

16

M16C/26A Group(M16C/26A,M16C/26T)

Hardware Manual

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER
M16C FAMILY / M16C/Tiny SERIES

Before using this material, please visit our website to verify that this is the most current document available.

Rev. 1.00

Revision date: Mar.15, 2005

Renesas Technology www.renesas.com

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

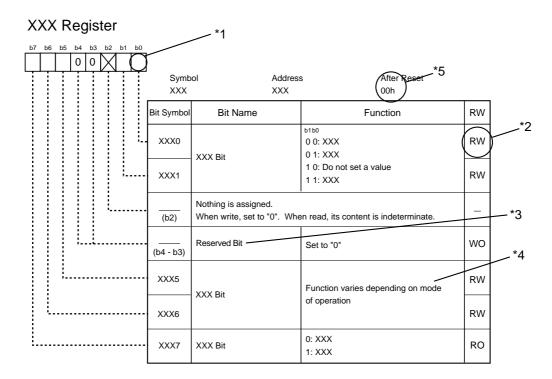
Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- Please contact Renesas Technology Corporation for further details on these materials or t he products contained therein.


How to Use This Manual

1. Introduction

This hardware manual provides detailed information on the M16C/26 group (M16C/26A, M16C/26T) microcomputers. Users are expected to have basic knowledge of electric circuits, logical circuits and microcomputers.

2. Register Diagram

The symbols, and descriptions, used for bit function in each register are shown below.

*1

Blank: Set to "0" or "1" according to the application

0: Set to "0"

1: Set to "1"

X: Nothing is assigned

*2

RW: Read and write

RO: Read only

WO: Write only

-: Nothing is assigned

*3

Reserved bit

Reserved bit. Set to specified value.

*4

· Nothing is assigned

Nothing is assigned to the bit concerned. As the bit may be use for future functions, set to "0" when writing to this bit.

• Do not set a value

The operation is not guaranteed when a value is set.

• Function varies depending on mode of operation

Bit function varies depending on peripheral function mode.

Refer to respective register for each mode.

3. M16C Family Documents

The following documents were prepared for the M16C family. (1)

Document	Contents
Short Sheet	Hardware overview
Data Sheet	Hardware overview and electrical characteristics
Hardware Manual	Hardware specifications (pin assignments, memory maps, peripheral
	specifications, electrical characteristics, timing charts)
Software Manual	Detailed description of assembly instructions and microcomputer perfor-
	mance of each instruction
Application Note	Application examples of peripheral functions
	Sample programs
	Introduction to the basic functions in the M16C family
	Programming method with Assembly and C languages
RENESAS TECHNICAL UPDATE	Preliminary report about the specification of a product, a document, etc.

NOTES:

1. Before using this material, please visit the our website to verify that this is the most current document available.

Table of Contents

Q	uick Reference by Address	B-1
1.	Overview	1
	1.1 Applications	1
	1.2 Performance Outline	
	1.3 Block Diagram	4
	1.4 Product List	
	1.5 Pin Configuration	9
	1.6 Pin Description	11
2.	Central Processing Unit (CPU)	13
	2.1 Data Registers (R0, R1, R2 and R3)	13
	2.2 Address Registers (A0 and A1)	
	2.3 Frame Base Register (FB)	
	2.4 Interrupt Table Register (INTB)	
	2.5 Program Counter (PC)	14
	2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)	14
	2.7 Static Base Register (SB)	14
	2.8 Flag Register (FLG)	14
	2.8.1 Carry Flag (C Flag)	14
	2.8.2 Debug Flag (D Flag)	14
	2.8.3 Zero Flag (Z Flag)	14
	2.8.4 Sign Flag (S Flag)	14
	2.8.5 Register Bank Select Flag (B Flag)	14
	2.8.6 Overflow Flag (O Flag)	14
	2.8.7 Interrupt Enable Flag (I Flag)	14
	2.8.8 Stack Pointer Select Flag (U Flag)	
	2.8.9 Processor Interrupt Priority Level (IPL)	
	2.8.10 Reserved Area	14
3.	Memory	15
	Special Function Register (SFR)	
5.	Reset	22
	5.1 Hardware Reset	
	5.1.1 Hardware Reset 1	22
	5.1.2 Hardware Reset 2	22

	5.2 Software Reset	23
	5.3 Watchdog Timer Reset	23
	5.4 Oscillation Stop Detection Reset	23
	5.5 Voltage Detection Circuit	25
6.	Processor Mode	31
	Clock Generation Circuit	32
	7.1 Main Clock	39
	7.2 Sub Clock	
	7.3 On-chip Oscillator Clock	41
	7.4 PLL Clock	41
	7.5 CPU Clock and Peripheral Function Clock	43
	7.5.1 CPU Clock	43
	7.5.2 Peripheral Function Clock(f1, f2, f8, f32, f1SIO, f2SIO, f8SIO, f32SIO, fAD, fC32)	43
	7.5.3 ClockOutput Function	43
	7.6 Power Control	44
	7.6.1 Normal Operation Mode	44
	7.6.2 Wait Mode	45
	7.6.3 Stop Mode	47
	7.7 System Clock Protective Function	51
	7.8 Oscillation Stop and Re-oscillation Detect Function	51
	7.8.1 Operation When the CM27 bit is set to "0" (Oscillation Stop Detection Reset)	52
	7.8.2 Operation When the CM27 bit is set to "1" (Oscillation Stop and Re-oscillation Detect Interrupt)	52
	7.8.3 How to Use Oscillation Stop and Re-oscillation Detect Function	53
8.	Protection	54
9.	Interrupt	55
	9.1 Type of Interrupts	55
	9.1.1 Software Interrupts	56
	9.1.2 Hardware Interrupts	57
	9.2 Interrupts and Interrupt Vector	58
	9.2.1 Fixed Vector Tables	
	9.2.2 Relocatable Vector Tables	59
	9.3 Interrupt Control	60
	9.3.1 I Flag	63
	9.3.2 IR Bit	63
	9.3.3 ILVL2 to ILVL0 Bits and IPL	63

9.4 Interrupt Sequence	64
9.4.1 Interrupt Response Time	65
9.4.2 Variation of IPL when Interrupt Request is Accepted	65
9.4.3 Saving Registers	66
9.4.4 Returning from an Interrupt Routine	68
9.5 Interrupt Priority	68
9.5.1 Interrupt Priority Resolution Circuit	68
9.6 INT Interrupt	70
9.7 NMI Interrupt	71
9.8 Key Input Interrupt	
9.9 Address Match Interrupt	72
10. Watchdog Timer	74
10.1 Count source protective mode	75
10.2 Cold start / Warm start	76
11. DMAC	77
11.1 Transfer Cycles	
11.2. DMA Transfer Cycles	84
11.3 DMA Enable	85
11.4 DMA Request	85
11.5 Channel Priority and DMA Transfer Timing	86
12. Timer	87
12.1 Timer A	
12.1.1. Timer Mode	92
12.1.2. Event Counter Mode	93
12.1.3. One-shot Timer Mode	98
12.1.4. Pulse Width Modulation (PWM) Mode	100
12.2 Timer B	103
12.2.1 Timer Mode	106
12.2.2 Event Counter Mode	107
12.2.3 Pulse Period and Pulse Width Measurement Mode	108
12.2.4 A/D Trigger Mode	110
12.3 Three-phase Motor Control Timer Function	112
12.3.1 Position-data-retain Function	123
12.3.2 Three-phase/Port Output Switch Function	125

13. Serial I/O	_ 127
13.1. UARTi (i=0 to 2)	127
13.1.1. Clock Synchronous serial I/O Mode	137
13.1.2. Clock Asynchronous Serial I/O (UART) Mode	
13.1.3 Special Mode 1 (I ² C bus mode)(UART2)	153
13.1.4 Special Mode 2 (UART2)	163
13.1.5 Special Mode 3 (IE Bus mode)(UART2)	168
13.1.6 Special Mode 4 (SIM Mode) (UART2)	170
14. A/D Converter	_ 175
14.1 Operation Modes	
14.1.1 One-Shot Mode	181
14.1.2 Repeat mode	183
14.1.3 Single Sweep Mode	185
14.1.4 Repeat Sweep Mode 0	187
14.1.5 Repeat Sweep Mode 1	189
14.1.6 Simultaneous Sample Sweep Mode	191
14.1.7 Delayed Trigger Mode 0	194
14.1.8 Delayed Trigger Mode 1	200
14.2 Resolution Select Function	
14.3 Sample and Hold	206
14.4 Power Consumption Reducing Function	206
14.5 Output Impedance of Sensor under A/D Conversion	207
15. CRC Calculation Circuit	_ 208
15.1. CRC Snoop	208
16. Programmable I/O Ports	211
16.1 Port Pi Direction Register (PDi Register, i = 1, 6 to 10)	
16.2 Port Pi Register (Pi Register, i = 1, 6 to 10)	
16.3 Pull-up Control Register 0 to Pull-up Control Register 2 (PUR0 to PUR2 Registers) .	
16.4 Port Control Register	
16.5 Pin Assignment Control register (PACR)	
16.6 Digital Debounce function	
17. Flash Memory Version	
17.1 Flash Memory Performance	
17.2 Memory Map	

17.3 Functions To Prevent Flash Memory from Rewriting	230
17.3.1 ROM Code Protect Function	230
17.3.2 ID Code Check Function	230
17.4 CPU Rewrite Mode	232
17.4.1 EW0 Mode	233
17.4.2 EW1 Mode	233
17.5 Register Description	234
17.5.1 Flash memory control register 0 (FMR0)	234
17.5.2 Flash memory control register 1 (FMR1)	235
17.5.3 Flash memory control register 4 (FMR4)	235
17.6 Precautions in CPU Rewrite Mode	240
17.6.1 Operation Speed	240
17.6.2 Prohibited Instructions	240
17.6.3 Interrupts	240
17.6.4 How to Access	240
17.6.5 Writing in the User ROM Space	240
17.6.6 DMA Transfer	241
17.6.7 Writing Command and Data	241
17.6.8 Wait Mode	241
17.6.9 Stop Mode	241
17.6.10 Low Power Consumption Mode and On-chip Oscillator-Low	
Power Consumption Mode	241
17.7 Software Commands	242
17.7.1 Read Array Command (FF16)	242
17.7.2 Read Status Register Command (7016)	242
17.7.3 Clear Status Register Command (5016)	243
17.7.4 Program Command (4016)	243
17.7.5 Block Erase	244
17.8 Status Register	246
17.8.1 Sequence Status (SR7 and FMR00 Bits)	246
17.8.2 Erase Status (SR5 and FMR07 Bits)	246
17.8.3 Program Status (SR4 and FMR06 Bits)	246
17.8.4 Full Status Check	247
17.9 Standard Serial I/O Mode	249
17.9.1 ID Code Check Function	249
17.9.2 Example of Circuit Application in Standard Serial I/O Mode	253
17.10 Parallel I/O Mode	
17 10 1 ROM Code Protect Function	255

18. Electrical Characteristics	256
18.1. Normal version	
18.2. T version	275
19. Usage Precaution	294
19.1 SFR	
19.1.1 Precaution for 48 pin version	294
19.1.2 Precaution for 42 pin version	294
19.2 PLL Frequency Synthesizer	
19.3 Power Control	296
19.4 Protect	298
19.5 Interrupts	299
19.5.1 Reading address 0000016	299
19.5.2 Setting the SP	299
19.5.3 The NMI Interrupt	299
19.5.4 Changing the Interrupt Generation Factor	300
19.5.6 Rewrite the Interrupt Control Register	
19.5.7 Watchdog Timer Interrupt	302
19.6 DMAC	303
19.6.1 Write to DMAE Bit in DMiCON Register	303
19.7 Timer	304
19.7.1 Timer A	304
19.7.2 Timer B	308
19.8 Serial I/O (Clock-synchronous Serial I/O)	311
19.8.1 Transmission/reception	311
19.8.2 Transmission	312
19.8.3 Reception	313
19.9 Serial I/O (UART Mode)	314
19.9.1 Special Mode 1 (I ² C bus Mode)	314
19.9.2 Special Mode 2	314
19.9.3 Special Mode 4 (SIM Mode)	314
19.10 A/D Converter	315
19.11 Programmable I/O Ports	317
19.12 Electric Characteristic Differences Between Mask ROM and Flash	
Memory Version Microcomputers	318
19.13 Mask ROM Version	318
19.13.1 Internal ROM area	318
19 13 2 Reserve hit	318

19.14 Flash Memory Version	319
19.14.1 Functions to Inhibit Rewriting Flash Memory	319
19.14.2 Stop mode	319
19.14.3 Wait mode	319
19.14.4 Low power dissipation mode, on-chip oscillator low power dissipation mode	319
19.14.5 Writing command and data	319
19.14.6 Program Command	319
19.14.7 Operation speed	319
19.14.8 Instructions prohibited in EW0 Mode	320
19.14.9 Interrupts	320
19.14.10 How to access	320
19.14.11 Writing in the user ROM area	320
19.14.12 DMA transfer	320
19.14.13 Regarding Programming/Erasure Times and Execution Time	321
19.14.14 Definition of Programming/Erasure Times	321
19.14.15 Flash Memory Version Electrical Characteristics 10,000 E/W	
cycle products (U7, U9)	321
19.14.16 Boot Mode	321
19.15 Noise	322
19.16 Instruction for a Device Use	323
Appendix 1. Package Dimensions	324
Appendix 2. Functional Difference	325
Appendix 2.1 Differences between M16C/26A and M16C/26T	
Appendix 2.2 Differences between M16C/26A and M16C/26	
Register Index	327

Quick Reference by Address

	Register	Symbol	Page
000016			
000116			
000216			
000316			
000416	Processor mode register 0	PM0	31
000516	Processor mode register 1	PM1	31
000616	System clock control register 0	CM0	34
000716	System clock control register 1	CM1	35
000816			
000916	Address match interrupt enable register	AIER	73
000A ₁₆	Protect register	PRCR	54
000B ₁₆	-		
000C ₁₆	Oscillation stop detection register	CM2	36
000D ₁₆	·		
000E16	Watchdog timer start register	WDTS	75
000F ₁₆	Watchdog timer control register	WDC	75
001016	Trateria og timor og timor rogister	20	
001116	Address match interrupt register 0	RMAD0	73
001216			
001216			
001316			
001416	Address match interrupt register 1	RMAD1	73
	nacioss materialitative register i	MINIADI	13
001616			
001716			
001816	N. I		
001916	Voltage detection register 1	VCR1	26
001A ₁₆	Voltage detection register 2	VCR2	26
001B ₁₆			
001C ₁₆	PLL control register 0	PLC0	38
001D ₁₆			
001E ₁₆	Processor mode register 2	PM2	37
001F ₁₆	Voltage down detection interrupt register	D4INT	26
002016			
002116	DMA0 source pointer	SAR0	81
002216			
002316			
002416			
002416	DMA0 destination pointer	DAR0	81
	DMA0 destination pointer	DAR0	81
0025 ₁₆	DMA0 destination pointer	DAR0	81
002516 002616 002716	·	-	
0025 ₁₆ 0026 ₁₆ 0027 ₁₆ 0028 ₁₆	DMA0 destination pointer DMA0 transfer counter	DAR0 TCR0	81
002516 002616 002716 002816 002916	·	-	
002516 002616 002716 002816 002916 002A16	·	-	
002516 002616 002716 002816 002916 002A16 002B16	DMA0 transfer counter	TCR0	81
002516 002616 002716 002816 002916 002A16 002B16 002C16	·	-	
002516 002616 002716 002816 002916 002A16 002B16 002C16	DMA0 transfer counter	TCR0	81
002516 002618 002716 002818 002916 002A16 002B16 002C16 002D16	DMA0 transfer counter	TCR0	81
002516 002616 002716 002816 002916 002A16 002B16 002C16 002D16 002E16	DMA0 transfer counter	TCR0	81
002516 002616 002716 002816 002916 002A16 002B16 002C16 002D16 002F16 003016	DMA0 transfer counter DMA0 control register	TCR0	81
002516 002616 002716 002818 002916 002A16 002C16 002D16 002E16 002F16 003016 003118	DMA0 transfer counter	TCR0	81
002516 002616 002716 002816 002916 002A16 002C16 002D16 002E16 002F16 003016 003116 003218	DMA0 transfer counter DMA0 control register	TCR0	81
002518 002618 002718 002816 002916 002B16 002C16 002D16 002F16 003018 003118 003218	DMA0 transfer counter DMA0 control register	TCR0	81
002516 002616 002716 002816 002916 002B16 002C16 002D16 002F16 00316 00316 003216 003316	DMA0 transfer counter DMA0 control register DMA1 source pointer	TCR0 DM0CON SAR1	81
002518 002618 002718 002816 002916 002B16 002C16 002D16 002F16 003018 003118 003218	DMA0 transfer counter DMA0 control register	TCR0	81
002516 002616 002716 002816 002916 002B16 002C16 002D16 002F16 003016 003116 003216 003318	DMA0 transfer counter DMA0 control register DMA1 source pointer	TCR0 DM0CON SAR1	81
002516 002616 002718 002816 002916 002A18 002C16 002D16 002E16 002F16 003016 003116 003316 003416 003516	DMA0 transfer counter DMA0 control register DMA1 source pointer	TCR0 DM0CON SAR1	81
002516 002616 002718 002816 002916 002B16 002C16 002D16 002E16 002F16 003016 003116 003316 003416 003516 003616	DMA0 transfer counter DMA0 control register DMA1 source pointer DMA1 destination pointer	TCR0 DM0CON SAR1 DAR1	81 80 81
002516 002616 002716 002816 002916 002A16 002B16 002C16 002D16 002E16 003216 003316 003316 003416 003416 003516 003616	DMA0 transfer counter DMA0 control register DMA1 source pointer	TCR0 DM0CON SAR1	81
002516 002616 002716 002816 002916 002B16 002D16 002E16 002F16 003116 003216 003316 003316 003416 003518 003616 003716	DMA0 transfer counter DMA0 control register DMA1 source pointer DMA1 destination pointer	TCR0 DM0CON SAR1 DAR1	81 80 81
002516 002016 002016 002016 002016 002016 002016 002016 002016 002016 002016 002016 003016 003016 003016 003016 003016 003016 003016 003016 003016 003016 003016	DMA0 transfer counter DMA0 control register DMA1 source pointer DMA1 destination pointer	TCR0 DM0CON SAR1 DAR1	81 80 81
002516 0020716 0020816 0020816 0020816 0020816 0020816 0020816 0020816 0020816 0020816 0020816 0030816 0030816 0030816 0030816 0030816 0030816 0030816 0030816	DMA0 transfer counter DMA0 control register DMA1 source pointer DMA1 destination pointer DMA1 transfer counter	TCR0 DM0CON SAR1 DAR1 TCR1	81 80 81 81
002516 002716 002816 002916 002816 002016 002016 002016 002016 002016 002016 003016 003016 003016 003016 003016 003016 003016 003016 003016 003016 003016 003016 003016	DMA0 transfer counter DMA0 control register DMA1 source pointer DMA1 destination pointer	TCR0 DM0CON SAR1 DAR1	81 80 81
002516 002616 002716 002816 002216 0020216 0020216 0020216 0020216 0020316 003016 0030316 0030316 0030316 0030316 0030316 0030316 0030316 0030316 0030316 0030316	DMA0 transfer counter DMA0 control register DMA1 source pointer DMA1 destination pointer DMA1 transfer counter	TCR0 DM0CON SAR1 DAR1 TCR1	81 80 81 81

Address	Register	Symbol	Page
004016			
004116			
004216			
004316	INITO: A	INITOIO	0.4
004416	INT3 interrupt control register	INT3IC	61
004516			
0046 ₁₆			
	INITE interrupt control register	INT5IC	61
0048 ₁₆ 0049 ₁₆	INT5 interrupt control register INT4 interrupt control register	INT4IC	61 61
004316 004A16	UART2 Bus collision detection interrupt control register	BCNIC	61
004B ₁₆	DMA0 interrupt control register	DM0IC	61
004C ₁₆	DMA1 interrupt control register	DM1IC	61
004D ₁₆	Key input interrupt control register	KUPIC	61
004E ₁₆	A/D conversion interrupt control register	ADIC	61
004F ₁₆	UART2 transmit interrupt control register	S2TIC	61
005016	UART2 receive interrupt control register	S2RIC	61
005116	UART0 transmit interrupt control register	S0TIC	61
005216	UART0 receive interrupt control register	S0RIC	61
005316	UART1 transmit interrupt control register	S1TIC	61
005416	UART1 receive interrupt control register	S1RIC	61
005516	Timer A0 interrupt control register	TA0IC	61
005616	Timer A1 interrupt control register	TA1IC	61
005716	Timer A2 interrupt control register	TA2IC	61
005816	Timer A3 interrupt control register	TA3IC	61
005916	Timer A4 interrupt control register	TA4IC	61
005A ₁₆	Timer B1 interrupt control register	TB0IC TB1IC	61 61
005C16	Timer B1 interrupt control register Timer B2 interrupt control register	TB2IC	61
005D ₁₆	INTO interrupt control register	INTOIC	61
005E ₁₆	INT1 interrupt control register	INT1IC	61
005F ₁₆	INT2 interrupt control register	INT2IC	61
006016	3		
006116			
006216			
006316			
006416			
006516			
006616			
006716			
006816			
006916			
006A ₁₆			
006C16			
006D ₁₆			
006E ₁₆			
006F ₁₆			
007016	_		
007116			
007216			
007316			
007416			
007516			
007616			
007716			
007816			
007916			
007A ₁₆			
007B ₁₆			
007C16			
007E16			
007F16			

Note: The blank areas are reserved and cannot be accessed by users.

Quick Reference by Address

Address	Register	Symbol	Page
008016			
008116			
008216			
008316			
008416			
008516			
008616			
01B0 ₁₆			
01B1 ₁₆			
01B2 ₁₆			
01B3 ₁₆	Flash memory control register 4 (Note 2)	FMR4	237
01B4 ₁₆	,		
01B5 ₁₆	Flash memory control register 1 (Note 2)	FMR1	236
01B6 ₁₆	, Sister ()		
01B7 ₁₆	Flash memory control register 0 (Note 2)	FMR0	236
01B8 ₁₆	, , , , , , , , , , , , , , , , , , , ,		
01B9 ₁₆			
01BA ₁₆			
01BB ₁₆			
01BC ₁₆			
01BD ₁₆			
01BE ₁₆			
01BE16			
01BF16			
025016			
025116			
025216			
025316			
025416			
025516			
025616			
025716			
025816			
025916			
025A ₁₆	Three phase protect control register	TPRC	126
025B ₁₆	Three phase protect control register	TI NO	120
025C ₁₆	On this ancillator control register	DOCD	25
025D ₁₆	On-chip oscillator control register	ROCR	35
025E ₁₆	Pin assignment control register	PACR PCLKR	134, 221 37
025E16	Peripheral clock select register	FULKK	31
0231-16			
02E0 ₁₆			
			+
02E116			-
02E216			
02E3 ₁₆			-
02E4 ₁₆			-
02E5 ₁₆			-
02E6 ₁₆			
02E7 ₁₆			1
02E8 ₁₆			
02E9 ₁₆			
033D ₁₆			
033E ₁₆	NMI digital debounce register	NDDR	222
	-9		

Address	Register	Symbol	Page
034016			
034116			
034216	Timer A1-1 register	TA11	117
034416	Timer A2-1 register	TA21	117
034616	Timer A4-1 register	TA41	117
034816	Three-phase PWM control register 0	INVC0	114
034916	Three-phase PWM control register 1	INVC1	115
034A ₁₆	Three-phase output buffer register 0	IDB0	116
034B ₁₆	Three-phase output buffer register 1	IDB1	116
034C ₁₆	Dead time timer	DTT	116
034D ₁₆	Timer B2 interrupt occurrence frequency set counter	ICTB2	116
034E ₁₆	Position-data-retain function contol register	PDRF	124
034F ₁₆	i osition-data-retain function contorregister	I DIXI	
035016			
035116			
035116			
035216			
035316			
035516			
035616			
035716	Port function contol register	PFCR	126
035816	Port function contol register	PFCR	120
035916			
035A ₁₆			
035B ₁₆			
035C ₁₆			
035D ₁₆	1.1	IECDOA	
035E ₁₆	Interrupt request cause select register 2	IFSR2A IFSR	62 62, 70
035F ₁₆	Interrupt request cause select register	11 511	02, 70
036016	interrupt request cause select register	II SIX	02, 70
0360 ₁₆	Interrupt request cause select register	II SIX	02, 70
0360 ₁₆ 0361 ₁₆ 0362 ₁₆	interrupt request cause select register	II OIX	02, 70
0360 ₁₆ 0361 ₁₆ 0362 ₁₆ 0363 ₁₆	interrupt request cause select register	II OIX	02, 70
0360 ₁₆ 0361 ₁₆ 0362 ₁₆ 0363 ₁₆ 0364 ₁₆	interrupt request cause select register	II OIX	02, 70
036016 036116 036216 036316 036416	interrupt request cause select register	II SIX	02, 70
036016 036116 036216 036316 036416 036516	interrupt request cause select register	II SIX	02, 70
036016 036116 036216 036316 036416 036516 036616	interrupt request cause select register	II SIX	02, 70
036016 036116 036216 036316 036416 036516 036616 036716	interrupt request cause select register	II OIX	02, 70
036016 036116 036216 036316 036416 036516 036616 036716 036816	interrupt request cause select register	II OIX	02, 70
036016 036116 036216 036316 036416 036516 036616 036716 036916	Interrupt request cause select register	II OIX	02, 70
036016 036216 036216 036316 036416 036516 036516 036716 036816 036916 036A16	Interrupt request cause select register		02, 70
036016 036216 036216 036316 036416 036516 036616 036716 036816 036816 036816	interrupt request cause select register		02, 70
03601s 03611s 03621s 03621s 03631s 03641s 03651s 03661s 03671s 03681s 03691s 03681s 03681s 03681s 03681s	Interrupt request cause select register		02, 70
036016 036116 036216 036216 036316 036516 036516 036716 036816 036916 036816 036016 036016 036016	Interrupt request cause select register		02, 70
03601s 03611s 03621s 03631s 03641s 03661s 03661s 03661s 03681s 03681s 03681s 03681s 03681s 03681s 03681s 03681s	interrupt request cause select register		02, 70
03601s 03611s 03621s 03631s 03641s 03661s 03661s 03671s 03681s 03691s 03691s 03691s 03691s 03691s 03691s 03691s 03691s	Interrupt request cause select register		02, 70
03601s 03611s 03621s 03631s 03641s 03661s 03661s 03671s 03681s 03691s	Interrupt request cause select register		02, 70
03601s 03611s 03621s 03631s 03631s 03651s 03661s 03661s 03691s 03681s 03691s 03681s 03691s	Interrupt request cause select register		02, 70
036016 036216 036216 036316 036316 036516 036616 036716 036916 036916 036016 036016 036016 036016 036016 036016 036016 036016 036016 036016			
03601s 03611s 03621s 03631s 03641s 03651s 03661s 03661s 03691s 03691s 03691s 03691s 03691s 03691s 03691s 03691s 03701s 03711s 03721s 03731s	UART2 special mode register 4	U2SMR4	136
03601s 03611s 03621s 03631s 03641s 03651s 03661s 03661s 03661s 03661s 03661s 03661s 03661s 03661s 03661s 03671s 03711s 03771s 03731s 03741s 03741s	UART2 special mode register 4 UART2 special mode register 3	U2SMR4 U2SMR3	136 136
03601s 03611s 03621s 03631s 03641s 03651s 03661s 03701s 03711s 037121s 03741s 03751s	UART2 special mode register 4 UART2 special mode register 3 UART2 special mode register 2	U2SMR4 U2SMR3 U2SMR2	136 136 135
03601s 03611s 03621s 03631s 03631s 03651s 03651s 03651s 03661s 03661s 03661s 03661s 03661s 03661s 03661s 03661s 03661s 03701s 03721s 03721s 03731s 03731s 03751s	UART2 special mode register 4 UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register	U2SMR4 U2SMR3 U2SMR2 U2SMR	136 136 135 135
03601s 03611s 03621s 03631s 03641s 03651s 03661s 03661s 03661s 03681s 03681s 03681s 03681s 03681s 03681s 03681s 03701s 03701s 03771s 03771s 03771s	UART2 special mode register 4 UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register UART2 special mode register	U2SMR4 U2SMR3 U2SMR2 U2SMR U2SMR U2SMR	136 136 135 135 132
03601s 03611s 03621s 03631s 03641s 03651s 03661s 03671s 03701s 03701s 03711s 03731s 03741s 03751s 03761s	UART2 special mode register 4 UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register	U2SMR4 U2SMR3 U2SMR2 U2SMR	136 136 135 135
03601s 03611s 03621s 03621s 03631s 03631s 03651s 03661s 03661s 03691s 03681s 03691s 03691s 03691s 03691s 03691s 03691s 03691s 03691s 03791s 03791s 03791s 03771s 03771s 03771s 03771s	UART2 special mode register 4 UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register UART2 special mode register	U2SMR4 U2SMR3 U2SMR2 U2SMR U2SMR U2SMR	136 136 135 135 132
03601s 03611s 03621s 03631s 03631s 03631s 03651s 03651s 03661s 03661s 03691s 03661s 03661s 03661s 03661s 03661s 03661s 03661s 03661s 03671s 03741s 03741s 03741s 03751s 03761s 03771s 03761s 03771s	UART2 special mode register 4 UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register 2 UART2 transmit/receive mode register UART2 transmit/receive mode register UART2 bit rate generator UART2 transmit buffer register	U2SMR4 U2SMR3 U2SMR2 U2SMR U2MR U2MR U2BRG U2TB	136 136 135 135 132 131
03601s 03611s 03621s 03631s 03631s 03641s 03651s 03661s 03661s 03691s 03791s 03791s 03791s 03791s 03791s 03791s 03791s 03791s 03791s	UART2 special mode register 4 UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register 2 UART2 transmit/receive mode register UART2 transmit/receive mode register UART2 transmit buffer register UART2 transmit buffer register	U2SMR4 U2SMR3 U2SMR2 U2SMR U2MR U2MR U2BRG U2TB U2TB	136 136 135 135 132 131 131 133
03601s 03611s 03621s 03631s 03631s 03641s 03651s 03661s 03761s 03771s	UART2 special mode register 4 UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register 2 UART2 transmit/receive mode register UART2 transmit/receive mode register UART2 bit rate generator UART2 transmit buffer register	U2SMR4 U2SMR3 U2SMR2 U2SMR U2MR U2MR U2BRG U2TB	136 136 135 135 132 131
03601s 03611s 03621s 03631s 03631s 03641s 03651s 03661s 03661s 03691s 03791s 03791s 03791s 03791s 03791s 03791s 03791s 03791s 03791s	UART2 special mode register 4 UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register 2 UART2 transmit/receive mode register UART2 transmit/receive mode register UART2 transmit buffer register UART2 transmit buffer register	U2SMR4 U2SMR3 U2SMR2 U2SMR U2MR U2MR U2BRG U2TB U2TB	136 136 135 135 132 131 131 133

Note 1: The blank areas are reserved and cannot be accessed by users. Note 2: This register is included in the flash memory version.

Quick Reference by Address

Address	Register	Symbol	Page
038016	Count start flag	TABSR	90, 105, 119
038116	Clock prescaler reset flag	CPSRF	91, 105
038216	One-shot start flag	ONSF	91
038316	Trigger select register	TRGSR	91, 119
038416	Up-down flag	UDF	90
038516			
0386 ₁₆ 0387 ₁₆	Timer A0 register	TA0	90
0388 ₁₆	Timer A1 register	TA1	90, 117
038A ₁₆	Timer A2 register	TA2	90, 117
038C ₁₆	Timer A3 register	TA3	90
038E ₁₆	Timer A4 register	TA4	90, 117
0390 ₁₆ 0391 ₁₆	Timer B0 register	ТВ0	105
039216	Timer B1 register	TB1	105
039316	Timer B2 register	TB2	105, 119
0395 ₁₆ 0396 ₁₆	Timer A0 mode register	TAOMR	89
039016	Timer At mode register	TA1MR	89, 120
039816	Timer A2 mode register	TA2MR	89, 120
039916	Timer A3 mode register	TA3MR	89
039A ₁₆	Timer A4 mode register	TA4MR	89, 120
039B ₁₆	Timer B0 mode register	TB0MR	104
039C ₁₆	Timer B1 mode register	TB1MR	104
039D ₁₆	Timer B2 mode register	TB2MR	104, 120
039E ₁₆	Timer B2 special mode register	TB2SC	111, 118
039F ₁₆	Time: 22 openia: mede regione.		, -
03A0 ₁₆	UART0 transmit/receive mode register	U0MR	132
03A1 ₁₆	UARTO bit rate generator	U0BRG	131
03A2 ₁₆	UART0 transmit buffer register	U0TB	131
03A4 ₁₆	UART0 transmit/receive control register 0	U0C0	133
03A5 ₁₆	UART0 transmit/receive control register 1	U0C1	134
03A6 ₁₆	UART0 receive buffer register	U0RB	131
03A8 ₁₆	UART1 transmit/receive mode register	U1MR	132
03A9 ₁₆	UART1 bit rate generator	U1BRG	131
03AA ₁₆ 03AB ₁₆	UART1 transmit buffer register	U1TB	131
03AC ₁₆	UART1 transmit/receive control register 0	U1C0	133
03AD ₁₆	UART1 transmit/receive control register 1	U1C1	134
03AE ₁₆	UART1 receive buffer register	U1RB	131
03B0 ₁₆	UART transmit/receive control register 2	UCON	133
03B1 ₁₆			
03B2 ₁₆			
03B3 ₁₆			
03B4 ₁₆ 03B5 ₁₆	CRC snoop address register	CRCSAR	209
03B6 ₁₆	CRC mode register	CRCMR	209
03B7 ₁₆			
03B8 ₁₆	DMA0 request cause select register	DM0SL	79
03B9 ₁₆			
03BA ₁₆	DMA1 request cause select register	DM1SL	80
03BB ₁₆			
03BC ₁₆ 03BD ₁₆	CRC data register	CRCD	209
03BE ₁₆	CRC input register	CRCIN	209

	_		
Address	Register	Symbol	Page
03C0 ₁₆ 03C1 ₁₆	A/D register 0	AD0	179
03C2 ₁₆	A/D register 1	AD1	179
03C4 ₁₆	A/D register 2	AD2	179
03C5 ₁₆ 03C6 ₁₆	A/D register 3	AD3	179
03C7 ₁₆ 03C8 ₁₆	A/D register 4	AD4	
03C9 ₁₆			179
03CB ₁₆	A/D register 5	AD5	179
03CC ₁₆ 03CD ₁₆	A/D register 6	AD6	179
03CE ₁₆	A/D register 7	AD7	179
03D0 ₁₆ 03D1 ₁₆			
03D2 ₁₆	A/D trigger control register	ADTRGCON	178
03D316	A/D convert status register 0	ADSTAT0	179
	A/D control register 2	ADCON2	
03D4 ₁₆	7.2 Solition regional Z	7.200142	177
03D5 ₁₆	A/D t = - 1 =	ADOONO	177
03D6 ₁₆	A/D control register 0	ADCON0	177
03D7 ₁₆	A/D control register 1	ADCON1	177
03D8 ₁₆			
03D9 ₁₆			
03DA ₁₆			
03DB ₁₆			
03DC ₁₆			
03DD ₁₆			
03DE ₁₆			
03DF ₁₆			
03E0 ₁₆			
03E116	Port P1 register	P1	219
03E216	Poit Fi register	FI	210
03E3 ₁₆	Port P1 direction register	PD1	218
	Port F1 direction register	FDI	210
03E4 ₁₆			
03E5 ₁₆			
03E6 ₁₆			
03E7 ₁₆			
03E8 ₁₆			
03E9 ₁₆			
03EA ₁₆			
03EB ₁₆			
03EC ₁₆	Port P6 register	P6	219
	Port P7 register	P7	219
03EE16	Port P6 direction register	PD6	218
03EF ₁₆	Port P7 direction register	PD7	218
03F0 ₁₆	Port P8 register	P8	219
03F1 ₁₆	Port P9 register	P9	219
			219
03F2 ₁₆	Port P8 direction register	PD8	
03F3 ₁₆	Port P9 direction register	PD9	218
03F4 ₁₆	Port P10 register	P10	219
03F5 ₁₆			
03F6 ₁₆	Port P10 direction register	PD10	218
03F7 ₁₆			
03F8 ₁₆			
03F9 ₁₆			
03FA ₁₆			
03FB ₁₆			
03FC ₁₆	Pull-up control register 0	PUR0	220
	Pull-up control register 1	PUR1	
03FD ₁₆			220
03FE ₁₆	Pull-up control register 2	PUR2	220
03FF ₁₆	Port control register	PCR	221

M16C/26A Group(M16C/26A, M16C/26T)

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

REJ09B0202-0100 Rev.1.00 Mar. 15, 2005

1. Overview

The M16C/26A group(M16C/26A, M16C/26T) of single-chip microcomputers is built using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and is packaged in a 42-pin and 48-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. In addition, this microcomputer contains a multiplier and a DMAC which combined with fast instruction processing capability, makes it suitable for control of various OA, communication, and industrial equipment which requires high-speed arithmetic/logic operations.

There is a Normal-ver. for M16C/26A and T-ver. and V-ver. for M16C/26T.

1.1 Applications

Audio, cameras, office equipment, communications equipment, portable equipment, home appliances (inverter solution), auotmotives, motor control, etc

1.2 Performance Outline

Table 1.1 lists performance outline of M16C/26A group 48-pin device.

Table 1.2 lists performance outline of M16C/26A group 42-pin device.

Table 1.1. Performance outline of M16C/26A group(M16C/26A, M16C/26T) (48-pin device)

14510 1111 1 6	Item	Performance
CPU	Number of Basic Instructions	91 instructions
	Minimun Instruction Execution	
	Time	100 ns (f(BCLK)= 10MHz, Vcc= 2.7V to 5.5V) (M16C/26A)
		50 ns (f(BCLK)= 20MHz, Vcc= 4.2V to 5.5V -40 to 105°C) (M16C/26T(V-ver.))
		62.5 ns (f(BCLK)= 16MHz, Vcc= 4.2V to 5.5V -40 to 125°C) (M16C/26T(V-ver.))
	Operation Mode	Single chip mode
	Address Space	1M byte
	Memory Capacity	ROM/RAM : See the product list
Peripheral	Port	Input/Output : 39 lines
function	Multifunction Timer	TimerA:16 bits x 5 channels, TimerB:16 bits x 3 channels
		Three-phase Motor Control Timer
	Serial I/O	2 channels (UART, clock synchronous serial I/O)
		1 channel (UART, clock synchronous, I ² C bus ⁽¹⁾ , or IEBus ⁽²⁾)
	A/D Converter	10 bit A/D Converter : 1 circuit, 12 channels
	DMAC	2 channels
	CRC Calcuration Circuit	2 polynomial (CRC-CCITT and CRC-16) with MSB/LSB selectable
	Watchdog Timer	15 bits x 1 channel (with prescaler)
	Interrupt	20 internal and 8 external sources, 4 software sources, 7 levels
	Clock Generation Circuit	4 circuits
		Main clock(*), Sub-clock(*)
		On-chip oscillator, PLL frequency synthesizer
		(*)These circuit contain a built-in feedback resister.
	Oscillation Stop Detection	Main clock oscillation stop, re-oscillation detection function
	Voltage Detection Circuit	Available(M16C/26A, Option ⁽⁴⁾), Absent(M16C/26T)
Electrical	Power Supply Voltage	Vcc=3.0V to 5.5V (f(BCLK)=20MHz) (M16C/26A)
Characteristics		Vcc=2.7V to 5.5V (f(BCLK)=10MHz)
		Vcc=3.0V to 5.5V (M16C/26T(T-ver.))
		Vcc=4.2V to 5.5V (M16C/26T(V-ver.))
	Power Consumption	16mA (Vcc=5V, f(BCLK)=20MHz)
		25 μA (Vcc=3V, f(BCLK)=f(XcIN)=32KHz on RAM)
		1.8 μA (Vcc=3V, f(BCLK)=f(XcιN)=32KHz, in wait mode)
		0.7 μA (Vcc=3V, in stop mode)
Flash memory	Program/Erase Supply Voltage	2.7V to 5.5V (M16C/26A)
Version		3.0V to 5.5V (M16C/26T(T-ver.)) 4.2V to 5.5V (M16C/26T(V-ver.))
	Program and Erase Endurance	100 times (all area)
		or 1,000 times (block 0 to 3) / 10,000 times (block A, block B) ⁽³⁾
Operating Am	bient Temperature	-20 to 85°C / -40 to 85°C (3) (M16C/26A)
		-40 to 85°C (M16C/26T(T-ver.))
		-40 to 105°C / -40 to 125°C (M16C/26T(V-ver.))
Package		48-pin plastic molded QFP
Notoe:		

Notes:

- 1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.
- 2. IEBus is a trademark of NEC Electronics Corporation.
- 3. See **Table 1.6 Product Code** for the program and erase endurance, and operating ambient temperature.
- 4. The option is on a request basis.

Table 1.2. Performance outline of M16C/26A group (M16C/26A) (42-pin device)

	Item	Performance
CPU	Number of Basic Instructions	91 instructions
ļ	Minimun Instruction Execution	50 ns (f(BCLK)= 20MHz, Vcc= 3.0V to 5.5V)
	Time	100 ns (f(BCLK)= 10MHz, Vcc= 2.7V to 5.5V)
	Operation Mode	Single chip mode
	Address Space	1M byte
	Memory Capacity	ROM/RAM : See the product list
Peripheral	Port	Input/Output : 33 lines
function	Multifunction Timer	TimerA:16 bits x 5 channels, TimerB:16 bits x 3 channels
		Three-phase Motor Control Timer
	Serial I/O	1 channel (UART, clock synchronous serial I/O)
		1 channel (UART, clock synchronous, I ² C bus ⁽¹⁾ , or IEBus ⁽²⁾)
	A/D Converter	10 bit A/D Converter : 1 circuit, 10 channels
	DMAC	2 channels
	CRC Calcuration Circuit	2 polynomial (CRC-CCITT and CRC-16) with MSB/LSB selectable
	Watchdog Timer	15 bits x 1 channel (with prescaler)
	Interrupt	18 internal and 8 external sources, 4 software sources, 7 levels
	Clock generation circuit	4 circuits
		Main clock(*), Sub-clock(*)
		On-chip oscillator, PLL frequency synthesizer
		(*)These circuit contain a built-in feedback resister.
	Oscillation Stop Detection	Main clock oscillation stop, re-oscillation detection function
	Voltage Detection Circuit	Available (option ⁽⁴⁾)
Electrical	Power Supply Voltage	VCC=3.0V to 5.5V (f(BCLK)=20MHz)
Characteristics		VCC=2.7V to 5.5V (f(BCLK)=10MHz)
	Power Consumption	16mA (Vcc=5V, f(BCLK)=20MHz)
		25 μ A (Vcc=3V, f(BCLK)=f(Xcin)=32KHz on RAM)
		1.8 μA (Vcc=3V, f(BCLK)=f(XcιN)=32KHz, in wait mode)
		0.7 μA (Vcc=3V, in stop mode)
Flash memory	Program/Erase Supply Voltage	2.7V to 5.5V
	Program and Erase Endurance	100 times (all area)
		or 1,000 times (block 0 to 3) / 10,000 times (block A, block B) ⁽³⁾
	bient Temperature	-20 to 85°C / -40 to 85°C ⁽³⁾
Package		42-pin plastic molded SSOP

Notes:

- 1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.
- 2. IEBus is a trademark of NEC Electronics Corporation.
- 3. See **Table 1.6 Product Code** for the program and erase endurance, and operating ambient temperature.
- 4. The option is on a request basis.

1.3 Block Diagram

Figure 1.1 is a block diagram of the M16C/26A group, 48-pin device.

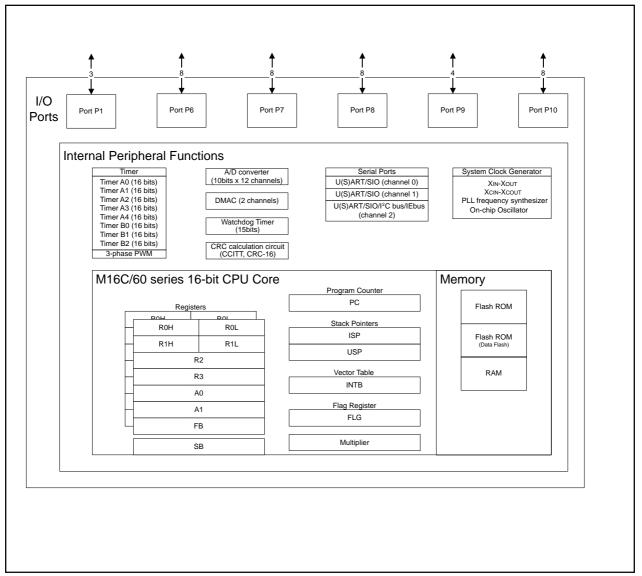


Figure 1.1. M16C/26A Group(M16C/26A, M16C/26T), 48-pin version Block Diagram

Figure 1.2 is a block diagram of the M16C/26A group, 42-pin device.

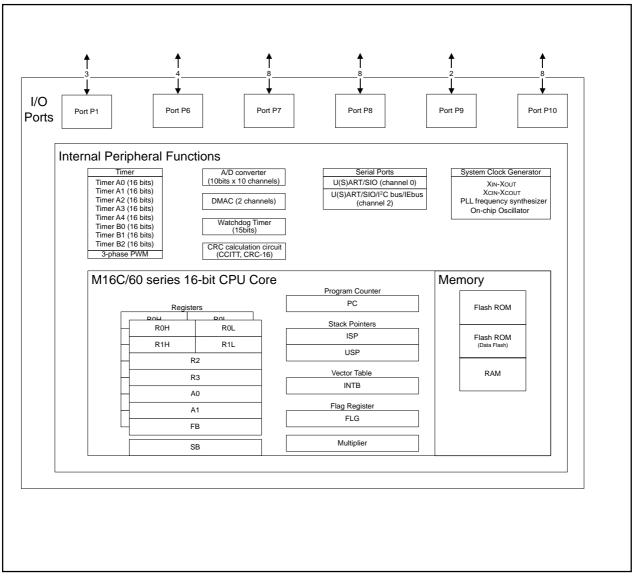


Figure 1.2. M16C/26A Group(M16C/26A), 42-pin version Block Diagram

1.4 Product List

Tables 1.3 to 1.5 list the M16C/26A group products and Figure 1.3 shows the type numbers, memory sizes and packages. Table 1.6 lists the product code of flash memory version and masked ROM version for M16C/26A, and figure 1.4 shows the marking diagram of flash memory version and masked ROM version. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the product code and the marking diagram of M16C/26T

Table 1.3. Product List (1) -M16C/26A

۸۰	~f	March	າ 2005

Type No.		ROM capacity	RAM capacity	Package type	Remarks
M30260M3A-XXXGP	(D)	24K byte	1K byte		
M30260M6A-XXXGP	(D)	48K byte	2K byte	48P6Q	
M30260M8A-XXXGP	(D)	64K byte	2K byte		Mask ROM Version
M30263M3A-XXXFP	(D)	24K byte	1K byte		WIASK ROW VEISION
M30263M6A-XXXFP	(D)	48K byte	2K byte	42P2R	
M30263M8A-XXXFP	(D)	64K byte	2K byte		
M30260F3AGP	(D)	24K + 4K byte	1K byte		
M30260F6AGP	(D)	48K + 4K byte	2K byte	48P6Q	
M30260F8AGP	(D)	64K + 4K byte	2K byte		Flash ROM Version
M30263F3AFP	(D)	24K + 4K byte	1K byte		
M30263F6AFP	(D)	48K + 4K byte	2K byte	42P2R	
M30263F8AFP	(D)	64K + 4K byte	2K byte		

(P): under planning

(D): under development

Table 1.4. Product List (2) -M16C/26T T-ver.

As of March 2005

Type No.		ROM capacity	RAM capacity	Package type	Remarks
M30260M3T-XXXGP	(P)	24K byte	1K byte		
M30260M6T-XXXGP	(P)	48K byte	2K byte	48P6Q	Mask ROM Version
M30260M8T-XXXGP	(P)	64K byte	2K byte		
M30260F3TGP	(D)	24K + 4K byte	1K byte		
M30260F6TGP	(D)	48K + 4K byte	2K byte	48P6Q	Flash ROM Version
M30260F8TGP	(D)	64K + 4K byte	2K byte		

(P): under planning

(D): under development

NOTES. The specification of M16C/26T varies from the one of M16C/26A.

Table 1.5. Product List (3) -M16C/26T V-ver.

As	of	Mar	ch	2005	

Type No.		ROM capacity	RAM capacity	Package type	Remarks
M30260M3V-XXXGP	(P)	24K byte	1K byte		
M30260M6V-XXXGP	(P)	48K byte	2K byte	48P6Q	Mask ROM Version
M30260M8V-XXXGP	(P)	64K byte	2K byte		
M30260F3VGP	(D)	24K + 4K byte	1K byte		
M30260F6VGP	(D)	48K + 4K byte	2K byte	48P6Q	Flash ROM Version
M30260F8VGP	(D)	64K + 4K byte	2K byte		

(P): under planning

(D): under development

NOTES. The specification of M16C/26T varies from the one of M16C/26A.

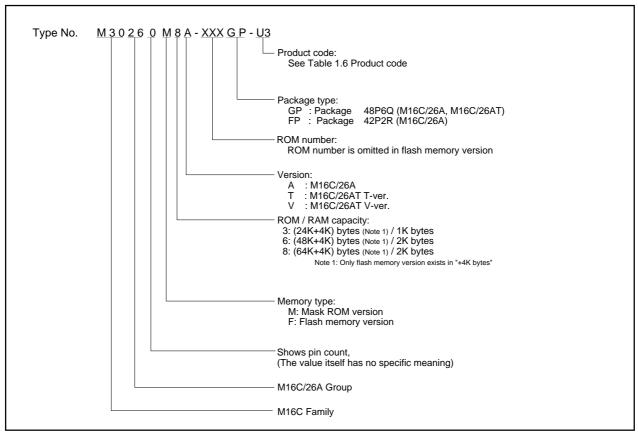


Figure 1.3. Type No., Memory Size, and Package

Table 1.6 Product Code (Flash Memory version, M16C/26A)

		Internal ROM (Pro		rogram area) Internal ROM (
Product Code	Package	Program and Erase Endurance	Temperature Range	Program and Erase Endurance	Temperature Range	Operating Ambient Temperature	
U3			Lead-free 0°C to 60°C		000 +- 0000	-40°C to 85°C	
U5	Load from				100	0°C to 60°C	-20°C to 85°C
U7	Leau-Hee			0°C to 60°C	10.000	-40°C to 85°C	-40°C to 85°C
U9		1,000		10,000	-20°C to 85°C	-20°C to 85°C	

(Mask ROM version, M16C/26A)

Product Code	Package	Operating Ambient Temperature
U3	l and from	-40°C to 85°C
U5	Lead-free	-20°C to 85°C

Note 1: The lead contained products, D3, D5, D7 and D9, are put together with U3, U5, U7 and U9 respectively. Lead-free (Sn-Cu plating) products can be mounted by both conventional Sn-Pb paste and Lead-free paste.

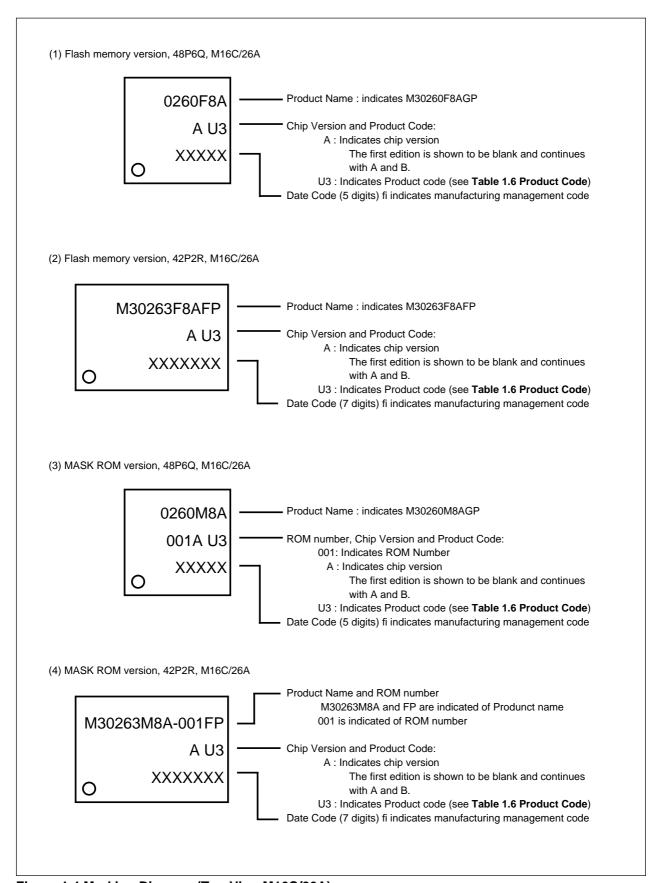


Figure 1.4 Marking Diagram (Top Vier, M16C/26A)

1.5 Pin Configuration

Figures 1.5 and 1.6 show the pin configurations (top view).

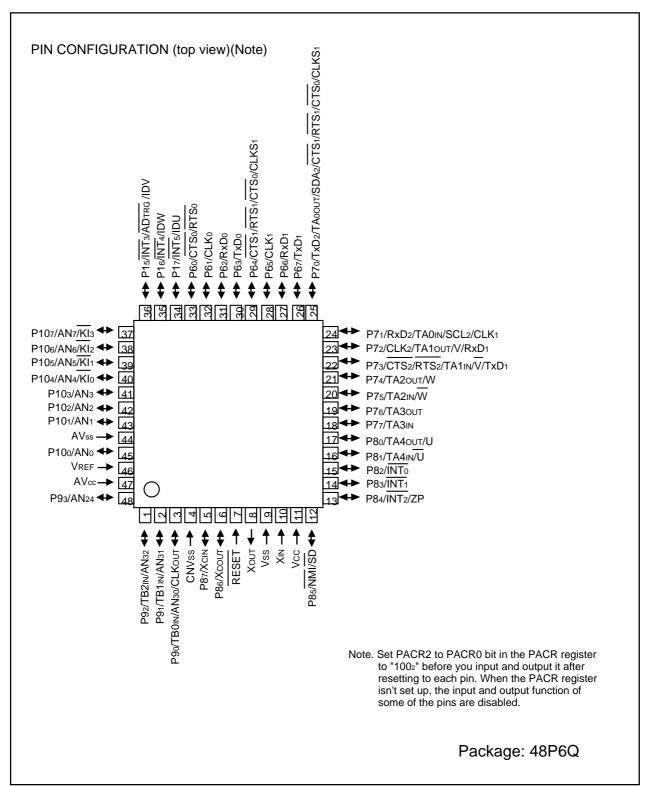


Figure 1.5. Pin Configuration (Top View) of M16C/26A Group, 48-pin Package

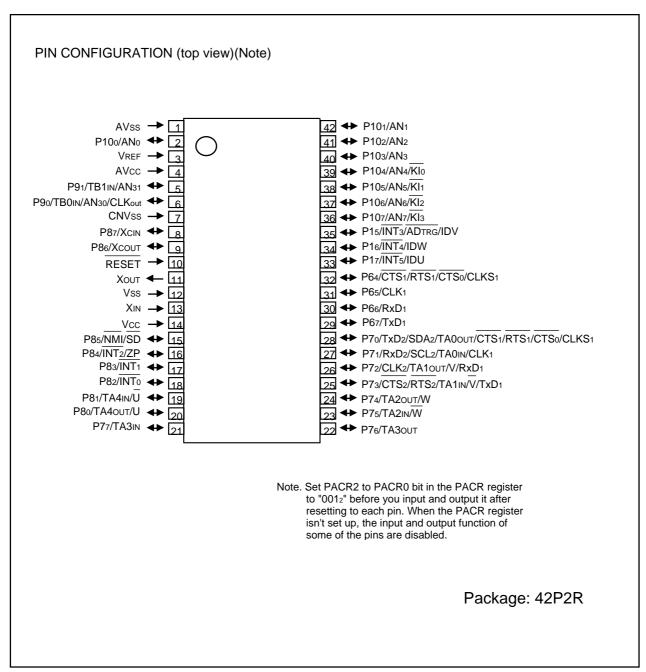


Figure 1.6. Pin Configuration (Top View) of M16C/26A Group, 42-pin Package

1.6 Pin Description

Table 1.7 and 1.8 describes the available pins.

Table 1.7. Pin Description(1)

Pin name	Signal name	I/O type	Function
Vcc,Vss	Power supply		Apply 0V to the Vss pin, and the following voltage to the Vcc pin.
	input		2.7 to 5.5V (M16C/26A)
			3.0 to 5.5V (M16C/26T T-ver.)
			4.2 to 5.5V (M16C/26T V-ver.)
CNVss	CNVss	Input	Connect this pin to Vss.
RESET	Reset input	Input	"L" on this input resets the microcomputer.
XIN	Clock input	Input	These pins are provided for the main clock generating circuit input/output.
Хоит	Clock output	Output	Connect a ceramic resonator or crystal between the XIN and the XOUT pins.
			To use an externally derived clock, input it to the XIN pin and leave the XOUT
			pin open. If X _{IN} is not used (for external oscillator or external clock)
			connect X _{IN} pin to V _{CC} and leave X _{OUT} pin open.
AVcc	Analog power		This pin is a power supply input for the A/D converter. Connect this
	supply input		pin to Vcc.
AVss	Analog power		This pin is a power supply input for the A/D converter. Connect this
	supply input		pin to Vss.
V _{REF}	Reference	Input	This pin is a reference voltage input for the A/D converter.
	Voltage input		
P15~P17	I/O port P1	Input/	This is an 3-bit CMOS I/O port. It has an input/output port direction
		output	register that allows the user to set each pin for input or output individually.
			When used for input, a pull-up resister option can be selected for the
			entire group of three pins. Additional software selectable secondary
			functions are: 1) P15 to P17 can be configured as external INT interrupt
			pins; 2) P1₅ to P1₂ can be configured as position-data-retain function
			input pins,and; 3) P1₅ can input a trigger for the A/D converter.
P60~P67	I/O port P6	Input/	This is an 8-bit CMOS I/O port. It has an input/output port direction
		output	register that allows the user to set each pin for input or output individually.
			When used for input, a pull-up resister option can be selected for the
			entire group of four pins. Pins in this port also function as UART0 and
			UART1 I/O, as selected by software. P6o to P63 are not available in the 42
			pin version.
P70~P77	I/O port P7	Input/	This is an 8-bit I/O port equivalent to P6. P7 can also function as I/O for
		output	timer A0 to A3, as selected by software. Additional programming options
			are: P7o to P7s can assume UART1 I/O or UART2 I/O capabilities, and
			P7 ₂ to P7 ₅ can function as output pins for the three-phase motor control
			timer.

Table 1.8. Pin Description(2)

	O. Fill Descrip	. ,	F
Pin name	Signal name	I/O type	Function
P80~P87	I/O port P8	Input/	This is an 8-bit I/O port equivalent to P6. Additional software-selectable
		output	secondary functions are: 1) P80 and P81 can act as either I/O for Timer
			A4, or as output pins for the three-phase motor control timer; 2) P82 to
			P84 can be configured as external INT interrupt pins. P84 can be used for
			Timer A Zphase function; 3) P8₅ can be used as NMI/SD. P8₅ can not be
			used as I/O port while the three-phase motor control is enabled. Apply a
			stable "H" to P8₅ after setting the direction register for P8₅ to "0" when
			the three-phase motor control is enabled, and; 4) P86 and P87 can serve
			as I/O pins for the sub-clock generation circuit. In this latter case, a quartz
			oscillator must be connented between P86 (Xcout pin) and P87 (Xcin pin).
P90~P93	I/O port P9	Input/	This is an 4-bit I/O port equivalent to P6. Additional software-selectable
		output	secondary functions are: 1) P90 to P92 can act as Timer B0 to B2 input
			pins, and; 2) P9₀ to P9₃ can act as A/D converter input pins.
			P9₀ outputs a no-divide, divide-by-8 or divide-by-32 clock of XIN or a
			clock of the same frequency as XCIN as selected by program. P92 to P93
			are not available in the 42 pin version.
P100~P107	I/O port P10	Input/	This is an 8-bit I/O port equivalent to P6. This port can also function as
		output	A/D converter input pins, as selected by software. Furthermore, P104 to
			P10 ₇ can also function as input pins for the key input interrupt function.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

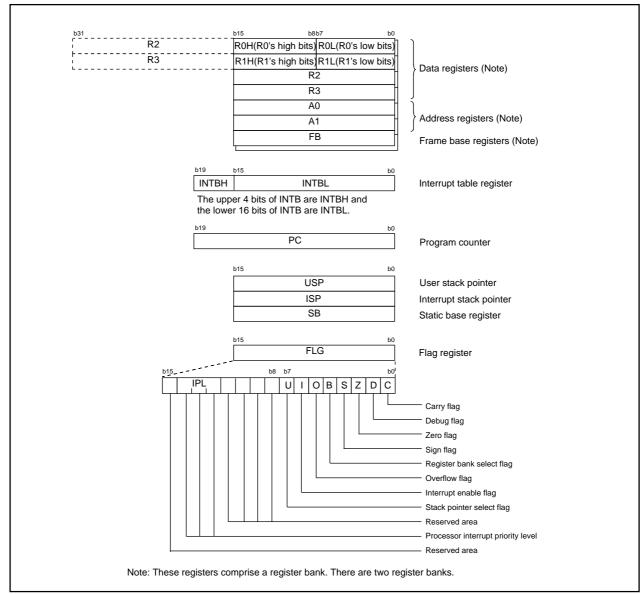


Figure 2.1. Central Processing Unit Register

2.1 Data Registers (R0, R1, R2 and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers. R1H and R1L are the same as R0H and R0L. Conversely, R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is the same as R2R0.

2.2 Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and arithmetic/logic operations. A1 is the same as A0.

In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits.

Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is "0"; USP is selected when the U flag is "1".

The U flag is cleared to "0" when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than IPL, the interrupt is enabled.

2.8.10 Reserved Area

When write to this bit, write "0". When read, its content is indeterminate.

3. Memory

Figure 3.1 is a memory map. The linear address space of 1M bytes extends from address 0000016 to FFFFF16. The internal ROM is allocated in a lower address direction beginning with address FFFF16. For example, a 64-Kbyte internal ROM is allocated to the address from F000016 to FFFFF16.

In the flash memory version, internal ROM area (data area) contain two blocks of Flash ROM as data area to store data. These two blocks of 2K bytes are located from 0F00016 to 0FFFF16.

The fixed interrupt vector table is allocated to the address from FFFDC16 to FFFFF16. Therefore store the start address of each interrupt routine here. For details, refer to the "Interrupt".

The internal RAM is allocated in an upper address direction beginning with address 0040016. For example, a 1-Kbyte internal RAM is allocated to the address from 0040016 to 007FF16. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.

The SFR is allocated to the address from 0000016 to 003FF16. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be used by users.

The special page vector table is allocated to the addresses from FFE0016 to FFFDB16. This vector is used by the JMPS or JSRS instruction. For details, refer to the "M16C/60 and M16C/20 Series Software Manual".

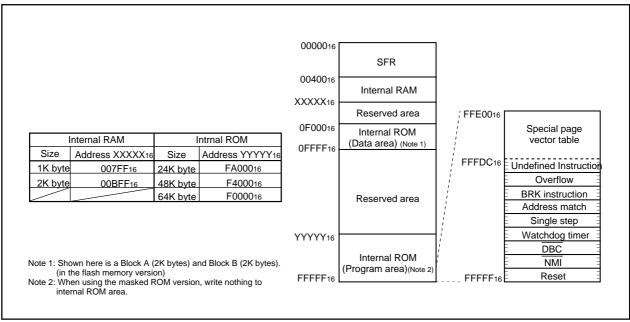


Figure 3.1. Memory Map

4. Special Function Register (SFR)

SFR(Special Function Register) is the control register of peripheral functions. Table 4.1 to 4.6 list the SFR information.

Table 4.1 SFR information (1)

Address	Register		Symbol	After reset
000016	regiotoi		- Cyllibol	7 1107 10001
000116				
000216				
000316		·		
000416	Processor mode register 0		PM0	0016
000516	Processor mode register 1		PM1	000010002
000616	System clock control register 0		CM0	010010002(M16C/26A) 011010002(M16C/26T)
000716	System clock control register 1		CM1	001000002
000816				
000916	Address match interrupt enable register		AIER	XXXXXX002
000A16	Protect register		PBCR	XX0000002
000B16	0 11 11	(11 (0)	0140	0)/000040
000C16	Oscillation stop detection register	(Note 2)	CM2	0X0000102
000D16	Matabalan timan ataut wa wiatau		WDTS	XX16
000E16	Watchdog timer start register Watchdog timer control register		WDC	00XXXXXX2(Note3)
000F16 001016	Address match interrupt register 0		RMAD0	0016
001016	Address mater interrupt register o		KWADO	0016
001116				X016
001216				7.010
001316	Address match interrupt register 1		RMAD1	0016
001516				0016
001616				X016
001716				
001816				
001916	Voltage detection register 1	(Note 4,5)	VCR1	000010002
001A16	Voltage detection register 2	(Note 4,5)	VCR2	0016
001B ₁₆				
001C ₁₆	PLL control register 0		PLC0	0001X0102
001D ₁₆	<u> </u>		D140)
001E ₁₆		(NI=4= E)	PM2	XXX000002
001F ₁₆ 0020 ₁₆	Voltage down detection interrupt register	(Note 5)	D4INT SAR0	0016 XX16
002016	DMA0 source pointer		SARU	XX16 XX16
002116				XX16
002216				AXIO
002416	DMA0 destination pointer		DAR0	XX16
002516	2.11 to decimate points.		27.1.10	XX16
002616				XX16
002716				
002816	DMA0 transfer counter		TCR0	XX16
002916				XX16
002A16				
002B16				
002C16	DMA0 control register		DM0CON	00000X002
002D16				
002E16				
002F16	DMA1 source pointer		CADA	VV40
003016	DMA1 source pointer		SAR1	XX16
003116 003216				XX16
003216				XX16
003316	DMA1 destination pointer		DAR1	XX16
003416	2 m. C. dodination pointer		D, ((1)	XX16 XX16
003516				XX16
003716				
003816	DMA1 transfer counter		TCR1	XX16
003916				XX16
003A16				
003B16				
003C16	DMA1 control register		DM1CON	00000X002
003D16	-			
003E16				
003F16				
			•	

Note 1: Blank spaces are reserved. No access is allowed.

Note 2: The CM20, CM21 and CM27 bits do not change at oscillation stop detection reset..

Note 3: The WDC5 bit is "0" (cold start) immediately after power-on. It can only be set to "1" in a program.

The WDC5 bit is not supported for M16C/26T.

Note 4: This register does not change at software reset, watchdog timer reset and oscillation stop detection reset.

Note 5: This register is not supported for M16C/26T.

X : Indeterminate

Table 4.2 SFR information (2)⁽¹⁾

Address	Register	Symbol	After reset
004016	V	,	
004116			
004216			
004316			
004416	INT3 interrupt control register	INT3IC	XX00X0002
004516			
004616			
004716		=0	
004816	INT5 interrupt control register	INT5IC	XX00X0002
004916 004A16	INT4 interrupt control register	INT4IC BCNIC	XX00X0002 XXXXX0002
004A16	UART2 Bus collision detection interrupt control register DMA0 interrupt control register	DMOIC	XXXXX0002 XXXXXX0002
004B16	DMA1 interrupt control register	DM1IC	XXXXX0002 XXXXX0002
004D16	Key input interrupt control register	KUPIC	XXXXX0002 XXXXX0002
004E16	A/D conversion interrupt control register	ADIC	XXXXX0002
004F16	UART2 transmit interrupt control register	S2TIC	XXXXX0002
005016	UART2 receive interrupt control register	S2RIC	XXXXX0002
005116	UART0 transmit interrupt control register	SOTIC	XXXXX0002
005216	UART0 receive interrupt control register	SORIC	XXXXX0002
005316	UART1 transmit interrupt control register	S1TIC	XXXXX0002
005416	UART1 receive interrupt control register	S1RIC	XXXXX0002
005516	TimerA0 interrupt control register	TA0IC	XXXXX0002
005616	TimerA1 interrupt control register	TA1IC	XXXXX0002
005716	TimerA2 interrupt control register	TA2IC	XXXXX0002
005816	TimerA3 interrupt control register	TA3IC	XXXXX0002
005916	TimerA4 interrupt control register	TA4IC	XXXXX0002
005A16	TimerB0 interrupt control register	TB0IC	XXXXX0002
005B16	TimerB1 interrupt control register	TB1IC	XXXXX0002
005C16	TimerB2 interrupt control register	TB2IC INT0IC	XXXXX0002
005D16 005E16	INT0 interrupt control register INT1 interrupt control register	INTIC	XX00X0002 XX00X0002
005E16	INT2 interrupt control register	INT2IC	XX00X0002 XX00X0002
006016	IN 12 Interrupt control register	INTZIC	XX00X0002
006016			
006216			
006316			
006416			
006516			
006616			
006716			
006816			
006916			
006A16			
006B ₁₆			
006C16			
006D16			
006E16			
006F16			
007016 007116			
007116			
007216			
007316			
007516			
007616			
007716			
007816			
007916			
007A16			
007B16			
007C16			
007D16			
007E16			
007F16			

Note 1: Blank spaces are reserved. No access is allowed. ${\sf X}$: Indeterminate

Table 4.3 SFR information (3)⁽¹⁾

Address	Register	Symbol	After reset
008016	· ·		
008116			
008216			
008316			
008416			
008516			
008616			
≉			7
01B016			
01B116			
01B216			
01B3 ₁₆	Flash memory control register 4 (Note	2) FMR4	010000002
01B4 ₁₆			
01B516	Flash memory control register 1 (Note	2) FMR1	000XXX0X2
01B616			
01B7 ₁₆	Flash memory control register 0 (Note	2) FMR0	0116
01B8 ₁₆			
01B9 ₁₆			
01BA ₁₆			
01BB16			
01BC16			
01BD16			
01BE ₁₆			
01BF ₁₆			
≉			7
025016			
025116			
025216			
025316			
025416			
025516			
025616			
025716			
025816			
025916			
025A ₁₆	Three phase protect control register	TPRC	0016
025B ₁₆			
025C ₁₆	On-chip oscillator control register	ROCR	000001012
025D16	Pin assignment control register	PACR	0016
025E16	Peripheral clock select register	PCLKR	000000112
025F16			
≈			1
4			
033016			
033116			
033216			
033316			
033416			
033516			
033616			
033716			
033816			
033916			
033A16			
033B16			
033C16			
033D16			
033E16	NMI digital debounce register	NDDR	FF16
033F16	Port17 digital debounce register	P17DDR	FF16

Note 1: Blank spaces are reserved. No access is allowed. Note 2: This register is included in the flash memory version.

X : Indeterminate

Table 4.3 SFR information (4)⁽¹⁾

Address	Register	Symbol	After reset
034016			
034116			
	Timer A1-1 register	TA11	XX16
034316	Tiller A1-1 register	IAII	XX16 XX16
	Timer A2-1 register	TA21	XX16
034416	Timer Az-1 register	IAZI	1
	Times A 4 4 register	TA 44	XX16 XX16
	Timer A4-1 register	TA41	
034716	T	11.11.40.0	XX16
	Three phase PWM control register 0	INVC0	0016
	Three phase PWM control register 1	INVC1	0016
	Three phase output buffer register 0	IDB0	3F16
	Three phase output buffer register 1	IDB1	3F16
	Dead time timer	DTT	XX16
034D ₁₆	Timer B2 Interrupt occurrence frequency set counter	ICTB2	XX16
034E16	Position-data-retain function control register	PDRF	XXXX00002
034F16			
035016			
035116			
035216			
035316			
035416			
035516			
035616			
035716			
	Part function control register	PFCR	001111112
	Port function control register	PFCR	001111112
035916			
035A16			
035B16			
035C16			
035D16			
035E ₁₆	Interrupt request cause select register 2	IFSR2A	XXXXXXX02
035F16	Interrupt request cause select register	IFSR	0016
036016			
036116			
036216			
036316			
036416			
036516			
036616			
036716			
036816			
036916			
036A16			
036B ₁₆			
036C16			
036D16			
036E16			
036F16			
037016			
037116			
037216			
037316			-
	UART2 special mode register 4	U2SMR4	0016
	UART2 special mode register 3	U2SMR3	000X0X0X2
	UART2 special mode register 2	U2SMR2	X00000002
	UART2 special mode register	U2SMR	X00000002
037816	UART2 transmit/receive mode register	U2MR	0016
	UART2 bit rate register	U2BRG	XX16
	UART2 transmit buffer register	U2TB	XXXXXXXX2
037B ₁₆	- y		XXXXXXXXX2
	UART2 transmit/receive control register 0	U2C0	000010002
	UART2 transmit/receive control register 0	U2C1	000010002
	UART2 receive buffer register	U2RB	XXXXXXXXX2
037E16	OAKTZ 1666IVE DUITEL TEGISTEL	UZND	
U.37 E16		1	XXXXXXXX2

Note 1 : Blank spaces are reserved. No access is allowed. X : Indeterminate

Table 4.3 SFR information (5)⁽¹⁾

	` '		
Address	Register	Symbol	After reset
038016	Count start flag	TABSR	0016
038116	Clock prescaler reset flag	CPSRF	0XXXXXXX2
038216	One-shot start flag	ONSF	0016
038316	Trigger select register	TRGSR	0016
038416	Up-dowm flag	UDF	0016
038516	Op down nag	951	0010
038616	Timer A0 register	TA0	XX16
038716	Tillier Au register	IAO	XX16 XX16
038816	Timer A1 register	TA1	XX16
038916	Tiller AT register	171	XX16 XX16
038A16	Timer A2 register	TA2	XX16
038B ₁₆	Tiller Az register	I AZ	XX16 XX16
038C16	Timer A3 register	TA3	XX16
038D16	Tiller A3 register	IA3	XX16
038E16	Timer A4 register	TA4	XX16
038F16	Timer A4 register	1A4	XX16
039016	Timer B0 register	TB0	XX16 XX16
039016	Timer bu register	100	
039216	Time an DA no nieton	TD4	XX16
039216	Timer B1 register	TB1	XX16
039316	Time an DO an ainten	TDO	XX16
	Timer B2 register	TB2	XX16
039516	T: A0 1 : .	T4014D	XX16
039616	Timer A0 mode register	TAOMR	0016
039716	Timer A1 mode register	TA1MR	0016
039816	Timer A2 mode register	TA2MR	0016
039916	Timer A3 mode register	TA3MR	0016
039A ₁₆	Timer A4 mode register	TA4MR	0016
039B ₁₆	Timer B0 mode register	TB0MR	00XX00002
039C ₁₆	Timer B1 mode register	TB1MR	00XX00002
039D ₁₆	Timer B2 mode register	TB2MR	00XX00002
039E ₁₆	Timer B2 special mode register	TB2SC	X00000002
039F ₁₆			
03A016	UART0 transmit/receive mode register	U0MR	0016
03A1 ₁₆	UART0 bit rate register	U0BRG	XX16
03A216	UART0 transmit buffer register	U0TB	XXXXXXXX2
03A316			XXXXXXXX2
03A416	UART0 transmit/receive control register 0	U0C0	000010002
03A516	UART0 transmit/receive control register 1	U0C1	000000102
03A616	UART0 receive buffer register	U0RB	XXXXXXXX2
03A7 ₁₆			XXXXXXXX2
03A816	UART1 transmit/receive mode register	U1MR	0016
03A9 ₁₆	UART1 bit rate register	U1BRG	XX16
03AA16	UART1 transmit buffer register	U1TB	XXXXXXXX2
03AB ₁₆	•		XXXXXXXX2
03AC ₁₆	UART1 transmit/receive control register 0	114.00	000010002
		U1C0	
03AD ₁ 6	UART1 transmit/receive control register 1	U1C1	000000102
03AD ₁₆ 03AE ₁₆	UART1 transmit/receive control register 1	U1C1	000000102
03AD ₁₆ 03AE ₁₆ 03AF ₁₆			000000102 XXXXXXXX2
03AE16	UART1 transmit/receive control register 1 UART1 receive buffer register	U1C1 U1RB	000000102 XXXXXXXX2 XXXXXXX2
03AE ₁₆ 03AF ₁₆	UART1 transmit/receive control register 1	U1C1	000000102 XXXXXXXX2
03AE16 03AF16 03B016	UART1 transmit/receive control register 1 UART1 receive buffer register	U1C1 U1RB	000000102 XXXXXXXX2 XXXXXXX2
03AE16 03AF16 03B016 03B116	UART1 transmit/receive control register 1 UART1 receive buffer register	U1C1 U1RB	000000102 XXXXXXXX2 XXXXXXX2
03AE16 03AF16 03B016 03B116 03B216 03B316	UART1 transmit/receive control register 1 UART1 receive buffer register UART transmit/receive control register 2	U1C1 U1RB UCON	000000102 XXXXXXX2 XXXXXXX2 X00000002
03AE16 03AF16 03B016 03B116 03B216 03B316 03B416	UART1 transmit/receive control register 1 UART1 receive buffer register	U1C1 U1RB	000000102 XXXXXXX2 XXXXXXX2 X00000002
03AE16 03AF16 03B016 03B116 03B216 03B316 03B416 03B516	UART1 transmit/receive control register 1 UART1 receive buffer register UART transmit/receive control register 2 CRC snoop address register	U1C1 U1RB UCON CRCSAR	000000102 XXXXXXX2 XXXXXXX2 X00000002 XX16 00XXXXXX2
03AE16 03AF16 03B016 03B116 03B216 03B316 03B416 03B516 03B616	UART1 transmit/receive control register 1 UART1 receive buffer register UART transmit/receive control register 2	U1C1 U1RB UCON	000000102 XXXXXXX2 XXXXXXX2 X00000002
03AE16 03AF16 03B016 03B116 03B216 03B316 03B416 03B516 03B616	UART1 transmit/receive control register 1 UART1 receive buffer register UART transmit/receive control register 2 CRC snoop address register CRC mode register	U1C1 U1RB UCON CRCSAR CRCMR	000000102 XXXXXXX2 XXXXXXX2 X00000002 XX16 00XXXXXX2 0XXXXXX2
03AE16 03AF16 03B016 03B118 03B216 03B316 03B416 03B516 03B616 03B716 03B816	UART1 transmit/receive control register 1 UART1 receive buffer register UART transmit/receive control register 2 CRC snoop address register	U1C1 U1RB UCON CRCSAR	000000102 XXXXXXX2 XXXXXXX2 X00000002 XX16 00XXXXXX2
03AE16 03AF16 03B016 03B116 03B216 03B316 03B416 03B516 03B616 03B718 03B816 03B916	UART1 transmit/receive control register 1 UART1 receive buffer register UART transmit/receive control register 2 CRC snoop address register CRC mode register DMA0 request cause select register	U1C1 U1RB UCON CRCSAR CRCMR DM0SL	000000102 XXXXXXX2 XXXXXXX2 X00000002 XX16 00XXXXXX2 0XXXXXX2 0XXXXXX02
03AE16 03AF16 03B016 03B116 03B216 03B316 03B316 03B516 03B616 03B716 03B816 03B916	UART1 transmit/receive control register 1 UART1 receive buffer register UART transmit/receive control register 2 CRC snoop address register CRC mode register	U1C1 U1RB UCON CRCSAR CRCMR	000000102 XXXXXXX2 XXXXXXX2 X00000002 XX16 00XXXXXX2 0XXXXXX2
03AE16 03AF16 03B016 03B116 03B216 03B316 03B316 03B516 03B516 03B716 03B816 03B916 03BA16 03BA16	UART1 transmit/receive control register 1 UART1 receive buffer register UART transmit/receive control register 2 CRC snoop address register CRC mode register DMA0 request cause select register DMA1 request cause select register	U1C1 U1RB UCON CRCSAR CRCMR DM0SL DM1SL	000000102 XXXXXXX2 XXXXXXX2 X00000002 XX16 00XXXXXX2 0XXXXXX2 0XXXXXX02 0016
03AE16 03AF16 03B016 03B116 03B216 03B316 03B316 03B516 03B516 03B716 03B816 03B916 03BA16 03BA16	UART1 transmit/receive control register 1 UART1 receive buffer register UART transmit/receive control register 2 CRC snoop address register CRC mode register DMA0 request cause select register	U1C1 U1RB UCON CRCSAR CRCMR DM0SL	000000102 XXXXXXX2 XXXXXXX2 X00000002 XX16 00XXXXXX2 0XXXXXX2 0XXXXXX02 0016 0016
03AE16 03AF16 03B016 03B116 03B216 03B316 03B316 03B516 03B516 03B716 03B816 03B916 03B816	UART1 transmit/receive control register 1 UART1 receive buffer register UART transmit/receive control register 2 CRC snoop address register CRC mode register DMA0 request cause select register DMA1 request cause select register CRC data register	U1C1 U1RB UCON CRCSAR CRCMR DM0SL DM1SL	000000102 XXXXXXX2 XXXXXXX2 X00000002 XX16 00XXXXXX2 0XXXXXX2 0XXXXXX02 0016

Note 1: Blank spaces are reserved. No access is allowed.

X : Indeterminate

Table 4.3 SFR information (6)⁽¹⁾

	D 11		
Address	Register	Symbol	After reset
03C016	A/D register 0	AD0	XXXXXXXX2
03C116			XXXXXXXX2
03C216	A/D register 1	AD1	XXXXXXXX2
03C3 ₁₆			XXXXXXXX2
03C416	A/D register 2	AD2	XXXXXXXX2
03C516			XXXXXXXX2
03C616	A/D register 3	AD3	XXXXXXXX2
03C716	-		XXXXXXXX2
03C816	A/D register 4	AD4	XXXXXXXX2
03C916	•		XXXXXXXX2
03CA ₁₆	A/D register 5	AD5	XXXXXXXX2
03CB ₁₆	•		XXXXXXXX2
03CC16	A/D register 6	AD6	XXXXXXXX2
03CD16			XXXXXXXX2
03CE16	A/D register 7	AD7	XXXXXXXX2
03CF16			XXXXXXXX2
03D016			70000000
03D116			
03D116	A/D trigger control register	ADTRGCON	0016
03D216	A/D status register 0	ADSTATO	00000X002
03D316 03D416	A/D control register 2	ADCON2	0016
03D416 03D516	745 Control Toglotor 2	/ (DOOTV2	0010
03D516 03D616	A/D control register 0	ADCON0	00000XXX2
03D616 03D716	A/D control register 1	ADCON0 ADCON1	000000000000000000000000000000000000000
	A/D control register 1	ADCONT	0016
03D816			
03D916			
03DA16			
03DB16			
03DC16			
03DD16			
03DE16			
03DF16			
03E016			
03E116	Port P1 register	P1	XX16
03E216			
03E316	Port P1 direction register	PD1	0016
03E416			
03E516			
03E616			
03E716			
03E816			
03E916			
03EA ₁₆			
03EB ₁₆			
03EC16	Port P6 register	P6	XX16
03ED16	Port P7 register	P7	XX16
03EE16	Port P6 direction register	PD6	0016
03EF16	Port P7 direction register	PD7	0016
03F016	Port P8 register	P8	XX16
03F1 ₁₆	Port P9 register	P9	XXXXXXXX2
03F216	Port P8 direction register	PD8	0016
03F316	Port P9 direction register	PD9	XXXX00002
03F416	Port P10 register	P10	XX16
03F516	<u> </u>		
03F616	Port P10 direction register	PD10	0016
03F716		1.0	
03F816			
03F916			
03FA ₁₆			
03FB16			
03FC16	Pull-up control register 0	PUR0	0016
03FD16	Pull-up control register 1	PUR1	0016
03FE16	Pull-up control register 2	PUR2	0016
03FF16	Port control register	PCR	0016
00/110	1 of Control Togistor	1 011	0010

Note 1 : Blank spaces are reserved. No access is allowed.

X : Indeterminate

5. Reset

There are four types of resets: a hardware reset, a software reset, an watchdog timer reset, and an oscillation stop detection reset.

5.1 Hardware Reset

There are two types of hardware resets: a hardware reset 1 and a hardware reset 2.

5.1.1 Hardware Reset 1

A reset is applied using the $\overline{\text{RESET}}$ pin. When an "L" signal is applied to the $\overline{\text{RESET}}$ pin while the power supply voltage is within the recommended operating condition, the pins are initialized (see Table 5.1.1.1 Pin Status When $\overline{\text{RESET}}$ Pin Level is "L"). The internal on-chip oscillator is initialized and used as sysem clock.

When the input level at the RESET pin is released from "L" to "H", the CPU and SFR are initialized, and the program is executed starting from the address indicated by the reset vector. The internal RAM is not initialized. If the RESET pin is pulled "L" while writing to the internal RAM, the internal RAM becomes indeterminate.

