E7FFFH	FSA67	1	1	1	1	0	0	х	Х	Х
	64/32	3C0000H 3BFFFFH	1E0000H 1DFFFFH	FSA66	1	1	1	0	1	1	х	Х	Х
	64/32	3B0000H 3AFFFFH	1D8000H 1D7FFFH	FSA65	1	1	1	0	1	0	х	х	х
	64/32	3A0000H 39FFFFH	1D0000H 1CFFFFH	FSA64	1	1	1	0	0	1	х	Х	х
	64/32	390000H 38FFFFH	1C8000H 1C7FFFH	FSA63	1	1	1	0	0	0	х	х	х
	64/32	380000H 37FFFFH	1C0000H 1BFFFFH	FSA62	1 1	1	0	1	1	1			
		370000H	1B8000H								Х	Х	Х
	64/32	36FFFFH 360000H	1B7FFFH 1B0000H	FSA61	1	1	0	1	1	0	Х	Х	Х
	64/32	35FFFFH 350000H	1AFFFFH 1A8000H	FSA60	1	1	0	1	0	1	х	Х	Х
	64/32	34FFFFH 340000H	1A7FFFH 1A0000H	FSA59	1	1	0	1	0	0	х	Х	Х
	64/32	33FFFFH 330000H	19FFFFH 198000H	FSA58	1	1	0	0	1	1	х	Х	Х
	64/32	32FFFFH 320000H	197FFFH 190000H	FSA57	1	1	0	0	1	0	х	Х	Х
	64/32	31FFFFH 310000H	18FFFFH 188000H	FSA56	1	1	0	0	0	1	х	х	х
	64/32 64/32	30FFFFH 300000H	187FFFH 180000H	FSA55	1	1	0	0	0	0	х	х	Х
		2FFFFFH	17FFFFH	FSA54	1	0	1	1	1	1	х	х	Х
	64/32	2F0000H 2EFFFFH	178000H 177FFFH	FSA53	1	0	1	1	1	0	х	х	Х
	64/32	2E0000H 2DFFFFH	170000H 16FFFFH	FSA52	1	0	1	1	0	1	х	Х	Х
	64/32	2D0000H 2CFFFFH	168000H 167FFFH	FSA51	1	0	1	1	0	0	х	Х	Х
	64/32	2C0000H 2BFFFFH	160000H 15FFFFH	FSA50	1	0	1	0	1	1	х	Х	Х
	64/32	2B0000H 2AFFFFH	158000H 157FFFH	FSA49	1	0	1	0	1	0	Х	Х	х
	64/32	2A0000H 29FFFFH	150000H 14FFFFH	FSA48	1	0	1	0	0	1	х	х	х
	64/32	290000H 28FFFFH	148000H 147FFFH	FSA47	1	0	1	0	0	0	x	x	x
		280000H 27FFFFH	140000H 13FFFFH										
	64/32	270000H	138000H	FSA46	1	0	0	1	1	1	Х	Х	Х
	64/32	26FFFFH 260000H	137FFFH 130000H	FSA45	1	0	0	1	1	0	Х	Х	Х
	64/32	25FFFFH 250000H	12FFFFH 128000H	FSA44	1	0	0	1	0	1	Х	Х	Х
	64/32	24FFFFH 240000H	127FFFH 120000H	FSA43	1	0	0	1	0	0	х	х	Х
	64/32	23FFFFH 230000H	11FFFFH 118000H	FSA42	1	0	0	0	1	1	х	х	Х
	64/32	22FFFFH 220000H	117FFFH 110000H	FSA41	1	0	0	0	1	0	х	х	х
	64/32	21FFFFH 210000H	10FFFFH 108000H	FSA40	1	0	0	0	0	1	Х	Х	х
	64/32	20FFFFH 200000H	107FFFH 100000H	FSA39	1	0	0	0	0	0	Х	Х	х
	64/32	1FFFFFH	0FFFFFH	FSA38	0	1	1	1	1	1	х	х	х
	64/32	1F0000H 1EFFFFH	0F8000H 0F7FFFH	FSA37	0	1	1	1	1	0	Х	Х	х
	64/32	1E0000H 1DFFFFH	0F0000H 0EFFFFH	FSA36	0	1	1	1	0	1	Х	Х	Х
	64/32	1D0000H 1CFFFFH	0E8000H 0E7FFFH	FSA35	0	1	1	1	0	0	Х	х	х
		1C0000H	0E0000H										

[-A85BY, -B85BY] (2/2)

Bank	Sector	Add	ress	Sectors						s Tabl	e		
	Organization	DVTE made	WODD made	Address	A 20			ress Ta		N 4 E	A 4 4	1 440	1 440
Bank 2	K bytes / K words 64/32	BYTE mode 1BFFFFH	WORD mode 0DFFFFH	FSA34	A20	A19	A18	A17	A16	A15	A14 x	A13	A12
	64/32	1B0000H 1AFFFFH	0D8000H 0D7FFFH	FSA33	0	1	1	0	1	0	х	х	х
		1A0000H	0D0000H					_		-			
	64/32	19FFFFH 190000H	0CFFFFH 0C8000H	FSA32	0	1	1	0	0	1	Х	Х	Х
	64/32	18FFFFH 180000H	0C7FFFH 0C0000H	FSA31	0	1	1	0	0	0	Х	х	х
	64/32	17FFFFH 170000H	0BFFFFH 0B8000H	FSA30	0	1	0	1	1	1	Х	х	х
	64/32	16FFFFH 160000H	0B7FFFH 0B0000H	FSA29	0	1	0	1	1	0	Х	Х	Х
	64/32	15FFFFH 150000H	0AFFFFH 0A8000H	FSA28	0	1	0	1	0	1	х	х	Х
	64/32	14FFFFH 140000H	0A7FFFH 0A0000H	FSA27	0	1	0	1	0	0	Х	Х	Х
	64/32	13FFFFH 130000H	09FFFFH 098000H	FSA26	0	1	0	0	1	1	х	х	Х
	64/32	12FFFFH	097FFFH	FSA25	0	1	0	0	1	0	х	х	Х
	64/32	120000H 11FFFFH	090000H 08FFFFH	FSA24	0	1	0	0	0	1	х	х	Х
	64/32	110000H 10FFFFH	088000H 087FFFH	FSA23	0	1	0	0	0	0	х	х	Х
	64/32	100000H 0FFFFH	080000H 07FFFFH	FSA22	0	0	1	1	1	1	х	х	Х
	64/32	0F0000H 0EFFFFH	078000H 077FFFH	FSA21	0	0	1	1	1	0	Х	Х	Х
	64/32	0E0000H 0DFFFFH	070000H 06FFFFH	FSA20	0	0	1	1	0	1	х	х	х
	64/32	0D0000H 0CFFFFH	068000H 067FFFH	FSA19	0	0	1	1	0	0	х	х	х
	64/32	0C0000H 0BFFFFH	060000H 05FFFFH	FSA18	0	0	1	0	1	1	х	Х	Х
	64/32	0B0000H 0AFFFFH	058000H 057FFFH	FSA17	0	0	1	0	1	0	х	х	х
	64/32	0A0000H 09FFFFH	050000H 04FFFFH	FSA16	0	0	1	0	0	1	х	х	Х
	64/32	090000H 08FFFFH	048000H 047FFFH	FSA15	0	0	1	0	0	0	X	X	X
		H000080	040000H										
Bank 1	64/32	07FFFH 070000H	03FFFFH 038000H	FSA14	0	0	0	1	1	1	Х	Х	Х
	64/32	06FFFFH 060000H	037FFFH 030000H	FSA13	0	0	0	1	1	0	Х	Х	Х
	64/32	05FFFFH 050000H	02FFFFH 028000H	FSA12	0	0	0	1	0	1	Х	Х	Х
	64/32	04FFFFH 040000H	027FFFH 020000H	FSA11	0	0	0	1	0	0	х	Х	Х
	64/32	03FFFFH 030000H	01FFFFH 018000H	FSA10	0	0	0	0	1	1	х	Х	Х
	64/32	02FFFFH 020000H	017FFFH 010000H	FSA9	0	0	0	0	1	0	х	х	Х
	64/32	01FFFFH 010000H	00FFFFH 008000H	FSA8	0	0	0	0	0	1	Х	Х	Х
	8/4	00FFFFH 00E000H	007FFFH 007000H	FSA7	0	0	0	0	0	0	1	1	1
	8/4	00DFFFH 00C000H	006FFFH 006000H	FSA6	0	0	0	0	0	0	1	1	0
	8/4	00BFFFH 00A000H	005FFFH 005000H	FSA5	0	0	0	0	0	0	1	0	1
	8/4	009FFFH	004FFFH	FSA4	0	0	0	0	0	0	1	0	0
	8/4	008000H 007FFFH	004000H 003FFFH	FSA3	0	0	0	0	0	0	0	1	1
	8/4	006000H 005FFFH	003000H 002FFFH	FSA2	0	0	0	0	0	0	0	1	0
	8/4	004000H 003FFFH	002000H 001FFFH	FSA1	0	0	0	0	0	0	0	0	1
	8/4	002000H 001FFFH	001000H 000FFFH	FSA0	0	0	0	0	0	0	0	0	0
	J/4	000000H	000000H	1 0/10			J	J	J	J			

Sector Group Address Table

[-A85TY, -B85TY]