Figure 5.1.1.1 shows the example reset circuit. Figure 5.1.1.2 shows the reset sequence. Table 5.1.1.1 shows the status of the other pins while the RESET pin is "L". Figure 5.1.1.3 shows the CPU register status after reset. Refer to "SFR Map" for SFR status after reset.

- 1. When the power supply is stable
- (1) Apply an "L" signal to the RESET pin.
- (2) Wait td(ROC) or more.
- (3) Apply an "H" signal to the RESET pin.
- 2. Power on
- (1) Apply an "L" signal to the RESET pin.
- (2) Let the power supply voltage increase until it meets the recommended operating condition.
- (3) Wait td(P-R) or more until the internal power supply stabilizes.
- (4) Wait td(ROC) or more.
- (5) Apply an "H" signal to the RESET pin.

5.1.2 Hardware Reset 2

Note

M16C/26T does not use this function.

This reset is generated by the microcomputer's internal voltage detection circuit. The voltage detection circuit monitors the voltage supplied to the Vcc pin.

If the VC26 bit in the VCR2 register is set to "1" (reset level detection circuit enabled), the microcomputer is reset when the voltage at the Vcc input pin drops below Vdet3.

Conversely, when the input voltage at the Vcc pin rises to Vdet3r or more, the pins and the CPU and SFR are initialized, and the program is executed starting from the address indicated by the reset vector. It takes about td(S-R) before the program starts running after Vdet3r is detected. The initialized pins and registers and the status thereof are the same as in hardware reset 1.

The microcomputer cannot exit stop mode by voltage down detection reset (hardware reset 2).

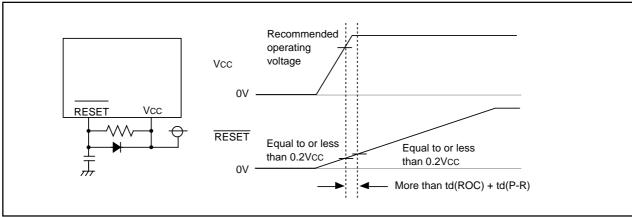


Figure 5.1.1.1. Example Reset Circuit

5.2 Software Reset

When the PM03 bit in the PM0 register is set to "1" (microcomputer reset), the microcomputer has its pins, CPU, and SFR initialized. Then the program is executed starting from the address indicated by the reset vector.

The device will reset using on-chip oscillator as the system clock.

At software reset, some SFR's are not initialized. Refer to "SFR".

5.3 Watchdog Timer Reset

When the PM12 bit in the PM1 register is "1" (reset when watchdog timer underflows), the microcomputer initializes its pins, CPU and SFR if the watchdog timer underflows.

The device will reset using on-chip oscillator as the system clock. Then the program is executed starting from the address indicated by the reset vector.

At watchdog timer reset, some SFR's are not initialized. Refer to "SFR".

5.4 Oscillation Stop Detection Reset

When the CM20 bit in the CM2 register is set to "1" (oscillation stop, re-oscillation detection function enabled) and the CM27 bit is set to "0" (reset at oscillation stop detection), the microcomputer initializes its pins, CPU and SFR, coming to a halt if it detects main clock oscillation circuit stop. Refer to the section "oscillation stop, re-oscillation detection function".

At oscillation stop detection reset, some SFR's are not initialized. Refer to the section "SFR".

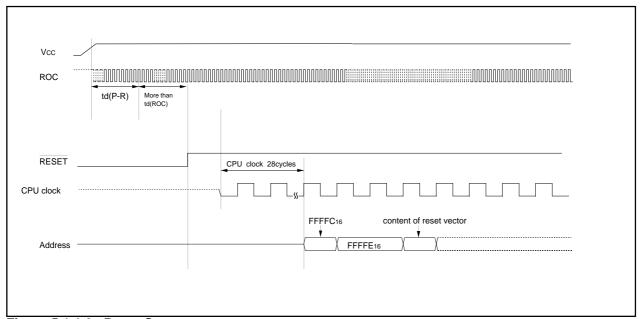


Figure 5.1.1.2. Reset Sequence

Table 5.1.1.1. Pin Status When RESET Pin Level is "L"

Pin name	Status
P1, P6 to P10	Input port (high impedance)

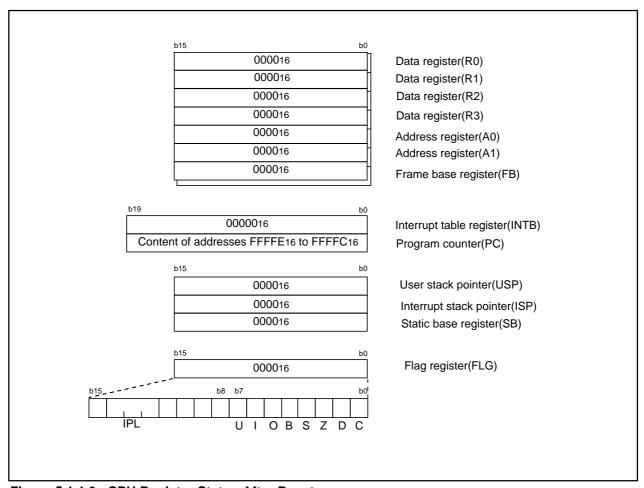


Figure 5.1.1.3. CPU Register Status After Reset

5.5 Voltage Detection Circuit

Note

Using the voltage detection circuit with Vcc=5V is assumed. The M16C/26T do not use this function.

The voltage detection circuit has circuits to monitor the input voltage at the VCC pin, each checking the input voltage with respect to Vdet3, and Vdet4, respectively. Use the VC26 to VC27 bits in the VCR2 register to select whether or not to enable these circuits.

Use the reset level detection circuit for hardware reset 2.

The voltage down detection circuit can be set to detect whether the input voltage is equal to or greater than Vdet4 or less than Vdet4 by monitoring the VC13 bit in the VCR1 register. Furthermore, a voltage down detection interrupt can be generated.

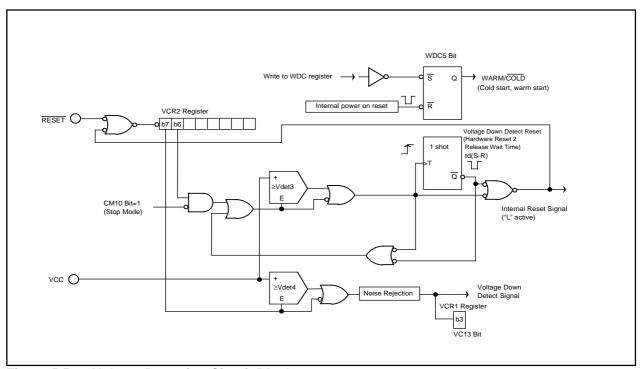
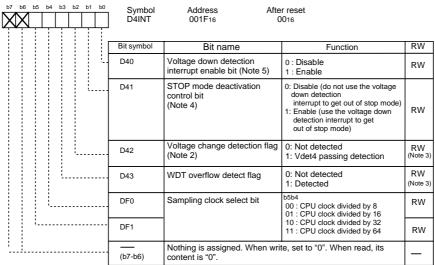


Figure 5.5.1. Voltage Detection Circuit Block

Voltage detection register 1 b6 b5 b4 b3 b2 b1 Symbol Address After reset (Note 2) 0 0 0 0 0 0 0 VCR1 001916 000010002 Bit symbol Bit name Function RW (b2-b0) Reserved bit Must set to "0' RW Voltage down monitor flag 0:Vcc < Vdet4 VC13 RO (Note 1) 1:Vcc ≥ Vdet4 RW (b7-b4) Reserved bit Must set to "0"

Note 1: The VC13 bit is useful when the VC27 bit of VCR2 register is set to "1" (voltage down detection circuit enable). The VC13 bit is always "1" (Vcc≥ Vdet4) when the VC27 bit in the VCR2 register is set to "0" (voltage down detection circuit disable).

Note 2: This register does not change at software reset, watchdog timer reset and oscillation stop detection reset.


Voltage detection register 2 (Note 1)

0 0 0 0 0 0	Symbol VCR2		set (Note 5) 0016	
	Bit symbol	Bit name	Function	RW
	(b5-b0)	Reserved bit	Must set to "0"	RW
	VC26	Reset level monitor bit (Notes 2, 3, 6)	Disable reset level detection circuit Enable reset level detection circuit	RW
	VC27	Voltage down monitor bit (Note 4, 6)	Disable voltage down detection circuit Enable voltage down detection circuit	RW

- Note 1: Write to this register after setting the PRC3 bit in the PRCR register to "1" (write enable).

 Note 2: When not in stop mode, to use hardware reset 2, set the VC26 bit to "1" (reset level detection circuit enable).
- Note 3: VC26 bit is disabled in stop mode. (The microcomputer is not reset even if the voltage input to Vcc pin becomes lower than Vdet3.)
- Note 4: When the VC13 bit in the VCR1 register and D42 bit in the D4INT register are used or the D40 bit is set to "1" (voltage down detection interrupt enable), set the VC27 bit to "1" (voltage down detection circuit enable).
- Note 5: This register does not change at software reset, watchdog timer reset and oscillation stop detection reset.
- Note 6: The detection circuit does not start operation until td(E-A) elapses after the VC26 bit, or VC27 bit are set to "1".

Voltage down detection interrupt register (Note 1)

Note 1: Write to this register after setting the PRC3 bit in the PRCR register to "1" (write enable).

Note 2: Useful when the VC27 bit in the VCR2 register is set to "1" (voltage down detection circuit enabled). If the

Note 2: Useful when the VC27 bit in the VCR2 register is set to 1 (voltage down detection circuit enabled). If the VC27 bit is set to "0" (voltage down detection circuit disable), the D42 bit is set to "0" (Not detect).

Note 3: This bit is set to "0" by writing a "0" in a program. (Writing a "1" has no effect.)

Note 4: If the voltage down detection interrupt needs to be used to get out of stop mode again after once used for that purpose, reset the D41 bit by writing a "0" and then a "1".

Note 5: The D40 bit is effective when the VC27 bit in the VCR2 register is set to "1". To set the D40 bit to "1", follow the procedure described below.

(1) Set the VC27 bit to "1".

(2) Wait for td(E-A) until the detection circuit is actuated.

(3) Wait for the sampling time (refer to "Table 5.5.1.2 Sampling Clock Periods"). (4) Set the D40 bit to "1".

Figure 5.5.2. VCR1 Register, VCR2 Register, and D4INT Register

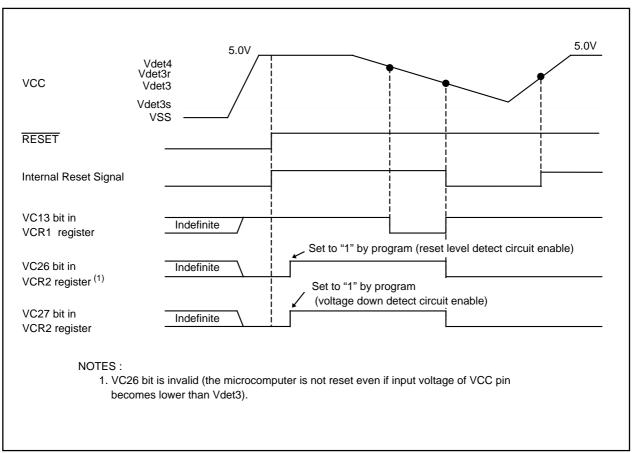


Figure 5.5.3. Typical Operation of Hardware Reset 2

5.5.1 Voltage Down Detection Interrupt

If the D40 bit in the D4INT register is set to "1" (voltage down detection interrupt enabled), the voltage down detection interrupt request is generated when the voltage applied to the VCC pin crosses the Vdet4 voltage level. The voltage down detection interrupt shares the same interrupt vector with the watchdog timer interrupt and oscillation stop, re-oscillation detection interrupt.

Set the D41 bit in the D4INT register to "1" (enabled) to use the voltage down detection interrupt to exit stop mode.

The D42 bit in the D4INT register is set to "1" as soon as the voltage applied to the VCC pin reaches Vdet4 due to the voltage rise and voltage drop. When the D42 bit changes "0" to "1", the voltage down detection interrupt request is generated. Set the D42 bit to "0" by program. However, when the D41 bit is set to "1" and the microcomputer is in stop mode, the voltage down detection interrupt request is generated regardless of the D42 bit state if the voltage applied to the VCC pin is detected to be above Vdet4. The microcomputer then exits stop mode.

Table 5.5.1.1 shows how the voltage down detection interrupt request is generated.

The DF1 to DF0 bits in the D4INT register determine the sampling period that detects the voltage applied to the VCC pin reaches Vdet4. Table 5.5.1.2 shows the sampling periods.

Table 5.5.1.1 Voltage Down Detection Interrupt Request Generation Conditions

Operation Mode	VC27 Bit	D40 Bit	D41 Bit	D42 Bit	CM02 Bit	VC13 Bit	
Normal Operation				0 to 1		0 to 1(3)	
Mode(1)			0 to 1		<u> </u>	1 to 0(3)	
				0 to 1	0	0 to 1(3)	
Wait Mode(2)	1	1	<u> </u>	0 10 1	Ü	1 to 0 ⁽³⁾	
					1	0 to 1	
Stop Mode(2)		de(2)		1	_	0	0 to 1

-: "0"or "1"

NOTES:

- 1. The status except the wait mode and stop mode is handled as the normal mode.(Refer to 7. Clock generating circuit)
- 2. Refer to **5.5.2 Limitations on stop mode**, **5.5.3 Limitations on wait mode**.
- An interrupt request for voltage reduction is generated a sampling time after the value of the VC13 bit has changed.
 See the Figure 5.5.1.2 Voltage Down Detection Interrupt Generation Circuit Operation Example for details.

Table 5.5.1.2 Sampling Periods

CPU	Sampling Period (μs)								
Clock (MHz)	DF1 to DF0=00 (CPU clock divided by 8)	DF1 to DF0=01 (CPU clock divided by 16)	DF1 to DF0=10 (CPU clock divided by 32)	DF1 to DF0=11 (CPU clock divided by 64)					
16	3.0	6.0	12.0	24.0					

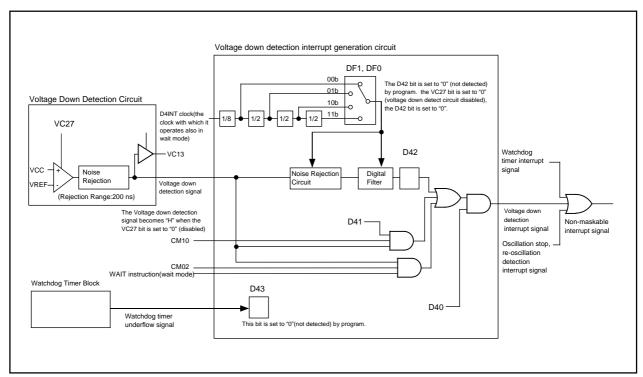


Figure 5.5.1.1 Power Supply Down Detection Interrupt Generation Block

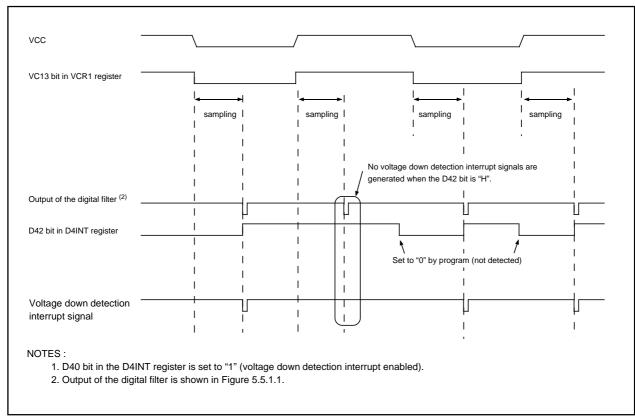


Figure 5.5.1.2 Power Supply Down Detection Interrupt Generation Circuit Operation Example

5.5.2 Limitations on Exiting Stop Mode

The voltage down detection interrupt is immediately generated and the microcomputer exits stop mode if the CM10 bit in the CM1 register is set to "1" under the conditions below.

- the VC27 bit in the VCR2 register is set to "1" (voltage down detection circuit enabled),
- the D40 bit in the D4INT register is set to "1" (voltage down detection interrupt enabled),
- the D41 bit in the D4INT register is set to "1" (voltage down detection interrupt is used to exit stop mode), and
- the voltage applied to the VCC pin is higher than Vdet4 (the VC13 bit in the VCR1 register is "1") If the microcomputer is set to enter stop mode when the voltage applied to the VCC pin drops below Vdet4 and to exit stop mode when the voltage applied rises to Vdet4 or above, set the CM10 bit to "1" when VC13 bit is "0" (VCC < Vdet4).

5.5.3 Limitations on Exiting Wait Mode

The voltage down detection interrupt is immediately generated and the microcomputer exits wait mode If WAIT instruction is executed under the conditions below.

- the CM02 bit in the CM0 register is set to "1" (stop peripheral function clock),
- the VC27 bit in the VCR2 register is set to "1" (voltage down detection circuit enabled),
- the D40 bit in the D4INT register is set to "1" (voltage down detection interrupt enabled),
- the D41 bit in the D4INT register is set to "1" (voltage down detection interrupt is used to exit wait mode), and
- the voltage applied to the VCC pin is higher than Vdet4 (the VC13 bit in the VCR1 register is "1") If the microcomputer is set to enter wait mode when the voltage applied to the VCC pin drops below Vdet4 and to exit wait mode when the voltage applied rises to Vdet4 or above, perform WAIT instruction when VC13 bit is "0" (VCC < Vdet4).

6. Processor Mode

This device functions in single-chip mode only. Figures 6.1 and 6.2 detail the associated registers.

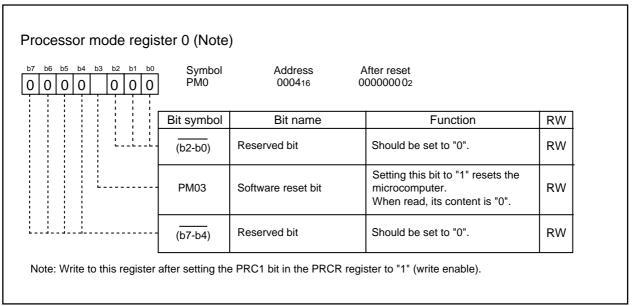


Figure 6.1. PM0 Register



Figure 6.2. PM1 Register

7. Clock Generation Circuit

The clock generation circuit contains four oscillator circuits as follows:

- (1) Main clock oscillation circuit
- (2) Sub clock oscillation circuit
- (3) On-chip oscillator (available at reset, oscillation stop detect function)
- (4) PLL frequency synthesizer

Table 7.1 lists the clock generation circuit specifications. Figure 7.1 shows the clock generation circuit. Figures 7.2 to 7.6 show the clock-related registers.

Table 7.1. Clock Generation Circuit Specifications

	Main clock	Sub clock		PLL frequency
Item	oscillation circuit	oscillation circuit	On-chip oscillator	synthesizer
Use of clock	CPU clock source Peripheral function clock source	CPU clock source Timer A, B's clock source		CPU clock source Peripheral function clock source
Clock frequency	0 to 20 MHz	32.768 kHz	Selectable source frequency:	10 to 20 MHz
Usable oscillator	Ceramic oscillator Crystal oscillator	Crystal oscillator	<u> </u>	
Pins to connect oscillator	XIN, XOUT	XCIN, XCOUT		<u></u>
Oscillation stop, restart function	Presence	Presence	Presence	Presence
Oscillator status after reset	Oscillating(M16C/26A) Stopped(M16C/26T)	Stopped	Oscillating (CPU clock source)	Stopped
Other	Externally derived clo	ock can be input		<u> </u>

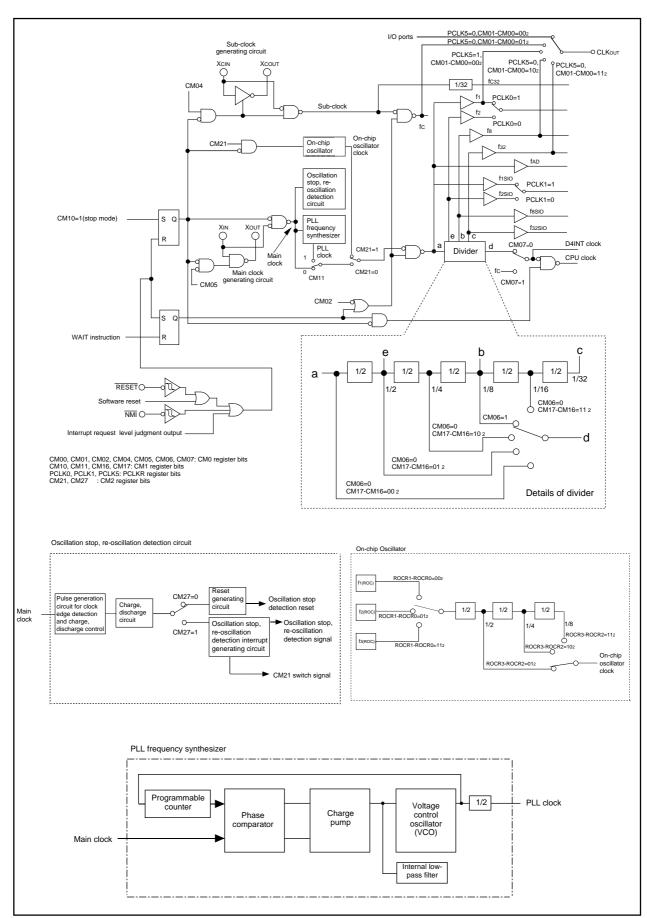
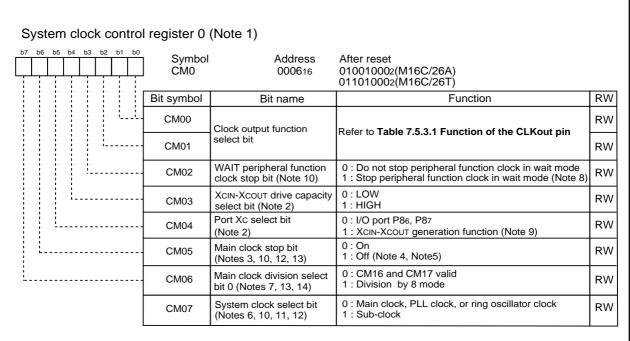
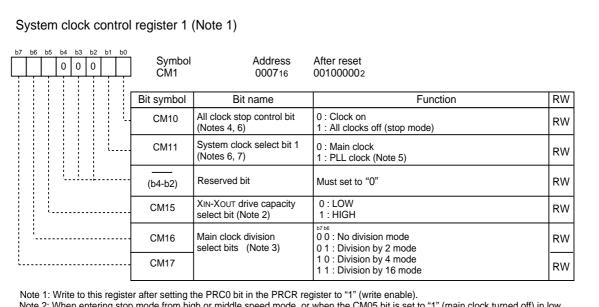



Figure 7.1. Clock Generation Circuit



- Note 1: Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).
- Note 2: The CM03 bit is set to "1" (high) when the CM04 bit is set to "0" (I/O port) or the microcomputer goes to a stop mode.
- Note 3: This bit is provided to stop the main clock when the low power dissipation mode or ring oscillator low power dissipation mode is selected. This bit cannot be used for detection as to whether the main clock stopped or not. To stop the main clock, the following setting is required:
 - (1) Set the CM07 bit to "1" (Sub-clock select) or the CM21 bit in the CM2 register to "1" (Ring oscillator select) with the sub-clock stably oscillating.
 - (2) Set the CM20 bit in CM2 register to "0" (Oscillation stop, re-oscillation detection function disabled).
 - (3) Set the CM05 bit to "1" (Stop).
- Note 4: During external clock input, only the clock oscillation buffer is turned off and clock input is accepted.

 Note 5: When CM05 bit is set to "1", theXouT pin goes iHî. Furthermore, because the internal feedback resistor remains connected, the Xin pin is pulled "H" to the same level as XouT via the feedback resistor.

 Note 6: After setting the CM04 bit to "1" (Xcin-XcouT oscillator function), wait until the sub-clock oscillates stably before switching
- the CM07 bit from "0" to "1" (sub-clock).
- Note 7: When entering stop mode from high or middle speed mode, ring oscillator mode or ring oscillator low power mode, the CM06 bit is set to "1" (divide-by-8 mode).
- Note 8: The fc32 clock does not stop. During low speed or low power dissipation mode, do not set this bit to "1" (peripheral clock turned off when in wait mode).
- Note 9: To use a sub-clock, set this bit to "1". Also make sure ports P8e and P87 are directed for input, with no pull-ups. Note 10: When the PM21 bit of PM2 register is set to "1" (clock modification disable), writing to the CM02, CM05, and CM07 bits has
- no effect
- Note 11: If the PM21 bit needs to be set to "1", set the CM07 bit to "0"(main clock) before setting it.
- Note 12: To use the main clock as the clock source for the CPU clock, follow the procedure below.
 - (1) Set the CM05 bit to "0" (oscillate).
 - (2) Wait until td(M-L) elapses or the main clock oscillation stabilizes, whichever is longer.
 - (3) Set the CM11, CM21 and CM07 bits all to "0".
- Note 13: When the CM21 bit is set to "0" (ring oscillaor turned off) and the CM05 bit is set to "1" (main clock turned off), the CM06 bit is fixed to "1" (divide-by-8 mode) and the CM15 bit is fixed to "1" (drive capability High)
- Note 14: To return from ring oscillator mode to high-speed or middle-speed mode set the CM06 and CM15 bits both to "1".

Figure 7.2. CM0 Register

- Note 2: When entering stop mode from high or middle speed mode, or when the CM05 bit is set to "1" (main clock turned off) in low speed mode, the CM15 bit is set to "1" (drive capability high).

 Note 3: Effective when the CM06 bit is "0" (CM16 and CM17 bits enable).

 Note 4: If the CM10 bit is "1" (stop mode), X out goes "H" and the internal feedback resistor is disconnected. The X cin and Xcout
- pins are placed in the high-impedance state. When the CM11 bit is set to "1" (PLL clock), or the CM20 bit in the CM2 register
- is set to "1" (oscillation stop, re-oscillation detection function enabled), do not set the CM10 bit to "1".

 Note 5: After setting the PLC07 bit in the PLC0 register to "1" (PLL operation), wait until Tsu (PLL) elapses before setting the CM11 bit to "1" (PLL clock).

 Note 6: When the PM21 bit in the PM2 register is set to "1" (clock modification disable), writing to the CM10, CM011 bits has no
- effect. When the PM22 bit in the PM2 register is set to "1" (watchdog timer count source is on-chip oscillator clock), writing to the CM10 bit has no effect.
- Note 7: Effective when CM07 bit is "0" and CM21 bit is "0".

Figure 7.3. CM1 Register

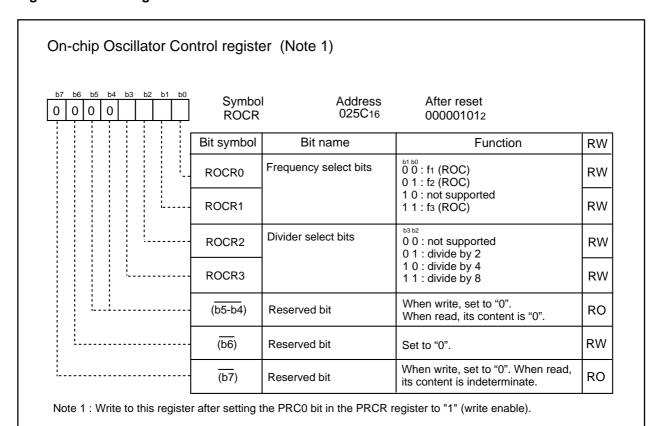


Figure 7.4. ROCR Register

Oscillation stop detection register (Note 1)

Symbol Address After reset 0 0 000C16 CM₂ 0X0000102(Note 11) Bit symbol Bit name RW **Function** Oscillation stop, re-0: Oscillation stop, re-oscillation CM₂₀ oscillation detection bit detection function disabled RW (Notes 7, 9, 10, 11) 1: Oscillation stop, re-oscillation detection function enabled System clock select bit 2 0: Main clock or PLL clock CM21 (Notes 2, 3, 6, 8, 11, 12) 1: On-chip oscillator clock RW (On-chip oscillator oscillating) Oscillation stop, re-0: Main clock stop or re-oscillation CM22 oscillation detection flag not detected RW (Note 4) 1: Main clock stop or re-oscillation detected XIN monitor flag 0: Main clock oscillating RO CM23 1: Main clock not oscillating (Note 5) Reserved bit Must set to "0" RW (b5-b4)Nothing is assigned. When write, set to "0". When read, its (b6) content is indeterminate. 0: Oscillation stop detection reset Operation select bit CM27 (when an oscillation stop 1: Oscillation stop, re-oscillation RW re-oscillation is detected) detection interrupt (Note 11)

Note 1: Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).

- Note 2: When the CM20 bit is set to "1" (oscillation stop, re-oscillation detection function enabled), the CM27 bit is set to "1" (oscillation stop, re-oscillation detection interrupt), and the CPU clock source is the main clock, the CM21 bit is automatically set to "1" (on-chip oscillator clock) if the main clock stop is detected.
- Note 3: If the CM20 bit is set to "1" and the CM23 bit is set to "1" (main clock not oscillating), do not set the CM21 bit to "0".
- Note 4: This flag is set to "1" when the main clock is detected to have stopped or when the main clock is detected to have restarted oscillating. When this flag changes state from "0" to "1", an oscillation stop, reoscillation detection interrupt is generated. Use this flag in an interrupt routine to discriminate the causes of interrupts between the oscillation stop, reoscillation detection interrupts and the watchdog timer interrupt. The flag is cleared to "0" by writing a "0" in a program. (Writing a "1" has no effect. Nor is it cleared to "0" by an oscillation stop or an oscillation restart detection interrupt request acknowledged.)

If when the CM22 bit is set to "1" an oscillation stop or an oscillation restart is detected, no oscillation stop, reoscillation detection interrupts are generated.

- Note 5: Read the CM23 bit in an oscillation stop, re-oscillation detection interrupt handling routine to determine the main clock status.
- Note 6: Effective when the CM07 bit in the CM0 register is set to "0".
- Note 7: When the PM21 bit in the PM2 register is "1" (clock modification disabled), writing to the CM20 bit has no effect.

 Note 8: When the CM20 bit is set to "1" (oscillation stop, re-oscillation detection function enabled), the CM27 bit is set to "1" (oscillation stop, re-oscillation detection interrupt), and the CM11 bit is set to "1" (the CPU clock source is PLL clock), the CM21 bit remains unchanged even when main clock stop is detected. If the CM22 bit is set to "0" under these conditions, oscillation stop, re-oscillation detection interrupt occur at main clock stop detection; it is, therefore, necessary to set the CM21 bit to "1" (on-chip oscillator clock) inside the interrupt routine.

Note 9: Set the CM20 bit to "0" (disable) before entering stop mode. After exiting stop mode, set the CM20 bit back to 1" (enable).

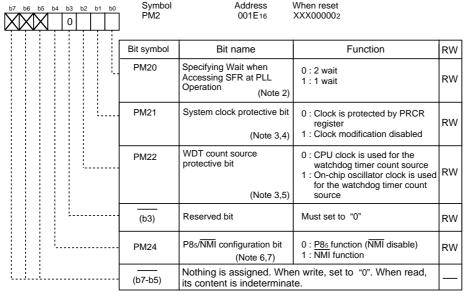

- Note 10: Set the CM20 bit to "0" (disable) before setting the CM05 bit in the CM0 register.
- Note 11: The CM20, CM21 and CM27 bits do not change at oscillation stop detection reset.
- Note 12: When the CM21 bit is set to "0" (on-chip oscillator turned off) and the CM05 bit is set to "1" (main clock turned off), the CM06 bit is fixed to "1" (divide-by-8 mode) and the CM15 bit is fixed to "1" (drive capability High).

Figure 7.5. CM2 Register

Peripheral clock select register (Note) Symbol Address When reset b3 **PCLKR** 025E₁₆ 00000112 0 0 0 0 0 Bit name **Function** RW Bit symbol Timers A, B clock select bit PCLK0 0:f2 (Clock source for the RW 1:f1 timers A, B, and the dead SI/O clock select bit PCLK1 0: f2SIO (Clock source for UART0 RW 1: f1s10 to UART2) Reserved bit Must set to "0" RW (b4-b2) Refer to Table 7.5.3.1 Function Clock output function PCLK5 RW of CLKOUT pin expansion select bit Reserved bit Must set to "0" RW (b7-b6)

Note: Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).

Processeor mode register 2 (Note 1)

Note 1: Write to this register after setting the PRC1 bit in the PRCR register to "1" (write enable).

Note 2: This bit can only be rewritten while the PLC07 bit is "0" (PLL turned off). Also, set the PM20 bit to "0" (2 wait) when PLL clock > 16MHz. Note that if the clock source for the CPU clock is to be changed from PLL clock when PLL clock > 16MHz. Note that if the clock source for the CPU clock is to be changed from PLL clock to another, the PLC07 bit must be set to "0" before setting the PM20 bit.

Note 3: Once this bit is set to "1", it cannot be cleared to "0" in a program.

Note 4: If the PM21 bit is set to "1", writing to the following bits has no effect:

CM02 bit in the CM0 register (CM02 bit source does not change)

CM07 bit in the CM0 register (CPU clock source does not change)

CM10 bit in the CM1 register (CPU clock source does not change)

CM11 bit in the CM1 register (CPU clock source does not change)

CM20 bit in the CM2 register (CPU clock source does not change)

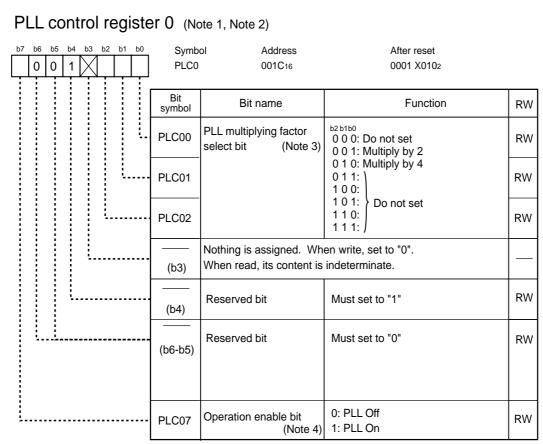
CM20 bit in the CM1 register (SPU clock source does not change)

All bits in the PLC0 register (PUL frequency synthesizer setting do not change)

- All bits in the PLC0 register (PLL frequency synthesizer setting do not change)

 Be aware that the WAIT instruction cannot be executed when the PM21 bit is set to "1".

 Note 5: Setting the PM22 bit to "1" results in the following conditions:


 The on-chip oscillator starts oscillating, and the on-chip oscillator clock becomes the watchdog timer count
 - source.
 The CM10 bit in the CM1 register is disabled against write. (Writing a "1" has no effect, nor is stop mode entered.)

• The watchdog timer does not stop when in wait mode.

Note 6: For NMI function, the PM24 bit must be set to "1"(NMI function) in first instruction after rest. Once this bit is set to "1", it cannot be cleared to "0" in a program. When the PM24 bit is set to "1", the P85 direction register must be "0" (input mode).

Note 7: SD input is valid regardless of the PM24 setting.

Figure 7.6. PCLKR Register and PM2 Register

- Note 1: Write to this register after setting the PRC0 bit in the PRCR register to "1" (write enable).
- Note 2: When the PM21 bit in the PM2 register is "1" (clock modification disable), writing to this register has no effect.
- Note 3: These three bits can only be modified when the PLC07 bit is set to "0" (PLL turned off). The value once written to this bit cannot be modified.
- Note 4: Before setting this bit to "1", set the CM07 bit to "0" (main clock), set the CM17 and CM16 bits to "002" (main clock undivided mode), and set the CM06 bit to "0" (CM16 and CM17 bits enable).

Figure 7.7. PLC0 Register

The following describes the clocks generated by the clock generation circuit.

7.1 Main Clock

The main clock is generated by the main clock oscillation circuit. This clock is used as the clock source for the CPU and peripheral function clocks. The main clock oscillator circuit is configured by connecting a resonator between the XIN and XOUT pins. The main clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The main clock oscillator circuit may also be configured by feeding an externally generated clock to the XIN pin. Figure 7.1.1 shows the examples of main clock connection circuit.

The main clock after reset oscillates in the M16C/26A, but stop in the M16C/26T.

The power consumption in the chip can be reduced by setting the CM05 bit in the CM0 register to "1" (main clock oscillator circuit turned off) after switching the clock source for the CPU clock to a sub clock or on-chip oscillator clock. In this case, XOUT goes "H". Furthermore, because the internal feedback resistor remains on, XIN is pulled "H" to XOUT via the feedback resistor.

During stop mode, all clocks including the main clock are turned off. Refer to **7.6 power control**.

If the main clock is not used, it is recommended to connect the XIN pin to VCC to reduce power consumption during reset.

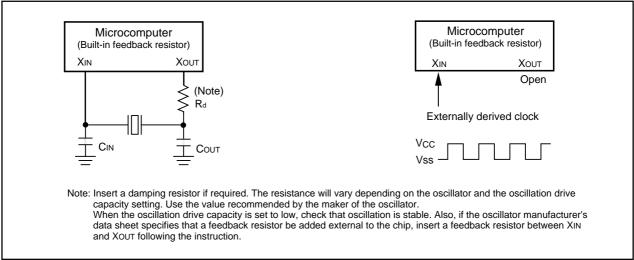


Figure 7.1.1. Examples of Main Clock Connection Circuit

7.2 Sub Clock

The sub clock is generated by the sub clock oscillation circuit. This clock is used as the clock source for the CPU clock, as well as the timer A and timer B count sources.

The sub clock oscillator circuit is configured by connecting a crystal resonator between the XCIN and XCOUT pins. The sub clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The sub clock oscillator circuit may also be configured by feeding an externally generated clock to the XCIN pin. Figure 7.2.1 shows the examples of sub clock connection circuit.

After reset, the sub clock is turned off. At this time, the feedback resistor is disconnected from the oscillator circuit.

To use the sub clock for the CPU clock, set the CM07 bit in the CM0 register to "1" (sub clock) after the sub clock becomes oscillating stably.

During stop mode, all clocks including the sub clock are turned off. Refer to 7.6 Power Control.

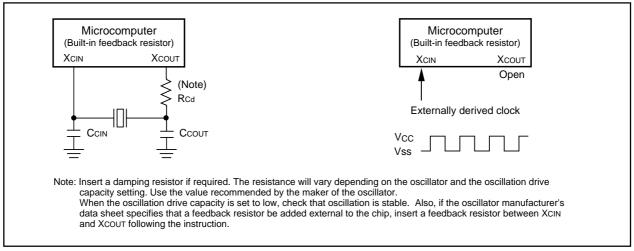


Figure 7.2.1. Examples of Sub Clock Connection Circuit

7.3 On-chip Oscillator Clock

This clock is supplied by a on-chip oscillator. This clock is used as the clock source for the CPU and peripheral function clocks. In addition, if the PM22 bit in the PM2 register is "1" (on-chip oscillator clock for the watchdog timer count source), this clock is used as the count source for the watchdog timer (Refer to **10.1 Count source protective mode**).

The on-chip oscillator clock after reset oscillates. The on-chip oscillator clock f2(ROC) divided by 16 is used for the CPU clock. It can also be turned off by setting the CM21 bit in the CM2 register to "0" (main clock or PLL clock). If the main clock stops oscillating when the CM20 bit in the CM2 register is "1" (oscillation stop, re-oscillation detection function enabled) and the CM27 bit is "1" (oscillation stop, re-oscillation detection interrupt), the on-chip oscillator automatically starts operating, supplying the necessary clock for the microcomputer.

7.4 PLL Clock

The PLL clock is generated from the main clock by a PLL frequency synthesizer. This clock is used as the clock source for the CPU and peripheral function clocks. After reset, the PLL clock is turned off. The PLL frequency synthesizer is activated by setting the PLC07 bit to "1" (PLL operation). When the PLL clock is used as the clock source for the CPU clock, wait tsu(PLL) for the PLL clock to be stable, and then set the CM11 bit in the CM1 register to "1".

Before entering wait mode or stop mode, be sure to set the CM11 bit to "0" (CPU clock source is the main clock). Furthermore, before entering stop mode, be sure to set the PLC07 bit in the PLC0 register to "0" (PLL stops). Figure 7.4.1 shows the procedure for using the PLL clock as the clock source for the CPU. The PLL clock frequency is determined by the equation below.

PLL clock frequency=f(XIN) X (multiplying factor set by the PLC02 to PLC00 bits in the PLC0 register (However, 10 MHz \leq PLL clock frequency \leq 20 MHz)

The PLC02 to PLC00 bits can be set only once after reset. Table 7.4.1 shows the example for setting PLL clock frequencies.

Table 7.4.1. Example for Setting PLL Clock Frequencies

XIN (MHz)	PLC02	PLC01	PLC00	Multiplying factor	PLL clock (MHz)(Note)
10	0	0	1	2	00
5	0	1	0	4	20

Note: $10MHz \le PLL$ clock frequency $\le 20MHz$.

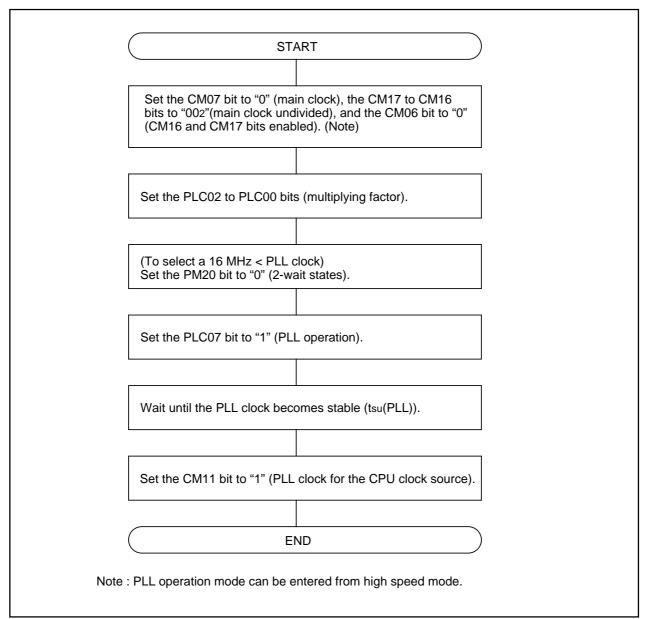


Figure 7.4.1. Procedure to Use PLL Clock as CPU Clock Source

7.5 CPU Clock and Peripheral Function Clock

The CPU clock is used to operate the CPU and peripheral function clocks are used to operate the peripheral functions.

7.5.1 CPU Clock

This is the operating clock for the CPU and watchdog timer.

The clock source for the CPU clock can be chosen to be the main clock, sub clock, on-chip oscillator clock or the PLL clock.

If the main clock or on-chip oscillator clock is selected as the clock source for the CPU clock, the selected clock source can be divided by 1 (undivided), 2, 4, 8 or 16 to produce the CPU clock. Use the CM06 bit in CM0 register and the CM17 to CM16 bits in CM1 register to select the divide-by-n value.

When the PLL clock is selected as the clock source for the CPU clock, the CM06 bit should be set to "0" and the CM17 and CM16 bits to "002" (undivided).

After reset, the on-chip oscillator clock divided by 16 provides the CPU clock.

Note that when entering stop mode from high or middle speed mode, on-chip oscillator mode or on-chip oscillator low power dissipation mode, or when the CM05 bit in the CM0 register is set to "1" (main clock turned off) in low-speed mode, the CM06 bit in the CM0 register is set to "1" (divide-by-8 mode).

7.5.2 Peripheral Function Clock(f1, f2, f8, f32, f1SiO, f2SiO, f8SiO, f32SiO, fAD, fC32)

These are operating clocks for the peripheral functions.

Of these, fi (i = 1, 2, 8, 32) and fisio are derived from the main clock, PLL clock or on-chip oscillator clock by dividing them by i. The clock fi is used for timers A and B, and fisio is used for serial I/O.

The fAD clock is produced from the main clock, PLL clock or on-chip oscillator clock, and is used for the A/D converter.

When the WAIT instruction is executed after setting the CM02 bit in the CM0 register to "1" (peripheral function clock turned off during wait mode), or when the microcomputer is in low power dissipation mode, the fi, fisio and fAD clocks are turned off.

The fc32 clock is produced from the sub clock, and is used for timers A and B. This clock can only be used when the sub clock is on.

7.5.3 ClockOutput Function

The f₁, f₈, f₃₂ or fC clock can be output from the CLKOUT pin. Use the PCLK5 bit in the PCLKR register and CM01 to CM00 bits in the CM0 register to select. Table 7.5.3.1 shows the function of the CLKOUT pin.

Table 7.5.3.1 The function of the CLKout pin

PCLK5	CM01	CM00	The function of the CLKo∪⊤ pin
0	0	0	I/O port P90
0	0	1	fc
0	1	0	f8
0	1	1	f32
1	0	0	f1
1	0	1	Do not set
1	1	0	Do not set
1	1	1	Do not set

7.6 Power Control

There are three power control modes. For convenience' sake, all modes other than wait and stop modes are referred to as normal operation mode here.

7.6.1 Normal Operation Mode

Normal operation mode is further classified into seven modes.

In normal operation mode, because the CPU clock and the peripheral function clocks both are on, the CPU and the peripheral functions are operating. Power control is exercised by controlling the CPU clock frequency. The higher the CPU clock frequency, the greater the processing capability. The lower the CPU clock frequency, the smaller the power consumption in the chip. If the unnecessary oscillator circuits are turned off, the power consumption is further reduced.

Before the clock sources for the CPU clock can be switched over, the new clock source to which switched must be oscillating stably. If the new clock source is the main clock, sub clock or PLL clock, allow a sufficient wait time in a program until it becomes oscillating stably.

Note that operation modes cannot be changed directly from low speed or low power dissipation mode to on-chip oscillator or on-chip oscillator low power dissipation mode. Nor can operation modes be changed directly from on-chip oscillator or on-chip oscillator low power dissipation mode to low speed or low power dissipation mode. When the CPU clock source is changed from the on-chip oscillator to the main clock, change the operation mode to the medium speed mode (divided by 8 mode) after the clock was divided by 8 (the CM06 bit in the CM0 register was set to "1") in the on-chip oscillator mode.

7.6.1.1 High-speed Mode

The main clock divided by 1 provides the CPU clock. If the sub clock is on, fc32 can be used as the count source for timers A and B.

7.6.1.2 PLL Operation Mode

The main clock multiplied by 2 or 4 provides the PLL clock, and this PLL clock serves as the CPU clock. If the sub clock is on, fC32 can be used as the count source for timers A and B. PLL operation mode can be entered from high speed mode. If PLL operation mode is to be changed to wait or stop mode, first go to high speed mode before changing.

7.6.1.3 Medium-speed Mode

The main clock divided by 2, 4, 8 or 16 provides the CPU clock. If the sub clock is on, fC32 can be used as the count source for timers A and B.

7.6.1.4 Low-speed Mode

The sub clock provides the CPU clock. The main clock is used as the clock source for the peripheral function clock when the CM21 bit is set to "0" (on-chip oscillator turned off), and the on-chip oscillator clock is used when the CM21 bit is set to "1" (on-chip oscillator oscillating).

The fc32 clock can be used as the count source for timers A and B.

7.6.1.5 Low Power Dissipation Mode

In this mode, the main clock is turned off after being placed in low speed mode. The sub clock provides the CPU clock. The fc32 clock can be used as the count source for timers A and B. Peripheral function clock can use only fc32.

Simultaneously when this mode is selected, the CM06 bit in the CM0 register becomes "1" (divided by 8 mode). In the low power dissipation mode, do not change the CM06 bit. Consequently, the medium speed (divided by 8) mode is to be selected when the main clock is operated next.

7.6.1.6 On-chip Oscillator Mode

The selected on-chip oscillator clock divided by 1 (undivided), 2, 4, 8 or 16 provides the CPU clock. The on-chip oscillator clock is also the clock source for the peripheral function clocks. If the sub clock is on, fc32 can be used as the count source for timers A and B. The on-chip oscillator frequency can be selected ROCR3 to ROCR0 bits in ROCR register. When the operation mode is returned to the high and medium speed modes, set the CM06 bit to "1" (divided by 8 mode).

7.6.1.7 On-chip Oscillator Low Power Dissipation Mode

The main clock is turned off after being placed in on-chip oscillator mode. The CPU clock can be selected as in the on-chip oscillator mode. The on-chip oscillator clock is the clock source for the peripheral function clocks. If the sub clock is on, fc32 can be used as the count source for timers A and B.

Table 7.6.1.1. Setting Clock Related Bit and Modes

Madaa		CM2 register	CN	M1 register		CM0 re	gister	
Modes		CM21	CM11	CM17, CM16	CM07	CM06	CM05	CM04
PLL operati	ion mode	0	1	002	0	0	0	
High-speed	l mode	0	0	002	0	0	0	
Medium-	divided by 2	0	0	012	0	0	0	
speed	divided by 4	0	0	102	0	0	0	
mode	divided by 8	0	0	_	0	1	0	
	divided by 16	0	0	112	0	0	0	
Low-speed	mode	_			1		0	1
Low power	dissipation mode				1	1(Note 1)	1(Note 1)	1
	divided by 1	1		002	0	0	0	
On-chip	divided by 2	1		012	0	0	0	
oscillator mode	divided by 4	1		102	0	0	0	
(Note 3)	divided by 8	1		0	0	1	0	
(14010-0)	divided by 16	1		112	0	0	0	
On-chip oscillator low power dissipation mode		1		(Note 2)	0	(Note 2)	1	

Note 1: When the CM05 bit is set to "1" (main clock turned off) in low-speed mode, the mode goes to low power dissipation mode and CM06 bit is set to "1" (divided by 8 mode) simultaneously.

7.6.2 Wait Mode

In wait mode, the CPU clock is turned off, so are the CPU (because operated by the CPU clock) and the watchdog timer. However, if the PM22 bit in the PM2 register is "1" (on-chip oscillator clock for the watchdog timer count source), the watchdog timer remains active. Because the main clock, sub clock, on-chip oscillator clock and PLL clock all are on, the peripheral functions using these clocks keep operating.

7.6.2.1 Peripheral Function Clock Stop Function

If the CM02 bit is "1" (peripheral function clocks turned off during wait mode), the f1, f2, f8, f32, f1SIO, f8SIO, f32SIO and fAD clocks are turned off when in wait mode, with the power consumption reduced that much. However, fC32 remains on.

7.6.2.2 Entering Wait Mode

The microcomputer is placed into wait mode by executing the WAIT instruction.

When the CM11 bit is set to "1" (CPU clock source is the PLL clock), be sure to clear the CM11 bit to "0" (CPU clock source is the main clock) before going to wait mode. The power consumption of the chip can be reduced by clearing the PLC07 bit to "0" (PLL stops).

Note 2: The divide-by-n value can be selected the same way as in on-chip oscillator mode

Note 3: On-chip oscillator frequency can be any of those described in the section 7.6.1.6 On-chip Oscillator Mode.

7.6.2.3 Pin Status During Wait Mode

Table 7.6.2.3.1 lists pin status during wait mode.

Table 7.6.2.3.1 Pin Status in Wait Mode

Pin		Status
I/O ports		Retains status before wait mode
	When fC selected	Does not stop
CLKout	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Does not stop when the CM02 bit is set to "0".
	When f1, f8, f32 selected	Retains status before wait mode when the CM02 bit is set to "1".

7.6.2.4 Exiting Wait Mode

The microcomputer is moved out of wait mode by a hardware reset, NMI interrupt or peripheral function interrupt.

If the microcomputer is to be moved out of exit wait mode by a hardware reset or $\overline{\text{NMI}}$ interrupt, set the peripheral function interrupt priority ILVL2 to ILVL0 bits to "0002" (interrupts disabled) before executing the WAIT instruction.

The peripheral function interrupts are affected by the CM02 bit. If the CM02 bit is set to "0" (peripheral function clocks not turned off during wait mode), all peripheral function interrupts can be used to exit wait mode. If the CM02 bit is set to "1" (peripheral function clocks turned off during wait mode), the peripheral functions using the peripheral function clocks stop operating, so that only the peripheral functions clocked by external signals can be used to exit wait mode.

Table 7.6.2.4.1 lists the interrupts to exit wait mode.

Table 7.6.2.4.1. Interrupts to Exit Wait Mode

Interrupt	CM02=0	CM02=1
NMI interrupt	Can be used	Can be used
Serial I/O interrupt	Can be used when operating with internal or external clock	Can be used when operating with external clock
key input interrupt	Can be used	Can be used
A/D conversion interrupt	Can be used in one-shot mode or single sweep mode	— (Do not use)
Timer A interrupt Timer B interrupt	Can be used in all modes	Can be used in event counter mode or when the count source is fC32
INT interrupt	Can be used	Can be used

If the microcomputer is to be moved out of wait mode by a peripheral function interrupt, set up the following before executing the WAIT instruction.

- 1. In the ILVL2 to ILVL0 bits in the interrupt control register, set the interrupt priority level of the periph eral function interrupt to be used to exit wait mode.
 - Also, for all of the peripheral function interrupts not used to exit wait mode, set the ILVL2 to ILVL0 bits to "0002" (interrupt disable).
- 2. Set the I flag to "1".
- Enable the peripheral function whose interrupt is to be used to exit wait mode.
 In this case, when an interrupt request is generated and the CPU clock is thereby turned on, an interrupt routine is executed.

The CPU clock turned on when exiting wait mode by a peripheral function interrupt is the same CPU clock that was on when the WAIT instruction was executed.

7.6.3 Stop Mode

In stop mode, all oscillator circuits are turned off, so are the CPU clock and the peripheral function clocks. Therefore, the CPU and the peripheral functions clocked by these clocks stop operating. The least amount of power is consumed in this mode. If the voltage applied to Vcc pin is VRAM or more, the internal RAM is retained. When applying 2.7 or less voltage to Vcc pin, make sure Vcc≥VRAM.

However, the peripheral functions clocked by external signals keep operating. The following interrupts can be used to exit stop mode.

- NMI interrupt
- Key interrupt
- INT interrupt
- Timer A, Timer B interrupt (when counting external pulses in event counter mode)
- Serial I/O interrupt (when external clock is selected)
- Voltage down detection interrupt

(refer to 5.5.1 Voltage Down Detection Interrupt for an operating condition)

7.6.3.1 Entering Stop Mode

The microcomputer is placed into stop mode by setting the CM10 bit in the CM1 register to "1" (all clocks turned off). At the same time, the CM06 bit in the CM0 register is set to "1" (divide-by-8 mode) and the CM15 bit in the CM10 register is set to "1" (main clock oscillator circuit drive capability high). Before entering stop mode, set the CM20 bit to "0" (oscillation stop, re-oscillation detection function disable).

Also, if the CM11 bit is "1" (PLL clock for the CPU clock source), set the CM11 bit to "0" (main clock for the CPU clock source) and the PLC07 bit to "0" (PLL turned off) before entering stop mode.

7.6.3.2 Pin Status during Stop Mode

The I/O pins retain their status held just prior to entering stop mode.

7.6.3.3 Exiting Stop Mode

The microcomputer is moved out of stop mode by a hardware reset, NMI interrupt or peripheral function interrupt.

If the microcomputer is to be moved out of stop mode by a hardware reset or $\overline{\text{NMI}}$ interrupt, set the peripheral function interrupt priority ILVL2 to ILVL0 bits to "0002" (interrupts disable) before setting the CM10 bit to "1".

If the microcomputer is to be moved out of stop mode by a peripheral function interrupt, set up the following before setting the CM10 bit to "1".

- 1. In the ILVL2 to ILVL0 bits in the interrupt control register, set the interrupt priority level of the peripheral function interrupt to be used to exit stop mode.
 - Also, for all of the peripheral function interrupts not used to exit stop mode, set the ILVL2 to ILVL0 bits to "0002".
- 2. Set the I flag to "1".
- Enable the peripheral function whose interrupt is to be used to exit stop mode.
 In this case, when an interrupt request is generated and the CPU clock is thereby turned on, an interrupt service routine is executed.

Which CPU clock will be used after exiting stop mode by a peripheral function or $\overline{\text{NMI}}$ interrupt is determined by the CPU clock that was on when the microcomputer was placed into stop mode as follows:

If the CPU clock before entering stop mode was derived from the sub clock : sub clock

If the CPU clock before entering stop mode was derived from the main clock : main clock divide-by-8

If the CPU clock before entering stop mode was derived from the on-chip oscillator clock: on-chip oscillator clock divide-by-8

Figure 7.6.1 shows the state transition from normal operation mode to stop mode and wait mode. Figure 7.6.1.1 shows the state transition in normal operation mode.

Table 7.6.1 shows a state transition matrix describing allowed transition and setting. The vertical line shows current state and horizontal line shows state after transition.

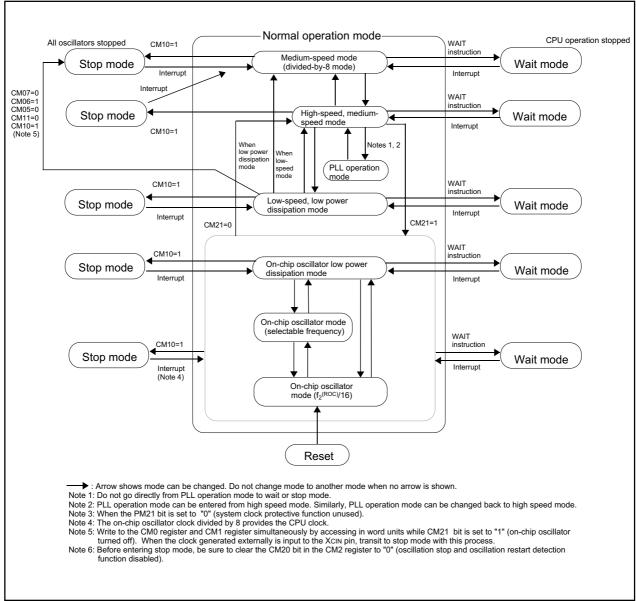


Figure 7.6.1. State Transition to Stop Mode and Wait Mode

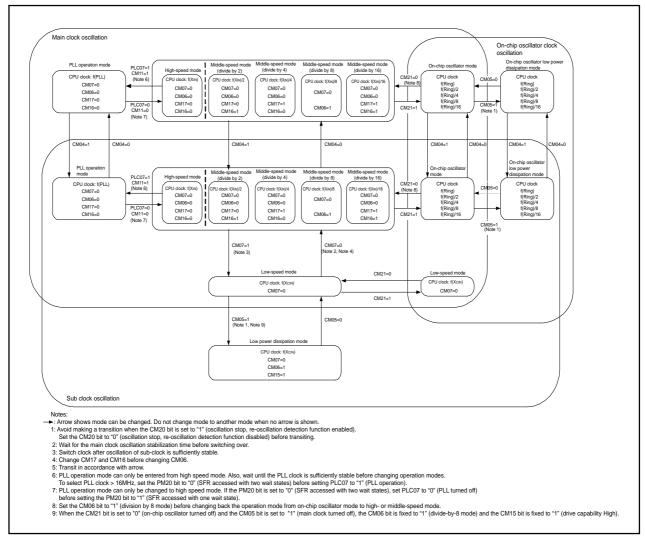


Figure 7.6.1.1. State Transition in Normal Mode

-- Cannot transit

Table 7.6.1. Allowed Transition and Setting

					State after	er transition			
		High-speed mode, middle-speed mode	Low-speed mode ²	Low power dissipation mode	PLL operation mode ²	On-chip oscillator mode	On-chip oscillator low power dissipation mode	Stop mode	Wait mode
	High-speed mode, middle-speed mode	See Table A ⁸	(9) ⁷		(13) ³	(15)		(16) ¹	(17)
	Low-speed mode ²	(8)		(11)1, 6				(16)1	(17)
g.	Low power dissipation mode		(10)					(16) ¹	(17)
Current state	PLL operation mode ²	(12) ³							
Curre	On-chip oscillator mode	(14) ⁴				See Table A ⁸	(11) ¹	(16) ¹	(17)
	On-chip oscillator low power dissipation mode					(10)	See Table A ⁸	(16) ¹	(17)
	Stop mode	(18) ⁵	(18)	(18)		(18) ⁵	(18) ⁵		
	Wait mode	(18)	(18)	(18)		(18)	(18)		

Notes:

1. Avoid making a transition when the CM21 bit is set to "1" (oscillation stop, re-oscillation detection function enabled).

Set the CM21 bit to "0" (oscillation stop, re-oscillation detection function disabled) before transiting.

2. On-chip oscillator clock oscillates and stops in low-speed mode. In this mode, the on-chip oscillator can be used as peripheral function clock. Sub clock oscillates and stops in PLL operation mode. In this mode, sub clock can be used as peripheral function clock.

3. PLL operation mode can only be entered from and changed to high-speed mode.

4. Set the CM06 bit to "1" (division by 8 mode) before transiting from on-chip oscillator mode to high- or middle-speed mode.

5. When exiting stop mode, the CM06 bit is set to "1" (division by 8 mode).

6. If the CM05 bit is set to "1" (main clock stop), then the CM06 bit is set to "1" (division by 8 mode).

7. A transition can be made only when sub clock is oscillating.

8. State transitions within the same mode (divide-by-n values changed or subclock oscillation turned on or off) are shown in the table below.

		Sub clock oscillating				Sub clock turned off					
		No division	Divided by 2	Divided by 4	Divided by 8	Divided by 16	No division	Divided by 2	Divided by 4	Divided by 8	Divided by 16
	No division	division	(4)	(5)	(7)	(6)	(1)				
* 5	Divided by 2	(3)		(5)	(7)	(6)		(1)			
b clock cillating	Divided by 4	(3)	(4)		(7)	(6)			(1)		
Sub	Divided by 8	(3)	(4)	(5)		(6)				(1)	
	Divided by 16	(3)	(4)	(5)	(7)	/					(1)
	No division	(2)				`		(4)	(5)	(7)	(6)
clock ad off	Divided by 2	1	(2)	1	-	-	(3)	/	(5)	(7)	(6)
	Divided by 4	-		(2)			(3)	(4)	/	(7)	(6)
Sub	Divided by 8	1		1	(2)	1	(3)	(4)	(5)		(6)
	Divided by 16					(2)	(3)	(4)	(5)	(7)	

9. (): setting method. Refer to following table.

	Setting	Operation	
(1)	CM04 = 0	Sub clock turned off	
(2)	CM04 = 1	Sub clock oscillating	
(3)	CM06 = 0, CM17 = 0 , CM16 = 0	CPU clock no division mode	
(4)	CM06 = 0, CM17 = 0 , CM16 = 1	CPU clock division by 2 mode	
(5)	CM06 = 0, CM17 = 1 , CM16 = 0	CPU clock division by 4 mode	
(6)	CM06 = 0, CM17 = 1 , CM16 = 1	CPU clock division by 16 mode	
(7)	CM06 = 1	CPU clock division by 8 mode	
(8)	CM07 = 0	Main clock, PLL clock, or on-chip oscillator clock selected	
(9)	CM07 = 1	Sub clock selected	
(10)	CM05 = 0	Main clock oscillating	
(11)	CM05 = 1	Main clock turned off	
(12)	PLC07 = 0, CM11 = 0	Main clock selected	
(13)	PLC07 = 1, CM11 = 1	PLL clock selected	
(14)	CM21 = 0	Main clock or PLL clock selected	
(15)	CM21 = 1	On-chip oscillator clock selected	
(16)	CM10 = 1	Transition to stop mode	
(17)	wait instruction	Transition to wait mode	
(18)	Hardware interrupt	Exit stop mode or wait mode	

--: Cannot transit

CM04, CM05, CM06, CM07 : bits in the CM0 register CM10, CM11, CM16, CM17 : bits in the CM1 register CM20, CM21 : bits in the CM2 register PLC07 : bit in the PLC0 register

7.7 System Clock Protective Function

When the main clock is selected for the CPU clock source, this function protects the clock from modifications in order to prevent the CPU clock from becoming halted by run-away.

If the PM21 bit in the PM2 register is set to "1" (clock modification disabled), the following bits are protected against writes:

- CM02, CM05, and CM07 bits in CM0 register
- CM10, CM11 bits in CM1 register
- CM20 bit in CM2 register
- All bits in PLC0 register

Before the system clock protective function can be used, the following register settings must be made while the CM05 bit in the CM0 register is "0" (main clock oscillating) and CM07 bit is "0" (main clock selected for the CPU clock source):

- (1) Set the PRC1 bit in the PRCR register to "1" (enable writes to PM2 register).
- (2) Set the PM21 bit in the PM2 register to "1" (disable clock modification).
- (3) Set the PRC1 bit in the PRCR register to "0" (disable writes to PM2 register).

Do not execute the WAIT instruction when the PM21 bit is set to "1".

7.8 Oscillation Stop and Re-oscillation Detect Function

The oscillation stop and re-oscillation detect function allows the detection of main clock oscillation stop and reoscillation. At oscillation stop or re-oscillation detection, reset or oscillation stop, re-oscillation detection interrupt are generated. Depending on the CM27 bit in the CM2 register. The oscillation stop detection function can be enabled and disabled by the CM20 bit in the CM2 register. Table 7.8.1 lists a specification overview of the oscillation stop and re-oscillation detect function.

Table 7.8.1. Specification Overview of Oscillation Stop and Re-oscillation Detect Function

Item	Specification	
Oscillation stop detectable clock and	$f(X_{IN}) \ge 2 MHz$	
frequency bandwidth		
Enabling condition for oscillation stop,	Set the CM20 bit to "1"(enable)	
re-oscillation detection function		
Operation at oscillation stop,	•Reset occurs (when the CM27 bit is set to "0")	
re-oscillation detection	Oscillation stop, re-oscillation detection interrupt occurs(when the CM27 bit is	
	set to "1")	

7.8.1 Operation When the CM27 bit is set to "0" (Oscillation Stop Detection Reset)

When main clock stop is detected when the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the microcomputer is initialized, coming to a halt (oscillation stop reset; refer to **4. SFR**, **5. Reset**).

This status is reset with hardware reset 1 or hardware reset 2. Also, even when re-oscillation is detected, the microcomputer can be initialized and stopped; it is, however, necessary to avoid such usage. (During main clock stop, do not set the CM20 bit to "1" and the CM27 bit to "0".)

7.8.2 Operation When the CM27 bit is set to "1" (Oscillation Stop and Re-oscillation Detect Interrupt)

When the main clock corresponds to the CPU clock source and the CM20 bit is "1" (oscillation stop and re-oscillation detect function enabled), the system is placed in the following state if the main clock comes to a halt:

- Oscillation stop and re-oscillation detect interrupt request occurs.
- The on-chip oscillator starts oscillation, and the on-chip oscillator clock becomes the CPU clock and clock source for peripheral functions in place of the main clock.
- CM21 bit is set to "1" (on-chip oscillator clock for CPU clock source)
- CM22 bit is set to "1" (main clock stop detected)
- CM23 bit is set to "1" (main clock stopped)

When the PLL clock corresponds to the CPU clock source and the CM20 bit is "1", the system is placed in the following state if the main clock comes to a halt: Since the CM21 bit remains unchanged, set it to "1" (on-chip oscillator clock) inside the interrupt routine.

- Oscillation stop and re-oscillation detect interrupt request occurs.
- CM22 bit is set to "1" (main clock stop detected)
- CM23 bit is set to "1" (main clock stopped)
- CM21 bit remains unchanged

When the CM20 bit is "1", the system is placed in the following state if the main clock re-oscillates from the stop condition:

- Oscillation stop and re-oscillation detect interrupt request occurs.
- CM22 bit is set to "1" (main clock re-oscillation detected)
- CM23 bit is set to "0" (main clock oscillation)
- CM21 bit remains unchanged

7.8.3 How to Use Oscillation Stop and Re-oscillation Detect Function

- The oscillation stop and re-oscillation detect interrupt shares the vector with the watchdog timer interrupt. If the oscillation stop, re-oscillation detection and watchdog timer interrupts both are used, read the CM22 bit in an interrupt routine to determine which interrupt source is requesting the interrupt.
- Where the main clock re-oscillated after oscillation stop, return the main clock to the CPU clock and peripheral function clock source in the program. Figure 7.8.3.1 shows the procedure for switching the clock source from the on-chip oscillator to the main clock.
- Simultaneously with oscillation stop, re-oscillation detection interrupt occurrence, the CM22 bit becomes "1". When the CM22 bit is set at "1", oscillation stop, re-oscillation detection interrupt are disabled. By setting the CM22 bit to "0" in the program, oscillation stop, re-oscillation detection interrupt are enabled.
- If the main clock stops during low speed mode where the CM20 bit is "1", an oscillation stop, re-oscillation detection interrupt request is generated. At the same time, the on-chip oscillator starts oscillating. In this case, although the CPU clock is derived from the sub clock as it was before the interrupt occurred, the peripheral function clocks now are derived from the on-chip oscillator clock.
- To enter wait mode while using the oscillation stop, re-oscillation detection function, set the CM02 bit to "0" (peripheral function clocks not turned off during wait mode).
- Since the oscillation stop, re-oscillation detection function is provided in preparation for main clock stop due to external factors, set the CM20 bit to "0" (Oscillation stop, re-oscillation detection function disabled) where the main clock is stopped or oscillated in the program, that is where the stop mode is selected or the CM05 bit is altered.
- This function cannot be used if the main clock frequency is 2 MHz or less. In that case, set the CM20 bit to "0".

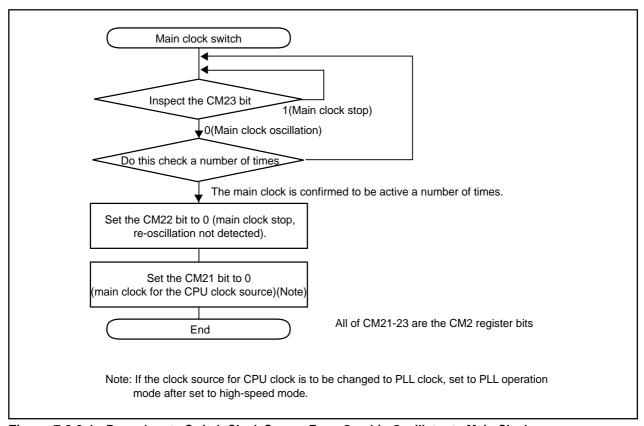


Figure 7.8.3.1. Procedure to Switch Clock Source From On-chip Oscillator to Main Clock

8. Protection

Note

The M16C/26T do not use the PRC3 bit in the PRCR register.

In the event that a program runs out of control, this function protects the important registers so that they will not be rewritten easily. Figure 8.1 shows the PRCR register. The following lists the registers protected by the PRCR register.

- Registers protected by PRC0 bit: CM0, CM1, CM2, PLC0, ROCR and PCLKR registers
- Registers protected by PRC1 bit: PM0, PM1, PM2, TB2SC, INVC0 and INVC1 registers
- Registers protected by PRC2 bit: PD9, PACR and NDDR registers
- Registers protected by PRC3 bit: VCR2 and D4INT registers

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be cleared to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction. The PRC0, PRC1 and PRC3 bits are not automatically cleared to "0" by writing to any address. They can only be cleared in a program.

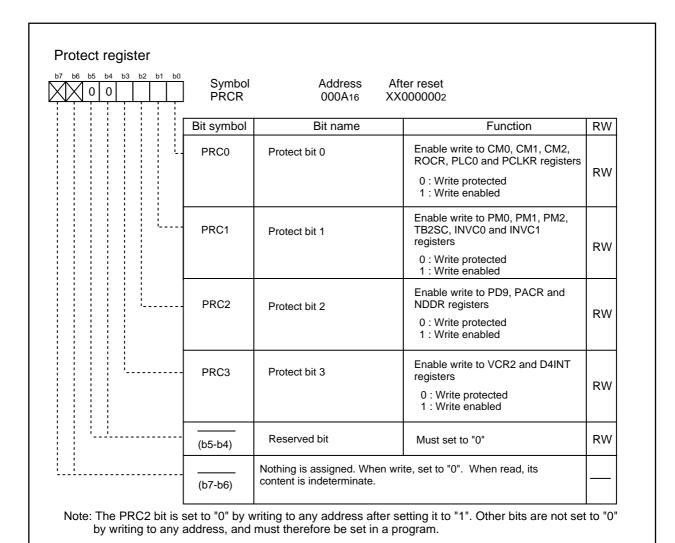


Figure 8.1. PRCR Register

9. Interrupt

Note

M16C/26A(42-pin version) do not use UART0 transmission interrupt and UART0 reception interrupt of peripheral function.

M16C/26T do not use voltage down detection interrupt.

9.1 Type of Interrupts

Figure 9.1.1 shows types of interrupts.

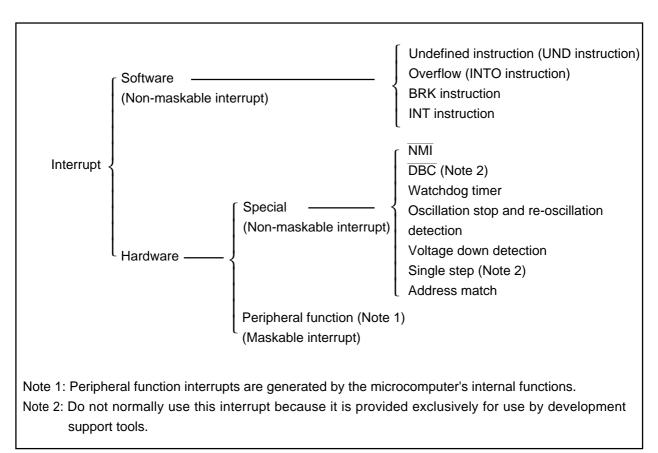


Figure 9.1.1. Interrupts

- Maskable Interrupt: An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority <u>can be changed</u> by priority level.
- Non-maskable Interrupt: An interrupt which cannot be enabled (disabled) by the interrupt enable flag
 (I flag) or whose interrupt priority cannot be changed by priority level.

9.1.1 Software Interrupts

A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable interrupts.

9.1.1.1 Undefined Instruction Interrupt

An undefined instruction interrupt occurs when executing the UND instruction.

9.1.1.2 Overflow Interrupt

An overflow interrupt occurs when executing the INTO instruction with the O flag set to "1" (the operation resulted in an overflow). The following are instructions whose O flag changes by arithmetic: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

9.1.1.3 BRK Interrupt

A BRK interrupt occurs when executing the BRK instruction.

9.1.1.4 INT Instruction Interrupt

An INT instruction interrupt occurs when executing the INT instruction. Software interrupt Nos. 0 to 63 can be specified for the INT instruction. Because software interrupt Nos. 4, 8 to 31 are assigned to peripheral function interrupts, the same interrupt routine as for peripheral function interrupts can be executed by executing the INT instruction.

In software interrupt Nos. 0 to 31, the U flag is saved to the stack during instruction execution and is cleared to "0" (ISP selected) before executing an interrupt sequence. The U flag is restored from the stack when returning from the interrupt routine. In software interrupt Nos. 32 to 63, the U flag does not change state during instruction execution, and the SP then selected is used.

9.1.2 Hardware Interrupts

Hardware interrupts are classified into two types — special interrupts and peripheral function interrupts.

9.1.2.1 Special Interrupts

Special interrupts are non-maskable interrupts.

9.1.2.1.1 NMI Interrupt

An $\overline{\text{NMI}}$ interrupt is generated when input on the $\overline{\text{NMI}}$ pin changes state from high to low. For details about the $\overline{\text{NMI}}$ interrupt, refer to the section **9.7** $\overline{\text{NMI}}$ Interrupt.

9.1.2.1.2 DBC Interrupt

This interrupt is exclusively for debugger, do not use in any other circumstances.

9.1.2.1.3 Watchdog Timer Interrupt

Generated by the watchdog timer. Once a watchdog timer interrupt is generated, be sure to initialize the watchdog timer. For details about the watchdog timer, refer to the section **10. Watchdog Timer**.

9.1.2.1.4 Oscillation Stop and Re-oscillation Detection Interrupt

Generated by the oscillation stop and re-oscillation detection function. For details about the oscillation stop and re-oscillation detection function, refer to the section **7. Clock Generating Circuit**.

9.1.2.1.5 Voltage Down Detection Interrupt

Generated by the voltage detection circuit. For details about the voltage detection circuit, refer to the section **5.5 Voltage Detection Circuit**.

9.1.2.1.6 Single-step Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development support tools.

9.1.2.1.7 Address Match Interrupt

An address match interrupt is generated immediately before executing the instruction at the address indicated by the RMAD0 or RMAD1 register, if the corresponding enable bit (the AIER0 or AIER1 bit in the AIER register) is set to "1". For details about the address match interrupt, refer to the section **9.9 Address Match Interrupt**.

9.1.2.2 Peripheral Function Interrupts

Peripheral function interrupts are maskable interrupts and generated by the microcomputer's internal functions. The interrupt sources for peripheral function interrupts are listed in **Table 9.2.2.1 Relocatable Vector Tables**. For details about the peripheral functions, refer to the description of each peripheral function in this manual.

9.2 Interrupts and Interrupt Vector

One interrupt vector consists of 4 bytes. Set the start address of each interrupt routine in the respective interrupt vectors. When an interrupt request is accepted, the CPU branches to the address set in the corresponding interrupt vector. Figure 9.2.1 shows the interrupt vector.

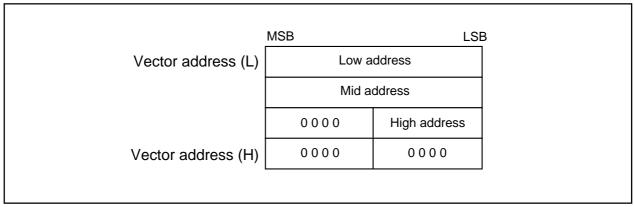


Figure 9.2.1. Interrupt Vector

9.2.1 Fixed Vector Tables

The fixed vector tables are allocated to the addresses from FFFDC16 to FFFFF16. Table 9.2.1.1 lists the fixed vector tables. In the flash memory version of microcomputer, the vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to the section **17.3 Flash Memory Rewrite Disabling Function**.

Table 9.2.1.1. Fixed Vector Tables

Interrupt source	Vector table addresses	Remarks	Reference
	Address (L) to address (H)		
Undefined instruction	FFFDC16 to FFFDF16	Interrupt on UND instruction	M16C/60, M16C/20
Overflow	FFFE016 to FFFE316	Interrupt on INTO instruction	serise software
BRK instruction	FFFE416 to FFFE716	If the contents of address FFFE716 is FF16, program execution starts from the address shown by the vector in the relocatable vector table.	maual
Address match	FFFE816 to FFFEB16		Address match interrupt
Single step (Note1)	FFFEC16 to FFFEF16		
Watchdog timer	FFFF016 to FFFF316		Watchdog timer
Oscillation stop and re-oscillation detection Voltage down			Clock generating circuit
detection			Voltage detection circuit
DBC (Note1)	FFFF416 to FFFF716		
NMI	FFFF816 to FFFFB16		NMI interrupt
Reset (Note 2)	FFFFC16 to FFFFF16		Reset

Note 1: Do not normally use this interrupt because it is provided exclusively for use by development support tools.

Note 2: The b3 to b0 in address 0FFFFF16 are reserve bits. Set these bits to "11112".

9.2.2 Relocatable Vector Tables

The 256 bytes beginning with the start address set in the INTB register comprise a reloacatable vector table area. Table 9.2.2.1 lists the relocatable vector tables. Setting an even address in the INTB register results in the interrupt sequence being executed faster than in the case of odd addresses.

Table 9.2.2.1. Relocatable Vector Tables

Interrupt source	Vector address (Note 1) Address (L) to address (H)	Software interrupt number	Reference	
BRK instruction (Note 4)	+0 to +3 (000016 to 000316)	0	M16C/60, M16C/20	
(Reserved)		1 to 3	series software manual	
ĪNT3	+16 to +19 (001016 to 001316)	4	INT interrupt	
——— (Reserved)		5 to 7		
INT5 (Note 2)	+32 to +35 (002016 to 002316)	8	INIT into much	
INT4 (Note 2)	+36 to +39 (002416 to 002716)	9	INT interrupt	
UART 2 bus collision detection (Note 5)	+40 to +43 (002816 to 002B16)	10	Serial I/O	
DMA0	+44 to +47 (002C16 to 002F16)	11	DMAC	
DMA1	+48 to +51 (003016 to 003316)	12	DIVIAC	
Key input interrupt	+52 to +55 (003416 to 003716)	13	Key input interrupt	
A/D	+56 to +59 (003816 to 003B16)	14	A/D convertor	
UART2 transmit, NACK2 (Note 3)	+60 to +63 (003C16 to 003F16)	15		
UART2 receive, ACK2 (Note 3)	+64 to +67 (004016 to 004316)	16	Serial I/O	
UART0 transmit	+68 to +71 (004416 to 004716)	17		
UART0 receive	+72 to +75 (004816 to 004B16)	18		
UART1 transmit	+76 to +79 (004C16 to 004F16)	19		
UART1 receive	+80 to +83 (005016 to 005316)	20		
Timer A0	+84 to +87 (005416 to 005716)	21		
Timer A1	+88 to +91 (005816 to 005B16)	22		
Timer A2	+92 to +95 (005C16 to 005F16)	23		
Timer A3	+96 to +99 (006016 to 006316)	24	Timer	
Timer A4	+100 to +103 (006416 to 006716)	25	rimei	
Timer B0	+104 to +107 (006816 to 006B16)	26		
Timer B1	+108 to +111 (006C16 to 006F16)	27		
Timer B2	+112 to +115 (007016 to 007316)	28		
ĪNT0	+116 to +119 (007416 to 007716)	29		
INT1	+120 to +123 (007816 to 007B16)	30	INT interrupt	
ĪNT2	+124 to +127 (007C16 to 007F16)	31		
Software interrupt (Note 4)	+128 to +131 (008016 to 008316) to +252 to +255 (00FC16 to 00FF16)	32 to 63	M16C/60, M16C/20 series software manual	

Note 1: Address relative to address in INTB.

Note 2: Set the IFSR6 and IFSR7 bits in the IFSR register.

Note 3: During I²C bus mode, NACK and ACK interrupts comprise the interrupt source.

Note 4: These interrupts cannot be disabled using the I flag.

Note 5: Bus collision detection: During IEBus mode, this bus collision detection constitutes the cause of an interrupt.

During I²C bus mode, however, a start condition or a stop condition detection constitutes the cause of an interrupt.

9.3 Interrupt Control

The following describes how to enable/disable the maskable interrupts, and how to set the priority in which order they are accepted. What is explained here does not apply to nonmaskable interrupts.

Use the I flag in the FLG register, IPL, and the ILVL2 to ILVL0 bits in the each interrupt control register to enable/disable the maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in each interrupt control register.

Figure 9.3.1 shows the interrupt control registers.

Figure 9.3.2 shows the IFSR, IFSR2A registers.

Interrupt control register (Note 2) Symbol Address After reset **BCNIC** 004A16 XXXXX0002 DM0IC, DM1IC 004B16, 004C16 XXXXX0002 KUPIC 004D₁₆ XXXXX0002 ADIC 004E₁₆ XXXXX0002 S0TIC to S2TIC S0RIC to S2RIC 0051₁₆, 0053₁₆, 004F₁₆ 0052₁₆, 0054₁₆, 0050₁₆ XXXXX0002 XXXXX0002 TA0IC to TA4IC 005516 to 005916 XXXXX0002 TB0IC to TB2IC 005A₁₆ to 005C₁₆ XXXXX0002 Bit name Function Bit symbol RW Interrupt priority level ILVL0 select bit b2 b1 b0 RW 0 0 0: Level 0 (interrupt disabled) 001: Level 1 ILVL1 0 1 0: Level 2 RW Level 3 100: Level 4 101: Level 5 ILVL2 110: Level 6 111: Level 7 RW 0: Interrupt not requested RW IR Interrupt request bit 1: Interrupt requested (Note 1) No functions are assigned. When writing to these bits, write "0". The values in these bits (b7-b4)when read are indeterminate.

Note 1: This bit can only be reset by writing "0" (Do not write "1")

Note 2: To rewrite the interrupt control registers, do so at a point that does not generate the interrupt request for that register. For details, see the "precautions for interrupts" of the Usage Notes Reference Book.

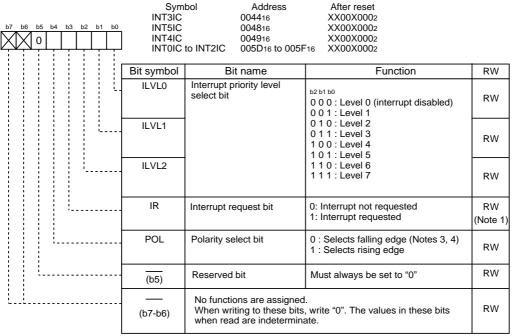


Figure 9.3.1. Interrupt Control Registers

Note 1: This bit can only be reset by writing "0" (Do not write "1").

Note 2: To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. For details, see the "precautions for interrupts" of the Usage Notes Reference Book.