Sector group	A20	A19	A18	A17	A16	A15	A14	A13	A12	Size	Sector
SGA0	0	0	0	0	0	0	×	×	×	64K Bytes (1 Sector)	FSA0
SGA1	0	0	0	0	0	1	×	×	×	192K Bytes (3 Sectors)	FSA1 to FSA3
					1	0					
					1	1					
SGA2	0	0	0	1	×	×	×	×	×	256K Bytes (4 Sectors)	FSA4 to FSA7
SGA3	0	0	1	0	×	×	×	×	×	256K Bytes (4 Sectors)	FSA8 to FSA11
SGA4	0	0	1	1	×	×	×	×	×	256K Bytes (4 Sectors)	FSA12 to FSA15
SGA5	0	1	0	0	×	×	×	×	×	256K Bytes (4 Sectors)	FSA16 to FSA19
SGA6	0	1	0	1	×	×	×	×	×	256K Bytes (4 Sectors)	FSA20 to FSA23
SGA7	0	1	1	0	×	×	×	×	×	256K Bytes (4 Sectors)	FSA24 to FSA27
SGA8	0	1	1	1	×	×	×	×	×	256K Bytes (4 Sectors)	FSA28 to FSA31
SGA9	1	0	0	0	×	×	×	×	×	256K Bytes (4 Sectors)	FSA32 to FSA35
SGA10	1	0	0	1	×	×	×	×	×	256K Bytes (4 Sectors)	FSA36 to FSA39
SGA11	1	0	1	0	×	×	×	×	×	256K Bytes (4 Sectors)	FSA40 to FSA43
SGA12	1	0	1	1	×	×	×	×	×	256K Bytes (4 Sectors)	FSA44 to FSA47
SGA13	1	1	0	0	×	×	×	×	×	256K Bytes (4 Sectors)	FSA48 to FSA51
SGA14	1	1	0	1	×	×	×	×	×	256K Bytes (4 Sectors)	FSA52 to FSA55
SGA15	1	1	1	0	×	×	×	×	×	256K Bytes (4 Sectors)	FSA56 to FSA59
SGA16	1	1	1	1	0	0	×	×	×	192K Bytes (3 Sectors)	FSA60 to FSA62
					0	1					
					1	0					
SGA17	1	1	1	1	1	1	0	0	0	8K Bytes (1 Sector)	FSA63
SGA18	1	1	1	1	1	1	0	0	1	8K Bytes (1 Sector)	FSA64
SGA19	1	1	1	1	1	1	0	1	0	8K Bytes (1 Sector)	FSA65
SGA20	1	1	1	1	1	1	0	1	1	8K Bytes (1 Sector)	FSA66
SGA21	1	1	1	1	1	1	1	0	0	8K Bytes (1 Sector)	FSA67
SGA22	1	1	1	1	1	1	1	0	1	8K Bytes (1 Sector)	FSA68
SGA23	1	1	1	1	1	1	1	1	0	8K Bytes (1 Sector)	FSA69
SGA24	1	1	1	1	1	1	1	1	1	8K Bytes (1 Sector)	FSA70

 $\textbf{Remark} \hspace{0.1in} \times \hspace{0.1in} : V_{IH} \hspace{0.1in} or \hspace{0.1in} V_{IL}$

[-A85BY,-B85BY]

Sector group	A20	A19	A18	A17	A16	A15	A14	A13	A12	Size	Sector
SGA0	0	0	0	0	0	0	0	0	0	8K Bytes (1 Sector)	FSA0
SGA1	0	0	0	0	0	0	0	0	1	8K Bytes (1 Sector)	FSA1
SGA2	0	0	0	0	0	0	0	1	0	8K Bytes (1 Sector)	FSA2
SGA3	0	0	0	0	0	0	0	1	1	8K Bytes (1 Sector)	FSA3
SGA4	0	0	0	0	0	0	1	0	0	8K Bytes (1 Sector)	FSA4
SGA5	0	0	0	0	0	0	1	0	1	8K Bytes (1 Sector)	FSA5
SGA6	0	0	0	0	0	0	1	1	0	8K Bytes (1 Sector)	FSA6
SGA7	0	0	0	0	0	0	1	1	1	8K Bytes (1 Sector)	FSA7
SGA8	0	0	0	0	0	1	×	×	×	192K Bytes (3 Sectors)	FSA8 to FSA10
					1	0					
					1	1					
SGA9	0	0	0	1	×	×	×	×	×	256K Bytes (4 Sectors)	FSA11 to FSA14
SGA10	0	0	1	0	×	×	×	×	×	256K Bytes (4 Sectors)	FSA15 to FSA18
SGA11	0	0	1	1	×	×	×	×	×	256K Bytes (4 Sectors)	FSA19 to FSA22
SGA12	0	1	0	0	×	×	×	×	×	256K Bytes (4 Sectors)	FSA23 to FSA26
SGA13	0	1	0	1	×	×	×	×	×	256K Bytes (4 Sectors)	FSA27 to FSA30
SGA14	0	1	1	0	×	×	×	×	×	256K Bytes (4 Sectors)	FSA31 to FSA34
SGA15	0	1	1	1	×	×	×	×	×	256K Bytes (4 Sectors)	FSA35 to FSA38
SGA16	1	0	0	0	×	×	×	×	×	256K Bytes (4 Sectors)	FSA39 to FSA42
SGA17	1	0	0	1	×	×	×	×	×	256K Bytes (4 Sectors)	FSA43 to FSA46
SGA18	1	0	1	0	×	×	×	×	×	256K Bytes (4 Sectors)	FSA47 to FSA50
SGA19	1	0	1	1	×	×	×	×	×	256K Bytes (4 Sectors)	FSA51 to FSA54
SGA20	1	1	0	0	×	×	×	×	×	256K Bytes (4 Sectors)	FSA55 to FSA58
SGA21	1	1	0	1	×	×	×	×	×	256K Bytes (4 Sectors)	FSA59 to FSA62
SGA22	1	1	1	0	×	×	×	×	×	256K Bytes (4 Sectors)	FSA63 to FSA66
SGA23	1	1	1	1	0	0	×	×	×	192K Bytes (3 Sectors)	FSA67 to FSA69
					0	1					
					1	0					
SGA24	1	1	1	1	1	1	×	×	×	64K Bytes (1 Sector)	FSA70