Note 3: If the IFSRi bit (i = 0 to 5) in the IFSR register is "1" (both edges), set the POL bit in the INTilC register to "0" (falling edae).

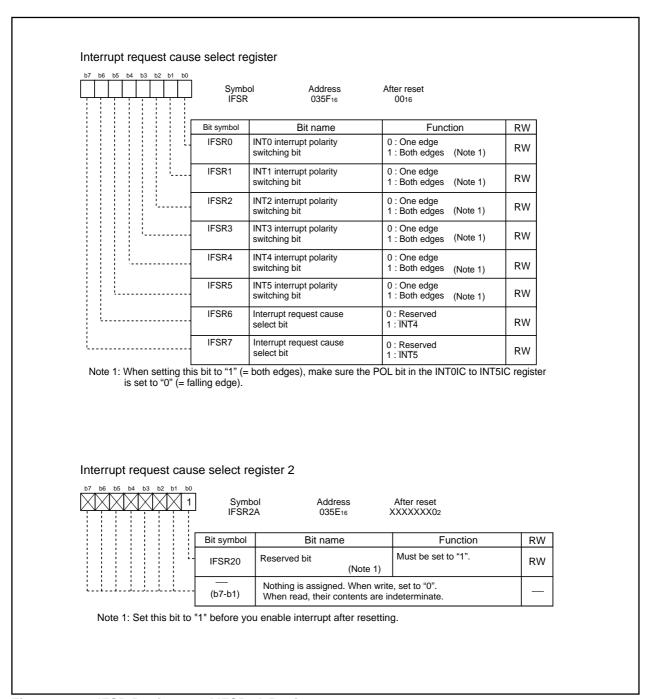


Figure 9.3.2. IFSR Register and IFSR2A Register

9.3.1 I Flag

The I flag enables or disables the maskable interrupt. Setting the I flag to "1" (= enabled) enables the maskable interrupt. Setting the I flag to "0" (= disabled) disables all maskable interrupts.

9.3.2 IR Bit

The IR bit is set to "1" (= interrupt requested) when an interrupt request is generated. Then, when the interrupt request is accepted and the CPU branches to the corresponding interrupt vector, the IR bit is cleared to "0" (= interrupt not requested).

The IR bit can be cleared to "0" in a program. Note that do not write "1" to this bit.

9.3.3 ILVL2 to ILVL0 Bits and IPL

Interrupt priority levels can be set using the ILVL2 to ILVL0 bits.

Table 9.3.3.1 shows the settings of interrupt priority levels and Table 9.3.3.2 shows the interrupt priority levels enabled by the IPL.

The following are conditions under which an interrupt is accepted:

- · I flag is set to "1"
- · IR bit is set to "1"
- · interrupt priority level > IPL

The I flag, IR bit, ILVL2 to ILVL0 bits and IPL are independent of each other. In no case do they affect one another.

Table 9.3.3.1. Settings of Interrupt Priority Levels

ILVL2 to ILVL0 bits	Interrupt priority level	Priority order
0002	Level 0 (interrupt disabled)	
0012	Level 1	Low
0102	Level 2	
0112	Level 3	
1002	Level 4	
1012	Level 5	
1102	Level 6	
1112	Level 7	High

Table 9.3.3.2. Interrupt Priority Levels
Enabled by IPL

IPL	Enabled interrupt priority levels
0002	Interrupt levels 1 and above are enabled
0012	Interrupt levels 2 and above are enabled
0102	Interrupt levels 3 and above are enabled
0112	Interrupt levels 4 and above are enabled
1002	Interrupt levels 5 and above are enabled
1012	Interrupt levels 6 and above are enabled
1102	Interrupt levels 7 and above are enabled
1112	All maskable interrupts are disabled

9.4 Interrupt Sequence

An interrupt sequence (the devicebehavior from the instant an interrupt is accepted to the instant the interrupt routine is executed) is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.

The CPU behavior during the interrupt sequence is described below. Figure 9.4.1 shows time required for executing the interrupt sequence.

- (1) The CPU gets interrupt information (interrupt number and interrupt request priority level) by reading the address 0000016. Then it clears the IR bit for the corresponding interrupt to "0" (interrupt not requested).
- (2) The FLG register immediately before entering the interrupt sequence is saved to the CPU's internal temporary register^(Note).
- (3) The I, D and U flags in the FLG register become as follows:

The I flag is cleared to "0" (interrupts disabled).

The D flag is cleared to "0" (single-step interrupt disabled).

The U flag is cleared to "0" (ISP selected).

However, the U flag does not change state if an INT instruction for software interrupt Nos. 32 to 63 is executed.

- (4) The CPU's internal temporary register (Note) is saved to the stack.
- (5) The PC is saved to the stack.
- (6) The interrupt priority level of the accepted interrupt is set in the IPL.
- (7) The start address of the relevant interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, the processor resumes executing instructions from the start address of the interrupt routine.

Note: This register cannot be used by user.

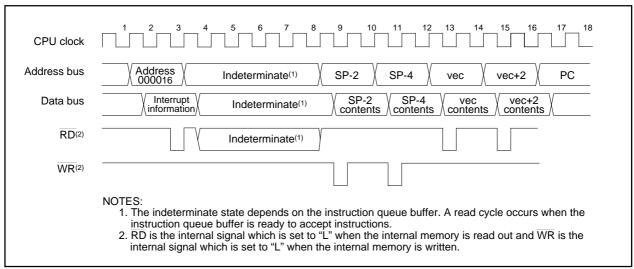


Figure 9.4.1. Time Required for Executing Interrupt Sequence

9.4.1 Interrupt Response Time

Figure 9.4.1.1 shows the interrupt response time. The interrupt response or interrupt acknowledge time denotes the time from when an interrupt request is generated till when the first instruction in the interrupt routine is executed. Specifically, it consists of the time from when an interrupt request is generated till when the instruction then executing is completed ((a) in Figure 9.4.1.1) and the time during which the interrupt sequence is executed ((b) in Figure 9.4.1.1).

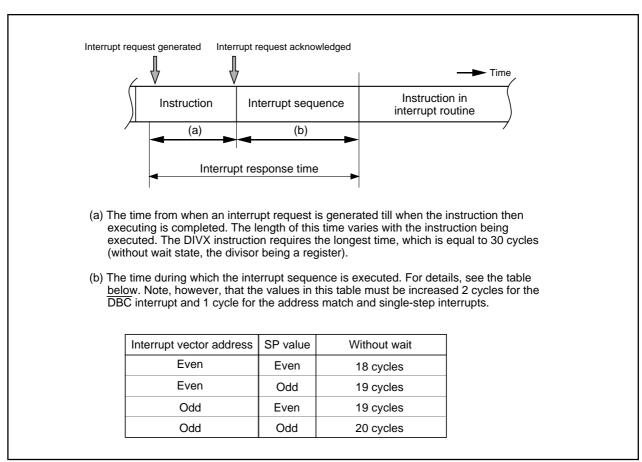


Figure 9.4.1.1. Interrupt response time

9.4.2 Variation of IPL when Interrupt Request is Accepted

When a maskable interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL.

When a software interrupt or special interrupt request is accepted, one of the interrupt priority levels listed in Table 9.4.2.1 is set in the IPL. Shown in Table 9.4.2.1 are the IPL values of software and special interrupts when they are accepted.

Table 9.4.2.1. IPL Level That is Set to IPL When A Software or Special Interrupt Is Accepted

Interrupt sources	Level that is set to IPL
Watchdog timer, NMI, Oscillation stop and re-oscillation detection,	7
voltage down detection	
Software, address match, DBC, single-step	Not changed

9.4.3 Saving Registers

In the interrupt sequence, the FLG register and PC are saved to the stack.

At this time, the 4 high-order bits of the PC and the 4 high-order (IPL) and 8 low-order bits in the FLG register, 16 bits in total, are saved to the stack first. Next, the 16 low-order bits of the PC are saved. Figure 9.4.3.1 shows the stack status before and after an interrupt request is accepted.

The other necessary registers must be saved in a program at the beginning of the interrupt routine. Use the PUSHM instruction, and all registers except SP can be saved with a single instruction.

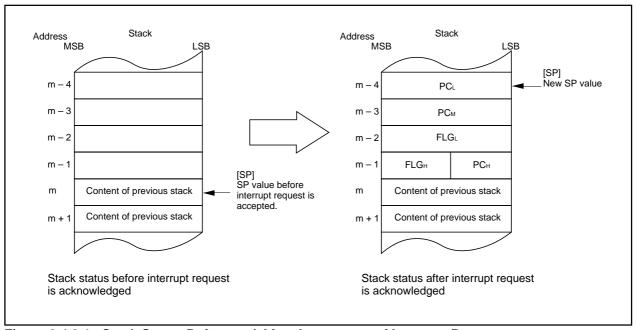


Figure 9.4.3.1. Stack Status Before and After Acceptance of Interrupt Request

The operation of saving registers carried out in the interrupt sequence is dependent on whether the SP^(Note), at the time of acceptance of an interrupt request, is even or odd. If the stack pointer ^(Note) is even, the FLG register and the PC are saved, 16 bits at a time. If odd, they are saved in two steps, 8 bits at a time. Figure 9.4.3.2 shows the operation of the saving registers.

Note: When any INT instruction in software numbers 32 to 63 has been executed, this is the SP indicated by the U flag. Otherwise, it is the ISP.

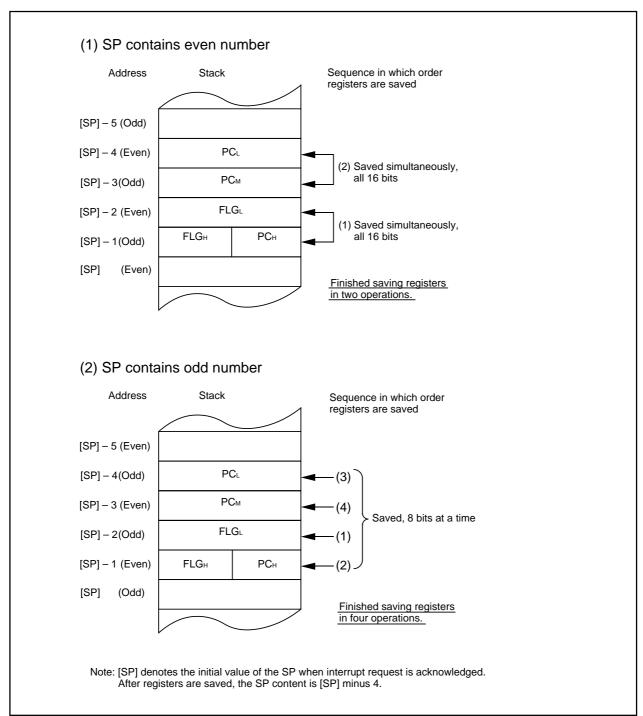


Figure 9.4.3.2. Operation of Saving Register

9.4.4 Returning from an Interrupt Routine

The FLG register and PC in the state in which they were immediately before entering the interrupt sequence are restored from the stack by executing the REIT instruction at the end of the interrupt routine. Thereafter the CPU returns to the program which was being executed before accepting the interrupt request.

Return the other registers saved by a program within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.

9.5 Interrupt Priority

If two or more interrupt requests are generated while executing one instruction, the interrupt request that has the highest priority is accepted.

For maskable interrupts (peripheral functions), any desired priority level can be selected using the ILVL2 to ILVL0 bits. However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, with the highest priority interrupt accepted.

The watchdog timer and other special interrupts have their priority levels set in hardware. Figure 9.5.1 shows the priorities of hardware interrupts.

Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.

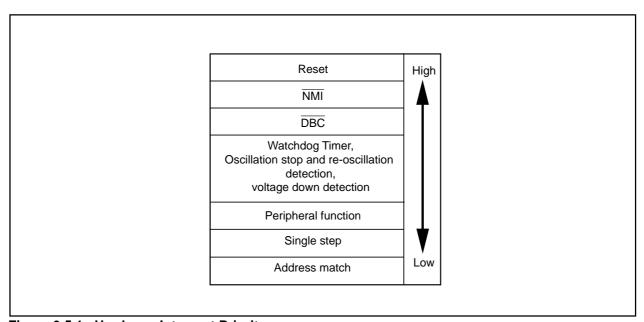


Figure 9.5.1. Hardware Interrupt Priority

9.5.1 Interrupt Priority Resolution Circuit

The interrupt priority resolution circuit is used to select the interrupt with the highest priority among those requested.

Figure 9.5.1.1 shows the circuit that judges the interrupt priority level.

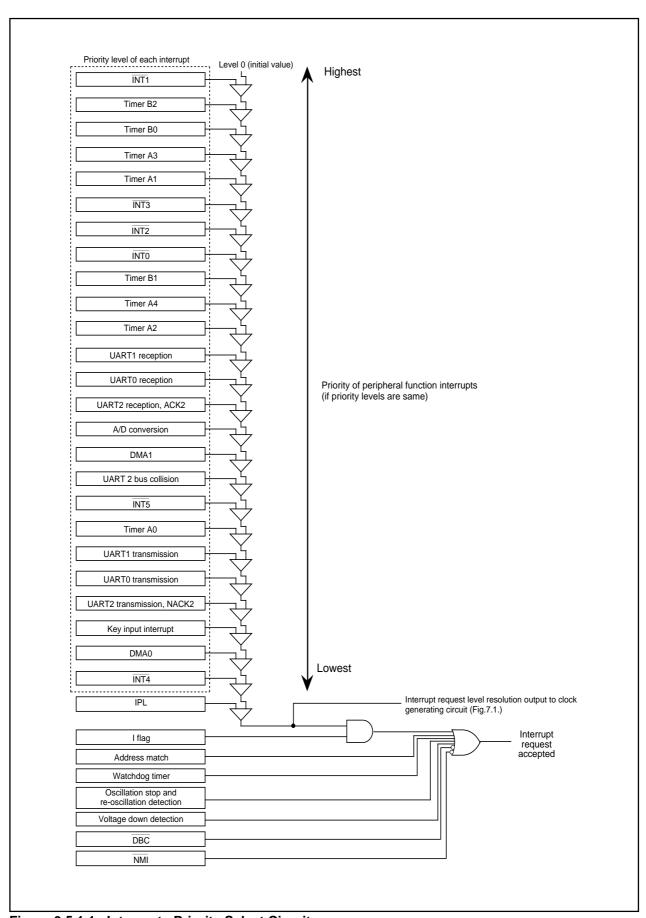


Figure 9.5.1.1. Interrupts Priority Select Circuit

9.6 INT Interrupt

INTi interrupt (i=0 to 5) is triggered by the edges of external inputs. The edge polarity is selected using the IFSRi bit in the IFSR register.

To use the INT4 interrupt, set the IFSR6 bit in the IFSR register to "1" (=INT4). To use the INT5 interrupt, set the IFSR7 bit in the IFSR register to "1" (=INT5).

After modifying the IFSR6 or IFSR7 bit, clear the corresponding IR bit to "0" (=interrupt not requested) before enabling the interrupt.

The INT5 input has an effective digital debounce function for a noize rejection. Refer to **16.6 Digital Debounce function** for this detail.

Figure 9.6.1 shows the IFSR register.

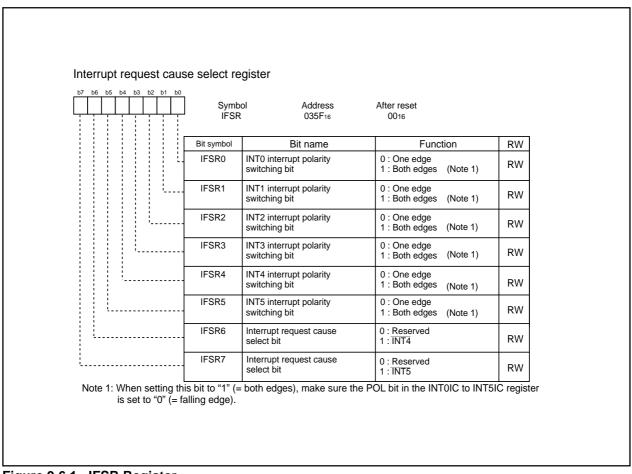


Figure 9.6.1. IFSR Register

9.7 NMI Interrupt

An $\overline{\text{NMI}}$ interrupt request is generated when input on the $\overline{\text{NMI}}$ pin changes state from high to low, after the $\overline{\text{NMI}}$ interrupt was enabled by writing a "1" to PM24 bit in the PM2 register. The $\overline{\text{NMI}}$ interrupt is a non-maskable interrupt, once it is enabled.

The input level of this $\overline{\text{NMI}}$ interrupt input pin can be read by accessing the P8_5 bit in the P8 register.

NMI is disabled by default after reset (the pin is a GPIO pin, P85) and can be enabled using PM24 bit in the PM2 register. Once enabled, it can only be disabled by a reset signal.

The NMI input has an effective digital debounce function for a noise rejection. Refer to **16.6 Digital Debounce Function** for this detail.

9.8 Key Input Interrupt

Of P104 to P107, a key input interrupt is generated when input on any of the P104 to P107 pins which has had the PD10_4 to PD10_7 bits in the PD10 register set to "0" (= input) goes low. Key input interrupts can be used as a key-on wakeup function, the function which gets the microcomputer out of wait or stop mode. However, if you intend to use the key input interrupt, do not use P104 to P107 as analog input ports. Figure 9.8.1 shows the block diagram of the key input interrupt. Note, however, that while input on any pin which has had the PD10_4 to PD10_7 bits set to "0" (= input mode) is pulled low, inputs on all other pins of the port are not detected as interrupts.

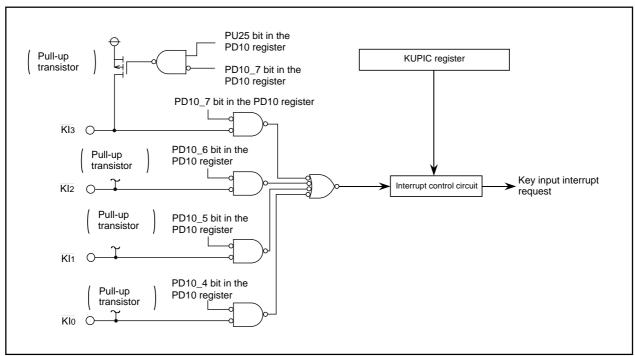


Figure 9.8.1. Key Input Interrupt

9.9 Address Match Interrupt

An address match interrupt request is generated immediately before executing the instruction at the address indicated by the RMADi register (i=0 to 1). Set the start address of any instruction in the RMADi register. Use the AIER register's AIER0 and AIER1 bits to enable or disable the interrupt. Note that the address match interrupt is unaffected by the I flag and IPL. For address match interrupts, the value of the PC that is saved to the stack area varies depending on the instruction being executed (refer to "Saving Registers").

(The value of the PC that is saved to the stack area is not the correct return address.) Therefore, follow one of the methods described below to return from the address match interrupt.

- Rewrite the content of the stack and then use the REIT instruction to return.
- Restore the stack to its previous state before the interrupt request was accepted by using the POP or similar other instruction and then use a jump instruction to return.

Table 9.9.1 shows the value of the PC that is saved to the stack area when an address match interrupt request is accepted.

Figure 9.9.1 shows the AIER, RMAD0 and RMAD1 registers.

Table 9.9.1. Value of the PC that is saved to the stack area when an address match interrupt request is accepted.

Instruction at the address indicated by the RMADi register					Value of the PC that is saved to the stack area	
• 16-bit op-cod • Instruction sh ADD.B:S OR.B:S STNZ.B:S CMP.B:S JMPS MOV.B:S		SUB.B:S MOV.B:S STZX.B:S PUSHM JSRS	ation code instructions #IMM8,dest #IMM8,dest #IMM81,#IMM82,des src #IMM8 =A0 or A1)	AND.B:S STZ.B:S	#IMM8,dest #IMM8,dest st	The address indicated by the RMADi register +2
Instructions other than the above			The address indicated by the RMADi register +1			

Value of the PC that is saved to the stack area: Refer to "Saving Registers".

Table 9.9.2. Relationship Between Address Match Interrupt Sources and Associated Registers

Address match interrupt sources	Address match interrupt enable bit	Address match interrupt register
Address match interrupt 0	AIER0	RMAD0
Address match interrupt 1	AIER1	RMAD1

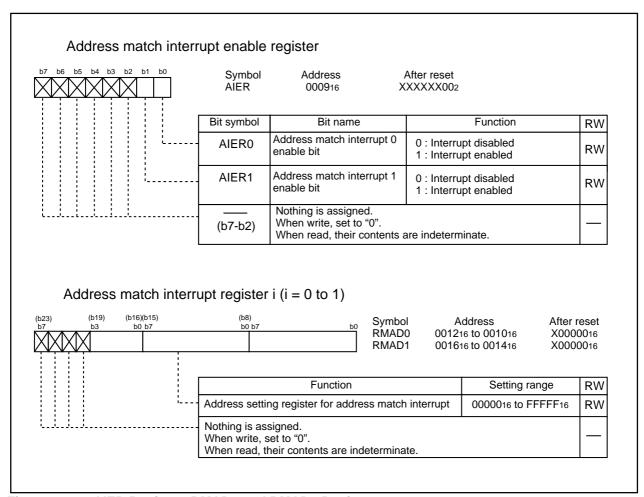


Figure 9.9.1. AIER Register, RMAD0 and RMAD1 Registers

10. Watchdog Timer

The watchdog timer is the function of detecting when the program is out of control. Therefore, we recommend using the watchdog timer to improve reliability of a system. The watchdog timer contains a 15-bit counter which counts down the clock derived by dividing the CPU clock using the prescaler. Whether to generate a watchdog timer interrupt request or apply a watchdog timer reset as an operation to be performed when the watchdog timer underflows after reaching the terminal count can be selected using the PM12 bit in the PM1 register. The PM12 bit can only be set to "1" (reset). Once this bit is set to "1", it cannot be set to "0" (watchdog timer interrupt) in a program. Refer to **5.3 Watchdog Timer Reset** for the details of watchdog timer reset.

When the main clock source is selected for CPU clock, on-chip oscillator clock, PLL clock, the WDC7 bit value in the WDC register for prescaler can be chosen to be 16 or 128. If a sub-clock is selected for CPU clock, the prescaler is always 2 no matter how the WDC7 bit is set. The period of watchdog timer can be calculated as given below. The period of watchdog timer is, however, subject to an error due to the prescaler.

With main clock source chosen for CPU clock, on-chip oscillator clock, PLL clock

Watchdog timer period =

Prescaler dividing (16 or 128) X Watchdog timer count (32768)

CPU clock

With sub-clock chosen for CPU clock

Watchdog timer period = Prescaler dividing (2) X Watchdog timer count (32768)

CPU clock

For example, when CPU clock = 16 MHz and the divide-by-N value for the prescaler= 16, the watchdog timer period is approx. 32.8 ms.

The watchdog timer is initialized by writing to the WDTS register. The prescaler is initialized after reset. Note that the watchdog timer and the prescaler both are inactive after reset, so that the watchdog timer is activated to start counting by writing to the WDTS register.

In stop mode, wait mode and when erase/program opration is excuting in EW1 mode without erase suspend requeired, the watchdog timer and prescaler are stopped. Counting is resumed from the held value when the modes or state are released.

Figure 10.1 shows the block diagram of the watchdog timer. Figure 10.2 shows the watchdog timer-related registers.

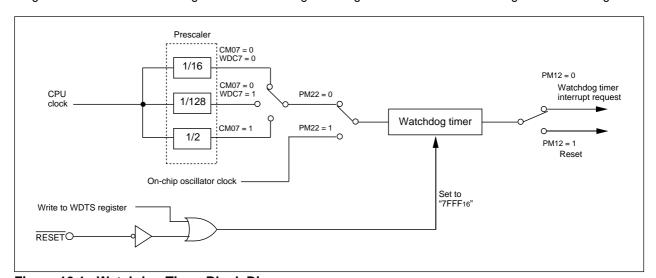


Figure 10.1. Watchdog Timer Block Diagram

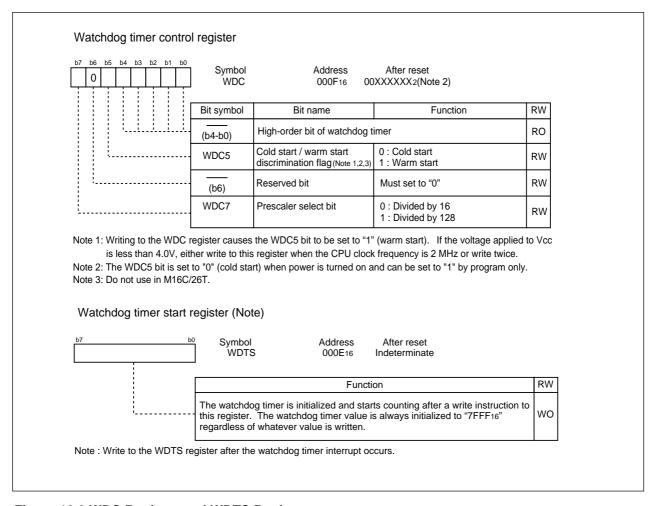


Figure 10.2 WDC Register and WDTS Register

10.1 Count source protective mode

In this mode, a on-chip oscillator clock is used for the watchdog timer count source. The watchdog timer can be kept being clocked even when CPU clock stops as a result of run-away.

Before this mode can be used, the following register settings are required:

- (1) Set the PRC1 bit in the PRCR register to "1" (enable writes to PM1 and PM2 registers).
- (2) Set the PM12 bit in the PM1 register to "1" (reset when the watchdog timer underflows).
- (3) Set the PM22 bit in the PM2 register to "1" (on-chip oscillator clock used for the watchdog timer count source).
- (4) Set the PRC1 bit in the PRCR register to "0" (disable writes to PM1 and PM2 registers).
- (5) Write to the WDTS register (watchdog timer starts counting).

Setting the PM22 bit to "1" results in the following conditions

• The on-chip oscillator starts oscillating, and the in-chip oscillator clock becomes the watchdog timer count source.

Watchdog timer count (22769)

Watchdog timer period = Watchdog timer count (32768)
on-chip oscillator clock

- The CM10 bit in the CM1 register is disabled against write. (Writing a "1" has no effect, nor is stop mode entered.)
- The watchdog timer does not stop when in wait mode.

10.2 Cold start / Warm start

Note

The M16C/26T does not use this function.

The WDC5 flag in the WDC register indicates the last reset by power on (cold start) or by reset signal (warm start).

The WDC5 flag is set "0" at power on, and is set "1" at writing any data to the WDC register. The flag is not set to "0" by the software reset and the input of reset signal. Figure 0.3 shows the operation of cold start/ warm start.

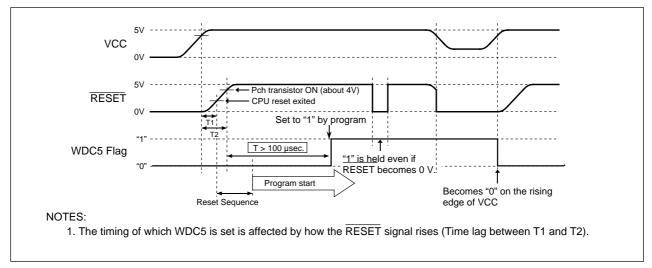


Figure 10.3 Typical Operation of Cold start / Warm start

11. DMAC

Note

The M16C/26A(42-pin version) do not use UART0 transfer and UART0 reception interrupt request as a DMA reqest.

The DMAC (Direct Memory Access Controller) allows data to be transferred without the CPU intervention. Two DMAC channels are included. Each time a DMA request occurs, the DMAC transfers one (8 or 16-bit) data from the source address to the destination address. The DMAC uses the same data bus as used by the CPU. Because the DMAC has higher priority of bus control than the CPU and because it makes use of a cycle steal method, it can transfer one word (16 bits) or one byte (8 bits) of data within a very short time after a DMA request is generated. Figure 11.1 shows the block diagram of the DMAC. Table 11.1 shows the DMAC specifications. Figures 11.2 to 11.4 show the DMAC-related registers.

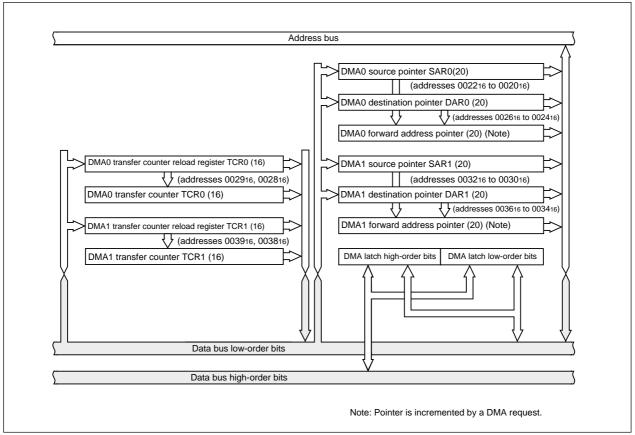


Figure 11.1 DMAC Block Diagram

A DMA request is generated by a write to the DSR bit in the DMiSL register (i = 0,1), as well as by an interrupt request which is generated by any function specified by the DMS and DSEL3 to DSEL0 bits in the DMiSL register. However, unlike in the case of interrupt requests, DMA requests are not affected by the I flag and the interrupt control register, so that even when interrupt requests are disabled and no interrupt request can be accepted, DMA requests are always accepted. Furthermore, because the DMAC does not affect interrupts, the IR bit in the interrupt control register does not change state due to a DMA transfer. A data transfer is initiated each time a DMA request is generated when the DMAE bit in the DMiCON register is set to "1" (DMA enabled). However, if the cycle in which a DMA request is generated is faster than the DMA transfer cycle, the number of transfer requests generated and the number of times data is transferred may not match. For details, refer to **11.4 DMA Requests**.

Table 11.1 DMAC Specifications

Item		Specification	
No. of channels	}	2 (cycle steal method)	
Transfer memory space		• From any address in the 1M bytes space to a fixed address	
		• From a fixed address to any address in the 1M bytes space	
		From a fixed address to a fixed address	
Maximum No. of I	bytes transferred	128K bytes (with 16-bit transfers) or 64K bytes (with 8-bit transfers)	
DMA request fa	ctors	Falling edge of INT0 or INT1	
(Note 1, Note 2	2)	Both edge of INT0 or INT1	
		Timer A0 to timer A4 interrupt requests	
		Timer B0 to timer B2 interrupt requests	
		UART0 transfer, UART0 reception interrupt requests	
		UART1 transfer, UART1 reception interrupt requests	
		UART2 transfer, UART2 reception interrupt requests	
		A/D conversion interrupt requests	
		Software triggers	
Channel priority	1	DMA0 > DMA1 (DMA0 takes precedence)	
Transfer unit		8 bits or 16 bits	
Transfer addres	ss direction	forward or fixed (The source and destination addresses cannot both be	
		in the forward direction.)	
Transfer mode	Single transfer	Transfer is completed when the DMAi transfer counter $(i = 0,1)$	
		underflows after reaching the terminal count.	
	Repeat transfer	When the DMAi transfer counter underflows, it is reloaded with the value	
		of the DMAi transfer counter reload register and a DMA transfer is con	
		tinued with it.	
	est generation timing		
DMA startup		Data transfer is initiated each time a DMA request is generated when the	
		DMAE bit in the DMAiCON register is set to "1" (enabled).	
DMA shutdown	Single transfer	When the DMAE bit is set to "0" (disabled)	
		After the DMAi transfer counter underflows	
Repeat transfer		When the DMAE bit is set to "0" (disabled)	
1		When a data transfer is started after setting the DMAE bit to "1" (en	
		abled), the forward address pointer is reloaded with the value of the	
		SARi or the DARi pointer whichever is specified to be in the forward	
		direction and the DMAi transfer counter is reloaded with the value of the	
		DMAi transfer counter reload register.	

Notes:

- 1. DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the I flag nor by the interrupt control register.
- 2. The selectable causes of DMA requests differ with each channel.
- 3. Make sure that no DMAC-related registers (addresses 002016 to 003F16) are accessed by the DMAC.

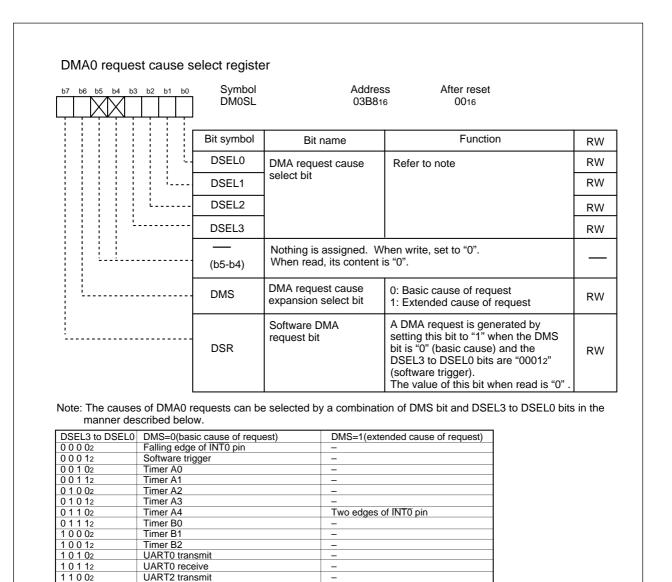
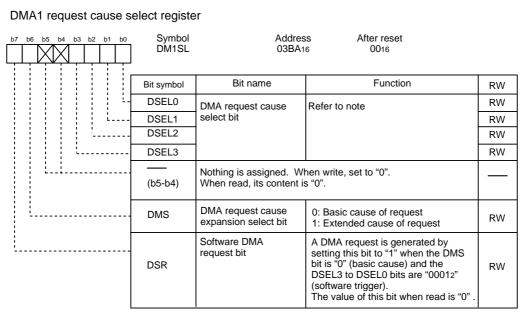


Figure 11.2 DM0SL Register

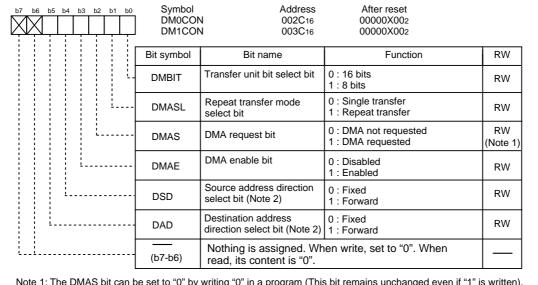
UART2 receive


A/D conversion

UART1 transmit

1 1 0 12

11102


1 1 1 12

Note: The causes of DMA1 requests can be selected by a combination of DMS bit and DSEL3 to DSEL0 bits in the manner described below.

DSEL3 to DSEL0	DMS=0(basic cause of request)	DMS=1(extended cause of request)
0 0 0 02	Falling edge of INT1 pin	_
0 0 0 12	Software trigger	_
0 0 1 02	Timer A0	_
0 0 1 12	Timer A1	_
0 1 0 02	Timer A2	_
0 1 0 12	Timer A3	_
0 1 1 02	Timer A4	_
0 1 1 12	Timer B0	Two edges of INT1
1 0 0 02	Timer B1	_
1 0 0 12	Timer B2	_
1 0 1 02	UART0 transmit	_
1 0 1 12	UART0 receive	_
1 1 0 02	UART2 transmit	_
1 1 0 12	UART2 receive/ACK2	_
1 1 1 02	A/D conversion	_
1 1 1 12	UART1 receive	_

DMAi control register(i=0,1)

Note 1: The DMAS bit can be set to "0" by writing "0" in a program (This bit remains unchanged even if "1" is written). Note 2: At least one of the DAD and DSD bits must be "0" (address direction fixed).

Figure 11.3 DM1SL Register, DM0CON Register, and DM1CON Register

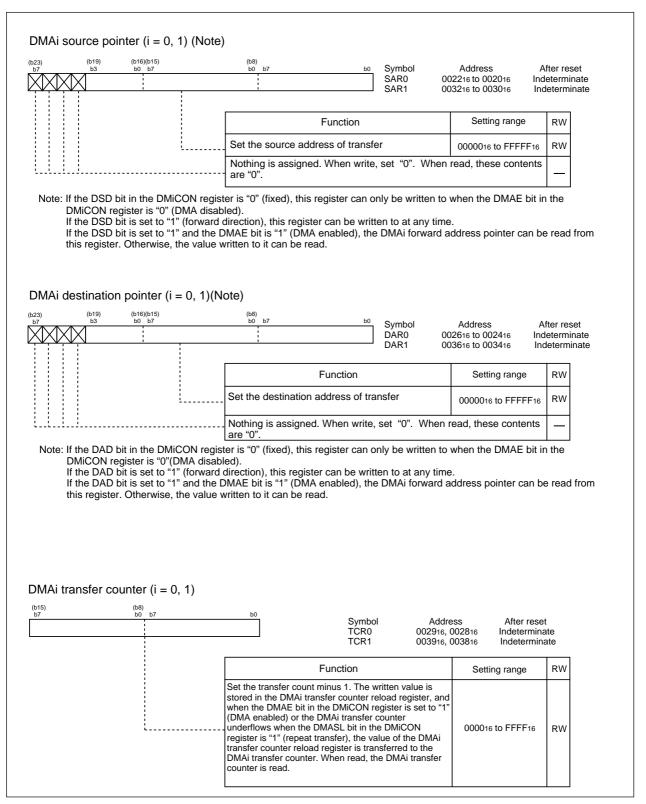


Figure 11.4 SAR0 and SAR1, DAR0 and DAR1, TCR0 and TCR1 Registers

11.1 Transfer Cycles

The transfer cycle consists of a memory or SFR read (source read) bus cycle and a write (destination write) bus cycle. The number of read and write bus cycles is affected by the source and destination addresses of transfer. Furthermore, the bus cycle itself is extended by a software wait.

11.1.1 Effect of Source and Destination Addresses

If the transfer unit is 16 bits and the source address of transfer begins with an odd address, the source read cycle consists of one more bus cycle than when the source address of transfer begins with an even address.

Similarly, if the transfer unit is 16 bits and the destination address of transfer begins with an odd address, the destination write cycle consists of one more bus cycle than when the destination address of transfer begins with an even address.

11.1.2 Effect of Software Wait

For memory or SFR accesses in which one or more software wait states are inserted, the number of bus cycles required for that access increases by an amount equal to software wait states.

Figure 11.1.1 shows the example of the cycles for a source read. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating transfer cycles, take into consideration each condition for the source read and the destination write cycle, respectively. For example, when data is transferred in 16 bit units and when both the source address and destination address are an odd address ((2) in Figure 11.1.1), two source read bus cycles and two destination write bus cycles are required.

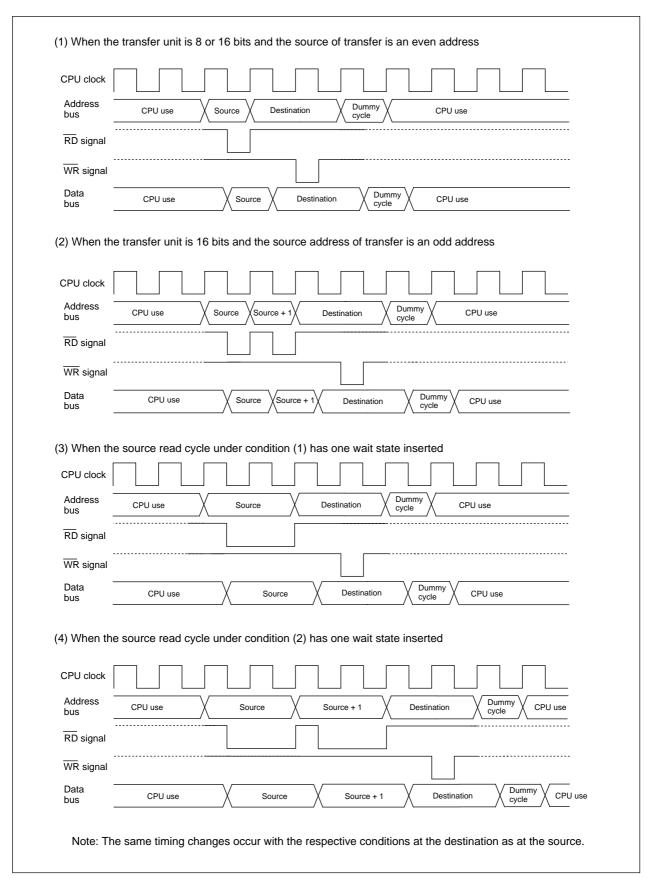


Figure 11.1.1 Transfer Cycles for Source Read

11.2. DMA Transfer Cycles

Any combination of even or odd transfer read and write adresses is possible. Table 11.2.1 shows the number of DMA transfer cycles. Table 11.2.2 shows the Coefficient j, k.

The number of DMAC transfer cycles can be calculated as follows:

No. of transfer cycles per transfer unit = No. of read cycles x j + No. of write cycles x k

Table 11.2.1 DMA Transfer Cycles

Transfer unit	Access address	No. of read cycles	No. of write cycles
8-bit transfers	Even	1	1
(DMBIT= "1")	Odd	1	1
16-bit transfers	Even	1	1
(DMBIT= "0")	Odd	2	2

Table 11.2.2 Coefficient j, k

	Internal area			
	Internal R	OM, RAM	SF	FR
	No wait With wait		1 wait (Note)	2 wait (Note)
j	1	2	2	3
k	1	2	2	3

Note: Depends on the set value of PM20 bit in PM2 register.

11.3 DMA Enable

When a data transfer starts after setting the DMAE bit in DMiCON register (i = 0, 1) to "1" (enabled), the DMAC operates as follows:

- (1) Reload the forward address pointer with the SARi register value when the DSD bit in the DMiCON register is "1" (forward) or the DARi register value when the DAD bit in the DMiCON register is "1" (forward).
- (2) Reload the DMAi transfer counter with the DMAi transfer counter reload register value.

If the DMAE bit is set to "1" again while it remains set, the DMAC performs the above operation. However, if a DMA request may occur simultaneously when the DMAE bit is being written, follow the steps below.

Step 1: Write "1" to the DMAE bit and DMAS bit in DMiCON register simultaneously.

Step 2: Make sure that the DMAi is in an initial state as described above (1) and (2) in a program.

If the DMAi is not in an initial state, the above steps should be repeated.

11.4 DMA Request

The DMAC can generate a DMA request as triggered by the cause of request that is selected with the DMS and DSEL3 to DSEL0 bits in the DMiSL register (i = 0, 1) on either channel. Table 11.4.1 shows the timing at which the DMAS bit changes state.

Whenever a DMA request is generated, the DMAS bit is set to "1" (DMA requested) regardless of whether or not the DMAE bit is set. If the DMAE bit was set to "1" (enabled) when this occurred, the DMAS bit is set to "0" (DMA not requested) immediately before a data transfer starts. This bit cannot be set to "1" in a program (it can only be set to "0").

The DMAS bit may be set to "1" when the DMS or the DSEL3 to DSEL0 bits change state. Therefore, always be sure to set the DMAS bit to "0" after changing the DMS or the DSEL3 to DSEL0 bits.

Because if the DMAE bit is "1", a data transfer starts immediately after a DMA request is generated, the DMAS bit in almost all cases is "0" when read in a program. Read the DMAE bit to determine whether the DMAC is enabled.

Table 11.4.1 Timing at Which the DMAS Bit Changes State

_	-		
DMA factor	DMAS bit in the DMiCON register		
DIVI/ (Idoloi	Timing at which the bit is set to "1"	Timing at which the bit is set to "0"	
Software trigger	When the DSR bit in the DMiSL register is set to "1"	Immediately before a data transfer starts When set by writing "0" in a program	
Peripheral function	When the interrupt control register for the peripheral function that is selected by the DSEL3 to DSEL0 and DMS bits in the DMiSL register has its IR bit set to "1"		

11.5 Channel Priority and DMA Transfer Timing

If both DMA0 and DMA1 are enabled and DMA transfer request signals from DMA0 and DMA1 are detected active in the same sampling period (one period from a falling edge to the next falling edge of CPU clock), the DMAS bit on each channel is set to "1" (DMA requested) at the same time. In this case, the DMA requests are arbitrated according to the channel priority, DMA0 > DMA1. The following describes DMAC operation when DMA0 and DMA1 requests are detected active in the same sampling period. Figure 11.5.1 shows an example of DMA transfer effected by external factors.

DMA0 request having priority is received first to start a transfer when a DMA0 request and DMA1 request are generated simultanelously. After one DMA0 transfer is completed, a bus arbitration is returned to the CPU. When the CPU has completed one bus access, a DMA1 transfer starts. After one DMA1 transfer is completed, the bus arbitration is again returned to the CPU.

In addition, DMA requests cannot be counted up since each channel has one DMAS bit. Therefore, when DMA requests, as DMA1 in Figure 11.5.1, occurs more than one time, the DAMS bit is set to "0" as soon as getting the bus arbitration. The bus arbitration is returned to the CPU when one transfer is completed.

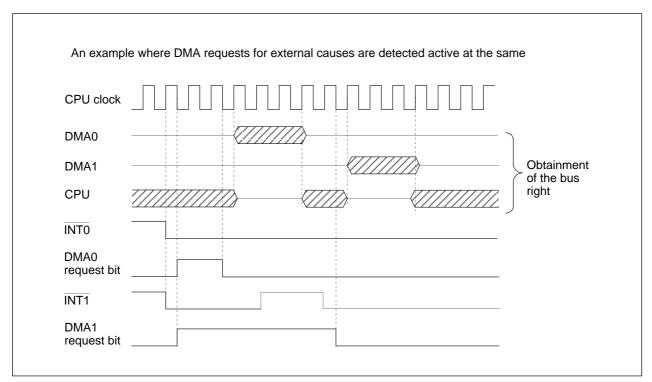


Figure 11.5.1 DMA Transfer by External Factors

12. Timer

Note

The M16C/26A (42-pin version) do not include TB2IN pin. Do not use the function which needs this pin.

Eight 16-bit timers, each capable of operating independently of the others, can be classified by function as either timer A (five) and timer B (three). The count source for each timer acts as a clock, to control such timer operations as counting, reloading, etc. Figures 12.1 and 12.2 show block diagrams of timer A and timer B configuration, respectively.

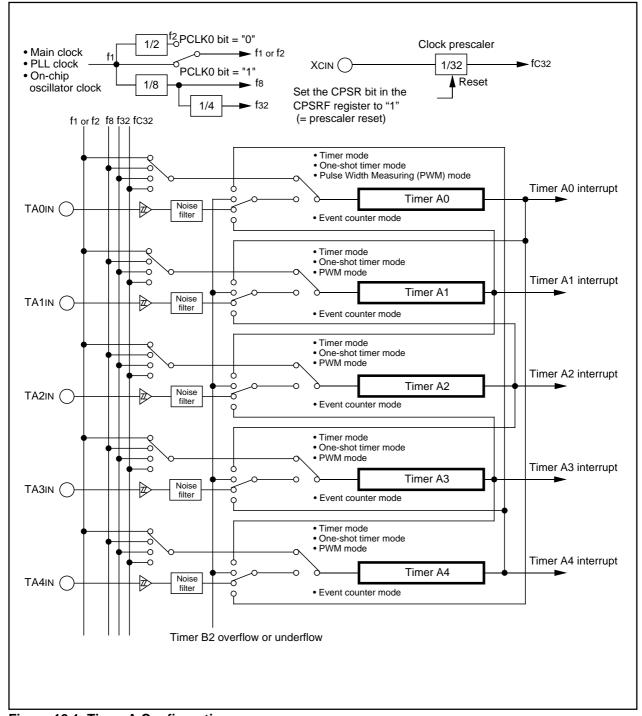


Figure 12.1. Timer A Configuration

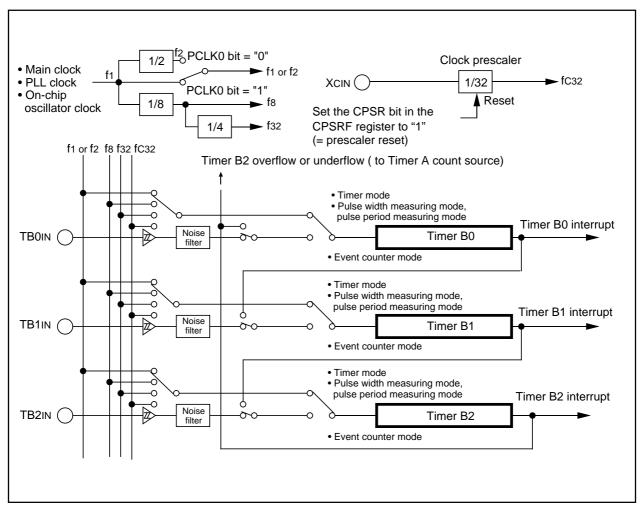


Figure 12.2. Timer B Configuration

12.1 Timer A

Figure 12.1.1 shows a block diagram of the timer A. Figures 12.1.2 to 12.1.4 show registers related to the timer A.

The timer A supports the following four modes. Except in event counter mode, timers A0 to A4 all have the same function. Use the TMOD1 to TMOD0 bits in the TAiMR register (i = 0 to 4) to select the desired mode.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external device or overflows and underflows of other timers.
- One-shot timer mode: The timer outputs a pulse only once before it reaches the minimum count "000016."
- Pulse width modulation (PWM) mode: The timer outputs pulses in a given width successively.

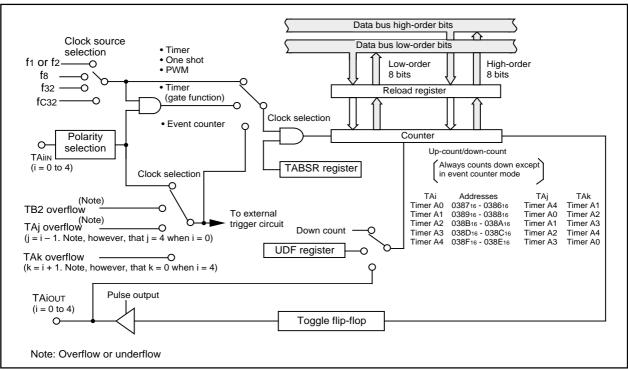


Figure 12.1.1. Timer A Block Diagram

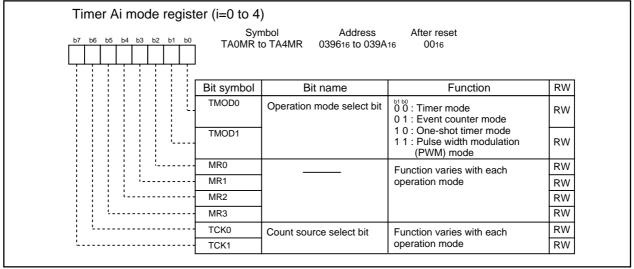


Figure 12.1.2. TA0MR to TA4MR Registers

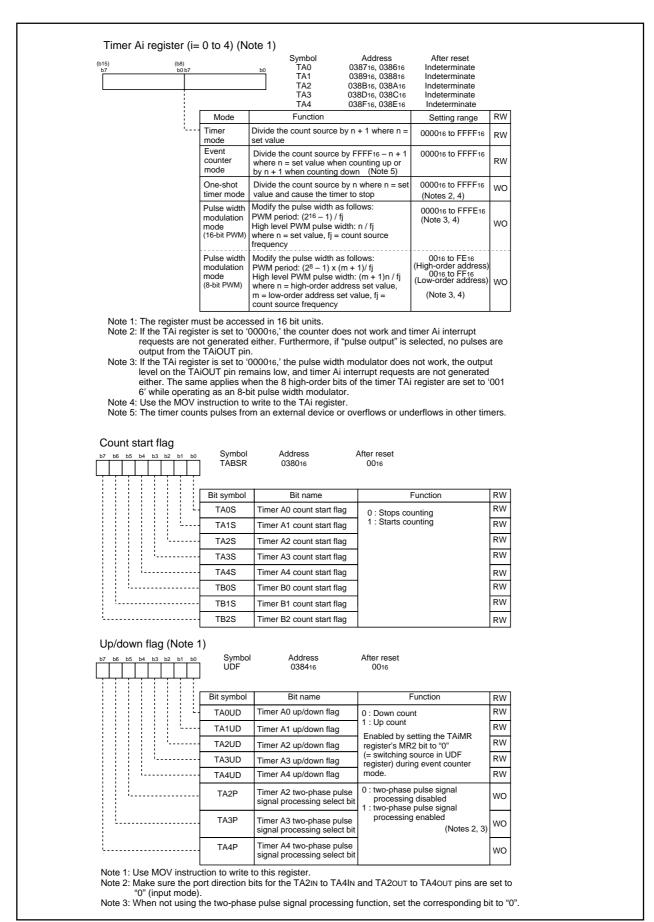


Figure 12.1.3. TA0 to TA4 Registers, TABSR Register, and UDF Register

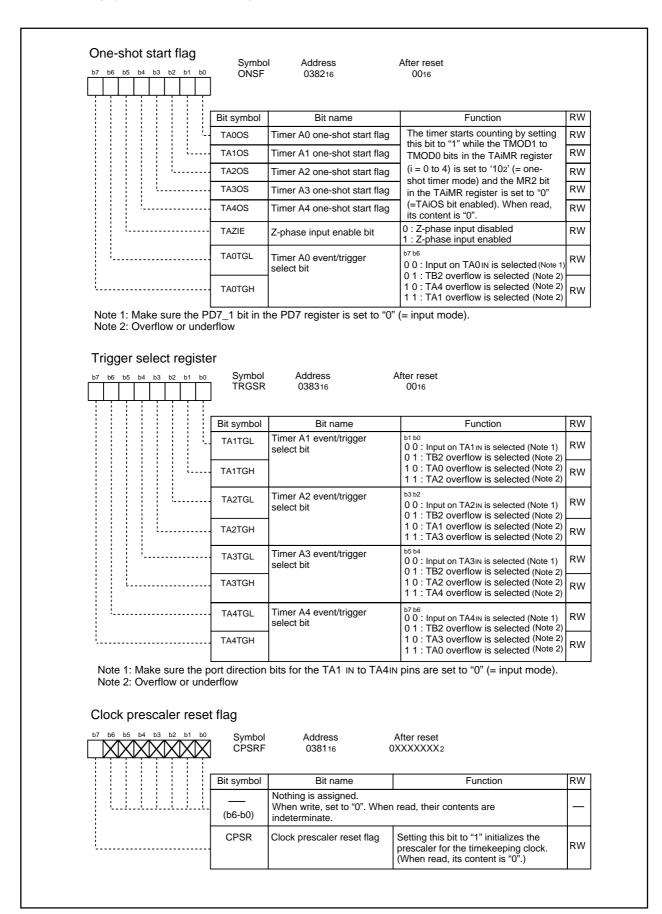


Figure 12.1.4. ONSF Register, TRGSR Register, and CPSRF Register

12.1.1. Timer Mode

In timer mode, the timer counts a count source generated internally (see Table 12.1.1.1). Figure 1.2.1.1.1 shows TAiMR register in timer mode.

Table 12.1.1.1. Specifications in Timer Mode

Item	Specification	
Count source	f1, f2, f8, f32, fC32	
Count operation	Down-count	
	When the timer underflows, it reloads the reload register contents and continues counting	
Divide ratio	1/(n+1) n: set value of TAi register (i= 0 to 4) 000016 to FFFF16	
Count start condition	Set TAiS bit in the TABSR register to "1" (= start counting)	
Count stop condition	Set TAiS bit to "0" (= stop counting)	
Interrupt request generation timing	Timer underflow	
TAilN pin function	I/O port or gate input	
TAiout pin function	I/O port or pulse output	
Read from timer	Count value can be read by reading TAi register	
Write to timer	When not counting and until the 1st count source is input after counting start	
	Value written to TAi register is written to both reload register and counter	
	When counting (after 1st count source input)	
	Value written to TAi register is written to only reload register	
	(Transferred to counter when reloaded next)	
Select function	Gate function	
	Counting can be started and stopped by an input signal to TAilN pin	
	Pulse output function	
	Whenever the timer underflows, the output polarity of TAio∪T pin is inverted.	
	When not counting, the pin outputs a low.	

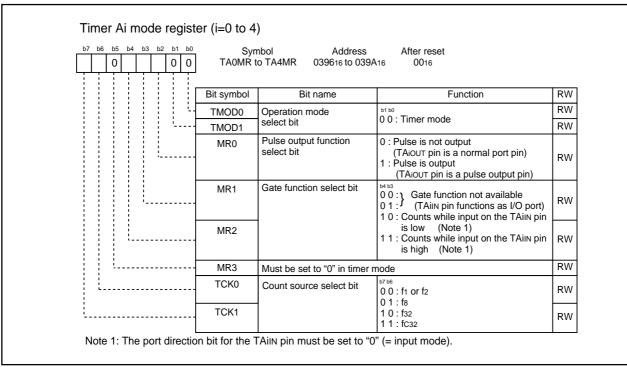


Figure 12.1.1.1. Timer Ai Mode Register in Timer Mode

12.1.2. Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Timers A2, A3 and A4 can count two-phase external signals. Table 12.1.2.1 lists specifications in event counter mode (when <u>not</u> processing two-phase pulse signal). Table 12.1.2.2 lists specifications in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4). Figure 12.1.2.1 shows TAiMR register in event counter mode (when <u>not</u> processing two-phase pulse signal). Figure 12.1.2.2 shows TA2MR to TA4MR registers in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4).

Table 12.1.2.1. Specifications in Event Counter Mode (when not processing two-phase pulse signal)

Item	Specification
Count source	• External signals input to TAilN pin (i=0 to 4) (effective edge can be selected in program)
	• Timer B2 overflows or underflows,
	timer Aj (j=i-1, except j=4 if i=0) overflows or underflows,
	timer Ak (k=i+1, except k=0 if i=4) overflows or underflows
Count operation	Up-count or down-count can be selected by external signal or program
	When the timer overflows or underflows, it reloads the reload register con-
	tents and continues counting. When operating in free-running mode, the
	timer continues counting without reloading.
Divided ratio	1/ (FFFF16 - n + 1) for up-count
	1/ (n + 1) for down-count n: set value of TAi register 000016 to FFFF16
Count start condition	Set TAiS bit in the TABSR register to "1" (= start counting)
Count stop condition	Set TAiS bit to "0" (= stop counting)
Interrupt request generation timing	Timer overflow or underflow
TAilN pin function	I/O port or count source input
TAiout pin function	I/O port, pulse output, or up/down-count select input
Read from timer	Count value can be read by reading TAi register
Write to timer	When not counting and until the 1st count source is input after counting start
	Value written to TAi register is written to both reload register and counter
	When counting (after 1st count source input)
	Value written to TAi register is written to only reload register
	(Transferred to counter when reloaded next)
Select function	Free-run count function
	Even when the timer overflows or underflows, the reload register content is
	not reloaded to it
	Pulse output function
	Whenever the timer underflows or underflows, the output polarity of TAiout
	pin is inverted . When not counting, the pin outputs a low.

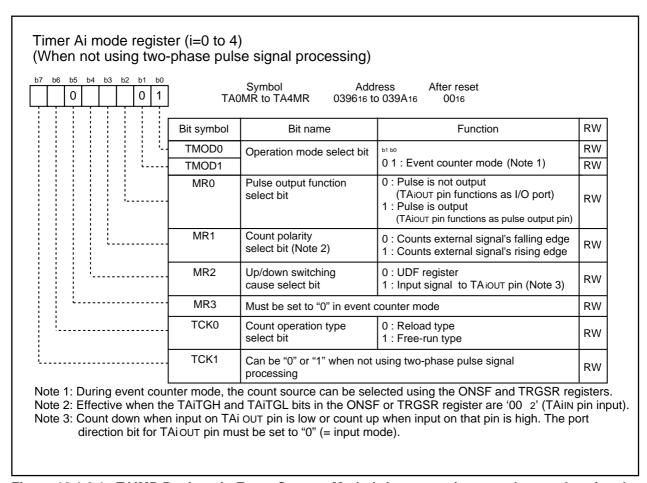


Figure 12.1.2.1. TAiMR Register in Event Counter Mode (when not using two-phase pulse signal processing)

Table 12.1.2.2. Specifications in Event Counter Mode (when processing two-phase pulse signal with timers A2, A3 and A4)

Item	Specification		
Count source	• Two-phase pulse signals input to TAiN or TAiOUT pins (i = 2 to 4)		
Count operation	 Up-count or down-count can be selected by two-phase pulse signal When the timer overflows or underflows, it reloads the reload register contents and continues counting. When operating in free-running mode, the timer continues counting without reloading. 		
Divide ratio	1/ (FFFF16 - n + 1) for up-count		
	1/ (n + 1) for down-count n : set value of TAi register 000016 to FFFF16		
Count start condition	Set TAiS bit in the TABSR register to "1" (= start counting)		
Count stop condition	Set TAiS bit to "0" (= stop counting)		
Interrupt request generation timing	Timer overflow or underflow		
TAilN pin function	Two-phase pulse input		
TAiout pin function	Two-phase pulse input		
Read from timer	Count value can be read by reading timer A2, A3 or A4 register		
Write to timer	 When not counting and until the 1st count source is input after counting start Value written to TAi register is written to both reload register and counter When counting (after 1st count source input) Value written to TAi register is written to reload register (Transferred to counter when reloaded next) 		
Select function (Note)	Normal processing operation (timer A2 and timer A3) The timer counts up rising edges or counts down falling edges on TAjin (j=2,3) pin when input signals on TAjout pin is "H". TAjout TAjin (j=2,3) Up- Up- Up- Down- Down- Down- count count count Multiply-by-4 processing operation (timer A3 and timer A4) If the phase relationship is such that TAkin(k=3, 4) pin goes "H" when the input signal on TAkout pin is "H", the timer counts up rising and falling edges on TAkout and TAkin pins. If the phase relationship is such that TAkin pin goes "L" when the input signal on TAkout pin is "H", the timer counts down rising and falling edges on TAkout and TAkin pins. TAkout Count up all edges Count down all edges TAkin (k=3,4) Count up all edges Count down all edges		
	Counter initialization by Z-phase input (timer A3) The times assume value is initialized to 0 by Z phase input.		
Notoo:	The timer count value is initialized to 0 by Z-phase input.		

Notes:

1. Only timer A3 is selectable. Timer A2 is fixed to normal processing operation, and timer A4 is fixed to multiply-by-4 processing operation.

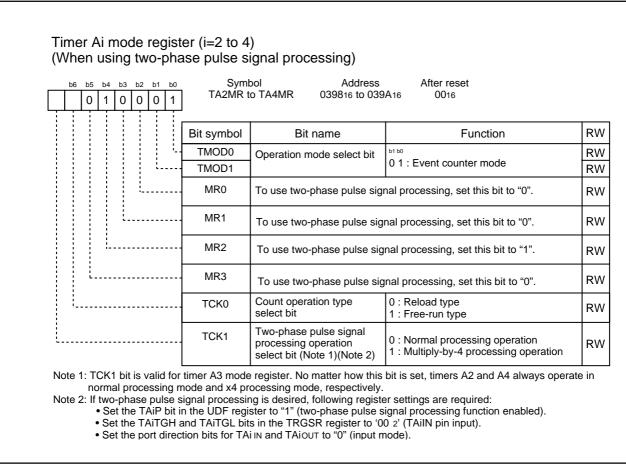


Figure 12.1.2.2. TA2MR to TA4MR Registers in Event Counter Mode (when using two-phase pulse signal processing with timer A2, A3 or A4)

12.1.2.1 Counter Initialization by Two-Phase Pulse Signal Processing

This function initializes the timer count value to "0" by Z-phase (counter initialization) input during two-phase pulse signal processing.

This function can only be used in timer A3 event counter mode during two-phase pulse signal processing, free-running type, x4 processing, with Z-phase entered from the INT2 pin.

Counter initialization by Z-phase input is enabled by writing "000016" to the TA3 register and setting the TAZIE bit in ONSF register to "1" (= Z-phase input enabled).

Counter initialization is accomplished by detecting Z-phase input edge. The active edge can be chosen to be the rising or falling edge by using the POL bit in the INT2IC register. The Z-phase pulse width applied to the INT2 pin must be equal to or greater than one clock cycle of the timer A3 count source.

The counter is initialized at the next count timing after recognizing Z-phase input. Figure 12.1.2.1.1 shows the relationship between the two-phase pulse (A phase and B phase) and the Z phase.

If timer A3 overflow or underflow coincides with the counter initialization by Z-phase input, a timer A3 interrupt request is generated twice in succession. Do not use the timer A3 interrupt when using this function.

Figure 12.1.2.1.1. Two-phase Pulse (A phase and B phase) and the Z Phase

12.1.3. One-shot Timer Mode

In one-shot timer mode, the timer is activated only once by one trigger. (See Table 12.1.3.1.) When the trigger occurs, the timer starts up and continues operating for a given period. Figure 12.1.3.1 shows the TAiMR register in one-shot timer mode.

Table 12.1.3.1. Specifications in One-shot Timer Mode

Item	Specification			
Count source	f1, f2, f8, f32, fC32			
Count operation	Down-count			
	When the counter reaches 000016, it stops counting after reloading a new value			
	If a trigger occurs when counting, the timer reloads a new count and restarts counting			
Divide ratio	1/n n: set value of TAi register 000016 to FFFF16			
	However, the counter does not work if the divide-by-n value is set to 000016.			
Count start condition	TAiS bit in the TABSR register is set to "1" (start counting) and one of the			
	following triggers occurs.			
	• External trigger input from the TAilN pin			
	Timer B2 overflow or underflow,			
	timer Aj (j=i-1, except j=4 if i=0) overflow or underflow,			
	timer Ak (k=i+1, except k=0 if i=4) overflow or underflow			
	• The TAiOS bit in the ONSF register is set to "1" (= timer starts)			
Count stop condition	When the counter is reloaded after reaching "000016"			
	• TAiS bit is set to "0" (= stop counting)			
Interrupt request generation timing	When the counter reaches "000016"			
TAilN pin function	I/O port or trigger input			
TAiout pin function	I/O port or pulse output			
Read from timer	An indeterminate value is read by reading TAi register			
Write to timer	When not counting and until the 1st count source is input after counting start			
	Value written to TAi register is written to both reload register and counter			
	When counting (after 1st count source input)			
	Value written to TAi register is written to only reload register			
	(Transferred to counter when reloaded next)			
Select function	Pulse output function			
	The timer outputs a low when not counting and a high when counting.			

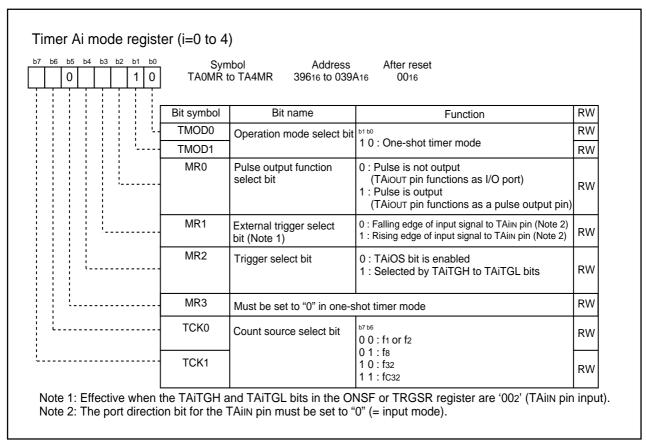


Figure 12.1.3.1. TAIMR Register in One-shot Timer Mode

12.1.4. Pulse Width Modulation (PWM) Mode

In PWM mode, the timer outputs pulses of a given width in succession (see Table 12.1.4.1). The counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator. Figure 12.1.4.1 shows TAiMR register in pulse width modulation mode. Figures 12.1.4.2 and 12.1.4.3 show examples of how a 16-bit pulse width modulator operates and how an 8-bit pulse width modulator operates.

Table 12.1.4.1. Specifications in Pulse Width Modulation Mode

Item	Specification			
Count source	f1, f2, f8, f32, fC32			
Count operation	Down-count (operating as an 8-bit or a 16-bit pulse width modulator)			
	The timer reloads a new value at a rising edge of PWM pulse and continues counting			
	The timer is not affected by a trigger that occurs during counting			
16-bit PWM	High level width n / fj n : set value of TAi register (i=o to 4)			
	• Cycle time (2 ¹⁶ -1) / fj fixed fj: count source frequency (f1, f2, f8, f32, fC32)			
8-bit PWM	High level width n x (m+1) / fj n : set value of TAi register high-order address			
	Cycle time (2 ⁸ -1) x (m+1) / fj m : set value of TAi register low-order address			
Count start condition	TAiS bit in theTABSR register is set to "1" (= start counting)			
	• The TAiS bit is set to "1" and external trigger input from the TAiIN pin			
	The TAiS bit is set to "1" and one of the following external triggers occurs			
	Timer B2 overflow or underflow,			
	timer Aj (j=i-1, except j=4 if i=0) overflow or underflow,			
	timer Ak (k=i+1, except k=0 if i=4) overflow or underflow			
Count stop condition	TAiS bit is set to "0" (= stop counting)			
Interrupt request generation timing	PWM pulse goes "L"			
TAilN pin function	I/O port or trigger input			
TAiout pin function	Pulse output			
Read from timer	An indeterminate value is read by reading TAi register			
Write to timer	When not counting and until the 1st count source is input after counting start			
	Value written to TAi register is written to both reload register and counter			
	When counting (after 1st count source input)			
	Value written to TAi register is written to only reload register			
	(Transferred to counter when reloaded next)			

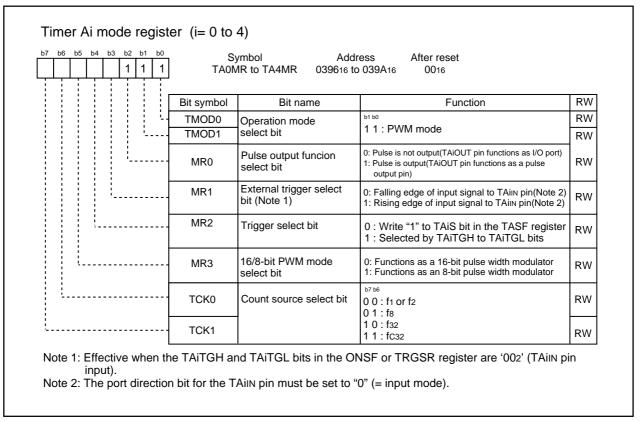


Figure 12.1.4.1. TAIMR Register in Pulse Width Modulation Mode

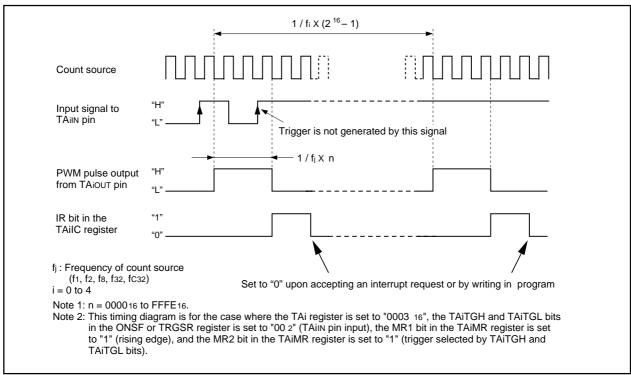


Figure 12.1.4.2. Example of 16-bit Pulse Width Modulator Operation

Figure 12.1.4.3. Example of 8-bit Pulse Width Modulator Operation

12.2 Timer B

Note

The M16C/26A(42-pin version) do not include TB2IN pin of Timer B2.

[Precautions when using Timer B2]

- Event Counter Mode The external input signals cannot be counted. Set the TCK1 bit in the TB2MR register to "1" when using the Event Count Mode.
- Pulse Period/Pulse Width Measurement Mode

This mode connot be used.

Figure 12.2.1 shows a block diagram of the timer B. Figures 12.2.2 and 12.2.3 show registers related to the timer B.

Timer B supports the following four modes. Use the TMOD1 and TMOD0 bits in the TBiMR register (i = 0 to 2) to select the desired mode.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external device or overflows or underflows of other timers.
- Pulse period/pulse width measuring mode: The timer measures an external signal's pulse period or pulse width.
- A/D trigger mode: The timer counts only once before it reaches the minimum count "000016". Used in conjunction with the A/D converter.

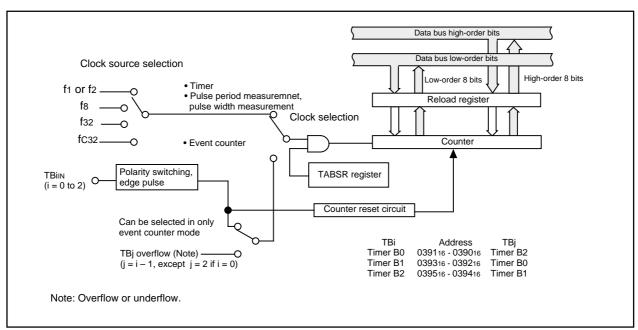


Figure 12.2.1. Timer B Block Diagram

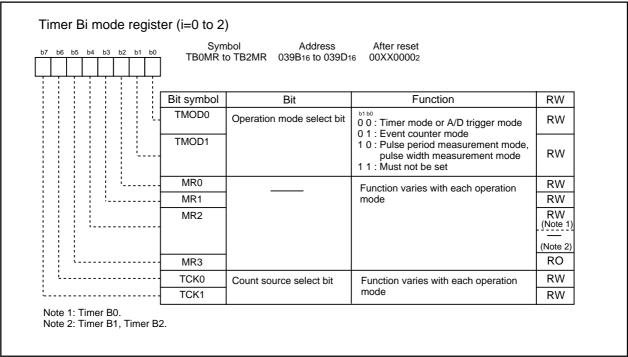
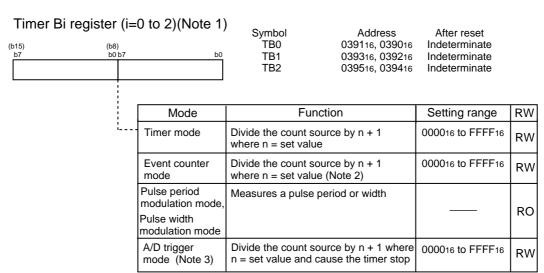
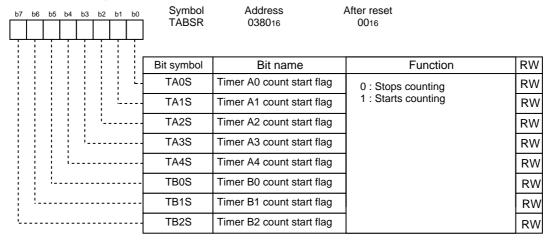



Figure 12.2.2. TB0MR to TB2MR Registers



Note 1: The register must be accessed in 16 bit units.

Note 2: The timer counts pulses from an external device or overflows or underflows of other timers.

Note 3: When this mode is used combining delayed trigger mode 0, set the larger value than the value of the timer B0 register to the timer B1 register.

Count start flag

Clock prescaler reset flag

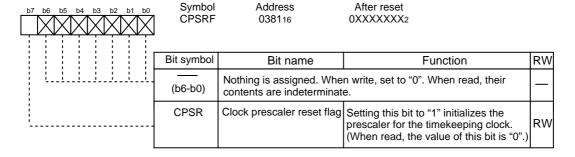


Figure 12.2.3. TB0 to TB2 Registers, TABSR Register, CPSRF Register

12.2.1 Timer Mode

In timer mode, the timer counts a count source generated internally (see Table 12.2.1.1). Figure 12.2.1.1 shows TBiMR register in timer mode.

Table 12.2.1.1 Specifications in Timer Mode

Item	Specification		
Count source	f1, f2, f8, f32, fC32		
Count operation	Down-count		
	When the timer underflows, it reloads the reload register contents and		
	continues counting		
Divide ratio	1/(n+1) n: set value of TBi register (i= 0 to 2) 000016 to FFFF16		
Count start condition	Set TBiS bit ⁽¹⁾ to "1" (= start counting)		
Count stop condition	Set TBiS bit to "0" (= stop counting)		
Interrupt request generation timing	Timer underflow		
TBiin pin function	I/O port		
Read from timer	Count value can be read by reading TBi register		
Write to timer	When not counting and until the 1st count source is input after counting start		
	Value written to TBi register is written to both reload register and counter		
	When counting (after 1st count source input)		
	Value written to TBi register is written to only reload register		
	(Transferred to counter when reloaded next)		

NOTES:

1. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register.

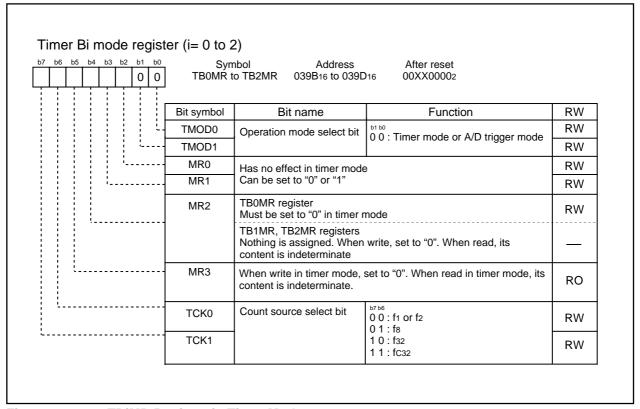


Figure 12.2.1.1 TBiMR Register in Timer Mode

12.2.2 Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers (see Table 12.2.2.1) . Figure 12.2.2.1 shows TBiMR register in event counter mode.

Table 12.2.2.1 Specifications in Event Counter Mode

Item	Specification			
Count source	• External signals input to TBilN pin (i=0 to 2) (effective edge can be selected			
	in program)			
	• Timer Bj overflow or underflow (j=i-1, except j=2 if i=0)			
Count operation	Down-count			
	When the timer underflows, it reloads the reload register contents and			
	continues counting			
Divide ratio	1/(n+1) n: set value of TBi register 000016 to FFFF16			
Count start condition	Set TBiS bit ⁽¹⁾ to "1" (= start counting)			
Count stop condition	Set TBiS bit to "0" (= stop counting)			
Interrupt request generation timing	Timer underflow			
TBilN pin function	Count source input			
Read from timer	Count value can be read by reading TBi register			
Write to timer	When not counting and until the 1st count source is input after counting start			
	Value written to TBi register is written to both reload register and counter			
	When counting (after 1st count source input)			
	Value written to TBi register is written to only reload register			
	(Transferred to counter when reloaded next)			

NOTES:

1. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register.

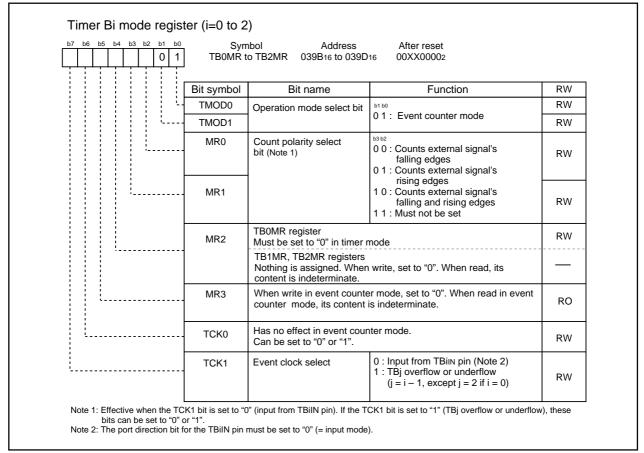


Figure 12.2.2.1 TBiMR Register in Event Counter Mode

12.2.3 Pulse Period and Pulse Width Measurement Mode

In pulse period and pulse width measurement mode, the timer measures pulse period or pulse width of an external signal (see Table 12.2.3.1). Figure 12.2.3.1 shows TBiMR register in pulse period and pulse width measurement mode. Figure 12.2.3.2 shows the operation timing when measuring a pulse period. Figure 12.2.3.3 shows the operation timing when measuring a pulse width.

Table 12.2.3.1 Specifications in Pulse Period and Pulse Width Measurement Mode

Item	Specification		
Count source	f1, f2, f8, f32, fC32		
Count operation	Up-count		
	Counter value is transferred to reload register at an effective edge of mea-		
	surement pulse. The counter value is set to "000016" to continue counting.		
Count start condition	Set TBiS (i=0 to 2) bit ⁽³⁾ to "1" (= start counting)		
Count stop condition	Set TBiS bit to "0" (= stop counting)		
Interrupt request generation timing	When an effective edge of measurement pulse is input ⁽¹⁾		
	• Timer overflow. When an overflow occurs, MR3 bit in the TBiMR register is		
	set to "1" (overflowed) simultaneously. MR3 bit is cleared to "0" (no over-		
	flow) by writing to TBiMR register at the next count timing or later after MR3		
	bit was set to "1". At this time, make sure TBiS bit is set to "1" (start count-		
	ing).		
TBiin pin function	Measurement pulse input		
Read from timer	Contents of the reload register (measurement result) can be read by reading TBi register ⁽²⁾		
Write to timer	Value written to TBi register is written to neither reload register nor counter		

Notes:

- 1. Interrupt request is not generated when the first effective edge is input after the timer started counting.
- 2. Value read from TBi register is indeterminate until the second valid edge is input after the timer starts counting.
- 3. The TB0S to TB2S bits are assigned to the bit 5 to bit 7 in the TABSR register.

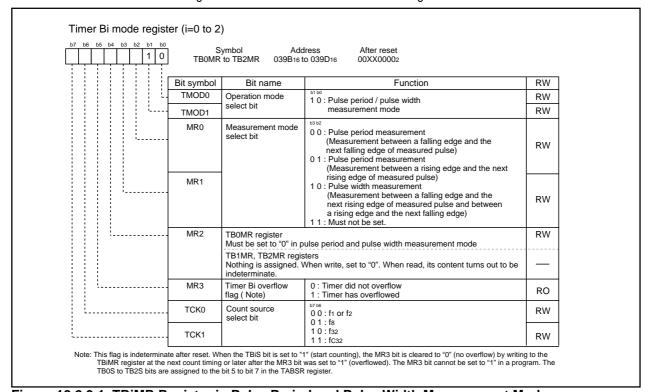


Figure 12.2.3.1 TBiMR Register in Pulse Period and Pulse Width Measurement Mode

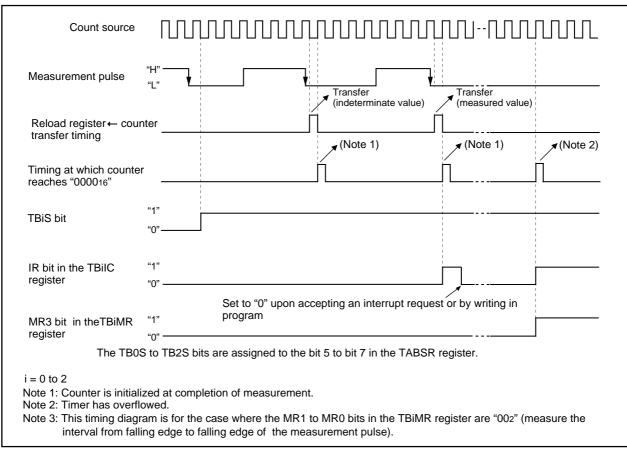


Figure 12.2.3.2 Operation timing when measuring a pulse period

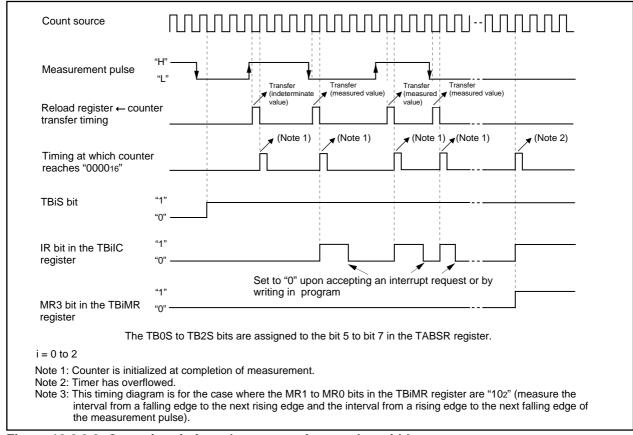


Figure 12.2.3.3 Operation timing when measuring a pulse width

12.2.4 A/D Trigger Mode

A/D trigger mode is used as conversion start trigger for A/D converter in simultaneous sample sweep mode of A/D conversion or delayed trigger mode 0. This mode is used as conversion start trigger of A/D converter. A/D trigger mode is used in Timer B0 and Timer B1. In this mode, the timer is activated only by one trigger. A/D trigger mode is available only for TB0 and TB1. Figure 12.2.4.1 shows the TBiMR register in A/D trigger mode and figure 12.2.4.2 shows the TB2SC register.