 $\textbf{Remark} \quad \times \colon V_{IH} \text{ or } V_{IL}$

Product ID Code (Manufacturer Code / Device Code)

Pro	oduct ID C	ode			Input											0	utput							
			A20 to	A6	A1	A0	A-1 Note1	I/O15	I/O14	I/O13	1/012	I/O11	I/O10	I/O9	I/O8	I/O7	1/06	I/O5	I/O4	I/O3	I/O2	I/O1	I/O0	HEX
			A12																					
Manufa	acturer Co	de	×	VIL	VIL	VIL	VIL	0				0	0	0	1	0	0	0	0	0010H				
Device	BYTE	-A85TY	×	VIL	VIL	VIH	VIL	A-1			ŀ	ligh-	Z			0	1	0	1	0	1	0	1	55H
code	mode	-B85TY																						
		-A85BY						A-1	A-1 High-Z							0	1	0	1	0	1	1	0	56H
		-B85BY							7 I IIIII Z															
	WORD	-A85TY	×	VIL	VIL	VIH	×	0	0	1	0	0	0	1	0	0	1	0	1	0	1	0	1	2255H
	mode	-B85TY																						
		-A85BY						0 0 1 0 0 0 1 0					0	1	0	1	0	1	1	0	2256H			
		-B85BY																						
Sector g	roup protec	ction	SGA	VIL	VIH	VIL	VIL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0001H ^{Note2}

Notes 1. A-1 is Valid only in the BYTE mode. I/O8 to I/O14 go into high impedance state in the BYTE mode, and I/O15 is A-1 of the lowest address.

2. If 0001H is output, the sector group is protected. If 0000H is output, the sector group is unprotected.

Remark ×: VIH or VIL, SGA: Sector group address

Command Sequence

Command sequ	uence	Bus	1st bus	Cycle	2nd bu	s Cycle	3rd bus	Cycle	4th bus	Cycle	5th bus	S Cycle	6th bus	Cycle
		Cycle	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data
Read / Reset Note1		1	хххН	F0H	RA	RD	-	-	_	-	-	_	_	_
Read / Reset Note1	BYTE mode	3	AAAH	AAH	555H	55H	AAAH	F0H	RA	RD	-	-	_	-
	WORD mode		555H		2AAH		555H							
Program	BYTE mode	4	AAAH	AAH	555H	55H	AAAH	A0H	PA	PD	-	-	-	-
	WORD mode		555H		2AAH		555H							
Program Suspend Note 2		1	BA	B0H	_	-	_	-	_	-	_	_	_	_
Program Resume Note 3		1	BA	30H	_	-	_	-	-	-	_	-	_	-
Chip Erase	BYTE mode	6	AAAH	AAH	555H	55H	AAAH	80H	AAAH	AAH	555H	55H	AAAH	10H
	WORD mode		555H		2AAH		555H		555H		2AAH		555H	
Sector Erase	BYTE mode	6	AAAH	AAH	555H	55H	AAAH	80H	AAAH	AAH	555H	55H	FSA	30H
	WORD mode		555H		2AAH		555H		555H		2AAH			
Sector Erase Suspend Note		1	BA	B0H	-	-	-	-	-	-	-	-	-	-
Sector Erase Resume Not	e 5	1	BA	30H	_	-	_	-	_	-	-	-	_	_
Unlock Bypass Set	BYTE mode	3	AAAH	AAH	555H	55H	AAAH	20H	-	-	-	-	-	-
	WORD mode		555H		2AAH		555H							
Unlock Bypass Program N	ote 6	2	хххН	A0H	PA	PD	-	-	-	-	-	-	-	-
Unlock Bypass Reset Note	6	2	BA	90H	×××Н	00H ^{Note11}	_	-	_	-	_	-	_	-
Product ID	BYTE mode	3	AAAH	AAH	555H	55H	(BA)	90H	IA	ID	-	-	-	-
							AAAH							
	WORD mode		555H		2AAH		(BA)							
							555H							
Sector Group Protection	Note 7	4	×××H	60H	SPA	60H	SPA	40H	SPA	SD	-	-	-	-
Sector Group Unprotect *	lote 8	4	хххН	60H	SUA	60H	SUA	40H	SUA	SD	-	-	_	-
Query Note 9	BYTE mode	1	AAH	98H	-	-	-	-	-	-	-	-	_	-
	WORD mode		55H											
Extra One Time Protect	BYTE mode	3	AAAH	AAH	555H	55H	AAAH	88H	-	-	-	-	_	-
Sector Entry	WORD mode		555H		2AAH		555H							
Extra One Time Protect	BYTE mode	4	AAAH	AAH	555H	55H	AAAH	A0H	PA	PD	-	-	-	-
Sector Program Note 10	WORD mode		555H		2AAH		555H							
Extra One Time Protect	BYTE mode	6	AAAH	AAH	555H	55H	AAAH	80H	AAAH	AAH	555H	55H	EOTPSA	30H
Sector Erase Note 10	WORD mode		555H		2AAH		555H		555H		2AAH			
Extra One Time Protect	BYTE mode	4	AAAH	AAH	555H	55H	AAAH	90H	xxxH	00H	-	-	-	-
Sector Reset Note 10	WORD mode		555H		2AAH		555H							
Extra One Time Protect S Protection Note 10	Sector	4	×××Н	60H	EOTPSA	60H	EOTPSA	40H	EOTPSA	SD	-	ı	1	1

- **Notes 1.** Both these read / reset commands reset the device to the read mode.
 - **2.** Programming is suspended if B0H is input to the bank address being programmed to in a program operation.
 - **3.** Programming is resumed if 30H is input to the bank address being suspended to in a program-suspend operation.
 - 4. Erasure is suspended if B0H is input to the bank address being erased in a sector erase operation.
 - **5.** Erasure is resumed if 30H is input to the bank address being suspended in a sector-erase-suspend operation.
 - 6. Valid only in the Unlock Bypass mode.
 - 7. Valid only in /RESET = VID (except in the Extra One Time Protect Sector mode).
 - **8.** The command sequence that protects a sector group is excluded.
 - 9. Only A0 to A6 are valid as an address.
 - 10. Valid only in the Extra One Time Protect Sector mode.
 - 11. This command can be used even if this data is F0H.

Remarks 1. The system should generate the following address pattern:

WORD mode: 555H or 2AAH (A10 to A0)

BYTE mode : AAAH or 555H (A10 to A0, and A-1)

2. RA : Read address

RD : Read data

IA : Address input as follows

××00H (to read the manufacturer code)

 $\times\!\!\times\!\!02H$ (to read the device code in the BYTE mode)

××01H (to read the device code in the WORD mode)

ID : Code output. For the manufacture code, device code and sector group protection information,

refer to the Product ID code.

PA : Program address
PD : Program data

FSA : Erase sector address. The sector to be erased is selected by the combination of A20 to A12.

Refer to the Sector Organization / Sector Address Table.

BA : Bank address. Refer to the **Sector Organization / Sector Address Table**.

SPA: Sector group address to be protected or protection-verified. Set the sector group address (SGA) and (A6, A1, A0) = (V_{IL}, V_{IH}, V_{IL}).

Sector group protection can be set for each sector group address. For details, refer **DUAL OPRATION FLASH MEMORY 32M BITS A SERIES Information (M14914E)**.

For the sector group address, refer to the **Sector Group Address Table**.

★ SUA : Sector group address to be unprotected or unprotection-verified. Set the sector group address (SGA) and (A6, A1, A0) = (VIH, VIH, VIL).

Sector group unprotect is performed for all sector group using a single command, however, unprotect verification must be performed for each sector group address. For details, refer to **DUAL OPRATION FLASH MEMORY 32M BITS A SERIES Information (M14914E)**.

For the sector group address, refer to the **Sector Group Address Table**.

EOTPSA: Extra One Time Protect Sector area addresses. These addresses are 3F0000H to 3FFFFFH (BYTE mode) / 1F8000H to 1FFFFFH (WORD mode) for top boot, and 000000H to 00FFFFH (BYTE mode) / 000000H to 007FFFH (WORD mode) for bottom boot.

SD : Data for verifying whether sector groups read from the address specified by SPA, SUA, EOTPSA are protected or unprotected.

- 3. The sector group address is don't care except when a program / erase address or read address are selected.
- 4. For the operation of bus, refer DUAL OPRATION FLASH MEMORY 32M BITS A SERIES Information (M14914E).
- **5.** \times of address bit indicates V_{IH} or V_{IL}.

BUS OPERATIONS, COMMANDS, HARDWARE SEQUENCE FLAGS, HARDWARE DATA PROTECTION

Refer to DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information (M14914E).

Electrical Characteristics

Before turning on power, input GND \pm 0.2 V to the /RESET pin until Vcc \geq Vcc (MIN.).

Absolute Maximum Ratings

Parameter	Symbol		Condition	Rating	Unit
Supply voltage	Vcc	with respect	to GND	-0.5 to +4.0	V
Input / Output voltage	VT	with respect	/WP(ACC), /RESET	-0.5 Note 1 to +13.0	V
		to GND	except /WP(ACC), /RESET	-0.5 Note 1 to Vcc + 0.4 (4.0 V MAX.) Note 2	
Operating ambient	TA			-40 to +85	°C
temperature					
Storage temperature	T _{stg}			-55 to +125	°C

Notes 1. -2.0 V (MIN.) (pulse width $\leq 20 \text{ ns}$)

2. Vcc + 2.0 V (MAX.) (pulse width $\leq 20 ns$)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Test condition	-A8	35TY, -A85	BY	-B8	35TY, -B85	BY	Unit
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Supply voltage	Vcc		3.0		3.6	2.7		3.3	V
Operating ambient temperature	TA		-40		+85	-40		+85	°C

Capacitance (TA = 25°C, f = 1 MHz)

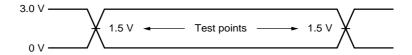
Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	$V_{IN} = 0 V$			TBD	pF
Input / Output capacitance	C _{I/O}	V1/0 = 0 V			TBD	pF

Remarks 1. Vin: Input voltage, Vi/o: Input / Output voltage

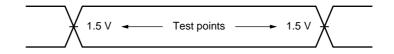
2. These parameters are not 100% tested.