Table 12.2.4.1 A/D Trigger Mode Specifications

Item	Specification		
Count Source	f1, f2, f8, f32, and fC32		
Count Operation	Down count		
	When the timer underflows, reload register contents are reloaded before		
	stopping counting		
	When a trigger is generated during the count operation, the count is not		
	affected		
Divide Ratio	1/(n+1) n: Setting value of TBi register (i=0,1)		
	000016-FFFF16		
Count Start Condition	When the TBiS (i=0,1) bit in the TABSR register is "1"(count started), TBiEN		
	(i=0,1) bit in TB2SC register is "1", and the following trigger is generated.		
	(Selection based on TB2SEL bit in the TB2SC register)		
	Timer B2 overflow or underflow		
	Underflow of Timer B2 interrupt generation frequency counter setting		
Count Stop Condition	After the count value is 000016 and reload register contents are reloaded		
	Set the TBiS bit to "0"(count stopped)		
Interrupt Request	Timer underflows (1)		
Generation Timing			
TBiIN Pin Function	I/O port		
Read From Timer	Count value can be read by reading TBi register		
Write To Timer (2)	When writing in the TBi register during count stopped.		
	Value is written to both reload register and counter		
	When writing in the TBi register during count.		
	Value is written to only reload register (Transfered to counter when reloaded next)		

NOTES:

- 1. A/D conversion is started by the timer underflow. For details refer to **Section 14. A/D Converter**.
- 2. When using in delayed trigger mode 0, set the larger value than the value of the timer B0 register to the timer B1 register.

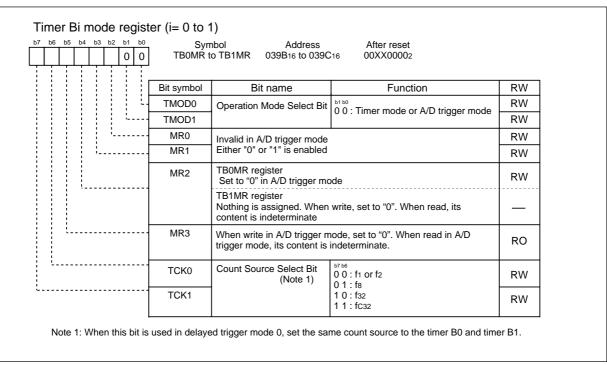


Figure 12.2.4.1 TBiMR Register in A/D Trigger Mode

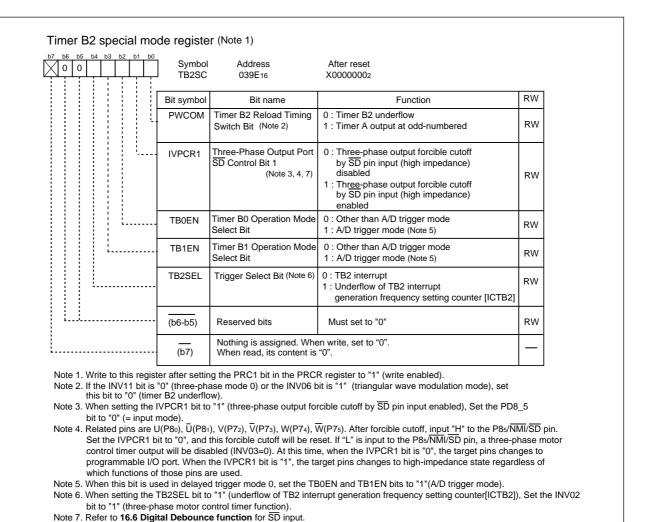


Figure 12.2.4.2 TB2SC Register

12.3 Three-phase Motor Control Timer Function

Timers A1, A2, A4 and B2 can be used to output three-phase motor drive waveforms. Table 12.3.1 lists the specifications of the three-phase motor control timer function. Figure 12.3.1 shows the block diagram for three-phase motor control timer function. Also, the related registers are shown on Figure 12.3.2 to Figure 12.3.8.

Table 12.3.1. Three-phase Motor Control Timer Function Specifications

Item	Specification		
Three-phase waveform output pin	Six pins $(U, \overline{U}, V, \overline{V}, W, \overline{W})$		
Forced cutoff input (Note 1)	Input "L" to SD pin		
Used Timers	Timer A4, A1, A2 (used in the one-shot timer mode)		
	Timer A4: U- and U-phase waveform control		
	Timer A1: V- and \overline{V} -phase waveform control		
	Timer A2: W- and \overline{W} -phase waveform control		
	Timer B2 (used in the timer mode)		
	Carrier wave cycle control		
	Dead timer timer (3 eight-bit timer and shared reload register)		
	Dead time control		
Output waveform	Triangular wave modulation, Sawtooth wave modification		
	Enable to output "H" or "L" for one cycle		
	Enable to set positive-phase level and negative-phase		
	level respectively		
Carrier wave cycle	Triangular wave modulation: count source x (m+1) x 2		
	Sawtooth wave modulation: count source x (m+1)		
	m: Setting value of TB2 register, 0 to 65535		
	Count source: f1, f2, f8, f32, fC32		
Three-phase PWM output width	Triangular wave modulation: count source x n x 2		
	Sawtooth wave modulation: count source x n		
	n: Setting value of TA4, TA1 and TA2 register (of TA4,		
	TA41, TA1, TA11, TA2 and TA21 registers when setting		
	the INV11 bit to "1"), 1 to 65535		
	Count source: f1, f2, f8, f32, fC32		
Dead time	Count source x p, or no dead time		
active disable function	p: Setting value of DTT register, 1 to 255		
	Count source: f1, f2, f1 divided by 2, f2 divided by 2		
Active level	Eable to select "H" or "L"		
Positive and negative-phase concurrent	Positive and negative-phases concurrent active disable function		
	Positive and negative-phases concurrent active detect function		
Interrupt frequency	For Timer B2 interrupt, select a carrier wave cycle-to-cycle		
miorrapt moquemey			

Notes:

- 1. When the INV02 bit in the INVC0 register is set to "1" (three-phase motor control timer function), the \$\overline{SD}\$ function of the P85/\$\overline{SD}\$ pin is enabled. At this time, the P85 pin cannot be used as a programmable I/O port. When the \$\overline{SD}\$ function is not used, apply "H" to the P85/\$\overline{SD}\$ pin.
- 2. When the IVPCR1 bit in the TB2SC register is set to "1" (enable three-phase output forced cutoff by \$\overline{SD}\$ pin input), and "L" is applied to the \$\overline{SD}\$ pin, the related pins enter high-impedance state regardless of the functions which are used. When the IVPCR1 bit is set to "0" (disabled three-phase output forced cutoff by \$\overline{SD}\$ pin input) and "L" is applied to the \$\overline{SD}\$ pin, the related pins can be selected as a programmable I/O port and the setting of the port and port direction registers are enable.

Related pins P72/CLK2/TA1out/V/RxD1

P73/CTS2/RTS2/TA1IN/V/TxD1

P74/TA20UT/W P75/TA2IN/W P80/TA40UT/U P81/TA4IN/U

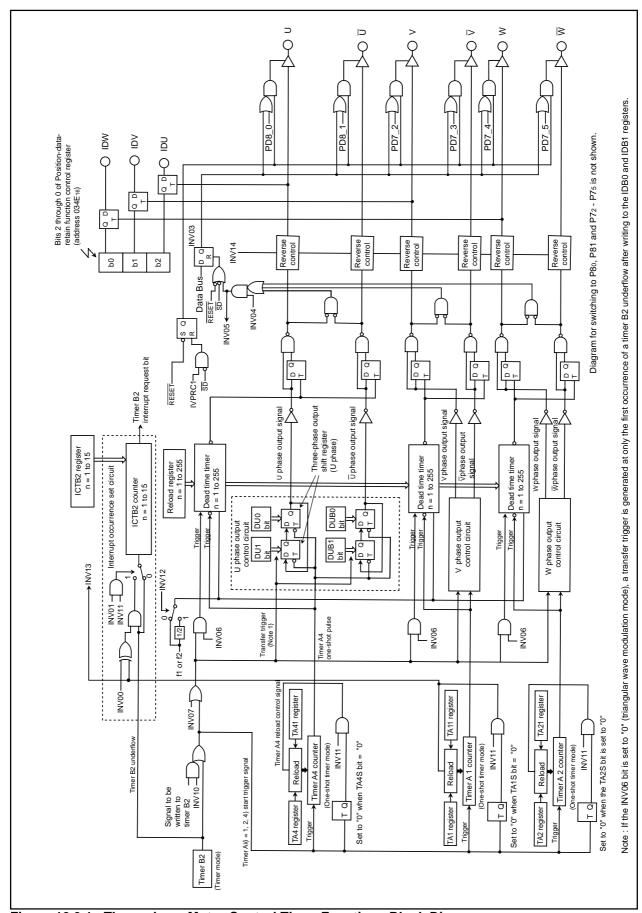


Figure 12.3.1. Three-phase Motor Control Timer Functions Block Diagram

b6 b5 b4 b3 b2	1 1	Symbol INVC0	Address 0348 ₁₆	After reset 0016	
		Bit symbol	Bit name	Description	RW
		INV00	Effective interrupt output polarity select bit (Note 3)	O: The ICTB2 counter is incremented by one on the reising edge of the timer A1 reload control signal The ICTB2 counter is incremented by one on the falling edge of the timer A1 reload control signal	RW
		INV01	Effective interrupt output specification bit (Note 2, Note 3)	ICTB2 counter incremented by 1 at a timer B2 underflow Selected by INV00 bit	RW
		INV02	Mode select bit (Note 4)	O: Three-phase motor control timer function unused Three-phase motor control timer function (Note 5)	RW
		INV03	Output control bit (Note 6)	0: Three-phase motor control timer output disabled (Note 5) 1: Three-phase motor control timer output enabled (Note 10)	RW
		INV04	Positive and negative phases concurrent output disable bit	0: Simultaneous active output enabled 1: Simultaneous active output disabled	RW
		INV05	Positive and negative phases concurrent output detect flag	0: Not detected yet 1: Already detected (Note 7)	RW
<u> </u>		INV06	Modulation mode select bit (Note 8)	0: Triangular wave modulation mode (Note 9) 1: Sawtooth wave modulation mode	RW
		INV07	Software trigger select bit	Setting this bit to "1" generates a transfer trigger. If the INV06 bit is "1", a trigger for the dead time timer is also generated. The value of this bit when read is "0".	RW

Note 1: Write to this register after setting the PRC1 bit in the PRCR register to "1" (write enable). Note also that INV00 to INV02, INV04 and INV06 bits can only be rewritten when timers A1, A2, A4 and B2 are idle. Note 2: If this bit needs to be set to "1", set any value in the ICTB2 register before writing to it.

Note 3: Effective when the INV11 bit is set to "1" (three-phase mode 1). If INV11 is set to "0" (three-phase mode 0), the ICTB2 counter is incremented by "1" each time the timer B2 underflows, regardless of whether the INV00 and INV01 bits are set. When setting the INV01 bit to "1", set the timer A1 count start flag before the first timer B2 underflow. When the INV00 bit is set to "1", the first interrupt is generated when the timer B2 underflows *n*-1 times, if *n* is the value set in the ICTB2 counter. Subsequent interrupts are generated every *n* times the timer B2 underflow.

Note 4: Setting the INV02 bit to "1" activates the dead time timer, U/V/W-phase output control circuits and ICTB2 counter.

Note 5: When the INV02 bit is set to "1"(theee-phase control timer functions) and the INV03 is set to "0"(three-phase motor control timer output disabled), U, U, V, V, W and W pins, including pins shared with other output functions, enter a highimpedance state.

Note 6: The INV03 bit is set to "0" in the following cases:

- When reset
- When positive and negative go active (INV05="1") simultaneously while INV04 bit is set to "1"
- When set to "0" in a program
- When input on the SD pin changes state from "H" to "L" (The INV03 bit cannot be set to "1" when SD input is "L".) When both the INV04 and the INV05 bits are set to "1", the INV03 bit is set to "0".

Note 7: Can only be set by writing "0" in a program, and cannot be set to "1".

Note 8: The effects of the INV06 bit are described in the table below.

Item	INV06=0	INV06=1	
Mode	Triangular wave modulation mode	Sawtooth wave modulation mode	
Timing at which transferred from IDB0 to IDB1 registers to three-phase output shift register	Transferred only once synchronously with the transfer trigger after writing to the IDB0 to IDB1 registers	Transferred every transfer trigger	
Timing at which dead time timer trigger is generated when INV16 bit is "0"	Synchronous with the falling edge of timer A1, A2, or A4 one-shot pulse	Synchronous with the transfer trigger and the falling edge of timer A1, A2, or A4 one-shot pulse	
INV13 bit	Effective when INV11 is "1" and INV06 is "0"	Has no effect	

Transfer trigger: Timer B2 underflow, write to the INV07 bit or write to the TB2 register when INV10 is "1"

Note 9: If the INV06 bit is "1", set the INV11 bit to "0" (three-phase mode 0) and set the PWCON bit to "0" (timer B2 reloaded by a timer B2 underflow).

Note10: Individual pins can be disabled using PFCR register.

Figure 12.3.2. INVC0 Register

Three-phase PWM control register 1 (Note 1)				
b7 b6 b5 b4 b3 b2 b1 b	Symbol INVC1	Address 0349 ₁₆	After reset 0016	
	Bit symbol	Bit name	Description	RW
	INV10	Timer A1, A2, A4 start trigger signal select bit	0: Timer B2 underflow 1: Timer B2 underflow and write to the TB2 register (Note 2)	RW
<u> </u>	- INV11	Timer A1-1, A2-1, A4-1 control bit (Note 3)	0: Three-phase mode 0 1: Three-phase mode 1 (Note 4)	RW
	- INV12	Dead time timer count source select bit	0: f1 or f2 1: f1 divided by 2 or f2 divided by 2	RW
	- INV13	Carrier wave detect flag (Note 5)	0: Timer A1 reload control signal is "0" 1: Timer A1 reload control signal is "1"	RO
	- INV14	Output polarity control bit	0 : Output waveform "L" active 1 : Output waveform "H" active	RW
L	- INV15	Dead time invalid bit	0: Dead time timer enabled 1: Dead time timer disabled	RW
	- INV16	Dead time timer trigger select bit	O: Falling edge of timer A4, A1 or A2 one-shot pulse 1: Rising edge of three-phase output shift register (U, V or W phase) output (Note 6)	RW
	(b7)	Reserved bit	This bit should be set to "0"	RW

Note 1: Write to this register after setting the PRC1 bit in the PRCR register to "1" (write enable). Note also that this register can only be rewritten when timers A1, A2, A4 and B2 are idle.

Note 2: A start trigger is generated by writing to the TB2 register only while timer B2 stops.

Note 3: The effects of the INV11 bit are described in the table below.

Item	INV11=0	INV11=1
Mode	Three-phase mode 0	Three-phase mode 1
TA11, TA21, TA41 registers	Not used	Used
INV00 bit, INV01 bit	Has no effect. ICTB2 counted every time timer B2 underflows regardless of whether the INV00 to INV01 bits are set.	Effect
INV13 bit	Has no effect	Effective when INV11 bit is set to "1" and INV06 bit is set to "0"

Note 4: If the INV06 bit is set to "1" (sawtooth wave modulation mode), set this bit to "0" (three-phase mode 0). Also, if the INV11 bit is "0", set the PWCON bit to "0" (timer B2 reloaded by a timer B2 underflow).

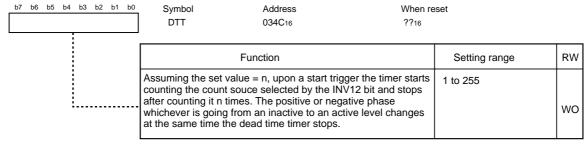
Note 5: The INV13 bit is effective only when the INV06 bit is set to "0" (triangular wave modulation mode) and the INV1 1 bit is set to "1" (three-phase mode 1).

Note 6: If all of the following conditions hold true, set the INV16 bit to "1" (dead time timer triggered by the rising edge

of three-phase output shift register output)

The INV15 bit is set to "0" (dead time timer enabled)
When the INV03 bit is set to "1" (three-phase motor control timer output enabled), the Dij bit and DiBj bit (i:U, V, or W, j: 0 to 1) have always different values (the positive-phase and negative-phase always output different levels during the period other than dead time).

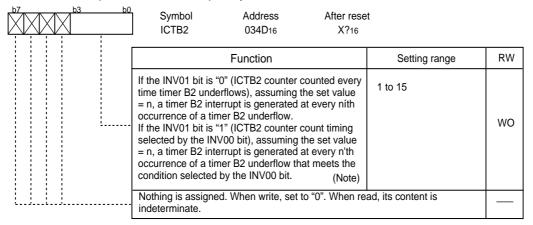
Conversely, if either one of the above conditions holds false, set the INV16 bit to "0" (dead time timer triggered by the falling edge of one-shot pulse).


Figure 12.3.3. INVC1 Register

Three-phase output buffer register(i=0,1) (Note)

b/ b/		54 b3	3 b2 1	b1 b0	Symbol IDB0 IDB1	Address 034A ₁₆ 034B ₁₆	When reset 3F16 3F16	
					Bit	Bit name	Function	RW
				ļ L.	DUi	U phase output buffer i	Write the output level 0: Active level	RW
					DUBi	Ū phase output buffer i	1: Inactive level	RW
			Ĺ.,		DVi	V phase output buffer i	When read, these bits show the three-phase output shift register value.	RW
		į.			DVBi	V phase output buffer i		RW
		1			DWi	W phase output buffer i		RW
					DWBi	W phase output buffer i		
<u>i. i</u>				(b7-b6)	Nothing is assigned. When write, set to "0". When read, these contents are "0".			

Note: The IDB0 and IDB1 register values are transferred to the three-phase shift register by a transfer trigger. The value written to the IDB0 register aftera transfer trigger represents the output signal of each phase, and the next value written to the IDB1 register at the falling edge of the timer A1, A2 or A4 one-shot pulse represents the output signal of each phase.


Dead time timer (Note 1, Note 2)

Note 1: Use MOV instruction to write to this register.

Note 2: Effective when the INV15 bit is set to "0" (dead time timer enable). If the ONV15 bit is set to "1", the dead time timer is disabled and has no effect.

Timer B2 interrupt occurrences frequency set counter

Note: Use MOV instruction to write to this register.

If the INV01 bit is set to "1", make sure the TB2S bit also is set to "0" (timer B2 count stopped) when writing to this register. If the INV01 bit is set to "0", although this register can be written even when the TB2S bit is set to "1" (timer B2 count start), do not write synchronously with a timer B2 underflow.

Figure 12.3.4. IDB0 Register, IDB1Register, DTT Register, and ICCTB2 Register

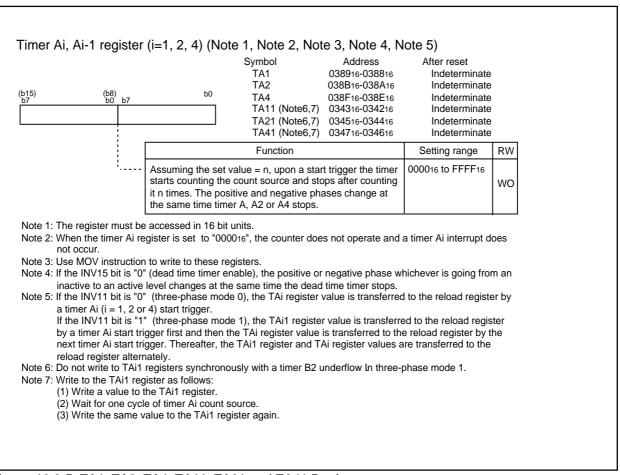


Figure 12.3.5. TA1, TA2, TA4, TA11, TA21 and TA41 Registers

Timer B2 special mode register (Note 1)

Symbol Address After reset 0 0 TB2SC 039E₁₆ X00000002 RW Bit symbol Bit name **Function** 0 : Timer B2 underflow Timer B2 Reload Timing **PWCOM** Switch Bit (Note 2) 1 : Timer A output at odd-numbered RW Three-Phase Output Port IVPCR1 0: Three-phase output forcible cutoff by SD pin input (high impedance) SD Control Bit 1 (Note 3, 4, 7) disabled RW 1 : Three-phase output forcible cutoff by SD pin input (high impedance) enabled 0 : Other than A/D trigger mode TB0EN Timer B0 Operation Mode RW Select Bit 1: A/D trigger mode (Note 5) TB1EN Timer B1 Operation Mode 0: Other than A/D trigger mode RW Select Bit 1 : A/D trigger mode (Note 5) TB2SEL Trigger Select Bit (Note 6) 0: TB2 interrupt RW 1: Underflow of TB2 interrupt generation frequency setting counter [ICTB2] (b6-b5) Reserved bits Must set to "0" RW Nothing is assigned. When write, set to "0". (h7) When read, its content is "0"

- Note 1. Write to this register after setting the PRC1 bit in the PRCR register to "1" (write enabled).
- Note 2. If the INV11 bit is "0" (three-phase mode 0) or the INV06 bit is "1" (triangular wave modulation mode), set this bit to "0" (timer B2 underflow).
- Note 3. When setting the IVPCR1 bit to "1" (three-phase output forcible cutoff by SD pin input enabled), Set the PD8_5 bit to "0" (= input mode).
- Note 4. Related pins are U(P8₀), Ū(P8₁), V(P7₂), V(P7₃), W(P7₄), W(P7₅). After forcible cutoff, input "H" to the P8₅/NMI/SD pin. Set the IVPCR1 bit to "0", and this forcible cutoff will be reset. If "L" is input to the P8₅/NMI/SD pin, a three-phase motor control timer output will be disabled (INV03=0). At this time, when the IVPCR1 bit is "0", the target pins changes to programmable I/O port. When the IVPCR1 bit is "1", the target pins changes to high-impedance state regardless of which functions of those pins are used.
- Note 5. When this bit is used in delayed trigger mode 0, set the TB0EN and TB1EN bits to "1"(A/D trigger mode).
- Note 6. When setting the TB2SEL bit to "1" (underflow of TB2 interrupt generation frequency setting counter[ICTB2]), Set the INV02 bit to "1" (three-phase motor control timer function).
- Note 7. Refer to 16.6 Digital Debounce function for SD input.

The effect of P8 $5/\overline{\text{NMI}}/\overline{\text{SD}}$ pin input is below.

1.Case of INV03 = "1"(Three-phase motor control timer output enabled)

IVPCR1 bit	P8₅/NMT/SD pin inputs (Note 3)	status of U/V/W pins	Remarks
"1"	Н	Three-phase PWM output	
(Three-phase output forcrible cutoff enable)	L(Note 1)	High impedance	Three-phase output forcrible cutoff
"0"	Н	Three-phase PWM output	
(Three-phase output forcrible cutoff disable)	L(Note 1)	Input/output port(Note 2)	

- Note 1: When "L" is input to the P85/NMI/SD pin, INV03 bit changes in "0" at the same time.
- Note 2: The value of the port register and the port direction register becomes effective.
- Note 3: When \overline{SD} function isn't used, set to "0"(Input) in PD8s and pullup to "H" in P8s/ $\overline{NMI}/\overline{SD}$ pin from outside.

2.Case of INV03 = "0"(Three-phase motor control timer output disabled)

IVPCR1 bit	P85/NMT/SD pin inputs	status of U/V/W pins	Remarks
"1" (Three-phase output	Н	peripheral input/output or input/output port	
forcrible cutoff enable)	L	High impedance	Three-phase output forcrible cutoff(Note 1)
"0"	Н	peripheral input/output or input/output port	
(Three-phase output forcrible cutoff disable)	L	peripheral input/output or input/output port	

Note 1: The three-phase output forcrible cutoff function becomes effective if the INPCR1 bit is set to "1" (three-phase output forcrible cutoff function enable) even when INV03 bit is "0"(three-phase motor control timer output disalbe)

Figure 12.3.6. TB2SC Registers

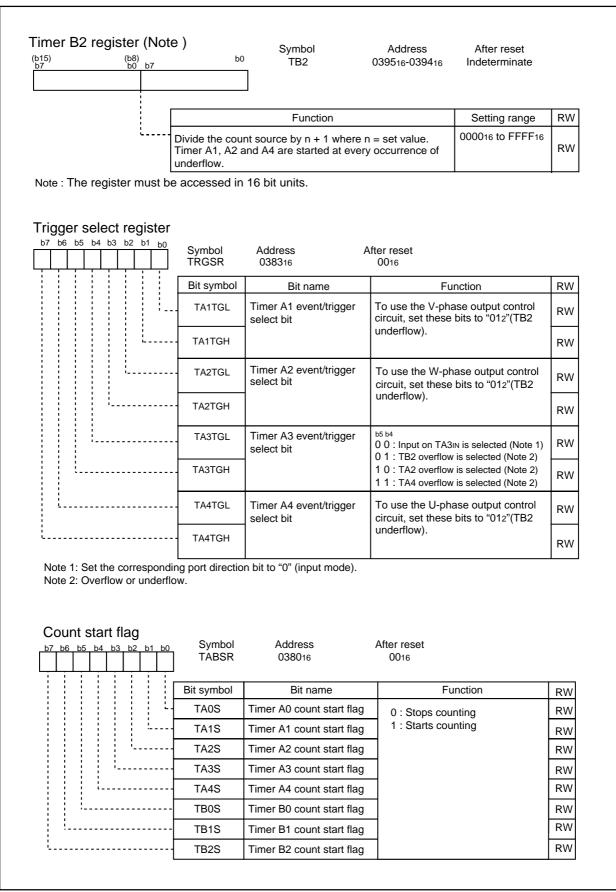


Figure 12.3.7. TB2 Register, TRGSR Register, and TABSR Register

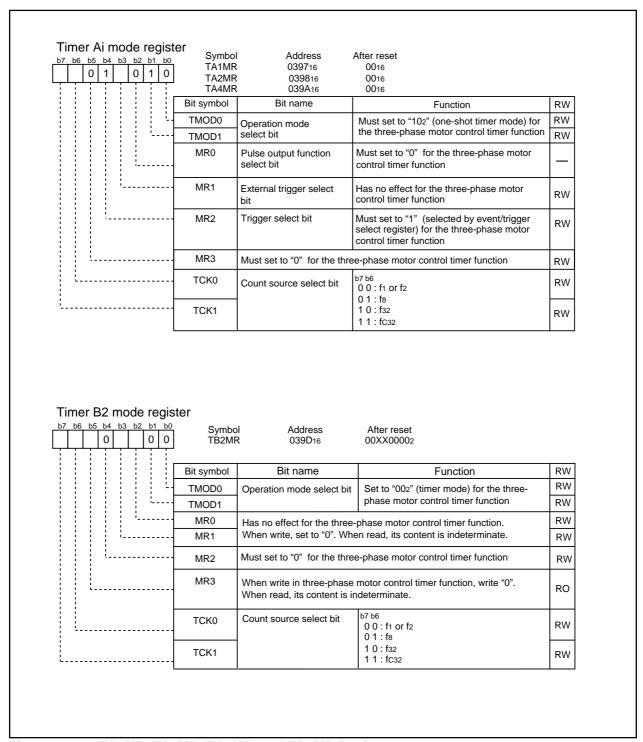


Figure 12.3.8. TA1MR, TA2MR, TA4MR, and TB2MR Registers

The three-phase motor control timer function is enabled by setting the INV02 bit in the VC0 register to "1". When this function is on, timer B2 is used to control the carrier wave, and timers A4, A1 and A2 are used to control three-phase PWM outputs $(U, \overline{U}, V, \overline{V}, W \text{ and } \overline{W})$. The dead time is controlled by a dedicated dead-time timer. Figure 12.3.9 shows the example of triangular modulation waveform, and Figure 12.3.10 shows the example of sawtooth modulation waveform.

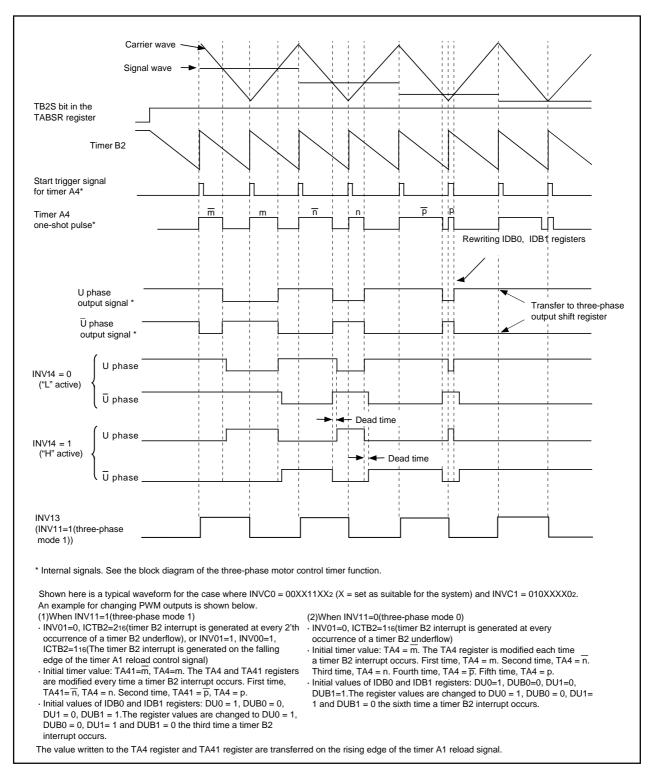


Figure 12.3.9. Triangular Wave Modulation Operation

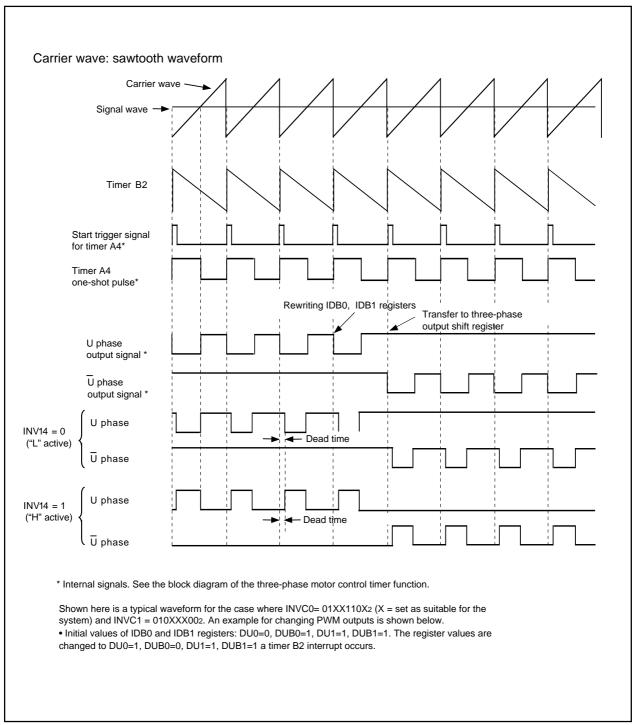


Figure 12.3.10. Sawtooth Wave Modulation Operation

12.3.1 Position-data-retain Function

This function is used to retain the position data synchronously with the three-phase waveform output. There are three position-data input pins for U, V, and W phases.

A trigger to retain the position data (hereafter, this trigger is referred to as "retain trigger") can be selected by the retain-trigger polarity select bit(bit 3 of the position-data-retain function control register, at address 034E16). This bit selects the retain trigger to be the falling edge of each positive phase, or the rising edge of each positive phase.

12.3.1.1 Operation of the Position-data-retain Function

Figure 12.3.1.1.1 shows a usage example of the position-data-retain function (U phase) when the retain trigger is selected as the falling edge of the positive signal.

- (1) At the falling edge of the U-phase waveform ouput, the state at pin IDU is transferred to the U-phase position data retain bit (bit2 at address 034E16).
- (2) Until the next falling edge of the Uphase waveform output, the above value is retained.

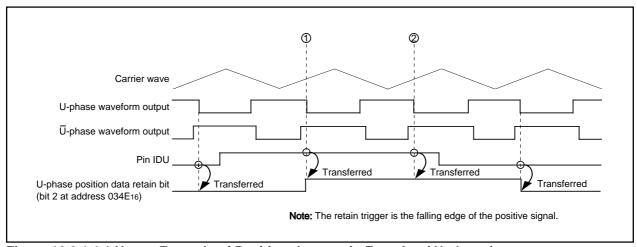


Figure 12.3.1.1.1 Usage Example of Position-data-retain Function (U phase)

12.3.1.2 Position-data-retain Function Control Register

Figure 12.3.1.2.1 shows the structure of the position-data-retain function contol register.

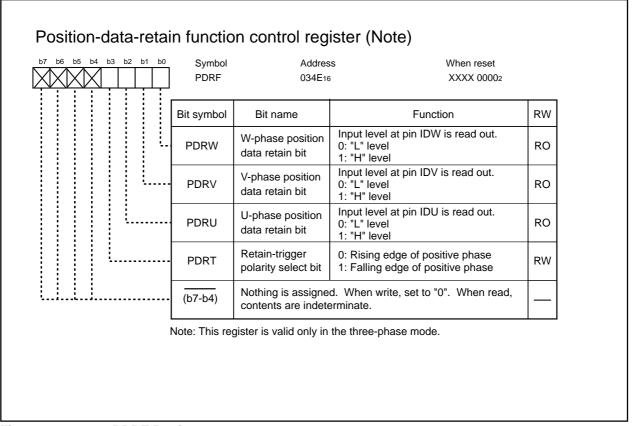


Figure 12.3.1.2.1. PDRF Register

12.3.1.2.1 W-phase Position Data Retain Bit (PDRW)

This bit is used to retain the input level at pin IDW.

12.3.1.2.2 V-phase Position Data Retain Bit (PDRV)

This bit is used to retain the input level at pin IDV.

12.3.1.2.3 U-phase Position Data Retain Bit (PDRU)

This bit is used to retain the input level at pin IDU.

12.3.1.2.4 Retain-trigger Polarity Select Bit (PDRT)

This bit is used to select the trigger polarity to retain the position data.

When this bit is set to "0", the rising edge of each positive phase selected.

When this bit is set to "1", the falling edge of each pocitive phase selected.

12.3.2 Three-phase/Port Output Switch Function

When the INVC03 bit in the INVC0 register set to "1"(Timer output enabled for three-phase motor control) and setting the PFCi (i=0 to 5) in the PFCR register to "0"(I/O port), the three-phase PWM output pin (U, \overline{U} , \overline{V} , \overline{V} and \overline{W}) functions as I/O port. Each bit in the PFCi bits (i=0 to 5) is applicable for each one of three-phase PWM output pins. Figure 12.3.2.1 shows the example of three-phase/port output switch function. Figure 12.3.2.2 shows the PFCR register and the three-phase protect control register.

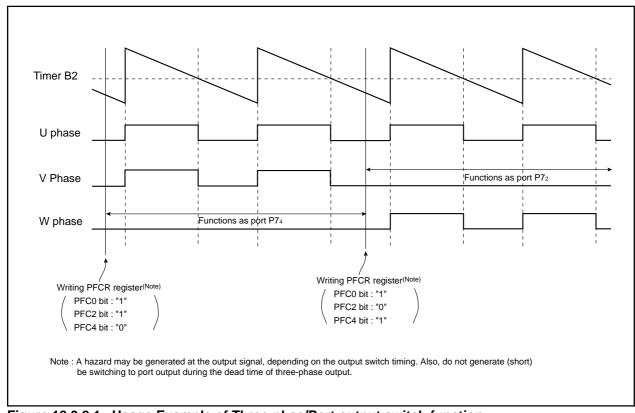


Figure 12.3.2.1. Usage Example of Three-phse/Port output switch function

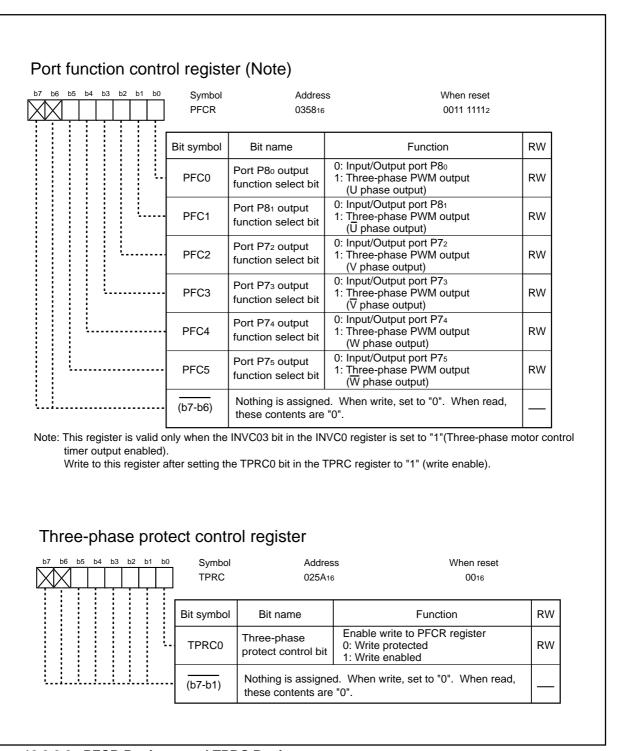


Figure 12.3.2.2. PFCR Register, and TPRC Register

13. Serial I/O

Note

The M16C/26A (42-pin version) do not use UART0.

Serial I/O is configured with three channels: UART0 to UART2.

13.1. UARTi (i=0 to 2)

UARTi each have an exclusive timer to generate a transfer clock, so they operate independently of each other.

Figure 13.1.1 shows the block diagram of UARTi. Figures 13.1.2 and 13.1.3 shows the block diagram of the UARTi transmit/receive.

UARTi has the following modes:

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode).
- Special mode 1 (I²C bus mode): UART2
- Special mode 2: UART2
- Special mode 3 (Bus collision detection function, IEBus mode): UART2
- Special mode 4 (SIM mode) : UART2

Figures 13.1.4 to 13.1.9 show the UARTi-related registers.

Refer to tables listing each mode for register setting.

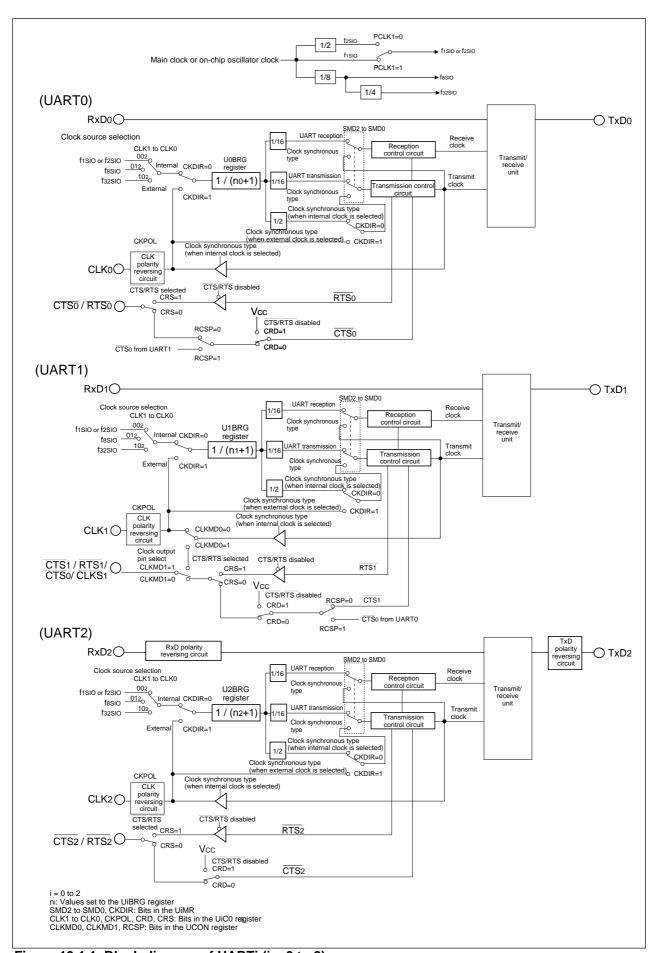


Figure 13.1.1. Block diagram of UARTi (i = 0 to 2)

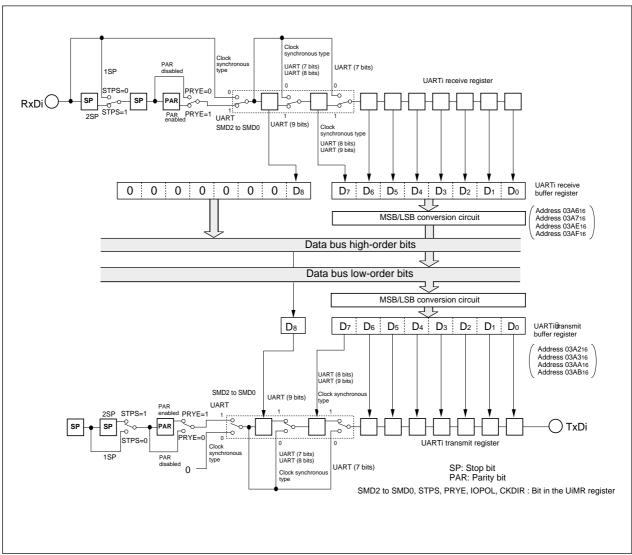


Figure 13.1.2. Block diagram of UARTi (i = 0, 1) transmit/receive unit

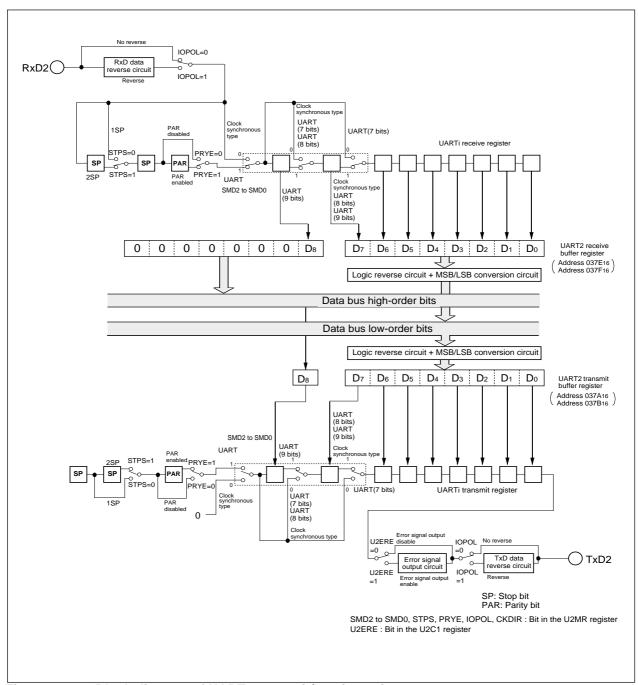
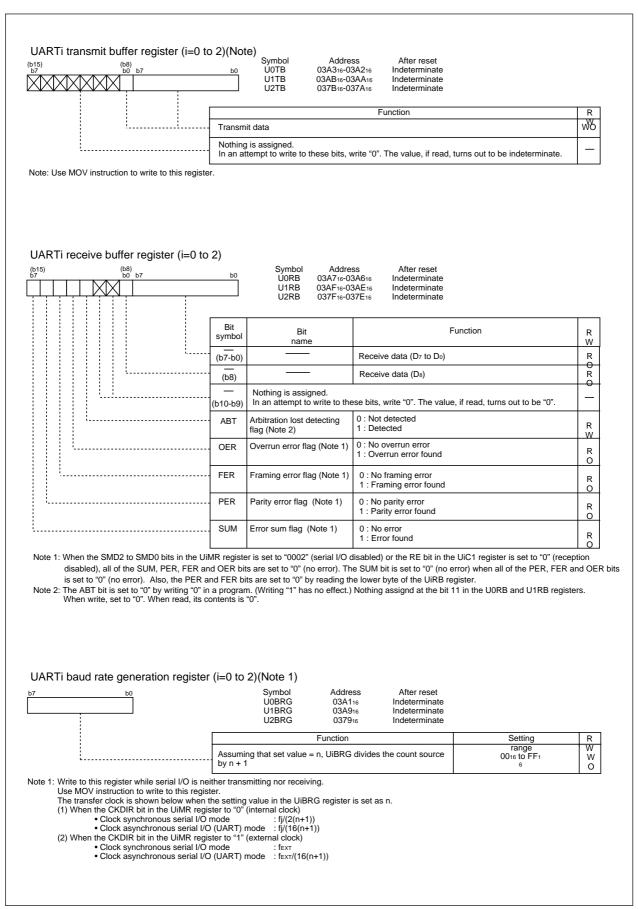
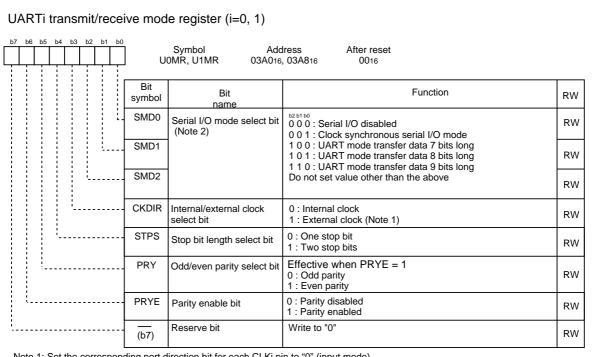
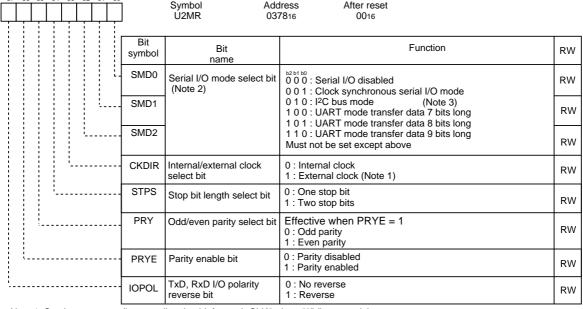


Figure 13.1.3. Block diagram of UART2 transmit/receive unit


Figure 13.1.4. U0TB to U2TB registers, U0RB to U2RB registers, U0BRG to U2BRG registers

Note 1: Set the corresponding port direction bit for each CLKi pin to "0" (input mode)

Note 2: To receive data, set the corresponding port direction bit for each RxDi pin to "0" (input mode).

UART2 transmit/receive mode register

Note 1: Set the corresponding port direction bit for each CLK2 pin to "0" (input mode).

Note 2: To receive data, set the corresponding port direction bit for each RxD2 pin to "0" (input mode).

Note 3: Set the corresponding port direction bit for SCL2 and SDA2 pins to "0" (input mode).

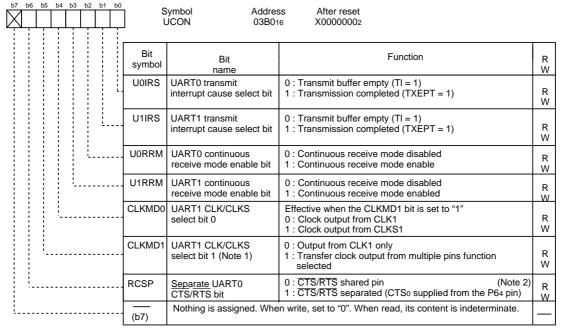
Figure 13.1.5. U0MR to U2MR registers

UARTi transmit/receive control register 0 (i=0 to 2) Symbol Address After reset U0C0 to U2C0 03A416, 03AC16, 037C16 000010002 Bit RW Bit name Function symbo CLK0 BRG count source 00: f1SIO or f2SIO is selected RW select bit 0.1: fasio is selected 1 0: f32SIO is selected CLK1 RW 11: Do not set to this value Effective when CRD = 0 CRS CTS/RTS function 0 : CTS function is selected (Note 1) RW select bit 1 : RTS function is selected (Note 3) 0 : Data present in transmit register (during transmission) **TXEPT** Transmit register empty 1 : No data present in transmit register RO flag (transmission completed) CTS/RTS function enabled CRD CTS/RTS disable bit CTS/RTS function disabled RW (P60, P64 and P73 can be used as I/O ports) (Note 6) 0 : TxDi/SDA2 and SCL2 pins are CMOS output (Note 4) 1 : TxDi/SDA2 and SCL2 pins are N-channel open-drain output Data output select bit NCH RW 0: Transmit data is output at falling edge of transfer clock CKPOL CLK polarity select bit and receive data is input at rising edge RW 1 : Transmit data is output at rising edge of transfer clock and receive data is input at falling edge UFORM Transfer format select bit 0 : LSB first RW 1: MSB first (Note 2)

Note 1: Set the corresponding port direction bit for each CTSi pin to "0" (input mode).

Note 2: Effective for clock synchronous serial I/O mode, UART mode transfer data 8 bits long and special mode 2.

Note 3: CTS₁/RTS₁ can be used when the CLKMD1 bit in the UCON register is set to "0" (only CLK1 output) and the RCSP bit in the UCON register is set to "0" (CTS₀/RTS₀ not separated).


Note 4: SDA2 and SCL2 are effective when i = 2.

Note 5: When the SMD2 to SMD0 bits in UiMR regiser are set to "0002" (serial I/O disable), do not set NCH bit to "1" (TxDi/SDA2 and SCI 2 pips are N-chappel page-drain output)

SCL2 pins are N-channel open-drain output).

Note 6: When the U1MAP bit in PACR register is "1" (P73 to P70), CTS/RTS pin in UART1 is assigned to P70.

UART transmit/receive control register 2

Note 1: When using multiple transfer clock output pins, make sure the following conditions are met: set the CKDIR bit in the U1MR register to "0" (internal clock)

Note 2: When the U1MAP bit in PACR register is set to "1" (P73 to P70), CTS0 is supplied from the P70 pin.

Figure 13.1.6. U0C0 to U2C0 registers and UCON register

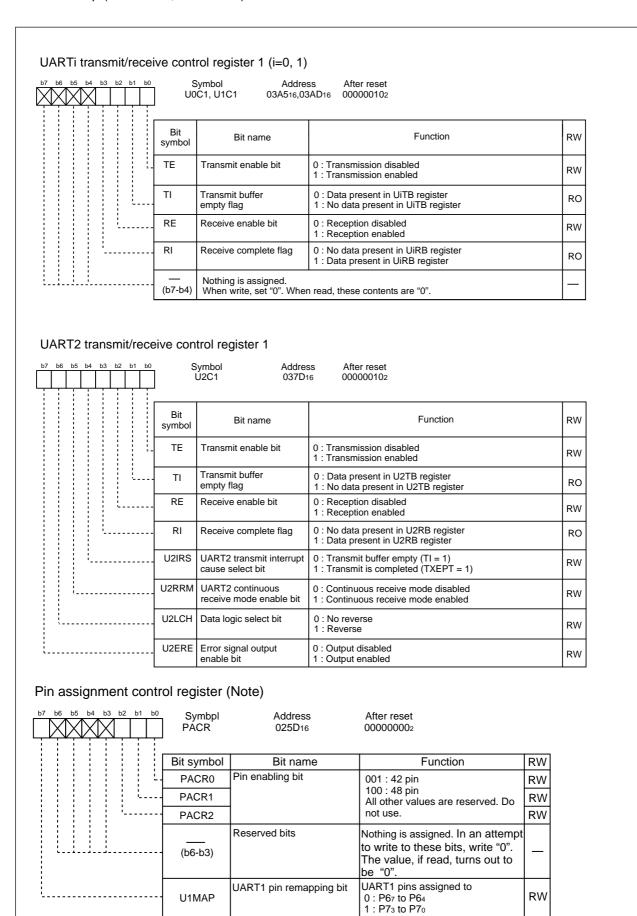


Figure 13.1.7. U0C1 to U2C1 registers, PACR register

Note: Make sure the PACR register is written to by the next instruction after setting the PRC2 bit in the PRCR

register to "1" (write enable).

UART2 special mode register b5 b4 b3 b2 b1 b0 Symbol Address After reset 0 U2SMR 037716 X0000002 Bit **Function** symbol W name IICM I²C bus mode select bit 0 : Other than I2C bus mode R 1: I2C bus mode ABC Arbitration lost detecting 0 : Update per bit R flag control bit 1 : Update per byte W 0: STOP condition detected R BBS Bus busy flag 1: START condition detected (busy) NM61 Set to "0" Reserved bit R (b3)Bus collision detect 0 : Rising edge of transfer clock **ABSCS** 1 : Underflow signal of timer A0 sampling clock select bit W Auto clear function 0: No auto clear function **ACSE** select bit of transmit 1: Auto clear at occurrence of bus collision enable bit W 0: Not synchronized to RxDi Transmit start condition SSS R select bit 1 : Synchronized to RxDi (Note 2) W Nothing is assigned. When write, set to "0". When read, its content is indeterminate. (b7)

Note 1: The BBS bit is set to "0" by writing "0" in a program. (Writing "1" has no effect.). Note 2: When a transfer begins, the SSS bit is set to "0" (Not synchronized to RxDi).

UART2 special mode register 2

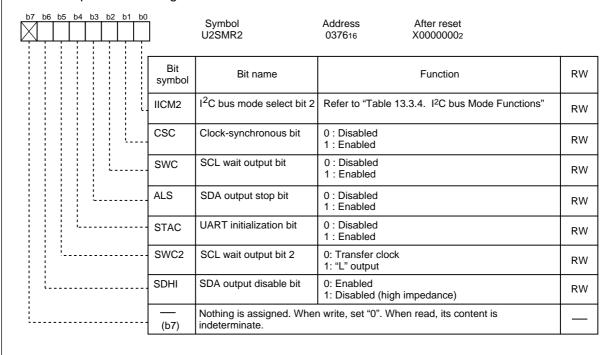


Figure 13.1.8. U2SMR register and U2SMR2 register

UART2 special mode register 3 Symbol Address After reset U2SMR3 037516 000X0X0X2 Bit Bit name Function RW symbol Nothing is assigned. (b0)When write, set "0". When read, its content is indeterminate. **CKPH** 0: Without clock delay Clock phase set bit RW 1: With clock delay Nothing is assigned. (b2) When write, set "0". When read, its content is indeterminate. NODC Clock output select bit 0: CLKi is CMOS output RW 1 : CLKi is N-channel open drain output Nothing is assigned. (b4) When write, set "0". When read, its content is indeterminate. b7 b6 b5 DL0 SDA digital delay RW 0 0 0: Without delay setup bit 0 0 1 : 1 to 2 cycle(s) of UiBRG count source 0 1 0 : 2 to 3 cycles of UiBRG count source (Note 1, Note 2) DL1 1 1:3 to 4 cycles of UiBRG count source RW 0 0:4 to 5 cycles of UiBRG count source 0 1:5 to 6 cycles of UiBRG count source DI 2 1 0:6 to 7 cycles of UiBRG count source RW 1 1 1:7 to 8 cycles of UiBRG count source

Note 1 : The DL2 to DL0 bits are used to generate a delay in SDA2 output by digital means during I2C bus mode. In other than I2C bus mode, set these bits to "0002" (no delay).

Note 2 : The amount of delay varies with the load on SCL2 and SDA2 pins. Also, when using an external clock, the amount of delay increases by about 100 ns.

UART2 special mode register 4

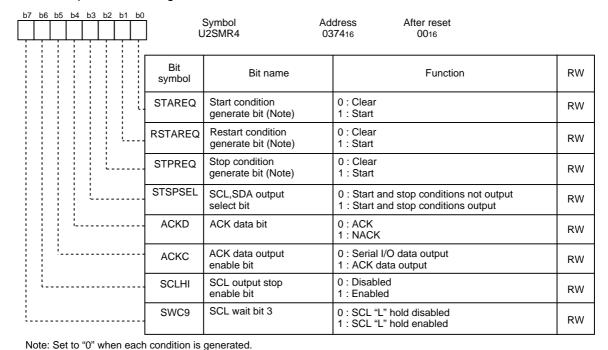


Figure 13.1.9. U2SMR3 register and U2SMR4 register

13.1.1. Clock Synchronous serial I/O Mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Table 13.1.1.1 lists the specifications of the clock synchronous serial I/O mode. Table 13.1.1.2 lists the registers used in clock synchronous serial I/O mode and the register values set.

Table 13.1.1.1. Clock Synchronous Serial I/O Mode Specifications

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	• The CKDIR bit in the UiMR(i=0 to 2) register is set to "0" (internal clock) : fj/ (2(n+1))
	fj = f1SiO, f2SiO, f8SiO, f32SiO. n: Setting value of UiBRG register 0016 to FF16
	• The CKDIR bit is set to "1" (external clock): Input from CLKi pin
Transmission, reception control	Selectable from CTS function, RTS function or CTS/RTS function disable
Transmission start condition	Before transmission can start, the following requirements must be met (Note 1)
	- The TE bit in the UiC1 register is set to "1" (transmission enabled)
	- The TI bit in the UiC1 register is set to "0" (data present in UiTB register)
	- If CTS function is selected, input on the CTSi pin is "L"
Reception start condition	Before reception can start, the following requirements must be met (Note 1)
	- The RE bit in the UiC1 register is set to "1" (reception enabled)
	- The TE bit in the UiC1 register is set to "1" (transmission enabled)
	- The TI bit in the UiC1 register is set to "0" (data present in the UiTB register)
	For transmission, one of the following conditions can be selected
	- The UiIRS bit (Note 3) is set to "0" (transmit buffer empty): when transferring data
from the	UiTB register to the UARTi transmit register (at start of transmission)
	- The UiIRS bit is set to "1" (transfer completed): when the serial I/O finished sending
data from	the UARTi transmit register
	For reception
	When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error detection	Overrun error (Note 2)
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the 7th bit of the next data
Select function	CLK polarity selection
	Transfer data input/output can be chosen to occur synchronously with the rising or
	the falling edge of the transfer clock
	LSB first, MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7
	can be selected
	Continuous receive mode selection
	Reception is enabled immediately by reading the UiRB register
	Switching serial data logic (UART2)
	This function reverses the logic value of the transmit/receive data
	Transfer clock output from multiple pins selection (UART1)
	The output pin can be selected in a program from two UART1 transfer clock pins that
	have been set
	Separate CTS/RTS pins (UART0)
	CTS ₀ and RTS ₀ are input/output from separate pins
	UART1 pin remapping selection
	The UART1 pin can be selected from the P67 to P64 or P73 to P70.

Note 1: When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register "0" (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register "1" (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.

Note 2: If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit in the SiRIC register does not change.

Note 3: The U0IRS and U1IRS bits respectively are the UCON register bits 0 and 1; the U2IRS bit is the U2C1 register bit 4.

Table 13.1.1. 2. Registers to Be Used and Settings in Clock Synchronous Serial I/O Mode

Register	Bit	Function			
UiTB(Note3)	0 to 7	Set transmission data			
UiRB(Note3)	0 to 7	Reception data can be read			
	OER	Overrun error flag			
UiBRG	0 to 7	Set a transfer rate			
UiMR(Note3)	SMD2 to SMD0	Set to "0012"			
	CKDIR	Select the internal clock or external clock			
	IOPOL(i=2)(Note 4)	Set to "0"			
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register			
	CRS	Select CTS or RTS to use			
	TXEPT	Transmit register empty flag			
	CRD	Enable or disable the CTS or RTS function			
	NCH	Select TxDi pin output mode			
	CKPOL	Select the transfer clock polarity			
	UFORM	Select the LSB first or MSB first			
UiC1	TE	Set this bit to "1" to enable transmission/reception			
	TI	Transmit buffer empty flag			
	RE	Set this bit to "1" to enable reception			
	RI	Reception complete flag			
	U2IRS (Note 1)	Select the source of UART2 transmit interrupt			
	U2RRM (Note 1)	Set this bit to "1" to use UART2 continuous receive mode			
	U2LCH(Note 3)	Set this bit to "1" to use UART2 inverted data logic			
	U2ERE(Note 3)	Set to "0"			
U2SMR	0 to 7	Set to "0"			
U2SMR2	0 to 7	Set to "0"			
U2SMR3	0 to 2	Set to "0"			
	NODC	Select clock output mode			
	4 to 7	Set to "0"			
U2SMR4	0 to 7	Set to "0"			
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt			
	U0RRM, U1RRM	Set this bit to "1" to use continuous receive mode			
	CLKMD0	Select the transfer clock output pin when CLKMD1 = 1			
	CLKMD1	Set this bit to "1" to output UART1 transfer clock from two pins			
	RCSP	Set this bit to "1" to accept as input the UART0 CTS0 signal from the P64 pin or P70 pin			
	7	Set to "0"			

Note 1: Set bit 4 and bit 5 in the U0C1 and U1C1 register are set to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Note 2: Not all register bits are described above. Set those bits to "0" when writing to the registers in clock synchronous serial I/O mode.

Note 3: Set the bit 6 and bit 7 in the U0C1 and U1C1 register to "0".

Note 4: Set the bit 7 in the U0MR and U1MR register to "0".

i=0 to 2

Table 13.1.1.3 lists the functions of the input/output pins during clock synchronous serial I/O mode. Table 13.3 shows pin functions for the case where the multiple transfer clock output pin select function is deselected. Table 13.1.1.4 lists the P64 pin functions during clock synchronous serial I/O mode.

Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs an "H". (If the N-channel open-drain output is selected, this pin is in a high-impedance state.)

Table 13.1.1.3. Pin Functions(Note 1) (When Not Select Multiple Transfer Clock Output Pin Function)

Pin name	Function	Method of selection
TxDi (i = 0 to 2) (P63, P67, P70)		(Outputs dummy data when performing reception only)
RxDi (P62, P66, P71)	Serial data input	Set the PD6_2 bit and PD6_6 bit in the PD6 register, and PD7_1 bit in the PD7 register to "0"(Can be used as an input port when performing transmission only)
CLKi	Transfer clock output	Set the CKDIR bit in the UiMR register to "0"
(P61, P65, P72)	Transfer clock input	Set the CKDIR bit in the UiMR register to "1" Set the PD6_1 bit and PD6_5 bit in the PD6 register, and the PD7_2 bit in the PD7 register to "0"
CTSi/RTSi (P60, P64, P73)	O'O liiput	
	RTS output	Set the CRD bit in the UiC0 register to "0" Set the CRS bit in the UiC0 register to "1"
	I/O port	Set the CRD bit in the UiC0 register to "1"

Note 1: When the U1MAP bit in PACR register is "1" (P73 to P70), UART1 pin is assgined to P73 to P70.

Table 13.1.1.4. P64 Pin Functions(Note 1)

able forming formation of the contract of						
Pin function	Bit set value					
	U1C0 register		UCON register		PD6 register	
	CRD	CRS	RCSP CLKMD1 CLKMD0		PD6_4	
P64	1	_	0	0	_	Input: 0, Output: 1
CTS ₁	0	0	0	0		0
RTS ₁	0	1	0	0	_	_
CTS ₀ (Note2)	0	0	1	0	_	0
CLKS1		_		1(Note 3)	1	_

Note 1: When the U1MAP bit in PACR register is "1" (P73 to P70), this table lists the P70 functions.

Note 2: In addition to this, set the CRD bit in the U0C0 register to "0" (CT00/RT00 enabled) and the

CRS bit in the U0C0 register to "1" (RTS0 selected).

Note 3: When the CLKMD1 bit is set to "1" and the CLKMD0 bit is set to "0", the following logiclevels are output:

- High if the CLKPOL bit in the U1C0 register is set to "0"
- Low if the CLKPOL bit in the U1C0 register is set to "1"

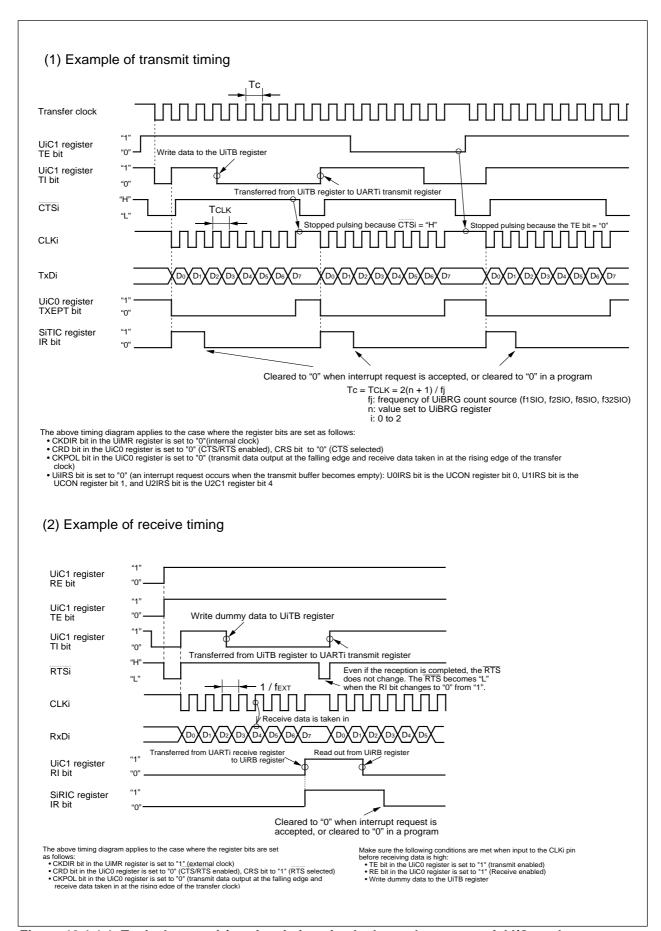


Figure 13.1.1.1. Typical transmit/receive timings in clock synchronous serial I/O mode

13.1.1.1 Counter Measure for Communication Error Occurs

If a communication error occurs while transmitting or receiving in clock synchronous serial I/O mode, follow the procedures below.

- •Resetting the UiRB register (i=0 to 2)
- (1) Set the RE bit in the UiC1 register to "0" (reception disabled)
- (2) Set the SMD2 to SMD0 bits in the UiMR register to "000b" (Serial I/O disabled)
- (3) Set the SMD2 to SMD0 bits in the UiMR register to "001b" (Clock synchronous serial I/O mode)
- (4) Set the RE bit in the UiC1 register to "1" (reception enabled)
- •Resetting the UiTB register (i=0 to 2)
- (1) Set the SMD2 to SMD0 bits in the UiMR register to "000b" (Serial I/O disabled)
- (2) Set the SMD2 to SMD0 bits in the UiMR register to "001b" (Clock synchronous serial I/O mode)
- (3) "1" is written to RE bit in the UiC1 register (reception enabled), regardless to the TE bit in the UiC1 register.

13.1.1.2 CLK Polarity Select Function

Use the CKPOL bit in the UiC0 register (i = 0 to 2) to select the transfer clock polarity. Figure 13.1.1.2.1 shows the polarity of the transfer clock.

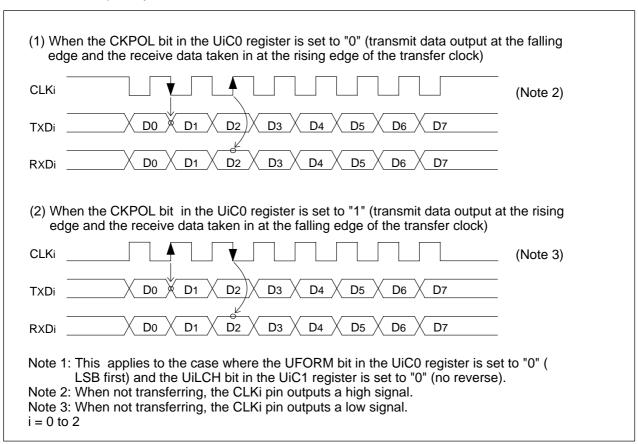


Figure 13.1.1.2.1. Polarity of transfer clock

13.1.1.3 LSB First/MSB First Select Function

Use the UFORM bit in the UiC0 register (i = 0 to 2) to select the transfer format. Figure 13.1.1.3.1 shows the transfer format.

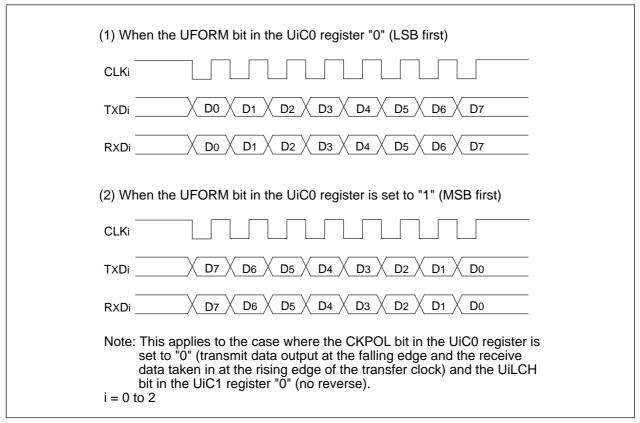


Figure 13.1.1.3.1 Transfer format

13.1.1.4 Continuous receive mode

When the UiRRM bit (i = 0 to 2) is set to "1" (continuous receive mode), the TI bit in the UiC1 register is set to "0" (data present in the UiTB register) by reading the UiRB register. In this case, i.e., UiRRM bit is set to "1", do not write dummy data to the UiTB register in a program. The U0RRM and U1RRM bits are the bit 2 and bit 3 in the UCON register, respectively, and the U2RRM bit is the bit 5 in the U2C1 register.

13.1.1.5 Serial data logic switch function (UART2)

When the U2LCH bit in the U2C1 register is set to "1" (reverse), the data written to the U2TB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the U2RB register. Figure 13.1.1.4.1 shows serial data logic.

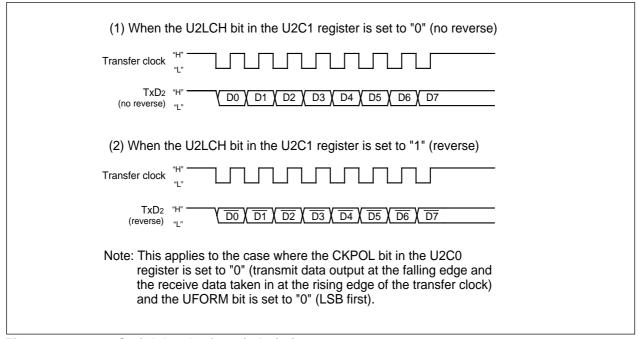


Figure 13.1.1.4.1. Serial data logic switch timing

13.1.1.6 Transfer clock output from multiple pins function (UART1)

The CLKMD1 to CLKMD0 bits in the UCON register can choose one from two transfer clock output pins. (See Figure 13.1.1.6.1) This function is valid when the internal clock is selected for UART1.

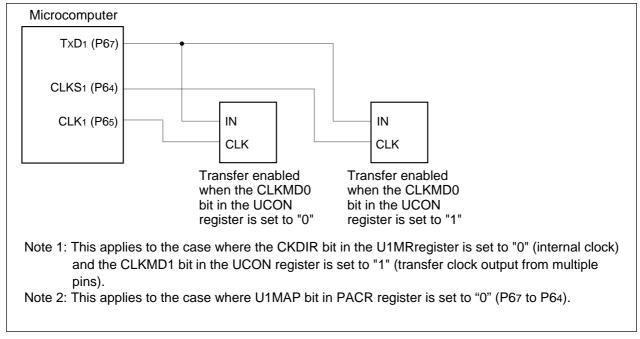


Figure 13.1.1.6.1 Transfer Clock Output From Multiple Pins

13.1.1.7 CTS/RTS separate function (UART0)

This function separates $\overline{\text{CTS0/RTS0}}$, outputs $\overline{\text{RTS0}}$ from the P60 pin, and accepts as input the $\overline{\text{CTS0}}$ from the P64 pin. To use this function, set the register bits as shown below.

- The CRD bit in the U0C0 register is set to "0" (enables UART0 CTS/RTS)
- The CRS bit in the U0C0 register is set to "1" (outputs UART0 RTS)
- The CRD bit in the U1C0 register is set to "0" (enables UART1 CTS/RTS)
- The CRS bit in the U1C0 register is set to "0" (inputs UART1 CTS)
- The RCSP bit in the UCON register is set to "1" (inputs CTSo from the P64 pin)
- The CLKMD1 bit in the UCON register is set to "0" (CLKS1 not used)

 Note that when using the CTS/RTS separate function, UART1 CTS/RTS separate function cannot be used.

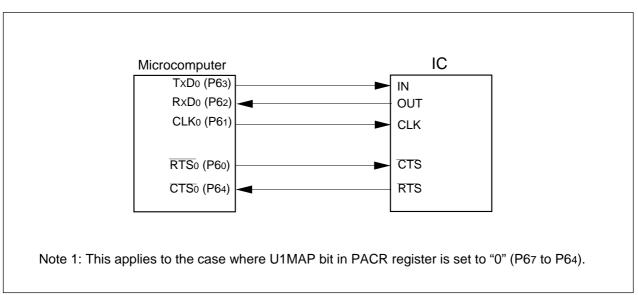


Figure 13.1.1.7.1. CTS/RTS separate function usage

13.1.2. Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer data format. Tables 13.1.2.1 lists the specifications of the UART mode.

Table 13.1.2.1. UART Mode Specifications

Item	Specification		
Transfer data format	Character bit (transfer data): Selectable from 7, 8 or 9 bits		
	Start bit: 1 bit		
	Parity bit: Selectable from odd, even, or none		
	Stop bit: Selectable from 1 or 2 bits		
Transfer clock	• The CKDIR bit in the UiMR(i=0 to 2) register is set to "0" (internal clock) : fj/(16(n+1))		
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of UiBRG register 0016 to FF16		
	 CKDIR bit is set to "1" (external clock): fEXT/(16(n+1)) 		
	fEXT: Input from CLKi pin. n:Setting value of UiBRG register 0016 to FF16		
Transmission, reception control	Selectable from CTS function, RTS function or CTS/RTS function disable		
Transmission start condition	Before transmission can start, the following requirements must be met		
	 The TE bit in the UiC1 register is set to "1" (transmission enabled) 		
	- The TI bit in the UiC1 register "0" (data present in UiTB register)		
	- If CTS function is selected, input "L" to the CTSi pin		
Reception start condition	Before reception can start, the following requirements must be met		
	 The RE bit in the UiC1 register is set to "1" (reception enabled) 		
	- Start bit detection		
Interrupt request	For transmission, one of the following conditions can be selected		
generation timing	- The UiIRS bit (Note 2) is set to "0" (transmit buffer empty): when transferring data		
from the	UiTB register to the UARTi transmit register (at start of transmission)		
	- The UiIRS bit is set to "1" (transfer completed): when the serial I/O finished sending		
data from	the UARTi transmit register		
	For reception		
	When transferring data from the UARTi receive register to the UiRB register (at		
	completion of reception)		
Error detection	Overrun error (Note 1)		
	This error occurs if the serial I/O started receiving the next data before reading the		
	UiRB register and received the bit one before the last stop bit of the next data		
	Framing error		
	This error occurs when the number of stop bits set is not detected		
	Parity error		
	This error occurs when if parity is enabled, the number of 1's in parity and		
	character bits does not match the number of 1's set		
	Error sum flag		
	This flag is set (= 1) when any of the overrun, framing, and parity errors is encountered		
Select function	LSB first, MSB first selection		
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7		
	can be selected		
	Serial data logic switch (UART2)		
	This function reverses the logic of the transmit/receive data. The start and stop bits		
	are not reversed.		
	TxD, RxD I/O polarity switch (UART2)		
	This function reverses the polarities of hte TxD pin output and RxD pin input. The		
	logic levels of all I/O data is reversed.		
	Separate CTS/RTS pins (UART0)		
	CTSo and RTSo are input/output from separate pins		
	UART1 pin remapping selection		
	The UART1 pin can be selected from the P67 to P64 or P73 to P70.		

Note 1: If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit in the SiRIC register does not change.

Note 2: The UOIRS and U1IRS bits respectively are the bits "0" and "1" in the UCON register; the U2IRS bit is the bit 4 in the U2C1 register.

Table 13.1.2.2. Registers to Be Used and Settings in UART Mode

Register	Bit	Function			
	-				
UiTB UiRB	0 to 8	Set transmission data (Note 1)			
UIRB	0 to 8	Reception data can be read (Note 1)			
11:000	OER,FER,PER,SUM				
UiBRG	0 to 7	Set a transfer rate			
UiMR	SMD2 to SMD0	Set these bits to '1002' when transfer data is 7 bits long			
		Set these bits to '1012' when transfer data is 8 bits long			
		Set these bits to '1102' when transfer data is 9 bits long			
	CKDIR	Select the internal clock or external clock			
	STPS	Select the stop bit			
	PRY, PRYE	Select whether parity is included and whether odd or even			
	IOPOL(i=2)(Note 4)	Select the TxD/RxD input/output polarity			
UiC0	CLK0, CLK1	Select the count source for the UiBRG register			
	CRS	Select CTS or RTS to use			
	TXEPT	Transmit register empty flag			
	CRD	Enable or disable the CTS or RTS function			
	NCH	Select TxDi pin output mode			
	CKPOL	Set to "0"			
	UFORM	LSB first or MSB first can be selected when transfer data is 8 bits long. Set this			
		bit to "0" when transfer data is 7 or 9 bits long.			
UiC1	TE	Set this bit to "1" to enable transmission			
	TI	Transmit buffer empty flag			
	RE	Set this bit to "1" to enable reception			
	RI	Reception complete flag			
	U2IRS (Note 2)	Select the source of UART2 transmit interrupt			
	U2RRM (Note 2)	Set to "0"			
	U2LCH (Note 3)	Set this bit to "1" to use UART2 inverted data logic			
	U2ERE (Note 3)	Set to "0"			
U2SMR	0 to 7	Set to "0"			
U2SMR2	0 to 7	Set to "0"			
U2SMR3	0 to 7	Set to "0"			
U2SMR3 U2SMR4	0 to 7 0 to 7	Set to "0" Set to "0"			
U2SMR4	0 to 7	Set to "0"			
U2SMR4	0 to 7 U0IRS, U1IRS	Set to "0" Select the source of UART0/UART1 transmit interrupt			
U2SMR4	0 to 7 U0IRS, U1IRS U0RRM, U1RRM	Set to "0" Select the source of UART0/UART1 transmit interrupt Set to "0" Invalid because CLKMD1 = 0			
U2SMR4	0 to 7 U0IRS, U1IRS U0RRM, U1RRM CLKMD0	Set to "0" Select the source of UART0/UART1 transmit interrupt Set to "0"			

Note 1: The bits used for transmit/receive data are as follows: Bit 0 to bit 6 when transfer data is 7 bits long; bit 0 to bit 7 when transfer data is 8 bits long; bit 0 to bit 8 when transfer data is 9 bits long.

Note 3: Set the bit 6 to bit 7 in the U0C1 and U1C1 registers to "0".

Note 4: Set the bit 7 the U0MR and U1MR registers to "0".

i=0 to 2

Note 2: Set the bit 4 to bit 5 in the U0C1 and U1C1 registers to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are included in the UCON register.

Table 13.1.2.3 lists the functions of the input/output pins during UART mode. Table 13.1.2.4 lists the P64 pin functions during UART mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs an "H". (If the N-channel open-drain output is selected, this pin is in a high-impedance state.)

Table 13.1.2.3. I/O Pin Functions in UART mode(Note 1)

Pin name	Function	Method of selection	
TxDi (i = 0 to 2) (P63, P67, P70)	Serial data output	(Outputs "H" when performing reception only)	
RxDi (P62, P66, P71)	Serial data input	PD6_2 bit, PD6_6 bit in the PD6 register and the PD7_1 bit in the PD7 register (Can be used as an input port when performing transmission only)	
CLKi	Input/output port	Set the CKDIR bit in the UiMR register to "0"	
(P61, P65, P72)	Transfer clock input	Set the CKDIR bit in the UiMR register to "1" Set the PD6_1 bit and PD6_5 bit in the PD6 register to "0", PD7_2 bit in the PD7 register to "0"	
CTSi/RTSi (P60, P64, P73)	CTS input	Set the CRD bit in the UiC0 register to "0" Set the CRS bit in the UiC0 register to "0" Set the PD6_0 bit and PD6_4 bit in the PD6 register to "0", the PD7_3 bit in the PD7 register "0"	
	RTS output	Set the CRD bit in the UiC0 register to "0" Set the CRS bit in the UiC0 register to "1"	
	Input/output port	Set the CRD bit in the UiC0 register "1"	

Note 1: When the U1MAP bit in PACR register is set to "1" (P73 to P70), UART1 pin is assgined to P73 to P70.

Table 13.1.2.4. P64 Pin Functions in UART mode(Note 1)

Pin function	Bit set value				
	U1C0	J1C0 register UCON register		PD6 register	
	CRD	CRS	RCSP	CLKMD1	PD6_4
P64	1		0	0	Input: 0, Output: 1
CTS ₁	0	0	0	0	0
RTS ₁	0	1	0	0	
CTS ₀ (Note 2)	0	0	1	0	0

Note 1: When the U1MAP bit in PACR register is "1" (P73 to P70), this table lists the P70 functions.

Note 2: In addition to this, set the CRD bit in the U0C0 register to "0" (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to "1" (RTS0 selected).

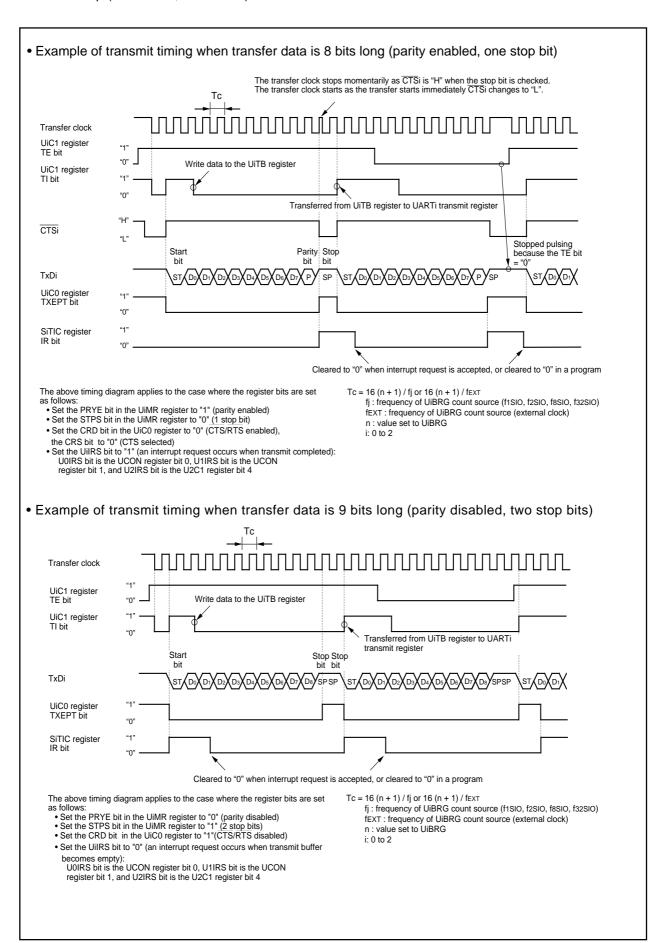


Figure 13.1.2.1. Typical transmit timing in UART mode (UART0, UART1)

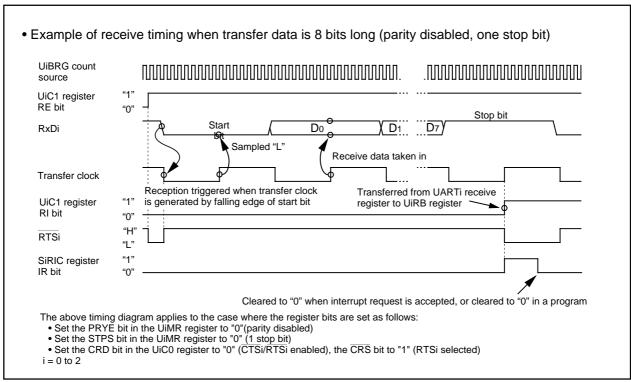


Figure 13.1.2.2. Receive Operation

13.1.2.1. Bit Rates

In UART mode, the frequency set by the UiBRG register (i=0 to 2) divided by 16 become the bit rates. Table 13.1.2.1.1 lists example of bit rate and settings.

Table 13.1.2.1.1 Example of Bit Rates and Settings

Bit Rate	Count Source	Peripheral Function	Clock : 16MHz	Peripheral Function	Clock : 20MHz
(bps)	of BRG	Set Value of BRG : n	Actual Time (bps)	Set Value of BRG : n	Actual Time (bps)
1200	f8	103(67h)	1202	129(81h)	1202
2400	f8	51(33h)	2404	64(40h)	2404
4800	f8	25(19h)	4808	32(20h)	4735
9600	f1	103(67h)	9615	129(81h)	9615
14400	f1	68(44h)	14493	86(56h)	14368
19200	f1	51(33h)	19231	64(40h)	19231
28800	f1	34(22h)	28571	42(2Ah)	29070
31250	f1	31(1Fh)	31250	39(27h)	31250
38400	f1	25(19h)	38462	32(20h)	37879
51200	f1	19(13h)	50000	24(18h)	50000

13.1.2.2. Counter Measure for Communication Error

If a communication error occurs while transmitting or receiving in UART mode, follow the procedure below.

- Resetting the UiRB register (i=0 to 2)
- (1) Set the RE bit in the UiC1 register to "0" (reception disabled)
- (2) Set the RE bit in the UiC1 register to "1" (reception enabled)
- Resetting the UiTB register (i=0 to 2)
- (1) Set the SMD2 to SMD0 bits in UiMR register "000b" (Serial I/O disabled)
- (2) Set the SMD2 to SMD0 bits in UiMR register "001b", "101b", "110b"
- (3) "1" is written to RE bit in the UiC1 register (reception enabled), regardless of the TE bit in the UiC1 register

13.1.2.3. LSB First/MSB First Select Function

As shown in Figure 14.1.2.3.1, use the UFORM bit in the UiC0 register to select the transfer format. This function is valid when transfer data is 8 bits long.