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

	Parame	ter	Symbol	Test condition		MIN.	TYP.	MAX.	Unit
High leve	el input volta	ge	ViH			2.4		Vcc+0.3	V
Low leve	l input volta	је	VIL			-0.3		+0.5	V
High leve	el output volt	age	Vон	$I_{OH} = -500 \ \mu A, \ V_{CC} = V_{CC} \ (M_{CC})$	IIN.)	2.4			V
Low leve	l output volta	age	Vol	IoL = +1.0 mA, Vcc = Vcc (M	IN.)			0.4	V
Input lea	kage curren	İ	lц			-1.0		+1.0	μΑ
I/O leaka	ige current		ILO			-1.0		+1.0	μΑ
Power	Read	BYTE mode	Icc1	Vcc = Vcc (MAX.),	tcycle = 5 MHz		10	16	mA
supply				/CE = VIL, /OE = VIH	tcycle = 1 MHz		2	4	
current		WORD mode			tcycle = 5 MHz		10	16	
					tcycle = 1 MHz		2	4	
	Program, E	rase	Icc2	Vcc = Vcc (MAX.), /CE = Vil, /OE = ViH			15	30	mA
	Standby		Іссз	Vcc = Vcc(MAX.), /CE = /RESET =			0.2	5	μΑ
				$/WP(ACC) = Vcc \pm 0.3 V, /C$	DE = VIL				
	Standby / F	Reset	Icc4	Vcc = Vcc (MAX.), /RESET =	= GND ± 0.2 V		0.2	5	μΑ
	Automatic	sleep mode	Icc5	$V_{IH} = V_{CC} \pm 0.2 \text{ V}, V_{IL} = GNE$	0 ± 0.2 V		0.2	5	μΑ
	Read durin	g programming	Icc6	$V_{IH} = V_{CC} \pm 0.2 \text{ V}, V_{IL} = GNE$	0 ± 0.2 V		21	45	mA
	Read durin	g erasing	Icc7	$V_{IH} = V_{CC} \pm 0.2 \text{ V}, V_{IL} = GNE$	0 ± 0.2 V		21	45	mA
	Programm	ing	Icc8	/CE = VIL, /OE = VIH,			17	35	mA
	during susp	pend		Automatic programming during suspend					
	Accelerate	d	IACC	/WP (ACC) pin			5	10	mA
	programmi	ng		Vcc			15	30	
/RESET	high level in	put voltage	VID	High Voltage is applied		11.5		12.5	V
Accelera	ted program	ming voltage	VACC	High Voltage is applied		8.5		9.5	V
Low Vcc	lock-out volt	age ^{Note}	Vlko					1.7	V


Note When Vcc is equal to or lower than VLKO, the device ignores all write cycles. Refer to **DUAL OPERATION** FLASH MEMORY 32M BITS A SERIES Information (M14914E).

Remark These DC characteristics are in common regardless of product classification.


AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

AC Test Conditions

Input Waveform (Rise and Fall Time ≤ 5 ns)

Output Waveform

Output Load

1 TTL + 30 pF

Read Cycle

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit	Note
Read cycle time	t RC		85			ns	
Address access time	tacc	/CE = /OE = VIL			85	ns	
/CE access time	t ce	/OE = VIL			85	ns	
/OE access time	t oe	/CE = VIL			40	ns	
Output disable time	t DF	/OE = VIL or /CE = VIL			30	ns	
Output hold time	tон		0			ns	
/RESET pulse width	t RP		500			ns	
/RESET hold time before read	tпн		50			ns	
/RESET low to read mode	tREADY				20	μs	
/CE low to /BYTE low, high	telfl/telfh				5	ns	
/BYTE low output disable time	t FLQZ				30	ns	
/BYTE high access time	t FHQV		85			ns	
/OE low level time from /WE high level	tоен		20			ns	

 $\textbf{Remark} \quad \text{toF is the time from inactivation of /CE or /OE to high impedance state output.}$

Write Cycle (Program / Erase)

(1/2)