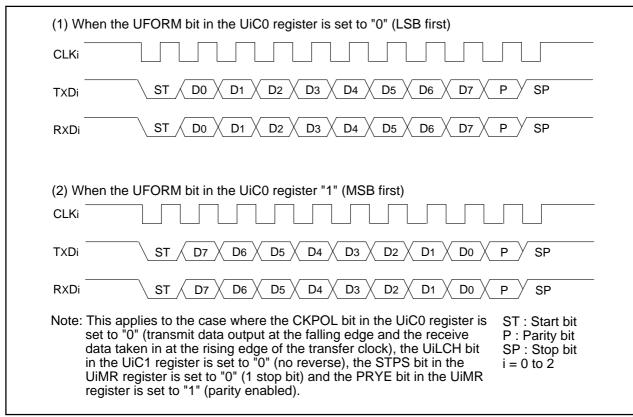


Figure 13.1.2.3.1. Transfer Format

13.1.2.4. Serial Data Logic Switching Function (UART2)

The data written to the U2TB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the U2RB register. Figure 13.1.2.4.1 shows serial data logic.

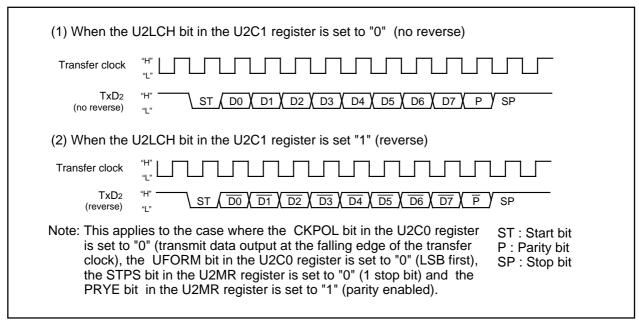


Figure 13.1.2.4.1. Serial Data Logic Switching

13.1.2.5. TxD and RxD I/O Polarity Inverse Function (UART2)

This function inverses the polarities of the TxD2 pin output and RxD2 pin input. The logic levels of all input/output data (including the start, stop and parity bits) are inversed. Figure 13.1.2.5.1 shows the TxD pin output and RxD pin input polarity inverse.

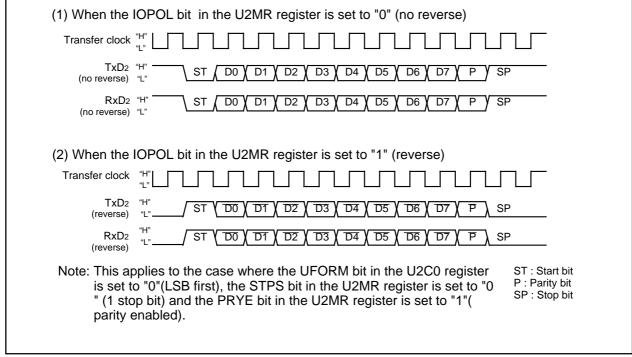


Figure 13.1.2.5.1. TxD and RxD I/O Polarity Inverse

13.1.2.6. CTS/RTS Separate Function (UART0)

This function separates $\overline{\text{CTS}}_0/\overline{\text{RTS}}_0$, outputs $\overline{\text{RTS}}_0$ from the P60 pin, and accepts as input the $\overline{\text{CTS}}_0$ from the P64 pin. To use this function, set the register bits as shown below.

- Set the CRD bit in the U0C0 register to "0" (enables UART0 CTS/RTS)
- Set the CRS bit in the U0C0 register to "1"(outputs UART0 RTS)
- Set the CRD bit in the U1C0 register to "0" (enables UART1 CTS/RTS)
- Set the CRS bit in the U1C0 register to "0" (inputs UART1 CTS)
- Set the RCSP bit in the UCON register to "1" (inputs $\overline{\text{CTS}}_0$ from the P64 pin)
- Set the CLKMD1 bit in the UCON register to "0" (CLKS1 not used)

Note that when using the $\overline{CTS}/\overline{RTS}$ separate function, UART1 $\overline{CTS}/\overline{RTS}$ separate function cannot be used.

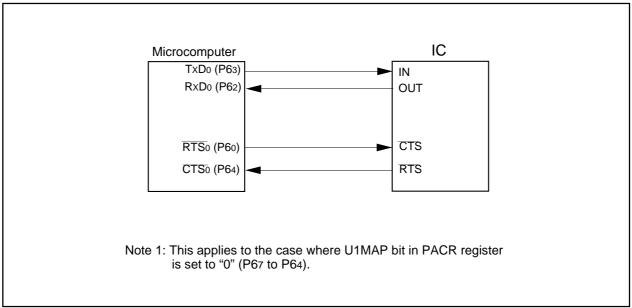


Figure 13.1.2.6.1. CTS/RTS Separate Function

13.1.3 Special Mode 1 (I²C bus mode)(UART2)

I²C bus mode is provided for use as a simplified I²C bus interface compatible mode. Table 13.1.3.1 lists the specifications of the I²C bus mode. Table 13.1.3.2 and 13.1.3.3 list the registers used in the I²C bus mode and the register values set. Table 13.1.3.4 lists the I²C bus mode fuctions. Figure 13.1.3.1 shows the block diagram for I²C bus mode. Figure 13.1.3.2 shows SCL₂ timing.

As shown in Table 13.1.3.2, the microcomputer is placed in I²C bus mode by setting the SMD2 to SMD0 bits to '0102' and the IICM bit to "1". Because SDA2 transmit output has a delay circuit attached, SDA output does not change state until SCL2 goes low and remains stably low.

Table 13.1.3.1. I²C bus Mode Specifications

Item	Specification			
Transfer data format	Transfer data length: 8 bits			
Transfer clock	During master			
	The CKDIR bit in the U2MR register is set to "0" (internal clock) : fj/ (2(n+1))			
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value in the U2BRG register 0016 to FF16			
	During slave			
	The CKDIR bit is set to "1" (external clock): Input from SCL pin			
Transmission start condition	Before transmission can start, the following requirements must be met (Note 1)			
	 The TE bit in the U2C1 register is set to "1" (transmission enabled) 			
	 The TI bit in the U2C1 register is set to "0" (data present in U2TB register) 			
Reception start condition	Before reception can start, the following requirements must be met (Note 1)			
	 The RE bit in the U2C1 register is set to "1" (reception enabled) 			
	 The TE bit in the U2C1 register is set to "1" (transmission enabled) 			
	- The TI bit in the U2C1 register is set to "0" (data present in the UiTB register)			
Interrupt request	When start or stop condition is detected, acknowledge undetected, and acknowledge			
generation timing	detected			
Error detection	Overrun error (Note 2)			
	This error occurs if the serial I/O started receiving the next data before reading the			
	U2RB register and received the 8th bit of the next data			
Select function	Arbitration lost			
	Timing at which the ABT bit in the U2RB register is updated can be selected			
	SDA2 digital delay			
	No digital delay or a delay of 2 to 8 U2BRG count source clock cycles selectable			
	Clock phase setting			
	With or without clock delay selectable			

Note 1: When an external clock is selected, the conditions must be met while the external clock is in the high state.

Note 2: If an overrun error occurs, the value in the U2RB register will be indeterminate. The IR bit in the S2RIC register does not change.

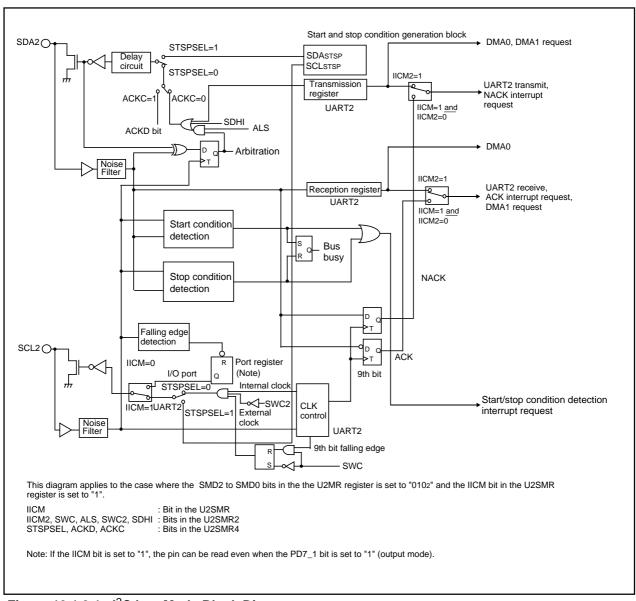


Figure 13.1.3.1. I²C bus Mode Block Diagram

Table 13.1.3.2. Registers to Be Used and Settings in I²C bus Mode (1) (Continued)

Register	Bit	Fund	etion
		Master	Slave
U2TB	0 to 7	Set transmission data	Set transmission data
(Note 1)			
U2RB	0 to 7	Reception data can be read	Reception data can be read
(Note 1)	8	ACK or NACK is set in this bit	ACK or NACK is set in this bit
	ABT	Arbitration lost detection flag	Invalid
	OER	Overrun error flag	Overrun error flag
U2BRG	0 to 7	Set a transfer rate	Invalid
U2MR	SMD2 to SMD0	Set to '0102'	Set to '0102'
(Note 1)	CKDIR	Set to "0"	Set to "1"
	IOPOL	Set to "0"	Set to "0"
U2C0	CLK1, CLK0	Select the count source for the U2BRG register	Invalid
	CRS	Invalid because CRD = 1	Invalid because CRD = 1
	TXEPT	Transmit buffer empty flag	Transmit buffer empty flag
	CRD	Set to "1"	Set to "1"
	NCH	Set to "1"	Set to "1"
	CKPOL	Set to "0"	Set to "0"
	UFORM	Set to "1"	Set to "1"
U2C1	TE	Set this bit to "1" to enable transmission	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception	Set this bit to "1" to enable reception
	RI	Reception complete flag	Reception complete flag
	U2IRS	Invalid	Invalid
	U2RRM,	Set to "0"	Set to "0"
	U2LCH, U2ERE		
U2SMR	IICM	Set to "1"	Set to "1"
	ABC	Select the timing at which arbitration-lost	Invalid
		is detected	
	BBS	Bus busy flag	Bus busy flag
	3 to 7	Set to "0"	Set to "0"
U2SMR2		Refer to Table 13.1.3.4 I ² C bus Mode Functions	Refer to Table 13.1.3.4 I ² C bus Mode Functions
020	CSC	Set this bit to "1" to enable clock	Set to "0"
		synchronization	
	SWC	Set this bit to "1" to have SCL2 output	Set this bit to "1" to have SCL2 output
	3440	fixed to "L" at the falling edge of the 9th	fixed to "L" at the falling edge of the 9 th
		bit of clock	bit of clock
	ALS	Set this bit to "1" to have SDA2 output	Set to "0"
	ALS	stopped when arbitration-lost is detected	Set to 0
	STAC	Set to "0"	Cot this hit to "1" to initialize LIART2 of
	STAC	Set to 0	Set this bit to "1" to initialize UART2 at start condition detection
	CMCO	Cat this hit to "1" to have CCI a sutput	
	SWC2	Set this bit to "1" to have SCL2 output	Set this bit to "1" to have SCL2 output
	CDUI	forcibly pulled low	forcibly pulled low
	SDHI	Set this bit to "1" to disable SDA2 output	Set this bit to "1" to disable SDA2 output
LIOOMADO	7	Set to "0"	Set to "0"
UZSMR3	0, 2, 4 and NODC	Set to "0"	Set to "0"
	CKPH	Refer to Table 13.1.3.4 I ² C bus Mode Functions	Refer to Table 13.1.3.4 I ² C bus Mode Functions
	DL2 to DL0	Set the amount of SDA2 digital delay	Set the amount of SDA2 digital delay

Note 1: Not all register bits are described above. Set those bits to "0" when writing to the registers in I²C bus mode.

Table 13.1.3.3. Registers to Be Used and Settings in I²C bus Mode (2) (Continued)

Register	Bit	Func	etion
		Master	Slave
U2SMR4	STAREQ	Set this bit to "1" to generate start	Set to "0"
		condition	
	RSTAREQ	Set this bit to "1" to generate restart	Set to "0"
		condition	
	STPREQ	Set this bit to "1" to generate stop	Set to "0"
		condition	
	STSPSEL Set this bit to "1" to output		Set to "0"
ACKD		Select ACK or NACK	Select ACK or NACK
	ACKC	Set this bit to "1" to output ACK data	Set this bit to "1" to output ACK data
	SCLHI	Set this bit to "1" to have SCL2 output	Set to "0"
		stopped when stop condition is detected	
	SWC9	Set to "0"	Set this bit to "1" to set the SCL2 to "L"
			hold at the falling edge of the 9th bit of
			clock

Note 1: Not all bits in the register are described above. Set those bits to "0" when writing to the registers in I²C bus mode.

Table 13.1.3.4. I²C bus Mode Functions

Function	Clock synchronous serial I/O mode (SMD2 to SMD0 = 0012, IICM = 0)	I ² C bus mode (SMD2 to SMD0 = 0102, IICM = 1)			
				IICM2 = 1 (UART transmit/ red	IICM2 = 1 (UART transmit/ receive interrupt)
		CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)	CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)
Factor of interrupt number 10 (Note 1) (Refer to Fig. 13.1.3.2.)		Start condition detection or stop condition detection (Refer to Figure 13.1.3.2.1. STSPSEL Bit Function)			
Factor of interrupt number 15 (Note 1) (Refer to Fig. 13.1.3.2.)	UART2 transmission Transmission started or completed (selected by U2IRS)	No acknowledgr detection (NACk Rising edge of S	()	UART2 transmission Rising edge of SCL2 9th bit	UART2 transmission Falling edge of SCL2 next to the 9th bit
Factor of interrupt number 16 (Note 1) (Refer to Fig. 13.1.3.2.)	UART2 reception When 8th bit received CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Acknowledgment detection (ACK) Rising edge of SCL2 9th bit UART2 transmission Falling edge of SCL2 9th bit			
Timing for transferring data from the UART reception shift register to the U2RB register	CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Rising edge of S	SCL2 9th bit	Falling edge of SCL2 9th bit	Falling and rising edges of SCL2 9th bit
UART2 transmission output delay	Not delayed	Delayed			
Functions of P70 pin	TxD2 output	SDA2 input/output			
Functions of P71 pin	RxD2 input	SCL2 input/output			
Functions of P72 pin	CLK2 input or output selected	(Cannot be used in I ² C mode)			
Noise filter width	15ns	200ns			
Read RxD2 and SCL2 pin levels	Possible when the corresponding port direction bit = 0	Always possible no matter how the corresponding port direction bit is set			
Initial value of TxD2 and SDA2 outputs	CKPOL = 0 (H) CKPOL = 1 (L)	The value set in the port register before setting I ² C bus mode (Note 2)			
Initial and end values of SCL2		Н	L	Н	L
DMA1 factor (Refer to Fig. 14.1.3.2.)	UART2 reception	Acknowledgmer (ACK)	t detection	UART2 reception Falling edge of SCL2 9th bit	
Store received data	1st to 8th bits are stored in U2RB register bit 0 to bit 7	1st to 8th bits are stored in U2RB register bit 7 to bit 0 1st to 8th bits are stored in U2R bit 6 to bit 0, with 8th bit stored register bit 8			
					1st to 8th bits are stored in U2RB register bit 7 to bit 0 (Note 3)
Read received data	U2RB register status is read directly as is				Read U2RB register Bit 6 to bit 0 as bit 7 to bit 1, and bit 8 as bit 0 (Note 4)
					DILU (NOTE 4)

Note 1: If the source or cause of any interrupt is changed, the IR bit in the interrupt control register for the changed interrupt may inadvertently be set to 1 (interrupt requested). (Refer to "Notes on interrupts" in Precautions.) If one of the bits shown below is changed, the interrupt source, the interrupt timing, etc. change. Therefore, always be sure to clear the IR bit to 0 (interrupt not requested) after changing those bits.

SMD2 to SMD0 bits in the U2MR register, IICM bit in the U2SMR register,

IICM2 bit in the U2SMR2 register, CKPH bit in the U2SMR3 register

Note 2: Set the initial value of SDA2 output while the SMD2 to SMD0 bits in the U2MR register is set to '0002' (serial I/O disabled)

Note 3: Second data transfer to U2RB register (Rising edge of SCL2 9th bit)

Note 4. First data transfer to U2RB register (Falling edge of SCL2 9th bit)

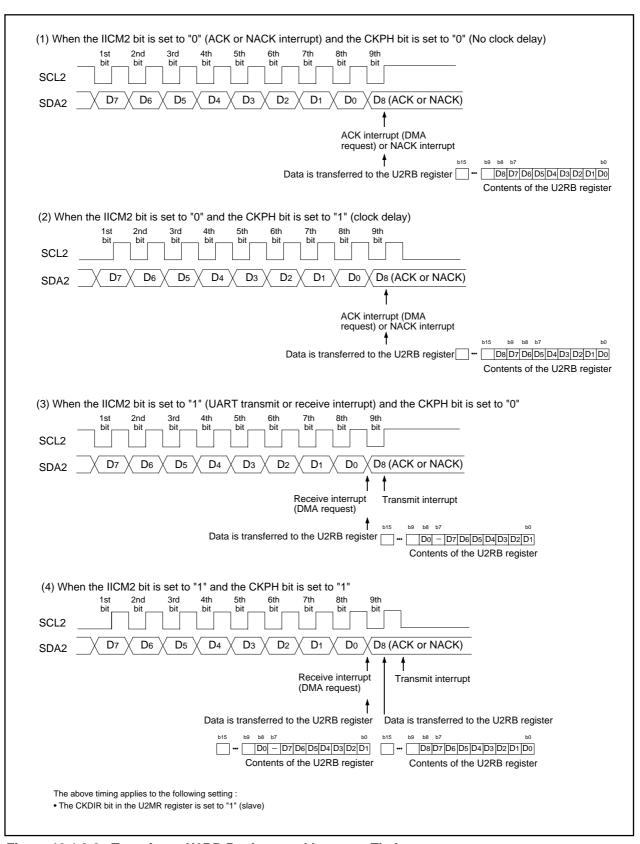


Figure 13.1.3.2. Transfer to U2RB Register and Interrupt Timing

13.1.3.1 Detection of Start and Stop Condition

Whether a start or a stop condition has been detected is determined.

A start condition-detected interrupt request is generated when the SDA2 pin changes state from high to low while the SCL2 pin is in the high state. A stop condition-detected interrupt request is generated when the SDA2 pin changes state from low to high while the SCL2 pin is in the high state.

Because the start and stop condition-detected interrupts share the interrupt control register and vector, check the BBS bit in the U2SMR register to determine which interrupt source is requesting the interrupt.

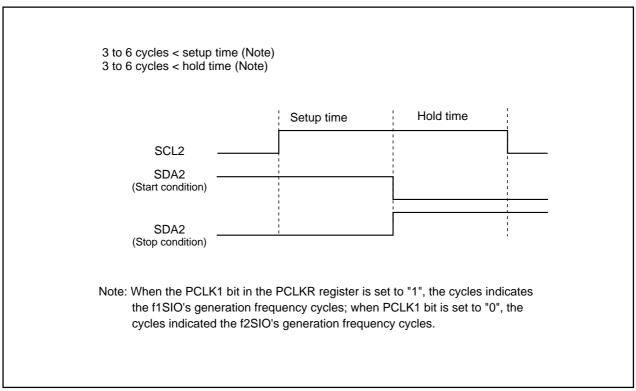


Figure 13.1.3.1.1. Detection of Start and Stop Condition

13.1.3.2 Output of Start and Stop Condition

A start condition is generated by setting the STAREQ bit in the U2SMR4 register to "1" (start).

A restart condition is generated by setting the RSTAREQ bit in the U2SMR4 register to "1" (start).

A stop condition is generated by setting the STPREQ bit in the U2SMR4 register to "1" (start).

The output procedure is described below.

- (1) Set the STAREQ bit, RSTAREQ bit or STPREQ bit to "1" (start).
- (2) Set the STSPSEL bit in the U2SMR4 register to "1" (output).

Make sure that no interrupts or DMA transfers will occur between (1) and (2).

The function of the STSPSEL bit is shown in Table 13.1.3.2.1 and Figure 13.1.3.2.1.

Table	13 1	321	STSPSFI	Rit	Functions
Iable	13.1	.J.Z.I.	JIJFJLL	DIL	i unchons

Function	STSPSEL = 0	STSPSEL = 1
Output of SCL2 and SDA2 pins	Output transfer clock and data/	The STAREQ, RSTAREQ and
	Program with a port determines	STPREQ bit determine how the
	how the start condition or stop	start condition or stop condition is
	condition is output	output
Start/stop condition interrupt	Start/stop condition are de-	Start/stop condition generation are
request generation timing	tected	completed

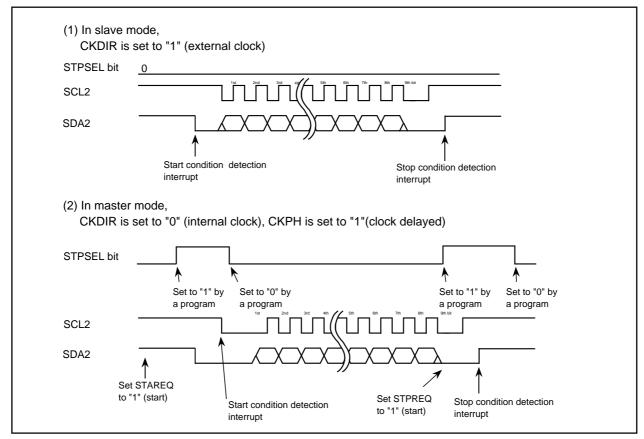


Figure 13.1.3.2.1. STSPSEL Bit Functions

13.1.3.3 Arbitration

Unmatching of the transmit data and SDA2 pin input data is checked synchronously with the rising edge of SCL2. Use the ABC bit in the U2SMR register to select the timing at which the ABT bit in the U2RB register is updated. If the ABC bit is set to "0" (updated bitwise), the ABT bit is set to "1" at the same time unmatching is detected during check, and is cleared to "0" when not detected. In cases when the ABC bit is set to "1", if unmatching is detected even once during check, the ABT bit is set to "1" (unmatching detected) at the falling edge of the clock pulse of 9th bit. If the ABT bit needs to be updated bytewise, clear the ABT bit to "0" (undetected) after detecting acknowledge in the first byte, before transferring the next byte.

Setting the ALS bit in the U2SMR2 register to "1" (SDA output stop enabled) causes arbitration-lost to occur, in which case the SDA2 pin is placed in the high-impedance state at the same time the ABT bit is set to "1" (unmatching detected).

13.1.3.4 Transfer Clock

Data is transmitted/received using a transfer clock like the one shown in Figure 13.1.3.2.1.

The CSC bit in the U2SMR2 register is used to synchronize the internally generated clock (internal SCL2) and an external clock supplied to the SCL2 pin. In cases when the CSC bit is set to "1" (clock synchronization enabled), if a falling edge on the SCL2 pin is detected while the internal SCL2 is high, the internal SCL2 goes low, at which time the U2BRG register value is reloaded with and starts counting in the low-level interval. If the internal SCL2 changes state from low to high while the SCL2 pin is low, counting stops, and when the SCL2 pin goes high, counting restarts.

In this way, the UART2 transfer clock is comprised of the logical product of the internal SCL2 and SCL2 pin signal. The transfer clock works from a half period before the falling edge of the internal SCL2 1st bit to the rising edge of the 9th bit. To use this function, select an internal clock for the transfer clock. The SWC bit in the U2SMR2 register allows to select whether the SCL2 pin should be fixed to or freed from low-level output at the falling edge of the 9th clock pulse.

If the SCLHI bit in the U2SMR4 register is set to "1" (enabled), SCL2 output is turned off (placed in the high-impedance state) when a stop condition is detected.

Setting the SWC2 bit in the U2SMR2 register is set to "1" (0 output) makes it possible to forcibly output a low-level signal from the SCL2 pin even while sending or receiving data. Clearing the SWC2 bit to "0" (transfer clock) allows the transfer clock to be output from or supplied to the SCL2 pin, instead of outputting a low-level signal.

If the SWC9 bit in the U2SMR4 register is set to "1" (SCL hold low enabled) when the CKPH bit in the U2SMR3 register is set to "1", the SCL2 pin is fixed to low-level output at the falling edge of the clock pulse next to the ninth. Setting the SWC9 bit is set to "0" (SCL hold low disabled) frees the SCL2 pin from low-level output.

13.1.3.5 SDA Output

The data written to the bit 7 to bit 0 (D7 to D0) in the U2TB register is sequentially output beginning with D7. The ninth bit (D8) is ACK or NACK.

The initial value of SDA2 transmit output can only be set when IICM is set to "1" (I²C Bus mode) and the SMD2 to SMD0 bits in the the U2MR register are set to '0002' (serial I/O disabled).

The DL2 to DL0 bits in the U2SMR3 register allow to add no delays or a delay of 2 to 8 U2BRG count source clock cycles to SDA2 output.

Setting the SDHI bit in the U2SMR2 register is set to "1" (SDA output disabled) forcibly places the SDA2 pin in the high-impedance state. Do not write to the SDHI bit synchronously with the rising edge of the UART2 transfer clock. This is because the ABT bit may inadvertently be set to "1" (detected).

13.1.3.6 SDA Input

When the IICM2 bit is set to "0", the 1st to 8th bits (D7 to D0) of received data are stored in the bit 7 to bit 0 in the U2RB register. The 9th bit (D8) is ACK or NACK.

When the IICM2 bit is set to "1", the 1st to 7th bits (D7 to D1) of received data are stored in the bit 6 to bit 0 in the U2RB register and the 8th bit (D0) is stored in the bit 8 in the U2RB register. Even when the IICM2 bit is set to "1", providing the CKPH bit to "1", the same data as when the IICM2 bit is set to "0" can be read out by reading the U2RB register after the rising edge of the corresponding clock pulse of 9th bit.

13.1.3.7 ACK and NACK

If the STSPSEL bit in the U2SMR4 register is set to "0" (start and stop conditions not generated) and the ACKC bit in the U2SMR4 register is set to "1" (ACK data output), the value of the ACKD bit in the U2SMR4 register is output from the SDA2 pin.

If the IICM2 bit is set to "0", a NACK interrupt request is generated if the SDA2 pin remains high at the rising edge of the 9th bit of transmit clock pulse. An ACK interrupt request is generated if the SDA2 pin is low at the rising edge of the 9th bit of transmit clock pulse.

If ACK2 is selected for the cause of DMA1 request, a DMA transfer can be activated by detection of an acknowledge.

13.1.3.8 Initialization of Transmission/Reception

If a start condition is detected while the STAC bit is set to "1" (UART2 initialization enabled), the serial I/O operates as described below.

- The transmit shift register is initialized, and the content of the U2TB register is transferred to the transmit shift register. In this way, the serial I/O starts sending data synchronously with the next clock pulse applied. However, the UART2 output value does not change state and remains the same as when a start condition was detected until the first bit of data is output synchronously with the input clock.
- The receive shift register is initialized, and the serial I/O starts receiving data synchronously with the next clock pulse applied.
- The SWC bit is set to "1" (SCL wait output enabled). Consequently, the SCL2 pin is pulled low at the falling edge of the ninth clock pulse.

Note that when UART2 transmission/reception is started using this function, the TI does not change state. Note also that when using this function, the selected transfer clock should be an external clock.

13.1.4 Special Mode 2 (UART2)

Multiple slaves can be serially communicated from one master. Transfer clock polarity and phase are selectable. Table 13.1.4.1 lists the specifications of Special Mode 2. Table 13.1.4.2 lists the registers used in Special Mode 2 and the register values set. Figure 13.1.4.1 shows communication control example for Special Mode 2.

Table 13.1.4.1. Special Mode 2 Specifications

Item	Specification	
Transfer data format	Transfer data length: 8 bits	
Transfer clock	Master mode	
	The CKDIR bit in the U2MR register is set to "0" (internal clock) : fj/ (2(n+1))	
	fj = f1SiO, f2SiO, f8SiO, f32SiO. n: Setting value of U2BRG register 0016 to FF16	
	Slave mode	
	The CKDIR bit is set to "1" (external clock selected) : Input from CLK2 pin	
Transmit/receive control	Controlled by input/output ports	
Transmission start condition	Before transmission can start, the following requirements must be met (Note 1)	
	 The TE bit in the U2C1 register is set to "1" (transmission enabled) 	
	 The TI bit in the U2C1 register is set to "0" (data present in U2TB register) 	
Reception start condition	Before reception can start, the following requirements must be met (Note 1)	
	- The RE bit in the U2C1 register is set to "1" (reception enabled)	
	 The TE bit in the U2C1 register is set to "1" (transmission enabled) 	
	- The TI bit in the U2C1 register is set to "0" (data present in the U2TB register)	
Interrupt request	While transmitting, one of the following conditions can be selected	
generation timing	- The U2IRS bit in the U2C1 register is set to "0" (transmit buffer empty): when trans	
	ferring data from the U2TB register to the UART2 transmit register (at start of transmission)	
	- The U2IRS bit is set to "1" (transfer completed): when the serial I/O finished sending	
	data from the UART2 transmit register	
	While receiving	
	When transferring data from the UART2 receive register to the U2RB register (at	
	completion of reception)	
Error detection	Overrun error (Note 2)	
	This error occurs if the serial I/O started receiving the next data before reading the	
	U2RB register and received the 7th bit of the next data	
Select function	Clock phase setting	
	Selectable from four combinations of transfer clock polarities and phases	

Note 1: When an external clock is selected, the conditions must be met while if the CKPOL bit in the U2C0 register "0" (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the U2C0 register "1" (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.

Note 2: If an overrun error occurs, the value of U2RB register will be indeterminate. The IR bit in the S2RIC register does not change.

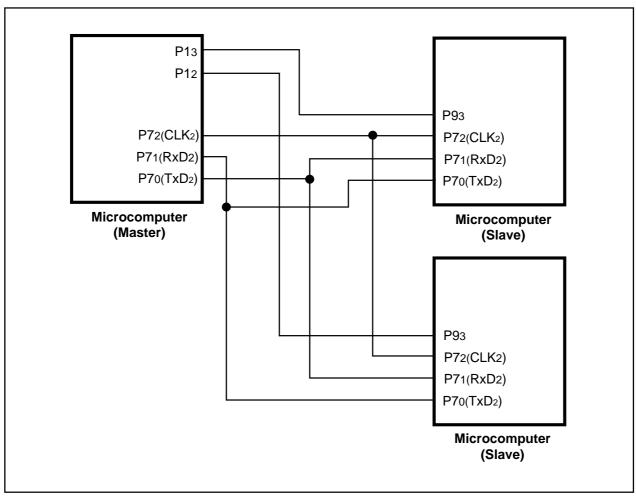


Figure 13.1.4.1. Serial Bus Communication Control Example (UART2)

Table 13.1.4.2. Registers to Be Used and Settings in Special Mode 2

Register	Bit	Function
U2TB(Note)	0 to 7	Set transmission data
U2RB(Note)	0 to 7	Reception data can be read
	OER	Overrun error flag
U2BRG	0 to 7	Set a transfer rate
U2MR(Note)	SMD2 to SMD0	Set to '0012'
	CKDIR	Set this bit to "0" for master mode or "1" for slave mode
	IOPOL	Set to "0"
U2C0	CLK1, CLK0	Select the count source for the U2BRG register
	CRS	Invalid because CRD = 1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Select TxD2 pin output format
	CKPOL	Clock phases can be set in combination with the CKPH bit in the U2SMR3
register		
	UFORM	Set to "0"
U2C1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS	Select UART2 transmit interrupt cause
	U2RRM,	Set to "0"
	U2LCH, U2ERE	
U2SMR	0 to 7	Set to "0"
U2SMR2	0 to 7	Set to "0"
U2SMR3	CKPH	Clock phases can be set in combination with the CKPOL bit in the U2C0 register
	NODC	Set to "0"
	0, 2, 4 to 7	Set to "0"
U2SMR4	0 to 7	Set to "0"

Note: Not all bits in the register are described above. Set those bits to "0" when writing to the registers in Special Mode 2.

13.1.4.1 Clock Phase Setting Function

One of four combinations of transfer clock phases and polarities can be selected using the CKPH bit in the U2SMR3 register and the CKPOL bit in the U2C0 register.

Make sure the transfer clock polarity and phase are the same for the master and slave to communicate.

13.1.4.1.1 Master (Internal Clock)

Figure 13.1.4.1.1.1 shows the transmission and reception timing in master (internal clock).

13.1.4.1.2 Slave (External Clock)

Figure 13.1.4.1.2.1 shows the transmission and reception timing (CKPH=0) in slave (external clock) while Figure 13.1.4.1.2.2 shows the transmission and reception timing (CKPH=1) in slave (external clock).

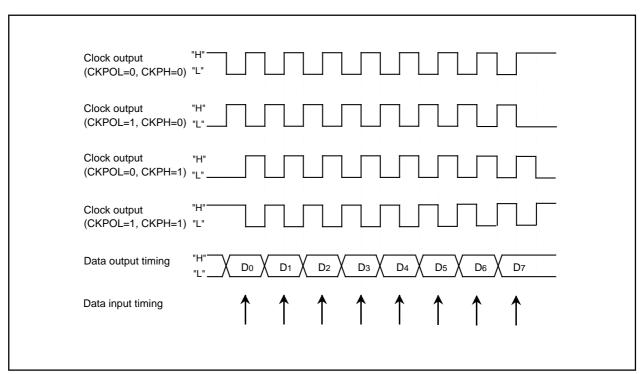


Figure 13.1.4.1.1.1. Transmission and Reception Timing in Master Mode (Internal Clock)

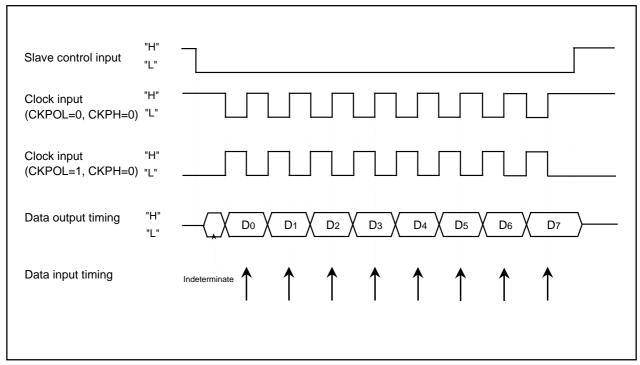


Figure 13.1.4.1.2.1. Transmission and Reception Timing (CKPH=0) in Slave Mode (External Clock)

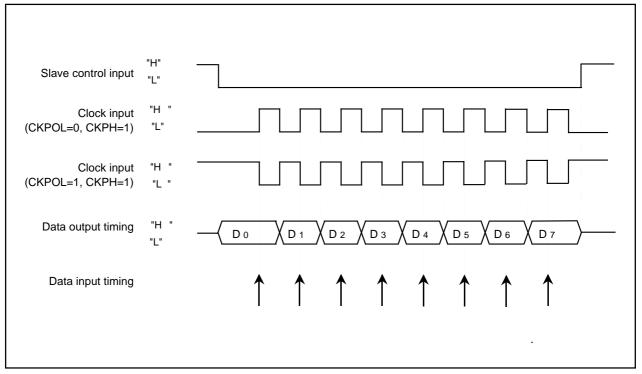


Figure 13.1.4.1.2.2. Transmission and Reception Timing (CKPH=1) in Slave Mode (External Clock)

13.1.5 Special Mode 3 (IE Bus mode)(UART2)

In this mode, one bit of IE Bus is approximated with one byte of UART mode waveform.

Table 13.1.5.1 lists the registers used in IE Bus mode and the register values set. Figure 13.1.5.1 shows the functions of bus collision detect function related bits.

If the TxD2 pin output level and RxD2 pin input level do not match, a UART2 bus collision detect interrupt request is generated.

Table 13.1.5.1. Registers to Be Used and Settings in IE Bus Mode

Register	Bit	Function		
U2TB	0 to 8	Set transmission data		
U2RB(Note)	0 to 8	Reception data can be read		
	OER,FER,PER,SUM	Error flag		
U2BRG	0 to 7	Set a transfer rate		
U2MR	SMD2 to SMD0	Set to '1102'		
	CKDIR	Select the internal clock or external clock		
	STPS	Set to "0"		
	PRY	Invalid because PRYE=0		
	PRYE	Set to "0"		
	IOPOL	Select the TxD/RxD input/output polarity		
U2C0	CLK1, CLK0	Select the count source for the U2BRG register		
	CRS	Invalid because CRD=1		
	TXEPT	Transmit register empty flag		
	CRD	Set to "1"		
	NCH	Select TxD2 pin output mode		
	CKPOL	Set to "0"		
	UFORM	Set to "0"		
U2C1	TE	Set this bit to "1" to enable transmission		
	TI	Transmit buffer empty flag		
	RE	Set this bit to "1" to enable reception		
	RI	Reception complete flag		
	U2IRS	Select the source of UART2 transmit interrupt		
	U2RRM,	Set to "0"		
	U2LCH, U2ERE			
U2SMR	0 to 3, 7	Set to "0"		
	ABSCS	Select the sampling timing at which to detect a bus collision		
	ACSE	Set this bit to "1" to use the auto clear function of transmit enable bit		
	SSS	Select the transmit start condition		
U2SMR2	0 to 7	Set to "0"		
U2SMR3	0 to 7	Set to "0"		
U2SMR4	0 to 7	Set to "0"		

Note: Not all bits in the registers are described above. Set those bits to "0" when writing to the registers in IE Bus mode.

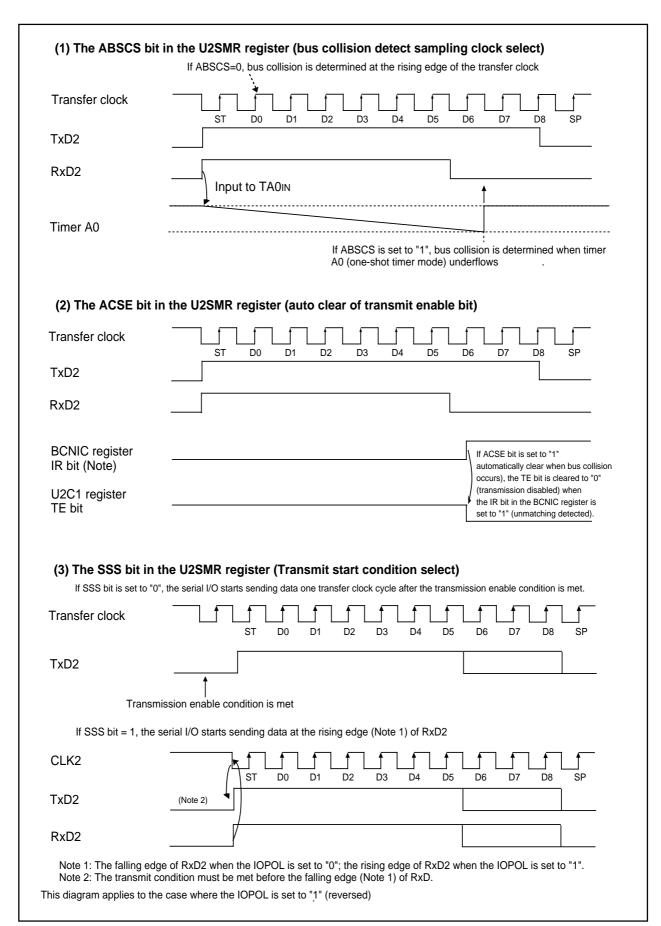


Figure 13.1.5.1. Bus Collision Detect Function-Related Bits

13.1.6 Special Mode 4 (SIM Mode) (UART2)

Based on UART mode, this is an SIM interface compatible mode. Direct and inverse formats can be implemented, and this mode allows output of a low from the TxD2 pin when a parity error is detected. Tables 13.1.6.1 lists the specifications of SIM mode. Table 13.1.6.2 lists the registers used in the SIM mode and the register values set.

Table 13.1.6.1. SIM Mode Specifications

Item	Specification
Transfer data format	Direct format
	Inverse format
Transfer clock	• The CKDIR bit in the U2MR register is set to "0" (internal clock) : fi/(16(n+1))
	fi = f1SiO, f2SiO, f8SiO, f32SiO. n: Setting value in U2BRG register 0016 to FF16
	The CKDIR bit is set to "1" (external clock): fEXT/(16(n+1))
	fEXT: Input from CLK2 pin. n: Setting value in U2BRG register 0016 to FF16
Transmission start condition	Before transmission can start, the following requirements must be met
	- The TE bit in the U2C1 register is set to "1" (transmission enabled)
	- The TI bit in the U2C1 register is set to "0" (data present in U2TB register)
Reception start condition	Before reception can start, the following requirements must be met
	- The RE bit in the U2C1 register is set to "1" (reception enabled)
	- Start bit detection
Interrupt request	For transmission
generation timing	When the serial I/O finished sending data from the U2TB transfer register (the U2IRS bit
is set to "1")	
(Note 2)	For reception
	When transferring data from the UART2 receive register to the U2RB register (at
	completion of reception)
Error detection	Overrun error (Note 1)
	This error occurs if the serial I/O started receiving the next data before reading the
	U2RB register and received the bit one before the last stop bit of the next data
	Framing error
	This error occurs when the number of stop bits set is not detected
	Parity error
	During reception, if a parity error is detected, parity error signal is output from the
	TxD2 pin.
	During transmission, a parity error is detected by the level of input to the RxD2 pin
	when a transmission interrupt occurs
	Error sum flag
	This flag is set to "1" when any of the overrun, framing, and parity errors is encountered

- Note 1: If an overrun error occurs, the value of U2RB register will be indeterminate. The IR bit in the S2RIC register does not change.
- Note 2: A transmit interrupt request is generated by setting the U2IRS bit in the U2C1 register to "1" (transmission complete) and the U2ERE bit to "1" (error signal output) after reset. Therefore, when using SIM mode, be sure to clear the IR bit to "0" (no interrupt request) after setting these bits.

Table 13.1.6.2. Registers to Be Used and Settings in SIM Mode

Register	Bit	Function		
U2TB(Note)	0 to 7	Set transmission data		
U2RB(Note)		Reception data can be read		
	OER,FER,PER,SUM			
U2BRG	0 to 7	Set a transfer rate		
U2MR	SMD2 to SMD0	Set to '1012'		
	CKDIR	Select the internal clock or external clock		
	STPS	Set to "0"		
_	PRY	Set this bit to "1" for direct format or "0" for inverse format		
	PRYE	Set to "1"		
	IOPOL	Set to "0"		
U2C0	CLK1, CLK0	Select the count source for the U2BRG register		
	CRS	Invalid because CRD=1		
	TXEPT	Transmit register empty flag		
	CRD	Set to "1"		
	NCH	Set to "0"		
	CKPOL	Set to "0"		
	UFORM	Set this bit to "0" for direct format or "1" for inverse format		
U2C1	TE	Set this bit to "1" to enable transmission		
	TI	Transmit buffer empty flag		
	RE	Set this bit to "1" to enable reception		
	RI	Reception complete flag		
	U2IRS	Set to "1"		
	U2RRM	Set to "0"		
	U2LCH	Set this bit to "0" for direct format or "1" for inverse format		
	U2ERE	Set to "1"		
U2SMR(Note)	0 to 3	Set to "0"		
U2SMR2	0 to 7	Set to "0"		
U2SMR3	0 to 7	Set to "0"		
U2SMR4	0 to 7	Set to "0"		

Note: Not all bits in registers are described above. Set those bits to "0" when writing to the registers in SIM mode.

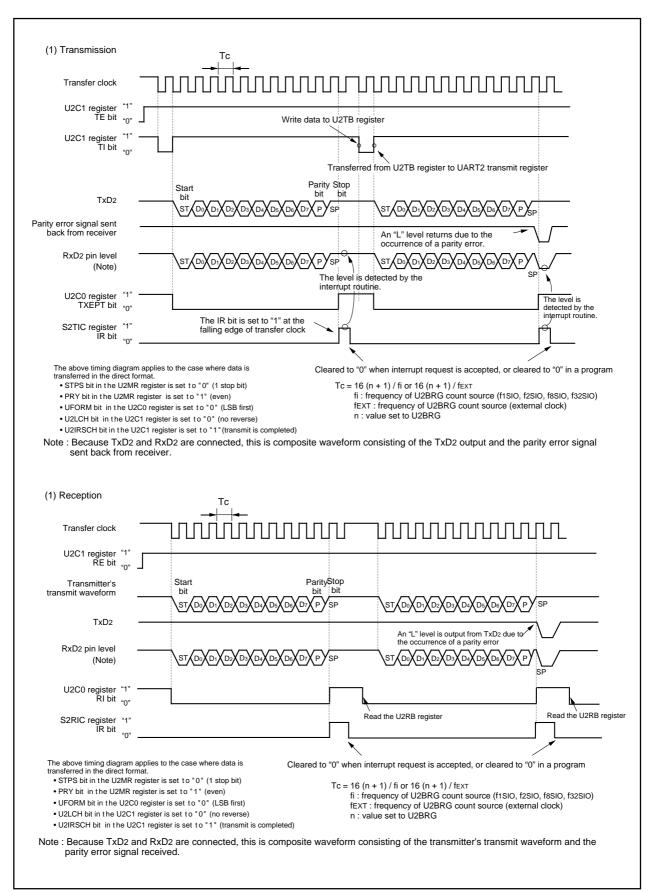


Figure 13.1.6.1. Transmit and Receive Timing in SIM Mode

Figure 13.1.6.2 shows the example of connecting the SIM interface. Connect TxD2 and RxD2 and apply pull-up.

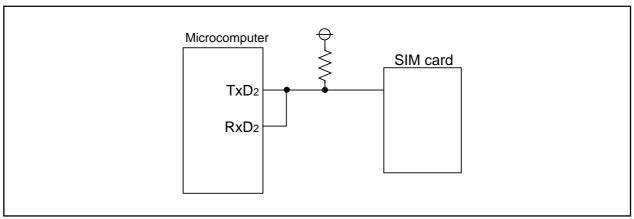


Figure 13.1.6.2. SIM Interface Connection

13.1.6.1 Parity Error Signal Output

The parity error signal is enabled by setting the U2ERE bit in the U2C1 register' to "1".

· When receiving

The parity error signal is output when a parity error is detected while receiving data. This is achieved by pulling the TxD2 output low with the timing shown in Figure 13.1.6.1.1. If the R2RB register is read while outputting a parity error signal, the PER bit is cleared to "0" and at the same time the TxD2 output is returned high.

When transmitting

A transmission-finished interrupt request is generated at the falling edge of the transfer clock pulse that immediately follows the stop bit. Therefore, whether a parity signal has been returned can be determined by reading the port that shares the RxD2 pin in a transmission-finished interrupt service routine.

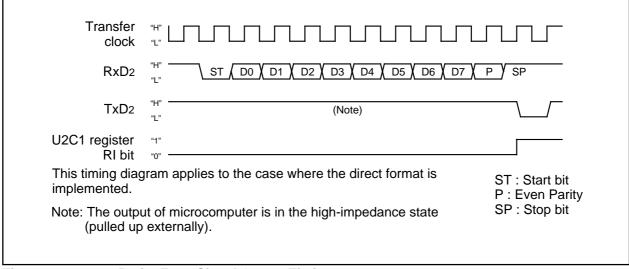


Figure 13.1.6.1.1. Parity Error Signal Output Timing

13.1.6.2 Format

Direct Format

Set the PRY bit in the U2MR register to "1", the UFORM bit in the U2C0 register to "0" and the U2LCH bit in the U2C1 register to "0".

Inverse Format

Set the PRY bit to "0", UFORM bit to "1" and U2LCH bit to "1".

Figure 13.1.6.2.1 shows the SIM interface format.

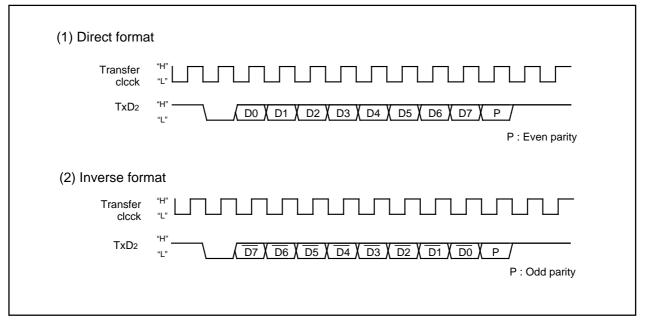


Figure 13.1.6.2.1. SIM Interface Format

14. A/D Converter

Note

Thers is no external connections for port P92 to P93 (AN32, AN24) in the M16C/26A (42-pin version). Do not use port P92 to P93 (AN32, AN24) for analog input pin in the M16C/26A (42-pin version).

The microcomputer contains one A/D converter circuit based on 10-bit successive approximation method configured with a capacitive-coupling amplifier. The analog inputs share the pins with P100 to P107 (AN0 to AN7), P90 to P93 (AN30 to AN32, AN24). Similarly, $\overline{\text{ADTRG}}$ input shares the pin with P15. Therefore, when using these inputs, make sure the corresponding port direction bits are set to "0" (input mode).

When not using the A/D converter, set the VCUT bit to "0" (VREF unconnected), so that no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

The A/D conversion result is stored in the i bits in the A/D register for ANi, AN3i, and AN2i pins (i = 0 to 7). Table 14.1 shows the A/D converter performance. Figure 14.1 shows the A/D converter block diagram and Figures 14.2 to 14.4 show the A/D converter associated with registers.

Table 14.1 A/D Converter Performance

Item	Performance			
A/D Conversion Method	Successive approximation (capacitive coupling amplifier)			
Analog Input Voltage (Note 1)	0V to AV _{cc} (Vcc)			
Operating Clock fAD (Note 2)	fAD/divided-by-2 or fAD/divided-by-3 or fAD/divided-by-4 or fAD/d	livided-by-6		
	or fAD/divided-by-12 or fAD			
Resolution	8-bit or 10-bit (selectable)			
Integral Nonlinearity Error	When AVCC = VREF = 5V			
	With 8-bit resolution: ±2LSB			
	With 10-bit resolution: ±3LSB			
	When AVCC = VREF = 3.3V			
	With 8-bit resolution: ±2LSB			
	With 10-bit resolution: ±5LSB			
Operating Modes	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0, repeat			
	sweep mode 1, simultaneous sample sweep mode and delayed trigg	er mode 0,1		
Analog Input Pins (Note 3)	8 pins (AN ₀ to AN ₇) + 3 pins (AN ₃₀ to AN ₃₂) + 1 pins (AN ₂₄)	(48pin-ver.)		
	8 pins (AN ₀ to AN ₇) + 2 pins (AN ₃₀ , AN ₃₁)	(42pin-ver.)		
Conversion Speed Per Pin	Without sample and hold function			
	8-bit resolution: 49 fAD cycles, 10-bit resolution: 59 fAD cycles			
	With sample and hold function			
	8-bit resolution: 28 fAD cycles, 10-bit resolution: 33 fAD cycles			

Note 1: Not dependent on use of sample and hold function.

Note 2: Set the fAD frequency to 10 MHz or less.

Without sample-and-hold function, set the fAD frequency to 250kHz or more. With the sample and hold function, set the fAD frequency to 1MHz or more.

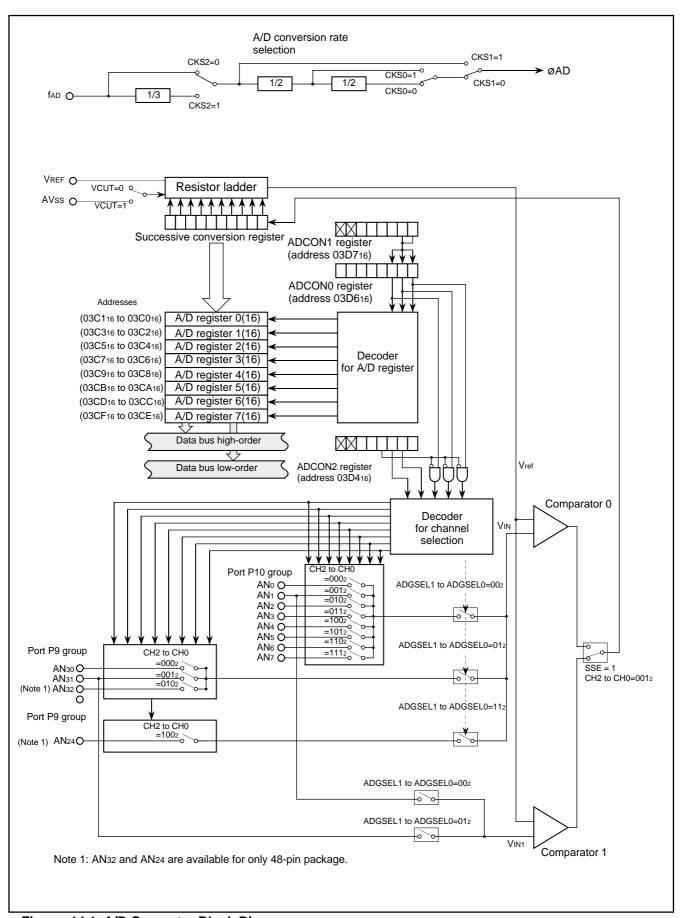


Figure 14.1 A/D Converter Block Diagram

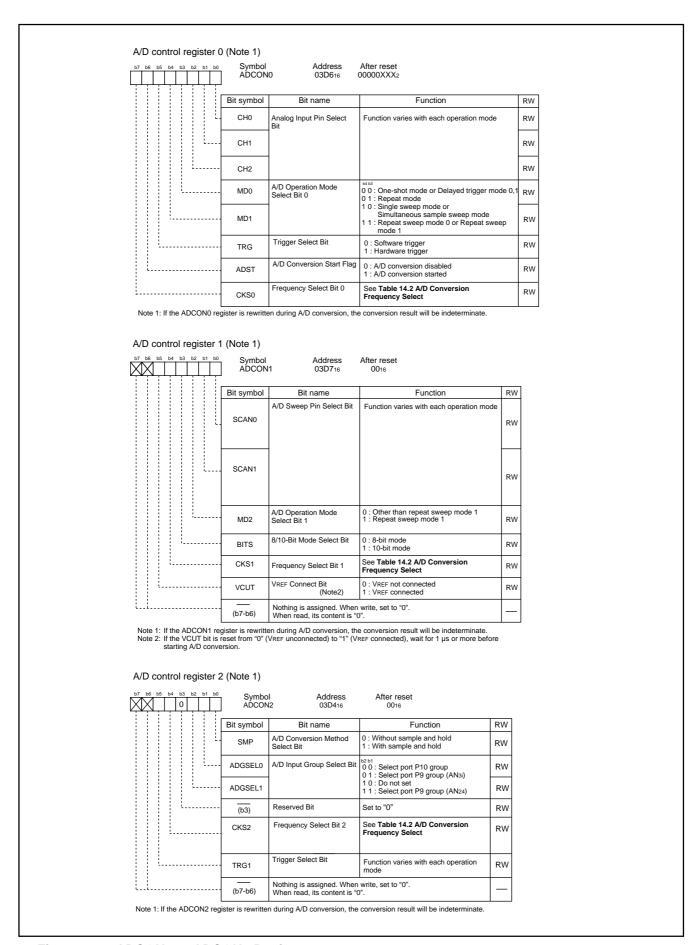


Figure 14.2 ADCON0 to ADCON2 Registers

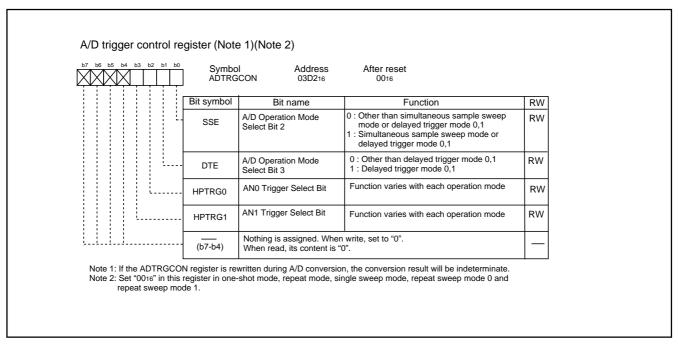
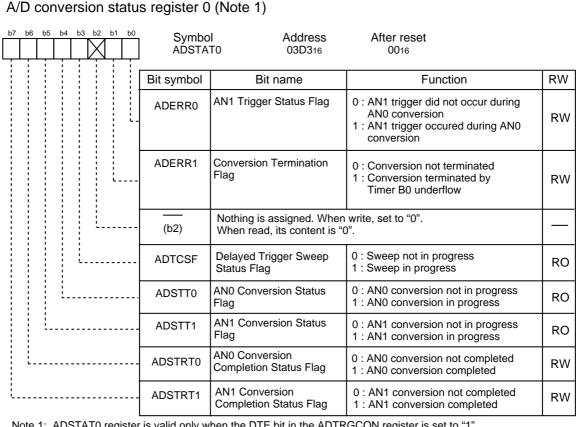



Figure 14.3 ADTRGCON Register

Table 14.2 A/D Conversion Frequency Select

CKS2	CKS1	CKS0	Øad	
0	0	0	Divided-by-4 of fAD	
0	0	1	Divided-by-2 of fAD	
0	1	0	4.0	
0	1	1	fAD	
1	0	0	Divided-by-12 of fAD	
1	0	1	Divided-by-6 of fAD	
1	1	0	2	
1	1	1	Divided-by-3 of fAD	

Note: Set the ØAD frequency to 10 MHz or less. The selected ØAD frequency is determined by a combination of the CKS0 bit in the ADCON0 register, CKS1 bit in the ADCON1 register and the CKS2 bit in the ADCON2 register.

Note 1: ADSTAT0 register is valid only when the DTE bit in the ADTRGCON register is set to "1".

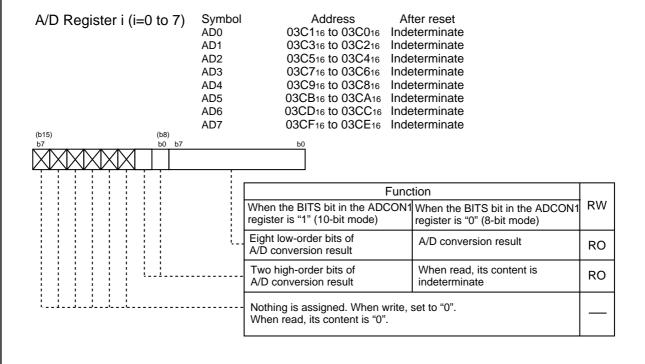
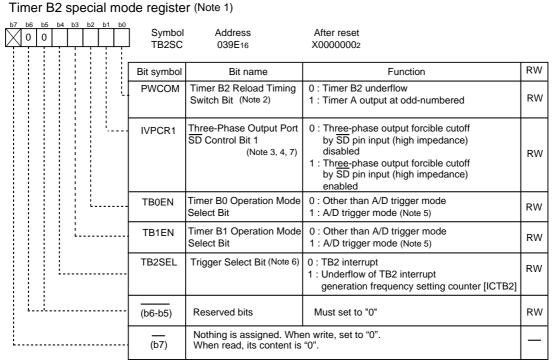



Figure 14.4 ADSTAT0 Register and AD0 to AD7 Registers

- Note 1. Write to this register after setting the PRC1 bit in the PRCR register to "1" (write enabled)
- Note 2. If the INV11 bit is "0" (three-phase mode 0) or the INV06 bit is "1" (triangular wave modulation mode), set this bit to "0" (timer B2 underflow).
- Note 3. When setting the IVPCR1 bit to "1" (three-phase output forcible cutoff by $\overline{\text{SD}}$ pin input enabled), Set the PD8_5 bit to "0" (= input mode).
- Note 4. Related pins are U(P8₀), Ū(P8₁), V(P7₂), V(P7₃), W(P7₄), W(P7₅). After forcible cutoff, input "H" to the P8₅/NMI/SD pin. Set the IVPCR1 bit to "0", and this forcible cutoff will be reset. If "L" is input to the P8₅/NMI/SD pin, a three-phase motor control timer output will be disabled (INV03=0). At this time, when the IVPCR1 bit is "0", the target pins changes to programmable I/O port. When the IVPCR1 bit is "1", the target pins changes to high-impedance state regardless of which functions of those pins are used.
- Note 5. When this bit is used in delayed trigger mode 0, set the TB0EN and TB1EN bits to "1"(A/D trigger mode).
- Note 6. When setting the TB2SEL bit to "1" (underflow of TB2 interrupt generation frequency setting counter[ICTB2]), Set the INV02 bit to "1" (three-phase motor control timer function).
- Note 7. Refer to 16.6 Digital Debounce function for SD input.

Figure 14.5 TB2SC Register

14.1 Operation Modes

14.1.1 One-Shot Mode

In one-shot mode, analog voltage applied to a selected pin is once converted to a digital code. Table 14.1.1.1 shows the one-shot mode specifications. Figure 14.1.1.1 shows the operation example in one-shot mode. Figure 14.1.1.2 shows the ADCON0 to ADCON2 registers in one-shot mode.

Table 14.1.1.1 One-shot Mode Specifications

Item	Specification
Function	The CH2 to CH0 bits in the ADCON0 register and the ADGSEL1 to
	ADGSEL0 bits in the ADCON2 register select pins. Analog voltage applied to
	a selected pin is once converted to a digital code
A/D Conversion Start	When the TRG bit in the ADCON0 register is "0" (software trigger)
Condition	Set the ADST bit in the ADCON0 register to "1" (A/D conversion started)
	• When the TRG bit in the ADCON0 register is "1" (hardware trigger)
	The ADTRG pin input changes state from "H" to "L" after setting the
	ADST bit to "1" (A/D conversion started)
A/D Conversion Stop	• A/D conversion completed (If a software trigger is selected, the ADST bit is
Condition	set to "0" (A/D conversion halted)).
	• Set the ADST bit to "0"
Interrupt Request Generation Timing	A/D conversion completed
Analog Input Pin	Select one pin from ANo to AN7, AN30 to AN32, AN24
Readout of A/D Conversion Result	Readout one of the AD0 to AD7 registers that corresponds to the selected pin

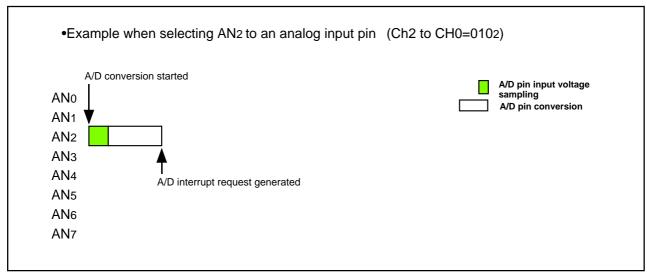


Figure 14.1.1.1 Operation Example in One-Shot Mode

A/D control register 0 (Note 1) Symbol ADCON0 Address After reset 0 0 03D6₁₆ 00000XXX2 Bit symbol Bit name Function RW Analog Input Pin Select Bit (Note 2, 3) 0 0 0 : Select ANo CH0 RW 0 0 1 : Select AN1 0 1 0 : Select AN2 0 1 1 : Select AN3 CH1 RW 1 0 0 : Select AN4 1 0 1 : Select AN5 1 1 0 : Select AN6 1 1 1 : Select AN7 RW CH2 A/D Operation Mode Select Bit 0 (Note 3) RW MD0 0 0: One-shot mode or delayed trigger mode MD1 RW 0,1 Trigger Select Bit 0 : Software trigger TRG RW 1 : Hardware trigger (ADTRG trigger) A/D Conversion Start 0 : A/D conversion disabled ADST RW Flag 1 : A/D conversion started See Table 14.2 A/D Conversion Frequency Select CKS0 Frequency Select Bit 0 RW

Note 1: If the ADCON0 register is rewritten during A/D conversion, the conversion result will be indeterminate.

Note 2: AN30 to AN32 and AN24 can be used in the same way as AN0 to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.

Note 3: After rewriting the MD1 to MD0 bits, set the CH2 to CH0 bits over again using an another instruction.

A/D control register 1 (Note 1)

b7 b	6 b5 b4 b3 b2 b1 b0 1 0	Symbol ADCON	Address 1 03D7 ₁₆	After reset 0016	
		Bit symbol	Bit name	Function	RW
		SCAN0	A/D Sweep Pin Select Bit	Invalid in one-shot mode	RW
		SCAN1			RW
		MD2	A/D Operation Mode Select Bit 1	0 : Any mode other than repeat sweep mode 1	RW
		BITS	8/10-Bit Mode Select Bit	0 : 8-bit mode 1 : 10-bit mode	RW
	1	CKS1	Frequency Select Bit 1	Refer to Table 14.2 A/D Conversion Frequency Select	RW
		VCUT	VREF Connect Bit (Note 2)	1 : VREF connected	RW
ii		(b7-b6)	Nothing is assigned. Whe When read, its content is		

Note 1: If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate. Note 2: If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 µs or more before starting A/D conversion.

A/D control register 2 (Note 1)

0 0 0	Symbo ADCON		After reset 0016	
	Bit symbol	Bit name	Function	RW
	SMP	A/D Conversion Method Select Bit	0 : Without sample and hold 1 : With sample and hold	RW
	ADGSEL0	A/D Input Group Select Bit	b2 b1 0 0 : Select port P10 group (ANi) 0 1 : Select port P9 group (ANsi)	RW
	ADGSEL1		1 0 : Do not set 1 1 : Select port P9 group (AN24)	RW
	(b3)	Reserved Bit	Set to "0"	RW
	CKS2	Frequency Select Bit 2	See Table 14.2 A/D Conversion Frequency Select	RW
	TRG1	Trigger Select Bit 1	Set to "0" in one-shot mode	RW
	(b7-b6)	Nothing is assigned. Whe When read, its content is		

Note 1: If the ADCON2 register is rewritten during A/D conversion, the conversion result will be indeterminate.

Figure 14.1.1.2 ADCON0 to ADCON2 Registers in One-Shot Mode

14.1.2 Repeat mode

In repeat mode, analog voltage applied to a selected pin is repeatedly converted to a digital code. Table 14.1.2.1 shows the repeat mode specifications. Figure 14.1.2.1 shows the operation example in repeat mode. Figure 14.1.2.2 shows the ADCON0 to ADCON2 registers in repeat mode.

Table 14.1.2.1 Repeat Mode Specifications

Item	Specification
Function	The CH2 to CH0 bits in the ADCON0 register and the ADGSEL1 to ADGSEL0
	bits in the ADCON2 register select pins. Analog voltage applied to a selected
	pin is repeatedly converted to a digital code
A/D Conversion Start	When the TRG bit in the ADCON0 register is "0" (software trigger)
Condition	Set the ADST bit in the ADCON0 register to "1" (A/D conversion started)
	• When the TRG bit in the ADCON0 register is "1" (hardware trigger)
	The ADTRG pin input changes state from "H" to "L" after setting the ADST bit
	to "1" (A/D conversion started)
A/D Conversion Stop Condition	Set the ADST bit to "0" (A/D conversion halted)
Interrupt Request Generation Timing	None generated
Analog Input Pin	Select one pin from ANo to AN7, AN30 to AN32 and AN24
Readout of A/D Conversion Result	Readout one of the AD0 to AD7 registers that corresponds to the selected pin

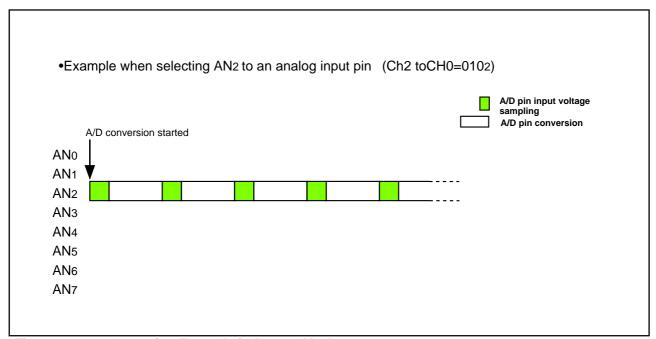


Figure 14.1.2.1 Operation Example in Repeat Mode

A/D control register 0 (Note 1) Symbol ADCON0 Address After reset 0 1 03D6₁₆ 00000XXX2 Bit symbol Bit name Function RW Analog Input Pin Select Bit (Note 2, 3) 0 0 0 : Select ANo CH0 RW 0 0 1 : Select AN₁ 0 1 0 : Select AN₂ CH1 0 1 1 : Select AN3 RW 1 0 0 : Select AN4 1 0 1 : Select AN5 1 1 0 : Select AN6 1 1 1 : Select AN7 RW CH2 A/D Operation Mode Select Bit 0 (Note 3) MD0 RW 0 1 : Repeat mode MD1 RW Trigger Select Bit 0 : Software trigger TRG RW 1 : Hardware trigger (ADTRG trigger) A/D Conversion Start ADST 0 : A/D conversion disabled RW Flag 1 : A/D conversion started Refer to Table 14.2 A/D Conversion Frequency Select CKS0 Frequency Select Bit 0 RW Note 1: If the ADCON0 register is rewritten during A/D conversion, the conversion result will be indeterminate

Note 2: AN3o to AN32 and AN24 can be used in the same way as ANo to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.

Note 3: After rewriting the MD1 to MD0 bits, set the CH2 to CH0 bits over again using an another instruction.

A/D control register 1 (Note 1)

b7 b6	b5 b4 b3 b2 b1 b0 1 0	Symbol ADCON	Address 1 03D7 ₁₆	After reset 0016	
		Bit symbol	Bit name	Function	RW
	1	SCAN0	A/D Sweep Pin Select Bit	Invalid in repeat mode	RW
		SCAN1			RW
		MD2	A/D Operation Mode Select Bit 1	0 : Any mode other than repeat sweep mode 1	RW
		BITS	8/10-Bit Mode Select Bit	0 : 8-bit mode 1 : 10-bit mode	RW
		CKS1	Frequency Select Bit 1	Refer to Table 14.2 A/D Conversion Frequency Select	RW
	:	VCUT	VREF connect bit (Note 2)	1 : VREF connected	RW
ii		(b7-b6)	Nothing is assigned. When when read, its content is		

Note 1: If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.

Note 2: If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 µs or more before starting A/D conversion.

A/D control register 2 (Note 1)

b7 b6 b5 b4 b3 b2 b1 b0	Symbol ADCON		After reset 0016	
	Bit symbol	Bit name	Function	RW
	SMP	A/D Conversion Method Select Bit	0 : Without sample and hold 1 : With sample and hold	RW
L	- ADGSEL0	A/D Input Group Select Bit	0 0 : Select port P10 group (ANi) 0 1 : Select port P9 group (ANsi)	RW
1	ADGSEL1		1 0 : Do not set 1 1 : Select port P9 group (AN24)	RW
	(b3)	Reserved Bit	Set to "0"	RW
	CKS2	Frequency Select Bit 2	See Table 14.2 A/D Conversion Frequency Select	RW
	- TRG1	Trigger Select Bit 1	Set to "0" in repeat mode	RW
<u> </u>	- (b7-b6)	Nothing is assigned. When when read, its content is		

Note 1: If the ADCON2 register is rewritten during A/D conversion, the conversion result will be indeterminate

Figure 14.1.2.2 ADCON0 to ADCON2 Registers in Repeat Mode

14.1.3 Single Sweep Mode

In single sweep mode, analog voltages applied to the selected pins are converted one-by-one to a digital code. Table 14.1.3.1 shows the single sweep mode specifications. Figure 14.1.3.1 shows the operation example in single sweep mode. Figure 14.1.3.2 shows the ADCON0 to ADCON2 registers in single sweep mode.

Table 14.1.3.1 Single Sweep Mode Specifications

Item	Specification
Function	The SCAN1 to SCAN0 bits in the ADCON1 register and the ADGSEL1 to
	ADGSEL0 bits in the ADCON2 register select pins. Analog voltage applied to
	the selected pins is converted one-by-one to a digital code
A/D Conversion Start Condition	When the TRG bit in the ADCON0 register is "0" (software trigger)
	Set the ADST bit in the ADCON0 register to "1" (A/D conversion started)
	 When the TRG bit in the ADCON0 register is "1" (hardware trigger)
	The ADTRG pin input changes state from "H" to "L" after setting the ADST bit
	to "1" (A/D conversion started)
A/D Conversion Stop Condition	• A/D conversion completed(When selecting a software trigger, the ADST bit
	is set to "0" (A/D conversion halted)).
	• Set the ADST bit to "0"
Interrupt Request Generation Timing	A/D conversion completed
Analog Input Pin	Select from ANo to AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins),
	ANo to AN7 (8 pins) (Note 1)
Readout of A/D Conversion Result	Readout one of the AD0 to AD7 registers that corresponds to the selected pin

Note 1: AN30 to AN32 can be used in the same way as AN0 to AN7.

However, all input pins need to belong to the same group.

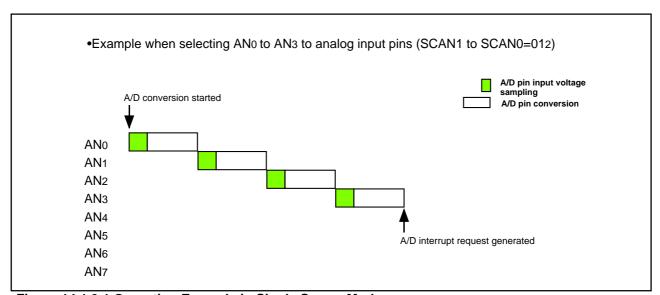
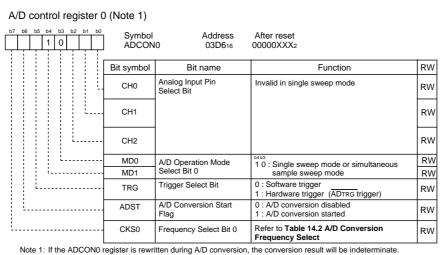



Figure 14.1.3.1 Operation Example in Single Sweep Mode

A/D control register 1 (Note 1)

b7 b6	1	b4 b3	0 0	Symbol ADCON		After reset 0016	
				Bit symbol	Bit name	Function	RW
				- SCAN0	A/D Sweep Pin Select Bit (Note 2)	When selecting single sweep mode o 0 : ANo to AN1 (2 pins)	RW
				SCAN1		0 1 : ANo to AN3 (4 pins) 1 0 : ANo to AN5 (6 pins) 1 1 : ANo to AN7 (8 pins)	RW
				MD2	A/D Operation Mode Select Bit 1	0 : Any mode other than repeat sweep mode 1	RW
				BITS	8/10-Bit Mode Select Bit	0 : 8-bit mode 1 : 10-bit mode	RW
		l		CKS1	Frequency Select Bit 1	Refer to Table 14.2 A/D Conversion Frequency Select	RW
	!			- VCUT	VREF Connect Bit (Note 3)	1 : VREF connected	RW
ii				(b7-b6)	Nothing is assigned. Whe When read, its content is		

Note 1: If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.

Note 2: ANso to ANs2 can be used in the same way as ANo to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.

Note 3: If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREFconnected), wait for 1 µs or more before

starting A/D conversion.

A/D control register 2 (Note 1)

b7 b6 b5 b4 b3 b2 b1 b	Symbol ADCON		After reset 0016	
	Bit symbol	Bit name	Function	RW
	SMP	A/D Conversion Method Select Bit	0 : Without sample and hold 1 : With sample and hold	RW
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ADGSEL0	A/D Input Group Select Bit	b2 b1 0 0 : Select port P10 group (ANi) 0 1 : Select port P9 group (AN3i)	RW
L	ADGSEL1		1 0 : Do not set 1 1 : Do not set	RW
	(b3)	Reserved Bit	Set to "0"	RW
	CKS2	Frequency Select Bit 2	Refer to Table 14.2 A/D Conversion Frequency Select	RW
	TRG1	Trigger Select Bit 1	Set to "0" in single sweep mode	RW
	(b7-b6)	Nothing is assigned. When read, its content is		

Note 1: If the ADCON2 register is rewritten during A/D conversion, the conversion result will be indeterminate.

Figure 14.1.3.2 ADCON0 to ADCON2 Registers in Single Sweep Mode

14.1.4 Repeat Sweep Mode 0

In repeat sweep mode 0, analog voltages applied to the selected pins are repeatedly converted to a digital code. Table 14.1.4.1 shows the repeat sweep mode 0 specifications. Figure 14.1.4.1 shows the operation example in repeat sweep mode 0. Figure 14.1.4.2 shows the ADCON0 to ADCON2 registers in repeat sweep mode 0.

Table 14.1.4.1 Repeat Sweep Mode 0 Specifications

Item	Specification
Function	The SCAN1 to SCAN0 bits in the ADCON1 register and the ADGSEL1 to
	ADGSEL0 bits in the ADCON2 register select pins. Analog voltage applied to
	the selected pins is repeatedly converted to a digital code
A/D Conversion Start Condition	When the TRG bit in the ADCON0 register is "0" (software trigger)
	Set the ADST bit in the ADCON0 register to "1" (A/D conversion started)
	When the TRG bit in the ADCON0 register is "1" (Hardware trigger)
	The ADTRG pin input changes state from "H" to "L" after setting the ADST bit
	to "1" (A/D conversion started)
A/D Conversion Stop Condition	Set the ADST bit to "0" (A/D conversion halted)
Interrupt Request Generation Timing	None generated
Analog Input Pin	Select from ANo to AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins),
	ANo to AN7 (8 pins) (Note 1)
Readout of A/D Conversion Result	Readout one of the AD0 to AD7 registers that corresponds to the selected pin

Note 1: AN30 to AN32 can be used in the same way as AN0 to AN7. However, all input pins need to belong to the same group.

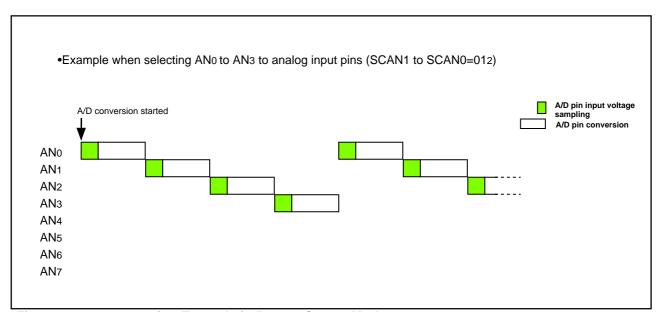
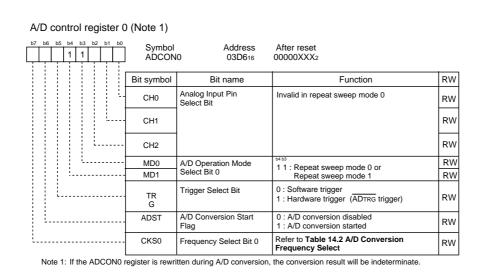



Figure 14.1.4.1 Operation Example in Repeat Sweep Mode 0

A/D control register 1 (Note 1)

1 0	Symbol ADCON	Address 1 03D7 ₁₆	After reset 00 ₁₆	
	Bit symbol	Bit name	Function	RW
	SCAN0	A/D Sweep Pin Select Bit (Note 2)	When selecting repeat sweep mode 0	RW
	SCAN1		0 1 : ANo to AN3 (4 pins) 1 0 : ANo to AN5 (6 pins) 1 1 : ANo to AN7 (8 pins)	RW
	MD2	A/D Operation Mode Select Bit 1	0 : Any mode other than repeat sweep mode 1	RW
	BITS	8/10-Bit Mode Select Bit	0 : 8-bit mode 1 : 10-bit mode	RW
\	CKS1	Frequency Select Bit 1	Refer to Table 14.2 A/D Conversion Frequency Select	RW
	VCUT	VREF Connect Bit (Note 3)	1 : VREF connected	RW
i.i.	(b7-b6)	Nothing is assigned. When when read, its content is		

Note 1: If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.

Note 2: AN30 to AN32 can be used in the same way as AN0 to AN7. Use the ADGSEL1 to ADGSET0 bits in the ADCON2 register to select the desired pin.

Noe 3: If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 µs or more before

starting A/D conversion.

A/D control register 2 (Note 1)

0 0 0 b1 b0	Symbo ADCON		After reset 0016	
	Bit symbol	Bit name	Function	RW
	SMP	A/D Conversion Method Select Bit	0 : Without sample and hold 1 : With sample and hold	RW
	ADGSEL0	A/D Input Group Select Bit	b2 b1 0 0 : Select port P10 group (ANi) 0 1 : Select port P9 group (AN3i)	RW
	ADGSEL1		1 0 : Do not set 1 1 : Do not set	RW
	(b3)	Reserved Bit	Set to "0"	RW
	CKS2	Frequency Select Bit 2	Refer to Table 14.2 A/D Conversion Frequency Select	RW
	TRG1	Trigger Select Bit 1	Set to "0" in repeat sweep mode 0	RW
	(b7-b6)	Nothing is assigned. Whe When read, its content is		

Note 1: If the ADCON2 register is rewritten during A/D conversion, the conversion result will be indeterminate.

Figure 14.1.4.2 ADCON0 to ADCON2 Registers in Repeat Sweep Mode 0

14.1.5 Repeat Sweep Mode 1

In repeat sweep mode 1, analog voltages applied to the all selected pins are converted to a digital code, with mainly used in the selected pins. Table 14.1.5.1 shows the repeat sweep mode 1 specifications. Figure 14.1.5.1 shows the operation example in repeat sweep mode 1. Figure 14.1.5.2 shows the ADCON0 to ADCON2 registers in repeat sweep mode 1.

Table 14.1.5.1 Repeat Sweep Mode 1 Specifications

Item	Specification
Function	The SCAN1 to SCAN0 bits in the ADCON1 register and the ADGSEL1 to
	ADGSEL0 bits in the ADCON2 register mainly select pins. Analog voltage
	applied to the all selected pins is repeatedly converted to a digital code
	Example : When selecting ANo
	Analog voltage is converted to a digital code in the following order
	AN0 \rightarrow AN1 \rightarrow AN0 \rightarrow AN2 \rightarrow AN0 \rightarrow AN3, and so on.
A/D Conversion Start Condition	When the TRG bit in the ADCON0 register is "0" (software trigger)
	Set the ADST bit in the ADCON0 register to "1" (A/D conversion started)
	When the TRG bit in the ADCON0 register is "1" (hardware trigger)
	The ADTRG pin input changes state from "H" to "L" after setting the ADST bit
	to "1" (A/D conversion started)
A/D Conversion Stop Condition	Set the ADST bit to "0" (A/D conversion halted)
Interrupt Request Generation Timing	None generated
Analog Input Pins Mainly	Select from ANo (1 pins), ANo to AN1 (2 pins), ANo to AN2 (3 pins),
Used in A/D Conversions	ANo to AN3 (4 pins) (Note 1)
Readout of A/D Conversion Result	Readout one of the AD0 to AD7 registers that corresponds to the selected pin

Note 1: AN30 to AN32 can be used in the same way as AN0 to AN7. However, all input pins need to belong to the same group.

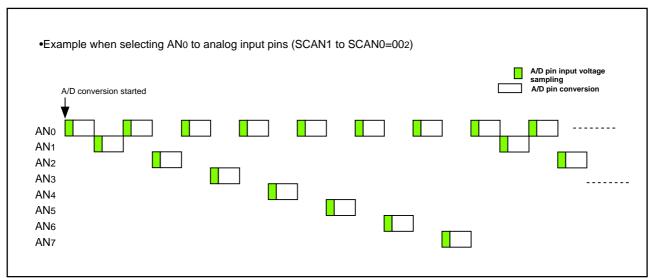
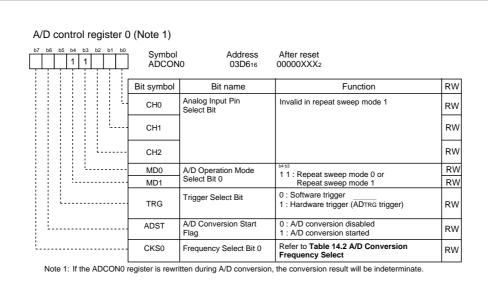
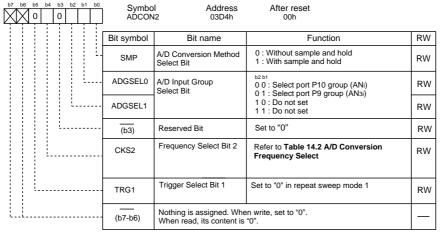



Figure 14.1.5.1 Operation Example in Repeat Sweep Mode 1

A/D control register 1 (Note 1)

1 1 1	Symbol ADCON	Address 03D7 ₁₆	After reset 00 ₁₆	
	Bit symbol	Bit name	Function	RW
	SCAN0	A/D Sweep Pin Select Bit (Note 2)	When selecting repeat sweep mode 1 0 0 : ANo (1 pin)	RW
	SCAN1		0 1 : ANo to AN1 (2 pins) 1 0 : ANo to AN2 (3 pins) 1 1 : ANo to AN3 (4 pins)	RW
	MD2	A/D Operation Mode Select Bit 1	1 : Repeat sweep mode 1	RW
	BITS	8/10-Bit Mode Select Bit	0 : 8-bit mode 1 : 10-bit mode	RW
	CKS1	Frequency Select Bit 1	Refer to Table 14.2 A/D Conversion Frequency Select	RW
	VCUT	VREF Connect Bit (Note 3)	1 : VREF connected	RW
	(b7-b6)	Nothing is assigned. Whe When read, its content is		


Note 1: If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.