Parameter		Symbol	MIN.	TYP.	MAX.	Unit	Note
Write cycle time			85			ns	
Address setup time (/WE to address)			0			ns	
Address setup time (/CE to addre	ss)	tas	0			ns	
Address hold time (/WE to address	ss)	tан	45			ns	
Address hold time (/CE to addres	s)	t AH	45			ns	
Input data setup time		tos	35			ns	
Input data hold time		tон	0			ns	
/OE hold time	Read	t oeh	0			ns	
	Toggle bit, Data polling		10				
Read recovery time before write (/OE to /CE)	t GHEL	0			ns	
Read recovery time before write (/OE to /WE)	t GHWL	0			ns	
/WE setup time (/CE to /WE)		tws	0			ns	
/CE setup time (/WE to /CE)		tcs	0			ns	
/WE hold time (/CE to /WE)			0			ns	
/CE hold time (/WE to /CE)		tсн	0			ns	
Write pulse width		twp	35			ns	
/CE pulse width		t CP	35			ns	
Write pulse width high		twpн	30			ns	
/CE pulse width high		tсрн	30			ns	
Byte programming operation time		t BPG		9	200	μs	
Word programming operation tim	e	twpg		11	200	μs	
Sector erase operation time	4K words sector	tser		0.3	1.0	s	1,2
	32K words sector			0.5	1.5		
	4K words sector			0.5	3.0		1,3
	32K words sector			0.7	5.0		
Chip erase operation time		tcer		33.9	102.5	S	1,2
				48.1	339		1,3
Accelerated programming time		taccpg		7	150	μs	
Program / erase cycle			300,000			cycle	
Vcc setup time		tvcs	50			μs	
RY (/BY) recovery time		tпв	0			ns	
/RESET pulse width		t RP	500			ns	
/RESET high-voltage (V _{ID}) hold til	me from high of RY(/BY)	t RRB	20			μs	
when sector group is temporarily	unprotect						
/RESET hold time		tпн	50			ns	

 $\textbf{Notes 1.} \ \textbf{The preprogramming time prior to the erase operation is not included}.$

2. Program / erase cycle : 100,000 cycles3. Program / erase cycle : 300,000 cycles

Write Cycle (Program / Erase)

(2/2)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Note
From completion of automatic program / erase to data	teoe			85	ns	
output time						
RY (/BY) delay time from valid program or erase operation	tBUSY			90	ns	
Address setup time to /OE low in toggle bit	taso	15			ns	
Address hold time to /CE or /OE high in toggle bit	t aht	0			ns	
/CE pulse width high for toggle bit	t CEPH	20			ns	
/OE pulse width high for toggle bit	t oeph	20			ns	
Voltage transition time	t∨LHT	4			μs	1
Rise time to V _{ID} (/RESET)	tvidr	500			ns	2
Rise time to VACC (/WP(ACC))	tvaccr	500			ns	1
Erase timeout time	t TOW	50			μs	3
Erase suspend transition time	t spd			20	μs	3

Notes 1. Sector group protection and accelerated mode only.

- 2. Sector group protection only.
- 3. Table only.

Write operation (Program / Erase) Performance

Parameter	Description	MIN.	TYP.	MAX.	Unit	Note	
Sector erase time	The preprogramming time prior	4K words sector		0.3	1.0	S	1
	to the erase operation	32K words sector		0.5	1.5		
	is not included	4K words sector		0.5	3.0	S	2
		32K words sector		0.7	5.0		
Chip erase time	The preprogramming time prior		33.9	102.5	S	1	
	to the erase operation is not incl	to the erase operation is not included			339		2
Byte programming time	Excludes system-level overhead			9	200	μs	
Word programming time	Excludes system-level overhead			11	200	μs	
Chip programming time	Excludes system-level	BYTE mode		40		S	
	overhead	WORD mode		25			
Accelerated programming time	Excludes system-level overhead		7	150	μs		
Program / erase cycle			300,000			cycle	

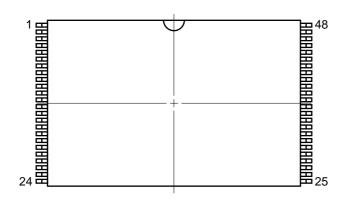
Notes 1. Program / erase cycle : 100,000 cycles
2. Program / erase cycle : 300,000 cycles

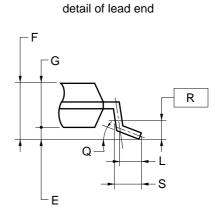
TIMING CHARTS, FLOW CHARTS

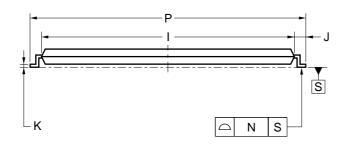
Refer to DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information (M14914E).

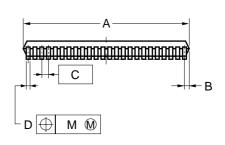
CFI Code List (1/2)

Address A6 to A0	Data I/O15 to I/O0	Description
10H	0051H	"QRY" (ASCII code)
11H	0052H	
12H	0059H	
13H	0002H	Main command set
14H	0000H	2 : AMD/FJ standard type
15H	0040H	Start address of PRIMARY table
16H	0000H	
17H	0000H	Auxiliary command set
18H	0000H	00H : Not supported
19H	0000H	Start address of auxiliary algorithm table
1AH	0000H	
1BH	0027H	Minimum Vcc voltage (program / erase)
		I/O7 to I/O4 : 1 V/bit
		I/O3 to I/O0 : 100 mV/bit
1CH	0036H	Maximum Vcc voltage (program / erase)
		I/O7 to I/O4 : 1 V/bit
		I/O3 to I/O0 : 100 mV/bit
1DH	0000H	Minimum VPP voltage
1EH	0000H	Maximum VPP voltage
1FH	0004H	Typical word program time (2 N μ s)
20H	0000H	Typical buffer program time (2 $^{\rm N}$ μ s)
21H	000AH	Typical sector erase time (2 N ms)
22H	0000H	Typical chip erase time (2 ^N ms)
23H	0005H	Maximum word program time (typical time × 2 N)
24H	0000H	Maximum buffer program time (typical time × 2 N)
25H	0004H	Maximum sector erasing time (typical time × 2 N)
26H	0000H	Maximum chip erasing time (typical time × 2 N)
27H	0016H	Capacity (2 ^N Bytes)
28H	0002H	I/O information
29H	0000H	2: ×8/×16-bit organization
2AH	0000H	Maximum number of bytes when two banks are programmed (2 N)
2BH	0000H	
2CH	0002H	Type of erase block
2DH	0007H	Information about erase block 1
2EH	0000H	bit0 to bit15 : y = number of sectors
2FH	0020H	bit16 to bit31 : z = size
30H	0000H	(Z × 256 Bytes)