Note 2: ANso to ANs2 can be used in the same way as ANo to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2 register to select the desired pin.

Note 3: If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 µs or more before

starting A/D conversion.

A/D control register 2 (Note 1)

Note 1: If the ADCON2 register is rewritten during A/D conversion, the conversion result will be indeterminate.

Figure 14.1.5.2 ADCON0 to ADCON2 Registers in Repeat Sweep Mode 1

14.1.6 Simultaneous Sample Sweep Mode

In simultaneous sample sweep mode, analog voltages applied to the selected pins are converted one-byone to a digital code. At this time, the input voltage of ANo and AN1 are sampled simultaneously using two
circuits of sample and hold circuit. Table 14.1.6.1 shows the simultaneous sample sweep mode specifications. Figure 14.1.6.1 shows the operation example in simultaneous sample sweep mode. Figure
14.1.6.2 shows ADCON0 to ADCON2 registers and Figure 14.1.6.3 shows ADTRGCON registers in
simultaneous sample sweep mode. Table 14.1.6.2 shows the trigger select bit setting in simultaneous
sample sweep mode. In simultaneous sample sweep mode, Timer B0 underflow can be selected as a
trigger by combining software trigger, ADTRG trigger, Timer B2 underflow, Timer B2 interrupt generation
frequency setting counter underflow or A/D trigger mode of Timer B.

Table 14.1.6.1 Simultaneous Sample Sweep Mode Specifications

Item	Specification
Function	The SCAN1 to SCAN0 bits in the ADCON1 register and ADGSEL1 to
	ADGSEL0 bits in the ADCON2 register select pins. Analog voltage applied to
	the selected pins is converted one-by-one to a digital code. At this time, the
	input voltage of ANo and AN1 are sampled simultaneously.
A/D Conversion Start Condition	When the TRG bit in the ADCON0 register is "0" (software trigger)
	Set the ADST bit in the ADCON0 register to "1" (A/D conversion started)
	When the TRG bit in the ADCON0 register is "1" (hardware trigger)
	The trigger is selected by TRG1 and HPTRG0 bits (See Table 14.1.6.2)
	The ADTRG pin input changes state from "H" to "L" after setting the ADST bit
	to "1" (A/D conversion started)
	Timer B0, B2 or Timer B2 interrupt generation frequency setting counter
	underflow after setting the ADST bit to "1" (A/D conversion started)
A/D Conversion Stop Condition	A/D conversion completed (If selecting software trigger, the ADST bit is
	automatically set to "0".
	Set the ADST bit to "0" (A/D conversion halted)
Interrupt Generation Timing	A/D conversion completed
Analog Input Pin	Select from ANo to AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins), or
	ANo to AN7 (8 pins) (Note 1)
Readout of A/D conversion result	Readout one of the AN0 to AN7 registers that corresponds to the selected pin

Note 1: AN30 to AN32 can be used in the same way as AN0 to AN7. However, all input pins need to belong to the same group.

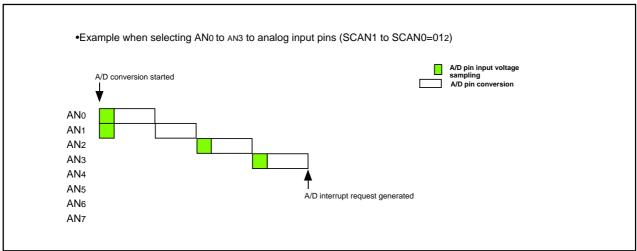
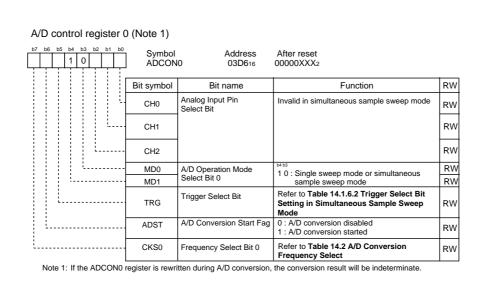



Figure 14.1.6.1 Operation Example in Simultaneous Sample Sweep Mode

A/D control register 1 (Note 1)

1	0 1	Symbol ADCON	Address 1 03D7 ₁₆	After reset 00 ₁₆	
		Bit symbol	Bit name	Function	RW
		SCAN0	A/D Sweep Pin Select Bit (Note 2)	When selecting simultaneous sample sweep mode bit bit 0 0 : ANo to AN1 (2 pins)	RW
		SCAN1		0 1 : AN0 to AN3 (4 pins) 1 0 : AN0 to AN5 (6 pins) 1 1 : AN0 to AN7 (8 pins)	RW
		MD2	A/D Operation Mode Select Bit 1	0 : Any mode other than repeat sweep mode 1	RW
	1	BITS	8/10-Bit Mode Select Bit	0 : 8-bit mode 1 : 10-bit mode	RW
		CKS1	Frequency Select Bit 1	Refer to Table 14.2 A/D Conversion Frequency Select	RW
		VCUT	VREF Connect Bit (Note 3)	1 : VREF connected	RW
1		(b7-b6)	Nothing is assigned. Whe When read, its content is		

Note 1: If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.

Note 2: ANso to ANs2 can be used in the same way as ANo to AN7. Use the ADGSEL1 to ADGSET0 bits in the ADCON2 register to select the desired pin.

Note 3: If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 µs or more before

A/D control register 2 (Note 1)

b7 b6 b5 b4 b3 b2 b1 b0 1	Symbo ADCON		After reset 0016	
	Bit symbol	Bit name	Function	RW
	SMP	A/D Conversion Method Select Bit	Set to "1" in simultaneous sample sweep mode	RW
<u> </u>	ADGSEL0	A/D Input Group Select Bit	0 0 : Select port P10 group (ANi) 0 1 : Select port P9 group (ANai)	RW
<u> </u>	ADGSEL1		1 0 : Do not set 1 1 : Do not set	RW
	(b3)	Reserved Bit	Set to "0"	RW
	CKS2	Frequency Select Bit 2	Refer to Table 14.2 A/D Conversion Frequency Select	RW
	TRG1	Trigger select bit 1	Refer to Table 14.1.6.2 Trigger Select Bit Setting in Simultaneous Sample Sweep Mode	RW
L.L	(b7-b6)	Nothing is assigned. When when read, its content is		

Note 1: If the ADCON2 register is rewritten during A/D conversion, the conversion result will be indeterminate.

Figure 14.1.6.2 ADCON0 to ADCON2 Registers for Simultaneous Sample Sweep Mode

starting A/D conversion.

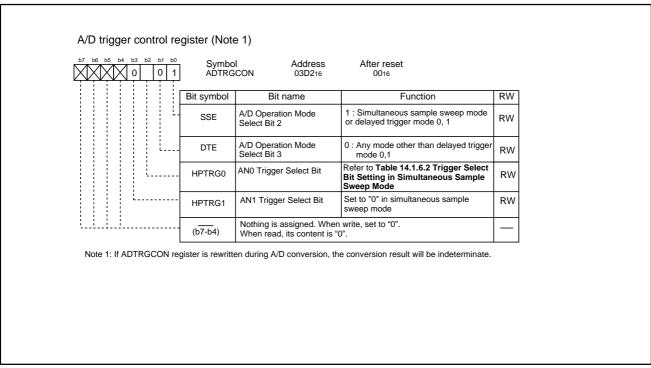


Figure 14.1.6.3 ADTRGCON Register in Simultaneous Sample Sweep Mode

Table 14.1.6.2 Trigger Select Bit Setting in Simultaneous Sample Sweep Mode

TRG	TRG1	HPTRG0	TRIGGER
0	-	-	Software trigger
1	-	1	Timer B0 underflow (Note 1)
1	0	0	ADTRG
1	1	0	Timer B2 or Timer B2 interrupt generation frequency
'	'		setting counter underflow (Note 2)

Note 1: A count can be started for Timer B2, Timer B2 interrupt generation frequency setting counter underflow or the INT5 pin falling edge as count start conditions of Timer B0.

Note 2: Select Timer B2 or Timer B2 interrupt generation frequency setting counter using the TB2SEL bit in the TB2SC register.

14.1.7 Delayed Trigger Mode 0

In delayed trigger mode 0, analog voltages applied to the selected pins are converted one-by-one to a digital code. The delayed trigger mode 0 used in combination with A/D trigger mode of Timer B. The Timer B0 underflow starts a single sweep conversion. After completing the ANo pin conversion, the AN1 pin is not sampled and converted until the Timer B1 underflow is generated. When the Timer B1 underflow is generated, the single sweep conversion is restarted with the AN1 pin. Table 14.1.7.1 shows the delayed trigger mode 0 specifications. Figure 14.1.7.1 shows the operation example in delayed trigger mode 0. Figure 14.1.7.2 and Figure 14.1.7.3 show each flag operation in the ADSTATO register that corresponds to the operation example. Figure 14.1.7.4 shows the ADCON0 to ADCON2 registers in delayed trigger mode 0. Figure 14.1.7.5 shows the ADTRGCON register in delayed trigger mode 0 and Table 14.1.7.2 shows the trigger select bit setting in delayed trigger mode 0.

Table 14.1.7.1 Delayed Trigger Mode 0 Specifications

Item	Specification
Function	The SCAN1 to SCAN0 bits in the ADCON1 register and ADGSEL1 to ADGSEL0 bits in
	the ADCON2 register select pins. Analog voltage applied to the input voltage of the
	selected pins are converted one-by-one to the digital code. At this time, Timer B0 under
	flow generation starts ANo pin conversion. Timer B1 underflow generation starts con
	version after the AN1 pin. (Note 1)
A/D Conversion Start	ANo pin conversion start condition
	•When Timer B0 underflow is generated if Timer B0 underflow is generated again
	before Timer B1 underflow is generated , the conversion is not affected
	•When Timer B0 underflow is generated during A/D conversion of pins after the AN1
	pin, conversion is halted and the sweep is restarted from AN ₀ pin
	AN1 pin conversion start condition
	•When Timer B1 underflow is generated during A/D conversion of the ANo pin, the
	input voltage of the AN1 pin is sampled. The AN1 conversion and the rest of the
	sweep start when ANo conversion is completed.
A/D Conversion Stop	•When single sweep conversion from the ANo pin is completed
Condition	•Set the ADST bit to "0" (A/D conversion halted)(Note 2)
Interrupt Request	A/D conversion completed
Generation Timing	
Analog Input Pin	Select from ANo to AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins) and
	ANo to AN7 (8 pins)(Note 3)
Readout of A/D Conversion Result	Readout one of the AN0 to AN7 registers that corresponds to the selected pins

Note 1: Set the larger value than the value of the timer B0 register to the timer B1 register.

Note 2: Do not write "1" (A/D conversion started) to the ADST bit in delayed trigger mode 0. When write "1", unexpected interrupts may be generated.

Note 3: AN30 to AN32 can be used in the same way as AN0 to AN7. However, all input pins need to belong to the same group.

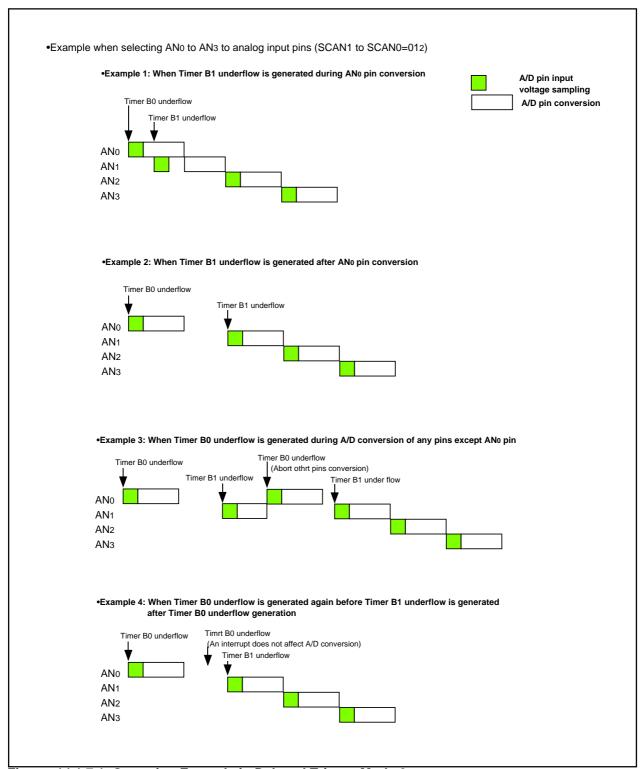


Figure 14.1.7.1 Operation Example in Delayed Trigger Mode 0

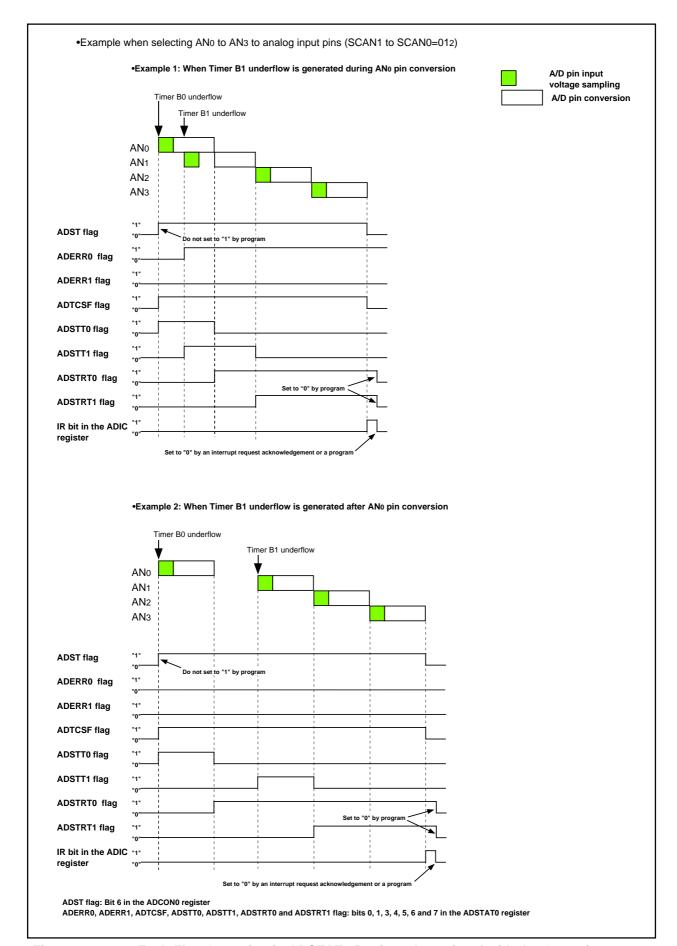


Figure 14.1.7.2 Each Flag Operation in ADSTAT0 Register Associated with the Operation Example in Delayed Trigger Mode 0 (1)

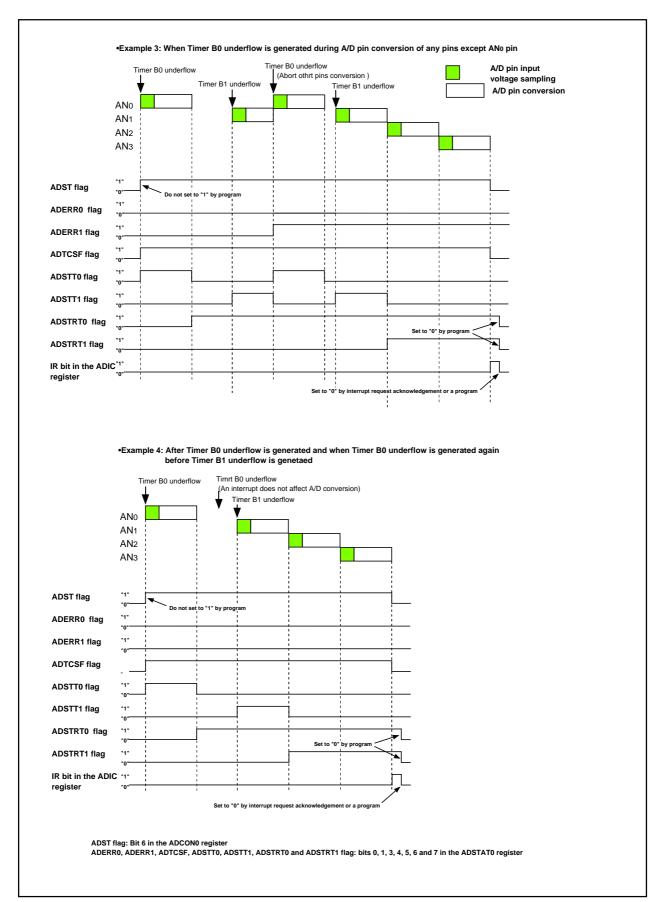


Figure 14.1.7.3 Each Flag Operation in ADSTAT0 Register Associated with the Operation Example in Delayed Trigger Mode 0 (2)

A/D control register 0 (Note 1) Symbol ADCON0 Address After reset 0 0 0 1 1 1 03D6₁₆ 00000XXX2 Bit symbol Bit name Function RW Analog Input Pin Select Bit 1 1 1 : Set to "111b" in delayed trigger mode 0 CH0 RW CH1 RW RW CH2 RW MD0 A/D Operation Mode Select Bit 0 0 0 : One-shot mode or delayed trigger mode MD1 RW 0,1 Refer to Table 14.1.7.2 Trigger Select Bit Setting in Delayed Trigger Mode 0 Trigger Select Bit TRG RW A/D Conversion Start 0 : A/D conversion disabled ADST RW Flag (Note 2) 1 : A/D conversion started Refer to Table 14.2 A/D Conversion CKS0 Frequency Select Bit 0 RW Frequency Select

Note 1: If the ADCON0 register is rewritten during A/D conversion, the conversion result will be indeterminate Note 2: Do not write "1" in delayed trigger mode 0. When write, set to "0".

A/D control register 1 (Note 1)

b7 b6 b5 b4 b3 b2	-	Symbol ADCON	Address 1 03D7 ₁₆	After reset 0016	
		Bit symbol	Bit name	Function	RW
	<u>.</u>	SCAN0	A/D Sweep Pin Select Bit (Note 2)	When selecting delayed trigger sweep mode 0 bt b0 0 0: ANo to AN1 (2 pins)	RW
		SCAN1		0 1: ANo to AN3 (4 pins) 1 0: ANo to AN5 (6 pins) 1 1: ANo to AN7 (8 pins)	RW
		MD2	A/D Operation Mode Select Bit 1	0 : Any mode other than repeat sweep mode 1	RW
		BITS	8/10-Bit Mode Select Bit	0 : 8-bit mode 1 : 10-bit mode	RW
		CKS1	Frequency Select Bit 1	Refer to Table 14.2 A/D Conversion Frequency Select	RW
		VCUT	VREF Connect Bit (Note 3)	1 : VREF connected	RW
		(b7-b6)	Nothing is assigned. Whe When read, its content is		

Note 1: If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.

Note 2: AN30 to AN32 can be used in the same way as AN0 to AN7. Use the ADGSEL1 to ADGSEL0 bits in the ADCON2

register to select the desired pin.

Note 3: If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 µs or more before starting A/D conversion.

A/D control register 2 (Note 1)

0 0 1	Symbo ADCON		After reset 0016	
	Bit symbol	Bit name	Function	RW
	SMP	A/D Conversion Method Select Bit (Note 2)	1 : With sample and hold	RW
	ADGSEL0	A/D Input Group Select Bit	b2 b1 0 0 : Select port P10 group (ANi) 0 1 : Select port P9 group (AN3i)	RW
L	ADGSEL1		1 0 : Do not set 1 1 : Do not set	RW
	(b3)	Reserved Bit	Set to "0"	RW
	CKS2	Frequency Select Bit 2	Refer to Table 14.2 A/D Conversion Frequency Select	RW
	TRG1	Trigger Select Bit 1	Refer to Table 14.1.7.2 Trigger Select Bit Setting in Delayed Trigger Mode 0	RW
į . į	(b7-b6)	Nothing is assigned. Whe When read, its content is		

Note 1: If the ADCON2 register is rewritten during A/D conversion, the conversion result will be indeterminate. Note 2: Set to "1" in delayed trigger mode 0.

Figure 14.1.7.4 ADCON0 to ADCON2 Registers in Delayed Trigger Mode 0

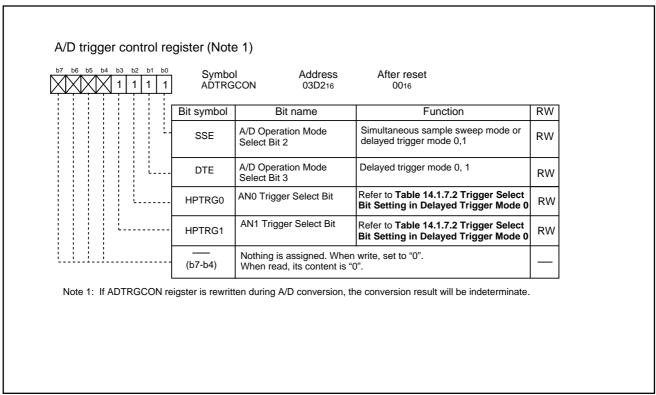


Figure 14.1.7.5 ADTRGCON Register in Delayed Trigger Mode 0

Table 14.1.7.2 Trigger Select Bit Setting in Delayed Trigger Mode 0

TRG	TRG1	HPTRG0	HPTRG1	Trigger
0	0	1	1	Timer B0, B1 underflow

14.1.8 Delayed Trigger Mode 1

In delayed trigger mode 1, analog voltages applied to the selected pins are converted one-by-one to a digital code. When the input of the \overline{ADTRG} pin (falling edge) changes state from "H" to "L", a single sweep conversion is started. After completing the ANo pin conversion, the AN1 pin is not sampled and converted until the second \overline{ADTRG} pin falling edge is generated. When the second \overline{ADTRG} falling edge is generated, The single sweep conversion of the pins after the AN1 pin is restarted. Table 14.1.8.1 shows the delayed trigger mode 1 specifications. Figure 14.1.8.1 shows the operation example of delayed trigger mode 1. Figure 14.1.8.2 to Figure 14.1.8.3 show each flag operation in the ADSTATO register that corresponds to the operation example. Figure 14.1.8.4 shows the ADCON0 to ADCON2 registers in delayed trigger mode 1. Figure 14.1.8.5 shows the ADTRGCON register in delayed trigger mode 1 and Table 15.1.8.2 shows the trigger select bit setting in delayed trigger mode 1.

Table 14.1.8.1 Delayed Trigger Mode 1 Specifications

Item	Specification			
Function	The SCAN1 to SCAN0 bits in the ADCON1 register and ADGSEL1 to ADGSEL0 bits			
	in the ADCON2 register select pins. Analog voltages applied to the selected pins are			
	converted one-by-one to a digital code. At this time, the ADTRG pin			
	falling edge starts ANo pin conversion and the second ADTRG pin falling edge starts			
	conversion of the pins after AN1 pin			
A/D Conversion Start	ANo pin conversion start condition			
Condition	The ADTRG pin input changes state from "H" to "L" (falling edge)(Note 1)			
	AN1 pin conversion start condition (Note 2)			
	The ADTRG pin input changes state from "H" to "L" (falling edge)			
	•When the second ADTRG pin falling edge is generated during or after A/D			
	conversion of the ANo pin, input voltage of AN1 pin is sampled at the time of ADTRG			
	falling edge. The conversion of AN1 and the rest of the sweep starts when AN0			
	conversion is completed.			
	•When the ADTRG pin falling edge is generated again during single sweep conver			
	sion of pins after the AN1 pin, the conversion is not affected			
A/D Conversion Stop	•A/D conversion completed			
Condition	•Set the ADST bit to "0" (A/D conversion halted)(Note 3)			
Interrupt Request	Single sweep conversion completed			
Generation Timing				
Analog Input Pin	Select from ANo to AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins) and			
	ANo to AN7 (8 pins)(Note 4)			
Readout of A/D Conversion Result	Readout one of the AN0 to AN7 registers that corresponds to the selected pins			

Note 1: When a thrid ADTRG pin falling edge is generated again during A/D conversion, its trigger is ignored.

- Note 3: Do not write "1" (A/D conversion started) to the ADST bit in delayed trigger mode 1. When write "1", unexpected interrupts may be generated.
- Note 4: AN30 to AN32 can be used in the same way as AN0 to AN7. However, all input pins need to belong to the same group.

Note 2: The ADTRG pin falling edge is detected synchronized with the operation clock \$\phiAD\$. Therefore, when the ADTRG pin falling edge is generated in shorter periods than \$\phiAD\$, the second ADTRG pin falling edge may not be detected. Do not generate the ADTRG pin falling edge in shorter periods than \$\phiAD\$.

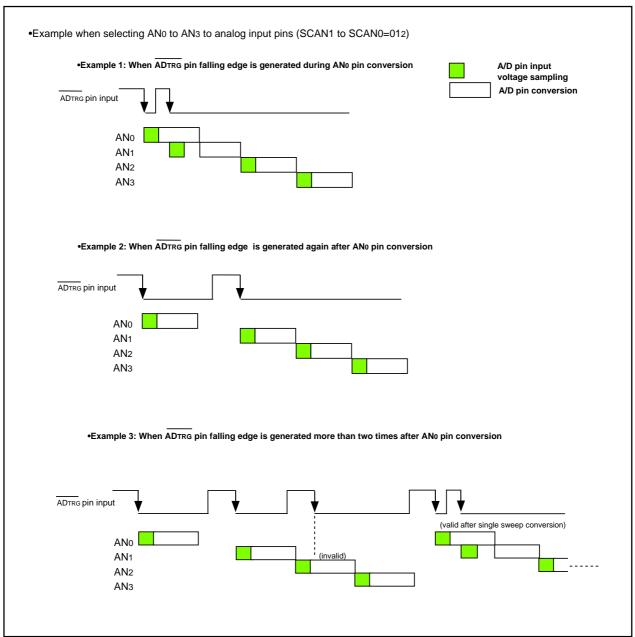


Figure 14.1.8.1 Operation Example in Delayed Trigger Mode1

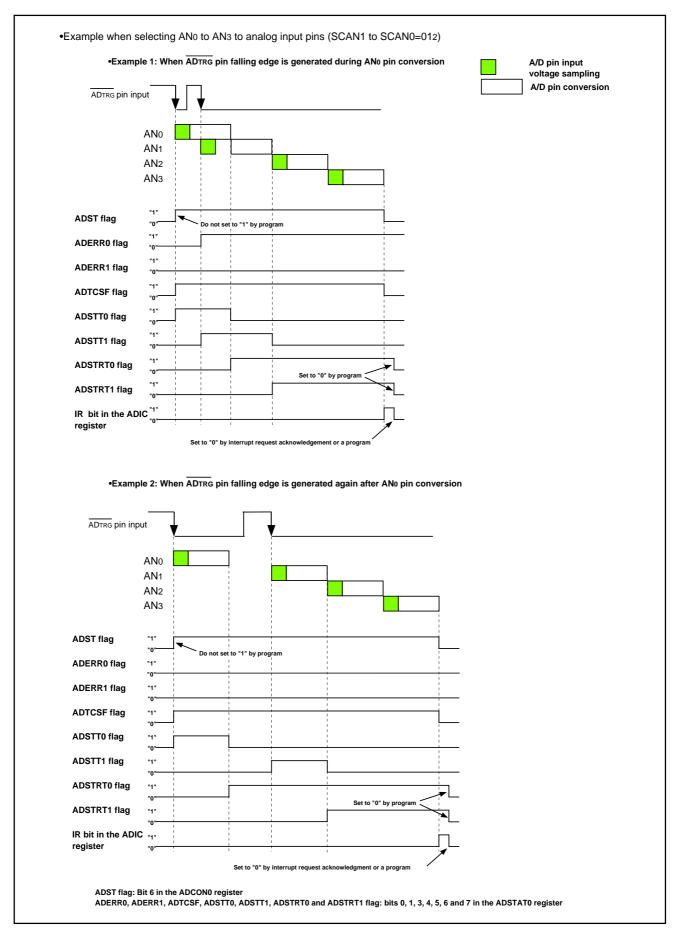


Figure 14.1.8.2 Each Flag Operation in ADSTAT0 Register Associated with the Operation Example in Delayed Trigger Mode 1 (1)

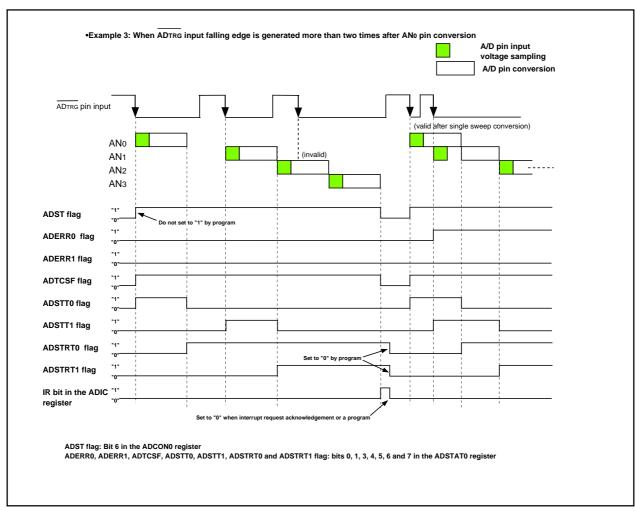


Figure 14.1.8.2 Each Flag Operation in ADSTAT0 Register Associated with the Operation Example in Delayed Trigger Mode 1 (2)

A/D control register 0 (Note 1) Address After reset Symbol ADCON0 0 0 0 1 1 1 03D6₁₆ 00000XXX2 Bit symbol Bit name Function RW Analog Input Pin Select Bit 1 1 1 : Set to "111b" in delayed trigger mode 1 CH0 RW CH1 RW RW CH2 A/D Operation Mode Select Bit 0 RW MD0 0 0 : One-shot mode or delayed trigger mode MD1 RW 0,1 Refer to Table 14.1.8.2 Trigger Select Bit Setting in Delayed Trigger Mode 1 Trigger Select Bit TRG RW A/D Conversion Start 0 : A/D conversion disabled ADST RW Flag (Note 2) 1 : A/D conversion started Refer to Table 14.2 A/D Conversion CKS0 Frequency Select Bit 0 RW Frequency Select

Note 1: If the ADCON0 register is rewritten during A/D conversion, the conversion result will be indeterminate. Note 2: Do not write "1" in delayed trigger mode 1. When write, set to "0".

A/D control register 1 (Note 1)

b7 b	1 1	0	b1 b0	Symbol ADCON	Address 1 03D7 ₁₆	After reset 0016	
				Bit symbol	Bit name	Function	RW
				SCAN0	A/D Sweep Pin Select Bit (Note 2)	When selecting delayed trigger mode 1 0 0: ANo to AN1 (2 pins)	RW
			L	SCAN1		0 1: ANo to AN3 (4 pins) 1 0: ANo to ANs (6 pins) 1 1: ANo to AN7 (8 pins)	RW
				MD2	A/D Operation Mode Select Bit 1	0 : Any mode other than repeat sweep mode 1	RW
		i		BITS	8/10-Bit Mode Select Bit	0 : 8-bit mode 1 : 10-bit mode	RW
	1-			CKS1	Frequency Select Bit 1	Refer to Table 14.2 A/D Conversion Frequency Select	RW
	!			VCUT	VREF Connect Bit (Note 3)	1 : VREF connected	RW
ii				(b7-b6)	Nothing is assigned. Whe When read, its content is		

Note 1: If the ADCON1 register is rewritten during A/D conversion, the conversion result will be indeterminate.

Note 2: AN30 to AN32 can be used in the same way as AN0 to AN7. Use the ADGSEL1 to ADGSET0 bits in the ADCON2 register to select the desired pin.

Note 3: If the VCUT bit is reset from "0" (VREF unconnected) to "1" (VREF connected), wait for 1 µs or more before starting A/D conversion.

A/D control register 2 (Note 1)

b7 b6 b5	0 1	Symbo ADCON		After reset 0016	
		Bit symbol	Bit name	Function	RW
	1-	SMP	A/D Conversion Method Select Bit (Note 2)	1 : With sample and hold	RW
		ADGSEL0	A/D Input Group Select Bit	0 0 : Select port P10 group (ANi) 0 1 : Select port P9 group (ANi)	RW
		ADGSEL1		1 0 : Do not set 1 1 : Do not set	RW
		(b3)	Reserved Bit	Set to "0"	RW
		CKS2	Frequency Select Bit 2	Refer to Table 14.2 A/D Conversion Frequency Select	RW
		TRG1	Trigger Select Bit 1	Refer to Table 14.1.8.2 Trigger Select Bit Setting in Delayed Trigger Mode 1	RW
ii		(b7-b6)	Nothing is assigned. Whe When read, its content is		

Note 1: If the ADCON2 register is rewritten during A/D conversion, the conversion result will be indeterminate. Note 2: Set to "1" in delayed trigger mode 1.

Figure 14.1.8.4 ADCON0 to ADCON2 Registers in Delayed Trigger Mode 1

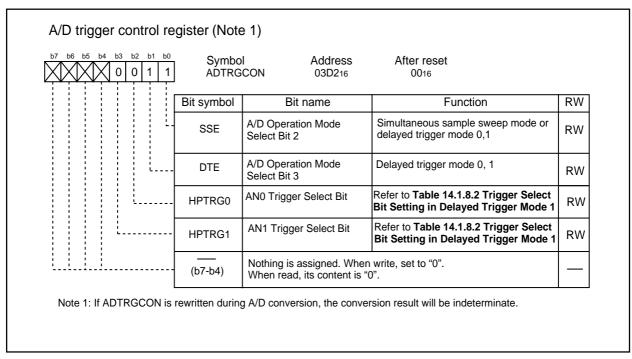


Figure 14.1.8.5 ADTRGCON Register in Delayed Trigger Mode 1

Table 14.1.8.2 Trigger Select Bit Setting in Delayed Trigger Mode 1

TRG	TRG1	HPTRG0	HPTRG1	Trigger
0	1	0	0	ADTRG

14.2 Resolution Select Function

The BITS bit in the ADCON1 register determines the resolution. When the BITS bit is set to "1" (10-bit precision), the A/D conversion result is stored into bits 0 to 9 in the A/D register i (i=0 to 7). When the BITS bit is set to "0" (8-bit precision), the A/D conversion result is stored into bits 0 to 7 in the ADI register.

14.3 Sample and Hold

When the SMP bit in the ADCON 2 register is set to "1" (with the sample and hold function), A/D conversion rate per pin increases to 28 ϕ AD cycles for 8-bit resolution or 33 ϕ AD cycles for 10-bit resolution. The sample and hold function is available in one-shot mode, repeat mode, single sweep mode, repeat sweep mode 0 and repeat sweep mode 1. In these modes, start A/D conversion after selecting whether the sample and hold circuit is to be used or not. In simultaneous sample sweep mode, delayed trigger mode 0 or delayed trigger mode 1, set to use the Sample and Hold function before starting A/D conversion.

14.4 Power Consumption Reducing Function

When the A/D converter is not used, the VCUT bit in the ADCON1 register isolates the resistor ladder of the A/D converter from the reference voltage input pin (VREF). Power consumption is reduced by shutting off any current flow into the resistor ladder from the VREF pin.

When using the A/D converter, set the VCUT bit to "1" (VREF connected) before setting the ADST bit in the ADCON0 register to "1" (A/D conversion started). Do not set the ADST bit and VCUT bit to "1" simultaneously, nor set the VCUT bit to "0" (VREF unconnected) during A/D conversion.

14.5 Output Impedance of Sensor under A/D Conversion

To carry out A/D conversion properly, charging the internal capacitor C shown in Figure 14.5.1 has to be completed within a specified period of time. T (sampling time) as the specified time. Let output impedance of sensor equivalent circuit be R0, microcomputer's internal resistance be R, precision (error) of the A/D converter be X, and the A/D converter's resolution be Y (Y is 1024 in the 10-bit mode, and 256 in the 8-bit mode).

VC is generally VC = VIN{1-e}
$$-\frac{1}{c(R0+R)}$$
 t }

And when t = T, $VC=VIN-\frac{X}{Y}$ $VIN=VIN(1-\frac{X}{Y})$

$$e^{-\frac{1}{c(R0+R)}} = \frac{X}{Y}$$

$$-\frac{1}{C(R0+R)} = In -\frac{X}{Y}$$
Hence, $R0 = -\frac{T}{C \cdot ln - \frac{X}{Y}} - R$

Figure 14.5.1 shows analog input pin and externalsensor equivalent circuit. When the difference between VIN and VC becomes 0.1LSB, we find impedance R0 when voltage between pins. VC changes from 0 to VIN-(0.1/1024) VIN in timer T. (0.1/1024) means that A/D precision drop due to insufficient capacitor chage is held to 0.1LSB at time of A/D conversion in the 10-bit mode. Actual error however is the value of absolute precision added to 0.1LSB. When f(XIN) = 10MHz, $T=0.3\mu s$ in the A/D conversion mode with sample & hold. Output inpedance R0 for sufficiently charging capacitor C within time T is determined as follows.

T = 0.3μs, R = 7.8kΩ, C = 1.5pF, X = 0.1, and Y = 1024. Hence,
$$R0 = -\frac{0.3X10^{-6}}{1.5X10^{-12} \text{-lin}} \frac{0.1}{1024} - 7.8 \times 10^3 \cong 13.9 \times 10^3$$

Thus, the allowable output impedance of the sensor circuit capable of thoroughly driving the A/D converter turns out of be approximately $13.9k\Omega$.

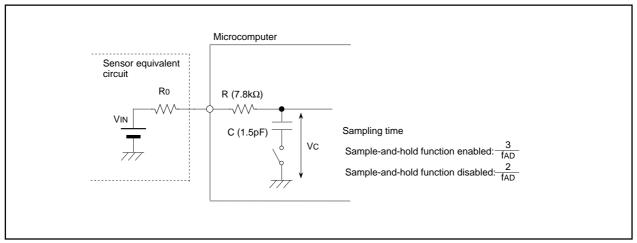


Figure 14.5.1 Analog Input Pin and External Sensor Equivalent Circuit

15. CRC Calculation Circuit

The Cyclic Redundancy Check (CRC) operation detects an error in data blocks. The microcomputer uses a generator polynomial of CRC_CCITT ($X^{16} + X^{12} + X^5 + 1$) or CRC-16 ($X^{16} + X^{15} + X^2 + 1$) to generate CRC code.

The CRC code is a 16-bit code generated for a block of a given data length in multiples of bytes. The code is updated in the CRC data register everytime one byte of data is transferred to a CRC input register. The data register needs to be initialized before use. Generation of CRC code for one byte of data is completed in two machine cycles.

Figure 15.1 shows the block diagram of the CRC circuit. Figure 15.2 shows the CRC-related registers. Figure 15.3 shows the calculation example using the CRC_CCITT operation.

15.1. CRC Snoop

The CRC circuit includes the ability to snoop reads and writes to certain SFR addresses. This can be used to accumulate the CRC value on a stream of data without using extra bandwidth to explicitly write data into the CRCIN register. For example, it may be useful to snoop the writes to a UART TX buffer, or the reads from a UART RX buffer. This can only be used on USB, UART, and SSI registers.

To snoop an SFR address, the target address is written to the CRC snoop Address Register (CRCSAR). The two most significant bits in this register enable snooping on reads or writes to the target address. If the target SFR is written to by the CPU or DMA, and the CRC snoop write bit is set (the CRCSW bit is set to "1"), the CRC will latch the data into the CRCIN register. The new CRC code will be set in the CRCD register.

Similarly, if the target SFR is read by the CRC or DMA, and the CRC snoop read bit is set (the CRCSR bit is set to "1"), the CRC will latch the data from the target into the CRCIN register and calculate the CRC.

The CRC circuit can only calculate CRC codes on data byte at a time. Therefore, if a target SFR is accessed in a word (16 bit) bus cycle, only the byte of data going to or from the target snooped into CRCIN, the other byte of the word access is ignored.

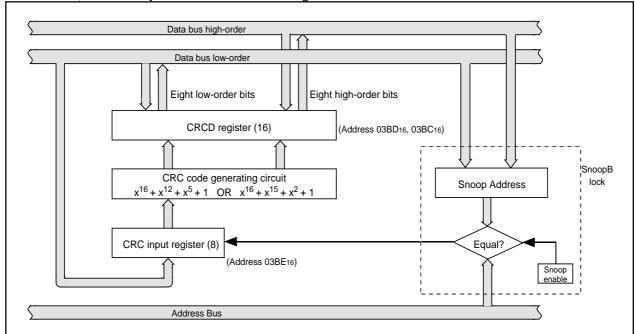


Figure 15.1 CRC circuit block diagram

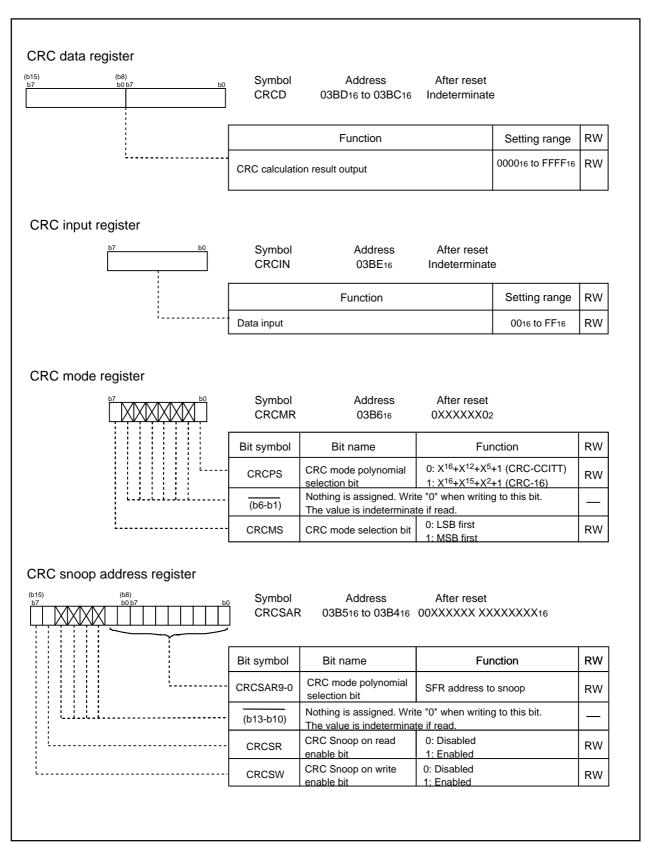


Figure 15.2. CRCD, CRCIN, CRCMR, CRCSAR Register

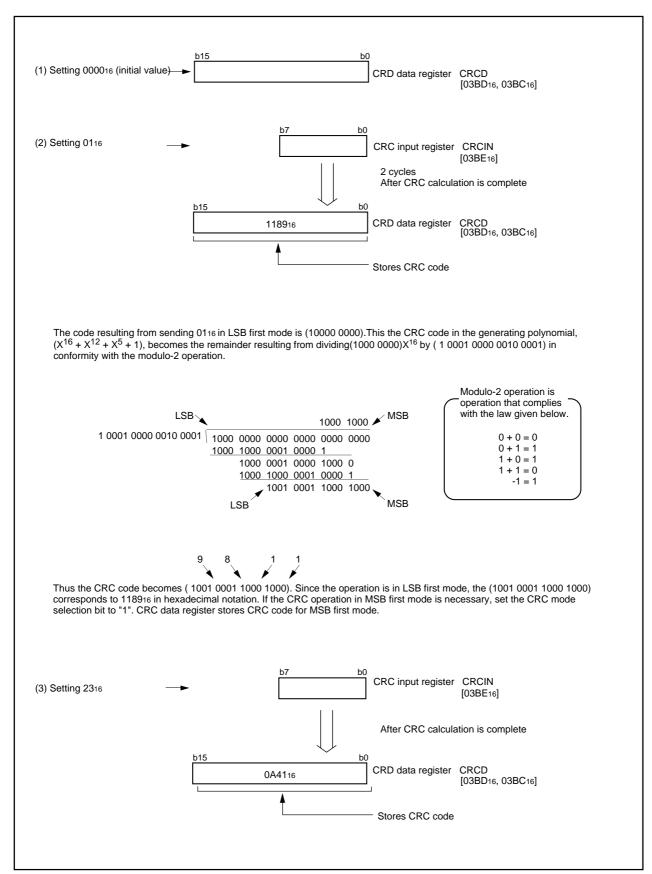


Figure 15.3. CRC Calculation

16. Programmable I/O Ports

Note

There is no external connections for port P60 to P63, P92 and P93 in the M16C/26A (42-pin version)

The programmable input/output ports (hereafter referred to simply as "I/O ports") consist of 39 lines P15 to P17, P6, P7, P8, P90 to P93, P10 for the 48-pin version, or 33 lines P15 to P17, P64 to P67, P7, P8, P90 to P91, P10 for the 42-pin version. Each port can be set for input or output every line by using a direction register, and can also be chosen to be or not be pulled high in sets of 4 lines.

Figures 16.1 to 16.4 show the I/O ports. Figure 16.5 shows the I/O pins.

Each pin functions as an I/O port, a peripheral function input/output.

For details on how to set peripheral functions, refer to each functional description in this manual. If any pin is used as a peripheral function input, set the direction bit for that pin to "0" (input mode). Any pin used as an output pin for peripheral functions is directed for output no matter how the corresponding direction bit is set.

16.1 Port Pi Direction Register (PDi Register, i = 1, 6 to 10)

Figure 16.1.1 shows the direction registers.

This register selects whether the I/O port is to be used for input or output. The bits in this register correspond one for one to each port.

16.2 Port Pi Register (Pi Register, i = 1, 6 to 10)

Figure 16.2.1 shows the Pi registers.

Data input/output to and from external devices are accomplished by reading and writing to the Pi register. The Pi register consists of a port latch to hold the output data and a circuit to read the pin status. For ports set for input mode, the input level of the pin can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register.

For ports set for output mode, the port latch can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register. The data written to the port latch is output from the pin. The bits in the Pi register correspond one for one to each port.

16.3 Pull-up Control Register 0 to Pull-up Control Register 2 (PUR0 to PUR2 Registers)

Figure 16.3.1 shows the PUR0 to PUR2 registers.

The bits in the PUR0 to PUR2 registers can be used to select whether or not to pull the corresponding port high in 4 bit units. The port chosen to be pulled high has a pull-up resistor connected to it when the direction bit is set for input mode.

Also, P67 is connected to a pull-up resistor when the CNVss pin is "H", and the RESET pin is "L".

16.4 Port Control Register

Figure 16.4.1 shows the port control register.

When the P1 register is read after setting the PCR0 bit in the PCR register to "1", the corresponding port latch can be read no matter how the PD1 register is set.

16.5 Pin Assignment Control register (PACR)

Figure 16.5.1 shows the PACR. After reset set the PACR2 to PACR0 bit before you input and output it to each pin. When the PACR register isn't set up, the input and output function of some of the pins doesn't work.

PACR2 to PACR0 bits: control the pins enabled for use.

At reset these bits equal "000".

When using the 48 pin version of the M16C/26A and the 48 pin version of the M16C/26T set these bits to "1002".

When using the 42 pin version of the M16C/26A set these bits to "0012".

U1MAP: controls the assignment of UART1 pins.

If the U1MAP bit is set to "0" (P67 to P64) the UART1 functions are mapped to P64/CTS1/RTS1, P65/CLK1, P66/RxD1, and P67/TxD1.

If the U1MAP bit is set to "1" (P73 to P70) the UART1 functions are mapped to P70/CTS1/RTS1, P71/CLK1, P72/RxD1, and P73/TxD1.

PACR is write protected by PRC2 bit in the PRCR register. PRC2 bit must be set immediately before the write to PACR.

16.6 Digital Debounce function

Two digital debounce function circuits are provided. Level is determined when level is held, after applying either a falling edge or rising edge to the pin, longer than the programmed filter width time. This enables noise reduction.

This function is assigned to INT5/INPC17 and NMI/SD. Digital filter width is set in the NDDR register and the P17DDR register respectively. Additionally, a digital debounce function is disabled to the port P17 input and port P85 input. Figure 16.6.1 shows the NDDR register and the P17DDR register.

Filter width: $f8 \times 1 / (n+1)$ n: count value set in the NDDR register and P17DDr register

The NDDR register and the P17DDR register decrement count value with f8 as the count source. The NDDR register and the P17DDR register indicate count time. Count value is reloaded if a falling edge or a rising edge is applied to the pin.

The NDDR register and the P17DDR register can be set 0016 to FF16 when using the digital debounce function. Setting to FF16 disables the digital filter. See Figure 16.6.2 for details.

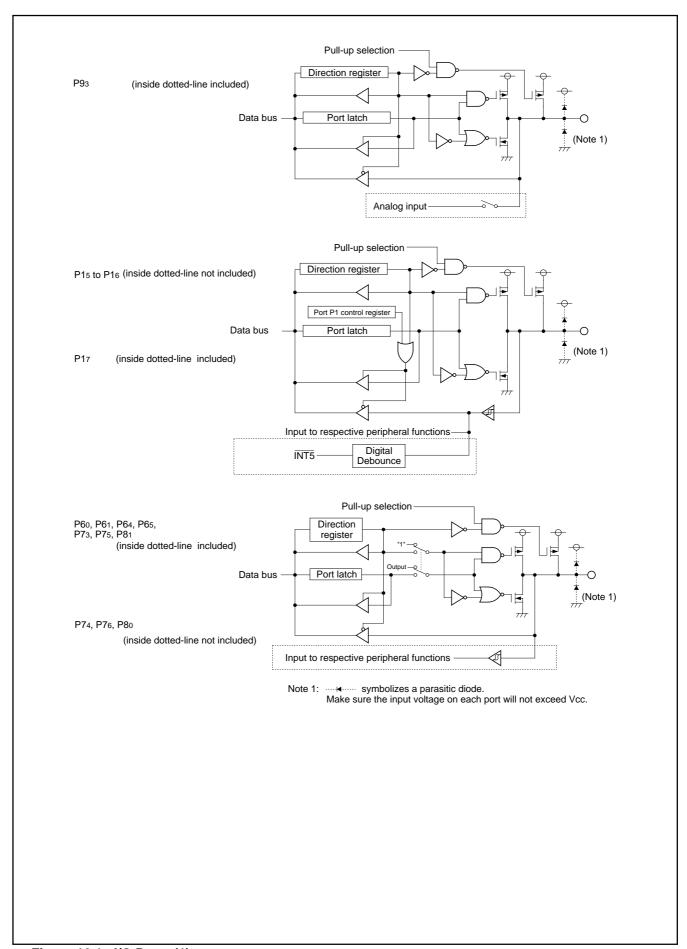


Figure 16.1. I/O Ports (1)

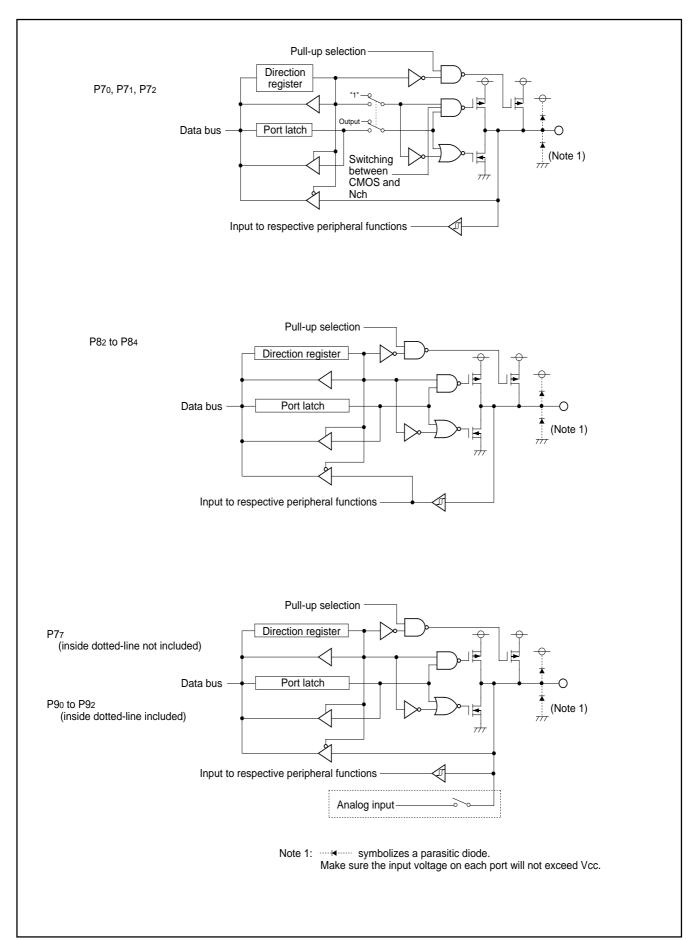


Figure 16.2. I/O Ports (2)

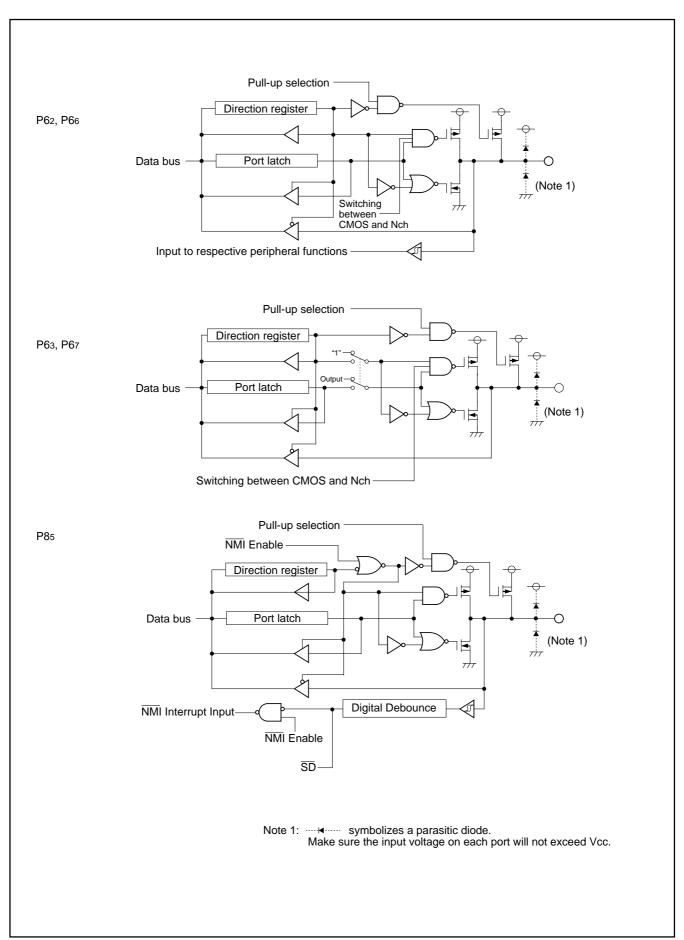


Figure 16.3. I/O Ports (3)

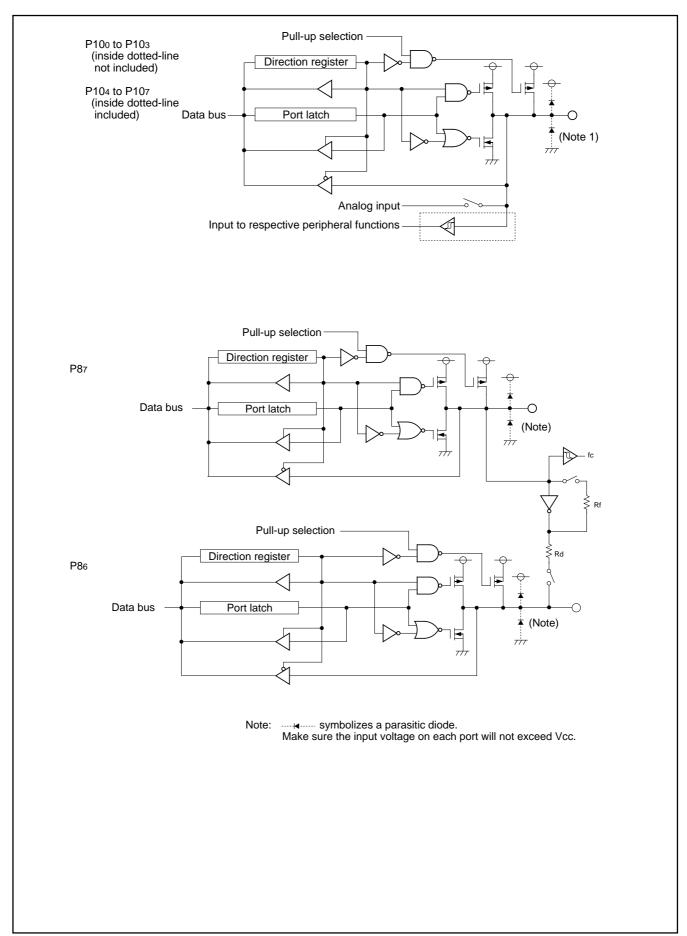


Figure 16.4. I/O Ports (4)

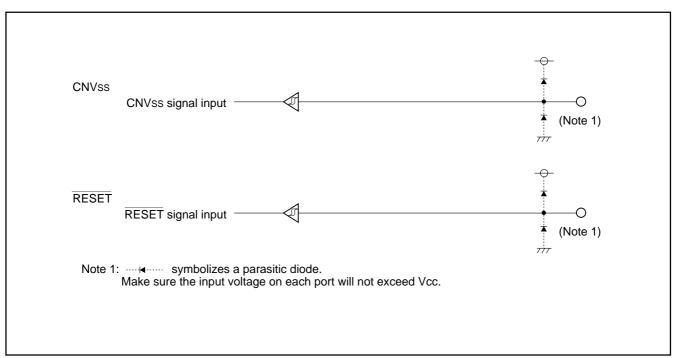
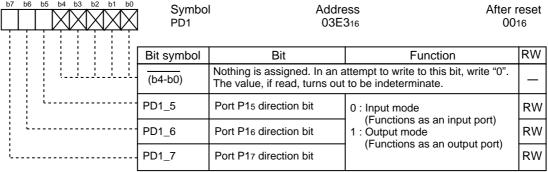


Figure 16.5. I/O Pins

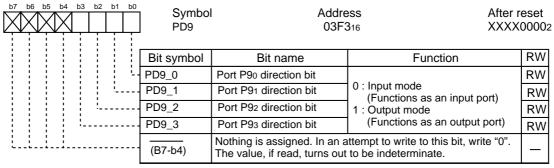

Port Pi direction register (i=6 to 8, and 10) (Note)

b7 b6 b5 b4 b3 b2 b1 b0	Symbol PD6 to PD PD10		dress After rese 03F216 0016 0016	et
	Bit symbol	Bit name	Function	RW
-	PDi_0	Port Pio direction bit		RW
	PDi_1	Port Pi1 direction bit	0 : Input mode (Functions as an input port)	RW
	PDi_2	Port Pi2 direction bit	1 : Output mode	RW
	PDi_3	Port Pi3 direction bit	(Functions as an output port)	RW
	PDi_4	Port Pi4 direction bit	(i = 6 to 8, and 10)	RW
	PDi_5	Port Pis direction bit		RW
	PDi_6	Port Pie direction bit		RW
Ĺ	PDi_7	Port Pi7 direction bit		RW

Note: Ports must be enabled using the PACR

In 48 pin version set PACR2, PACR1, PACR0 to "1002" In 42 pin version set PACR2, PACR1, PACR0 to "0012"

Port P1 direction register (Note 1)

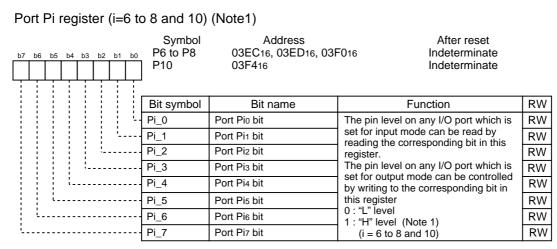


Note 1: Ports must be enabled using the PACR

In 48 pin version set PACR2, PACR1, PACR0 to "1002"

In 42 pin version set PACR2, PACR1, PACR0 to "0012"

Port P9 direction register (Note 1,2)


Note 1: Make sure the PD9 register is written to by the next instruction after setting the PRCR register's PRC2 bit to "1"(write enabled).

Note 2: Ports must be enabled using the PACR

In 48 pin version set PACR2, PACR1, PACR0 to "1002"

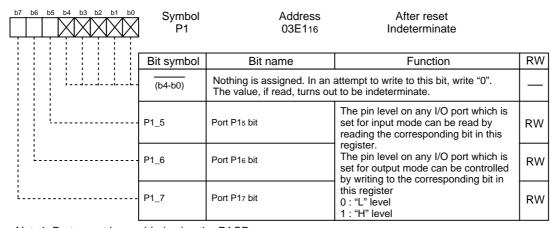
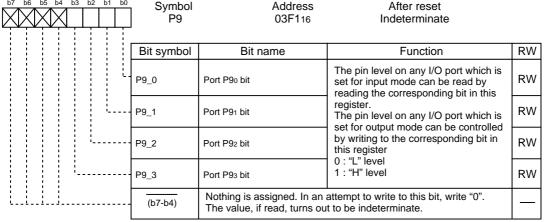
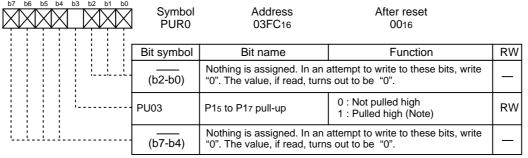

In 42 pin version set PACR2, PACR1, PACR0 to "0012"

Figure 16.1.1. PD1, PD6, PD7, PD8, PD9, and PD10 Registers

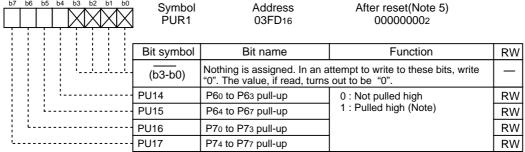

Note1: Ports must be enabled using the PACR In 48 pin version set PACR2, PACR1, PACR0 to "1002" In 42 pin version set PACR2, PACR1, PACR0 to "0012"

Port P1 register (Note1)

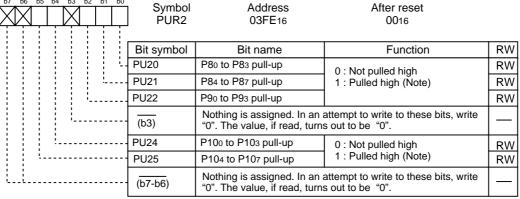
Note1: Ports must be enabled using the PACR In 48 pin version set PACR2, PACR1, PACR0 to "1002" In 42 pin version set PACR2, PACR1, PACR0 to "0012"


Port P9 register (Note1)

Note1: Ports must be enabled using the PACR In 48 pin version set PACR2, PACR1, PACR0 to "1002" In 42 pin version set PACR2, PACR1, PACR0 to "0012"


Figure 16.2.1. P1, P6, P7, P8, P9, and P10 Registers

Pull-up control register 0


Note: The pin for which this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.

Pull-up control register 1

Note: The pin for which this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.

Pull-up control register 2

Note: The pin for which this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.

Figure 16.3.1. PUR0 to PUR2 Registers

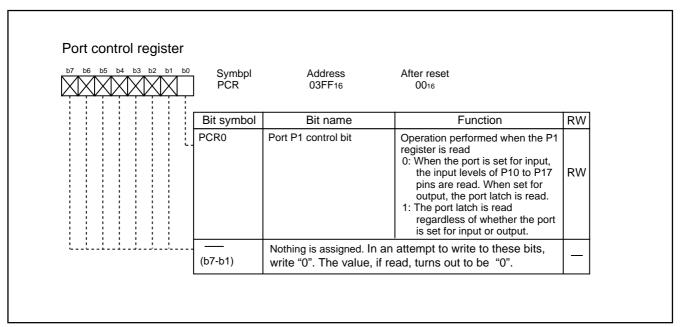


Figure 16.4.1. PCR Register

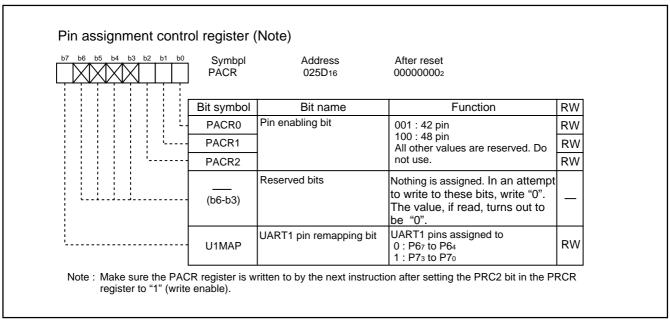


Figure 16.5.1. PACR Register

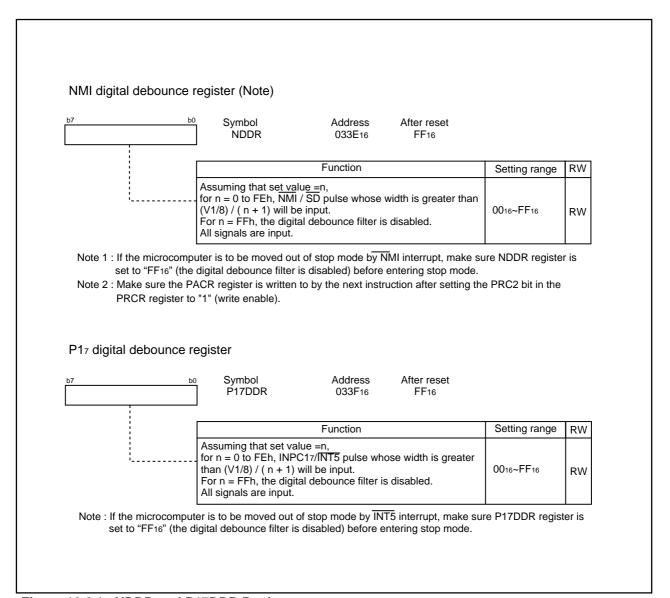


Figure 16.6.1. NDDR and P17DDR Registers

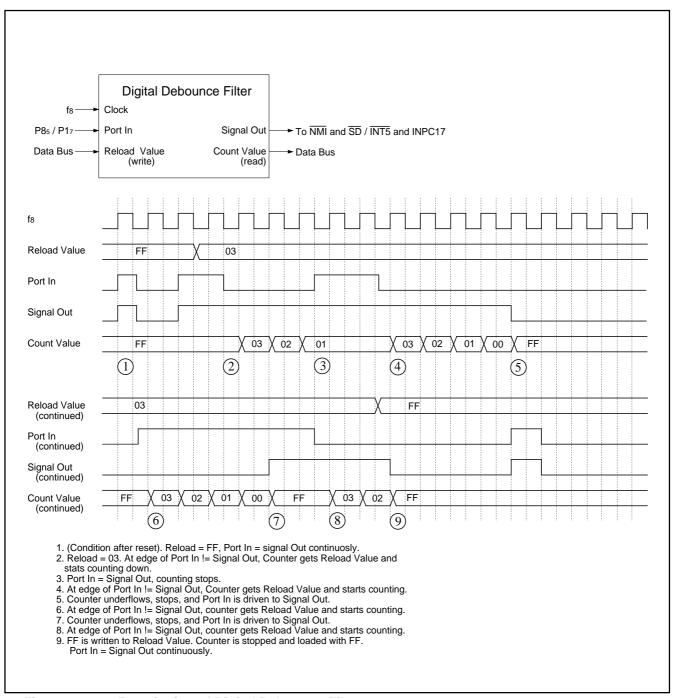


Figure 16.6.2. Functioning of Digital Debounce Filter

Table 16.1.	Unassigned Pin Handling	in Single-chip Mode
--------------------	--------------------------------	---------------------

Pin name	Connection
Ports P1, P6 to P10	After setting for input mode, connect every pin to Vss via a resistor(pull-down); or after setting for output mode, leave these pins open. (Note 1, Note 2, Note 4)
XOUT (Note 3)	Open
Xin	Connect via resistor to Vcc (pull-up) (Note 5)
AVCC	Connect to Vcc
AVSS, VREF	Connect to Vss

Note 1: When setting the port for output mode and leave it open, be aware that the port remains in input mode until it is switched to output mode in a program after reset. For this reason, the voltage level on the pin becomes indeterminate, causing the power supply current to increase while the port remains in input mode.

Futhermore, by considering a possibility that the contents of the direction registers could be changed by noise or noise-induced runaway, it is recommended that the contents of the directionregisters be periodically reset in software, for the increased reliability of the program.

- Note 2: Make sure the unused pins are processed with the shortest possible wiring from the microcomputer pins (within 2 cm).
- Note 3: With external clock or VCC input to XIN pin.
- Note 4: When using the 48pin version, set PACR2, PACR1, PACR0 to "1002". When using the 42pin version, set PACR2, PACR1, PACR0 to "0012".
- Note 5: When the main clock oscillation circuit is not used, set the CM05 bit in the CM0 register to "0" (main clock stops) to reduce power consumption.

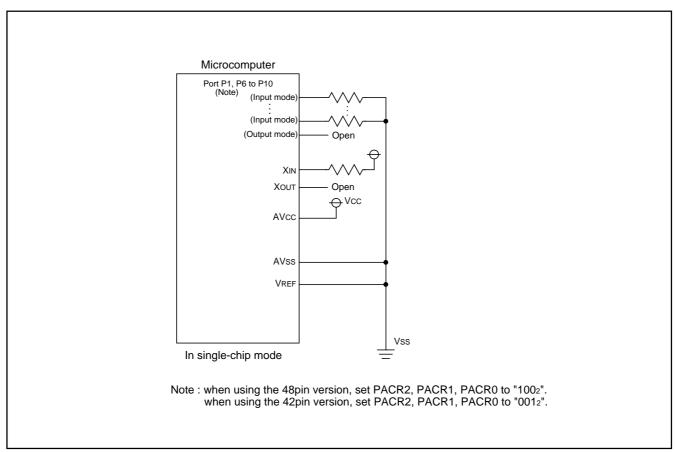


Figure 16.7. Unassigned Pins Handling

17. Flash Memory Version

17.1 Flash Memory Performance

The flash memory version is functionally the same as the mask ROM version except that it internally contains flash memory.

In the flash memory version, the flash memory can perform in three rewrite mode: CPU rewrite mode, standard serial I/O mode and parallel I/O mode.

Table 17.1 shows the flash memory version specifications. (Refer to "Table 1.1 Performance outline of M16C/26A group (48-pin device)" for the items not listed in Table 17.1. or "Table 1.2 Performance Outline of M16C/26A group (42-pin device)").

Table 17.1. Flash Memory Version Specifications

Item		Specification	
Flash memory operating mode		3 modes (CPU rewrite, standard serial I/O, parallel I/O)	
Erase block		See Figure 17.2.1 to17.2.3 Flash Memory Block Diagram	
Program method		In units of word	
Erase method		Block erase	
Program, erase control method		Program and erase controlled by software command	
Protect method		All user blocks are write protected by bit FMR16. In addition, the block 0 and block 1 are write protected by bit FMR02.	
Number of comman	ds	5 commands	
Program/Erase	Block 0 to 3 (program area)	100 times (U3, U5) 1,000 times (U7, U9)	
Endurance(Note1) Block A and B (data are) (Note2)		100 times (U3, U5) 10,000 times (U7, U9)	
Data Retention		20 years (Topr=55°C)	
ROM code protection	on	Parallel I/O and standard serial I/O modes are supported.	

Note 1: Program and erase endurance definition

Program and erase endurance are the erase endurance of each block. If the program and erase endurance are n times (n=100,1,000,10,000), each block can be erased n times. For example, if a 2-Kbyte block A is erased after writing 1 word data 1024 times, each to different addresses, this is counted as one program and erasure. However, data cannot be written to the same address more than once without erasing the block. (Rewrite disabled)

Note 2: To use the limited number of erasure efficiently, write to unused address within the block instead of rewrite. Erase block only after all possible address are used. For example, an 8-word program can be written 128 times before erase is necessary. Maintaining an equal number of erasure between Block A and B will also improve efficiency. We recommend keeping track of the number of times erasure is used.

Table 17.2. Flash Memory Rewrite Modes Overview

Flash memory	CPU rewrite mode	Standard serial I/O mode	Parallel I/O mode
rewrite mode			
Function	The user ROM area is rewritten when the CPU executes software command EW0 mode: Rewrite in area other than flash memory EW1 mode: Rewrite in flash memory	The user ROM area is rewritten using a dedicated serial programmer. Standard serial I/O mode 1: Clock synchronous serial I/O Standard serial I/O mode 2: UART	The user ROM area is rewritten using a dedicated parallel programmer
Area which	User ROM area	User ROM area	User ROM area
can be rewritten			
Operation mode	Single chip mode	Boot mode	Parallel I/O mode
ROM programmer	None	Serial programmer	Parallel programmer

17.2 Memory Map

The flash memory contains the user ROM area and the boot ROM area (reserved area). Figures 17.2.1 to 17.2.3 show the flash memory block diagram. The user ROM area has space to store the microcomputer operation program in single-chip mode and a separate 2-Kbyte space as the block A and B.

The user ROM area is divided into several blocks. The user ROM area can be rewritten in CPU rewrite, standard serial input/output, and parallel input/output modes. However, if block 0 and 1 are rewritten in CPU rewrite mode, setting the FMR02 bit in the FMR0 register to "1" (block 0, 1 rewrite enabled) and the FMR16 bit in the FMR1 register to "1" (blocks 0 to 3 rewrite enabled) enable rewriting. Also, if blocks 2 to 3 are rewritten in CPU rewrite mode, setting the FMR16 bit in the FMR1 register to "1" (blocks 0 to 3 rewrite enabled) enables writing. Setting the PM10 bit in the PM1 register to "1" (data area access enabled) for block A and B enables to use.

The boot ROM area is reserved area. This boot ROM area has a standard serial I/O mode control program stored in it when shipped from the factory. Do not rewrite the boot ROM area.

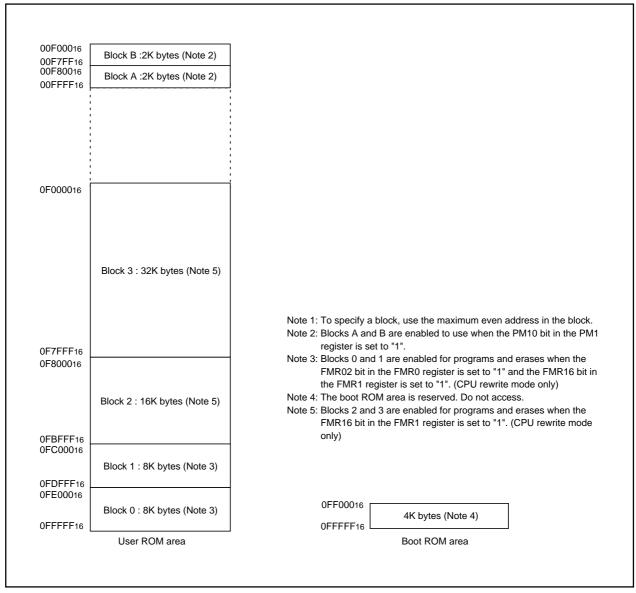


Figure 17.2.1. Flash Memory Block Diagram (ROM capacity 64K byte)

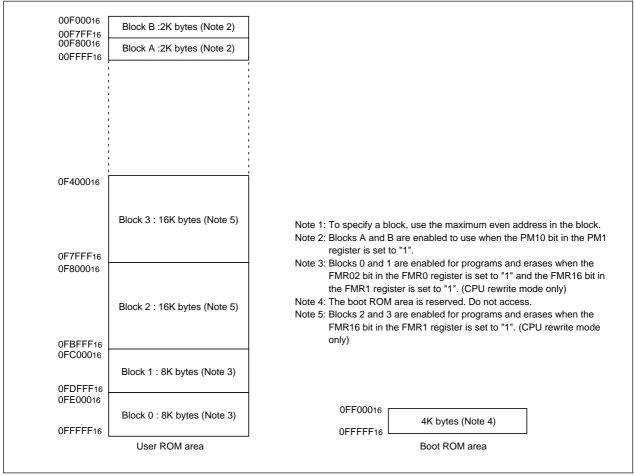


Figure 17.2.2. Flash Memory Block Diagram (ROM capacity 48K byte)

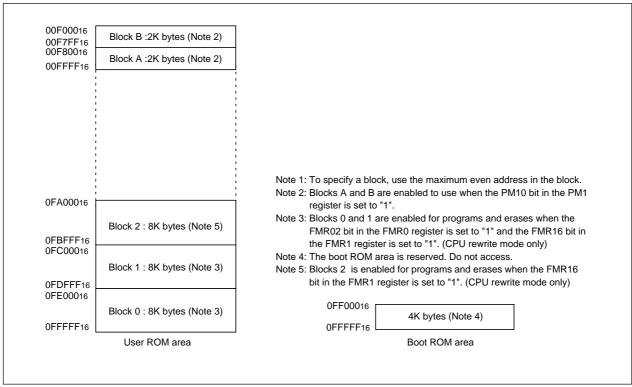
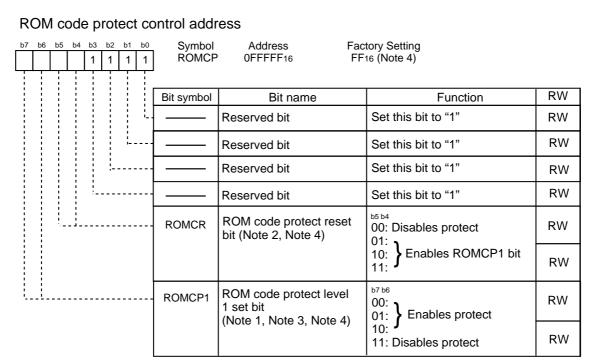


Figure 17.2.3. Flash Memory Block Diagram (ROM capacity 24K byte)

17.3 Functions To Prevent Flash Memory from Rewriting

The flash memory has a built-in ROM code protect function for parallel I/O mode and a built-in ID code check function for standard input/output mode to prevent the flash memory from reading or rewriting.


17.3.1 ROM Code Protect Function

The ROM code protect function prevents the flash memory from reading and rewriting in parallel input/ output mode. Figure 17.3.1.1 shows the ROMCP register. The ROMCP register is located in the user ROM area. The ROMCP1 bit consists of two bits. The ROM code protect function is enabled and reading and rewriting flash memory is disabled when setting either or both of two ROMCP1 bits to "0" other than the ROMCR bit is '002'. However, when setting the ROMCR bit to '002', the flash memory can be read or rewritten. Once the ROM code protect function is enabled, the ROMCR bits can not be changed in parallel input/output mode. Therefore, use the standard serial input/output or other modes to rewrite the flash memory.

17.3.2 ID Code Check Function

Use the ID code check function in standard serial input/output mode. Unless the flash memory is blank, the ID codes sent from the programmer and the seven bytes ID codes written in the flash memory are compared to see if they match. If the ID codes do not match, the commands sent from the programmer are not acknowledged. The ID code consists of 8-bit data, starting with the first byte, into addresses, 0FFFDF16, 0FFFEB16, 0FFFEB16, 0FFFFB16, 0FFFFB16, and 0FFFFB16. The flash memory has a program with the ID code set in these addresses.

- Note 1: When the ROMCR bits are set to other than '002' and the ROMCP1 bits are set to other than '112' (ROM code protect enabled), the flash memory is disabled against reading and rewriting in parallel input/output mode.
- Note 2: When the ROMCR bits are set to '002', the ROM code protect level 1 is reset. Because the ROMCR bits can not be modified in parallel input/output mode, modify in standard serial input/output mode.
- Note 3: The ROMCP1 bits are valid when the ROMCR bits are '012', '102' or '112'.
- Note 4: This bit can not be set to "1" once it is set to "0". The ROMCP address is set to 'FF16' when a block, including the ROMCP address, is erased.

Figure 17.3.1.1. ROMCP Address

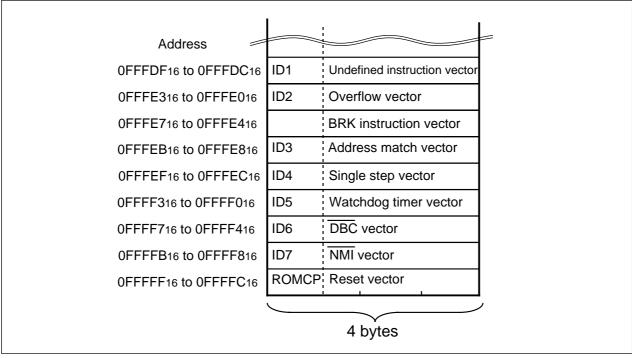


Figure 17.3.2.1. Address for ID Code Stored

17.4 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten when the CPU executes software commands. Therefore, the user ROM area can be rewritten directly while the microcomputer is mounted on-board without using a ROM programmer, etc. Verify the Program and the Block Erase commands are executed only on blocks in the user ROM area.

For interrupts requested during an erasing operation in CPU rewrite mode, the M16C/26A flash module offers an erase-suspend function which the erasing operation to be suspended, and access made available to the flash. Erase-write 0 (EW0) mode and erase-write 1 (EW1) mode are provided as CPU rewrite mode. Table 17.4.1 shows the differences between erase-write 0 (EW0) and erase-write 1 (EW1) modes. 1 wait is required for the CPU erase-write control.

Table 17.4.1. EW0 Mode and EW1 Mode

Item	EW0 mode	EW1 mode (Note 2)
Operation mode	Single chip mode	Single chip mode
Area where	User ROM area	User ROM area
rewrite control		
program can be placed		
Area where	The rewrite control program must be	The rewrite control program can be
rewrite control	transferred to any area other than	executed in the user ROM area
program can be	the flash memory (e.g., RAM) before	
executed	being executed	
Area which can be	User ROM area	User ROM area
rewritten		However, this excludes blocks
		with the rewrite control program
Software command	None	Program, block erase command
Restrictions		Cannot be executed in a block having
		the rewrite control program
		Read status register command
		Can not be used
Mode after programming	Read Status Register mode	Read Array mode
or erasing		
CPU state during auto-	Operation	Hold state (I/O ports retain the state
write and auto-erase		before the command is executed
		(Note 1)
Flash memory status	Read the FMR00, FMR06 and	Read the FMR0 register's FMR00,
detection(Note 2)	FMR07 bits in the FMR0 register by	FMR06, and FMR07 bits in a program
	a program	
	Execute the read status register	
	command and read the SR7, SR5	
	and SR4 bits	
Condition for transferring	Set the FMR40 and FMR41 bits in	The FMR40 bit in the FMR4 register
to erase-suspend (Note 3)	the FMR4 register to "1" by program.	is set to "1" and the interrupt request of

Note 1: Do not generate a DMA transfer.

Note 3: The time, until entering erase suspend and reading flash is enabled, is maximum td (SR-ES) after satisfying the conditions.

Note 2: Block 1 and 0 are enabled to rewrite by setting the FMR02 bit in the FMR0 register to "1" and setting the FMR16 bit in the FMR1 register to "1". Block 2 to 3 are enabled to rewrite by setting the FMR16 bit in the FMR1 register to "1".

17.4.1 EW0 Mode

The microcomputer enters CPU rewrite mode by setting the FMR01 bit in the FMR0 register to "1" (CPU rewrite mode enabled) and is ready to acknowledge the software commands. EW0 mode is selected by setting the FMR11 bit in the FMR1 register to "0".

When setting the FMR01 bit to "1", set to "1" after first writing "0". The software commands control programming and erasing. The FMR0 register or the status register indicates whether a programming or erasing operations is completed.

When entering the erase-suspend during the auto-erasing, set the FMR40 bit to "1" (erase-suspend enabled) and the FMR41 bit to "1" (suspend request). And wait for td(SR-ES). After verifying the FMR46 bit is set to "1" (auto-erase stop), access to the user ROM area. When setting the FMR41 bit to "0" (erase restart), auto-erasing is restarted.

17.4.2 EW1 Mode

EW1 mode is selected by setting the FMR11 bit to "1" after the FMR01 bit is set to "1". (set to "1" after first writing "0"). The FMR0 register indicates whether or not a programming or an erasing operation is completed. Do not execute the software commands of read status register in EW1 mode.

When an erase/program operation is initiated the CPU halts all program execution until the operation is completed or erase-suspend is requested.

When enabling an erase suspend function, set the FMR40 bit to "1" (erase suspend enabled) and execute block erase commands. Also, preliminarily set an interrupt to enter the erase-suspend to an interrupt enabled status. After td(SR-ES) from an interrupt request and entering erase suspend, an interrupt can be acknowledged.

When an interrupt request is generated, the FMR41 bit is automatically set to "1" (suspend request) and an auto-erasing is halted. If an auto-erasing is not completed (the FMR00 bit is "0") after an interrupt process completed, set the FMR41 bit to "0" (erase restart) and execute block erase commands again.

17.5 Register Description

Figure 17.5.1 shows the flash memory control register 0 and flash memory control register 1. Figure 17.5.2 shows the flash memory control register 4.

17.5.1 Flash memory control register 0 (FMR0)

•FMR 00 Bit

This bit indicates the operation status of the flash memory. The bit is "0" during programming, erasing, or erase-suspend mode; otherwise, the bit is "1".

•FMR01 Bit

The microcomputer enables to acknowledge commands by setting the FMR01 bit to "1" (CPU rewrite mode). To set this bit to "1", it is necessary to set to "1" after first setting to "0". Set this bit to "0" by only writing "0".

•FMR02 Bit

The combined setting of the FMR02 bit and the FMR16 bit enable to program and erase in the user ROM area. See Table 17.5.2.1 for setting details. To set this bit to "1", it is necessary to set to "1" after first setting to "0". Set this bit to "0" by only writing "0". This bit is enabled only when the FMR01 bit is "1" (CPU rewrite mode enable).

•FMSTP Bit

This bit resets the flash memory control circuits and minimizes power consumption in the flash memory. Access to the flash memory is disabled when the FMSTP bit is set to "1". Set the FMSTP bit by a program in a space other than the flash memory.

Set the FMSTP bit to "1" if one of the following occurs:

- •A flash memory access error occurs during erasing or programming in EW0 mode (FMR00 bit does not switch back to "1" (ready)).
- •Low-power consumption mode or on-chip oscillator low-power consumption mode is entered.

Figure 17.5.1.3 shows a flow chart illustrating how to start and stop the flash memory before and after entering low power mode. Follow the procedure on this flow chart.

When entering stop or wait mode, the flash memory is automatically turned off. When exiting stop or wait mode, the flash memory is turned back on. The FMR0 register does not need to be set.

•FMR06 Bit

This is a read-only bit indicating an auto-program operation status. This bit is set to "1" when a program error occurs; otherwise, it is set to "0". For details, refer to **17.8.4 Full Status Check**.

•FMR07 Bit

This is a read-only bit indicating an auto-erase operation status. The bit is set to "1" when an erase error occurs; otherwise, it is set to "0". For details, refer to **17.8.4 Full Status Check**.

Figure 17.5.1.1 shows a EW0 mode set/reset flowchart, figure 17.5.1.2 shows a EW1 mode set/reset flowchart.

17.5.2 Flash memory control register 1 (FMR1)

•FMR11 Bit

EW1 mode is entered by setting the FMR11 bit to "1" (EW1 mode). This bit is enabled only when the FMR01 bit is "1".

•FMR16 Bit

The combined setting of the FMR02 bit and the FMR16 bit enables to program and erase in the user ROM area. To set this bit to "1", it is necessary to set to "1" after first setting to "0". Set this bit to "0" by only writing "0". This bit is enabled only when the FMR01 bit is "1".

•FMR17 Bit

If FMR17 bit is "1" (with wait state), regardless of the content of the PM17 bit, 1 wait is inserted at the access to block A and block B. Regardless of the content of the FMR17 bit, access to other block and the internal RAM is determined by PM17 bit setting.

Set this bit to "1" (with wait state) when rewriting more than 100 times (Option).

Table 17.5.2.1. Protection using FMR16 and FMR02

FMR16	FMR02	Block A, Block B	Block 0, Block 1	other user block
0	0	write enabled	write disabled	write disabled
0	1	write enabled	write disabled	write disabled
1	0	write enabled	write disabled	write enabled
1	1	write enabled	write enabled	write enabled

17.5.3 Flash memory control register 4 (FMR4)

•FMR40 Bit

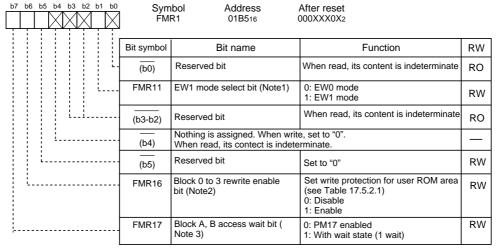
The erase-suspend function is enabled by setting the FMR40 bit is set to "1" (enabled).

•FMR41 Bit

When setting the FMR41 bit to "1" in a program during auto-erasing in EW0 mode the flash module enters erase suspend mode. In EW1 mode, the FMR41 bit is automatically set to "1" (suspend request) when an interrupt request of an enabled interrupt is generated, the FMR41 bit is automatically set to "1" (suspend request) and when an auto-erasing operation is restarted, set the FMR41 bit to "0" (erase restart).

•FMR46 Bit

The FMR46 bit is set to "0" during auto-erasing execution and set to "1" during erase-suspend mode. Do not access to flash memory while this bit is "0".



7 b6 b5 b 0 C	\neg	3	b2	b1	b0	Sym FM		After reset 000000012	
			-	-	:	Bit symbol	Bit name	Function	RW
					Ĺ.	FMR00	RY/BY status flag	0: Busy (during writing or erasing) 1: Ready	RC
				į.		FMR01	CPU rewrite mode select bit (Note1)	Disables CPU rewrite mode (Disables software command) Enables CPU rewrite mode (Enables software commands)	RW
			<u>.</u>			FMR02	Block 0, 1 rewrite enable bit (Note 2)	Set write protection for user ROM area (see Table 17.5.2.1)	RW
						FMSTP	Flash memory stop bit (Note 3, 5)	Starts flash memory operation Stops flash memory operation (Enters low-power consumption state and flash memory reset)	RW
						(b5-b4)	Reserved bit	Set to "0"	RW
<u> </u>						FMR06	Program status flag (Note 4)	0: Terminated normally 1: Terminated in error	RC
						FMR07	Erase status flag (Note 4)	0: Terminated normally 1: Terminated in error	RC

- Note 1: When setting this bit to "1", set to "1" immdediately after setting it first to "0". Do not generate an interrupt or a DMA transfer between setting the bit to "0" and setting it to "1". Set this bit while the P85/NMI/SD pin is "H" when selecting the NMI function. Set by program in a space other than the flash memory in EW0 mode. Set this bit to read alley mode and "0"
- Note 2: Set this bit to "1" immediately after setting it first to "0" while the FMR01 bit is set to "1". Do not generate an interrupt or a DMA transfer between setting this bit to "0" and setting it to "1".
- Note 3: Set this bit by a program in a space other than the flash memory.
- Note 4: This bit is set to "0" by executing the clear status command.

 Note 5: This bit is enabled when the FMR01 bit is set to "1" (CPU rewrite mode). This bit can be set to "1" when the FMR01 bit is set to "0". However, the flash memory does not enter low-power consumption status and it is not initialized.

Flash memory control register 1

- Note 1: Set this bit to "1" immediately after setting it first to "0". Do not generate an interrupt or a DMA transfer between setting the bit to "0" and setting it to "1". Set this bit while the P85/NMI/SD pin is "H" when the NMI function is selected. If the FMR01 bit is set to "0", the FMR01 bit and FMR11 bit are both set to "0"
- Note 2: Set this bit to "1" immediately after setting it first to "0". Do not generate an interrupt or a DMA transfer after setting to "0"
- Note 3: When rewriting more than 100 times, set this bit to "1" (with wait state). When the FMR17 bit is "1" (with wait state), regardless of the content of the PM17 bit, 1 wait is inserted at the access to the block A and B. Regardless of the content of the FMR17 bit, access to other block and the internal RAM is determined be PM17 bit setting.

Figure 17.5.1. FMR0 and FMR1 register

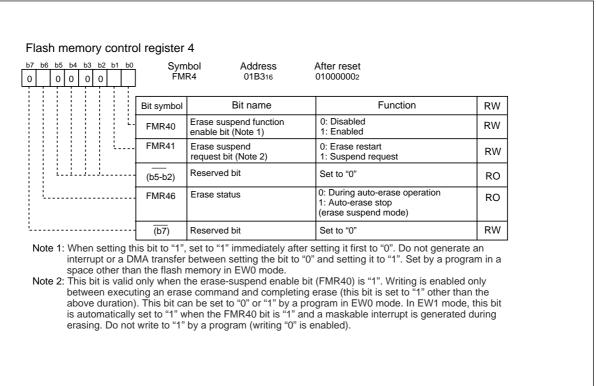


Figure 17.5.2. FMR4 register

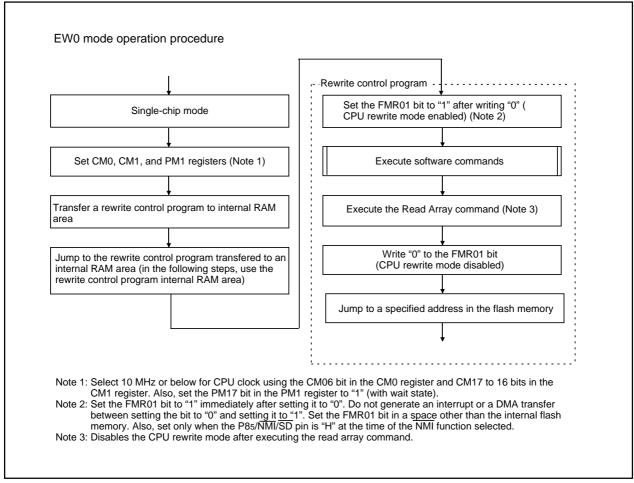
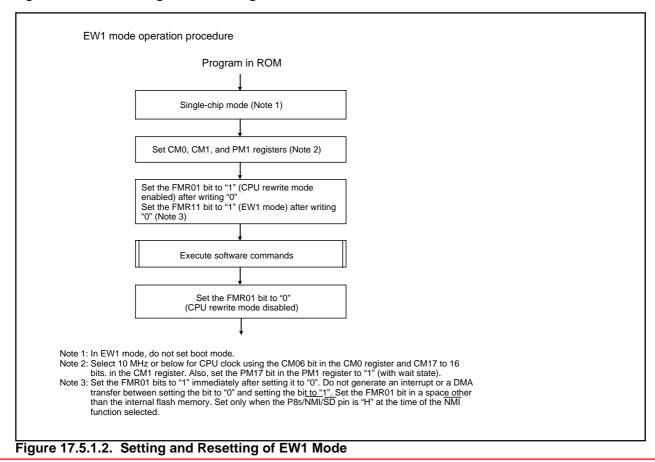



Figure 17.5.1.1. Setting and Resetting of EW0 Mode

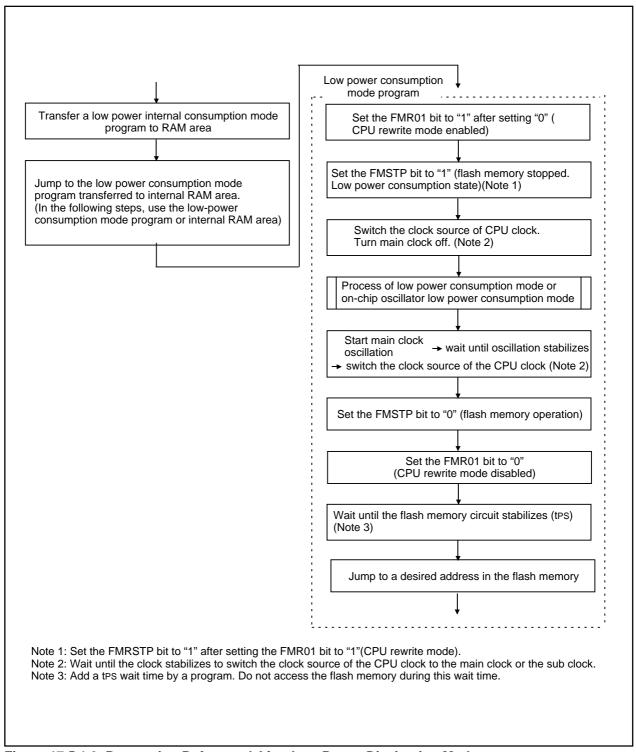


Figure 17.5.1.3. Processing Before and After Low Power Dissipation Mode

17.6 Precautions in CPU Rewrite Mode

Described below are the precautions to be observed when rewriting the flash memory in CPU rewrite mode.

17.6.1 Operation Speed

When CPU clock source is the main clock, before entering CPU rewrite mode (EW0 or EW1 mode), select 10 MHz or below for CPU clock using the CM06 bit in the CM0 register and the CM17 to CM16 bits in the CM1 register. Also, when selecting f3(ROC) of a on-chip oscillator as a CPU clock source, before entering CPU rewrite mode (EW0 or EW1 mode), the ROCR3 to ROCR2 bits in the ROCR register set the CPU clock division rate to "divide-by-4" or "divide-by-8".

On both cases, set the PM17 bit in the PM1 register to "1" (with wait state).

17.6.2 Prohibited Instructions

The following instructions cannot be used in EW0 mode because the CPU tries to read data in the flash memory: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

17.6.3 Interrupts

EW0 Mode

- To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.
- The NMI and watchdog timer interrupts can be used since the FMR0 and FMR1 registers are forcibly reset when either interrupt is generated. However, the jump addresses for each interrupt service routines to the fixed vector table are set and interrupt programs are required. Flash memory rewrite operation is halted when the NMI or watchdog timer interrupt is generated. Set the FMR01 bit to "1" and execute the rewrite and erase program again after exiting the interrupt routine.
- The address match interrupt can not be used since the CPU tries to read data in the flash memory. EW1 Mode
 - Do not acknowledge any interrupts with vectors in the relocatable vector table or the address match interrupt during the auto-program or erase-suspend function.

17.6.4 How to Access

To set the FMR01, FMR02, FMR11 or FMR16 bit to "1", write "1" after first setting the bit to "0". Do not generate an interrupt or a DMA transfer between the instruction to set the bit to "0" and the instruction to set it to "1". When the $\overline{\text{NMI}}$ function is selected, set the bit while an "H" signal is applied to the P85/ $\overline{\text{NMI/SD}}$ pin.

17.6.5 Writing in the User ROM Space

17.6.5.1 EW0 Mode

• If the supply voltage drops while rewriting the block where the rewrite control program is stored, the flash memory can not be rewritten, because the rewrite control program is not correctly rewritten. If this error occurs, rewrite the user ROM area in standard serial I/O mode or parallel I/O mode.

17.6.5.2 EW1 Mode

• Do not rewrite the block where the rewrite control program is stored.

17.6.6 DMA Transfer

In EW1 mode, do not perform a DMA transfer while the FMR00 bit in the FMR0 register is set to "0". (the auto-programming or auto-erasing duration).

17.6.7 Writing Command and Data

Write the command code and data to even addresses in the user ROM area.

17.6.8 Wait Mode

When entering wait mode, set the FMR01 bit to "0" (CPU rewrite mode disabled) before executing the WAIT instruction.

17.6.9 Stop Mode

When entering stop mode, set the FMR01 bit to "0" (CPU rewrite mode disabled) and disable the DMA transfer before setting the CM10 bit to "1" (stop mode).

17.6.10 Low Power Consumption Mode and On-chip Oscillator-Low Power Consumption Mode

If the CM05 bit is set to "1" (main clock stopped), do not execute the following commands.

- Program
- Block erase

17.7 Software Commands

Read or write 16-bit commands and data from or to even addresses in the user ROM area. When writing a command code, 8 high-order bits (D15–D8) are ignored.

Table 17.7.1. Software Commands

		First bus cycle	е	Second bus cycle			
Command	Mode	Address	Data (D ₁₅ to D ₀)	Mode	Address	Data (D ₁₅ to D ₀)	
Read array	Write	Х	xxFF16				
Read status register	Write	Х	xx7016	Read	Х	SRD	
Clear status register	Write	Х	xx5016				
Program	Write	WA	xx4016	Write	WA	WD	
Block erase	Write	Х	xx2016	Write	BA	xxD016	

SRD: Status register data (D7 to D0)

WA: Write address (However, even address)

WD: Write data (16 bits)

BA: Highest-order block address (However, even address)

X : Any even address in the user ROM area xx : 8 high-order bits of command code (ignored)

17.7.1 Read Array Command (FF16)

This command reads the flash memory.

By writing command code 'xxFF16' in the first bus cycle, read array mode is entered. Content of a specified address can be read in 16-bit unit after the next bus cycle. The microcomputer remains in read array mode until an another command is written. Therefore, contents of multiple addresses can be read consecutively.

17.7.2 Read Status Register Command (7016)

This command reads the status register.

By writing command code 'xx7016' in the first bus cycle, the status register can be read in the second bus cycle (Refer to **17.8 Status Register**). Read an even address in the user ROM area. Do not execute this command in EW1 mode.

17.7.3 Clear Status Register Command (5016)

This command clears the status register to "0".

By writing 'xx5016' in the first bus cycle, and the FMR06 to FMR07 bits in the FMR0 register and SR4 to SR5 bits in the status register are set to "0".

17.7.4 Program Command (4016)

The program command writes 2-byte data to the flash memory. By writing 'xx4016' in the first bus cycle and data to the write address specified in the second bus cycle, the auto-programming/erasing (data prorgramming and verify) start. Set the address value specified in the first bus cycle to same and even address as the write address specified in the second bus cycle. The FMR00 bit in the FMR0 register indicates whether an auto-programming operation has been completed. The FMR00 bit is set to "0" during the auto-programming and "1" when the auto-programming operation is completed. After the auto-programming operation is completed, the FMR06 bit in the FMR0 register indicates whether or not the auto-programming operation has been completed as expected. (Refer to 17.8.4 Full Status Check). Also, each block disables writing (Refer to "Table 17.5.2.1"). Do not write additions to the address which is already programmed. When commands other than a program command are executed immediately after a program command, set the same address as the write address specified in the second bus cycle of the program command, to the specified address value in the first bus cycle of the following command. In EW1 mode, do not execute this command on the blocks where the rewrite control program is allocated. In EW0 mode, the microcomputer enters read status register mode as soon as the auto-programming operation starts and the status register can be read. The SR7 bit in the status register is set to "0" as soon as the auto-programming operation starts. This bit is set to "1" when the auto-programming operation is completed. The microcomputer remains in read status register mode until the read array command is written. After completion of the auto-programming operation, the status register indicates whether or not the auto-programming operation has been completed as expected.

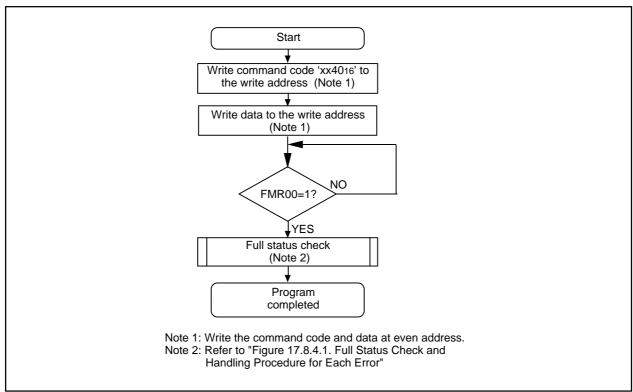


Figure 17.7.4.1. Flow Chart of Program Command

17.7.5 Block Erase

By writing 'xx2016' in the first bus cycle and 'xxD016' in the second bus cycle to the highest-order (even addresse of a block) and the auto-programming/erasing (erase and erase verify) start. The FMR00 bit in the FMR0 register indicates whether the auto-programming operation has been completed. The FMR00 bit is set to "0" during the auto-erasing operation and "1" when the auto-erasing operation is completed. When using the erase-suspend function in EW0 mode, the FMR46 bit in the FMR4 register indicates whether a flash memory has entered erase-suspend mode. The FMR46 bit is set to "0" during auto-erasing operation and "1" when the auto-erasing operation is completed (entering erasesuspend). After the completion of an auto-erasing operation, the FMR07 bit in the FMR0 register indicates whether or not the auto erasing-operation has been completed as expected. (Refer to 17.8.4 Full Status Check). Also, each block disables erasing. (Refer to "Table 17.5.2.1"). Figure 17.7.5.1 shows a flow chart of the block erase command programming when not using the erase-suspend function. Figure 17.7.5.2 shows a flow chart of the block erase command programming when using an erase-suspend function. In EW1 mode, do not execute this command on the block where the rewrite control program is allocated. In EW0 mode, the microcomputer enters read status register mode as soon as the auto-erasing operation starts and the status register can be read. The SR7 bit in the status register is set to "0" as soon as the auto-erasing operation starts. This bit is set to "1" when the autoerasing operation is completed. The microcomputer remains in read status register mode until the read array command is written. Also excute the clear status register command and block erase command at least 3 times until an erase error is not generated when an erase error is generated.

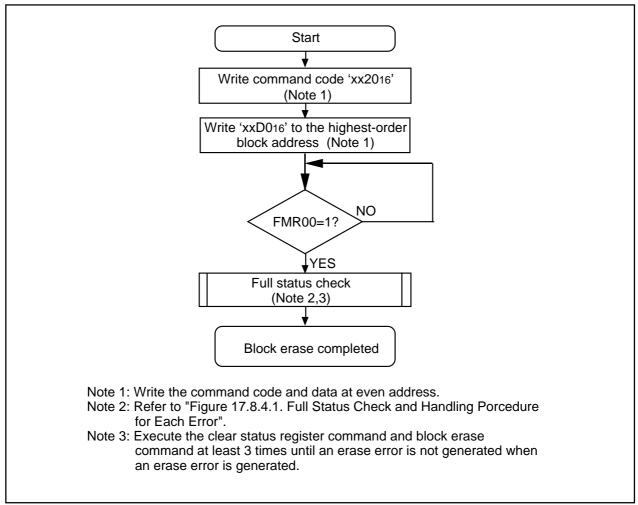


Figure 17.7.5.1. Flow Chart of Block Erase Command (when not using erase suspend function)

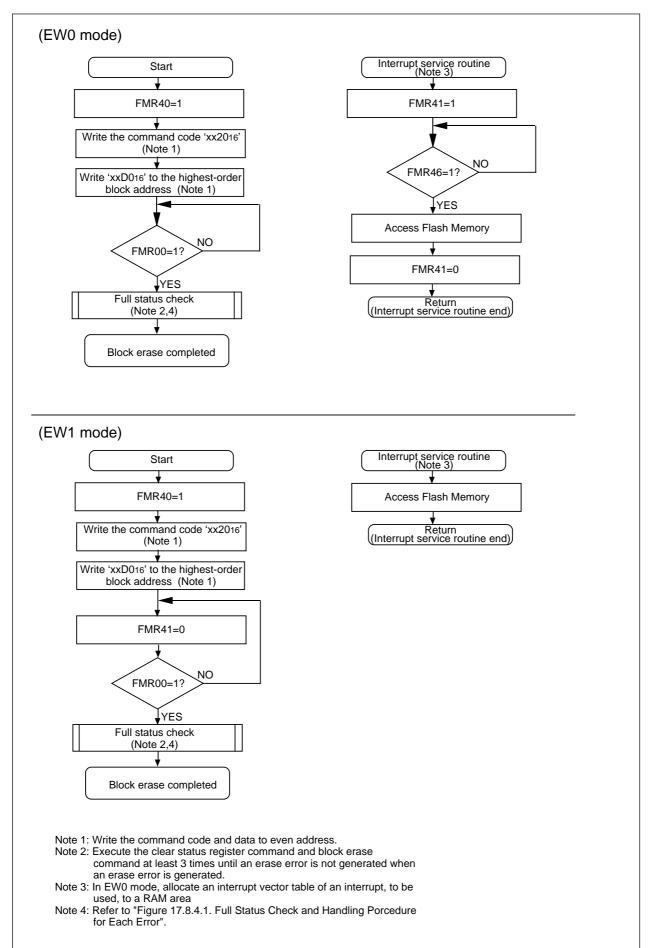


Figure 17.7.5.2. Block Erase Command (at use erase suspend)

17.8 Status Register

The status register indicates the operating status of the flash memory and whether an erasing or a programming operates normally and an error ends. The FMR00, FMR06, and FMR07 bits in the FMR0 register indicate the status of the status register.

Table 17.8.1 shows the status register.

In EW0 mode, the status register can be read in the following cases:

- (1) When a given even address in the user ROM area is read after writing the read status register command
- (2) When a given even address in the user ROM area is read after executing the program or block erase command but before executing the read a rray command.

17.8.1 Sequence Status (SR7 and FMR00 Bits)

The sequence status indicates the operating status of the flash memory. This bit is set to "0" (busy) during an auto-programming and auto-erasing and "1" (ready) as soon as these operations are completed. This bit indicates "0" (busy) in erase-suspend mode.

17.8.2 Erase Status (SR5 and FMR07 Bits)

Refer to 17.8.4 Full Status Check.

17.8.3 Program Status (SR4 and FMR06 Bits)

Refer to 17.8.4 Full Status Check.

Table 17.8.1. Status Registe	er
------------------------------	----

Bits in the	Bits in the SRD register FMR0 Status name register		Con	Value after	
SRD register			"0"	"1"	reset
SR7 (D7)	FMR00	Sequence status	Busy	Ready	1
SR6 (D6)		Reserved	-	-	
SR5 (D5)	FMR07	Erase status	Completed normally	Terminated by error	0
SR4 (D4)	FMR06	Program status	Completed normally	Terminated by error	0
SR3 (D3)		Reserved	-	-	
SR2 (D2)		Reserved	-	-	
SR1 (D1)		Reserved	-	-	
SR0 (D ₀)		Reserved	-	-	

- D7 to D0: Indicates the data bus which is read out when executing the read status register command.
- The FMR07 bit (SR5) and FMR06 bit (SR4) are set to "0" by executing the clear status register command.
- When the FMR07 bit (SR5) or FMR06 bit (SR4) is 1, the program, and block erase command are not acknowledged.

17.8.4 Full Status Check

When an error occurs, the FMR06 to FMR07 bits in the FMR0 register are set to "1", indicating occurrence of each specific error. Therefore, execution results can be verified by checking these status bits (full status check). Table 17.8.4.1 shows errors and the status of FMR0 register. Figure 17.8.4.1 shows a flow chart of the full status check and handling procedure for each error.

Table 17.8.4.1. Errors and FMR0 Register Status

FMR00	register		
(SRD register)			
sta	atus	Error	Error occurrence condition
FMR07 FMR06			
(SR5)	(SR4)		
1	1	Command	When any commands are not written correctly
		sequence error	A value other than 'xxD016' or 'xxFF16' is written in the second
			bus cycle of the block erase command (Note 1)
			When the block erase command is executed on protected blocks
			When the program command is executed on protected blocks
1	0	Erase error	When the block erase command is executed on unprotected
			blocks but the blocks are not automatically erased correctly
0	1	Program error	When the program command is executed on unprotected blocks
			but the blocks are not automatically programmed correctly.

Note 1: The flash memory enters read array mode by writing command code 'xxFF16' in the second bus cycle of these commands. The command code written in the first bus cycle becomes invalid.

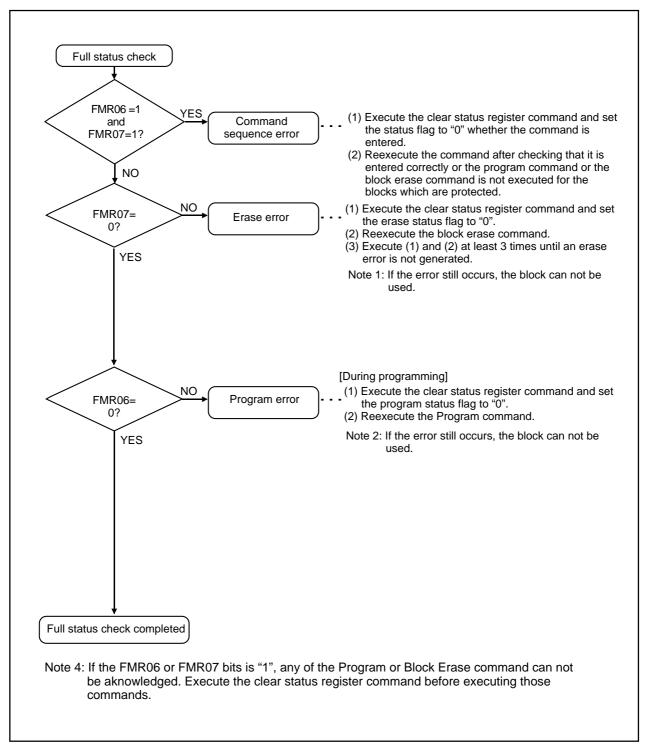


Figure 17.8.4.1. Full Status Check and Handling Procedure for Each Error

17.9 Standard Serial I/O Mode

In standard serial input/output mode, the user ROM area can be rewritten while the microcomputer is mounted on-board by using a serial programmer which is applicable for the M16C/26A group. For more information about serial programmers, contact the manufacturer of your serial programmer. For details on how to use the serial programmer, refer to the user's manual included with your serial programmer. Table 17.9.1 shows pin functions (flash memory standard serial input/output mode). Figures 17.9.1 and 17.9.2 show pin connections for standard serial input/output mode.

17.9.1 ID Code Check Function

This function determines whether the ID codes sent from the serial programmer and those written in the flash memory match. (Refer to 17.3 Functions To Prevent Flash Memory from Rewriting.)

Table 17.9.1. Pin Functions (Flash Memory Standard Serial I/O Mode)

Pin	Name	I/O	Description
Vcc,Vss	Power input		Apply the voltage guaranteed for Program and Erase to Vcc pin and 0 V to Vss pin.
CNVss	CNVss	I	Connect to Vcc pin.
RESET	Reset input	I	Reset input pin. While RESET pin is "L" level, wait for td(ROC).
XIN	Clock input	I	Connect a ceramic resonator or crystal oscillator between XIN and XOUT pins. To input an externally generated clock, input it to XIN pin
Xout	Clock output	0	and open XOUT pin.
AVcc, AVss	Analog power supply input		Connect AVss to Vss and AVcc to Vcc, respectively.
VREF	Reference voltage input	I	Enter the reference voltage for AD from this pin.
P15, P17	Input port P1	ı	Input "H" or "L" level signal or open.
P16	P16 input	I	Connect this pin to Vcc while RESET is low. (Note 2)
P60 to P63	Input port P6	ı	Input "H" or "L" level signal or open.
P64	BUSY output	0	Standard serial I/O mode 1: BUSY signal output pin Standard serial I/O mode 2: Monitor signal output pin for boot program operation check
P65	SCLK input	I	Standard serial I/O mode 1: Serial clock input pin Standard serial I/O mode 2: Input "L".
P66	RxD input	I	Serial data input pin
P67	TxD output	0	Serial data output pin (Note 1)
P70 to P77	Input port P7	I	Input "H" or "L" level signal or open.
P80 to P84, P87	Input port P8	I	Input "H" or "L" level signal or open.
P85	RP input	I	Connect this pin to Vss while RESET is low. (Note 2)
P86	CE input	ı	Connect this pin to Vcc while RESET is low. (Note 2)
P90 to P93,	Input port P9	I	Input "H" or "L" level signal or open.
P100 to P107	Input port P10	ı	Input "H" or "L" level signal or open.

Note 1: When using standard serial input/output mode 1, to input "H" to the TxD pin is necessary while the RESET pin is "L". Therefore, connect this pin to Vcc via a resistor. Adjust the pull-up resistor value on a system not to affect a data transfer after reset, because this pin changes to a data-output pin

Note 2: Set following either or both

- •Connect the $\overline{\mathsf{CE}}$ pin to Vcc.
- •Connect the RP pin to Vss and the P16 pin to Vcc.

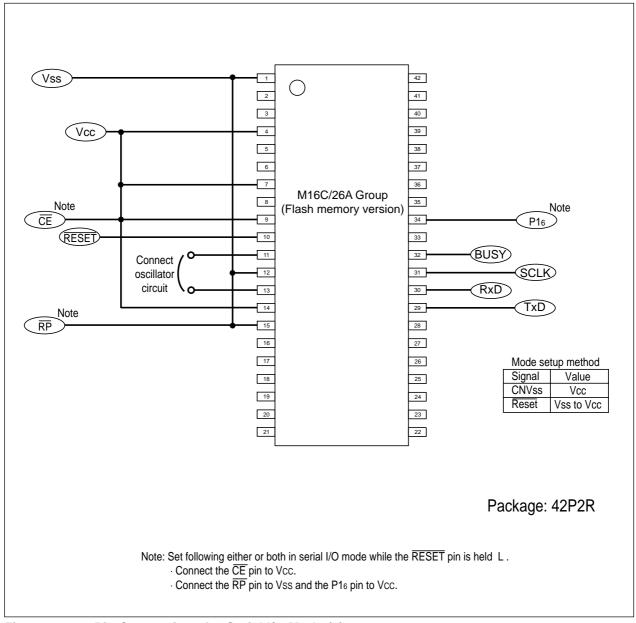


Figure 17.9.1. Pin Connections for Serial I/O Mode (1)

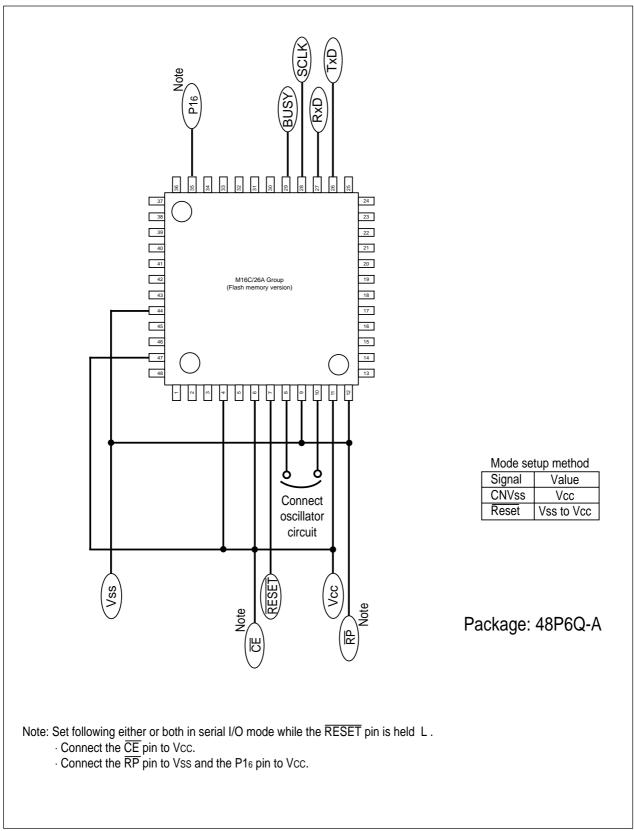


Figure 17.9.2. Pin Connections for Serial I/O Mode (2)

17.9.2 Example of Circuit Application in Standard Serial I/O Mode

Figure 17.9.2.1 shows an example of a circuit application in standard serial I/O mode 1 and Figure 17.9.2.2 shows an example of a circuit application in standard serial I/O mode 2. Refer to the user's manual for a serial writer to handle pins controlled by the serial writer.

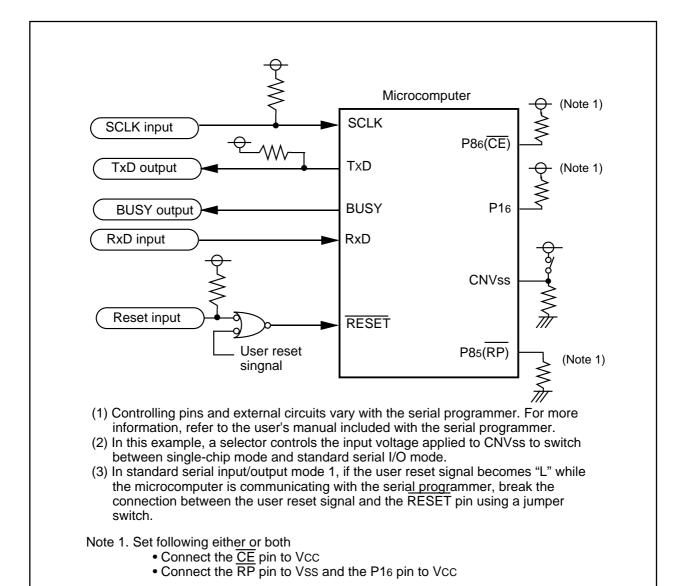


Figure 17.9.2.1. Circuit Application in Standard Serial I/O Mode 1

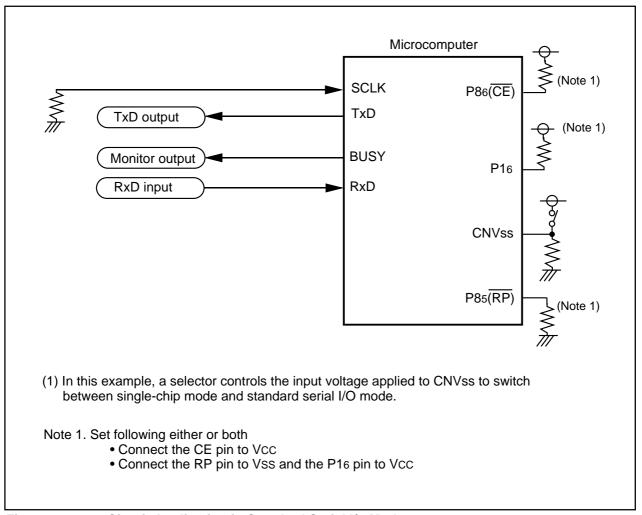


Figure 17.9.2.2. Circuit Application in Standard Serial I/o Mode 2

17.10 Parallel I/O Mode

In parallel input/output mode, the user ROM can be rewritten using a parallel programmer which is applicable for the M16C/26A group. For more information about the parallel programmer, contact your parallel programmer manufacturer. For details on how to use the parallel programmer, refer to the user's manual of the parallel programmer.

17.10.1 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read or rewritten. (Refer to 17.3 Function to Prevent Flash Memory from Rewriting.)

18. Electrical Characteristics

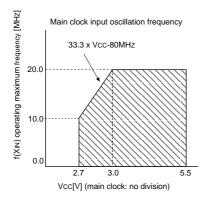
Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for electrical characteristics of V-ver.

18.1. Normal version

Table 18.1. Absolute Maximum Ratings

Symbol		Parameter		Condition	Rated value	Unit	
Vcc	Supply voltage	Supply voltage Vcc=AVcc			-0.3 to 6.5	V	
AVcc	Analog supply vo	oltage		Vcc=AVcc	-0.3 to 6.5	V	
Vı	Input voltage		to P67, P70 to P77, to P93, P100 to P107, ET, CNVss		-0.3 to Vcc+0.3	V	
Vo	Output voltage	1	to P67, P70 to P77, to P93, P100 to P107,		-0.3 to Vcc+0.3	V	
Pd	Power dissipatio	n		-40° C ≦Topr ≦85 °C	300	mW	
_	Operating ambient	When the Micro	computer is Operating		-20 to 85 / -40 to 85	°C	
Topr	tem perature		tem perature Flash Program Pro	Program Area (Block 0 to Block 3)		0 to 60	°C
			Program Area (Block A, Block B)		-20 to 85 / -40 to 85	င	
Tstg	Storage tempera	ture			-65 to 150	°C	

Table 18.2. Recommended Operating Conditions (Note 1)


Cura la a l	Davamatav		Llmit			
Symbol	Parameter	Min.	Typ.	Max.	Unit	
Vcc	Supply voltage		2.7		5.5	V
AVcc	Analog supply voltage			Vcc		V
Vss	Supply voltage			0		V
AVss	Analog supply voltage			0		V
VIH	HIGH input voltage P15 to P17, P60 to P67, P70 to P77, P100 to P107,	P80 to P87, P90 to P93,	0.7Vcc		Vcc	V
VIH	HIGH input		0.8Vcc		Vcc	V
VIL	LOW input voltage P15 to P17, P60 to P67, P70 to P77, I P100 to P107,	P80 to P87, P90 to P93,	0		0.3Vcc	V
VIL	LOW input voltage XIN, RESET, CNVss		0		0.2Vcc	V
I _{OH (peak)}	HIGH peak output current P15 to P17, P60 to P67, P70 to P77 P100 to P107	, P8 ₀ to P8 ₇ , P9 ₀ to P9 ₃ ,			-10.0	mA
I _{OH} (avg)	HIGH average P1s to P17, P60 to P67, P70 to P77 output current P100 to P107	, P80 to P87, P90 to P93,			-5.0	mA
I _{OL (peak)}	LOW peak output current P15 to P17, P60 to P67, P70 to P77 P100 to P107	, P80 to P87, P90 to P93,			10.0	mA
I _{OL (avg)}	LOW average P15 to P17, P60 to P67, P70 to P77 output current P100 to P107	, P80 to P87, P90 to P93,			5.0	mA
f (V)	Main clock input oscillation frequency	Vcc=3.0 to 5.5V	0		20	MHz
f (XIN)	(Note 3)	Vcc=2.7 to 3.0V	0		33 X Vcc-80	MHz
f (Xcin)	Sub-clock oscillation frequency	·		32.768	50	kHz
f1 (ROC)	On-chip oscillation frequency 1		0.5	1	2	MHz
f ₂ (ROC)	On-chip oscillation frequency 2		1	2	4	MHz
f3 (ROC)	On-chip oscillation frequency 3		8	16	26	MHz
f (PLL)	PLL clock oscillation frequency (Note 3) Vcc=3.0 to 5.5V		10		20	MHz
		Vcc=2.7 to 3.0V	10		33 X Vcc-80	MHz
f (BCLK)	CPU operation clock		0		20	MHz
Tsu(PLL)	PLL frequency synthesizer stabilization wait time	Vcc=5.0V			20	ms
	Vcc=3.0V				50	ms

Note 1: Referenced to Vcc = 2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C unless otherwise specified.

Note 2: The mean output current is the mean value within 100ms.

Note 3: Relationship between main clock oscillation frequency, PLL clock oscillation frequency and supply voltage are followed.

Note 4: The total IoL(peak) for all ports must be 80mA max. The total IoH(peak) for all ports must be -80mA max.

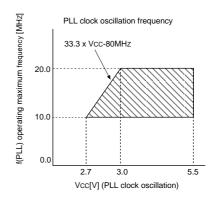


Table 18.3. A /D Conversion Characteristics (Note 1)

Cura la a l	Parameter		Management and a second state of	S	Standard			
Symbol			Measuring condition	Min.	Тур.	Max.	Unit	
_	Resolution		VREF =VCC			10	Bits	
	Integral non-	40.1.1	VREF =VCC=5V			±3	LSB	
INL	linearity	10 bit	VREF =VCC=3.3V			±5	LSB	
	error	8 bit	VREF = VCC=3.3V, 5V			±2	LSB	
	Absolute	40 54	VREF =VCC=5V			±3	LSB	
_	accuracy	10 bit	VREF =VCC=3.3V			±5	LSB	
		8 bit	VREF = VCC=3.3V, 5V			±2	LSB	
DNL	Differential no	n-linearity error				±1	LSB	
-	Offset error					±3	LSB	
_	Gain error					±3	LSB	
RLADDER	Ladder resista	ance	VREF=VCC	10		40	kΩ	
tconv	Conversion tir	ne(10bit),	VREF =Vcc=5V, ØAD=10MHz	3.3			μs	
	Sample & hold fu	unction available						
tconv	Conversion tir	me(8bit),	VREF =VCC=5V, ØAD=10MHz	2.8			μs	
	Sample & hold fo	unction available						
VREF	Reference vo	ltage		2.0		Vcc	V	
VIA	Analog input	oltage		0		VREF	V	

Note 1: Referenced to VCC=AVCC=VREF=3.3 to 5.5V, VSS=AVSS=0V at Topr = -20 to 85 °C / -40 to 85 °C unless otherwise specified.

Note 2: AD operation clock frequency (ØAD frequency) must be 10 MHz or less. And divide the fAD if VCC is less than 4.2V, and make ØAD frequency equal to or lower than fAD/2.

Note 3: A case without sample & hold function turn ØAD frequency into 250 kHz or more in addition to a limit of Note 2. A case with sample & hold function turn ØAD frequency into 1MHz or more in addition to a limit of Note 2.

Note 4: In a case with sample & hold function, the sampling time is 3ØAD. In a case without sample & hold function, the sampling time is 2ØAD.

Table 18.4. Flash Memory Version Electrical Characteristic (Note 1): Program Area for U3 and U5, Data Area for U7 and U9

Cumbal	Parameter			Standard		11. %
Symbol	Pai	Min.	Typ. (Note 2)	Max	Unit	
_	Erase/Write cycle (N	ote 3)	100/1000 (No	ote 4, 11)		cycle
_	Word program time (Vcc=5.0V, Topr=25°C)			75	600	μs
-	Block erase time	2Kbyte block		0.2	9	s
		8Kbyte block		0.4	9	s
		16Kbyte block		0.7	9	s
		32Kbyte block		1.2	9	s
td(SR-ES)	Time delay from Suspen	d Request until Erase Suspend			8	ms
tps	Flash Memory Circui	Flash Memory Circuit Stabilization Wait Time			15	μs
_	Data retention time (Note 5)	20			year

Table 18.5. Flash Memory Version Electrical Characteristics (Note 6): Data Area for U7 and U9 (Note 7)

Symbol	Parameter				
Symbol	i didiffetei	Min.	Typ. (Note 2)	Max	Unit
_	Erase/Write cycle (Note 3, 8, 9)	10000 (Note 4, 10)			cycle
_	Word program time (Vcc=5.0V, Topr=25°C)		100		μs
_	Block erase time(Vcc=5.0V, Topr=25°C)				
	(2Kbyte block)		0.3		s
td(SR-ES)	Time delay from Suspend Request until Erase Suspend			8	ms
tPS	Flash Memory Circuit Stabilization Wait Time			15	μs
_	Data retention time (Note 5)	20			year

Note 1: When not otherwise specified, Vcc = 2.7 to5.5V; Topr = 0 to 60 °C.

Note 2: VCC = 5V; Topr = $25 \,^{\circ}$ C.

Note 3: Program and Erase Endurance refers to the number of times a block erase can be performed. If the program and erase endurance is n (n=100, 1,000, 10,000), each block can be erased n times. For example, if a 2Kbytes block A is erased after writing 1 word data 1,024 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited)

Note 4: Maximum number of E/W cycles for which opration is guaranteed.

Note 5: Topr = 55°C

Note 6: When not otherwise specified, Vcc = 2.7 to 5.5V; Topr = -20 to $85^{\circ}C$ / -40 to $85^{\circ}C$ (Option).

Note 7: Table18.5 applies for Block A or B E/W cycles > 1000. Otherwise, use Table 18.4.

Note 8: To reduce the number of program and erase endurance when working with systems requiring numerous rewrites, write to unused word addresses within the block

instead of rewrite. Erase block only after all possible addresses are used. For example, an 8-word program can be written 256 times maximum before erase becomes necessary. Maintaining an equal number of erasure between block A and block B will also improve efficiency. It is important to track the total number of times erasure is used.

Note 9: Should erase error occur during block erase, attempt to execute clear status register command, then clock erase command at least three times until erase error disappears.

Note 10: When Block A or B E/W cycles exceed 100, select one wait state per block access. When FMR17 is set to "1", one wait state is inserted per access to Block A or B - regardless of the value of PM17. Wait state insertion during access to all other blocks, as well as to internal RAM, is controlled by PM17 - regardless of the setting of FMR17.

Note 11: The program area and the data area for U3 and U5 are 100 E/W cycles; the program area for U7 and U9 is 1,000 E/W cycles.

Note 12: Customers desiring E/W failure rate information should contact their Renesas technical support representative.

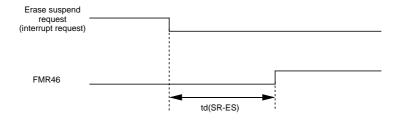


Table 18.6. Voltage Detection Circuit Electrical Characteristics (Note 1, Note 3)

Symbol	Parameter	Measuring condition		Linit		
Cymbol	r didinato.	eacag conamon	Min.	Тур.	Max.	Unit
Vdet4	Voltage down detection voltage (Note 1)		3.2	3.8	4.45	V
Vdet3	Reset level detection voltage (Notes 1, Note 3)	V 471-55V	2.3	2.8	3.4	V
Vdet3s	Low voltage reset retention voltage (Note 2)	Vcc=1.7 to 5.5V			1.7	V
Vdet3r	Low voltage reset release voltage		2.35	2.9	3.5	V

Note 1: Vdet4 > Vdet3

Note 2: Vdet3s is the min voltage at which "hardware reset 2" is maintained.

Note 3: The voltage detection circuit is designed to use when Vcc is set to 5V.

Note 4: When reset level detection voltage is 2.7V or below, operating with f(BCLK) ≤ 10MHz is guaranteed if the supply voltage is over the reset level detection voltage excluding A/D conversion accuracy, serial I/O and flash memory program and erase.

Table 18.7. Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring condition		T		
Cymbol	1 didineter	Wedsumg condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for internal power supply stabilization during powering-on	Vcc=2.7 to 5.5V			2	ms
td(ROC)	Time for internal on-chip oscillator stabilization during powering-on				40	μs
td(R-S)	STOP release time	VCC=2.7 to 5.5V			150	μs
td(W-S)	Low power dissipation mode wait mode release time				150	μs
td(S-R)	Hardware reset 2 release wait time	Vcc=Vdet3r to 5.5V		6 (Note 1)	20	ms
td(E-A)	Voltage detection circuit operation start time	Vcc=2.7 to 5.5V			20	μs

Note 1: When Vcc = 5V

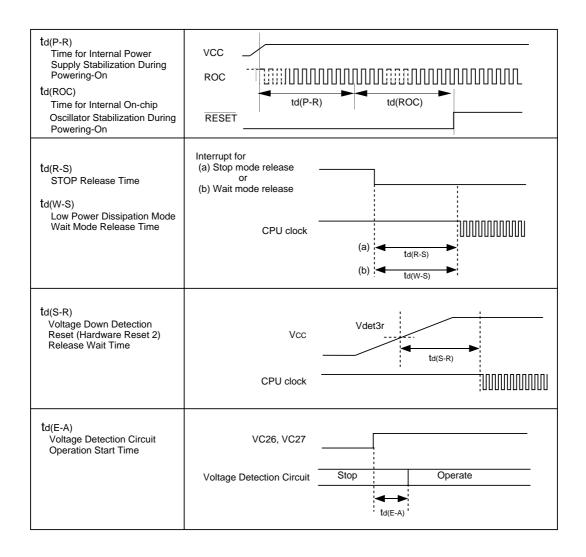


Table 18.8. Electrical Characteristics (Note 1)

Symbol	Paran	neter	Measuring condition		Standard		J
Cyllibol	1 didii		Wicasaring condition	Min.	Тур.	Max.	Unit
Vон	HIGH output P15 to P17, P60 to F voltage P100 to P107	P67, P70 to P77, P80 to P87, P90 to P93,	IoH=-5mA	Vcc-2.0		Vcc	V
Vон	HIGH output P15 to P17, P60 to F voltage P100 to P107	P67, P70 to P77, P80 to P87, P90 to P93,	Іон=-200µА	Vcc-0.3		Vcc	V
	HIGH output voltage Xout	HIGHPOWER	IOH=-1mA	Vcc-2.0		Vcc	V
Vон	HIGH output voltage 2001	LOWPOWER	Iон=-0.5mA	Vcc-2.0		Vcc	_ v
	HIGH output voltage Xcout	HIGHPOWER	With no load applied		2.5		V
	, ,	LOWPOWER	With no load applied		1.6		
VoL	LOW output voltage P15 to P17, P60 to F	P67, P70 to P77, P80 to P87, P90 to P93,	IoL=5mA			2.0	V
VoL	LOW output voltage P15 to P17, P60 to F	P67, P70 to P77, P80 to P87, P90 to P93,	IoL=200μA			0.45	V
Vol	LOW output voltage XOUT	HIGHPOWER	IoL=1mA			2.0	.,
VOL	LOW output voltage X _{OUT}	LOWPOWER	IoL=0.5mA			2.0	V
	LOW output voltage Xcout	HIGHPOWER	With no load applied		0		Τ.,
	LOWPOWER	With no load applied		0		V	
VT+-VT-	Hysteresis TA0IN to TA4IN, T INTo to INT5, NM ADTRG, CTSo to C CLKo to CLK2,TA Klo to Kl3, RXDo t	CTS2, 2оит to ТА4оит,		0.2		1.0	V
VT+-VT-	Hysteresis RESET			0.2		2.5	V
VT+-VT-	Hysteresis XIN			0.2		0.8	V
Іін	HIGH input current P15 to P17, P60 to F P100 to P107, XIN, RESET, CNVs	P67, P70 to P77, P80 to P87, P90 to P93,	Vi=5V			5.0	μA
lıL	LOW input current P15 to P17, P60 to F P100 to P107, XIN, RESET, CNVs	P67, P70 to P77, P80 to P87, P90 to P93,	Vi=0V			-5.0	μA
RPULLUP	Pull-up P15 to P17, P60 to F P100 to P107	P67, P70 to P77, P80 to P87, P90 to P93,	VI=0V	30	50	170	kΩ
RfXIN	Feedback resistance XIN				1.5		МΩ
RfXCIN	Feedback resistance XCIN				15		МΩ
VRAM	RAM retention voltage		At stop mode	2.0			V

Note 1: Referenced to VCC=4.2 to 5.5V, VSS=0V at Topr = -20 to 85 °C / -40 to 85 °C, f(BCLK)=20MHz unless otherwise specified.

Table 18.9. Electrical Characteristics (2) (Note 1)

Symbol	Parameter		N/	Measuring condition		Standard		
Symbol			Measuring condition		Min.	Тур.	Max.	Unit
		The output pins are open and other pins are Vss	Mask ROM	f(BCLK)=20MHz, Main clock, no division		12	17	mA
				On-chip oscillation f2 (ROC) selected, f(BCLK)=1MHz		1.5		mA
			Flash memory	f(BCLK)=20MHz, Main clock, no division		16	19	mA
				On-chip oscillation f2 (ROC) selected, f(BCLK)=1MHz		1		mA
			Flash memory Program	f(BCLK)=10MHz, Vcc=5.0V		11		mA
			Flash memory Erase	f(BCLK)=10MHz, Vcc=5.0V		12		mA
			Mask ROM	f(BCLK)=32kHz, Low power dissipation mode, ROM(Note 3)		25		μА
Icc	Power supply current (Vcc=4.0 to 5.5V)			On-chip oscillation f2 (ROC) selected, f(BCLK)=1MHz in wait mode (Note 5)		30		μА
			Flash memory	f(BCLK)=32kHz, Low power dissipation mode, RAM(Note 3)		25		μА
				f(BCLK)=32kHz Low power dissipation mode, Flash memory(Note 3)		450		μА
			On-chip oscillation, f2(ROC), f(BCLK)=1MHz, Wait mode(Note 5)		50		μА	
			Mask ROM or Flash memory	f(BCLK)=32kHz, Wait mode (Note 2), Oscillation capacity High		10		μА
				f(BCLK)=32kHz, Wait mode(Note 2), Oscillation capacity Low		3		μА
				Stop mode, Topr=25°C		0.8	3	μА
Idet4	Voltage down detection dissipa	ation current (Note 4)				0.7	4	μА
Idet3	Reset area detection dissipation	on current (Note 4)				1.2	8	μΑ

Note 1: Referenced to Vcc=4.2 to 5.5V, Vss=0V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN)=20MHz unless otherwise specified. Note 2: With one timer operated using fc32.

Note 3: This indicates the memory in which the program to be executed exists.

Note 4: Idet is dissipation current when the following bit is set to "1" (detection circuit enabled).

Idet4: VC27 bit in the VCR2 register
Idet3: VC26 bit in the VCR2 register

Note 5: With one timer operated.

Timing Requirements

(VCC = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 18.10. External Clock Input (XIN input)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc	External clock input cycle time	50		ns
tw(H)	External clock input HIGH pulse width	20		ns
tw(L)	External clock input LOW pulse width	20		ns
tr	External clock rise time		9	ns
tf	External clock fall time		9	ns

Timing Requirements

(VCC = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 18.11. Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Llait
		Min.	Max.	Unit
tc(TA)	TAil input cycle time	100		ns
tw(TAH)	TAin input HIGH pulse width	40		ns
tw(TAL)	TAin input LOW pulse width	40		ns

Table 18.12. Timer A Input (Gating Input in Timer Mode)

	Parameter	Standard		
Symbol		Min.	Max.	Unit
tc(TA)	TAin input cycle time	400		ns
tw(TAH)	TAin input HIGH pulse width	200		ns
tw(TAL)	TAin input LOW pulse width	200		ns

Table 18.13. Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Standard		Linit
		Min.	Max.	Unit
tc(TA)	TAin input cycle time	200		ns
tw(TAH)	TAin input HIGH pulse width	100		ns
tw(TAL)	TAil input LOW pulse width	100		ns

Table 18.14. Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Standard		Unit
Symbol		Min.	Max.	Offic
tw(TAH)	TAin input HIGH pulse width	100		ns
tw(TAL)	TAin input LOW pulse width	100		ns

Table 18.15. Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Standard		l lada
		Min.	Max.	Unit
tc(UP)	TAiout input cycle time	2000		ns
tw(UPH)	TAio∪⊤ input HIGH pulse width	1000		ns
tw(UPL)	TAiout input LOW pulse width	1000		ns
tsu(UP-TIN)	TAiout input setup time	400		ns
th(TIN-UP)	TAiout input hold time	400		ns

Table 18.16. Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Table 10.10.	Time A input (1 wo-phase 1 alse input in Event Counter Moe	1C)		
Cy yearla al	Parameter	Standard		l lmi4
Symbol		Min.	Max.	Unit
tc(TA)	TAin input cycle time	800		ns
tsu(TAIN-TAOUT)	TAiout input setup time	200		ns
tsu(TAOUT-TAIN)	TAin input setup time	200		ns

Timing Requirements

(VCC = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 18.17. Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		l loit
		Min.	Max.	Unit
tc(TB)	ТВім input cycle time (counted on one edge)	100		ns
tw(TBH)	TBiin input HIGH pulse width (counted on one edge)	40		ns
tw(TBL)	TBiin input LOW pulse width (counted on one edge)	40		ns
tc(TB)	TBiin input cycle time (counted on both edges)	200		ns
tw(TBH)	ТВіім input HIGH pulse width (counted on both edges)	80		ns
tw(TBL)	TBiin input LOW pulse width (counted on both edges)	80		ns

Table 18.18. Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit
Symbol		Min.	Max.	Offic
tc(TB)	TBiin input cycle time	400		ns
tw(TBH)	TBiin input HIGH pulse width	200		ns
tw(TBL)	ТВім input LOW pulse width	200		ns

Table 18.19. Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard		Unit
Syllibol		Min.	Max.	Offic
tc(TB)	TBiin input cycle time	400		ns
tw(TBH)	TBiin input HIGH pulse width	200		ns
tw(TBL)	TBiin input LOW pulse width	200		ns

Table 18.20. A/D Trigger Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG input LOW pulse width	125		ns

Table 18.21. Serial I/O

Cumbal	Parameter	Standard		- Unit
Symbol	Falametei	Min.	Max.	Offic
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TxDi output delay time		80	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	70		ns
th(C-D)	RxDi input hold time	90		ns

Table 18.22. External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
Symbol	Symbol	Min.	Max.	Offic
tw(INH)	INTi input HIGH pulse width	250		ns
tw(INL)	INTi input LOW pulse width	250		ns

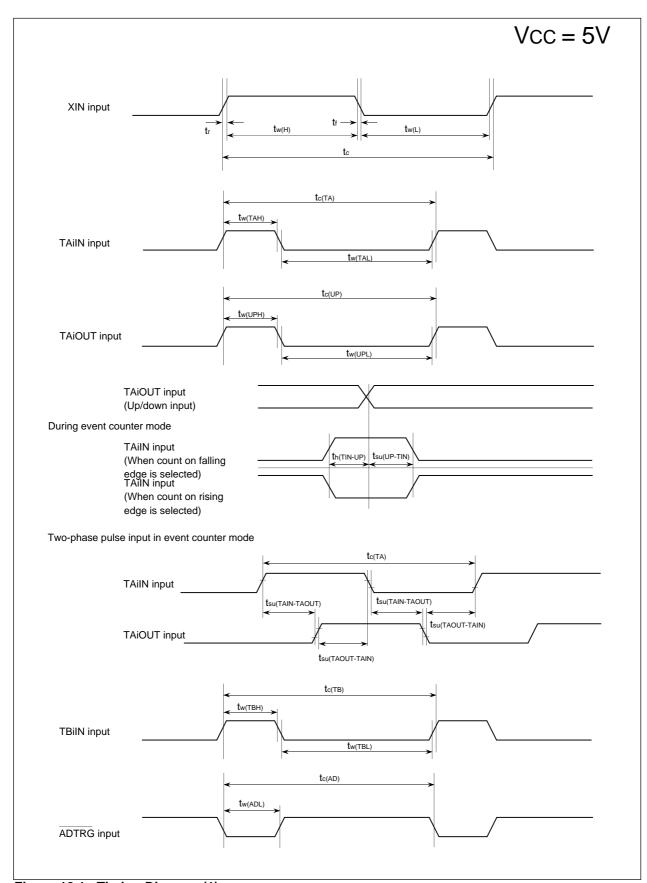


Figure 18.1. Timing Diagram (1)

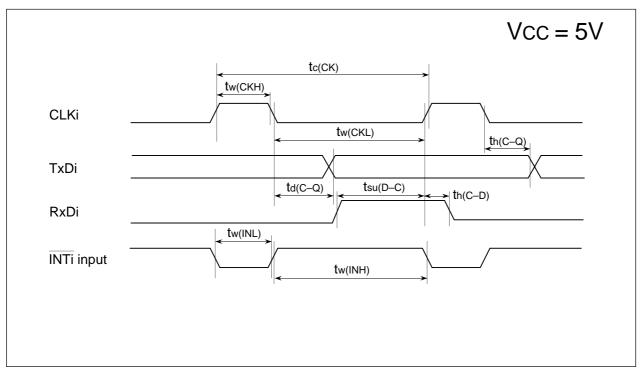


Figure 18.2. Timing Diagram (2)

Table 18.23. Electrical Characteristics (Note 1)

Symbol	Parameter		Measuring condition		Standard		
Symbol	raid	illetei	Weasuming condition	Min.	Тур.	Max.	Unit
Vон	HIGH output P15 to P17, P60 to Voltage P100 to P107	o P67, P70 to P77, P80 to P87, P90 to P93,	Iон=-1mA	Vcc-0.5		Vcc	V
	HIGH output voltage Xout	HIGHPOWER	Iон=-0.1mA	Vcc-0.5		Vcc	V
Vон	HIGH output voltage XCCI	LOWPOWER	Іон=-50μΑ	Vcc-0.5		Vcc	1 .
	HIGH output voltage Xcout	HIGHPOWER	With no load applied		2.5		V
	The state of the	LOWPOWER	With no load applied		1.6		1 '
VoL	LOW output P15 to P17, P60 to voltage P100 to P107	D P67, P70 to P77, P80 to P87, P90 to P93,	IoL=1mA			0.5	V
.,	LOW output voltage Xout	HIGHPOWER	IoL=0.1mA			0.5	T.,
Vol	LOW output voltage Xout	LOWPOWER	IoL=50μA			0.5	V
	LOW output voltage XCOUT	HIGHPOWER	With no load applied		0		T.,
	LOW dalpat voltage XCOOT	LOWPOWER	With no load applied		0		V
VT+-VT-	Hysteresis TA0In to TA4In, TINTo to INTs, NMI ADTRG, CTSo to CCLKo to CLK2, TA Klo to Kls, RxDo to	, CTS2, ,2оит to TA4оит,				0.8	V
VT+-VT-	Hysteresis RESET					1.8	V
VT+-VT-	Hysteresis XIN					0.8	٧
Іін	HIGH input current P15 to P17, P60 to P100 to P107 XIN, RESET, CNV	o P67, P70 to P77, P80 to P87, P90 to P93, //ss	VI=3V			4.0	μА
lıL	LOW input current P15 to P17, P60 to P100 to P107 XIN, RESET, CNV	o P67, P70 to P77, P80 to P87, P90 to P93, //ss	VI=0V			-4.0	μА
RPULLUP	Pull-up P15 to P17, P60 to P100 to P107	P67, P70 to P77, P80 to P87, P90 to P93,	VI=0V	50	100	500	kΩ
RfXIN	Feedback resistance XIN				3.0		ΜΩ
RfXCIN	Feedback resistance XCIN				25		МΩ
VRAM	RAM retention voltage		At stop mode	2.0			V

Note 1 : Referenced to Vcc=2.7 to 3.6V, Vss=0V at Topr = -20 to 85 °C / -40 to 85 °C, f(BCLK)=10MHz unless otherwise specified.

Table 18.24. Electrical Characteristics (2) (Note 1)

Symbol	Pa	rameter	N	leasuring condition	Min.	Standard Typ.	Max.	Unit
		The output pins are open and other pins are Vss	Mask ROM	f(BCLK)=10MHz, Main clock, no division		7	10	mA
				On-chip oscillation, f2(ROC) selected, f(BCLK)=1MHz		1		mA
			Flash memory	f(BCLK)=10MHz, Main clock, no division		7	12	mA
				On-chip oscillation, f2(ROC) selected, f(BCLK)=1MHz		1		mA
			Flash memory Program	f(BCLK)=10MHz, Vcc=3.0V		10		mA
Icc	Power supply current (Vcc=2.7 to 3.6V)		Flash memory Erase	f(BCLK)=10MHz, Vcc=3.0V		11		mA
	,		Mask ROM	f(BCLK)=32kHz, Low power dissipation mode, ROM(Note 3)		25		μА
				On-chip oscillation, f2(ROC) selected, f(BCLK)=1MHz in wait mode (Note 5)		25		μA
			Flash memory	f(BCLK)=32kHz, Low power dissipation mode, RAM(Note 3)		25		μA
				f(BCLK)=32kHz,				
				Low power dissipation mode, Flash memory(Note 3)		450		μA
				On-chip oscillation, f2(ROC) f(BCLK)=1MHz, Wait mode		45		μA
				f(BCLK)=32kHz, Wait mode (Note 2), Oscillation capacity High		10		μА
			Mask ROM or Flash memory	f(BCLK)=32kHz, Wait mode (Note 2), Oscillation capacity Low		3		μА
				Stop mode, Topr=25°C		0.7	3	μA
Idet4	Voltage down detection dissip	ation current (Note 4)				0.6	4	μA
Idet3	Reset level detection dissipati	on current (Note 4)				1	5	μA

Note 1: Referenced to Vcc=2.7 to 3.6V, Vss=0V at Topr = -20 to 85 °C / -40 to 85 °C, f(BCLK)=10MHz unless otherwise specified.

Note 2: With one timer operated using fc32.

Note 3: This indicates the memory in which the program to be executed exists.

Note 4: Idet is dissipation current when the following bit is set to "1" (detection circuit enabled).

Idet4: VC27 bit in the VCR2 register Idet3: VC26 bit in the VCR2 register

Note 5: With one timer operated.

Timing Requirements

(VCC = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 18.25. External Clock Input (XIN input)

Cumbal	mbol Parameter	Standard		Unit
Syllibol		Min.	Max.	Offic
tc	External clock input cycle time	100		ns
tw(H)	External clock input HIGH pulse width	40		ns
tw(L)	External clock input LOW pulse width	40		ns
tr	External clock rise time		18	ns
tf	External clock fall time		18	ns

Timing Requirements

(VCC = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 18.26. Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		
		Min.	Max.	Unit
tc(TA)	TAin input cycle time	150		ns
tw(TAH)	TAin input HIGH pulse width	60		ns
tw(TAL)	TAin input LOW pulse width	60		ns

Table 18.27. Timer A Input (Gating Input in Timer Mode)

	<u> </u>	Standard		
Symbol	Symbol Parameter		Max.	Unit
tc(TA)	TAin input cycle time	600		ns
tw(TAH)	TAin input HIGH pulse width	300		ns
tw(TAL)	TAin input LOW pulse width	300		ns

Table 18.28. Timer A Input (External Trigger Input in One-shot Timer Mode)

Cumbal	Symbol Parameter	Standard		Unit
Symbol		Min.	Max.	Offic
tc(TA)	TAil input cycle time	300		ns
tw(TAH)	TAin input HIGH pulse width	150		ns
tw(TAL)	TAin input LOW pulse width	150		ns

Table 18.29. Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol Paramet	Davanatas	Standard		Lloit
	Parameter	Min.	Max.	Unit
tw(TAH)	TAiın input HIGH pulse width	150		ns
tw(TAL)	TAin input LOW pulse width	150		ns

Table 18.30. Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Coursells ad	Parameter	Standard		1.1
Symbol		Min.	Max.	Unit
tc(UP)	TAiout input cycle time	3000		ns
tw(UPH)	TAiout input HIGH pulse width	1500		ns
tw(UPL)	TAiout input LOW pulse width	1500		ns
tsu(UP-TIN)	TAiout input setup time	600		ns
th(TIN-UP)	TAiout input hold time	600		ns

Table 18.31. Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Standard		1.1
		Min.	Max.	Unit
tc(TA)	TAin input cycle time	2		μs
tsu(TAIN-TAOUT)	TAiout input setup time	500		ns
tsu(TAOUT-TAIN)	TAin input setup time	500		ns

Timing Requirements

(VCC = 3V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 18.32. Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Linit
		Min.	Max.	Unit
tc(TB)	TBin input cycle time (counted on one edge)	150		ns
tw(TBH)	TBiin input HIGH pulse width (counted on one edge)	60		ns
tw(TBL)	TBiin input LOW pulse width (counted on one edge)	60		ns
tc(TB)	TBiin input cycle time (counted on both edges)	300		ns
tw(TBH)	TBiin input HIGH pulse width (counted on both edges)	120		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	120		ns

Table 18.33. Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Uill
tc(TB)	TBiin input cycle time	600		ns
tw(TBH)	TBiin input HIGH pulse width	300		ns
tw(TBL)	TBiin input LOW pulse width	300		ns

Table 18.34. Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	Standard	
		Min.	Max.	Unit
tc(TB)	TBilN input cycle time	600		ns
tw(TBH)	TBin input HIGH pulse width	300		ns
tw(TBL)	ТВіім input LOW pulse width	300		ns

Table 18.35. A/D Trigger Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc(AD)	ADTRG input cycle time (trigger able minimum)	1500		ns
tw(ADL)	ADTRG input LOW pulse width	200		ns

Table 18.36. Serial I/O

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc(CK)	CLKi input cycle time	300		ns
tw(CKH)	CLKi input HIGH pulse width	150		ns
tw(CKL)	CLKi input LOW pulse width	150		ns
td(C-Q)	TxDi output delay time		160	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	100		ns
th(C-D)	RxDi input hold time	90		ns

Table 18.37. External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	O III
tw(INH)	INTi input HIGH pulse width	380		ns
tw(INL)	INTi input LOW pulse width	380		ns

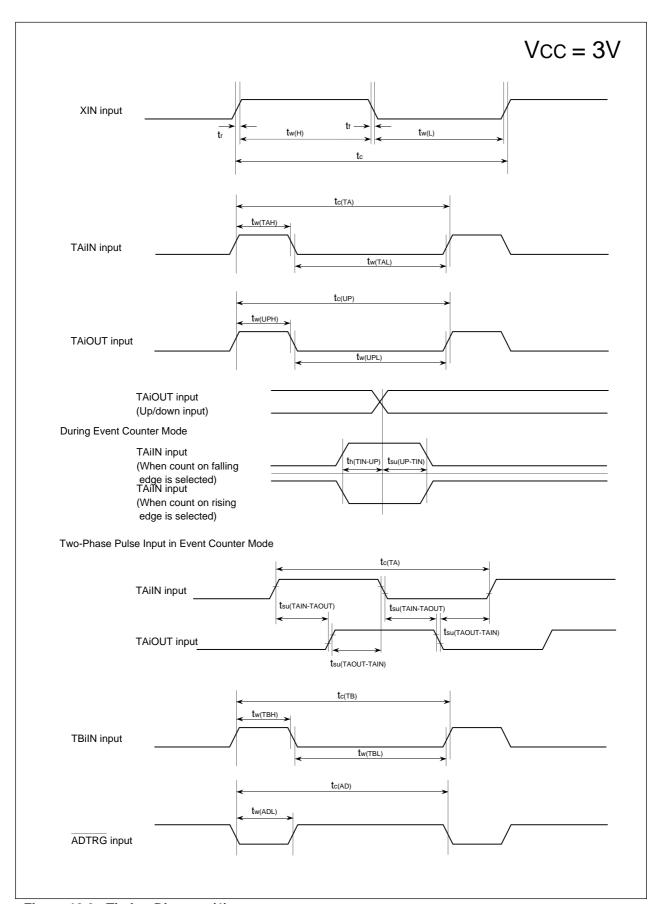


Figure 18.3. Timing Diagram (1)

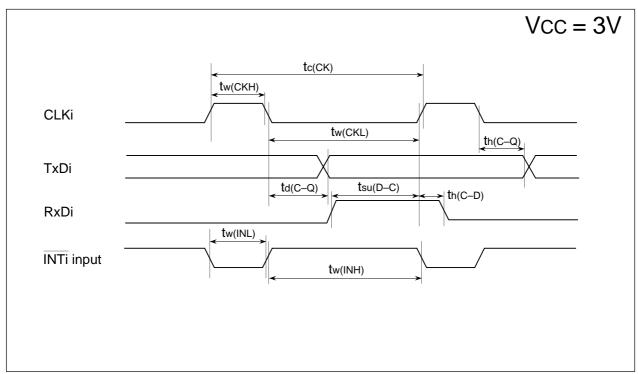


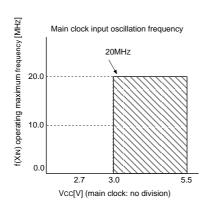
Figure 18.4. Timing Diagram (2)

18.2. T version

Table 18.38. Absolute Maximum Ratings

Symbol		Parameter		Condition	Rated value	Unit
Vcc	Supply voltage			Vcc=AVcc	-0.3 to 6.5	V
AVcc	Analog supply vo	oltage		Vcc=AVcc	-0.3 to 6.5	V
Vı	Input voltage	1	to P67, P70 to P77, to P93, P100 to P107, ET, CNVss		-0.3 to Vcc+0.3	V
Vo	Output voltage		to P67, P70 to P77, to P93, P100 to P107,		-0.3 to Vcc+0.3	V
Pd	Power dissipatio	n		-40°C ≤ Topr ≤ 85°C	300	m W
Т	Operating ambient	When the Micro	computer is Operating		-40 to 85	°C
Topr	temperature	Flash Program Erase	Program area (Block 0 to Block 3)		0 to 60	°C
			Data area (Block A, Block B)		-40 to 85	°C
Tstg	Storage tempera	iture			-65 to 150	С

Table 18.39. Recommended Operating Conditions (Note 1)


		5 .			Standard		
Symbol		Parameter		Min.	Typ.	Max.	Unit
Vcc	Supply voltage			3.0		5.5	V
AVcc	Analog supply volta	ge			Vcc		V
Vss	Supply voltage	Supply voltage			0		V
AVss	Analog supply volta	ly voltage			0		V
VIH	HIGH input voltage	P15 to P17, P60 to P67, P70 to P77, P100 to P107	P80 to P87, P90 to P93,	0.7Vcc		Vcc	V
VIH	HIGH input voltage	XIN, RESET, CNVss		0.8Vcc		Vcc	V
VIL	LOW input voltage	P15 to P17, P60 to P67, P70 to P77, P100 to P107	P80 to P87, P90 to P93,	0		0.3Vcc	V
VIL	LOW input voltage	Xin, RESET, CNVss		0		0.2Vcc	V
I _{OH (peak)}	HIGH peak output current	P15 to P17, P60 to P67, P70 to P77, P100 to P107	P80 to P87, P90 to P93,			-10.0	mA
I _{OH (avg)}	HIGH average output current	P15 to P17, P60 to P67, P70 to P77, P80 to P87, P90 to P93, P100 to P107				-5.0	mA
I _{OL (peak)}	LOW peak output current	P15 to P17, P60 to P67, P70 to P77, P100 to P107	P80 to P87, P90 to P93,			10.0	mA
I _{OL (avg)}	LOW average output current	P15 to P17, P60 to P67, P70 to P77, P100 to P107	P80 to P87, P90 to P93,			5.0	mA
f (XIN)	Main clock input osc	cillation frequency (Note 3)		0		20	MHz
f (Xcin)	Sub-clock oscillation	n frequency			32.768	50	kHz
f1 (ROC)	On-chip oscillation f	requency 1		0.5	1	2	MHz
f ₂ (ROC)	On-chip oscillation f	requency 2		1	2	4	MHz
f3 (ROC)	On-chip oscillation f	llation frequency 3		8	16	26	MHz
f (PLL)	PLL clock oscillation	PLL clock oscillation frequency (Note 3)		10		20	MHz
f (BCLK)	CPU operation clock	k		0		20	MHz
Tsu(PLL)	PLL frequency syntl	nesizer stabilization wait time	Vcc=5.0V			20	ms
			Vcc=3.0V			50	ms

Note 1: Referenced to Vcc = 3.0 to 5.5V at Topr = -40 to 85 °C unless otherwise specified.

Note 2: The mean output current is the mean value within 100ms.

Note 3: Relationship between main clock oscillation frequency, PLL clock oscillation frequency and supply voltage.

Note 4: The total IOL(peak) for all ports must be 80mA max. The total IOH(peak) for all ports must be -80mA max.

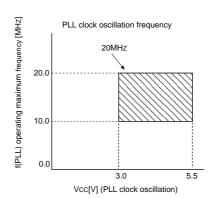


Table 18.40. A/D Conversion Characteristics (Note 1)

0	D-		A	S	tandar	·d	1.1
Symbol	Ра	rameter	Measuring condition		Тур.	Max.	Unit
_	Resolution		VREF =VCC			10	Bits
	Integral non-	4014	VREF =VCC=5V			±3	LSB
INL	linearity	1() hit	VREF =VCC=3.3V			±5	LSB
	error	8 bit	VREF = VCC=3.3V, 5V			±2	LSB
	Absolute 10 bit	10 bit	VREF =VCC=5V			±3	LSB
_		10 bit	VREF =VCC=3.3V			±5	LSB
	accuracy	8 bit	VREF = VCC=3.3V, 5V			±2	LSB
DNL	Differential no	n-linearity error				±1	LSB
-	Offset error					±3	LSB
_	Gain error					±3	LSB
RLADDER	Ladder resista	ance	VREF =VCC	10		40	kΩ
tconv	Conversion tir	, ,,	VREF =Vcc=5V, ØAD=10MHz	3.3			μs
	Sample & hold fu	unction available					
tconv	Conversion tir	me(8bit),	VREF =VCC=5V, ØAD=10MHz	2.8			
	Sample & hold fo	unction available					
VREF	Reference vo	ltage		2.0		Vcc	V
VIA	Analog input v	/oltage		0		VREF	V

Note 1: Referenced to Vcc=AVcc=VREF=3.3 to 5.5V, Vss=AVss=0V at Topr = -40 to 85 °C unless otherwise specified.

Note 2: AD operation clock frequency (ØAD frequency) must be 10 MHz or less. And divide the fAD if VCC is less than 4.2V, and make ØAD frequency equal to or lower than fAD/2.

Note 3: A case without sample & hold function turn ØAD frequency into 250 kHz or more in addition to a limit of Note 2.

A case with sample & hold function turn ØAD frequency into 1MHz or more in addition to a limit of Note 2.

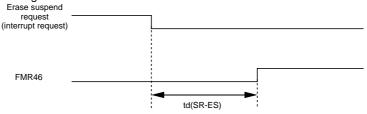
Note 4: A case with sample & hold function the sampling time is $3/\emptyset$ AD. A case without sample & hold function the sampling time is $2/\emptyset$ AD.

Table 18.41. Flash Memory Version Electrical Characteristics (Note 1) for 100 E/W cycle products / 1,000 E/W cycle products

Symbol	Po	rameter		Standard		11.2
- Cymile Cr	Fai	ametei	Min.	Typ. (Note 2)	Max	Unit
_	Erase/Write cycle (N	Erase/Write cycle (Note 3)		4,11)		cycle
_	Word program time ((Vcc=5.0V, Topr=25°C)		75	600	μs
_	Block erase time	2Kbyte block		0.2	9	s
		8Kbyte block		0.4	9	S
		16Kbyte block		0.7	9	S
		32Kbyte block		1.2	9	S
td(SR-ES)	Time delay from Suspen	Time delay from Suspend Request until Erase Suspend			8	ms
tps	Flash Memory Circuit Stabilization Wait Time				15	μs
_	Data retention time (Note 5)	20			year

Table 18.42. Flash Memory Version Electrical Characteristics (Note 6) for 10,000 E/W cycle products

[Block A and Block B (Note 7)]


			<u></u>	on mana blook b	/4
Symbol	Parameter		Standard		
Cymbol	raiametei	Min.	Typ. (Note 2)	Max	Unit
-	Erase/Write cycle (Note 3, 8, 9)	10,000(Note 4,10)			cycle
_	Word program time (Vcc=5.0V, Topr=25°C)		100		μs
_	Block erase time(Vcc=5.0V, Topr=25°C)				
	(2Kbyte block)		0.3		S
td(SR-ES)	Time delay from Suspend Request until Erase Suspend			8	ms
tPS	Flash Memory Circuit Stabilization Wait Time			15	μs
_	Data retention time (Note 5)	20			year

- Note 1: When not otherwise specified, Vcc = 3.0 to5.5V; Topr = 0 to 60 °C.
- Note 2: Vcc = 5V; Topr = 25 °C.
- Note 3: Program and Erase Endurance refers to the number of times a block erase can be performed.

 If the program and erase endurance is n (n=100, 1,000, 10,000), each block can be erased n times.

 For example, if a 2Kbytes block A is erased after writing 1 word data 1,024 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited)
- Note 4: Maximum number of E/W cycles for which opration is guaranteed.
- Note 5: Topr = 55°C.
- Note 6: When not otherwise specified, Vcc = 3.0 to 5.5V; Topr = -40 to 85°C.
- Note 7: This is a standard when program or erase endurance exceeds over 1,000 times.

 Word program time or block erase time up to 1,000 times is the same as program area.
- Note 8: To reduce the number of program and erase endurance when working with systems requiring numerous rewrites, write to unused word addresses within the block instead of rewrite. Erase block only after all prossible addresses are used. For example, an 8-word program can be written 256 times maximum before erase becomes necessary. Maintaining an equal number of erasure between block A and block B will also improve efficiency. It is improtant to track the total number of times erasure is used.
- Note 9: Should erase error occur during block erase, attempt to execute clear status register command, then clock erase command at least three times until erase error disappears.
- Note 10: When Block A or B E/W cycles exceed 1,000 (Option), select one wait state per block access. When bit 7 in Flash memory control register 1(FMR17 in address 01B516) is set to "1", one wait state is inserted per access to Block A or B regardless of the value of PM17. Wait state insertion during access to all other blocks, as well as to internal RAM, is controlled by PM17 regardless of the setting of FMR17.
- Note 11: Customers desiring Erase/Write cycle information should contact their Renesas technical support representative.
- Note 12: Customers desiring E/W failure rate information should contact their Renesas technical support representative.

Table 18.43. Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring condition		Standard		Ī., .,
Cymbol	i didiffetei	Wicasaring condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for internal power supply stabilization during powering-on				2	ms
td(ROC)	Time for internal on-chip oscillator stabilization during powering-on	Vcc=3.0 to 5.5V			40	μs
td(R-S)	STOP release time	VCC=3.0 to 5.5V			150	μs
td(W-S)	Low power dissipation mode wait mode release time (Note 2)				150	μs

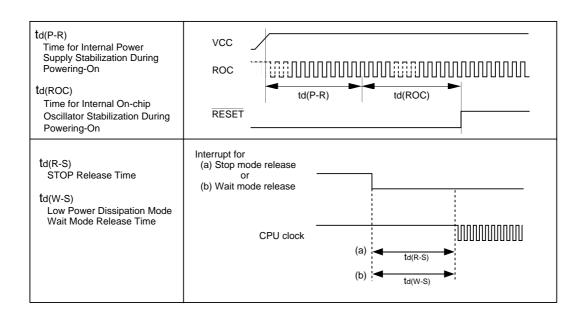


Table 18.44. Electrical Characteristics (Note 1)

Symbol		Paran	notor	Measuring condition		Standard	d	1
Symbol		Paran	leter	ivieasuring condition	Min.	Typ.	Max.	Unit
Vон	HIGH output voltage	P15 to P17, P60 to F P100 to P107	P67, P70 to P77, P80 to P87, P90 to P93,	Iон=-5mA	Vcc-2.0		Vcc	V
Vон	HIGH output voltage	P15 to P17, P60 to F P100 to P107	P67, P70 to P77, P80 to P87, P90 to P93,	Іон=-200μΑ	Vcc-0.3		Vcc	V
	HIGH output	voltage Xout	HIGHPOWER	IOH=-1mA	Vcc-2.0		Vcc	V
Vон	пібп оцірці	voilage 2001	LOWPOWER	IOH=-0.5mA	Vcc-2.0		Vcc	_ v
*****	HIGH output	voltage Xcout	HIGHPOWER	With no load applied		2.5		V
			LOWPOWER	With no load applied		1.6		-
VoL	LOW output voltage	P15 to P17, P60 to P P100 to P107	P67, P70 to P77, P80 to P87, P90 to P93,	IoL=5mA			2.0	V
VoL	LOW output voltage	P15 to P17, P60 to F P100 to P107	P67, P70 to P77, P80 to P87, P90 to P93,	IoL=200µA			0.45	V
Voi	LOW output voltage Xout	HIGHPOWER	IoL=1mA			2.0	T.,	
VOL	LOW output v	voltage X001	LOWPOWER	IoL=0.5mA			2.0	V
	1.004/		HIGHPOWER	With no load applied		0		T
	LOW output v	voltage Xcout	LOWPOWER	With no load applied		0		V
VT+-VT-	Hysteresis	TA0IN to TA4IN, T INTo to INT5, NM ADTRG, CTS0 to C CLK0 to CLK2, TA Klo to Kl3, RxD0 to	CTS2, 20ut to TA4out,		0.2		1.0	V
VT+-VT-	Hysteresis	RESET			0.2		2.5	V
VT+-VT-	Hysteresis	XIN			0.2		0.8	V
Іін	HIGH input current	P15 to P17, P60 to F P100 to P107, XIN, RESET, CNVs	P67, P70 to P77, P80 to P87, P90 to P93,	VI=5V			5.0	μА
lıL	LOW input current	P15 to P17, P60 to F P100 to P107, XIN, RESET, CNVs	P67, P70 to P77, P80 to P87, P90 to P93,	Vi=0V			-5.0	μA
RPULLUP	Pull-up resistance	P15 to P17, P60 to P P100 to P107	P67, P70 to P77, P80 to P87, P90 to P93,	Vi=0V	30	50	170	kΩ
RfXIN	Feedback res	sistance XIN				1.5		ΜΩ
Rfxcin	Feedback res	sistance Xcin				15		ΜΩ
VRAM	RAM retentio	n voltage		At stop mode	2.0			V

Note 1: Referenced to VCC=4.2 to 5.5V, VSS=0V at Topr = -40 to 85 $^{\circ}$ C, f(BCLK)=20MHz unless otherwise specified.