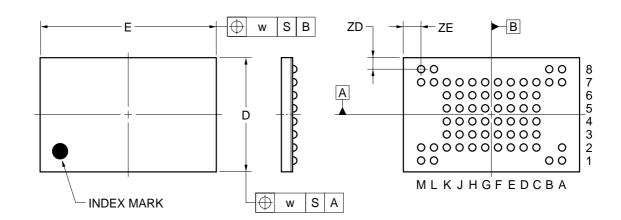

CFI Code List (2/2)

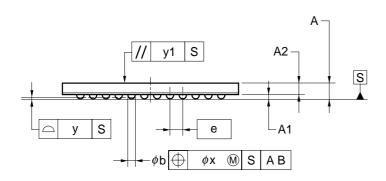

Address A6 to A0	Data I/O15 to I/O0	Description
31H	003EH	Information about erase block 2
32H	0000H	bit0 to bit15 : y = number of sectors
33H	0000H	bit16 to bit31 : z = size
34H	0001H	(z × 256 Bytes)
40H	0050H	"PRI" (ASCII code)
41H	0052H	
42H	0049H	
43H	0031H	Main version (ASCII code)
44H	0032H	Minor version (ASCII code)
45H	0000H	Address during command input
		00H : Necessary
		01H : Unnecessary
46H	0002H	Temporary erase suspend function
		00H : Not supported
		01H : Read only
		02H : Read / Program
47H	0001H	Sector group protection
		00H : Not supported
		01H : Supported
48H	0001H	Temporary sector group protection
		00H : Not supported
		01H : Supported
49H	0004H	Sector group protection algorithm
4AH	00xxH	Number of sectors of bank 2
		00H: Not supported
		38H : μPD29F032202AL-Y
4BH	0000H	Burst mode
		00H: Not supported
4CH	0000H	Page mode
		00H: Not supported
4DH	0085H	Minimum Vacc voltage
		I/O7 to I/O4 : 1 V/bit
		I/O3 to I/O0 : 100 mV/bit
4EH	0095H	Maximum Vacc voltage
		I/O7 to I/O4 : 1 V/bit
		I/O3 to I/O0 : 100 mV/bit
4FH	00xxH	Boot organization
		02H : Bottom boot (-A85BY, -B85BY)
		03H : Top boot (-A85TY, -B85TY)
50H	0001H	Temporary program suspend function
		00H : Not supported
		01H : Supported




Package Drawings

48-PIN PLASTIC TSOP (I) (12x20)


NOTES


- 1) Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.
- 2) "A" excludes mold flash. (Includes mold flash : 12.4 mm MAX.)

ITEM	MILLIMETERS
Α	12.0±0.1
В	0.45 MAX.
С	0.5 (T.P.)
D	0.22±0.05
E	0.1±0.05
F	1.2 MAX.
G	1.0±0.05
I	18.4±0.1
J	0.8±0.2
K	0.145±0.05
L	0.5
М	0.10
N	0.10
P	20.0±0.2
Q	3°+5° -3°
R	0.25
S	0.60±0.15

S48GZ-50-MJH-1

63-PIN TAPE FBGA (11x7)

ITEM	MILLIMETERS
D	7.00±0.10
Е	11.00±0.10
w	0.20
Α	0.97±0.10
A1	0.27±0.05
A2	0.70
е	0.80
b	0.45±0.05
х	0.08
y	0.10
y1	0.20
ZD	0.70
ZE	1.10
	P63F9-80-BS2

Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD29F032202AL-Y.

Types of Surface Mount Device

 μ PD29F032202ALGZ-MJH : 48-pin PLASTIC TSOP(I) (12 × 20) (Normal bent)

 $\mu\text{PD29F032202ALF9-BS2}$: 63-pin TAPE FBGA (11 \times 7)

Revision History

Edition/	Page		Type of	Location	Description
Date	This Previous		revision		(Previous edition -> This edition)
	edition	edition			
5th edition/	p.13	p.13	Modification	Product ID Code	Device code(Byte mode):I/O15 = Hi-Z→A−1
Sep.2002	p.16	p.15	Modification	Command Sequence	Remark 2 : SPA, SUA
	p.20	p.19	Addition	Read Cycle	toeн

28

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Related Documents

Document Name	Document Number
DUAL OPERATION FLASH MEMORY 32M BITS A SERIES Information	M14914E

- The information in this document is current as of September, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4