Table 18.45. Electrical Characteristics (2) (Note 1)

Symbol	Par	ameter	М	easuring condition		Standard		Unit
Cymbol	T dit	ameter	""	odddinig ddiidiidii	Min.	Тур.	Max.	Unit
		The output pins are open and other pins are Vss	Flash memory	f(BCLK)=20MHz, Main clock, no division		16	19	mA
				On-chip oscillation f2(ROC) selected, f(BCK)=1MHz		1		mA
			Flash memory Program	f(BCLK)=10MHz, Vcc=5.0V		11		mA
			Flash memory Erase	f(BCLK)=10MHz, Vcc=5.0V		12		mA
	Power supply current		Flash memory	f(BCLK)=32kHz, Low power dissipation mode, RAM(Note 3)		25		μА
	(Vcc=4.0 to 5.5V)			f(BCLK)=32kHz Low power dissipation mode, Flash memory(Note 3)		450		μА
				On-chip oscillation, f2(ROC) selected, f(BCK)=1MHz, Wait mode (Note 4)		50		μА
			f(BCLK)=32kHz, Wait mode (Note 2), Oscillation capacity High		10		μА	
				f(BCLK)=32kHz, Wait mode(Note 2), Oscillation capacity Low		3		μА
				Stop mode, Topr=25°C		0.8	3	μА

Note 1: Referenced to Vcc=4.2 to 5.5V, Vss=0V at Topr = -40 to 85 °C, f(X_{IN})=20MHz unless otherwise specified.

Note 2: With one timer operated using fc32.

Note 3: This indicates the memory in which the program to be executed exists.

Note 4: With one timer operated.

Timing Requirements

(VCC = 5V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 18.46. External Clock Input (XIN input)

Symbol	Parameter	Star	andard Max.	Unit
Symbol	Faiametei	Min.	Max.	Offic
tc	External clock input cycle time	50		ns
tw(H)	External clock input HIGH pulse width	20		ns
tw(L)	External clock input LOW pulse width	20		ns
tr	External clock rise time		9	ns
tf	External clock fall time		9	ns

Timing Requirements

(VCC = 5V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 18.47. Timer A Input (Counter Input in Event Counter Mode)

Symbol	Description	Star	ndard	l lait
	Parameter	Min.	Max.	Unit ns
tc(TA)	TAilN input cycle time	100		ns
tw(TAH)	TAin input HIGH pulse width	40		ns
tw(TAL)	TAil input LOW pulse width	40		ns

Table 18.48. Timer A Input (Gating Input in Timer Mode)

Symbol	D	Stan	dard Max.	11. %
	Parameter	Min.	Max.	Unit
tc(TA)	TAin input cycle time	400		ns
tw(TAH)	TAin input HIGH pulse width	200		ns
tw(TAL)	TAin input LOW pulse width	200		ns

Table 18.49. Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Stan	dard	Unit
	Parameter	Min.	Max.	Offic
tc(TA)	TAil input cycle time	200		ns
tw(TAH)	TAin input HIGH pulse width	100		ns
tw(TAL)	TAin input LOW pulse width	100		ns

Table 18.50. Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Cumbal	Cumbal	Stan	Unit	
Symbol Param	Parameter	Min.	Max.	Offic
tw(TAH)	TAim input HIGH pulse width	100		ns
tw(TAL)	TAin input LOW pulse width	100		ns

Table 18.51. Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

	<u>, </u>			
0	D	Star	Standard	
Symbol	Parameter		Max.	Unit
tc(UP)	TAiout input cycle time	2000		ns
tw(UPH)	TAiout input HIGH pulse width	1000		ns
tw(UPL)	TAiout input LOW pulse width	1000		ns
tsu(UP-TIN)	TAiout input setup time	400		ns
th(TIN-UP)	TAiout input hold time	400		ns

Table 18.52. Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter		Standard	
			Max.	Unit
tc(TA)	TAin input cycle time	800		ns
tsu(TAIN-TAOUT)	TAiout input setup time	200		ns
tsu(TAOUT-TAIN)	TAil input setup time	200		ns

Timing Requirements

(VCC = 5V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 18.53. Timer B Input (Counter Input in Event Counter Mode)

Cumphal	Demonstra	Stan	Standard		
Symbol	Symbol Parameter		Max.	Unit	
tc(TB)	TBiin input cycle time (counted on one edge)	100		ns	
tw(TBH)	TBiin input HIGH pulse width (counted on one edge)	40		ns	
tw(TBL)	TBiin input LOW pulse width (counted on one edge)	40		ns	
tc(TB)	TBiin input cycle time (counted on both edges)	200		ns	
tw(TBH)	ТВім input HIGH pulse width (counted on both edges)	80		ns	
tw(TBL)	TBin input LOW pulse width (counted on both edges)	80		ns	

Table 18.54. Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter		Standard	
			Max.	Unit
tc(TB)	TBiin input cycle time	400		ns
tw(TBH)	TBiin input HIGH pulse width	200		ns
tw(TBL)	ТВім input LOW pulse width	200		ns

Table 18.55. Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter		Standard	
			Max.	Unit
tc(TB)	TBiin input cycle time	400		ns
tw(TBH)	TBiin input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 18.56. A/D Trigger Input

Symbol	Parameter		Standard		
	Falanielei	Min.	Max.	Unit	
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns	
tw(ADL)	ADTRG input LOW pulse width	125		ns	

Table 18.57. Serial I/O

Symbol	Parameter		Standard	
	Farameter	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TxDi output delay time		80	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	70		ns
th(C-D)	RxDi input hold time	90		ns

Table 18.58. External Interrupt INTi Input

Symbol	Parameter	Star	Unit	
	Falanielei		Max.	Offic
tw(INH)	INTi input HIGH pulse width	250		ns
tw(INL)	INTi input LOW pulse width	250		ns

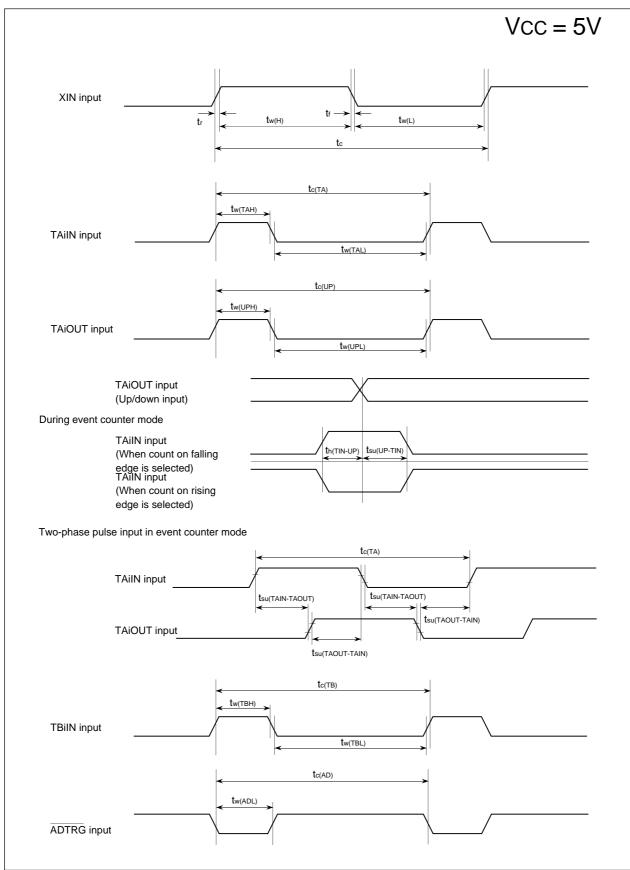


Figure 18.5. Timing Diagram (1)

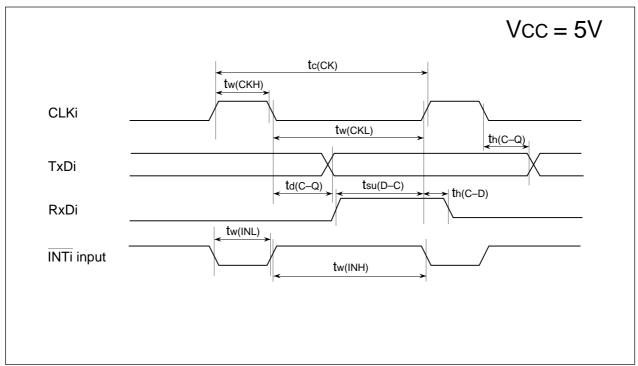


Figure 18.6. Timing Diagram (2)

Table 18.59. Electrical Characteristics (Note)

Symbol	Parameter		Measuring condition		Standard			
Symbol		Fala	inetei	Weasumg condition	Min.	Тур.	Max.	Unit
Vон		P15 to P17, P60 to P100 to P107	P67, P70 to P77, P80 to P87, P90 to P93,	IOH=-1mA	Vcc-0.5		Vcc	٧
	HIGH output \	voltage Xout	HIGHPOWER	IOH=-0.1mA	Vcc-0.5		Vcc	V
Vон	HIGH output V	rollage A001	LOWPOWER	Іон=-50μΑ	Vcc-0.5		Vcc	1 1
	HIGH output \	oltage XCOUT	HIGHPOWER	With no load applied		2.5		V
	o output	onago	LOWPOWER	With no load applied		1.6		1 ° 1
VoL		P15 to P17, P60 to P100 to P107	D P67, P70 to P77, P80 to P87, P90 to P93,	IoL=1mA			0.5	٧
1/	LOW output volta	oltage Xout	HIGHPOWER	IoL=0.1mA			0.5	٠,,
Vol	LOW output V	oltage A001	LOWPOWER	IoL=50μA			0.5	V
	LOW output voltage XCOUT	oltage Vocus	HIGHPOWER	With no load applied		0		
		LOWPOWER	With no load applied		0		V	
VT+-VT-	,	TA0IN to TA4IN, TINTO to INTS, NMI ADTRG, CTSO to C CLKO to CLK2, TA KIO to KI3, RxDo to	, ITS2 , 20uт to TA4ouт,				0.8	V
VT+-VT-	Hysteresis	RESET					1.8	V
VT+-VT-	Hysteresis	XIN					0.8	V
Іін	current	P15 to P17, P60 to P100 to P107 XIN, RESET, CNV	P67, P70 to P77, P80 to P87, P90 to P93, ('SS	Vi=3V			4.0	μА
lıL	current	P15 to P17, P60 to P100 to P107 XIN, RESET, CNV	P67, P70 to P77, P80 to P87, P90 to P93, ('ss	VI=0V			-4.0	μА
RPULLUP		P15 to P17, P60 to P100 to P107	P67, P70 to P77, P80 to P87, P90 to P93,	Vi=0V	50	100	500	kΩ
RfXIN	Feedback resis	stance XIN				3.0		МΩ
Rfxcin	Feedback resis	stance Xcin				25		МΩ
VRAM	RAM retention	voltage		At stop mode	2.0			V

Note 1 : Referenced to Vcc=3.0 to 3.3V, Vss=0V at Topr = -40 to 85 °C, f(BCLK)=20MHz unless otherwise specified.

Table 18.60. Electrical Characteristics (2) (Note 1)

Symbol	Parameter		Measuring condition		Standard			I I I maid
					Min.	Тур.	Max.	Unit
		The output pins are open and other pins are Vss	Flash memory	f(BCLK)=10MHz, Main clock, no division		7	12	mA
				On-chip oscillation, f2(ROC) selected, f(BCK)=1MHz		1		mA
			Flash memory Program	f(BCLK)=10MHz, Vcc=3.0V		10		m/
			Flash memory Erase	f(BCLK)=10MHz, Vcc=3.0V		11		m/
Icc	Power supply current (Vcc=3.0 to 3.6V)		Flash memory	f(BCLK)=32kHz, Low power dissipation mode, RAM(Note 3)		25		μA
				f(BCLK)=32kHz, Low power dissipation mode, Flash memory(Note 3)		450		μA
				On-chip oscillation, f2(ROC) selected, f(BCK)=1MHz,Wait mode (Note 4)		45		μA
			f(BCLK)=32kHz, Wait mode (Note 2), Oscillation capacity High		10		μА	
				f(BCLK)=32kHz, Wait mode (Note 2), Oscillation capacity Low		3		μΔ
				Stop mode, Topr=25°C		0.7	3	μΑ

Note 1: Referenced to Vcc=3.0 to 3.3V, Vss=0V at Topr = -40 to 85 °C, f(BCLK)=20MHz unless otherwise specified. Note 2: With one timer operated using fc32.

Note 3: This indicates the memory in which the program to be executed exists. Note 4: With one timer operated.

Timing Requirements

(VCC = 3V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 18.61. External Clock Input (XIN input)

Symbol	Doromotor	Standard		Unit
Syllibol	Symbol Parameter		Max.	Offic
tc	External clock input cycle time	100		ns
tw(H)	External clock input HIGH pulse width	40		ns
tw(L)	External clock input LOW pulse width	40		ns
tr	External clock rise time		18	ns
tf	External clock fall time		18	ns

Timing Requirements

(VCC = 3V, VSS = 0V, at Topr = -40 to 85° C unless otherwise specified)

Table 18.62. Timer A Input (Counter Input in Event Counter Mode)

Symbol Parameter	Description	Stan	dard	Lloit
	Min.	Max.	Unit	
tc(TA)	TAin input cycle time	150		ns
tw(TAH)	TAin input HIGH pulse width	60		ns
tw(TAL)	TAin input LOW pulse width	60		ns

Table 18.63. Timer A Input (Gating Input in Timer Mode)

		Stan	dard	
Symbol	Parameter	Min.	Max.	Unit
tc(TA)	TAin input cycle time	600		ns
tw(TAH)	TAiเท input HIGH pulse width	300		ns
tw(TAL)	TAilN input LOW pulse width	300		ns

Table 18.64. Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Star	ndard	Unit
	Falanielei	Min. Max.	Offic	
tc(TA)	TAin input cycle time	300		ns
tw(TAH)	TAin input HIGH pulse width	150		ns
tw(TAL)	TAin input LOW pulse width	150		ns

Table 18.65. Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Curah al	Doromotor	Star	ndard	Lloit
Symbol	Parameter	Min.	Max.	Unit
tw(TAH)	TAin input HIGH pulse width	150		ns
tw(TAL)	TAin input LOW pulse width	150		ns

Table 18.66. Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Cymphol	Developed	Standard	1.1	
Symbol	Parameter	Min.	Max.	Unit
tc(UP)	TAiout input cycle time	3000		ns
tw(UPH)	TAiout input HIGH pulse width	1500		ns
tw(UPL)	TAiout input LOW pulse width	1500		ns
tsu(UP-TIN)	TAiout input setup time	600		ns
th(TIN-UP)	TAiout input hold time	600		ns

Table 18.67. Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Deremeter	Standard	Linit	
	Parameter	Min.	n. Max.	Unit
tc(TA)	TAil input cycle time	2		μs
tsu(TAIN-TAOUT)	TAiout input setup time	500		ns
tsu(TAOUT-TAIN)	TAin input setup time	500		ns

Timing Requirements

(VCC = 3V, VSS = 0V, at Topr = -40 to 85°C unless otherwise specified)

Table 18.68. Timer B Input (Counter Input in Event Counter Mode)

Cumbal	Devembles	Stan	dard	l lmit
Symbol	Parameter	Min.	Max.	Unit
tc(TB)	TBin input cycle time (counted on one edge)	150		ns
tw(TBH)	TBiin input HIGH pulse width (counted on one edge)	60		ns
tw(TBL)	TBiin input LOW pulse width (counted on one edge)	60		ns
tc(TB)	TBiin input cycle time (counted on both edges)	300		ns
tw(TBH)	TBiin input HIGH pulse width (counted on both edges)	120		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	120		ns

Table 18.69. Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	-	Unit
Symbol	Symbol	Min.	Max.	
tc(TB)	TBiin input cycle time	600		ns
tw(TBH)	TBiin input HIGH pulse width	300		ns
tw(TBL)	TBiin input LOW pulse width	300		ns

Table 18.70. Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Star	dard	Unit
Symbol	i aidilietei	Min.	Max.	Offic
tc(TB)	TBin input cycle time	600		ns
tw(TBH)	TBin input HIGH pulse width	300		ns
tw(TBL)	TBiin input LOW pulse width	300		ns

Table 18.71. A/D Trigger Input

Symbol	Parameter	Standard	Unit	
Symbol	Falametei	Min.	Max.	Offic
tc(AD)	ADTRG input cycle time (trigger able minimum)	1500		ns
tw(ADL)	ADTRG input LOW pulse width	200		ns

Table 18.72. Serial I/O

Symbol	Parameter	Standard	dard	Unit
Symbol	raidilletei	Min.	Max.	
tc(CK)	CLKi input cycle time	300		ns
tw(CKH)	CLKi input HIGH pulse width	150		ns
tw(CKL)	CLKi input LOW pulse width	150		ns
td(C-Q)	TxDi output delay time		160	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	100		ns
th(C-D)	RxDi input hold time	90		ns

Table 18.73. External Interrupt INTi Input

Symbol	Parameter	Stan	ndard	Unit
Symbol	raiametei	Min.	Max.	Offic
tw(INH)	INTi input HIGH pulse width	380		ns
tw(INL)	INTi input LOW pulse width	380		ns

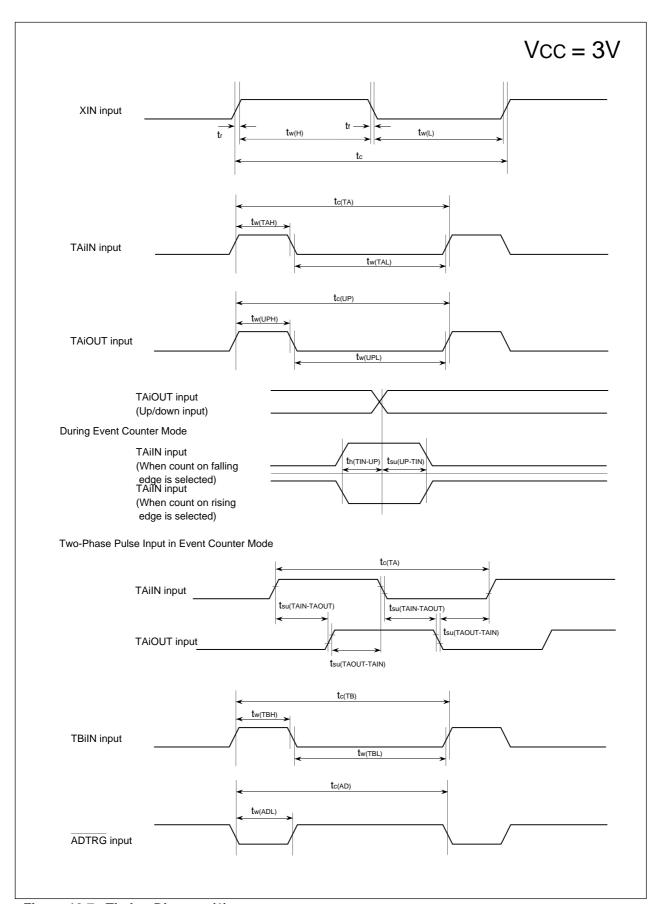


Figure 18.7. Timing Diagram (1)

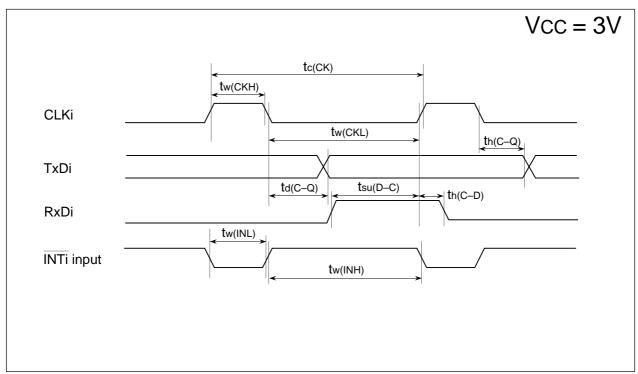


Figure 18.8. Timing Diagram (2)

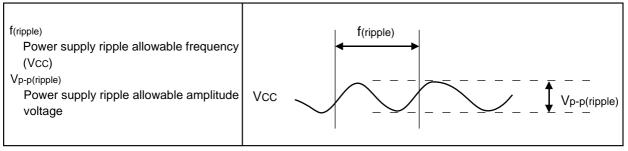
19. Usage Precaution

19.1 SFR

19.1.1 Precaution for 48 pin version

Set the IFSR20 bit in the IFSR2A register to "1" after reset and set the PACR2 to PACR0 bits in the PACR register to "1002".

19.1.2 Precaution for 42 pin version


Set the IFSR20 bit in the IFSR2A register to "1" after reset and set the PACR2 to PACR0 bits in the PACR register to "0012".

19.2 PLL Frequency Synthesizer

Stabilize supply voltage so that the standard of the power supply ripple is met.

	Parameter		Standard			
Symbol			Min.	Тур.	Max.	Unit
f(ripple)	Power supply ripple allowable frequency(Vcc)				10	kHz
Vp-p(ripple)	Power supply ripple allowabled amplitude voltage	(Vcc=5V)			0.5	V
		(Vcc=3V)			0.3	V
VCC(ΔV/ΔΤ)	Power supply ripple rising/falling gradient	(Vcc=5V)			0.3	V/ms
		(Vcc=3V)			0.3	V/ms

Figure 19.1 Timing of Voltage Fluctuation

19.3 Power Control

- 1. When exiting stop mode by hardware reset, the device will startup using the on-chip oscillator.
- 2. Set the MR0 bit in the TAiMR register(i=0 to 4) to "0"(pulse is not output) to use the timer A to exit stop mode.
- 3. When entering wait mode, insert a JMP.B instruction before a WAIT instruction. Do not excute any instructions which can generate a write to RAM between the JMP.B and WAIT instructions. Disable the DMA transfers, if a DMA transfer may occur between the JMP.B and WAIT instructions. After the WAIT instruction, insert at least 4 NOP instructions. When entering wait mode, the instruction queue reads ahead the instructions following WAIT, and depending on timing, some of these may execute before the microcomputer enters wait mode.

Program example when entering wait mode

Program Example: JMP.B L1 ; Insert JMP.B instruction before WAIT instruction L1:

FSET I ; WAIT ; Enter wait mode NOP ; More than 4 NOP instructions NOP NOP NOP

4. When entering stop mode, insert a JMP.B instruction immediately after executing an instruction which sets the CM10 bit in the CM1 register to "1", and then insert at least 4 NOP instructions. When entering stop mode, the instruction queue reads ahead the instructions following the instruction which sets the CM10 bit to "1" (all clock stops), and, some of these may execute before the microcomputer enters stop mode or before the interrupt routine for returning from stop mode.

Program example when entering stop mode

Program Example: FSET I
BSET CM10 ; Enter stop mode
JMP.B L1 ; Insert JMP.B instruction
L1:

NOP ; More than 4 NOP instructions
NOP
NOP
NOP

5. Wait until the main clock oscillation stabilization time, before switching the CPU clock source to the main clock

Similarly, wait until the sub clock oscillates stably before switching the CPU clock source to the sub clock.

6. Suggestions to reduce power consumption

(a) Ports

The processor retains the state of each I/O port even when it goes to wait mode or to stop mode. A current flows in active I/O ports. A dash current may flow through the input ports in high impedance state, if the input is floating. When entering wait mode or stop mode, set non-used ports to input and stabilize the potential.

(b) A/D converter

When A/D conversion is not performed, set the VCUT bit in the ADCON1 register to "0" (no VREF connection). When A/D conversion is performed, start the A/D conversion at least 1 μ s or longer after setting the VCUT bit to "1" (VREF connection).

(c) Stopping peripheral functions

Use the CM02 bit in the CM0 register to stop the unnecessary peripheral functions during wait mode. However, because the peripheral function clock (fc32) generated from the sub-clock does not stop, this measure is not conducive to reducing the power consumption of the chip. If low speed mode or low power dissipation mode is to be changed to wait mode, set the CM02 bit to "0" (do not stop peripheral function clocks in wait mode), before changing wait mode.

(d) Switching the oscillation-driving capacity

Set the driving capacity to "LOW" when oscillation is stable.

19.4 Protect

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be cleared to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction.

19.5 Interrupts

19.5.1 Reading address 0000016

Do not read the address 0000016 in a program. When a maskable interrupt request is accepted, the CPU reads interrupt information (interrupt number and interrupt request priority level) from the address 0000016 during the interrupt sequence. At this time, the IR bit for the accepted interrupt is cleared to "0". If the address 0000016 is read in a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is cleared to "0". This causes a problem that the interrupt is canceled, or an unexpected interrupt request is generated.

19.5.2 Setting the SP

Set any value in the SP(USP, ISP) before accepting an interrupt. The SP(USP, ISP) is cleared to '000016' after reset. Therefore, if an interrupt is accepted before setting any value in the SP(USP, ISP), the program may go out of control.

19.5.3 The NMI Interrupt

- 1. The NMI interrupt is invalid after reset. The NMI interrupt becomes effective by setting to "1" the PM24 bit in the PM2 register. Once enabled, it stays enabled until a reset is applied.
- 2. The input level of the $\overline{\text{NMI}}$ pin can be read by accessing the P8_5 bit in the P8 register. Note that the P8_5 bit can only be read when determining the pin level in $\overline{\text{NMI}}$ interrupt routine.
- 3. When selecting $\overline{\text{NMI}}$ function, stop mode cannot be entered into while input on the $\overline{\text{NMI}}$ pin is low. This is because while input on the $\overline{\text{NMI}}$ pin is low the CM10 bit in the CM1 register is fixed to "0".
- 4. When selecting NMI function, do not go to wait mode while input on the NMI pin is low. This is because when input on the NMI pin goes low, the CPU stops but CPU clock remains active; therefore, the current consumption in the chip does not drop. In this case, normal condition is restored by an interrupt generated thereafter.
- 5. When selecting $\overline{\text{NMI}}$ function, the low and high level durations of the input signal to the $\overline{\text{NMI}}$ pin must each be 2 CPU clock cycles + 300 ns or more.
- 6. When using the NMI interrupt for exiting stop mode, set the NDDR register to "FF16" (disable digital debounce filter) before entering stop mode.

19.5.4 Changing the Interrupt Generation Factor

If the interrupt generate factor is changed, the IR bit in the interrupt control register for the changed interrupt may inadvertently be set to "1" (interrupt requested). If you changed the interrupt generate factor for an interrupt that needs to be used, be sure to clear the IR bit for that interrupt to "0" (interrupt not requested).

"Changing the interrupt generate factor" referred to here means any act of changing the source, polarity or timing of the interrupt assigned to each software interrupt number. Therefore, if a mode change of any peripheral function involves changing the generate factor, polarity or timing of an interrupt, be sure to clear the IR bit for that interrupt to "0" (interrupt not requested) after making such changes. Refer to the description of each peripheral function for details about the interrupts from peripheral functions.

Figure 19.2 shows the procedure for changing the interrupt generate factor.

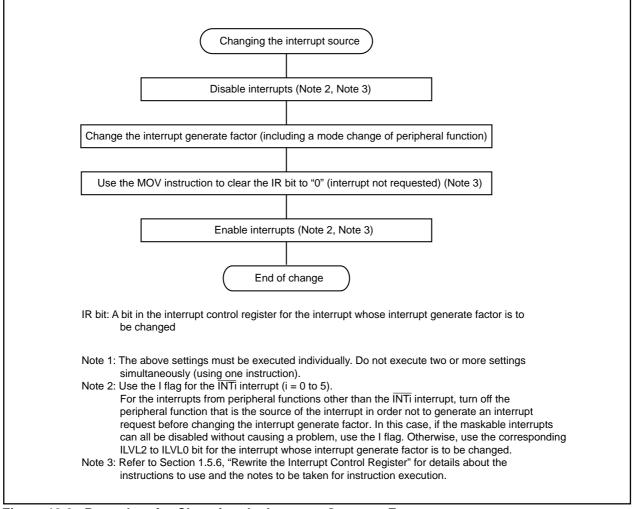


Figure 19.2. Procedure for Changing the Interrupt Generate Factor

19.5.5 INT Interrupt

- 1. Either an "L" level of at least tw(INH) or an "H" level of at least tw(INL) width is necessary for the signal input to pins INTo through INTo regardless of the CPU operation clock.
- 2. If the POL bit in the INT0IC to INT5IC registers or the IFSR7 to IFSR0 bits in the IFSR register are changed, the IR bit may inadvertently set to 1 (interrupt requested). Be sure to clear the IR bit to 0 (interrupt not requested) after changing any of those register bits.
- 3. When using the INT5 interrupt for exiting stop mode, set the P17DDR register to "FF16" (disable digital debounce filter) before entering stop mode.

19.5.6 Rewrite the Interrupt Control Register

- (1) The interrupt control register for any interrupt should be modified in places where no requests for that interrupt may occur. Otherwise, disable the interrupt before rewriting the interrupt control register.
- (2) To rewrite the interrupt control register for any interrupt after disabling that interrupt, be careful with the instruction to be used.

Changing any bit other than the IR bit

If while executing an instruction, a request for an interrupt controlled by the register being modified occurs, the IR bit in the register may not be set to "1" (interrupt requested), with the result that the interrupt request is ignored. If such a situation presents a problem, use the instructions shown below to modify the register.

Usable instructions: AND, OR, BCLR, BSET

Changing the IR bit

Depending on the instruction used, the IR bit may not always be cleared to "0" (interrupt not requested). Therefore, be sure to use the MOV instruction to clear the IR bit.

(3) When using the I flag to disable an interrupt, refer to the sample program fragments shown below as you set the I flag. (Refer to (2) for details about rewrite the interrupt control registers in the sample program fragments.)

Examples 1 through 3 show how to prevent the I flag from being set to "1" (interrupts enabled) before the interrupt control register is rewritten, due to the internal bus and the instruction queue buffer timing.

Example 1:Using the NOP instruction to keep the program waiting until the interrupt control register is modified

INT_SWITCH1:

FCLR | ; Disable interrupts.

AND.B #00h, 0055h; Set the TAOIC register to "0016".

NOP ;

NOP

FSET I ; Enable interrupts.

The number of NOP instruction is 2.

Example 2:Using the dummy read to keep the FSET instruction waiting

INT_SWITCH2:

FCLR I ; Disable interrupts.

AND.B #00h, 0055h; Set the TA0IC register to "0016".

MOV.W MEM, R0 ; <u>Dummy read.</u> FSET I ; Enable interrupts.

Example 3:Using the POPC instruction to changing the I flag

INT_SWITCH3:

PUSHC FLG

FCLR I ; Disable interrupts.

AND.B #00h, 0055h; Set the TA0IC register to "0016".

POPC FLG ; Enable interrupts.

19.5.7 Watchdog Timer Interrupt

Initialize the watchdog timer after the watchdog timer interrupt occurs.

19.6 DMAC

19.6.1 Write to DMAE Bit in DMiCON Register

When both of the conditions below are met, follow the steps below.

Conditions

- The DMAE bit is set to "1" again while it remains set (DMAi is in an active state).
- A DMA request may occur simultaneously when the DMAE bit is being written.

Step 1: Write "1" to the DMAE bit and DMAS bit in DMiCON register simultaneously(*1).

Step 2: Make sure that the DMAi is in an initial state^(*2) in a program.

If the DMAi is not in an initial state, the above steps should be repeated.

Notes:

- *1. The DMAS bit remains unchanged even if "1" is written. However, if "0" is written to this bit, it is set to "0" (DMA not requested). In order to prevent the DMAS bit from being modified to "0", "1" should be written to the DMAS bit when "1" is written to the DMAE bit. In this way the state of the DMAS bit immediately before being written can be maintained.
 - Similarly, when writing to the DMAE bit with a read-modify-write instruction, "1" should be written to the DMAS bit in order to maintain a DMA request which is generated during execution.
- *2. Read the TCRi register to verify whether the DMAi is in an initial state. If the read value is equal to a value which was written to the TCRi register before DMA transfer start, the DMAi is in an initial state. (If a DMA request occurs after writing to the DMAE bit, the value written to the TCRi register is "1".) If the read value is a value in the middle of transfer, the DMAi is not in an initial state.

19.7 Timer

19.7.1 Timer A

19.7.1.1 Timer A (Timer Mode)

- 1. The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register and the TAi register before setting the TAiS bit in the TABSR register to "1" (count starts).
 - Always make sure the TAiMR register is modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.
- 2. While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, if the TAi register is read at the same time the counter is reloaded, the read value is always "FFFF16". If the TAi register is read after setting a value in it, but before the counter starts counting, the read value is the one that has been set in the register.
- 3. If a low-level signal is applied to the \overline{SD} pin when the IVPCR1 bit in the TB2SC register is set to "1" (three-phase output forcible cutoff by input on \overline{SD} pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

19.7.1.2 Timer A (Event Counter Mode)

- 1. The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the UDF register, the TAZIE, TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts).
 - Always make sure the TAiMR register, the UDF register, the TAZIE, TA0TGL and TA0TGH bits and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.
- 2. While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, if the TAi register is read at the same time the counter is reloaded, the read value is always "FFFF16" when the timer counter underflows and "000016" when the timer counter overflows. If the TAi register is read after setting a value in it, but before the counter starts counting, the read value is the one that has been set in the register.
- 3. If a low-level signal is applied to the \overline{SD} pin when the IVPCR1 bit in the TB2SC register is set to "1" (three-phase output forcible cutoff by input on \overline{SD} pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

19.7.1.3 Timer A (One-shot Timer Mode)

- 1. The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts). Always make sure the TAiMR register, the TA0TGL and TA0TGH bits and the TRGSR register are
 - Always make sure the TAiMR register, the TA0TGL and TA0TGH bits and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.
- 2. When setting TAiS bit to "0" (count stop), the following occur:
 - The counter stops counting and the content of reload register is reloaded.
 - TAiout pin outputs "L".
 - After one cycle of the CPU clock, the IR bit in the TAilC register is set to "1" (interrupt request).
- 3. Output in one-shot timer mode synchronizes with a count source internally generated. When the external trigger has been selected, a maximun delay of one cycle of the count source occurs between the trigger input to TAiIN pin and output in one-shot timer mode.
- 4. The IR bit is set to "1" when timer operation mode is set with any of the following procedures:
 - Select one-shot timer mode after reset.
 - Change the operation mode from timer mode to one-shot timer mode.
 - Change the operation mode from event counter mode to one-shot timer mode.

 To use the timer Ai interrupt (the IR bit), set the IR bit to "0" after the changes listed above have been made.
- 5. When a trigger occurs while the timer is counting, the counter reloads the reload register value, and continues counting after a second trigger is generated and the counter is decremented once. To generate a trigger while counting, space more than one cycle of the timer count source from the first trigger and generate again.
- 6. When selecting the external trigger for the count start conditions in timer A one-shot timer mode, do generate an external trigger 300ns before the count value of timer A is set to "000016". The one-shot timer does not continue counting and may stop.
- 7. If a low-level signal is applied to the \overline{SD} pin when the IVPCR1 bit in the TB2SC register is set to "1" (three-phase output forcible cutoff by input on \overline{SD} pin enabled), the TA1out, TA2out and TA4out pins go to a high-impedance state.

19.7.1.4 Timer A (Pulse Width Modulation Mode)

- 1. The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR (i = 0 to 4) register, the TAi register, the TA0TGL and TA0TGH bits in the ONSF register and the TRGSR register before setting the TAiS bit in the TABSR register to "1" (count starts). Always make sure the TAiMR register, the TA0TGL and TA0TGH bits and the TRGSR register are modified while the TAiS bit remains "0" (count stops) regardless whether after reset or not.
- 2. The IR bit is set to "1" when setting a timer operation mode with any of the following procedures:
 - Select the PWM mode after reset.
 - Change an operation mode from timer mode to PWM mode.
 - Change an operation mode from event counter mode to PWM mode.

To use the timer Ai interrupt (interrupt request bit), set the IR bit to "0" by program after the above listed changes have been made.

- 3. When setting TAiS register to "0" (count stop) during PWM pulse output, the following action occurs:
 - · Stop counting.
 - When TAiout pin is output "H", output level is set to "L" and the IR bit is set to "1".
 - When TAiout pin is output "L", both output level and the IR bit remains unchanged.
- 4. If a low-level signal is applied to the \overline{SD} pin when the IVPCR1 bit in the TB2SC register is set to "1" (three-phase output forcible cutoff by input on \overline{SD} pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

19.7.2 Timer B

19.7.2.1 Timer B (Timer Mode)

- 1. The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 2) register and TBi register before setting the TBiS bit in the TABSR register to "1" (count starts).
 - Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not.
- 2. The counter value can be read out at any time by reading the TBi register. However, if this register is read at the same time the counter is reloaded, the read value is always "FFFF16." If the TBi register is read after setting a value in it but before the counter starts counting, the read value is the one that has been set in the register.

19.7.2.2 Timer B (Event Counter Mode)

- 1. The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TBiMR (i = 0 to 2) register and TBi register before setting the TBiS bit in the TABSR register to "1" (count starts).
 - Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not.
- 2. The counter value can be read out at any time by reading the TBi register. However, if this register is read at the same time the counter is reloaded, the read value is always "FFFF16." If the TBi register is read after setting a value in it but before the counter starts counting, the read value is the one that has been set in the register.

19.7.2.3 Timer B (Pulse Period/pulse Width Measurement Mode)

- 1. The timer remains idle after reset. Set the mode, count source, etc. using the TBiMR (i = 0 to 2) register before setting the TBiS bit in the TABSR register to "1" (count starts). Always make sure the TBiMR register is modified while the TBiS bit remains "0" (count stops) regardless whether after reset or not. To clear the MR3 bit to "0" by writing to the TBiMR register while the TBiS bit is set to "1" (count starts), be sure to set the TM0D0, TM0D1, MR0, MR1, TCK0 and TCK1 bits to the same value as previously written and the MR2 bit to "0".
- 2. The IR bit in the TBiIC register (i=0 to 2) goes to "1" (interrupt request), when an effective edge of a measurement pulse is input or timer Bi is overflowed. The factor of interrupt request can be determined by use of the MR3 bit in the TBiMR register within the interrupt routine.
- 3. If the source of interrupt cannot be identified by the MR3 bit such as when the measurement pulse input and a timer overflow occur at the same time, use another timer to count the number of times timer B has overflowed.
- 4. To set the MR3 bit to "0" (no overflow), set TBiMR register with setting the TBiS bit to "1" and counting the next count source after setting the MR3 bit to "1" (overflow).
- 5. Use the IR bit in the TBilC register to detect only overflows. Use the MR3 bit only to determine the interrupt factor within the interrupt routine.
- 6. When the count is started and the first effective edge is input, an indeterminate value is transferred to the reload register. At this time, timer Bi interrupt request is not generated.
- 7. The value of the counter is indeterminate at the beginning of a count. MR3 may be set to "1" and timer Bi interrupt request may be generated between the count start and an effective edge input.
- 8. For pulse width measurement, pulse widths are successively measured. Use program to check whether the measurement result is an "H" level width or an "L" level width.

19.8 Serial I/O (Clock-synchronous Serial I/O)

19.8.1 Transmission/reception

- 1. With an external clock selected, and choosing the RTS function, the output level of the RTSi pin goes to "L" when the data-receivable status becomes ready, which informs the transmission side that the reception has become ready. The output level of the RTSi pin goes to "H" when reception starts. So if the RTSi pin is connected to the CTSi pin on the transmission side, the circuit can transmit and receive data with consistent timing. With the internal clock, the RTS function has no effect.
- 2. If a low-level signal is applied to the \overline{SD} pin when the IVPCR1 bit in the TB2SC register is set to "1" (three-phase output forcible cutoff by input on \overline{SD} pin enabled), the P73/RTS2/TxD1(when the U1MAP bit in PACR register is "1") and CLK2 pins go to a high-impedance state.

19.8.2 Transmission

When an external clock is selected, the conditions must be met while if the CKPOL bit in the UiC0 register is set to "0" (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the UiC0 register is set to "1" (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.

- The TE bit in the UiC1 register is set to "1" (transmission enabled)
- The TI bit in the UiC1 register is set to "0" (data present in UiTB register)
- If CTS function is selected, input on the CTSi pin is "L"

19.8.3 Reception

- 1. In operating the clock-synchronous serial I/O, operating the transmitter generates a clock for the receiver shift register. Fix settings for transmission even when using the device only for reception. Dummy data is output to the outside from the TxDi pin when receiving data.
- 2. When an internal clock is selected, set the TE bit in the UiC1 register (i = 0 to 2) to 1 (transmission enabled) and write dummy data to the UiTB register, and the clock for the receiver shift register will thereby be generated. When an external clock is selected, set the TE bit to "1" and write dummy data to the UiTB register, and the clock for the receiver shift register will be generated when the external clock is fed to the CLKi input pin.
- 3. When successively receiving data, if all bits of the next receive data are prepared in the UARTi receive register while the RE bit in the UiC1 register (i = 0 to 2) is set to "1" (data present in the UiRB register), an overrun error occurs and the OER bit in the UiRB register is set to "1" (overrun error occurred). In this case, because the content of the UiRB register is indeterminate, a corrective measure must be taken by programs on the transmit and receive sides so that the valid data before the overrun error occurred will be retransmitted. Note that when an overrun error occurred, the IR bit in the SiRIC register does not change state.
- 4. To receive data in succession, set dummy data in the lower-order byte of the UiTB register every time reception is made.
- 5. When an external clock is selected, make sure the external clock is in high state if the CKPOL bit is set to "0", and in low state if the CKPOL bit is set to "1" before the following conditions are met:
 - Set the RE bit in the UiC1 register to "1" (reception enabled)
 - Set the TE bit in the UiC1 register to "1" (transmission enabled)
 - Set the TI bit in the UiC1 register to "0" (data present in the UiTB register)

19.9 Serial I/O (UART Mode)

19.9.1 Special Mode 1 (I²C bus Mode)

When generating start, stop and restart conditions, set the STSPSEL bit in the U2SMR4 register to "0" and wait for more than half cycle of the transfer clock before setting each condition generate bit (STAREQ, RSTAREQ and STPREQ) from "0" to "1".

19.9.2 Special Mode 2

If a low-level signal is applied to the P85/NMI/SD pin when the IVPCR1 bit in the TB2SC register is set to "1" (three-phase output forcible cutoff by input on SD pin enabled), the P73/RTS2/TxD1(when the U1MAP bit in PACR register is "1") and CLK2 pins go to a high-impedance state.

19.9.3 Special Mode 4 (SIM Mode)

A transmit interrupt request is generated by setting the U2IRS bit in the U2C1 register to "1" (transmission complete) and U2ERE bit to "1" (error signal output) after reset. Therefore, when using SIM mode, be sure to clear the IR bit to "0" (no interrupt request) after setting these bits.

19.10 A/D Converter

- 1. Set ADCON0 (except bit 6), ADCON1 and ADCON2 registers when A/D conversion is stopped (before a trigger occurs).
- 2. When the VCUT bit in the ADCON1 register is changed from "0" (Vref not connected) to "1" (Vref connected), start A/D conversion after waiting 1 μs or longer.
- 3. To prevent noise-induced device malfunction or latchup, as well as to reduce conversion errors, insert capacitors between the AVCC, VREF, and analog input pins (ANi(i=0 to 7),AN24,AN3i(i=0 to 2)) each and the AVSS pin. Similarly, insert a capacitor between the VCC pin and the VSS pin. Figure 19.4 is an example connection of each pin.
- 4. Make sure the port direction bits for those pins that are used as analog inputs are set to "0" (input mode). Also, if the TGR bit in ADCON0 register is set to "1" (external trigger), make sure the port direction bit for the ADTRG pin is set to "0" (input mode).
- 5. When using key input interrupts, do not use any of the four AN4 to AN7 pins as analog inputs. (A key input interrupt request is generated when the A/D input voltage goes low.)
- 6. The φAD frequency must be 10 MHz or less. Without sample-and-hold function, limit the φAD frequency to 250kHz or more. With the sample and hold function, limit the φAD frequency to 1MHz or more.
- 7. When changing an A/D operation mode, select analog input pin again in the CH2 to CH0 bits in the ADCON0 register and the SCAN1 to SCAN0 bits in the ADCON1 register.

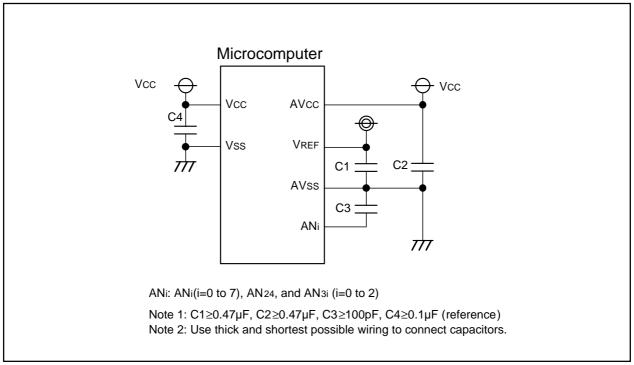


Figure 19.3. Use of capacitors to reduce noise

- 8. If the CPU reads the A/D register i (i = 0 to 7) at the same time the conversion result is stored in the A/D register i after completion of A/D conversion, an incorrect value may be stored in the A/D register i. This problem occurs when a divide-by-n clock derived from the main clock or a subclock is selected for CPU clock.
 - When operating in one-shot mode, single-sweep mode, simultaneous sample sweep mode, delayed trigger mode 0 or delayed trigger mode 1
 - Check to see that A/D conversion is completed before reading the target A/D register i. (Check the IR bit in the ADIC register to see if A/D conversion is completed.)
 - When operating in repeat mode or repeat sweep mode 0 or 1
 Use the main clock for CPU clock directly without dividing it.
- 9. If A/D conversion is forcibly terminated while in progress by setting the ADST bit in the ADCON0 register to "0" (A/D conversion halted), the conversion result of the A/D converter is indeterminate. The contents of A/D register i irrelevant to A/D conversion may also become indeterminate. If while A/D conversion is underway the ADST bit is cleared to "0" in a program, ignore the values of all A/D register i.
- 10. When setting the ADST bit in the ADCON register to "0" to terminate a conversion forcefully by the program in single sweep conversion mode, A/D delayed trigger mode 0 and A/D delayed trigger mode 1 during A/D conversion operation, the A/D interrupt request may be generated. If this causes a problem, set the ADST bit to "0" after the interrupt is disabled.

19.11 Programmable I/O Ports

- 1. If a low-level signal is applied to the \overline{SD} pin when the IVPCR1 bit in the TB2SC register is set to "1" (three-phase output forcible cutoff by input on \overline{SD} pin enabled), the P72 to P75, P80 and P81 pins go to a high-impedance state.
- 2. The input threshold voltage of pins differs between programmable input/output ports and peripheral functions.
 - Therefore, if any pin is shared by a programmable input/output port and a peripheral function and the input level at this pin is outside the range of recommended operating conditions VIH and VIL (neither "high" nor "low"), the input level may be determined differently depending on which side—the programmable input/output port or the peripheral function—is currently selected.
- 3. When the INV03 bit in the INVC0 register is "1"(three-phase motor control timer output enabled), an "L" input on the P85 /NMI/SD pin, has the following effect:
 - •When the IVPCR1 bit in the TB2SC register is set to "1" (three-phase output forcible cutoff by input on the \overline{SD} pin enabled), the U/ \overline{U} / V/ \overline{W} / \overline{W} pins go to a high-impedance state.
 - •When the IVPCR1 bit is set to "0" (three-phase output forcible cutoff by input on \overline{SD} pin disabled), the U/ \overline{U} /V/ \overline{W} /W pins go to a normal port.

Therefore, the P85 pin can not be used as programmable I/O port when the INV03 bit is set to "1". When the \overline{SD} function isn't used, set PD85 to "0" (Input) and pull the P85 $\overline{/NMI/SD}$ pin to "H" externally.

19.12 Electric Characteristic Differences Between Mask ROM and Flash Memory Version Microcomputers

Flash memory version and mask ROM version may have different characteristics, operating margin, noise tolerated dose, noise width dose in electrical characteristics due to internal ROM, different layout pattern, etc. When switching to the mask ROM version, conduct equivalent tests as system evaluation tests conducted in the flash memory version.

19.13 Mask ROM Version

19.13.1 Internal ROM area

When using the masked ROM version, write nothing to internal ROM area.

19.13.2 Reserve bit

The b3 to b0 in address 0FFFFF16 are reserved bits. Set these bits to "11112".

19.14 Flash Memory Version

19.14.1 Functions to Inhibit Rewriting Flash Memory

ID codes are stored in addresses 0FFFDF16, 0FFFE316, 0FFFEB16, 0FFFEF16, 0FFFF316, 0FFFF716, and 0FFFFB16. If wrong data is written to these addresses, the flash memory cannot be read or written in standard serial I/O mode.

The ROMCP register is mapped in address 0FFFF16. If wrong data is written to this address, the flash memory cannot be read or written in parallel I/O mode.

In the flash memory version of microcomputer, these addresses are allocated to the vector addresses (H) of fixed vectors. The b3 to b0 in address 0FFFFF16 are reserved bits. Set these bits to "11112".

19.14.2 Stop mode

When the microcomputer enters stop mode, execute the instruction which sets the CM10 bit to "1" (stop mode) after setting the FMR01 bit to "0" (CPU rewrite mode disabled) and disabling the DMA transfer.

19.14.3 Wait mode

When the microcomputer enters wait mode, excute the WAIT instruction after setting the FMR01 bit to "0" (CPU rewrite mode disabled).

19.14.4 Low power dissipation mode, on-chip oscillator low power dissipation mode

If the CM05 bit is set to "1" (main clock stop), the following commands must not be executed.

- Program
- Block erase

19.14.5 Writing command and data

Write the command code and data at even addresses.

19.14.6 Program Command

Write 'xx4016' in the first bus cycle and write data to the write address in the second bus cycle, and an auto program operation (data program and verify) will start. Make sure the address value specified in the first bus cycle is the same even address as the write address specified in the second bus cycle.

19.14.7 Operation speed

When CPU clock source is main clock, before entering CPU rewrite mode (EW0 or EW1 mode), select 10 MHz or less for BCLK using the CM06 bit in the CM0 register and the CM17 to CM16 bits in the CM1 register. Also, when CPU clock is f3(ROC) on-chip oscillator clock, before entering CPU rewrite mode (EW0 or EW1 mode), set the ROCR3 to ROCR2 bits in the ROCR register to "divide by 4" or "divide by 8". On both cases, set the PM17 bit in the PM1 register to "1" (with wait state).

19.14.8 Instructions prohibited in EW0 Mode

The following instructions cannot be used in EW0 mode because the flash memory's internal data is referenced: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

19.14.9 Interrupts

EW0 Mode

- Any interrupt which has a vector in the variable vector table can be used, providing that its vector is transferred into the RAM area.
- The NMI and watchdog timer interrupts can be used because the FMR0 register and FMR1 register are initialized when one of those interrupts occurs. The jump addresses for those interrupt service routines should be set in the fixed vector table.
- Because the rewrite operation is halted when a NMI or watchdog timer interrupt occurs, the rewrite program must be executed again after exiting the interrupt service routine.
- The address match interrupt cannot be used because the flash memory's internal data is referenced.

EW1 Mode

- Make sure that any interrupt which has a vector in the variable vector table or address match interrupt will not be accepted during the auto program or auto erase period.
- Avoid using watchdog timer interrupts.
- The NMI interrupt can be used because the FMR0 register and FMR1 register are initialized when this interrupt occurs. The jump address for the interrupt service routine should be set in the fixed vector table.

Because the rewrite operation is halted when a NMI interrupt occurs, the rewrite program must be executed again after exiting the interrupt service routine.

19.14.10 How to access

To set the FMR01, FMR02, FMR11 or FMR16 bit to "1", set the subject bit to "1" immediately after setting to "0". Do not generate an interrupt or a DMA transfer between the instruction to set the bit to "0" and the instruction to set the bit to "1". Set the bit while either the PM24 bit in the PM2 register is set to "0" ($\overline{\text{NMI}}$ disable) or the PM24 bit is set to "1" ($\overline{\text{NMI}}$ funciton) and a high-level ("H") signal is applied to the $\overline{\text{NMI}}$ pin.

19.14.11 Writing in the user ROM area

EW0 Mode

• If the power supply voltage drops while rewriting any block in which the rewrite control program is stored, a problem may occur that the rewrite control program is not correctly rewritten and, consequently, the flash memory becomes unable to be rewritten thereafter. In this case, standard serial I/O or parallel I/O mode should be used.

EW1 Mode

• Avoid rewriting any block in which the rewrite control program is stored.

19.14.12 DMA transfer

In EW1 mode, make sure that no DMA transfers will occur while the FMR00 bit in the FMR0 register is set to "0" (during the auto program or auto erase period).

19.14.13 Regarding Programming/Erasure Times and Execution Time

As the number of programming/erasure times increases, so does the execution time for software commands (Program, and Block Erase).

The software commands are aborted by hardware reset 1, hardware reset 2, $\overline{\text{NMI}}$ interrupt, and watchdog timer interrupt. If a software command is aborted by such reset or interrupt, the affected block must be erased before reexecuting the aborted command.

19.14.14 Definition of Programming/Erasure Times

"Number of programs and erasure" refers to the number of erasure per block.

If the number of program and erasure is n (n=100 1,000 10,000) each block can be erased n times. For example, if a 2K byte block A is erased after writing 1 word data 1024 times, each to a different address, this is counted as one program and erasure. However, data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited)

19.14.15 Flash Memory Version Electrical Characteristics 10,000 E/W cycle products (U7, U9)

When Block A or B E/W cycles exceed 100, select one wait state per block access. When FMR17 is set to "1", one wait state is inserted per access to Block A or B - regardless of the value of PM17. Wait state insertion during access to all other blocks, as well as to internal RAM, is controlled by PM17 - regardless of the setting of FMR17.

To use the limited number of erasure efficiently, write to unused address within the block instead of rewite. Erase block only after all possible address are used. For example, an 8-word program can be written 128 times before erase becomes necessary.

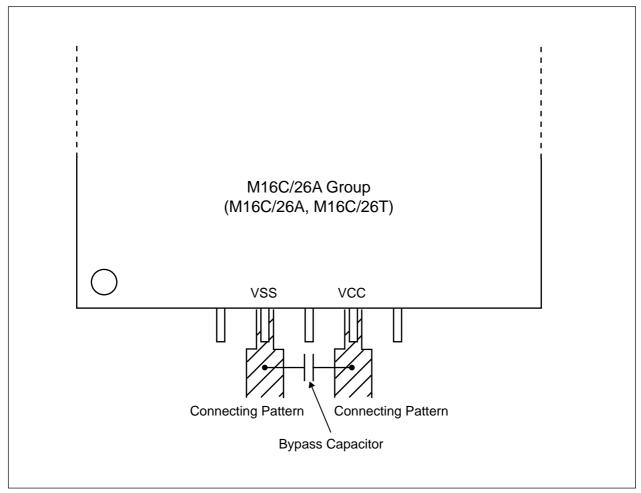
Maintaining an equal number of erasure between Block A and B will also improve efficiency.

We recommend keeping track of the number of times erasure is used.

19.14.16 Boot Mode

An indeterminate value is sometimes output in the I/O port until the internal power supply becomes stable when "H" is applied to the CNVss pin and "L" is applied to the RESET pin.

When setting the CNVss pin to "H", the following procedure is required:


- (1) Apply an "L" signal to the RESET pin and the CNVss pin.
- (2) Bring VCC to more than 2.7V, and wait at least 2msec. (Internal power supply stable waiting time)
- (3) Apply an "H" signal to the CNVss pin.
- (4) Apply an "H" signal to the RESET pin.

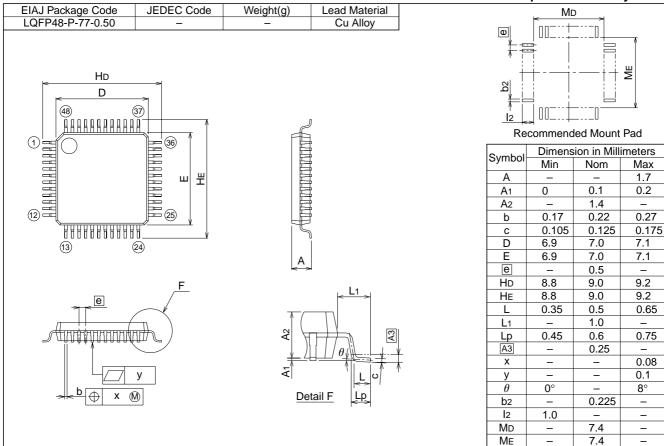
When the CNVss pin is "H" and RESET pin is "L", P67 pin is connected to the pull-up resister.

19.15 Noise

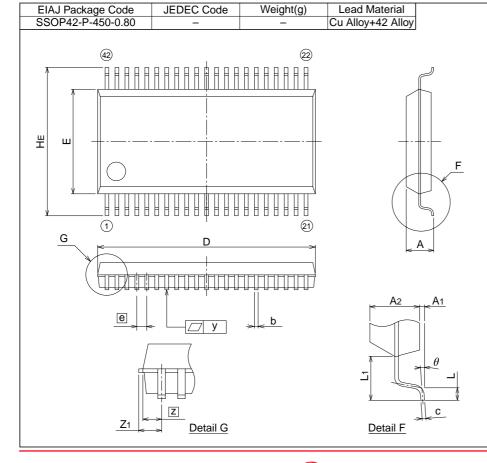
Connect a bypass capacitor (approximately $0.1\mu F$) across the Vcc and Vss pins using the shortest and thicker possible wiring. Figure 19.4 shows the bypass capacitor connection.

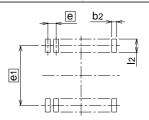
Figure 19.4 Bypass Capacitor Connection

19.16 Instruction for a Device Use


When handling a device, extra attention is necessary to prevent it from crashing during the electrostatic discharge period.

Appendix 1. Package Dimensions


48P6Q-A Recommended


Plastic 48pin 7×7mm body LQFP

42P2R-E Recommended

Plastic 42pin 450mil SSOP

Recommended Mount Pad

Cumbal	Dimens	ion in Mill	imeters
Symbol	Min	Nom	Max
Α	_	_	2.4
A1	0.05	-	_
A2	_	2.0	_
р	0.25	0.3	0.4
С	0.13	0.15	0.2
D	17.3	17.5	17.7
Е	8.2	8.4	8.6
е	_	0.8	_
HE	11.63	11.93	12.23
П	0.3	0.5	0.7
L1	_	1.765	_
Z	_	0.75	-
Z1	_	ı	0.9
У	_	-	0.15
θ	0°	-	10°
b2	_	0.5	_
e1	_	11.43	_
l 2	1.27	1	-

Appendix 2. Functional Difference

Appendix 2.1 Differences between M16C/26A and M16C/26T

Item	M16C/26A	M16C/26T
Main Clock during	Oscillating	Stoped
and after Reset	(Default value "0" while and after the CM05 bit is reset.)	(Default value "1" while and after the CM05 bit is reset.)
Voltage Detection	Available	Not available
Circuit	(VCR1 register, VCR2 register,	(reserve register)
(Function of 001916,	D4INT register)	
001A16, 001F16)		
Cold Start/Warm Start	Available	Not available
Detection Function	WDC5 bit in theWDC register	
Package	48P6Q, 42P2R	48P6Q

Note. Since the emulator between the M16C/26A and M16C/29 group are same, all functions of M16C/29 are built in the emulator. When evaluating M16C/26A group, do not access to the SFR which is not built in M16C/26A group.

Refer to Hardware Manual about detail and electrical characteristics.

Appendix 2.2 Differences between M16C/26A and M16C/26

Item	M16C/26A	M16C/26
Clock Generation Circuit	4 circuits (Main clock oscillation circuit, Sub clock oscillation circuit, on-chip oscillator, PLL frequency synthesizer)	3 circuits (Main clock oscillation circuit, Sub clock oscillation circuit, on-chip oscillator)
System Clock Source After Reset (Initial value of the CM21 bit in the CM2 register)	On-chip oscillator (Initial value "1" of CM21 bit)	Main clock (Initial value "0" of CM21 bit)
On-chip Oscillator Clock	Selectable (8MHz/1MHz/500KHz)	Fixed (1MHz)
PACR2 to PACR0 in the PACR register	48pin:"1002", 42pin:"0012"	No PACR register
IFSR20 bit in the IFSR2A register	Necessary to set to "1" after reset	No IFSR2A register
External Interrupt	8 causes (INT2 added)	7 causes
13 pin (48-pin version) Function	P84/INT2/ZP	IVcc
P70, P71	N-ch open drain output and CMOS output are selectable by S/W	N-ch open drain output
A/D Input Pin (48-pin version)	12 channels	8 channels
A/D operation Mode	8 modes (single, repeat, single sweep, repeat sweep mode 0, repeat sweep mode 1, simultaneous sampling, delayed trigger mode 0, delayed trigger mode 1) 1 shunt current measurement function is available	5 modes (single, repeat, single sweep, repeat sweep mode 0, repeat sweep mode 1)
Timer B Operation Mode	5 modes (timer, event counter, pulse periods measurement, pulse width measurment, A/D trigger) 1 shunt current measurement function is available	4 modes (timer, event counter, pulse periods measurement, pulse width measurment)
CRC Calculation	Available (compatible to CRC-CCITT and CRC-16 methods)	Not available
Three-phase motor Control	Waveform output/Switching port output by software is enabledPosition data retention function	Waveform output/Switching port output by software is disabledNo position data retention function
Digital Debounce Function	This function is in the $\overline{\text{NMI}/\text{SD}}$ pin and $\overline{\text{INT5}}$ pin	Not available
3 pin (48-pin version) function	P9o/CLKout/TB0in/AN30 (CLKout: f1, f8, f32, and fc output)	P9o/TB0IN
UART1 Compatible pin	Switching to P64 to P67 or P70 to P73 is enabled	P64 to P67
Flash Memory Protect Function	Protection to blocks 0, 1 by FMR02 bit Protection to the blocks 0 to 3 by FMR16 bit	Protection to blocks 0,1 by FMR02 bit
Package	48P6Q, 42P2R	48P6Q

Note. Since the emulator between the M16C/26A and M16C/29 group are same, all functions of M16C/29 are built in the emulator. When evaluating M16C/26A group, do not access to the SFR which is not built in M16C/26A group.

Refer to Hardware Manual about detail and electrical characteristics.

Register Index

A	N
ADO to AD7 179 ADCON0 to ADCON2 177, 182, 184, 186, 188, 190, 192 ADSTATO 179	NDDR and P17DDR 222 O
ADTRGCON 178, 193, 199, 205 AIER 73	ONSF 91
С	P
CM0 34 CM1 35 CM2 36 CPSRF 91, 105 CRCD 209 CRCIN 209 CRCMR 209 CRCSAR 209	P0 to P13 219 PACR 134, 221 PCLKR 37 PCR 221 PD0 to PD13 218 PDRF 124 PFCR 126 PLC0 38 PM0 31
D	PM1 31 PM2 37
D4INT 26 DARO 81	PRCR 54 PUR0 to PUR2 220
DAR1 81 DM0CON 80	R
DMOSL 79	RMAD0 73
DM1CON 80 DM1SL 80	RMAD1 73 ROCR 35
DTT 116	ROMCP 231
F	S
FMR0 236 FMR1 236	SAR0 81 SAR1 81
FMR4 237	Т
ICCTB2 116 ICTB2 117 IDB 116 IDB0 116 IFSR 62, 70 IFSR2A 62 Interrupt Control 61 INVC0 114 INVC1 115	TA0 to TA4 90 TA0MR to TA4MR 89 TA11 117 TA1MR 120 TA2 117 TA21 117 TA2MR 120 TA2MR to TA4MR 96 TA4 117 TA41 117 TA4MR 120

TABSR 90, 105, 119
TAIMR 94, 101
TB0 to TB5 105

TB0MR to TB5MR 104

TB2 **119**

TB2MR **120**

TB2SC 118, 180

TCR0 81

TCR1 81

Timer Ai Mode 92

TPRC 126

TRGSR 91, 119

U

U0BRG to U2BRG 131
U0C0 to U2C0 133
U0C1 to U2C1 134
U0MR to U2MR 132
U0RB to U2RB 131
U0TB to U2TB 131
U2SMR 135
U2SMR2 135
U2SMR3 136
U2SMR4 136
UCON 133

٧

VCR1 **26** VCR2 **26**

UDF 90

W

WDC **75** WDTS **75**

Rev.	Date		Description
		Page	Summary
0.51	Feb/ 01/ 04	2	Note 2 in Table 1.1 is revised.
		3	Note 2 in Table 1.2 is revised.
		10	Table 1.6 is revised.
		39	The section "7.3 Ring Oscillator Clock" is revised.
		58	The section "9.3 Interrupt Control" is revised.
		60	Figure 9.3.2 is added. IFSR2A register is revised.
		68	The section "9.6 INT Interrupt" is revised.
			IFSR2A register in Figure 9.6.1 is deleted.
		69	The section "9.7 NMI Interrupt" is revised.
		72	The section "10. Watchdog Timer" is revised.
		81	Table 11.2.2 is revised.
		100	The section "12.2 Timer B" is revised. Figure 12.2.2 is revised.
		102	Figure 12.2.2.1 is revised.
		107	Figure 12.2.4.2 is revised.
		114	Figure 12.3.6 is revised.
		122	The section "13. Serial I/O" is revised.
		124	Figure 13.1.2 is revised.
		149	Table 13.1.3.3 is revised.
		161	Table 13.1.5.1 is revised.
		168 to 201	The chapter 14 is revised.
		202	The section 15 is revised.
		205	The section "16. Programmable I/O port" is revised.
		206	The section "16.6 Digital Debounce function" is revised.
		216	Figure 16.6.1 is revised.
		222	Table 17.4 and Note 5, 7 are revised.
		241	Table 17.41 and Note 5, 7 are revised.
		260	Table 17.78 and Note 5, 7 are revised.
		271	The section 18.2 is revised.
		277	Note 2 in Table 18.4.1 is revised.
		297	Figure 18.9.3 is revised.
		302	The chapter 20 is revised.
0.51A		120	Figure 12.3.1.2.1 and the section 12.3.1.2.4 are partly revised.
0.70	April/08/04	1	The section "1. Overview" is partly revised.
		2,3	Table 1.1 and 1.2 are partly revised.
		6	The section "1.4 Product List" is partly revised.
		8,9	Figure 1.3 to 1.5 are partly revised.
		11	Table 1.7 is partly revised.
		14	The Chapter "3. Memory" is partly revised. Note 2 in Figure 3.1 is added.
		15	The Chapter "4. Special Function Register" is partly revised.

Rev.	Date		Description
		Page	Summary
		24	The section "5.5 Voltage Detection Curcuit" is partly revised.
			Figure 5.5.1 and 5.5.2 are partly revised.
		25	VCR1 register and VCR2 register in Figure 5.5.3 are partly revised.
		26	Figure 5.5.4 is partly revised.
		27	The section "5.5.1 Voltage Detection Interrupt" is partly revised.
		28	Figure 5.5.1.1.2.1 is partly revised.
		29	Figure 6.2 is partly revised.
		32	Figure 7.2 is partly revised.
		33	Figure 7.3 is partly revised.
		34	Figure 7.5 is partly revised.
		35	Processer mode register 2 in Figure 7.6 is partly revised.
		37	The section "7.1 Main Clock" is partly revised.
		40	Figure 7.4.1 is partly revised.
		41	The section "7.5 CPU Clock and Peripheral Function Clock" and "7.5.2 Peripheral
			Function Clock" are partly revised.
		49	The section "7.7 System Clock Protective Function" and "7.8 Oscillation Stop and
			Re-oscillation Detect Function" are partly revised.
		60	IFSR2A register in Figure 9.3.2 is partly revised.
		62	The section "9.4 Interrupt Sequence" is partly revised.
		63	The section "9.4.1 Interrupt Response Time" and Figure 9.4.1.1 are partly revised.
		89	Table 12.1.1.1 is partly revised.
		97	Table 12.1.4.1 is partly revised.
		100	Setction 12.2. Timer B" is partly revised.
		101	The Timer Bi register in Figure 12.2.3 is partly revised.
		106	The section "12.2.4 A-D trigger mode" and table 12.2.4.1 are partly revised.
		107	Figure 12.2.4.1 and 12.2.4.2 are partly revised.
		110	Figure 12.3.2 is partly revised.
		112	"Timer B2 interrupt occurrences frequency set counter" in Figure 12.3.4 is partly
			revised.
		114	Figure 12.3.6 is partly revised.
		117	Figure 12.3.9 PFCR register and TPRC register is deleted.
		121	The section "13.3.2 Three-phase/Port Output Switch Function", Figure "12.3.2.1
			Usage Example of Three-phse/Port output switch function" and Figure "12.3.2.2
			PFCR register and TPRC register" are added.
		130	"UART 2 special mode register 2" in Figure 13.1.8 is partly revised.
		131	"UART 2 special mode register 3" in Figure 13.1.9 is partly revised.
		134	Table 13.1.1.2 is partly revised.
		141	Table 13.1.2.2 is partly revised.
		149	Figure 13.1.3.1 is partly revised.

Rev.	Date		Description
		Page	Summary
		169	Table 14.1 is partly revised.
		172	Figure 14.4 is partly revised.
		173	Figure 14.5 is partly revised.
		178	The section "14.1.3. Single Sweep Mode" is partly revised.
		184	The section "14.1.6 Simultaneous Sample sweep Mode" is partly revised.
		187	The section "14.1.7 Delayed Trigger Mode 0" and Table 15.1.7.1 are partly revised
		188	Figure 14.1.7.1 is revised.
		189, 190	Figure 14.1.7.2 and 14.1.7.3 are revised
		191	Figure 14.1.7.3 is deleted.
		192	Figure 14.1.7.6 is partly revised.
		193	The section "14.1.8 Delayed Trigger Mode 1" and Table 15.1.8.1 are partly revised
		195, 196	Figure 14.1.8.2 and 14.1.8.3 are partly revised.
		200	Figure 14.5.1 is partly revised.
		202	The chapter "15. CRC Calculation Circuit" is partly revised.
		204	Figure 15.3 is partly revised.
		205	The chapter "16. Programmable I/O Ports" is partly revised.
		206	The section "16.5 Pin Assignment Control register(PACR)" is partly revised.
		214	"Pull-up control register 2" in Figure 16.3.1 is partly revised.
		222	Table 17.4 and 17.5 are revised partly revised. Note 6 and 10 are partly revised.
		223	Note 3 in Table 17.6 is added.
		241	Table 17.41 and 17.42 are revised partly revised. Note 10 is partly revised.
		242	Note 3 in Table 17.43 is added.
		257 to 268	The section "17.3 V version" is deleted.
		269	Table 18.1 is partly revised.
		270 to 227	Setction "18.2. Memory Map" and Figure 18.2.3 and 18.2.4 are revised.
		280	"•FMR17 Bit" in the section 18.5.2 is partly revised.
		269 to 300	Chapter "18. Flash memory Version" is revised.
		302	Capter "20 Difference between M16C/26A and M16C/27" is partly revised.
1.00	Mar/15/05	All pages	Word standardized (on-chip oscillator, A/D)
		1	"M16C/26T" in "1. Overview" is added.
		2,3	Table 1.1 and Table 1.2 are revised.
		6	"1.4 Product List" and Table 1.3 to 1.5 are revised.
		7	"ROM/RAM capacity" and "Product code" in Figure 1.3 are partly revised.
			Table 1.6 is added.
		8	"Figure 1.4 Marking Diagram" is added.
		9, 10	The 24 and 25 pin in Figure 1.5 and the 27 and 28 pin in Figure 1.6 are revised.
		11	"Power supply input" in Talbe 1.6 is revised. "I/O port P6" and "Î/O port P7" are
			partly revised.
		12	"I/O prot P9" is partly revised.

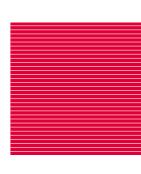
Rev.	Date		Description
		Page	Summary
		15	"3. Memoty" is partly revised. The size of internal ROM in Figure 3.1 is revised.
		16 to 21	"4. Special Function Register" is change from "?" to "X".
		16	Register name of D4INT register is revised. Note 2 and 3 in Table 4.1 are revised.
		19	The after reset of IDB0 and ICB1 register are revised.
		21	The after reset of ADTRGCON and PD9 are revised.
		22	"5.1.2 Hardware Reset 2" is added "Note", and partly revised.
		23	"5.4 Oscillation Stop Detection Reset" is partly revised.
		25	"5.5 Voltage Detection Circuit" is added "Note", and partly revised. Figure 5.5.1 is
			revised. Figure "WDC register" is deleted.
		26	The VC25 bit in "VCR2 register" in Figure 5.5.2 is deleted.
		27	Figure 5.5.3 is revised.
		28 to 30	"5.5.1 Voltage Down Detection Interrupt", "5.5.2 Limitations on Exiting Stop Mode"
			and "5.5.3 Limitations Exiting Wait Mode" are revised.
		31	Figure 6.2 is partly revised.
		32	"Oscillator status after reset" in Table 7.1 is partly revised.
		33	Figure 7.1 is partly revised.
		34	The after reset value of "CM0 register" is revised.
		35	The bit 7 to 4 in Figure 7.4 is revised.
		37	Note 2 and note 4 in PM2 register is revised.
		39	7 line in "7.1 Main Clock" is added.
		41	"7.3 On-chip Oscillator Clock" is revised.
		42	Figure 7.4.1 is partly revised.
		45	"7.6.1.6 On-chip Oscillator Mode" is partly revised.
		46	Table 7.6.2.3.1 is added.
		48	Figure 7.6.1 is partly revised.
		49	Notes in Figure 7.6.1.1 is revised.
		54	Note in "8. Protection" is added. "NDDR register" in "8. Protection" and Figure 8.1 is added.
		55	Note in "9. Interrupt" is added.
		58	Note 2 in Table 9.2.1.1 is added.
		64	Note 2 in Figure 9.4.1 is added.
		68	"Watchdog Timer" in Figure 9.5.1 is added.
		74	"10. Watchdog Timer" is partly revised. Figure 10.1 is partly revised.
		75	Note 3 of WDC register in Figure 10.2 is added.
		76	"10.2 Cold start/Warm start" is added.
		77	Note in "11. DMAC" is added.
		83	Figure 11.1.1 is partly revised.
		87	Note in "12. Timers" is added.
		91	TRGSR register in Figure 12.1.4 is revised.
		94	"Normal processing operation" in Table 12.1.2.2 is partly revised.

Rev.	Date		Description
		Page	Summary
		100	"Count Start Condition" in Table 12.1.4.1 is patly revised.
		112	"Notes" of Table 12.3.1 is revised.
		113	Figure 12.3.1 is partly revised.
		114	The function of INV00 bit and note 1,3, 5, 6 in Figure 12.3.2 are partly revised.
		115	The function in INV13 bit is revised. Note 2 is added.
		116	Reset value of "Three-Phase Output Buffer Register" in Figure 12.3.4 is revised.
		117	Note 6 in Figure 12.3.5 is revised.
		120	Figure 12.3.9 is partly revised.
		125	Note in Figure 12.3.2.1 is added.
		127	Note in "13. Serial I/O" is added. "13.1 UARTi(i=0 to 2)" is partly revised.
		128 to 130	Figure 13.1.1 to Figure 13.1.3 are partly revised.
		131	Note 2 in UiRB register and note 1 in UiBRG register are revised.
		132	Function of SMD2 to SMD0 bits and Note 3 in U2MR register are revised.
		133	Note 5 and 6 in UiC0 register are added. Note 2 in UCON register is added.
		134	PACR register is added in Figure 13.1.7.
		137	"Transfer clock" in Table 13.1.1.1 is partly revised.
			"UART 1 pin remapping selection" in Select function is added.
		138	Function of RCSP bit in Table 13.1.1.2 is partly revised.
		139	"RxDi" in Table 13.1.1.3 is partly revised. Note 1 in Table 13.1.1.3 and Table 13.1.1.4 are added
		140	The comment of fEXT in Figure 13.1.1.1 is added.
		141	"13.1.1.1 Counter Measure for Communication Error Occurs" is added.
		143	Note 2 in Figure 13.1.1.6.1 is added.
		144	Note 1 in Figure 13.1.1.7.1 is added.
		145	"Transfer clock" in Table 13.1.2.1 is partly revised.
			"UART 1 pin remapping selection" in Select function is added.
		146	Function of RCSP bit in Table 13.1.2.2 is partly revised.
		147	"RxDi" in Table 13.1.2.3 is partly revised. Note 1 in Table 13.1.2.3 and Table 13.1.2.4 are added
		149,150	"13.1.2.1 Bit Rates" and "13.1.2.2 Counter Measure for Communication Error Occurs" is added
		152	Note 1 in Figure 13.1.2.6.1 is added.
		153	"Transfer clock" in Table 13.1.3.1 is partly revised.
		163	"Transfer clock" in Table 13.1.4.1 is partly revised.
		165	"UFORM" in Table 13.1.4.2 is revised.
		169	Figure 13.1.5.1 is partly revised.
		170	"Transfer clock" in Table 13.1.6.1 is partly revised.
		175	Note in "14. A/D Converter" is added. "Integral Nonlinearity Error" in Table 14.1 is partly revised.
		206	"14.2 Sample and Hold" is partly revised.
		206, 207	"14.5 Analog Input Pin and External Sensor Equivalent Circuit Example" and
			"14.6 Precautions of Using A/D Converter" are deleted. "14.5 Output Impedance
			of Sensor under A/D Conversion" is added.

Rev.	Date		Description
		Page	Summary
		209	"After reset" of CRCSAR register in Figure 15.2 is revised.
		211	Note in "16. Programmable I/O Ports" is added.
		211	"16.3 Pull-up Control Register 0 to Pull-up Control Register 2" is added P67.
		212	"16.5 Pin Assignment Cotrol register" is added "M16C/26T". PRC2 bit is revised.
			"16.6 Digital Debounce function" is partly revised. (INPC17 is added.)
		214	P77, P90 to P92 in Figure 16.2 is partly revised.
		218	The after reset of PD9 register in Figure 16.1.1 is revised.
		221	Note 1 in Figure 16.5.1 is revised.
		222	Note in NDDR register and P17DDR register is added.
		224	Note 5 in Table 16.1 is added.
		225 to 293	"Flash Memory Version" and "Electrical Characteristics" are exchanged.
		225	"Erase block" and "Progream/Erase Endurance" in Table 17.1 are revised.
		227	"17.2 Memory Map" is partly revised.
		232	"17.4 CPU Rewrite Mode" is partly revised. Note2 in Table 17.4.1 is partly revised.
		234	"17.5.1 Flash memory control register 0" is partly revised.
		236	The after reset of FMR0 register and Note 3 of FMR1 register in Figure 17.5.1 is revised.
		239	Figure 17.5.1.3 is partly revised.
		240	The FMR16 bit in "17.6.4 How to Access" is added.
		241	"17.6.9 Stop Mode" is partly revised.
		244	"17.7.6 Block Erase" is partly revised.
		250	Table 17.9.1 and note 2 is partly revised.
		251, 252	Figure 17.9.1 and Figure 17.9.2 are partly revised.
		253, 254	Figure 17.9.2.1 and Figure 17.9.2.2 are partly revised.
		256	The condition of "Pd" in Table 18.1 is revised. Flash Program Erase of "Topr" is added.
		257	Table 18.2 is modified.
		258	Measuring condition in Table 18.3 is partly revised.
		259	Table 18.4 and Table 18.5 are added "tps" and "td(SR-ES)". Note 3 and Note 8 are revised.
		260	Table 18.6, Table 18.7 and "Power Supply Circuit Timing Diagram" are modified.
		261	The "hysteresis XIN" in Table 18.8 is added.
		262	Table 18.9 is revised.
		266	"XIN input" in Figure 18.1 is added.
		268	The "hysteresis XIN" in Table 18.23 is added. Note 1 is partly revised.
		269	Table 18.24 is revised.
		273	"XIN input" in Figure 18.3 is added.
		275	The condition of "Pd" in Table 18.38 is revised. Flash Program Erase of "Topr" is added.
		276	Table 18.39 is partly revised.
		277	"Tolerance Level Impedance" in Table 18.40 is added.
		278	Table 18.41 and Table 18.42 are added "tps" and "td(SR-ES)". Note 3 and 8 are revised.
		279	Table 18.43 and "Power Supply Circuit Timing Diagram" are revised.

Rev.	Date		Description
		Page	Summary
		280	The "hysteresis XIN" in Table 18.44 is added. Note 1 is partly revised.
		281	Table 18.45 is revised.
		285	"XIN input" in Figure 18.5 is added.
		287	The "hysteresis XIN" in Table 18.59 is added. Note 1 is partly revised.
		288	Table 18.60 is revised.
		292	"XIN input" in Figure 18.7 is added.
		294 to 323	Chapter "19. Usage precaution" is added.
		296	The title of Figure 19.2 is partly revised.
		297, 298	Ths subsection 3, 4, 5 and 6(a) are revised.
		300	The subsection 1 in "19.6.3 The $\overline{\text{NMI}}$ interrupt" is partly revised.
		301	The title of "19.6.4" is partly revised.
		302	The last 2 lines in "19.6.6 Rewrite the Interrupt Control Register" is partly revised.
		305, 306	The subsection 2 in "19.8.1.1 Timer A (Timer Mode)" and "19.8.1.2 Timer A (Event
			Counter Mode)" are revised.
		307	"19.8.1.3 Timer A (One-shot Timer Mode)" is partly revised.
		309, 310	The subsection 2 in "19.8.2.1 Timer B (Timer Mode)" and "19.8.2.2 Timer B (Event
			Counter Mode)" are revised.
		311	The subsection 6 and 7 in "19.8.2.3 Timer B (Pulse Period/pulse Width Measurement Mode)"
			are partly revised.
		312	The subsection 1 in "19.9.1 Transmission/reception" is partly revised.
		314	The subsection 1, 2 and 5 in "19.9.3 Reception" is partly revised.
		316, 317	The subsection 2 and 10 in "19.11 A/D Converter" are partly revised.
		318	The subsection 3 in "19.12 Programmalbe I/O Ports" is partly revised.
		319	"19.13 Electric Characteristic Differences Between Mask ROM and Flash Memory
			Version Microcomputers" and "19.14.2 Reserve bit" are partly revised.
		320	"19.15.1 Function to Inhibit Rewriting Flash Memory" is partly revised.
		321	The title of "19.15.8" is revised. "19.15.10 How to access" is revised.
		322	"19.15.13 Regarding Programming/Erasure Times and Execution Time", "19.15.14
			Definition of Programming/Erasure Times" and "19.15.16 Boot Mode" are partly revised.
		325	"Appendix 2.1 Differences between M16C/26A and M16C/26T" is added.
		275	"Operating ambient temperature" in Table 18.38 is revised.
		276, 277	Table 18.39 and 18.40 are partly revised.
		278	Table 18.41 and 18.42 are partly revised.
		279	Figure of timing is revised.
		281	Table 18.45 is partly revised.
		284	Table 18.57 is partly revised.
		287, 288	Table 18.59 and 18.60 are partly revised.

Rev.	Date		Description
		Page	Summary
		288	Tabl 18.60 is revised.
		294	Table 18.72 is partly revised.
		296	The max values of "Power supply ripple rising/falling gradient" are revised.


M16C/26A Group(M16C/26A,M16C/26T) Hardware Manual

Publication Data: Rev.0.51 Feb 01, 2004 Rev.1.00 Mar 15, 2005

Rev. 1.00 Mar 15, 2005

Published by: Sales Strategic Planning Div. Renesas Technology Corp.

M16C/26A Group (M16C/26A,M16C/26T) Hardware Manual

